
Reassembler - Towards a Global
DDoS Attack Analysis Using Attack

Fingerprints

Jonas Brunner
Zurich, Switzerland

Student ID: 17-709-650

Supervisor: Dr. Bruno Rodrigues, Chao Feng, Prof. Dr. Burkhard
Stiller

Date of Submission: June 16, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

In recent years, the frequency and scale of Distributed Denial-of-Service (DDoS) attacks
have increased significantly, yet they remain an unsolved problem. Many intrusion detec-
tion systems employ shared attack fingerprints and signatures as a standard practice to
detect cyber attacks. For DDoS attacks, a single attack fingerprint typically is not enough
to detect other attacks of the same kind. However, attack fingerprints can still be useful,
especially when the same attack is observed from multiple locations.

Thus, this work proposes Reassembler, a tool that enables global analysis of DDoS attacks
based on attack fingerprints recorded at different locations. For this, multiple attack
scenarios are specified using a custom-built simulated network. Based on the attack
scenarios, the Reassembler solution is implemented, analyzing and aggregating attack
fingerprints into a global view.

Reassembler is evaluated based on four simulated and one real use case (based on real
DDoS network traces), demonstrating that the Reassembler can derive interesting proper-
ties such as the number of intermediate nodes or the estimated percentage of spoofed IPs.
Based on different experiments, it is shown under which circumstances the Reassembler
performs best and where improvements are needed.

i

ii

Zusammenfassung

In den letzten Jahren haben die Häufigkeit und das Ausmass von Distributed Denial-of-
Service (DDoS) Angriffen erheblich zugenommen, trotzdem bleiben sie ein ungelöstes Pro-
blem. Viele Intrusion Detection Systeme verwenden geteilte Angriffs-Fingerabdrücke und
-Signaturen als Standardpraxis zur Erkennung von Cyberangriffen. Bei DDoS-Angriffen
reicht ein einzelner Angriffsfingerabdruck in der Regel aber nicht aus, um andere An-
griffe derselben Art zu erkennen. Dennoch können Angriffsfingerabdrücke nützlich sein,
insbesondere wenn derselbe Angriff von mehreren Standorten aus beobachtet wird.

Daher schlägt diese Arbeit den Reassembler vor, ein Werkzeug, das eine globale Analyse
von DDoS-Angriffen auf der Grundlage von Angriffs-Fingerabdrücken ermöglicht, die an
verschiedenen Standorten aufgezeichnet wurden. Hierfür werden mehrere Angriffsszenari-
en mit Hilfe eines eigens erstellten simulierten Netzwerks definiert. Basierend auf diesen
Angriffsszenarien wird die Reassembler-Lösung implementiert, die Angriffs-Fingerabdrücke
analysiert und zu einer globalen Sicht zusammenfasst.

Reassembler wird anhand von vier simulierten und einem realen Anwendungsfall (ba-
sierend auf realen DDoS Aufzeichnungen) evaluiert, wobei demonstriert wird, dass der
Reassembler interessante Eigenschaften wie die Anzahl der Zwischenknoten oder den ge-
schätzten Prozentsatz von gefälschten IPs ableiten kann. Anhand verschiedener Experi-
mente wird gezeigt, unter welchen Umständen der Reassembler am besten funktioniert
und wo Verbesserungen notwendig sind.

iii

iv

Acknowledgments

I want to thank all the people who were involved in this thesis. My special thanks go
to my supervisor Dr. Bruno Rodrigues who provided invaluable feedback and advice
throughout the thesis. I would also like to thank Prof. Dr. Burkhard Stiller for giving
me the opportunity to be part of this project at the Communication Systems Group at
the University of Zurich.

v

vi

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Goals . 2

1.3 Thesis Outline . 3

2 Fundamentals 5

2.1 Background . 5

2.1.1 Distributed Denial of Service Attacks 5

2.1.2 Network Monitoring . 7

2.1.3 Attack Fingerprints / Signatures 8

2.2 Related Work . 8

2.2.1 DDoS Fingerprinting . 9

2.2.2 A Global DDoS Attack View . 9

2.2.3 Clustering DDoS Attacks . 10

2.2.4 Datasets . 11

vii

viii CONTENTS

3 Design 13

3.1 Fingerprint Generator . 14

3.1.1 Simulated Network Topology . 14

3.1.2 Attack Fingerprint Format . 19

3.1.3 Attack Scenario . 23

3.1.4 Attack Scenario Parameters . 27

3.2 Reassembler . 28

3.2.1 Pre-process Attack Fingerprints . 29

3.2.2 Attack Identification . 29

3.2.3 Attack Analysis . 32

3.2.4 Global Fingerprint . 37

4 Implementation 41

4.1 Fingerprint Generator . 41

4.1.1 Network Graph . 41

4.1.2 Generator . 45

4.2 Reassembler . 48

4.2.1 Pre-process Fingerprints . 49

4.2.2 Attack Analysis . 51

4.2.3 Global Fingerprint Generation . 53

4.3 DDoS Dissector Contributions . 55

4.3.1 Generating Multiple Fingerprints 55

4.3.2 Extending the Fingerprint Format 56

4.3.3 Fixing Parallelization Bug . 56

CONTENTS ix

5 Evaluation 59

5.1 Use Case . 59

5.1.1 Attack Simulation . 59

5.1.2 Global Analysis . 61

5.1.3 Real Attack Fingerprints from DDoS Dissector 64

5.1.4 Test Scenarios . 65

5.2 Experiments . 70

5.2.1 Adversarial . 70

5.2.2 Detection Thresholds . 78

5.3 Discussion . 80

5.3.1 Deployment Considerations . 83

6 Final Considerations 85

6.1 Summary . 85

6.2 Conclusions . 86

6.3 Future Work . 86

Bibliography 87

Abbreviations 95

List of Figures 95

List of Tables 98

List of Listings 99

A Contents of the CD 103

B Installation Guidelines 105

B.1 Reassembler . 105

B.2 DDoS Dissector . 106

x CONTENTS

C Global Fingerprints 107

C.1 Global Fingerprint of Simulated Scenario 107

C.2 Global Fingerprint of Real Attack Data . 109

Chapter 1

Introduction

Distributed Denial-of-Service (DDoS) attacks pose a severe risk to Internet availability.
Attacks happen often, as they are relatively simple to launch but hard to detect and
mitigate efficiently. DDoS-for-Hire services enable anyone to launch an attack within
minutes. Search activity for so-called ”stresser” or ”booter” services has increased so much
that the UK government even launched an ad campaign seeking to deter Cybercrime [34].
In recent years, DDoS attacks have not only become more accessible, but they have also
grown in terms of bandwidth. Cloudflare, one of the leading DDoS mitigation companies,
reported that they had mitigated multiple attacks which exceeded 1Tbps in bandwidth
[69]. It is also not uncommon for attackers to demand a ransom payment to stop an
existing attack or not attack in the first place [33]. With the increasing digitization trend
of society, it becomes clear that DDoS attacks threaten businesses and individuals. Despite
multiple commercial and research efforts, DDoS attacks remain an unsolved problem.

One primary reason is the growing number of devices connected to the Internet that are
poorly secured or not secured. This allows attackers to take control of devices ranging
from security cameras to smart fridges. In large numbers, such infected devices form a
botnet that can be used to launch Denial-of-Service attacks in a distributed manner. A
famous botnet called ”Mirai” was estimated to have infected over 100’000 devices [10].
Although the original creators of the botnet were convicted, variants of the botnet are
still active and launching attacks with up to 2.5Tbps [69].

Naturally, an ideal counter strategy to distributed attacks also involves a distributed
defense to mitigate attacking traffic at different points, possibly closer to their origin. In
this regard, sharing information is essential for equally distributed DDoS attack defense.
Numerous Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS),
which typically rely on their internal knowledge, already employ fingerprints or signatures
as a standard practice for sharing attack data [42]. In this regard, the DDoSDB [18] project
was proposed as a central repository where various organizations can share their DDoS
fingerprints, thereby expanding the knowledge of a single organization. However, due to
the distributed nature of DDoS attacks, different DDoS fingerprints may present different
views of the same attack, posing a challenge and an opportunity to analyze and aggregate
such fingerprints.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Many existing DDoS defense strategies are primarily implemented at the attack target
[31, 35, 46]. However, unlike with other security threats, the sharing of DDoS attack
fingerprints and signatures is not widely adopted as a method for collective defense. This
is because the fingerprint of a specific DDoS attack cannot be universally applied to
detect other attacks of the same kind, thus serving more as a means for analysis rather
than detection.

Compared to other security threats, the distributed nature of DDoS attacks makes them
observable by other network nodes. Even though some sharing mechanisms for DDoS
attack fingerprints exist [18], they have rarely been leveraged to gain further insights
into a DDoS attack from a global perspective. However, attack fingerprints recorded
at different nodes provide a unique perspective on a certain DDoS attack. With attack
fingerprints from many cooperating entities, this provides a novel data foundation for a
global post-mortem analysis of DDoS attacks.

A global post-mortem analysis can provide a more accurate view of a DDoS attack than
an analysis solely at the attack target. For example, the origin of network layer attacks
not using a handshake mechanism is almost impossible to locate when the attack employs
IP spoofing techniques. While large cloud providers can roughly estimate the origin of an
attack by analyzing the ingress traffic per edge location, this still does not provide a fully
accurate picture because traffic can be routed through various ISPs or even countries [71].
In this regard, shared observations from multiple locations (including backbone routers)
could provide further insights into the true origin of the attack. Moreover, novel metrics,
such as the count of intermediate nodes observing an attack, or key nodes aiding in the
execution of the attack, can be derived from attack fingerprints.

To the best of the author’s knowledge, no existing research attempts to create a compre-
hensive analysis of a DDoS attack based on fingerprints recorded at different locations.
Consequently, the challenge addressed in this thesis is filtering and aggregating DDoS
attack fingerprints to form a global analysis, thereby assessing whether such a solution
can enrich DDoS attack analysis and fingerprinting methods in general.

1.2 Thesis Goals

The goal of this master thesis is to design and implement an algorithm for a global
analysis of DDoS attacks based on attack fingerprints collected in a distributed manner.
This involves research about existing fingerprinting and detection methods and requires
that use cases are defined on which a global analysis can be designed and evaluated.

Consequently, the following thesis goals have been defined.

• Overview of Fingerprinting Methods and Existing Solutions: Research on existing
DDoS attack fingerprinting solutions. Overview of existing approaches for gathering
a global DDoS attack view.

1.3. THESIS OUTLINE 3

• Definition of Use Cases: Definition of use cases considering fingerprints present-
ing different information of the same DDoS attack. Further, considering a mix of
intentional and unintentional adversarial fingerprints.

• Design and Implementation of a Solution for Global Analysis: Design and im-
plementation of an algorithm for filtering and aggregating fingerprints to a global
DDoS attack view based on characteristics inherent to the attack fingerprints.

• Evaluation and Discussion: Evaluation and discussion of the produced results aim-
ing to answer how and whether the proposed solution can enrich DDoS-related
information and improve the quality of DDoS attack analyses.

1.3 Thesis Outline

Following the introduction, fundamental concepts and related work are presented in Chap-
ter 2. Thereon, Chapter 3 introduces the design of the proposed solution along with the
considered attack scenarios. The implementation of the solution is further elaborated in
Chapter 4. After that, Chapter 5 evaluates the proposed solution using real and simulated
attack data. Lastly, Chapter 6 concludes this thesis and presents future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

2.1 Background

This background section provides an introduction to the fundamental concepts on which
this thesis is founded. First, an overview of the definition, types, and techniques of
DDoS attacks is presented. Thereafter, different approaches to network monitoring are
discussed. Lastly, the general idea of fingerprinting methods in the context of DDoS
attacks is explained.

2.1.1 Distributed Denial of Service Attacks

Distributed Denial-of-Service attacks are a growing security threat that aims to disrupt the
availability of online services by overwhelming them with large volumes of traffic. Attacks
are usually launched in a distributed fashion and make use of botnets. By infecting
insecure devices, malware can build an army of bots. Often, botnets are quickly adapted
to use the latest security vulnerabilities. An example is the Mirai botnet [5], which was
reported to use the Log4j vulnerability quickly after it had been discovered [9].

The motivation behind DDoS attacks is often financial or economic gain. In this regard,
it is no surprise that ransom DDoS attacks continue to rise [70]. However, DDoS attacks
are also launched as part of cyberwarfare [58] or simply for revenge [37]. Since attackers
do not always have the resources to build a botnet, an entire business model about renting
botnets for DDoS attacks has emerged [32]. Such botnets can launch a variety of different
attack types. While different classifications exist for DDoS attacks [41, 73], this thesis
follows the classification of [37], where two different categories of attacks are distinguished.

2.1.1.1 Bandwidth depletion attacks

The goal of bandwidth depletion attacks is to consume the available bandwidth of a
victim’s server so that the online presence becomes unavailable for regular users. These

5

6 CHAPTER 2. FUNDAMENTALS

attacks are often launched from botnets and can additionally use amplification to increase
their impact further. Amplification attacks leverage different amplification vectors to
increase traffic volumes directed to a victim server. A prime example is reflection attacks,
where an attacker sends a request to a server with a spoofed source IP address to reflect the
response to the victim. Reflectors that return a larger response than the initial request can
be used to amplify a DDoS attack. For example, this has been done with DNS (Domain
Name System) queries where the response was shown to be 73 times larger than the initial
request [49].

Besides amplification attacks, certain network and transport layer protocols can also ex-
ploit bandwidth depletion attacks. The most prevalent bandwidth depletion attack is the
UDP flood attack. If a server receives a UDP packet on a specific port, it tries to look
up an associated process. However, for an arbitrarily chosen port with no corresponding
process, the server returns an ICMP message stating that no corresponding application
was found. The sheer mass of UDP traffic can overwhelm a server or even a firewall in
large traffic volumes. Also, the ICMP protocol can be exploited to launch DDoS flood
attacks.

2.1.1.2 Resource depletion attacks

Resource depletion attacks aim to crash the CPU or memory of a victim system, often
termed application-layer attacks. In the early days, single malformed packets were able
to crash systems by causing infinite loops [37] or buffer overflows [27]. Today, malformed
packet attacks such as the ping of death are less common because they are patched on
new systems or discarded by the Web Application Firewall (WAF) rules [13]. Protocol
exploits such as the TCP SYN attack are more frequent. In an SYN attack, all avail-
able connections of a server get consumed by intentionally not finishing the three-way
handshaking mechanism.

Along the same lines, HTTP flood attacks exploit the HTTP protocol to exhaust server
resources. This is usually achieved by making a large number of HTTP GET or POST
requests which are known to trigger expensive computation on the server (e.g., download-
ing a large file). Such requests are almost similar to real traffic and, thus, extremely hard
to detect.

2.1.1.3 IP Spoofing

Many of the previously discussed attacks are launched using IP spoofing techniques. With
IP spoofing, an attacker intentionally falsifies the source address field of the packet header,
thus making it hard to track the true source of an attack. This is only possible because
of the lack of source address validation (SAV) in the TCP/IP protocol, which allows the
source IP of a packet to be easily manipulated.

Network ingress filtering [54] tries to address the problem of spoofed source IPs by check-
ing whether incoming packets are consistent with the routing table of a network device.
However, universal implementation remains challenging due to its complexity, which is
one of the main reasons why IP spoofing remains an unsolved problem.

2.1. BACKGROUND 7

2.1.2 Network Monitoring

Network monitoring is essential for detecting and mitigating DDoS attacks. It can gen-
erally be divided into active and passive approaches [30]. Active methods perform mea-
surements by sending traffic to the network using tools such as Ping or Traceroute [63].
Passive approaches monitor existing traffic that transits through a measurement point
without generating additional network traffic. The following sections further explain two
often-used examples of passive network monitoring, packet capture, and flow-based mon-
itoring.

2.1.2.1 Packet Capture

Packet capture represents the most comprehensive form of passive network monitoring.
It entails recording the entire packet data, demanding significant computational resources
and storage capacity. Two main approaches for accessing the network traffic exist.

• Test Access Ports (TAP) are designed to duplicate all network traffic between two
network devices [66]. TAPs can be used without introducing latency, but they
require additional hardware and, thus, access to the physical link of the network to
observe.

• Switched Port Analyzers (SPAN) mirror network traffic from one or multiple ports
to another. Such functionality is implemented in most packet-forwarding devices
nowadays [30], and no additional hardware is required. The main drawback is that
it can cause delays and jitter [75].

Multiple tools can produce packet capture (PCAP) files from the observed network traffic.
Tcpdump [61], and Wireshark [67] are among the most popular [25]. Typically, these tools
operate on a dedicated capture device that receives the traffic via TAP or SPAN. While
Tcpdump is only a command-line tool, Wireshark provides a graphical user interface
(GUI) and more advanced filtering capabilities. Wireshark can also be used without GUI
with the bundled tshark command-line interface (CLI).

2.1.2.2 Flow-Based Monitoring

Flow-based monitoring offers a less exhaustive yet more scalable solution for network
monitoring [30]. A Flow is a set of packets with common properties recorded at an
observation point within a certain time interval [2]. Flows are effective for insights into
traffic patterns and network usage. However, due to the aggregation of multiple packets
into one flow, they are not suitable for in-depth inspection and analysis of network traffic.

Typically, flows are captured directly on network devices (i.e., routers and switches) that
support the Netflow [12] standard. For network devices that do not support Netflow,
it is also possible to use a 3rd-party Netflow probe (i.e., capturing device) connected

8 CHAPTER 2. FUNDAMENTALS

to a SPAN port. Netflow probes can also be configured to use a sampling mechanism
(e.g., every n-th packet), reducing the number of packets to analyze and increasing the
scalability.

Flow-based monitoring and packet capture lay the foundation for network monitoring and
are essential for the generation of attack fingerprints and signatures, as described in the
next section.

2.1.3 Attack Fingerprints / Signatures

Attack fingerprints, often called attack signatures, are frequently used to recognize known
cyber attacks. Fingerprints contain characteristic information about an attack and are
extracted from network traces. The characteristics of an attack fingerprint or signature
(e.g., target port) can be used to mitigate the attack. Many Intrusion Detection and
Prevention systems (IDS / IPS) utilize fingerprints or signatures as a common practice
to combat cyber attacks. To expand the view of a single entity, central repositories allow
attack fingerprints to be shared. Such repositories often use a proprietary fingerprint for-
mat, as there are different use cases and interpretations of what information a fingerprint
must contain. For example, when installing Snort [51], one can download several known
fingerprints/signatures from a centralized (and remote) database [57].

In the context of DDoS, the interpretation of a fingerprint ranges from a dedicated attack
[15, 31] to a simple means to detect an attack [35, 65], including observed characteristics
such as target ports, used protocols, source and destination IP addresses, and other fea-
tures. A detailed overview of fingerprinting methods concerning DDoS attacks is presented
in Chapter 2.2.

One limitation of fingerprint or signature-based detection techniques remains: They can
only be used to detect known attack patterns. For novel attacks (zero-days), where no
fingerprint or signature is available in a shared repository, signature-based techniques fail,
and different approaches, such as anomaly detection, must be used.

2.2 Related Work

The detection and mitigation of DDoS attacks have been an active research topic for
several years, starting when the first attacks hit the University of Minnesota in 1999 [20].
Nowadays, DDoS attacks employ a variety of different techniques and protocols. There-
fore, it is not surprising that also a variety of DDoS mitigation mechanisms exists which
can be deployed in different locations: Source-based mitigation techniques installed on
network infrastructure [40], and in the cloud, [29] can be effective under certain condi-
tions. Still, they require software to be installed on networking devices that lie on the
path of the attack traffic. Hence they are not simple to deploy and require a coordinated
effort. Destination-based mitigation techniques are deployed on edge, or access routers of
the attack target (i.e., victim) [73]. Here, fingerprint-based mitigation techniques can be
applied, which are relevant to the scope of this work.

2.2. RELATED WORK 9

2.2.1 DDoS Fingerprinting

The literature on DDoS attack fingerprinting does not consistently define what a finger-
print means. Lee and Shieh [35] consider the route a packet has traversed between source
and destination to be its fingerprint. They propose a filtering scheme that recognizes and
drops packets with a spoofed IP address based on their path fingerprint.

Osanaiye [46] denotes a fingerprint as the operating system of an attacking device. A
combination of active and passive fingerprints detects whether an IP packet is spoofed.
The passive fingerprint is generated by analyzing incoming packets, the active fingerprint
is by probing the source IP. An IP packet is considered valid if both fingerprints extracted
from operating systems match.

Wang et al. [65] employ the hop count of an IP packet as a fingerprint against which future
requests are compared to filter out packets with spoofed IP addresses. They infer the hop
count from the IP header’s Time-to-Live (TTL) field for each packet. In the learning
state, the Hop-Count-Filterig (HCF) technique generates and collects fingerprints. Once
packets that do not match the stored fingerprint for that IP are detected, HCF changes
to the filtering state and discards those packets.

The Bot-Finger-Printing (BotFP) method by Blaise et al. [6] creates fingerprints that
model the communication patterns of hosts in a network. For each host, a fingerprint is
derived based on the behavior in the network. Afterward, using a clustering algorithm,
normal and bot communication are categorized. New hosts are then classified according
to their distance to the clusters.

Van Hove [31] defines a fingerprint as a set of source IP addresses, destination and source
ports, transport layer protocol, application layer protocol, and specific application layer
attributes. He proposes a tool (DDoS Dissector) that generates attack fingerprints from
packet-based measurement data. Conrads [15] further improved the DDoS Dissector by
allowing it to analyze flow-based measurement data.

The fingerprint definition of [31] and [15] is closest to the fingerprint definition of this
thesis, as the fingerprint represents a standalone view of a distinct DDoS attack. The
problem with other presented fingerprinting methods is that they are only a means to
detect an attack, but they do not uniquely characterize an attack. As such, they cannot
be used to comprehensively analyze a certain DDoS attack. Furthermore, not all methods
can be deployed directly but require a change in the underlying Internet protocol (e.g.,
path fingerprint [35]).

2.2.2 A Global DDoS Attack View

All of the above-mentioned fingerprinting methods are destination-based. They help to
detect and mitigate an attack on the target’s side. This is certainly important from a
victim’s perspective. However, more global views of DDoS attacks are also required to
mitigate such threats efficiently. In this regard, Akella et al. [3] propose a detection
method that helps ISP networks detect attacks on themselves and external attacks that

10 CHAPTER 2. FUNDAMENTALS

use a certain ISP network. Their detection method relies on stream-sampled profiles of
normal traffic and applies anomaly detection. Based on traffic profiles at each router,
Akella et al. [3] define several fingerprints. Aggregated fingerprint data is then shared
among the routers in the ISP networks using a simple consensus mechanism based on a
predefined confidence threshold. However, a recent study by [59] revealed that ISPs are
often not interested in joining a collaborative defense due to a lack of financial incentives.

Another approach to get a global view of DDoS attacks is looking at darknet traffic (i.e.,
routable but unused Internet addresses). This idea was initially proposed in [43] and was
based on the assumption that DDoS attackers randomly generate a spoofed source IP for
each packet. When observing a large enough IP range (e.g., 1/256 of the IPv4 space),
Moore et al. [43] were able to sample an attack overview of the whole Internet space
using backscatter analysis. Following these footsteps, Fachkha et al. [22] extend this idea
without relying on backscattered analysis. They conduct a flow-based traffic analysis on
DNS queries to the darknet space. Their results show that the global increase of DNS
queries of type ANY is caused by DNS amplification attacks.

Also observing 1/256 of the IPv4 Space, Du and Shanchieh Jay [21] follow a different
approach to get a global view and detect collaborative cyber attacks. They define an
Attack Social Graph (ASG) from the recorded traffic, borrowing concepts from social
network analysis. Using Principal Component Analysis (PCA) and hierarchical clustering,
they reduce the ASG to discover collaborative attacks.

As presented, approaches exist to gather a global view of DDoS attacks. However, these
reports are gathered in hindsight over months up to years [22, 43]. In this regard, fed-
erated learning provides another approach for detecting DDoS attacks on a global scale.
The FLDDoS solution proposed in [74] uses federated learning to improve the local modal
of a client with the learnings of other clients, without actually sharing the data. The
authors further address the data-imbalance problem in federated learning using a clus-
tering algorithm based on K-means. Clustering techniques have also been employed by
other researchers in the context of DDoS attacks, a topic that is discussed in the following
section.

2.2.3 Clustering DDoS Attacks

In recent DDoS literature, clustering has been mainly applied to low-level data points
(i.e., packet or flow data) and not DDoS attacks. For example, Lee et al. [36] use
cluster analysis to separate DDoS attacks into different phases, allowing them to identify
precursors of DDoS attacks. For features, they mainly rely on the concept of entropy
(e.g., how diverse are source IP and port numbers). With nine features of the IP packet
in total, they use Euclidean distance to measure dissimilarities between data points. After
that, the clustering is performed using Ward’s minimum-variance method.

Another clustering approach of low-level data points is presented by Gu et al. [26]. Their
proposed BotMiner framework aims at detecting botnets by performing a cross-cluster
correlation between two clustered data planes. The first plane (C-Plane) is based on TCP
and UDP flow records and represents ”who is talking to whom” [26]. The clustering of

2.2. RELATED WORK 11

the C-Plane is done using the X-means [48] algorithm. The second plane (A-Plane) is
based on Snort data [51], representing malicious communication activities. It is clustered
by activity type and activity features. Overall, the authors show that the cross-cluster
correlation can successfully detect botnets with a low false positive rate.

Cluster analysis has also been applied to application-level attacks. Ye et al. [68] propose
a method to cluster a user’s sessions to capture browsing behavior. Based on four features
per session, such as page popularity or average transition probability, they create clusters
from normal browsing behavior data. Similar to [36], new data is assigned to a cluster
using Euclidean distance and Ward’s minimum-variance method.

Thoma and Hadjicostis have proposed a less common clustering method [62]. They use
a Hidden Markov Model to create a time-dependent analysis of cyber attacks. Their
proposed approach models both malicious and normal traffic packets to detect DDoS
attacks.

2.2.4 Datasets

There exist different datasets for the evaluation of DDoS attack analysis and mitigation
methods. A often used dataset is the KDD’99 Cup dataset [47], which contains simulated
SYN flood attack data. Its drawback is the imbalance of data, with 80% being attack
traffic [4].

The DARPA-2009 dataset contains real attack data of SYN floods targeting a single IP
address from more than 100 sources [24]. Besides the attack traffic, the dataset also
contains background traffic.

A more recent dataset is provided by Sharafaldin et al. [55]. The CIC-DDoS2019 eval-
uation dataset provides raw network capture data (PCAP) for different DDoS attack
types executed on a testbed architecture. Similar to the other mentioned datasets, CIC-
DDoS2019 only provides a single view of the DDoS attack using one monitoring location.
In that regard, a lack of datasets that provide multiple views of the same attack can be
observed.

This Chapter has provided an overview of the existing work on methods for DDoS attack
fingerprinting and the different approaches for detecting and analyzing DDoS attacks. It
has been shown, that there is no unified definition of an attack fingerprint and various
detection methods employ different fingerprint formats [6, 31, 35, 46, 65]. However,
not all of them are ready to be deployed, as they require a change to the underlying
Internet protocol [35]. While most of the discussed fingerprinting and detection methods
are destination-based, several approaches for globally analyzing DDoS attacks have been
presented [3, 22, 43]. They provide interesting insights on how DDoS attacks can be
observed, focusing on different characteristics. What still needs to be explored is a global
analysis using attack fingerprints which inherently provide value for the creator of the
fingerprint. As such, the fingerprint format proposed by [31] is of special interest. Lastly,
the presented datasets show that real and simulated attack data can be used for evaluation
[24, 47, 55]. However, they also highlight the lack of datasets providing several views of
the same attack using more than one recording location.

12 CHAPTER 2. FUNDAMENTALS

Chapter 3

Design

Different approaches to observe and aggregate global views of DDoS attacks have been
introduced in the last Chapter. While the presented approaches usually apply algorithms
on low-level network-capture data, this Chapter presents a novel solution for deriving
global insights into a DDoS attack directly from attack fingerprints recorded at different
locations. A high-level architecture of this solution can be found in figure 3.1.

The underlying concept is that each node in the network analyzes its network traffic
to create unique DDoS attack fingerprints. After calculating fingerprints, participating
nodes share their collection with a central point. With fingerprints from multiple nodes,
the so-called Reassembler analyzes and aggregates DDoS attacks globally. In the end,
the Reassembler provides an output file that describes the global key characteristics of a
potential DDoS attack.

Figure 3.1: High-level architecture of the Reassembler process

The DDoS attack fingerprint format proposed by [31] is used and extended for fingerprint
collection. However, a custom scenario is developed to generate realistic attack fingerprints
due to the lack of real data sets containing DDoS attack traffic recorded at different nodes

13

14 CHAPTER 3. DESIGN

Figure 3.2: High-level architecture using a Fingerprint Generator

(cf. Chapter 2.2.4). In this regard, the fingerprint collection (cf. Figure 3.1) is replaced
by a Fingerprint Generator (cf. Figure 3.2).

The following subchapters outline the design of the presented high-level architecture as
follows: Chapter 3.1 presents the Fingerprint Generator and discusses how the simulation
is modeled to imitate real attack fingerprints. Thereafter, Chapter 3.2 introduces the
Reassembler component used to produce DDoS global attack statistics in a compact file.

3.1 Fingerprint Generator

Existing DDoS data sets are often limited in their applicability for deriving global insights
since they are usually only recorded at one node. While a single node may cover a large
subnet [24], it only provides one point of view. However, multiple points of view are
required to derive a more precise view of a globally distributed attack using underlying
attack data. One possible approach is to modify the captured data of a single node
manually, thereby creating multiple new points of view from one initial point of view.
The disadvantage is that manually splitting up an existing data set to multiple points of
view is time-consuming because values such as TTL or timestamps have to be manipulated
in a way that makes sense in the context of an IP network. For example, a router sending
attack traffic to a victim should see the traffic with a larger TTL value than the victim
itself. Even though it is possible to manually create the underlying capture data for simple
scenarios, the approach does not scale when increasing the complexity of the network
topology. In this regard, a custom scenario directly on the attack fingerprint level is used
to model attacks within more complex network topologies.

3.1.1 Simulated Network Topology

The IP network topology of the current Internet is complex as it connects numerous
devices daily. There are more than 100’000 registered Autonomous Systems (AS) [1],
each containing different-sized and non-consecutive blocks of IPs. It becomes clear that a
simulated network topology must abstract the underlying complexity while preserving the

3.1. FINGERPRINT GENERATOR 15

most important aspects relevant to DDoS attack fingerprint generation. In that regard,
the following requirements for a simulated network topology have been considered:

1. Hierarchical structure
Similar to the IP network topology of the current Internet, the simulated network
topology must be hierarchical with a dynamic amount of layers.

2. Multiple Subnets
The simulated network topology must span multiple subnets with different Classless
Inter-Domain Routing (CIDR) prefixes.

3. Valid IPs
Each node in the network topology must have a valid IP address that belongs to an
existing subnet.

4. Realistic Backbone architecture
Subnets must be connected such that a valid route between any two nodes in the
topology exists.

5. Non-trivial routing algorithm
Different routes must have different costs to apply a realistic routing algorithm. This
also includes that the network cannot be fully connected to avoid trivial routing.

3.1.1.1 Basic Topology

The most basic network topology that fulfills all of the above-mentioned requirements is
shown in Figure 3.3. It consists of the following elements:

• Subnets
In the TCP/IP architecture, a subnet is a subdivision of an IP network used to
enhance routing efficiency and simplify administration. The simple scenario in figure
3.3 consists of two subnets (green and purple) using a 16-bit network prefix. For
the sake of simplicity, a subnet in the scenario represents an Autonomous System.

• Intermediate Nodes
Nodes within a subnet that are not on the lowest level in the tree are denoted as
intermediate nodes (gray). In reality, such nodes represent different types of network
hardware (e.g., core or edge routers). However, this distinction is omitted to keep
the scenario manageable.

• Backbone connections
Backbone connections (red) connect the topmost nodes of each subnet. In the
simplest scenario (cf. Figure 3.3), there are only two nodes to connect. Other back-
bone topologies for more complex scenarios are discussed in the following Chapter
(cf. Table 3.1).

16 CHAPTER 3. DESIGN

Figure 3.3: Most simple network topology

• Clients
Nodes on the lowest level of the subnet are denoted as clients (black). All clients
have a random IP based on the subnet they belong to.

While this architecture fulfills the requirements for simulated network topology, it is un-
suitable for a more complex scenario as it is too small and does not provide interesting
routes between nodes. An extension of this basic scenario, which provides a more sophis-
ticated foundation for the global evaluation of DDoS attacks, is presented in the next
section.

3.1.1.2 Extending the Topology

Due to its hierarchical structure, the simple topology (cf. Figure 3.3) can easily be ex-
tended with additional subnets and more levels per subnet. Figure 3.4 shows a more
sophisticated architecture with five subnets. Each subnet can have a different amount
of levels, thereby forming a tree structure. For example, the blue subnet has six levels,
whereas the orange subnet has only four. Since the number of nodes per level is random-
ized, one can see that the orange subnet contains more nodes than the blue subnet, even
though the blue one has more levels.

With multiple levels per subnet, the prefixes along the path must be adapted to simulate
a realistic network topology. In other words, nodes on the same subnet tree on different
levels cannot have the same network prefix. Otherwise, the same IP address might occur
at different levels of the subnet tree. A simple approach to prevent this issue is to increase
the network prefix on each level of the subnet tree. The number of bits to increase per
level can either be a pre-defined value (e.g., 4 bits per level) or dynamic based on the
height of the subnet tree. Those approaches are further elaborated in Chapter 4.

3.1. FINGERPRINT GENERATOR 17

Figure 3.4: Sophisticated network topology

While the backbone connection with two subnets is trivial, there are different possibilities
for network topologies with more than two subnets. An example of a backbone topology
with multiple subnets is shown in Figure 3.4. It uses a partially connected mesh backbone
network where each subnet root node is connected to two or more other root nodes.
Besides the partial mesh topology, other approaches are discussed in Table 3.1. Even
though ring or star topologies are simpler to implement, the partial mesh topology (cf.
Figure 3.4) is used for the network simulation because it closely reflects a realistic global
network topology.

3.1.1.3 Routing

Routing protocols of the current Internet are based on hierarchical structures involving
several interconnected networks. On the highest level, Autonomous Systems make use of
Exterior Gateway Protocols (EGPs) such as the Border Gateway Protocol (BGP) [50].
Within ASes, Interior Gateway Protocols (IGPs) facilitate routing. Examples include the
Routing Information Protocol (RIP) [38] and the Open Shortest Path First (OSPF) [44]
protocol.

In a simulated scenario, the routing path between two nodes is decided from the outside
with a global network topology perspective. The routing path within a hierarchical subnet
is straightforward since only one path exists between two nodes. Routing across multi-
ple subnets is more interesting because there are multiple paths through the backbone
network. The routing path selection is made based on the shortest path algorithm. A
random weight property per edge is introduced to make the selected paths less trivial.

18 CHAPTER 3. DESIGN

A
d
van

tag
es

D
isad

van
tages

A
p
p
licab

ility
for

S
cen

ario

R
in
g

•
S
im

p
le
to

im
p
lem

en
t
in

sce-
n
ario

•
A
ccess

to
all

n
o
d
es

w
ith

few
con

n
ection

s

•
N
ot

realistic
for

large
n
et-

w
ork

s

S
im

p
le

to
im

p
lem

en
t
b
u
t
an

u
n
-

realistic
sim

u
lation

of
a
real

n
et-

w
ork

S
tar

•
S
im

p
le
to

im
p
lem

en
t
in

sce-
n
ario

•
A
ccess

to
all

n
o
d
es

w
ith

few
con

n
ection

s

•
S
in
gle

p
oin

t
of

failu
re

in
th
e

real
w
orld

O
n
e
cen

tral
n
o
d
e
w
h
ich

collects
all

in
ter-su

b
n
et

traffi
c.

M
esh

•
H
igh

red
u
n
d
an

cy
an

d
fau

lt
toleran

ce
in

th
e
real

w
orld

•
S
im

p
le
to

im
p
lem

en
t
in

sce-
n
ario

•
N
ot

realistic
for

large
n
et-

w
ork

s

•
Q
u
ad

ratic
grow

th
of

con
-

n
ection

s

A
ll

rou
tes

b
etw

een
su
b
n
ets

are
triv

ialan
d
th
u
s
less

in
terestin

g
for

a
scen

ario.

P
artial

M
esh

•
C
losest

refl
ection

of
a
real

glob
al

n
etw

ork
top

ology
•
H
igh

er
com

p
lex

ity

R
an

d
om

ly
con

n
ectin

g
all

su
b
n
ets

su
ch

th
at

a
p
ath

b
etw

een
every

n
o
d
e
ex
ists

is
m
ore

com
p
lex

.

T
ab

le
3.1:

B
ack

b
on

e
T
op

ologies

3.1. FINGERPRINT GENERATOR 19

Figure 3.5: Network topology with weighted edges

This results in shortest paths between nodes, which are not always minimal in hops. An
example is shown in figure 3.5 where the path between source S and target T is shorter
via an additional node A due to the large edge weight between B and C.

The presented network topology for the simulated scenario abstracts the complexity of
today’s internet infrastructure while still maintaining key aspects such as subnets and
backbone architecture. It has to be noted that the presented topology is not used for
simulating low-level packet data but directly on the DDoS attack fingerprint level. The
design of attack fingerprints is discussed in the next section.

3.1.2 Attack Fingerprint Format

In literature, different definitions of DDoS fingerprints exist (cf. Chapter 2.2). This thesis
adopts the attack fingerprint definition proposed in [31]. According to this perspective, an
attack fingerprint represents a DDoS attack originating from one or multiple sources and
directed toward a singular target IP address. Table 3.2 shows the full list of properties
of an attack fingerprint along with their description. The list of attack_vectors is an
important property of attack fingerprints. Attack fingerprints contain one or multiple
attack_vectors, each characterized by a unique combination of source port and protocol
pairs (cf. Table 3.3).

The generation of such attack fingerprints happens with a dedicated program, the so-
called DDoS Dissector [17]. The Dissector analyzes PCAP or NetFlow files and outputs
JSON data containing a single fingerprint in the format mentioned above. As can be seen

20 CHAPTER 3. DESIGN

Field name Description Datatype

attack_vectors List of attack vectors describing the attack (cf.
Table 3.3)

Array of objects

target IP address or subnet of the attack target String

tags Tags assigned to this attack, e.g., ”TCP SYN flag
attack”

Array of strings

key MD5 hash of the fingerprint, which serves as iden-
tifier and file name of the fingerprint

String

time_start Start timestamp of the attack (time zone local to
the attack target)

DateTime

time_end End timestamp of the attack (time zone local to
the attack target)

DateTime

duration_seconds Duration of the attack in seconds Integer

total_megabytes Total volume of the attack in megabytes (MB) Integer

total_packets Total number of packets in the attack Integer

total_ips Count of unique source IP addresses Integer

avg_bps Average number of bits/s during the attack Integer

avg_pps Average number of packets/s during the attack Integer

avg_Bpp Average number of Bytes per packet Integer

Table 3.2: Attack Fingerprint format proposed by [31]

from the target property, the dissector automatically derives a target from the under-
lying capture data. This functionality employs a straightforward detection mechanism,
identifying IP addresses that received more than 50% of the analyzed traffic. If the 50%
threshold is unmet, the Dissector looks for a target subnet. Alternatively, if automatic
detection is not desired, it is possible to override the detection mechanism with a custom
target.

While the above-mentioned mechanism of the DDoS dissector is optimal for analysis
at a single point (i.e., at the victim), it poses different problems when fingerprints from
multiple recorded locations are combined. To overcome the challenges, this thesis proposes
an extension of the existing fingerprint format.

3.1.2.1 Extended Fingerprint Format

The existing DDoS Dissector solution [31] is well suited for quickly gathering an overview
of attack vectors for a target that is attacked with high certainty. However, for a global
analysis, it is also desirable to have attack fingerprints with less certainty as they can be
interesting in a global context. For example, with a high threshold of 50%, only nodes
that are very close to the target (and the target itself) report a fingerprint, but with
high certainty. Targets that receive less than 50% are discarded, and no fingerprint is

3.1. FINGERPRINT GENERATOR 21

Field name Description Data type

service Name of the service used in
the attack vector, determined
by the source port and protocol

String

protocol IP protocol (e.g., TCP, UDP,
ICMP)

String

fraction_of_attack The fraction of the entire DDoS
attack that the attack vector ac-
counts for [0, 1]

Float

source_port Source port of the attack vector
if source port and protocol are
associated with a specific ser-
vice

Integer or ”random”

destination_ports List of outlier destination ports
with the corresponding fraction
of the traffic

Map<String, Float>
or ”random”

tcp_flags List of outlier TCP flags with
the corresponding fraction of
the traffic. Null if the protocol
is not TCP, or there are no out-
liers

Map<String, Float>

nr_packets Count of packets in the attack
vector

Integer

nr_megabytes Number of megabytes of traffic
caused by the attack vector

Integer

time_start Start timestamp of the attack
vector: the first packet of this
attack vector (timezone local to
the attack target)

DateTime

duration_seconds Duration of this attack vector in
seconds (last timestamp - first
timestamp)

Integer

source_ips List of unique IP addressed that
sent traffic to the target within
the attack vector

Array of strings

Table 3.3: Attack Vector format proposed by [31]

22 CHAPTER 3. DESIGN

Figure 3.6: Loss of source context in fingerprint aggregation

generated. With a lower threshold (e.g., <10%), nodes farther away might also produce
a fingerprint with lower certainty. While a single fingerprint with low certainty cannot
identify or describe an attack, it helps build a global picture. This thesis proposes several
extensions to the existing fingerprint format of [31].

When comparing multiple fingerprints recorded at different locations, it becomes nearly
impossible to map fingerprints to their recording location without additional information.
Although some assumptions about the recording location can be drawn from the observed
IP addresses and TTL values, it is not precise enough for a global analysis. In this regard,
a new location property that identifies the location where the fingerprint was captured
is proposed.

Another shortcoming of the existing fingerprint format for a global analysis is the loss
of context along an attack path. Since the number of packets and the source IPs are
aggregated on every node that produces a fingerprint, much information is lost. An
example of this can be found in Figure 3.6. Router R receives traffic using the same
protocol and port from three different sources. Client A maliciously sends a lot of packets
(e.g., SYN flood), while client B and C solely try to access the website. Due to the
aggregation per port and protocol in the fingerprint, router R calculates a fingerprint
with three attack sources and a total number of 1’000 packets. This means that non-
malicious source IPs are included in the fingerprint if they use the same protocol and port
within the same timeframe. Such behavior can be detected using the reported TTL values
to a certain extent. However, if all arriving packets at router R have the same TTL, the
fingerprint makes no distinction between malicious or non-malicious source IPs.

The loss of source context can be prevented by including a mapping from source IPs to
the number of packets. A mapping from source IPs to observed TTL values is further
proposed for additional analytics. As mentioned before, such properties in the fingerprint
are not required when generating a fingerprint at a single location with high certainty.
However, the additional information provides an interesting basis for further analysis of
a global picture. The additional proposed properties are summarized in Table 3.4.

3.1. FINGERPRINT GENERATOR 23

Level Field name Description Data type

Fingerprint location The IP of the lo-
cation where the
fingerprint was
recorded

String

Attack Vector nr_packets_by_source Number of packets
in the attack vector
grouped by source IP

Map<String, Integer>

Attack Vector ttl_by_source Observed TTLs in
the attack vector
grouped by source
IP

Map<String, Integer[]>

Attack Vector detection_threshold Percentage of attack
traffic compared to
all observed traffic

Float

Table 3.4: Additional proposed properties for attack fingerprints

3.1.3 Attack Scenario

The Fingerprint Generator generates a set of unique Attack Fingerprints based on a global
view of the above-presented topology (cf. Chapter 3.1.1). Unlike the DDoS dissector,
which relies on low-level captured network data to generate fingerprints, the Fingerprint
Generator produces fingerprints directly from an underlying attack scenario. In its most
basic form, an attack scenario consists of one or multiple attack sources and one single
target. Unsurprisingly, an attack scenario must consider more parameters to generate a
set of interesting attack fingerprints. In this regard, the additional properties of an attack
scenario are discussed in the following sections.

3.1.3.1 Attack Types

DDoS attacks are constantly evolving, and they come in various forms. The overall tax-
onomy of DDoS attacks is discussed in Chapter 2.1.1. For the Attack Scenario, this thesis
focuses on one of the most prevalent DDoS attack types, the SYN flood. The idea of
an SYN flood is to exploit TCP’s three-way handshake mechanism by intentionally not
responding with an ACK packet. Compared to bandwidth depletion attacks (cf. Chapter
2.1.1), the SYN flood provides more possibilities for an interesting analysis since attack
traffic and regular traffic might look very similar. For example, a regular visitor of a
website has to complete the same TCP handshake that an attacker is actively trying to
exploit. Conversely, for bandwidth depletion attacks, packets can be clearly distinguish-
able from normal traffic, but they still fulfill the goal if they exhaust the physical link to
the target.

In the real world, SYN flood attacks can occur in three different ways [14]:

24 CHAPTER 3. DESIGN

• Direct Attack
One single attacker sends a flood of SYN packets without masking (i.e., spoofing)
its own IP address. Because such an attack is fairly easy to mitigate, it is rarely
used in practice.

• Spoofed Attack
This attack is similar to a direct attack, but the attacker actively hides his identity
by spoofing the IP address of each packet.

• Distributed Attack
A distributed attack involves many attack sources. Based on the number of attacking
sources, an attacker can additionally mask the true origin by spoofing the IP address.
However, for large botnets, such an overhead is unnecessary since it is not possible
anyways to locate the source of the attack.

For the attack scenario of this thesis, a distributed SYN attack with partially spoofed
sources is selected. A reference attack fingerprint based on the Dataset of Sharafaldin et
al. [55] can be found in Listing 3.1. The reference attack fingerprint describes an SYN
attack with a duration of approximately 6 hours. Both source_port and destination_ports

are reported as random and thus, provide no value for further analysis. Interestingly, only
one ttl value has been observed despite the occurrence of multiple source_ips. Since it is
very unlikely that all sources have exactly the same distance to the target, the attacker
most likely made use of IP spoofing techniques. Another characteristic of an SYN attack
fingerprint can be found in the tcp_flags object. The string ”......S.” represents a TCP
packet header where the SYN flag is set to true. From the fingerprint, it can be seen that
over 99% of arriving packets at the target contained this exact header (cf. Listing 3.1,
Line 9ff.).

The attack scenario requirement for the Fingerprint Generator can be derived based on
the fingerprint characteristics of the reference fingerprint (cf. Listing 3.1). First, an attack
aims only at a single target and may originate from multiple sources. Furthermore, attack
sources likely make use of IP spoofing techniques. In this regard, it is also required to
have realistic TTL values even in a simulated scenario. While selecting a single attack
target and one or multiple attack sources is relatively straightforward, the next section
discusses how the spoofing of IP addresses can be modeled.

3.1.3.2 Spoofed Addresses

The lack of authentication in the TCP/IP protocol allows anyone to modify the source
field of an IP packet. This practice, known as IP spoofing, is frequently employed by
malicious actors when launching DDoS attacks. The malicious actors use this to hide
their identity by masking the true source of an attack packet. To obtain a realistic attack
scenario, the Fingerprint Generator has to replicate this malicious behavior. Based on the
presented topology in Chapter 3.4, a spoofed IP is denoted as an address of a leaf node
that does not belong to the subnet where the node is located. In this regard, a node in
the simulated topology can communicate using its valid IP (belonging to the subnet) or
a random spoofed IP.

3.1. FINGERPRINT GENERATOR 25

1 {

2 "attack_vectors": [

3 {

4 "service": null ,

5 "protocol": "TCP",

6 "fraction_of_attack": 1.0,

7 "source_port": "random",

8 "destination_ports": "random",

9 "tcp_flags": {

10 "......S.": 0.997

11 },

12 "nr_packets": 2093500 ,

13 "nr_megabytes": 127,

14 "time_start": "2018 -11 -03 T15 :28:00.776482+00:00",

15 "duration_seconds": 22067,

16 "source_ips": [

17 "172.16.x.x",

18 ...

19 "52.84.x.x"

20],

21 "ethernet_type": {

22 "IPv4": 1.0

23 },

24 "frame_len": {

25 "60": 0.998

26 },

27 "fragmentation_offset": {

28 "0": 1.0

29 },

30 "ttl": {

31 "243": 0.997

32 }

33 }

34],

35 "target": "192.168.x.x",

36 "tags": [

37 "TCP flood attack",

38 "TCP",

39 "TCP SYN flag attack"

40],

41 "key": "60764 fd912f7bd9f047ca885f652758f",

42 "time_start": "2018 -11 -03 T15 :28:00.776482+00:00",

43 "time_end": "2018 -11 -03 T21 :35:48.097688+00:00",

44 "duration_seconds": 22067,

45 "total_packets": 2093500 ,

46 "total_megabytes": 127,

47 "total_ips": 25,

48 "avg_bps": 46066,

49 "avg_pps": 94,

50 "avg_Bpp": 60

51 }

Listing 3.1: DDoS Dissector Reference Attack Fingerprint based on CIC-DDoS2019 [55]
Dataset

26 CHAPTER 3. DESIGN

One of the significant benefits of having a global view of a DDoS attack is the ability
to detect and analyze spoofed addresses more effectively. By examining the attack from
multiple points (i.e., intermediate nodes), it is possible to identify patterns and inconsis-
tencies that indicate the presence of spoofed addresses, providing valuable insights into
the attacker’s methods and potentially aiding in traceback efforts. In this regard, IP
traceback approaches have been widely explored in literature [52, 60, 72].

The primary obstacle lies in the Fingerprint Generator directly producing attack finger-
prints without simulating individual network packets. Considering this aspect, it is im-
possible to generate a spoofed IP address for each packet sequentially sent, but a node’s
spoofed address must be declared beforehand. Simply assigning a single spoofed IP ad-
dress to a node does not produce realistic attack patterns in a fingerprint, as it serves
as an alias but does not influence the number of observed source addresses at the target.
Conversely, choosing a new random address for each sent packet in the scenario bloats
the attack fingerprints with thousands of addresses. From a detection point of view, this
is also not optimal because IP collisions have shown to be a valid approach for detecting
spoofed Addresses [45]. Since the pool of all available IP addresses is extremely large, it
is unlikely to run into an IP collision in a small-scale simulated scenario.

The Fingerprint Generator aims to produce fingerprints that represent realistic attack
patterns while still allowing proven detection algorithms to work, even in small-scale
scenarios. Spoofed addresses are not randomly generated from the entire set of available
IP addresses but sampled from a smaller subset. This allows IP collisions to occur with
a higher probability. An example can be found in Figure 3.7. The two nodes with real
IP A and B both draw a sample of the pool of spoofed IP addresses (S1-S9). It can be
seen that both nodes have the spoofed IP S4 in their list of spoofed addresses. Observing
the traffic at router R, the IP S4 can be observed with different TTL values because two
different nodes use it. How this fact is used for detection and analysis is further discussed
in Chapter 3.2. Furthermore, the implications of sample and pool size are discussed in
Chapter 5.2.

Figure 3.7: Assigning spoofed IPs from a pool

3.1. FINGERPRINT GENERATOR 27

3.1.3.3 Background Traffic

In reality, DDoS attacks do not occur in an isolated environment. When dealing with
advanced attack types, it is even challenging to distinguish the attacking traffic from the
legitimate traffic. Thus, simulating an attack scenario also requires including background
traffic unrelated to the attack itself. For this scenario, three different types of background
traffic are considered.

• Legitimate traffic to the attack target
While a DDoS attack is ongoing, the regular traffic to the attack target remains.
Examples include regular users who want to visit a web server that is under attack.
As mentioned above, such traffic can look almost similar to attack traffic.

• Spoofed traffic to other nodes
Network traffic to other nodes (attack target excluded) uses spoofed source ad-
dresses. Examples include other ongoing DDoS attacks that are not directed to the
observed attack target.

• Legitimate traffic to other nodes
General traffic in the network that does not involve packets to the attack target.
Examples include any web browsing or other online activities of regular users.

3.1.4 Attack Scenario Parameters

Based on the above-discussed challenges and requirements, the simulated attack scenario
can be customized in the following way (cf. Table 3.5). The number and depth of subnets
can be customized on a topology level. These values determine the size of the network and,
thus, the average number of hops that are required from an attack source to the target.
Because a partial mesh is used as backbone topology, the depth of a subnet and the
number of subnets in the network influences the path length between two leaf nodes. The
number of nodes per level determines the network’s overall number of nodes. Increasing
this number makes the network larger while preserving the average hops between the
attack source and target.

The attack sources and the target can be configured on an attack level. The number of
attacking sources influences the generated fingerprint at the attack target. It also impacts
the overall number of fingerprints in the network that observe the same attack from a
different angle. Furthermore, changing the probability for a node to communicate using a
spoofed IP is possible. If more nodes use a spoofed IP address, the count of attack sources
perceived at the target increases, despite the constant network size.

Lastly, the amount of background traffic can be configured with two parameters: The
number of unique paths used for background traffic and the probability that a path is
directed to the attack target.

28 CHAPTER 3. DESIGN

Scope Parameter Description

Topology Subnets A list of subnets along with their IP and net-
work prefix

Topology Subnet depth The maximum depth of a subnet. For the
hierarchical topology, this equals the max
height of the subnet tree

Topology Nodes per level The maximum number of nodes per level in
a subnet tree.

Attack Sources A list of attack sources (by their real IP)

Attack Target A single attack target IP address

Attack Spoofed IP % The probability that a leaf node communi-
cates using a spoofed IP

Background Traffic Amount The number of unique paths in the network
that are used for background traffic

Background Traffic Amount to target The probability of background traffic being
directed to the attack target

Table 3.5: Configuration parameters of the simulated attack scenario

3.2 Reassembler

The Reassembler module generates a global overview of a DDoS attack given a set of
attack fingerprints recorded at different locations. A global view of these attacks is crucial
to identify patterns and efficiently develop countermeasures. In this regard, the global
overview aims to obtain insights that cannot be derived from observing the DDoS attack
at a single point. Such insights include, for example, the number of intermediate nodes
and their level of involvement in an attack. For example, the number of intermediate
nodes helps to understand an attack’s scale and assess attackers’ resources and strategies.
In addition, the level of involvement of intermediate nodes allows for assessing the degree
to which each node contributes to the attack, which may be targeted for mitigation efforts
and improvement on detection points based on gained insights.

On a high level, the process of the Reassembler can be structured into four steps.

1. Pre-process attack fingerprints

2. Identify Attack

3. Analyze Attack

4. Aggregate Output

While the overall process seems simple, each step contains its challenges. In this regard,
the four steps are further elaborated in the following Chapters.

3.2. REASSEMBLER 29

3.2.1 Pre-process Attack Fingerprints

Pre-processing attack fingerprints includes two main actions.

• Read/Load Attack Fingerprints from a shared location (e.g., an online repository)
Since this thesis uses a simulated scenario, the shared location is emulated by a local
folder.

• Convert Fingerprints to a format that allows for further processing. In order to
make the lookup and filtering of data efficient, fingerprints are converted to a flat
(i.e., non-nested) data format. The technical details are discussed in the Implemen-
tation (cf. Chapter 4.2.1)

While one could argue that loading attack fingerprints falls outside the pre-processing
stage, it is included as the purpose of pre-processing is to provide the data for the next
step such that it can be analyzed efficiently.

3.2.2 Attack Identification

The notion of an attack fingerprint implies that the fingerprint describes a specific attack
and was generated by a previously identified attack. Within the scope of this work, this
assumption is weakened so that a fingerprint does not necessarily describe an attack but
serves as a simple observation of traffic. On the one hand, this removes the complex logic
and computational overhead of identifying an attack from the network nodes. On the
other hand, it requires identifying attacks later by looking at a large set of possible attack
fingerprints.

This design decision is required because the current implementation of the DDoS Dissector
(cf. Chapter 3.1.2) does not allow the generation of fingerprints as they result from the
simulated attack scenario (cf. Chapter 3.1). As discussed, the DDoS Dissector identifies
an attack whenever a relatively high threshold (50% of all traffic) is met. Clearly, as
opposed to the simulated scenario, nodes further away from the attack target would not
produce an attack fingerprint when running the DDoS Dissector. To align the DDoS
Dissector’s functionality with the simulated scenario results, this thesis proposes several
contributions to the DDoS Dissector software (cf. Chapter 4.3).

Having many possible attack fingerprints using a low detection threshold leaves the detec-
tion of attack targets, intermediate nodes, and attack sources to the Reassembler module
and takes away the responsibility from individual nodes.

3.2.2.1 Infer Attack Target

Considering a use case where many participants in the network contribute their recorded
attack fingerprints in a shared repository, there are several possibilities for how an attack
target is inferred.

30 CHAPTER 3. DESIGN

• Attack target is actively reported with fingerprint
A network participant actively signals that he has been targeted by an attack be-
cause, for example, a web server went offline for several hours. There is no further
work needed in identifying an attack as all observed parameters (from the target)
are reported in an attack fingerprint.

• Attack target is not actively reported but submits fingerprint
There is no active announcement of a network participant to be targeted. However,
attack fingerprints are submitted by using the DDoS Dissector in the background.

• Attack target and fingerprint not reported
The target of the DDoS attack does not announce an attack nor submit an attack
fingerprint. Even though other network participants might observe the attack, key
observations from the attack target are missing.

For the first two possibilities, the attack fingerprint at the target is collected and shared
with others. In the case of a node actively reporting its attack, no additional detection
mechanism is needed. Essentially, a global analysis can be created using a pre-defined
target. In the second case, a node under attack shares its attack fingerprint without
reporting an attack. This leaves the detection of the attack to the Reassembler. Lastly,
the third approach does not provide any information about an attack from the target
point of view. A global analysis of the attack with the proposed solution is not possible,
as the baseline (i.e., the fingerprint at the attack target) is missing.

While the first two possibilities are supported by the proposed design of the Reassembler,
this thesis focuses on the second variant, where the attack is automatically inferred from a
set of attack fingerprints. This is achieved by applying a detection mechanism comparable
to the original detection mechanism of the DDoS Dissector proposed in [31]. The main
idea is to use a relatively high detection threshold while leveraging the fact that a node
under attack also submits fingerprints. In that regard, an attack can be identified by
searching for fingerprints that have recorded an attack on themselves while having a high
enough detection threshold.

For a large network with many observed fingerprints, it is possible that multiple finger-
prints fulfill the attack detection requirements. In that case, either the most targeted
node (e.g., in terms of nr. of packets) or all of the detected target nodes can be evaluated.
When evaluating all nodes that record an attack on themselves, the attack threshold for
fingerprint generation is of high importance. A too-low threshold results in many possi-
ble attack targets that have to be evaluated on a global level, which is computationally
expensive. A too-high threshold might lead to overlooking an attack. On a target level
(i.e., leaves in the network tree), such a threshold optimization is left for future work,
and the single most targeted node that reported being attacked is considered the global
attack target.

3.2.2.2 Intermediate Nodes

Detecting intermediate nodes involves the selection of all fingerprints that recorded traffic
to the attack target from a different location than the attack target itself. Only excluding

3.2. REASSEMBLER 31

Parameter Description Finality

Attack Target One single attack target of a globally ob-
served attack

Final

Intermediate Nodes List of nodes that (potentially) observed
the attack.

Requires Refinement

Attack Sources List of attack sources (not filtered for
spoofed addresses)

Requires Refinement

Table 3.6: Attack Identification

fingerprints at the attack target results in the possibility that a fingerprint recorded at
an attack source is considered an intermediate node. In the real world, such behavior is
unlikely as, especially for botnets, the attacking device is neither interested nor compu-
tationally capable of generating and sharing a fingerprint. However, from an adversarial
point of view, there is the possibility of transmitting a false fingerprint as a cover for a
real source of attack.

In that regard, attack fingerprints of attack sources cannot be trusted. Fingerprints
from attack sources are already discarded by the Fingerprint Generator for the simulated
scenario. In general, not only fingerprints of attack sources but every fingerprint can be
manipulated by an adversary. This is further discussed in Chapter 5.2.1.3.

Intermediate nodes include all nodes that observed any form of traffic to the attack target.
Thus, the reported number of intermediate nodes is too high at an initial stage since there
is no exclusion of intermediate nodes that only observed real (i.e., non-attack) traffic.

3.2.2.3 Sources

As discussed before, fingerprints of attack sources are not available. This means that
all attack sources have to be derived from intermediate and target attack fingerprints.
In a case where the attack target can capture all network traffic, the information in the
fingerprint is enough to identify all attack sources. However, some packets may be lost
for resource exhaustion attacks because the physical link is exhausted. This makes the
fingerprint recorded at the attack target incomplete, meaning some source IPs are missing.
In such a case, the global picture can be restored by looking at the source IPs recorded
at intermediate nodes. Since this Thesis uses a TCP SYN attack as a scenario, it does
not consider resource exhaustion with dropped packets.

In the scope of this work, source IPs are derived from the fingerprint recorded at the
attack target. At the first stage of attack identification, there is no distinction between
spoofed and non-spoofed addresses. Therefore, the number of true attack sources is likely
decreased when analyzing the attack in a further step (cf. Chapter 3.2.3).

In summary, the attack identification step of the Reassembler produces the three outputs
parameters summarized in Table 3.6. It can be seen that both intermediate nodes and

32 CHAPTER 3. DESIGN

attack sources are not final but serve as a basis for further analysis in a third step. This
is further elaborated in the next Chapter.

3.2.3 Attack Analysis

The attack analysis is the main step in the Reassembler process. In essence, the analysis
aims to refine the detected attack parameters (cf. Table 3.6) and derive further insights in
the context of a global DDoS attack view. It has to be noted that derived insights from an
aggregated fingerprint cannot be as precise as when directly looking at the packet data.
However, for a global attack analysis, data must be aggregated into a much smaller format
before it can be shared with others to make it computationally feasible globally. With this
in mind, the following Chapters present different approaches to building a global picture
of an attack, which is not meant to be 100% accurate. The parameters that influence the
precision of the presented methods are further discussed in the Evaluation Chapter (cf.
Chapter 5).

3.2.3.1 Total Attack Percentage

An attack fingerprint indicates the absolute number of packets to a target and the detec-
tion threshold used to capture the fingerprint. The detection threshold aids in putting
the number of packets into context, depending on the node capacity. Following the same
idea, the percentage of the total attack is calculated to put a network node into a global
attack context. This is achieved by using the attack fingerprint recorded at the target as
a reference point and determining the proportion of the total attack contributed by each
intermediate node. In this regard, the total attack percentage is a metric that can only be
derived in a global analysis. However, it requires the availability of an attack fingerprint
at the attack target.

When evaluating the contributions of intermediary nodes to a global attack, it is crucial to
put the detection threshold into perspective. For example, a router from a local ISP might
have a conspicuously high detection threshold of over 75%. However, if the total attack
percentage reveals that this node accounts for less than 0.5% of the total attack, it becomes
less interesting again. On the other hand, nodes with a low detection threshold might still
be of interest if they account for a large percentage of the total attack. Examples include
large DNS servers that can be exploited for a reflection attack.

3.2.3.2 Distance to Target

Assessing the distance of an intermediate node to the attack target is instrumental in
building a global picture of the attack. Intuitively, nodes nearer to the attack target will
likely observe a larger portion of the total attack. Combined with the computed attack
percentage (cf. Chapter 3.2.3.1) and the detection threshold, this approach facilitates the
identification of anomalous intermediate nodes that deviate from expected patterns.

3.2. REASSEMBLER 33

Operating System Default Initial TTL Value

Microsoft Windows 128

macOS 64

Linux 64

FreeBSD 64

Cisco IOS 255

OpenWRT 64

BusyBox 64

Table 3.7: Popular operating systems and their default initial TTL values [16, 53]

The TTL information in the attack fingerprints is leveraged for the distance calculation.
One key advantage of the TTL field is that it cannot be forged along the path, as each
(honest) network node decreases its value by one. However, it is important to note that an
IP packet has no standardized initial value for the Time to Live field. Different operating
systems employ various initial values (cf. Table 3.7). Theoretically, an attacker can set an
arbitrary initial value for the TTL field of an IP packet. In practice, the randomization
of TTL values during DDoS attacks has rarely been observed [45].

Concerning distance, two different measures are of interest: (i) The distance between an
attacker and the target and (ii) the distance between an intermediate node and the target.
While both measures are based on the TTL values of the IP packet, they use different
methods for the calculation.

Distance of attacker
The distance of an attacker to the attack target is calculated based on the TTL values
recorded at the target. For the calculation, the knowledge of the initial TTL value of
an attack packet is required. Borrowing the idea employed in Hop-Count Filtering [65],
the initial TTL value of the packet is derived by finding the smallest common initial
TTL value that is higher than the TTL value recorded at the target. This is possible
because commonly observed initial TTL values are relatively far apart, but paths between
two internet hosts rarely exceed 30 hops in the distance [11, 64]. This thesis considers
32, 64, 128, and 255 as common initial TTL values, and both the Fingerprint Generator
and the Reassembler employ this list for generation and calculation.

For example, an attack target (blue) receives an attack packet from an unknown attacker
(red) with a TTL value of 42 (cf. Figure 3.8). Along the path, the packet has also been
observed by an intermediate node with a TTL value of 44. However, there is no further
observation of the TTL value closer to the target. Based on the list of commonly observed
initial TTL values, the smallest value higher than 42 is 64. In this regard, the distance of
the attacker is calculated as 64− 42 = 22 hops.

Distance of an intermediate node
Compared to calculating the attacker’s distance, determining the distance between inter-
mediate nodes and the target does not require knowing the initial TTL value. In this

34 CHAPTER 3. DESIGN

Figure 3.8: Calculating the distance in hops of an attacker

context, calculating the distance is more straightforward, as it simply involves finding
the relative difference between observed TTL values for a packet sent to the same target.
Following the example in Figure 3.8, the distance between the participating intermediate
node and the attack target is trivially calculated (44− 42 = 2).

While the calculation is trivial, some factors can make this calculation imprecise. A net-
work packet is not always guaranteed to take the same route in the real world. This
means the TTL values at intermediate nodes and the target may fluctuate slightly. For
this thesis, that factor is neglected as the simulated network scenario always returns a
stable shortest path between any two nodes. However, fluctuations in the observed TTL
values from a single source address can also occur when an attack source employs spoof-
ing mechanisms. While the detection of spoofed sources is discussed later (cf. Chapter
3.2.3.3), the main takeaway for the distance calculation is that a node might observe mul-
tiple TTL for the same address. This is the case when two nodes use the same spoofed
IP.

An example to illustrate this behavior can be found in Figure 3.9. Two attacking nodes
(red) employ IP spoofing mechanisms and happen to send one or more packets with the
same IP. One of the attacking nodes uses 128 as the initial TTL value, and the other uses
64. As a consequence, the participating intermediate node B observes two different TTL
values for packets from the same IP to the attack target (blue). Two different TTL values

Figure 3.9: Calculating the distance in hops between intermediate nodes and target

3.2. REASSEMBLER 35

for the same source IP are also observed at the target. Calculating the distance between
node B and target T seems trivial at first by subtracting the mean TTL of T from the
mean TTL of B. The calculation 61+126

2
− 59+124

2
= 2 yields the expected distance of 2, for

node B and target T.

However, when calculating the distance between intermediate node A and target T, it
can be observed that the distance calculation does not yield the expected result. The
calculation 62

1
− 59+124

2
= −29.5 results in a negative value, which is not valid as a distance

measure. The challenge lies in the fact that an intermediate node may observe a subset
of the TTL values detected at the target, and with widely separated initial TTL values,
calculating the mean does not yield valid outcomes.

The solution is explicitly selecting a value from the observed TTLs at the target when
calculating the distance for one TTL value at an intermediate node. Following the idea
of [65], the largest TTL value at the target that is smaller than the TTL value at the
intermediate node is selected. For example, when calculating the distance between node A
and target T, the TTL value 59 at the target is selected for comparison, as it is the largest
value that is smaller than 62 (i.e., the TTL at the intermediate node). The calculation
62
1
− 59

1
= 3 yields the correct results for the distance between node A and T.

Figure 3.10: Calculating the distance in hops between intermediate nodes and target

Still, the proposed approach can yield inaccuracies in extreme cases with many spoofed
addresses. Figure 3.10 shows an example with a third added attacking node that uses 64
as the initial TTL value. When calculating the distance from node A to target T again,
the result is no longer accurate because the target has an additional TTL observation.
The largest TTL value at T that is smaller than the TTL value at A is now 60, which
results in a calculated distance of 62

1
− 59

1
= 2. Such inaccuracies cannot be omitted when

only using aggregated fingerprint data for distance calculation. Nonetheless, they only
occur with spoofed IPs. The impact of the percentage of spoofed IPs on the accuracy of
distance calculation is further discussed in the Evaluation (cf. Chapter 5.2.1.1).

36 CHAPTER 3. DESIGN

3.2.3.3 Detecting Spoofed Sources

Detecting spoofed addresses is crucial for analyzing the attack from a global perspective,
as it helps understand the number of involved attack sources. Utilizing the TTL field of
an IP packet for identifying spoofed addresses has proven effective, as shown by Wang et
al. [65]. Their proposed solution consists of two phases: a learning phase and a filtering
phase. The learning phase can be replaced with the fingerprint aggregation process with
the extended fingerprint format (cf. Chapter 3.1.2.1). Rather than comparing TTL values
with previously recorded values in a database, the detection can be performed solely by
examining the fingerprint data. If a fingerprint contains more than one TTL value per
source IP, the IP address has likely been spoofed.

The detection of spoofed IP addresses in [65] happens directly at the victim. In this regard,
a global view of an attack from multiple attack fingerprints yields a new perspective on
this detection problem. First, a confidence score can be built based on how many other
nodes made the same observation along the path. Correlating this data with the distance
from each node to the target, it is possible to derive at which distance from the target an
IP address was first detected as spoofed.

Naturally, the precision of these detection techniques relies on the number of spoofed
addresses and the frequency of IP collisions. In a simulated scenario, IP collisions seldom
occur on a smaller scale than the global internet unless a predefined set of spoofed ad-
dresses is used. The influence of the percentage of spoofed addresses and the size of the
spoofed IP pool are further discussed in the Evaluation (cf. Chapter 5.2).

3.2.3.4 Normalizing Intermediate Nodes

The attack identification step of the Reassembler produces a list of intermediate nodes.
Those intermediate nodes are selected because they observed traffic to the attack target
within a given time interval. However, at this stage, there is no distinction between
attack and background traffic. For example, in the case of a TCP SYN attack, legit
traffic includes regular website visitors who want to visit a website under attack.

Deciding whether a fingerprint represents attack or background traffic is not part of the
loosened attack fingerprint definition. This is because a sophisticated attack detection
mechanism is computationally impossible at each network node. At the same time, no
fingerprint should be prematurely discarded because of a too-high detection threshold. In
this context, it is the responsibility of the Reassembler to filter fingerprints of background
traffic from fingerprints of attack traffic.

Filtering background traffic from attack traffic is only possible when it is not mixed
within one fingerprint. The aggregation within the fingerprint makes a later distinction
impossible, as only the number of packets and the TTL values are available per IP. Hence,
only the fingerprints that exclusively observed background traffic can be discarded. This
is achieved using a duration-based threshold, as background traffic is assumed to contact
the attack target less often and with a shorter duration (cf. Table 4.3).

3.2. REASSEMBLER 37

Normalizing the number of packets at the attack target based on the count of packets
from discarded fingerprints is unfortunately not possible. The same background traffic
packets could potentially be observed by multiple network nodes along the path to the
attack target. Therefore, without knowing the exact topology of the network, the sum of
discarded packets cannot be used to normalize the number of attack packets at the target.
While the normalization of intermediate nodes cannot be used to refine the packet count
at the attack target, it still aids in building a more accurate picture of an attack.

3.2.4 Global Fingerprint

The aggregation to build a global fingerprint is the fourth and last step in the Reassembler
process. Based on the insights derived in the previous step, the goal is to provide a compact
file format (i.e., fingerprint) that includes all the interesting properties of the attack from
a global view. As can be seen in Table 3.8, the global fingerprint groups the attributes
into four different categories.

Attack properties include information about the attack itself. Attributes, such as Attack
Service and Attack Protocol, are derived from the local fingerprint of the detected attack
target. The start and end-time of the attack are based on a global view that only includes
filtered intermediate nodes (cf. Chapter 3.2.3.4). By calculating the duration of the attack
based on intermediate nodes, the attack duration can be derived even if the network link
to the attack target is exhausted and the fingerprint is incomplete. Even though the
attack attributes of the global fingerprint are similar to a local fingerprint, the increased
robustness due to the extended network view is an advantage of the global fingerprint.

The Target properties consist of attributes that uniquely identify the attack target (IP
Address) and configuration parameters of the attack target. In a real scenario, the Detec-
tion Threshold is a configuration parameter of a target node running the DDoS Dissector.
For the simulated scenario, the detection threshold corresponds to a theoretical value rep-
resenting the minimum required threshold needed to generate a local fingerprint at the
target.

The Intermediate Nodes group accounts for the largest part of the global fingerprint.
The Number of Nodes attribute describes the filtered amount of intermediate nodes that
observed attack traffic. Intermediate nodes that observed genuine traffic to the target
during the attack interval are filtered from the other statistics and summarized in the
Discarded Nodes attribute. Additionally, the Detection Threshold Percentiles attribute
provides information about the distribution of the detection threshold of the intermediate
nodes. In the simulated scenario, this value is also theoretical, and it essentially signifies
the minimum detection threshold configuration of intermediate nodes required to reach a
certain percentage of global attack coverage. It has to be noted that in this context, full
coverage refers to every participating intermediate node submitting a fingerprint. The
influence of the scenario configuration on the detection threshold percentiles is further
explored in the Evaluation (cf. Chapter 5).

The Key Nodes attribute is of special importance, as it contains a list of the most relevant
nodes for the attack. Each key node contains the attributes listed in Table 3.9. The Hops

38 CHAPTER 3. DESIGN

Category Attribute Data Type

Attack

Start Time Timestamp

End Time Timestamp

Duration (s) Float

Attack Service String

Attack Protocol String

Target
IP Address String

Detection Threshold Float

Intermediate Nodes

Nr. Nodes Integer

Discarded Nodes Integer

Detection Threshold Percentiles Map<Integer, Float>

Key Nodes Object (cf. Table 3.9)

Sources
Nr. Sources Integer

Pct. Spoofed Float

Table 3.8: Global Fingerprint format

to Target value is calculated based on the analysis in Chapter 3.2.3.2. The Number of
packets, Detection Threshold, and the duration are based on the local fingerprint of the
intermediate node. In contrast, the Fraction of the Total Attack is based on the global view
(cf. Chapter 3.2.3.1). For evaluation (only in simulated scenarios), a Distance attribute
also exists, which represents the ground truth data for the Hops to Target attribute. The
error in distance estimation is reported in the Inferred Distance Difference attribute.

The attributes in the Sources group characterize the attack’s origin. The Number of
Sources attribute is based on the number of observed IPs to the attack target during
the interval. Besides removing duplicates, there is no normalization for the number of
sources. However, using the spoofed addresses detection mechanism (cf. Chapter 3.2.3.3),
the Percentage of Spoofed Addresses is estimated. This enables assessing whether the
reported number of sources is likely too high or accurate.

The four phases of the Reassembler module produce a compact format of a global attack
view of a DDoS attack. This is achieved by pre-processing a set of local attack fingerprints
and identifying the attack on a high level. The global attack view is refined using different
analysis approaches in the next step. The last step produces a global fingerprint repre-
senting an entire globally observed DDoS attack. A global fingerprint allows the efficient
sharing and comparison of DDoS attack fingerprints and enables further use cases, such
as clustering similar attack types. The possibilities for further enhancements are explored
in Chapter 5.3 and Chapter 6.3.

3.2. REASSEMBLER 39

Attribute Data Type Scopes

Number of Packets Float Simulated, Dissector

Hops to Target Float Simulated, Dissector

Detection Threshold Float Simulated, Dissector

Start Time String Simulated, Dissector

End Time String Simulated, Dissector

Distance Integer Simulated

Inferred Distance Difference Float Simulated

Fraction of Total Attack Float Simulated, Dissector

Duration in Seconds Float Simulated, Dissector

Table 3.9: Key node attributes in Global Fingerprint

40 CHAPTER 3. DESIGN

Chapter 4

Implementation

This Chapter presents an implementation of the previously discussed components. Chap-
ter 4.1 shows the generation of fingerprints based on a dynamic attack scenario. There-
after, Chapter 4.2 discusses the implementation of the Reassembler and shows how the
generated fingerprints are aggregated to a global view of a DDoS attack. Lastly, Chapter
4.3 presents the contributions to the DDoS Dissector proposed to enable a full workflow
for a global fingerprint-based DDoS attack analysis. The complete source code for the
Generator, Reassembler and DDoS Dissector can be found on GitHub [7, 8].

4.1 Fingerprint Generator

The Fingerprint Generator is implemented in Python and consists of two main compo-
nents: A network graph that simulates a network topology as described in Chapter 3.1.1,
and a generator method that produces fingerprints based on the underlying network graph.
Both components are discussed in the following sections.

4.1.1 Network Graph

To model the network, a graph data structure is used. This is possible because routing
decisions are made from the outside in the simulated scenario. In contrast to the global
internet infrastructure, there is no routing abstraction needed in a way that each node
forwards packets to the next best node of his knowledge. Thus, a node does not need
an internal routing logic but merely serves as an additional hop on a path between two
network nodes. In that regard, the network simulation is implemented using the Graph

class in Python from the networkx package.

The network is built bottom-up based on the provided subnet configuration (cf. Table
3.5). First, each hierarchical subnet is generated on its own. Thereafter, all subnets
are connected using a partial mesh backbone architecture. This procedure is further
elaborated in the next sections.

41

42 CHAPTER 4. IMPLEMENTATION

4.1.1.1 Hierarchical Subnets

Hierarchical subnets are randomly generated based on the configuration parameters of
the attack scenario. As shown in Listing 4.1, a hierarchical subnet is created recursively
starting from a root node. The root node is an instance of the IPNetwork class from
the netaddr package, and it consists of an IP address and a network mask. The network
mask is increased by the prefixlen parameter for each added level in the tree. This is
achieved by calling the create_subnet_nodes method recursively (cf. Listing 4.1, Line
31). The create_subnet_nodes method increases the bits of the network mask on each
level by the amount defined in the prefixlen parameter (cf. Line 21). The number of
nodes per level is defined by the max_clients parameter and is randomly selected on each
level. This makes the topology of the subnets more heterogenous and, thus, more realistic.
The base case of the recursive create_subnet_nodes method (cf. Line 6ff.) samples a
random number of clients from all possible IPs of the parent subnet using the iter_hosts
method. The clients are then added using the add_node method and connected to their
parent using the add_edge method. Furthermore, only for the clients (i.e., base case),
the spoofed attribute is set based on the probability in spoofed_pct (cf. Line 12).

1 def create_subnet(root , levels , prefixlen , max_clients , spoofed_pct):

2 g = nx.Graph()

3 g.add_node(root.ip, ip=root.ip, level=1, client=False ,spoofed=False)

4

5 def create_subnet_nodes(parent , level):

6 # base case

7 if level == levels:

8 ips = sample(list(parent.iter_hosts ()),

9 randint(1, max_clients))

10 for p in ips:

11 g.add_node(p, ip=p, level=level + 1, client=True ,

12 spoofed=random () <= spoofed_pct ,

13 spoofed_ips=sample(SPOOFED_IP_POOL ,

14 randint(7, 25)))

15 g.add_edge(parent.ip, p, color=color , level=level + 1,

16 ms=random.uniform(1, 100))

17 return

18

19 nr_nodes = randint(1, max_clients)

20 i = 0

21 for s in parent.subnet(parent.prefixlen + prefixlen):

22 i += 1

23 if i > nr_nodes:

24 break

25 s = s.next()

26 g.add_node(s.ip, ip=s.ip, level=level + 1,

27 client=False , spoofed=False)

28 g.add_edge(parent.ip, s.ip , color=color , level=level + 1,

29 ms=random.uniform(1, 100))

30 # recursive call

31 create_subnet_nodes(s, level + 1)

32

33 create_subnet_nodes(root , 0)

34 return graph

Listing 4.1: Recursive structure of the create hierarchical subnet method

4.1. FINGERPRINT GENERATOR 43

Figure 4.1: Single hierarchical subnet

An example of a resulting subnet can be found in Figure 4.1, where the root node uses a
16-bit network mask, and nodes on the first level utilize a 19-bit network mask. First-level
nodes have three child nodes in their subnet. On the second level, the subnet consists of
two client nodes each. The color of the client nodes signifies whether a node communicates
with a masked IP or not. Red nodes use a spoofed IP; black ones use their real IP (cf.
Figure 4.1). This decision is taken for each node during the subnet generation.

Nodes and edges have different attributes that are leveraged to route and generate fin-
gerprints at a later stage. The ip attribute of a node is used as ground truth data and
for routing (cf. Table 4.1). Level and client attributes are used to efficiently access
certain nodes of the network (e.g., all leaves or all backbone routers). Most important for
fingerprint generation are the spoofed and spoofed_ips attributes. While each node is
assigned a random list of spoofed IP addresses, the spoofed flag decides whether a node
communicates with a spoofed IP.

Compared to nodes, edges require fewer attributes (cf. Table 4.2). The ms attribute
defines the duration for a packet to traverse a certain edge. Again, for efficient access,
edges include a level attribute that reflects the parent’s level in the subnet tree.

4.1.1.2 Backbone Connection

After the generation of one or multiple subnets, the subnets are connected to form a global
network. As discussed in Chapter 3.1, a partial mesh is used as a backbone topology. The
partial mesh is built by first connecting every subnet in a ring topology. This ensures
that all subnets are connected and a valid path between every node in the network exists.
Afterward, additional randomized edges (i.e., shortcuts) are added to form a partial mesh
topology. It has to be noted that for a small number of subnets (i.e., <= 3), the ring
topology also equals a full mesh topology. Increasing the number of subnets makes the

44 CHAPTER 4. IMPLEMENTATION

Attribute Data Type Description

ip IPAddress The real IP address of the node

level Integer The level of the subnet tree

client Boolean Flag that indicates if a node is a leaf node of its sub-
net tree

spoofed Boolean Flag that indicates if a node communicates with a
spoofed IP

spoofed ips List<IPAddress> A list of spoofed IP addresses randomly drawn from
a pool of available IPs

Table 4.1: Node attributes

Attribute Type Description

ms Integer The delay that occurs when a packet is routed through this edge

level Integer The level of the parent node in the subnet tree

Table 4.2: Edge Attributes

partial mesh more sparse since the number of randomly added edges grows linear (n/2),
but the number of all possible connections grows quadratically. This is intended and
reflects the real world, where a single AS is only connected to a small fraction of all other
ASNs.

1 def create_network(subnets , max_levels , max_clients , spoofed_pct):

2 subgraphs = [create_subnet(s, levels=randint(1, max_levels),

3 max_clients=randint(2, max_clients),

4 spoofed_pct=spoofed_pct , prefixlen =4)

5 for i, s in enumerate(subnets)]

6

7 G = nx.compose_all(subgraphs)

8 n = len(subnets)

9

10 # Ring topology

11 edges = [(subnets[i].ip, subnets [(i + 1) % n].ip,

12 {’level’: 0, ’ms’: random.uniform(1, 100)})

13 for i in range(n)]

14

15 # Add random connections to create a partial mesh

16 m = round(n / 2)

17 mesh = [(u.ip, v.ip, {’level’: 0, ’ms’: uniform(1, 100)})

18 for u, v in sample(list(combinations(subnets , 2)), m)]

19

20 edges.extend(mesh)

21 G.add_edges_from(edges)

22 return G

Listing 4.2: Connecting all subnets

The create_network method (cf. Listing 4.2) combines the subnet and backbone gen-
eration using the above-presented strategy. The returned network graph forms the basis

4.1. FINGERPRINT GENERATOR 45

Figure 4.2: Three-step generation process

for the generation of fingerprints, as discussed in the next Chapter.

4.1.2 Generator

The generation of fingerprints based on a network graph is a three-step process (cf. Figure
4.2).

1. Calculate paths for attack and background traffic.

2. Walk all calculated paths and aggregate the traffic along the path for each interme-
diate node.

3. Iterate over all intermediate nodes and generate a fingerprint per observed target.

While this approach still requires iterating over intermediate nodes for each traffic source,
it is much more efficient than simulating the traffic on a packet level. No matter how
many packets an attack source sends to a target, the path must only be traversed once.

4.1.2.1 Traffic Paths

The first step of the fingerprint generation process includes computing attack paths and
selecting background traffic paths. As previously discussed, routing decisions are deter-
mined using an outside perspective, applying Dijkstra’s shortest path algorithm [19] on
the network graph. The shortest_path method of the networkx library with weighted
edges is used for the implementation. The weight of the edge is defined by the ms attribute
(cf. Table 4.2). Overall, this results in one attack path per attack source which is minimal
in terms of time delay between the source and attack target.

Background traffic is simulated by randomly selecting pairs of nodes in the network ac-
cording to predefined rules. Concerning the traffic target, two cases exist: (i) Background
traffic to the attack target and (ii) background traffic to an unrelated node. The amount
of unique background traffic paths can be dynamically adjusted along with the fraction

46 CHAPTER 4. IMPLEMENTATION

directed to the attack target (cf. Listing 4.3). Because some nodes are marked as spoofed
at the initialization of the network graph, cases (i) and (ii) fulfill all three types of back-
ground traffic discussed in Chapter 3.1.3.3.

1 def generate_background_traffic(G, amount , target , targeted_pct =0.2):

2 unrelated = [(x, y) for x, y in combinations(G.nodes , 2)

3 if x != y and y != target]

4 unrelated_sample = sample(unrelated , int(amount * (1- targeted_pct)))

5

6 targeted = [(n, target) for n, data in G.nodes(data=True)

7 if not data.get(’spoofed ’, False)]

8 targeted_sample = sample(targeted , int(amount * targeted_pct))

9

10 return [(src , tgt , shortest_path(G, src , tgt , weight=’ms’), False)

11 for src , tgt in unrelated_sample + targeted_sample]

Listing 4.3: Generating background traffic paths

Attack and background paths are stored in a tuple of the form (source, target, path,

is_attack). The boolean flag is_attack differentiates background traffic from attack
traffic paths. This allows the aggregation of intermediate node data using a combined list
of attack traffic.

4.1.2.2 Aggregating Data per Intermediate Node

The data aggregation per intermediate node is achieved by iterating over all attack and
background paths. However, before data can be aggregated, each path needs properties
that define the characteristics of the traffic. The properties include TTL, start time,
duration, the number of packets, and the number of megabytes of traffic. Since the
background traffic is randomly generated, a single source can have traffic paths to multiple
other nodes (attack target or unrelated). For this reason, attack characteristics are defined
on a path level, not on the source level. This means that a source node A can generate
background traffic to an unrelated node B, but also to the attack target X at a later start
time.

The selection of attack parameters differs between attack traffic and background traffic.
However, for the duration and the number of packets, the attack and background ranges
overlap so that it is not trivial to distinguish attack traffic from background traffic. The
traffic characteristics for both types of traffic are summarized in Table 4.3. The start time
and the nr. of Megabytes have the same range for attack and background traffic. However,
the nr. of Megabytes depends on the nr. of packets, whereas the latter is different for
attack and background traffic.

When iterating over attack paths with the above-mentioned traffic characteristic, the
aggregated data is stored in a nested dictionary using the attributes in Table 4.4. The
dictionary captures all traffic information per intermediate node and target. Since an
intermediate node can be part of many traffic paths (attack and background), certain
nodes and target combinations are visited multiple times. This is also why all attributes
are of type list or dictionary. While walking the traffic paths, intermediate values are
appended to the list or dictionary such that no fingerprint-relevant data is lost. For

4.1. FINGERPRINT GENERATOR 47

Attribute Attack Range Background Range

Start Time [0s, 10s]

Duration [60s, 600s] [10s, 70s]

Nr. of Packets [103, 106] [102, 105]

Nr. of Megabytes Nr. packets ∗ [1
1000

, 1
5′000

]

Table 4.3: Simulated traffic characteristics

example, the start time for each observed source at an intermediate node is stored in a
list. In this way, it is possible to extract different information at a later stage (e.g., earliest
attack, bursts, etc.).

Special handling is required when the attack source spoofs its IP address. Since one node
can send traffic using multiple spoofed addresses, nr_packets_by_source and
nr_megabytes must be normalized. For example, if a node sends 1’000 packets and
uses a pool of ten spoofed IPs, 100 packets are counted towards each spoofed source IP
address. Furthermore, a mapping between spoofed IPs and the real IP address is stored
for traceability. In the real world, this information is not available. However, for the
simulated scenario, it is used as ground truth data for the evaluation at a later stage.

TTL values and timestamps must be calculated along the different traffic paths for the
data to be realistic. Starting from a random common TTL value (i.e., 64, 128, 255),
the TTL value is decreased on each step while iterating over a path. Furthermore, the
timestamps are shifted back based on the weight (i.e., delay) of the edge. The delays
are accumulated along the path in a way that the timestamps of the intermediate nodes
reflect real routing behavior.

4.1.2.3 Fingerprint Generation

The generation of fingerprints is based on the dictionary of intermediate nodes. By defi-
nition of [31], an attack fingerprint only includes traffic to a single target. In that regard,
for each node in the intermediate nodes dictionary, a fingerprint is generated for every
observed traffic destination. Naturally, this results in a large number of fingerprints.
While some of the fingerprints can be discarded at generation (e.g., fingerprints at an
attack source), the filtering of relevant fingerprints is left to the Reassembler module (cf.
Chapter 3.2).

A reference fingerprint format of a real SYN flood attack is shown in Listing 3.1. Some
values are trivial to derive with the aggregated node data from the simulated scenario.
For example, the time_start corresponds to the earliest observed timestamp per node
and target. On the other hand, some values require additional calculation. For example,
the observed ttl values have to be normalized to a probability value between 0 and
1. Furthermore, the detection_threshold value requires comparing all other observed
traffic at the node. It is calculated by dividing the number of packets to the target by the
number of observed packets at the node.

48 CHAPTER 4. IMPLEMENTATION

Attribute Data Type Description

node (key) IPAddress Intermediate Node where traffic is
observed

target (key) IPAddress Target to which traffic is directed

ttl Dict[int, int] Mapping of TTL value to number
of packets

ttl by source Dict[IPAddress, List[int]] Mapping IP address to one (or
multiple) observed TTL values

sources List[IPAddress] List of observed traffic sources

sources real Dict[IPAddress, IPAddress] Mapping of spoofed IP to real IP
(ground truth data)

time start List[int] List of start times for observed
traffic

duration seconds List[int] List of duration for observed traf-
fic

nr packets List[int] List of observed number of pack-
ets for each traffic source

nr packets by source Dict[IPAddress, int] Mapping of source address to ob-
served number of packets

nr megabytes List[int] List of observed number of
megabytes for each traffic source

Table 4.4: Data type for intermediate node aggregation

A unique key for each fingerprint is generated before the list of generated fingerprints
can be stored in individual JSON files. This is achieved by creating an md5 hash of the
fingerprint content. The resulting key serves as a unique identifier to the fingerprint as it
is proposed in the format of [31]. Finally, the fingerprints are stored in a predefined output
folder using their calculated key as the filename. Such a folder simulates the sharing of
attack fingerprints in a central repository as it is done, for example, in the DDoSDB [18].

4.2 Reassembler

Based on the proposed design in Chapter 3.2, this Chapter outlines the implementation
of the Reassembler module. Similar to the Fingerprint Generator, Python is used as a
programming language for the Reassembler. Python provides the advantage of easing
the work with JSON data (i.e., Fingerprints), and popular libraries can be used for data
analysis. Examples include the data analysis and manipulation tool Pandas [39] or the
NumPy [28] package for scientific computing.

The structure of this Chapter follows the proposed design (cf. Chapter 3.2). First, the
reading and pre-processing of fingerprints is discussed in Chapter 4.2.1. Thereafter, the

4.2. REASSEMBLER 49

steps for attack detection and analysis are introduced together in Chapter 4.2.2. Lastly,
the file generation of global fingerprints is presented (cf. Chapter 4.2.3).

4.2.1 Pre-process Fingerprints

The first step of the pre-processing includes reading the fingerprints. Fingerprints can be
provided via JSON files in a folder or directly in memory by passing the data in a Python
dictionary, with the latter option mainly used for evaluation (cf. Chapter 5).

The read_fingerprints_from_folder method in Listing 4.4 shows how the JSON files
are programmatically opened and read from a folder. Per default, Python reads JSON
data into a regular dictionary (cf. Line 9). However, having a list of thousands of dictio-
naries (i.e., fingerprints) is not optimal for data analysis as it is impossible to formulate
complex queries or computations easily. For that reason, the attack fingerprints are loaded
into a Pandas [39] DataFrame. Through integrated functionalities, Pandas DataFrames
allow the efficient manipulation and analysis of large datasets.

1 def read_fingerprints_from_folder(path , simulated):

2 # create an empty list to store the DataFrames

3 dfs = []

4 # loop over each JSON file in the folder

5 for filename in os.listdir(path):

6 if filename.endswith(’.json’):

7 with open(os.path.join(path , filename)) as f:

8 # load the JSON data into a Python dictionary

9 data = json.load(f)

10 flat_data = flatten_fingerprint(data , simulated=

simulated)

11 df = pd.json_normalize(flat_data , ’attack_vectors ’)

12 dfs.append(df)

13 return pd.concat(dfs , ignore_index=True)

Listing 4.4: Read fingerprints to Pandas DataFrame

DataFrames work best with flat tabular data. As can be seen in the reference finger-
print (cf. Listing 3.1), the format contains many nested structures. While Pandas can
normalize nested structures to a certain extent, the json_normalize function does not
work well with dynamic keys in nested structures. For example, the observed percentage
of the TTL value 243 (cf. Listing 3.1) would be normalized to a column name of at-

tack_vectors.ttl.243. Having a dynamic key in the column name does not work for
efficient analysis, as column names have endless possibilities.

A custom method is used to flatten the attack fingerprints to solve the problem of dynamic
keys in nested structures. The flatten_fingerprint method (cf. Listing 4.5) takes a
fingerprint dictionary as input and returns the flattened data as Pandas DataFrame.
Instead of storing an entire attack fingerprint in each row of a DataFrame, the flat-

ten_fingerprint converts the data so that each row contains one attack vector from a
single source IP. Naturally, copying the attributes located outside the attack_vectors in
the fingerprint to each row in the DataFrame (cf. Line 13) is required. This generates an

50 CHAPTER 4. IMPLEMENTATION

overhead in terms of space, but it allows the efficient querying of fingerprint data using
built-in Pandas functionality.

Flattening attack fingerprints by attack vector and source IP removes the need for dynamic
keys. This is because the dynamic key is usually the source IP itself (cf. Chapter 3.1.2.1).
For example, the mapping nr_of_packets_by_source (cf. Table 4.4) can be replaced
with a simple integer value per attack vector and source IP. The total nr_packets can
be calculated again using built-in Pandas functionality.

1 def flatten_fingerprint(data , simulated):

2 flat_avs = []

3

4 for av in data[’attack_vectors ’]:

5 for src_ip in av[’source_ips ’]:

6 flat_av = {

7 ’key’: data[’key’],

8 ’source_ip ’: src_ip ,

9 ’source_ip_real ’: av[’source_ips_real ’][src_ip],

10 ’ttl’: av[’ttl_by_source ’][src_ip],

11 ’nr_packets ’: av[’nr_packets_by_source ’][src_ip],

12 **{k: attack_vector[k] for k in [’service ’, ’protocol ’,

13 ’duration_seconds ’, ’time_start ’,

14 ’detection_threshold ’]},

15 **{k: data[k] for k in [’target ’, ’location ’]}

16 }

17 if simulated:

18 flat_av[’distance ’] = data[’distance ’]

19 flat_av[’is_attack ’] = av[’is_attack ’]

20 flat_av[’source_ip_real ’] =av[’source_ips_real ’][src_ip]

21 flat_avs.append(flat_av)

22

23 data[’attack_vectors ’] = flat_avs

24 return data

Listing 4.5: Flatten fingerprints before analysis

The simulated parameter of the flatten_fingerprint method is used to set additional
attributes that are only available in a simulated environment. When the parameter is set
to true, ground truth data, such as distance, is_attack, and source_ip_real are added
to each flattened attack vector (cf. Line 18ff.). For non-simulated attack fingerprints from
the DDoS Dissector, the simulated parameter must be set to false.

After flattening all fingerprints, the list of flat attack vectors is merged to a single
DataFrame using Pandas’ concat method (cf. Listing 4.4, Line 13). This DataFrame
represents an unanalyzed global view of an attack consisting of many vectors from a
source IP to a destination IP. Besides the key property, there is no separation of indi-
vidual attack fingerprints, but all the available information can be queried using a single
DataFrame. Of course, the data of a single fingerprint can be retrieved by grouping the
data by key. The analysis performed on the global DataFrame is discussed in the next
Section.

4.2. REASSEMBLER 51

4.2.2 Attack Analysis

The attack analysis is at the heart of the Reassembler module. In the first step, the
attack target is detected, and all possible intermediate nodes that observed the attack are
selected. After that, multiple analyses to refine the global attack view are made.

The Reassembler module is built using an object-oriented approach. Listing 4.6 shows the
constructor of the Reassembler class. Upon initialization of a Reassembler instance, the
previously discussed read_fingerprints (cf. Listing 4.4) method is leveraged to read a
folder of fingerprints to a flattened DataFrame. After the conversion of timestamps, the
find_target method is called to infer the attack target. This is further discussed in the
next section.

1 class Reassembler:

2 def __init__(self , fingerprint_folder=None , fingerprint_data=None ,

simulated=True):

3 if len(fingerprint_data) > 0:

4 self.fps = pd.concat(

5 [pd.json_normalize(

6 flatten_fingerprint(x, simulated=simulated),

7 ’attack_vectors ’)

8 for x in fingerprint_data], ignore_index=True)

9 elif fingerprint_folder is not None:

10 self.fps = read_fingerprints_from_folder(fingerprint_folder ,

simulated=simulated)

11 else:

12 raise ValueError("No Fingerprint Data provided")

13

14 self.fps[’time_start ’] = pd.to_datetime(self.fps[’time_start ’])

15 self.fps[’time_end ’] = (self.fps[’time_start ’] + pd.to_timedelta

(self.fps[’duration_seconds ’], unit=’s’))

16 self.target = self.find_target

17 self.simulated = simulated

18 ...

Listing 4.6: Reassembler Class

4.2.2.1 Infer Attack

As outlined in Chapter 3.2.2.1, the attack target is selected by finding the most targeted
network node from all globally submitted attack fingerprints. Similar to the detection
mechanism in the DDoS simulator, a minimum detection threshold of 50% is assumed.
Since the attack fingerprints are stored in a flat DataFrame, the attack vectors are grouped
by location to find the target (cf. Listing 4.7, Line 5).

If no target is found, for example, because the detection threshold is set too high, an error
is thrown. It can be solved by lowering the detection threshold or manually overriding
the attack target. More details on the usage of the Reassembler can be found in the Use
Case Evaluation (cf. Chapter 5.1).

52 CHAPTER 4. IMPLEMENTATION

1 def find_target(self) -> str:

2 possible_targets = self.fps[

3 (self.fps[’target ’] == self.fps[’location ’]) &

4 (self.fps[’detection_threshold ’] >= 0.5)]

5 .groupby ([’location ’])

6 .agg(

7 {’nr_packets ’: ’sum’, ’key’: ’min’, ’detection_threshold ’: ’

min’})

8 .sort_values(’nr_packets ’, ascending=False)

9

10 if len(possible_targets) == 0:

11 raise ValueError("No Target found with the desired attack

threshold")

12

13 # returns IP of most targeted location

14 return possible_targets.index [0]

Listing 4.7: Find most targeted location

4.2.2.2 Analyze Intermediate Nodes

A crucial part of the analysis happens in the reassemble method that can be called on
any Reassembler instance. For the analysis of the intermediate nodes, the attack traffic
observed at the target forms the baseline. Hence, the first part of the reassemble method
consists of selecting all traffic to the attack target (cf. Listing 4.8). This is accomplished
with Pandas by selecting all fingerprints that have the same location and target as the
identified attack target (cf. Lines 2f.). The resulting entries_at_target DataFrame
allows aggregating values such as the total number of packets at the target (cf. Line 6).

1 entries_at_target = self.fps[

2 (self.fps[’location ’] == target)

3 & (self.fps[’target ’] == target)].copy()

4 entries_at_target[’ttl_count ’] = (entries_at_target[’ttl’]

5 .apply(lambda x: len(x)))

6 total_nr_packets_at_target = entries_at_target[’nr_packets ’].sum()

Listing 4.8: Reassemble method: Select entries at target

The next step is the selection of all fingerprints that observed the attack from a location
other than the attack target (cf. Listing 4.9). The observing_fp DataFrame is afterward
merged with the baseline TTL values, such that the hops to the target can be calculated
(cf. Lines 4ff.).

1 observing_fp = self.fps[(self.fps[’target ’] == target) &

2 (self.fps[’location ’] != target)].copy()

3 # Merge with the baseline

4 observing_fp = observing_fp.merge(ttls_at_target ,

5 how=’left’, on=’source_ip ’)

6 observing_fp[’hops_to_target ’] = observing_fp.apply(

calculate_hops_to_target , axis =1)

Listing 4.9: Reassemble method: Find intermediate nodes and merge with baseline

4.2. REASSEMBLER 53

The calculation of hops to the target follows the approach presented in Chapter 3.2.3.2.
It works by comparing each observed TTL value with the highest TTL value at the target
that remains below the observed TTL value (cf. Listing 4.10). The distance is then
calculated using the mean over all TTL values recorded for a specific source IP and target
IP combination. It has to be noted that multiple TTLs per source IP only occur when
multiple nodes use the same spoofed IP but are at varying distances from the attack
target. The impact of this is further explored in the Evaluation (cf. Chapter 5.2.1.1).

1 def calculate_hops_to_target(row):

2 ttl = row[’ttl’]

3 ttl_on_target = row[’ttl_on_target ’]

4

5 distances = []

6

7 for t in ttl:

8 # Get the largest ttl_on_target value that is smaller than t

9 valid_targets = [x for x in ttl_on_target if x <= t]

10 target = max(valid_targets)

11 distance = t - target

12 distances.append(distance)

13

14 # Calculate the mean distance

15 mean_distance = sum(distances) / len(distances)

16 return mean_distance

Listing 4.10: Method for calculating hops to target

From the observing_fp DataFrame with calculated distances to the target, the aggrega-
tion into intermediate nodes happens (cf. Listing 4.11). For this, all observing entries are
grouped by their location (cf. Line 6). Depending on whether the scenario is simulated
or not, ground truth data about the actual distance to the target can be added to the
target (cf. Lines 3f.).

1 agg_config = {’nr_packets ’: ’sum’, ’hops_to_target ’: ’mean’, ’

detection_threshold ’: ’min’, ’time_start ’: ’min’,

2 ’time_end ’: ’max’}

3 if self.simulated:

4 agg_config[’distance ’] = ’mean’

5

6 intermediate_nodes = observing_fp.groupby(’location ’).agg(agg_config).

copy()

Listing 4.11: Aggregating intermediate nodes

Together, the entries_at_target and intermediate_nodes DataFrames form the ba-
sis for the generation of the global fingerprint. The implementation is discussed in the
following Chapter.

4.2.3 Global Fingerprint Generation

A global fingerprint represents a compact form of a globally observed DDoS attack. Fol-
lowing the proposed (local) attack fingerprint format of the DDoS Dissector [31], the

54 CHAPTER 4. IMPLEMENTATION

global fingerprint is stored as a JSON file. For the later identification of globally observed
DDoS attacks, the fingerprint contents are md5 hashed and stored in an additional key
property inside the global fingerprint. In this regard, the form of the global fingerprint is
rather similar to a local fingerprint. This is intended to facilitate integrations with other
ecosystem services (e.g., DDoSDB) and their existing technologies.

Listing 4.12 shows how the global fingerprint is created from the aggregated DataFrames
(cf. Chapter 4.2.2.2). The values are stored in the summary dictionary and can be saved
to a JSON format using the save_to_json method provided by the Reassembler class.
The generated fingerprint follows the format in Table 3.8. It can be seen that proper-
ties related to the attack and target category are derived from the entries_at_target

DataFrame. Properties of the intermediate nodes category are derived from the aggre-
gated intermediate_nodes DataFrame (cf. Chapter 4.2.2.2).

1 summary = {

2 ’attack ’: {

3 ’start_time ’: entries_at_target[’time_start ’].min().isoformat (),

4 ’end_time ’: entries_at_target[’time_end ’].max().isoformat (),

5 ’duration_seconds ’: entries_at_target[’duration_seconds ’].mean()

6 ...

7 },

8 ’target ’: {

9 ’ip’: target ,

10 ’detection_threshold ’: (entries_at_target[’detection_threshold ’]

11 .mean())

12 },

13 ’intermediate_nodes ’: {

14 ’discarded_intermediate_nodes ’: (len(intermediate_nodes)

15 - len(filtered_intermediate_nodes)),

16 ’nr_intermediate_nodes ’: len(filtered_intermediate_nodes),

17 ’detection_threshold ’: {p: v for p,v in zip(DEFAULT_PERCENTILES ,

18 threshold_percentiles)},

19 ’key_nodes ’: (filtered_intermediate_nodes

20 .sort_values(’nr_packets ’, ascending=False)

21 .sort_values(’hops_to_target ’)

22 .to_dict(’index’))

23 },

24 ’sources ’: {

25 ’nr_sources ’: len(entries_at_target),

26 ’pct_spoofed ’: pct_spoofed

27 }

28 }

Listing 4.12: Assembling a global fingerprint from aggregated DataFrames

A complete global fingerprint of a simulated attack scenario can be found in Appendix
C.1. It includes ground truth data such as the list of actual attack sources and the actual
distance of each intermediate to the target. Contrarily, the global fingerprint in Appendix
C.2 is based on real attack traces and does not include ground truth data. The usage of
the add_ground_truth_data method is further shown in Chapter 5.1.2.2.

4.3. DDOS DISSECTOR CONTRIBUTIONS 55

4.3 DDoS Dissector Contributions

The DDoS Dissector [31] software, along with the proposed attack fingerprint format,
forms the base for this thesis. However, not all proposed changes in this thesis are com-
patible with the current implementation of the DDoS Dissector. This Chapter outlines
the contributions to the DDoS Dissector proposed in this work. While some extend the
functionality, others aim to fix Bugs encountered when using the Software.

4.3.1 Generating Multiple Fingerprints

As previously discussed, the detection mechanism of the DDoS Dissector is based on
the percentage of observed packets per target IP address. The high detection threshold
of 50% does not work well with network nodes observing a DDoS attack from farther
away. Usually, a few hops away from the target nodes observe the attack with a threshold
of less than 50% (cf. Chapter 5.2.2). A sophisticated attack detection on the DDoS
Dissector level that detects attacks with low thresholds exceeds the scope of this work.
In some cases, a clear detection from farther away may not be possible only by looking
at the observed traffic. For that reason, a simpler detection is proposed by generating a
fingerprint for the top n most targeted IPs.

For this, a new infer_target_by_index method is created, which selects the n-th most
targeted IP. Instead of only processing one single target, the main process of the DDoS
Dissector is wrapped in a loop that generates the configured amount of fingerprints.

1 def infer_target_by_index(attack: Attack , index: int) -> IPNetwork:

2 LOGGER.debug("Inferring attack target by index %d" % index)

3 packets_per_ip = (attack.data

4 .groupby(’destination_address ’)[’nr_packets ’]

5 .sum()

6 .sort_values(ascending=False))

7 most_traffic_address , nr_packets = list(packets_per_ip.items())[

index]

8 return IPNetwork(most_traffic_address)

Listing 4.13: Infer attack target by index

This functionality is only invoked, for compatibility reasons, when the corresponding
arguments are passed. Two arguments are added for this reason:

• -t, --threshold
The threshold argument defines the minimum detection threshold for an IP to be
considered an attack target. If the argument is not set, the default value of 0.5 (i.e.,
50% of packets in the PCAP) from the current DDoS Dissector implementation
remains.

• -n, --nfingerprints
The number of fingerprints argument defines how many fingerprints should be gener-
ated. If this argument is set, the detection threshold is overwritten, and fingerprints
for the n most targeted IP addresses are generated.

56 CHAPTER 4. IMPLEMENTATION

The suggested modifications facilitate the usage of the DDoS Dissector for a global attack
view rather than a localized attack detection. However, for full compatibility with the
Reassembler, additional changes to the fingerprint format are required.

4.3.2 Extending the Fingerprint Format

The extended fingerprint format (cf. Table 3.1.2.1) enables global analysis of attack
fingerprints without loss of context along the path (cf. Figure 3.6). The additional
properties in Table 3.4 are added to the DDoS Dissector to achieve this.

The values are either derived from the observed network data directly or from the config-
uration attributes when the Dissector is started.

• location
The location in the fingerprint represents the IP where the fingerprint is collected.
Since the recording location cannot trivially be derived from a PCAP file, it is imple-
mented using an additional configuration attribute -l, --location. This further
allows the later calculation and submission of fingerprints at a location independent
from where the PCAP was initially recorded.

• nr packets by source & ttl by source
Packets and TTL by source are derived from the underlying PCAP data. No con-
figuration attribute is needed to extend the fingerprint with this information.

• detection threshold
The detection threshold is derived from different values based on the given config-
uration of the DDoS Dissector. If the argument -n is set, the detection threshold
represents the percentage of packets to the fingerprint target in comparison with
all observed traffic at the node. If the -t argument is set, the detection threshold
represents the configuration of the DDoS Dissector. If none of the arguments is set,
the detection threshold is set to the default value of 0.5.

As can be seen, most of the proposed changes to the DDoS Dissector can be activated
on an individual level. In this regard, it is also important that the extended fingerprint
can be activated using an opt-in mechanism. For this, a new argument -e, --extended-

format is introduced. The opt-in mechanism allows the current behavior of the DDoS
Dissector in the future for nodes that do not want to participate in a global analysis.
This is especially important since the extended fingerprint format requires more storage,
particularly in combination with a high -n value. In the Deployment Considerations (cf.
Chapter 5.3.1), this aspect is further discussed.

4.3.3 Fixing Parallelization Bug

When evaluating real PCAP datasets at the beginning of this work, a parallelization bug
in the DDoS dissector was encountered. For performance reasons, the DDoS Dissector

4.3. DDOS DISSECTOR CONTRIBUTIONS 57

reads a PCAP file in parallel. To enable parallelization, the input file is split into chunks
of 5MB and temporarily stored in the /tmp folder. Thereafter, all chunks in the folder
are read using multiple threads.

1 elif filetype == FileType.PCAP:

2 if filename.stat().st_size < (5 ** 6):

3 return read_pcap(filename)

4 LOGGER.debug(f’Splitting PCAP file {filename} into chunks of 5MB.’)

5 + # Create directory in tmp

6 + os.makedirs(’/tmp/dissector_chunk ’, exist_ok=True)

7 + # Clean up directory in case previous run was aborted

8 + old_chunks = [Path(rootdir) / file for rootdir , _, files in os.

walk(’/tmp/dissector_chunk ’)

9 + for file in files if file.startswith(’chunk’)]

10 + if len(old_chunks) > 0:

11 + for chunk in old_chunks:

12 + os.remove(chunk)

13 +

14 + # Splitting into chunks

15 + process = subprocess.run([’editcap ’, ’-c’, ’100000 ’, filename ,

’/tmp/dissector_chunk/chunk.pcap’],

16 + capture_output=True)

17 + if process.returncode != 0:

18 + LOGGER.critical("Splitting not successful", process)

19 + chunks = [Path(rootdir) / file for rootdir , _, files in os.walk

(’/tmp/dissector_chunk ’)

20 + for file in files if file.startswith(’chunk’)]

21

22 pool = multiprocessing.Pool(nr_processes)

23 results = pool.map(read_pcap , chunks)

Listing 4.14: Improved implementation for parallel processing

The encountered problem is related to the splitting of the PCAP files. The existing
implementation of the DDoS Dissector uses the tcpdump command-line tool with the
-C 5 option to generate chunks of 5MB. For reasons not yet identified, the chunking
prematurely terminated after the first chunk on certain devices. An error at this stage is
not recognized by the DDoS Dissector, leading to a silent failure of the chunking process.
Nonetheless, the fingerprinting process proceeds normally, but it only processes the initial
5MB of the PCAP file. The silent failure of the chunking, which results in an incomplete
fingerprint, is fixed by the following proposed changes (cf. Listing 4.14):

• Remove old chunks before processing
In the case that a previous run of the DDoS Dissector was not successful and failed
before the /tmp folder was cleaned up, a new analysis may read additional unrelated
chunks. This is resolved by storing chunks in a dedicated /tmp/dissector_chunk

folder, which is cleaned up before every run (cf. Line 7ff.).

• Use editcap instead of tcpdump
On some devices, the tcpdump command failed for PCAPs that were previously
edited and merged with mergecap. This issue is resolved by using the editcap [56]
command-line tool with the -c option (cf. Line 15ff.).

58 CHAPTER 4. IMPLEMENTATION

• Log errors
The main drawback of the existing DDoS Dissector implementation is that an error
in the chunking process is silent and not handled at all. The proposed improved
implementation checks for a successful return code (cf. Line 17) and logs an error
if the chunking was not successful.

Chapter 5

Evaluation

This Chapter evaluates the proposed solution from different angles and discusses different
adversarial attack vectors. First, a use case evaluation explains how the proposed solution
can be used. This is shown based on four test scenarios of increasing size. Thereafter,
the Reassembler module is evaluated using different experiments, thereby exploring the
limits of the proposed solution. Lastly, the results of this work are discussed, focusing on
achieving the set goals and considerations for deployment.

5.1 Use Case

The use case evaluation describes how the two proposed modules can be used for attack
simulation (Fingerprint Generator) and global analysis (Reassembler). Additionally, the
proposed changes to the DDoS Dissector are evaluated on a manually crafted small-
scale scenario based on real DDoS attack data [55]. Lastly, Reassembler and Fingerprint
Generator are evaluated based on four test scenarios.

5.1.1 Attack Simulation

The simulation of a globally observed DDoS attack depends on two main parts: (i) The
simulated network topology and (ii) the attack characteristics (e.g., target, sources). Both
parts can be configured using the fluent interface [23] provided by the Generator class.
Each instance method returns the instance itself at the end of the operation. This allows
for readable and flexible chaining of methods. An example can be found in Listing 5.1.

The first part, the generation of the simulated network, is done in the constructor (cf.
Listing 5.1, Line 1ff.). The maximum depth and number of nodes per level can be con-
figured with optional arguments. Other network characteristics besides the topology can
be updated after the initialization, for example, using the set_spoofed_pct method (cf.
Line 4). By altering network characteristics after the initialization, multiple evaluation

59

60 CHAPTER 5. EVALUATION

Nodes in Network 337

Generated Fingerprints 382

Total Fingerprint Size 1.7MB

Smallest Fingerprint Size 734B

Largest Fingerprint Size 21.6 KB

Table 5.1: Simulated scenario output

runs can be performed using identical topology but varying configurations. This is impor-
tant because network generation always includes a randomization factor for generating
subnets.

1 Generator ([IPNetwork(f"{10 + i}.0.0.0/8")

2 for i in range (10)],

3 max_levels =3, max_clients =5)

4 .set_spoofed_pct (0.8)

5 .set_random_attack_sources (10)

6 .add_background_traffic (50)

7 .simulate_attack ()

8 .save_to_json("./ fingerprints")

Listing 5.1: Fluent Interface of the Generator Class

The second part, the attack configuration, and simulation, is achieved by calling instance
methods of the Generator class. A single random attack target and one attack source
are selected at the initialization of the Generator instance. The number of attack sources
can be flexibly configured after the initialization using the set_random_attack_sources
method. The attack simulation is completed by calling the simulate_attack method.
This generates fingerprints as discussed in the Implementation (cf. Chapter 4.1.2.3). The
resulting fingerprints are stored in the instance variable fingerprints by default. The
fingerprints can either be accessed directly using the instance, or they can be saved to
files. The save_to_json method is used (cf. Line 8), which writes every fingerprint to a
JSON file in the specified folder. The ability to access the fingerprints of the simulation
directly on an instance level omits unnecessary file reads and writes when the fingerprints
are directly evaluated using the Reassembler afterward.

The results of the above code Listing (cf. Listing 5.1) are summarized in Table 5.1. The
configuration of ten subnets, with a maximum of three levels per subnet and five clients
per level, results in a total simulated network of 337 nodes. It must be noted that the
outputs are still subject to randomization, as the configuration is only an upper bound to
the network size but does not specify a distinct topology. Since the save_to_json method
is used, the resulting 382 fingerprints are stored in the specified output folder (cf. Listing
5.1, Line 8). The content of the output folder is visualized in Listing 5.2. It consists of a
flat list of JSON files named by their derived md5 hash key (cf. Chapter 4.1.2.3).

The Fingerprint Generator Module’s discussed outputs are based only on one network
and attack configuration. The influence of the configuration parameters provided by the
Generator class is further discussed in Chapter 5.1.4.

5.1. USE CASE 61

1 ./ fingerprints/

2 0a0f91b88b2ee64531489fe8ab4b9f7b.json

3 0b3e8f3f9ed807b20a07761570ca35da.json

4 0d779f8b67007c18fabbfaaaa603c8e1.json

5 ...

6 fad0a2355ca500bba9f9dc9bf0f7b842.json

7 fb65d9068d1e7007b05917730ca46be1.json

8 fd796b5de70bbece27ed1eae77a2c07c.json

Listing 5.2: Output folder containing fingerprints

5.1.2 Global Analysis

For the global analysis of a DDoS attack, the Reassembler module is also provided as a
Class with a fluent interface, similar to the Fingerprint Generator (cf. Chapter 5.1.1).
The Reassembler can be configured to read from different data sources, and the global
fingerprint output is configurable depending on the use case. This is further discussed in
the next two Chapters.

5.1.2.1 Data Sources

The Reassembler module can be used with two different types of data sources. Listing
5.3 shows the usage of the Reassembler with in-memory data. Instead of writing the
generated fingerprints persistently to a file, the fingerprints are directly accessed (cf. Line
4) and passed to the Reassembler using the fingerprint_data argument (cf. Line 6).

1 fingerprints = (Generator ([IPNetwork(f"{10 + i}.0.0.0/8")

2 for i in range (5)])

3 .simulate_attack ()

4 .fingerprints)

5

6 summary = (Reassembler(fingerprint_data=fingerprints)

7 .reassemble ()

8 .summary)

Listing 5.3: Reassembler with in-memory input

The second method to pass data to a Reassembler instance is based on persistently
stored files in a local folder. When passing the optional fingerprint_folder argument
to the constructor, the Reassembler iterates over all the files in the provided folder and
reads them into an in-memory data structure. The example in Listing 5.4 shows that
the Generator instance is only used to save the fingerprints to a folder, but the instance
itself is not stored for later access (cf. Lines 1-4). Indeed, this is not needed since the
Reassembler reads the fingerprints directly from the local path that is passed using the
fingerprint_folder argument (cf. Lines 6-8).

Both options to pass fingerprint data to the Reassembler serve different purposes. The
in-memory method can be used for quick iterations with the Fingerprint Generator, as it
allows better performance due to fewer file reads and writes. The folder method yields

62 CHAPTER 5. EVALUATION

the greatest flexibility as it can also be used, for example, with real attack fingerprints
generated by the DDoS Dissector. The two proposed data sources are not meant to be
comprehensive. In the future, it is also possible to integrate, for example, remote data
sources such as the DDoSDB [18].

1 (Generator ([IPNetwork(f"{10 + i}.0.0.0/8")

2 for i in range (5)])

3 .simulate_attack ()

4 .save_to_json("./ fingerprints"))

5

6 summary = (Reassembler(fingerprint_folder=’./ fingerprints ’)

7 .reassemble ()

8 .summary)

Listing 5.4: Reassembler with folder input

5.1.2.2 Output

The output of the Reassembler is a global summary (or global fingerprint) of the observed
DDoS attack based on the different attack fingerprints. Like the Generator module, the
global summary can be accessed directly or persistently saved to a JSON file in memory
on the instance. An example that does both can be seen in Listing 5.5. After calling the
reassemble method (cf. Line 6), which analyzes all fingerprints and builds an in-memory
summary, the global fingerprint is persisted in a file using the save_to_json method. At
the same time, the summary is stored in a variable by accessing the summary property
on the instance directly. The two output approaches serve different purposes, similar to
the different data sources. Accessing the global fingerprint in memory allows for further
processing of the summary or comparing multiple runs of the same Reassembler instance
with modified data. The persistent storage of files can be used to share with others or for
later analysis in a different context.

1 scenario = (Generator ([IPNetwork(f"{10 + i}.0.0.0/8")

2 for i in range (5)])

3 .simulate_attack ())

4

5 summary = (Reassembler(fingerprint_data=scenario.fingerprints)

6 .reassemble ()

7 .add_ground_truth_data(scenario.target , scenario.sources)

8 .save_to_json(’./global -fp’)

9 .summary)

Listing 5.5: Reassembler output configuration

To evaluate the accuracy, the Reassemblermodule allows adding ground truth data to the
global fingerprint output. Ground truth data refers to information not available in a real-
world scenario but is known for the provided training data. In the case of the Reassembler,
such data includes the attack target and the real (non-spoofed) IP addresses of all attack
sources. Using the add_ground_truth_data method, the global fingerprint is extended
with only known information in a simulated context.

5.1. USE CASE 63

The generated global fingerprint from Listing 5.5 is shown in Listing 5.6. Since the default
values without background traffic were used for the Generator, the resulting global fin-
gerprint shows trivial data for some properties. For example, the detection_threshold
percentiles all have the value 1.0 since there is no background traffic. In that regard, there
are also no intermediate nodes to filter out so that the calculated nr_intermediate_nodes

(cf. Line 12) corresponds with the nr_location_observing_attack (cf. Line 41) from
the ground truth data. The impact of spoofed IPs and the background traffic on the
accuracy of the global attack fingerprint are further discussed in Chapter 5.2.

1 {

2 "attack": {

3 "start_time": "2023 -05 -22 T06 :35:41.811895",

4 "end_time": "2023 -05 -22 T06 :38:54.218793",

5 "duration_seconds": 192.406898

6 },

7 "target": {

8 "ip": "11.49.119.34"

9 },

10 "intermediate_nodes": {

11 "discarded_intermediate_nodes": 0,

12 "nr_intermediate_nodes": 8,

13 "detection_threshold": {

14 "25": 1.0,

15 "50": 1.0,

16 "75": 1.0

17 },

18 "key_nodes": {

19 "11.49.0.0": {

20 "nr_packets": 993801 ,

21 "hops_to_target": 1.0,

22 "detection_threshold": 1.0,

23 "time_start": "2023 -05 -22 T06 :35:41.760191",

24 "time_end": "2023 -05 -22 T06 :38:54.167089",

25 "distance": 1,

26 "inferred_distance_diff": 0.0,

27 "fraction_of_total_attack": 1.0,

28 "duration_seconds": 192.406898

29 }, ...

30 }

31 },

32 "sources": {

33 "nr_sources": 1,

34 "pct_spoofed": 0.0

35 },

36 "ground_truth": {

37 "nr_attack_av": 9,

38 "nr_background_av": 0,

39 "nr_participating_nodes": 9,

40 "nr_locations_observing_attack": 8,

41 "sources": ["14.33.33.168", ...],

42 "target": "11.49.119.34"

43 },

44 "key": "2aab1f4934a20ed8c6da54cc82424cde"

45 }

Listing 5.6: Global Fingerprint JSON output

64 CHAPTER 5. EVALUATION

Location Attack Traffic Background Traffic TTL Delay

Target 100% 0% - 0ms

Router B 100% 20% +1 2ms

Router A 50% 50% +2 7ms

Table 5.2: Mixing attack and background traffic for evaluation scenario

5.1.3 Real Attack Fingerprints from DDoS Dissector

With the proposed extensions to the DDoS Dissector, running the Reassembler with
attack fingerprints from real attacks is also possible. As mentioned, no public datasets
are available that observe a single DDoS attack from different locations. In that regard,
a highly specific custom scenario demonstrates the workings of the Reassembler process
using actual attack data.

Figure 5.1: DDoS Dissector evaluation scenario

The CIC-DDoS2019 dataset [55] serves as a basis for the evaluation scenario shown in
Figure 5.1. For the analysis, the SYN attack is filtered out from the rest of the dataset
using the provided timestamps in [55]. Since the dataset contains traffic observed from
only one location, the PCAP files for the three network participants in the evaluation
scenario (cf. Figure 5.1) must be manually created. This is achieved by separating the
PCAP into attack traffic directed toward the target and the remaining background traffic.
Different amounts of attack and background traffic are blended to build a unique PCAP
file for each of the three nodes (cf. Table 5.2). Furthermore, to simulate different recording
locations for the PCAPs, the TTL values of the attack traffic are manually increased using
editcap [56], and an artificial delay of a few milliseconds is added. This method creates
two additional, though synthetic, perspectives of a real DDoS attack, which can be used
for evaluation.

In the next step, the three resulting PCAP files are processed by the enhanced DDoS
Dissector (cf. Chapter 4.3) to generate the extended attack fingerprint format necessary
for the Reassembler. Listing 5.7 shows the CLI command to generate an extended fin-
gerprint. The main.py file of the DDoS Dissector is executed with the argument -e to
generate a fingerprint of the extended format. With the -l argument, the location in
the fingerprint is set. Fingerprints are generated for the five most targeted IP addresses,
defined by the argument -n.

1 python ./src/main.py -f ./ target/traffic.pcap -e -l "192.168.50.4" -n 5

--output ./ reassembler

Listing 5.7: Creating extended fingerprint using the DDoS Dissector

5.1. USE CASE 65

Network Nr. Subnets Max Levels Max Clients Nr. Nodes

N1 5 3 5 268

N2 15 6 5 9’356

Table 5.3: Different network configurations for the evaluation

Given that the background traffic is not manually adapted for each network node of the
evaluation scenario, duplicated fingerprints of background traffic can occur when process-
ing the data of all three network nodes with the DDoS Dissector. The evaluation scenario
results in 12 unique fingerprints that describe either background traffic or the attack from
different locations.

Running the generated fingerprints through the Reassembler process generates a global
fingerprint of the attack (cf. Appendix C). The result is positive, as the Reassembler
correctly infers the attack target from all submitted fingerprints. Moreover, the two inter-
mediate nodes (Router A and Router B), which also observed the attack, are accurately
identified with the correct distance to the target. Since there are no nodes that only
observe background traffic, none of the intermediate nodes are discarded in the global
fingerprint.

Even though the evaluation scenario with real attack data offers limited complexity, the
complete flow of generating fingerprints and analyzing them with the Reassembler works.
Simulated test scenarios are used for further analysis of the Reassmbler process with
increased complexity, as described in the next section.

5.1.4 Test Scenarios

The evaluation of the Reassembler module is based on different network and attack sce-
narios. From a network topology perspective, two scenarios exist (cf. Table 5.3). The
small network N1 consists of 268 network nodes (cf. Figure 5.2a). The large network N2
consists of almost 10’000 network nodes grouped in 15 subnets (cf. Figure 5.2b).

(a) N1 (b) N2

Figure 5.2: Visualization of the two networks in Table 5.3

66 CHAPTER 5. EVALUATION

Scenario Network Nr. Sources Nr. Background Pct. Spoofed Fingerprints

S1 N1 5 10 25% 85

S2 N1 20 50 25% 343

S3 N2 100 200 25% 2’777

S4 N2 500 1000 25% 12’712

Table 5.4: Different attack configurations for the evaluation

Based on the two networks, four different attack scenarios are created with increasing
attack size (cf. Table 5.4). For each network (N1, N2), a small and a large attack are
simulated. With the percentage of spoofed IPs constant at 25%, the number of resulting
fingerprints mainly depends on the number of sources and background routes. For the
large scenarios (S2, S4), it can be observed that the number of fingerprints generated
exceeds the number of nodes in the respective network. For example, scenario S4 generates
12’712 fingerprints in a network (N2) of 9’356 nodes. This means that some of the network
nodes submit more than one attack fingerprint.

5.1.4.1 Ground Truth Data

In a simulated environment, the ground truth data is known but not used for the Reassem-
bler process. It provides insights into how the configuration parameters of the scenario
and the proposed simulated network topology influence the generated fingerprints. With
the background traffic configuration of the scenarios (cf. Table 5.4), it is clear that not
all nodes observe actual attack traffic. Still, many observe unrelated (i.e., background)
traffic. Figure 5.3 shows the percentage of nodes observing the attack out of all nodes
submitting at least one fingerprint. The percentage values range from 28% to 35%. This
aligns with the expected results from the attack configuration, where the number of attack
sources is about half of the background traffic for all scenarios. The observed variations
can be explained by the randomness in the scenario, where an attack traffic path might
have a different length (i.e., involves fewer nodes) than a background traffic path.

Similar fluctuations can also be observed when analyzing the composition of observed at-
tack vectors (i.e., flattened fingerprints). Figure 5.4 shows a significantly lower percentage
of true attack vectors in Scenario 1. This is because three of the five randomly assigned
attack sources are located in the same subnet as the attack target, thus producing much
shorter attack traffic paths that involve fewer nodes. In the other scenarios, the true and
background attack vectors are roughly split into 40% and 60%. The deviation from the
expected value of 33% can be attributed to the difference in path length between attack
and background traffic paths. Attack sources are only selected from leaf nodes in the
subnet tree, but background traffic paths are randomly sampled from the whole network.
This means that, on average, attack traffic paths are longer than background traffic paths
and involve more nodes.

Overall, the ground truth data of the scenario aligns with the provided attack configura-
tion. Nevertheless, the inherent randomness within the scenario can cause significant fluc-

5.1. USE CASE 67

Figure 5.3: Percentage of nodes observing
the attack

Figure 5.4: Composition of observed attack
vectors within each scenario

Figure 5.5: Intermediate nodes estimation

tuations for smaller network topologies or attack configurations with only a few sources.

5.1.4.2 Reassembler Evaluation

The Reassembler module aims to derive the previously discussed ground truth data and
the attack configuration from the information in the attack fingerprints. This reliably
estimates intermediate nodes observing an attack (cf. Figure 5.5). By discarding nodes
that only monitor background traffic (cf. Chapter 3.2.3.4), the Reassembler estimates
the number of nodes as slightly too high compared to the ground truth data. Even
though the absolute values increase from scenario 1 to scenario 4, the relative number of
discarded nodes lies between 19% and 28% for all scenarios. This is unsurprising since
the background and attack traffic ratio is comparable across the four scenarios (cf. Table
5.4).

68 CHAPTER 5. EVALUATION

Figure 5.6: Detection thresholds for scenario 2

Another insight derived by the Reassembler is the global distribution of detection thresh-
olds of the participating nodes. A scatter plot of the detection thresholds from the nodes
in scenario 2 is shown in figure 5.6. The x-axis represents the distance in hops to the
attack target. The size of each marker signifies the total count of packets observed by a
node, helping in determining whether it is a high-volume node or a comparatively smaller
one.

It stands out that up to the fifth hop on the x-axis, one single node per hop is always
significantly larger than the others. This aligns with the hierarchical network topology,
where, within a subnet, only one path from the root node to a leaf node (i.e., the attack
target) exists. At a single hop distance to the target, the detection threshold corresponds
to 1 (cf. Figure 5.6), indicating that every packet observed is considered part of the attack.
Based on the ground truth data of the simulated scenario, this assumption is incorrect as
some of the background traffic is also directed toward the attack target. However, since
the DDoS Dissector does not perform sophisticated attack detection, such imprecision
cannot be omitted.

Overall, the detection thresholds shown in Figure 5.6 are rather high, with only a few
outliers below 50%. This is beneficial because a standard DDoS Dissector instance would
detect the attack and generate an attack fingerprint. However, the detection thresholds
strongly depend on the background traffic amount. This is further explored in Chapter
5.2.

Using attack fingerprint data, the Reassembler also detects spoofed IP addresses. This is
done based on the idea of [65] (cf. Chapter 3.2.3.3) and relies on IP collisions with different
TTL values. Each of the four scenarios (cf. Table 5.4) employs a probability of 25% that
an attacking node uses IP spoofing techniques. Figure 5.7 shows the estimated count of
(real) attack sources calculated by the Reassembler. In general, it can be observed that
the estimated number of sources for all scenarios is many times too high. For S2 and S3,
the number of observed sources at the attack target is four times bigger than the actual

5.1. USE CASE 69

Figure 5.7: Spoofed sources estimation for scenarios

count of attack sources. In S4, the estimation is slightly lower yet almost three times
higher than the actual count.

The goal of the Reassembler is to normalize the observed count of attack sources by
estimating how many of the observed sources are spoofed. This is indicated with the
red bar in the plot (cf. Figure 5.7). It can be seen that the Reassembler identifies a
considerable number of sources as spoofed in the scenarios that have a high count of
attack sources (S3, S4). In Scenario 4, more than 40% of the observed attack sources are
identified as spoofed. However, even when deducting 40% of the sources, the estimated
count is still almost twice the actual count. This shows that even a moderate IP spoofing
probability (25%) can substantially inflate the number of sources observed at the target.
Furthermore, the Reassembler cannot detect every spoofed IP address. This is expected
to a certain extent as the detection mechanism is based on IP collisions that are not
guaranteed to occur. The limits of the detection mechanism are further explored in the
Experiments Chapter (cf. Chapter 5.2).

Overall, the gathered insights confirm that interesting properties of a DDoS attack can
be derived by the Reassembler when analyzed on a global scale. Nevertheless, it has been
demonstrated that many parameters influence the accuracy of the analysis and do not
work in every scenario. For this reason, Chapter 5.2 conducts a series of experiments, each
manipulating a single parameter to test its influence on the accuracy of the Reassembler
analysis.

5.1.4.3 Performance Evaluation

Running the four scenarios in Table 5.4 reveals interesting findings in terms of execution
duration (cf. Figure 5.8). All scenarios use in-memory fingerprint data without saving
it to permanent storage, thus eliminating file read/write operations. For Scenario S1
and S2 in the smaller network, the Reassembler takes more time than the Generator

70 CHAPTER 5. EVALUATION

(a) Scenarios based on N1 (b) Scenarios based on N2

Figure 5.8: Execution duration by scenario

(i.e., network simulation and fingerprint generation). In S2, the execution time of the
Generator exceeds the Reassembler by more than double. Nevertheless, the total execution
time for each scenario in the smaller network remains quick, taking less than a second.
Contrary behavior is observed for the scenarios in the large network (N2). The Generator
requires a significantly longer execution duration than the Reassembler, which brings the
total scenario execution time to almost one minute. The key observation is that the
Reassembler scales better with an increasing number of fingerprints than the Generator’s
performance with increasing network size. However, this is only relevant when iterating
with the Reassembler in a simulated scenario. In the real world, the computational load
to generate fingerprints is distributed among the participating network nodes.

5.2 Experiments

With the simulated network topology and the many possible attack configurations, there
are numerous parameters that influence the output of the Reassembler. As shown by the
four attack scenarios in Chapter 5.1, it is not always trivial to see which parameter of the
attack scenario influenced the outcome the most. Often, it is necessary to run multiple
iterations of the same scenario with minor modifications to certain parameters to build an
intuition of how specific parameters influence the outcome. This Chapter aids in develop-
ing an understanding of the most influencing parameters based on different experiments.
First, different adversarial scenarios are discussed, focusing on the parameters that are
influenced by an attacker’s tactic. Following this, detection thresholds are explored, which
affects how participating nodes need to configure their DDoS Dissector instance.

5.2.1 Adversarial

This Chapter explores adversarial attacks on reassembling a global picture of a DDoS
attack. In this context, any strategy that attempts to hinder the detection or the analysis

5.2. EXPERIMENTS 71

process of the attack is considered adversarial. The following sections explore the effects
of IP spoofing techniques (cf. Chapter 5.2.1.1) and the impact of missing fingerprint
data (cf. Chapter 5.2.1.2) on the basis of different experiments. Lastly, Chapter 5.2.1.3
discusses remaining adversarial threats and possible solutions.

5.2.1.1 IP Spoofing

The use case with the four scenarios has shown that the estimation of attack sources is too
high for certain cases (cf. Chapter 5.1.4.2). Following this observation, this Chapter aims
to assess the impact of the percentage of spoofed addresses and the size of the spoofed
address pool on the accuracy of the attack sources estimation. This is achieved using an
isolated scenario without background traffic built on the N2 network configuration (cf.
Table 5.3). The attack scenario consists of 100 randomly chosen attack sources. Across
the different runs, only the spoofed percentage is updated, while the target nodes and the
network stay the same. Due to the randomness in setting nodes that use a spoofed IP, it
is possible that an attack source uses spoofed IPs in one run, but a real IP in the next
one. While the attack sources stay the same, the set of nodes that use a spoofed IP is
randomly drawn on each run.

The results of the experiment are shown in Figure 5.9. Within each plot, the spoofed
percentage is increased in 5% steps from 0% to 100% using the same network and spoofed
IP pool size. Each subplot uses a different IP Pool Size, ranging from 500 (cf. Figure
5.9a) to 10’000 (cf. Figure 5.9d). The red horizontal dashed line represents the actual
number of sources, which remains consistent across all experimental runs. The orange
line denotes the number of observed sources at the attack target. It includes all observed
IPs, including spoofed IPs that, for example, have only been observed once. The blue line
signifies the estimated percentage of spoofed addresses based on the detection mechanism
discussed in Chapter 3.2.3.3. Finally, the green dashed line denotes the normalized count
of observed sources, calculated by subtracting the estimated spoofed percentage (blue
line) from the observed count (orange line).

From the plot in Figure 5.9a, it can be observed that the number of observed sources
rapidly grows with an increasing percentage of spoofed IPs. However, as the estimated
percentage (blue line) practically increases linearly with the spoofed percentage on the
x-axis, the normalized count (green) settles around 2.5 times the actual count. More than
that, the normalized count falls below the actual count for spoofed percentages above
80%. Such behavior is only observed in Figure 5.9a, which has the smallest spoofed IP
pool size. The decrease of the normalized count with increasing spoofed percentage can be
explained by the selection of spoofed IPs in the network simulation. A network node that
employs IP spoofing draws a random sample between 7 and 25 IPs from the pool of spoofed
addresses. With 100 attack sources drawing at least 7 spoofed IP addresses (assuming a
spoofed percentage of 100%), the pool of available spoofed addresses is quickly exhausted.
This makes the detection of spoofed IP addresses very accurate, as almost every spoofed
IP is used by more than one node, thereby triggering the detection mechanism. With
such a high estimated percentage of spoofed addresses, the normalized count is expected
to fall below the actual count. The exhaustion of available spoofed IPs explains why the
count of observed sources (orange) converges to 500.

72 CHAPTER 5. EVALUATION

(a) Spoofed IP pool size: 500 (b) Spoofed IP pool size: 1’000

(c) Spoofed IP pool size: 5’000 (d) Spoofed IP pool size: 10’000

Figure 5.9: Spoofed sources estimation with different spoofed IP pool size

5.2. EXPERIMENTS 73

The normalized count does not fall below the actual count for scenarios with a larger
pool size of spoofed IPs (>=1000). While a decrease in the normalized count can still be
observed with a pool size of 1000 (cf. Figure 5.9b), it is less extreme than the smallest pool
size of 500. With an even larger pool size (cf. Figures 5.9c,5.9d), the estimated percentage
of spoofed IPs never exceeds 20%. As a consequence, the normalized count practically
increases equivalent to the observed count of sources. This leads to an overestimation of
actual sources by more than 10 in extreme cases.

In summary, the isolated scenarios show the interplay between the pool size of available
spoofed IPs and the overestimation of source IPs in the attack analysis. By increasing the
number of available IPs that can be used for spoofing, the overestimation of attack sources
grows dramatically. Moreover, increasing the percentage of nodes using IP spoofing tech-
niques intensifies the problem further. The main challenge lies in artificially constraining
the number of available spoofed IPs does not correspond to behavior that can be observed
in the real world but is required to make the simulated scenario work. Further work is
required to evaluate whether such IP spoofing techniques behave differently in a real,
non-simulated environment.

Besides the estimated count of attack sources, IP spoofing also affects the distance es-
timation for intermediate nodes. As discussed in Chapter 3.2.3.2, the distance from an
intermediate node to the attack target is calculated based on the observed TTL values.
Observing different TTL values for a source IP at a single node can lead to inaccurate
distance calculation. The impact of this problem is explored in Figure 5.10. The spoofed
percentage increases over multiple runs based on the N2 network (cf. Table 5.3) with
100 attack sources and no background traffic. Through this process, the impact on the
percentage of incorrect distance estimates (blue line) and the mean error in terms of hops
(orange line) are observed. The experiments are conducted twice with different spoofed
IP pool sizes.

For a spoofed IP pool size of 500 (cf. Figure 5.10a), the percentage of incorrectly estimated
distances is low for a spoofed percentage below 40%. For higher spoofed percentages,
the percentage of incorrectly estimated distance increases up to 80% in extreme cases.
Remarkably, the mean error in hops remains under one, even with 100% spoofed IP
addresses. In that regard, there are many incorrect distance estimations. However, the
majority of estimations are only one hop off.

A large improvement in accuracy can be observed when increasing the spoofed IP pool
size to 1’000 (cf. Figure 5.10b). With the larger pool size, the percentage of incorrectly
estimated distances stays at under 20% in all cases. The blue and red lines are almost
congruent, which signifies that nearly all incorrectly estimated distances are off by 1. Only
for the case of 95% spoofed IPs, the mean error is slightly higher than the percentage of
incorrectly estimated distances, which signifies that at least one distance was off by more
than one hop.

In terms of distance estimation, the impact of the spoofed IPs pool size is inversely pro-
portional. With an increasing pool size, the distance estimation becomes more accurate.
This is contrary behavior to the attack source count estimation discussed before. In that
regard, the distance estimation is expected to behave better in real-world scenarios where

74 CHAPTER 5. EVALUATION

(a) Spoofed IP Pool Size: 500 (b) Spoofed IP Pool Size: 1’000

Figure 5.10: Distance estimation of intermediate nodes with increasing spoofed percentage

the number of available spoofed IPs is not artificially limited. Still, future work is needed
to confirm these observations in a non-simulated scenario.

5.2.1.2 Missing Fingerprints

In the simulated scenario, every network node that observes any kind of traffic submits a
fingerprint, except the attack sources. Only looking at fingerprint data, an overview of how
the attack was globally observed can be built by grouping fingerprints based on their esti-
mated distance to the target and calculating the sum of the fraction_of_total_attack.
With perfect coverage of the attack, it is possible to see from what distances most of the
attack traffic emerged. This is visualized for scenarios S3 and S4 (cf. Table 5.4) in Fig-
ure 5.11. The bar chart shows the proportion of the total attack observed at any given
distance away from the attack target. For the scenario, S3 (cf. Figure 5.11a), most of
the attack traffic is first observed between 13 and 15 hops away from the attack target.
From 9 hops away, almost 100% of the attack is on each hop to the attack target. As
mentioned, such an analysis is only possible when all fingerprints along the attack traffic
path are submitted to the Reassembler.

As previously demonstrated, the accuracy of distance estimation can vary depending on
the percentage of addresses that are spoofed (cf. Chapter 5.2.1.1). Even minor deviations
of just one hop in the distance can result in an attack coverage chart that is not logical
for certain distances. An example of this is shown in Figure 5.11b, where the observed
coverage 7 hops away from the target is over 100% (indicated by the red bar). Naturally,
a value over 100% does not make sense and indicates that some distance estimations are
incorrect. As a consequence, some nodes are attributed to the wrong group (i.e., distance),
which distorts the result. The attack coverage chart can indeed provide useful insights
into assessing the accuracy of the distance estimation. This is especially beneficial in
real-world scenarios where ground truth data about the network topology is unavailable.

The ideal scenario of perfect coverage, where every network node contributes fingerprints,
is unlikely for two reasons. Firstly, not every network node (e.g., backbone routers) is

5.2. EXPERIMENTS 75

(a) Attack Coverage in S3 (b) Attack Coverage in S4

Figure 5.11: Attack coverage per distance for scenarios S3 and S4

guaranteed to participate in the process and run the DDoS Dissector software. Secondly,
network nodes with malicious intent might deliberately withhold fingerprints to hinder
detecting and analyzing a certain attack. In this regard, the following experiment evalu-
ates how the Reassembler analysis is affected by missing fingerprints and what minimum
amount of network nodes should participate in the process.

The experimental setup is based on the configuration of scenario S3 (cf. Table 5.4). Figure
5.11 displays the attack coverage chart from nine separate runs of the scenario, each with
an increasing amount of dropped (i.e., not available) fingerprints. It is worth mentioning
that the sample of discarded fingerprints is drawn independently for each run. Thus, one
fingerprint might be discarded in the chart with 10% of dropped fingerprints (cf. Figure
5.12a) but still included in the chart with 20% dropped fingerprints (cf. Figure 5.12b).

The key observation across all runs is that the attack coverage near the attack target
consistently shows extreme values, either at 100% or directly at 0% with no intermediate
values. This can be explained by the hierarchical network structure, where only one path
exists from a root to a leaf node in a subnet. In this context, the observed fraction of total
attack close to the attack target only consists of a single fingerprint, which explains the
extreme values of either 100% or 0%. The observed attack coverage farther away decreases
in slower steps as it is comprised of several smaller fingerprints instead of a single large
one. To summarize, removing random fingerprints greatly affects the coverage close to
the target, while its impact diminishes with increasing distance to the target.

The question remains how the rest of the analysis, for example, the estimated number of
intermediate nodes, is affected by missing fingerprints. This is evaluated by comparing
the estimated number of intermediate nodes with the ground truth data across multiple
runs with an increasing number of dropped fingerprints (cf. Figure 5.13). It can be
observed that the number of estimated nodes decreases linearly as the number of excluded
fingerprints increases. This trend is positive in that there are no unexpected outliers
caused by the exclusion of specific fingerprints. In that regard, there is no minimum
amount of participating network nodes required to make a global analysis work. However,
the estimated size of an attack strongly depends on the number of participating nodes.

76 CHAPTER 5. EVALUATION

(a) 10% dropped (b) 20% dropped (c) 30% dropped

(d) 40% dropped (e) 50% dropped (f) 60% dropped

(g) 70% dropped (h) 80% dropped (i) 90% dropped

Figure 5.12: Scenario S3 with increasing amount of dropped fingerprints

5.2. EXPERIMENTS 77

Figure 5.13: Intermediate nodes estimation with an increasing amount of dropped finger-
prints

Further research could explore whether the attack coverage chart can be used to refine the
estimated number of intermediate nodes. For instance, a low attack coverage at a close
distance to the target implies missing fingerprints. This concept can also be applied to
nodes farther away, given the understanding that the total attack coverage should never
decrease when moving closer to the target.

5.2.1.3 Additional Adversarial Attack Vectors

In addition to the previously discussed adversarial attack methods on the Reassembler
process, further threats exist to an accurate global analysis. This section overviews addi-
tional attack vectors and discusses strategies to address them.

For adversarial attacks, the primary concern is participating network nodes that do not
act honestly or even attack sources that try to act as intermediate nodes to falsify the
analysis. From an intermediate node perspective, the following threats are considered:

• Submitting forged fingerprints
An adversarial intermediate node could forge fingerprints by hiding specific source
IPs or by adding unrelated source IPs to divert attention to someone else. For exam-
ple, when adding the IP of an honest intermediate node as a source IP to an attack
fingerprint, it can make the honest intermediate node less trustworthy. Currently,
the proposed Reassembler solution does not explicitly filter fingerprints from attack
sources, because this mechanism can be abused by submitting forged fingerprints.
Preventing such behavior is hardly possible. However, suspicious behavior could be
monitored using outlier detection, for example, if a source IP is only reported in one
fingerprint.

78 CHAPTER 5. EVALUATION

• Withholding fingerprints
Intentionally withholding fingerprints has the same effect as not participating in the
first place. The impact of missing fingerprints has already been discussed in Chapter
5.2.1.2. In general, such behavior cannot be prevented, but it would be possible to
penalize a network node (i.e., decreasing its trustworthiness) for not submitting
fingerprints. Although withholding a fingerprint might slightly impact the accuracy
of the analysis, it cannot compromise the overall analysis process.

From an attack source perspective, the following strategies pose a threat:

• Submitting a fingerprint for a different node
Following the idea of a spoofed source address in a TCP/IP packet, a fingerprint
can also be submitted with an incorrect location field. An adversary can abuse
this to spam the Reassembler process with many incorrect fingerprints, making it
hard to distinguish which fingerprints are real and which are forged. The problem
can be addressed by introducing an authentication mechanism before submitting a
fingerprint. On the one hand, this increases the entry barrier for network nodes
to participate in a global DDoS detection effort. Nevertheless, such a registration
process also allows gathering data about the network topology (e.g., neighboring
AS of a network node).

• Customized TTL values
Different analysis steps of the Reassembler are based on the observed TTL values.
While an attack source cannot influence the TTL values along the path, it is possible
first to explore the path to a target (e.g., using traceroute [63]) and then calculate
an initial TTL value so that the detection of spoofed IPs is not triggered. As
detecting spoofed IPs based on TTLs has been shown to not work in every case,
further research in this area is required to explore how a global DDoS analysis can
be improved to better handle customized TTL values.

Overall, most of the threads either require complicated synchronization with other attack-
ing nodes to be effective or have a rather small impact on the global analysis. However,
further research is required to better explore and evaluate such threads in a non-simulated
environment.

5.2.2 Detection Thresholds

The fraction of total attack that is observed decreases when moving away from the at-
tack target. This intuition has already been addressed in Chapter 5.2.1.2, wherein it
was discussed how the total observed fraction of an attack further away from the target
decreases slower when dropping fingerprints (cf. Figure 5.12). The observation can also
be confirmed by directly looking at a scatter plot of the observed fractions of the total
attack by distance to the attack target (cf. Figure 5.14). A simple linear regression shows
that the fraction of the total attack behaves inversely proportional to the distance from
the attack target. It has to be noted, that the regression line does not serve as a general

5.2. EXPERIMENTS 79

Figure 5.14: Fraction of total attack vs. hops to target for scenario S2

indicator for the expected fraction of the total attack at a certain distance. Rather, it
shows the trend for a specific network topology, in this case, the Network N2 (cf. Table
5.3) with a maximum path length between two nodes of 9.

Furthermore, it can be observed that the detection threshold is also related to the observed
fraction of the attack. In the simulated scenario, the detection threshold describes the
percentage of attack traffic observed compared to unrelated traffic. In the real world, a
DDoS Dissector node only detects an attack if the configured threshold is lower or equal
to the observed attack traffic. As Figure 5.15 shows, the fraction of total attack behaves
proportionally to the detection threshold in Scenario S2. In this regard, it confirms
the intuition that nodes located further away from the attack target not only perceive
a reduced proportion of the total attack but also require a lower detection threshold to
identify the attack. For the attack scenario S2 (cf. Table 5.4), the detection thresholds are
rather high in general (cf. Figure 5.15). As previously discussed, the detection threshold
percentiles depend on the network’s background traffic. This is further explored in the
next experimental setup.

To evaluate the impact of background traffic on the required detection thresholds, several
runs of Scenario S3 are performed, progressively increasing the background traffic. The
four runs with 500, 2’000, 5’000, and 10’000 unique background traffic routes are depicted
in Figure 5.16. Each marker’s size represents the network node’s size regarding observed
packets. With 500 background routes, 2.5 times the number of attack routes, the median
detection threshold is slightly over 80% (cf. Figure 5.16a). The 75th percentile is nearly
at a 100% detection threshold, suggesting that a large number of nodes observed only
the attack and no background traffic. With 10 times the number of background traffic
compared to attack traffic, the median detection threshold decreases to around 50% (cf.

80 CHAPTER 5. EVALUATION

Figure 5.15: Detection threshold vs. fraction of total attack for scenario S2

Figure 5.16b). In comparison, the 75th percentile with 2’000 background routes remains
relatively high at over 80%. Only when increasing the number of background routes to
5’000, all three percentiles for the detection threshold fall below 50% (cf. Figure 5.16c).
For 10’000 background routes, which is 50 times the number of attack routes, the mean
detection threshold falls below 20% (cf. Figure 5.16d).

In general, it can be observed that nodes close and within the same subnet as the attack
target have a very high detection threshold. A node can detect attacks in the same subnet
even when running the DDoS Dissector software with a high threshold, thus producing
fewer fingerprints. Other nodes with a high detection threshold are usually located further
away and are rather small regarding observed traffic (cf. Figure 5.16). This behavior is
related to the simulated scenario, where, due to randomization, some nodes don’t observe
much other traffic than the attack traffic.

In Summary, the experiment confirms that the detection threshold of nodes decreases with
a growing amount of background traffic. However, large nodes close to the attack target
are less affected than smaller nodes. The experiment shows that a reasonable value for
the detection threshold is highly dependent on the network topology and the composition
of observed traffic. In that regard, future work is needed to explore what percentages
of detection threshold are reasonable in a real-world setting, considering different DDoS
attack strategies.

5.3 Discussion

The previous Chapters have discussed and evaluated the proposed solution in detail.
Several positive aspects are worth mentioning. First, the proposed Reassembler solution

5.3. DISCUSSION 81

(a) 500 Background Routes (b) 2’000 Background Routes

(c) 5’000 Background Routes (d) 10’000 Background Routes

Figure 5.16: Detection thresholds for scenario S3 with increasing amount of background
traffic

82 CHAPTER 5. EVALUATION

performs effectively for real and simulated data. This shows the broad applicability of
the proposed solution. Second, the introduced fingerprint generator (cf. Chapter 3.1)
facilitates rapid iterations of the whole process. This is highly beneficial as it encourages
further research in this area because changes to the fingerprint format can be tested
and evaluated easily. Lastly, with the implemented changes to the DDoS Dissector, it
is possible to generate attack fingerprints with the newly proposed extended format (cf.
Chapter 3.1.2.1) based on real network capture data. The changes to the DDoS Dissector
further include bug fixes and are backward compatible so that existing installations of the
DDoS Dissector keep working.

Several aspects were identified that require further improvement based on the conducted
evaluation and experiments (cf. Chapter 5.2). While the simulated scenario covers the
requirements discussed in Chapter 3.1.1, it still presents limited complexity regarding the
mix of attack and background traffic. The findings from the experiments (cf. Chapter
5.2) confirm that certain parameters of the simulated scenario highly impact the outcome
of the analysis produced by the Reassembler. However, finding realistic values for the
parameters is challenging, as no real-world reference data sets cover a single DDoS attack
from multiple angles. Therefore, additional research is necessary to determine whether
the scenario configurations are applicable and realistic in real-world situations.

Another area that requires improvement is the loosened attack fingerprint definition pro-
posed in this thesis. The loosened definition initially addressed the problem that nodes
further away from the attack would not recognize an attack because the DDoS Dissec-
tor detection threshold of 50% is not reached. For the limited scope of this thesis, the
naive solution of considering an attack fingerprint only as a possible attack and moving the
attack detection to the Reassembler worked effectively in the context of the simulated sce-
nario. However, this comes at the cost of increased storage and data-sharing requirements
for each participating network node, which this thesis did not consider. In this regard,
further research is needed to evaluate the implications of loosening the definition of an
attack fingerprint and to see whether more sophisticated attack detection mechanisms on
each network node are computationally feasible.

A last aspect that can be improved concerns the detection of spoofed IPs. The detection
of spoofed IPs highly depends on the pool size of available spoofed IPs. Constraining
the number of available spoofed IPs is necessary in a small-scale simulated scenario, but
it does not reflect the real world. In this regard, the proposed solution presents limited
applicability to the real world. However, it highlights the open challenges in this field of
research as detecting spoofed IPs is usually a sophisticated process that analyzes various
aspects of an IP packet [45]. Due to performance constraints when sharing fingerprints
globally, only a minimal amount of data can be stored within an attack fingerprint. Novel
approaches for detecting spoofed IPs, considering a global view but limited data, would
greatly benefit the work proposed in this thesis.

Several key points can be noted in terms of achieving the thesis goals. The initial goal
to cluster fingerprints had to be abandoned because attack fingerprints already clearly
identify attack traffic to a certain target. Thus the grouping of fingerprints turned out
to be a trivial problem under the assumption that an underlying attack detection of
the DDoS Dissector is precise. The proposed Reassembler achieves the adapted goal of

5.3. DISCUSSION 83

utilizing multiple attack fingerprints to form a global view of a DDoS attack. With the
fingerprint generator (cf. Chapter 3.1) simulating an SYN attack and the manually crafted
attack scenario (cf. Chapter 5.1.3) based on real attack data [55], two different use case
scenarios have been proposed. Furthermore, adversarial attacks have been addressed by
proposing a spoofed IP detection based on aggregated TTL values and by assessing the
extent of fingerprints that can be maliciously withheld. A thorough evaluation of the
proposed solution has been presented as a final goal, including various experiments that
discuss important attack parameters in detail.

5.3.1 Deployment Considerations

In addition to the previously discussed areas for improvement, some deployment consider-
ations should be considered. Like all strategies that demand global collaboration, finding
network operators willing to participate in a joint DDoS mitigation and analysis process is
challenging. Hence, it is crucial that a monitoring and analysis solution such as the DDoS
Dissector can operate without impacting the performance of the network node in general.
Especially when using the extended fingerprint format, high-traffic network nodes might
run into performance limitations because TTL values and the number of packets per IP
are recorded in the fingerprint. This can drastically increase the size of a fingerprint for
large amounts of observed IPs, for example, due to IP spoofing. Addressing this issue,
the extended fingerprint format has intentionally been added to the DDoS Dissector in
an opt-in fashion. Nonetheless, the size and quantity of the resulting fingerprints at each
network node are possible limiting factors when operating the full Reassembler workflow.

84 CHAPTER 5. EVALUATION

Chapter 6

Final Considerations

6.1 Summary

Within this thesis, the global analysis of DDoS attacks based on attack fingerprints has
been researched. Thereby, related work covering existing fingerprinting and detection
methods has been presented, and the research gap in the global analysis of DDoS attacks
has been discussed. Additionally, existing datasets and their applicability as an attack
use case in the context of this thesis have been discussed.

The general design of a solution for the global analysis of DDoS attacks has been presented.
Due to the lack of suitable datasets, a fingerprint generation module was proposed based
on simulated network topology. Thereafter, the generated fingerprints, simulating a TCP
SYN attack, formed the basis for designing and implementing the Reassembler module.
Within the scope of this work, the definition of an attack fingerprint was loosened, and
additional attributes have been proposed to the existing fingerprint format, resulting in
an extended fingerprint format. As a consequence, the DDoS Dissector software has
been improved to support the new fingerprint format and to be compatible with the
Reassembler process.

The proposed global DDoS attack analysis solution has been thoroughly evaluated using
four simulated attack cases. Additionally, a manually crafted attack scenario based on a
real attack dataset was used to present the successful interaction of all newly proposed
and adapted components. Attack parameters with interesting observations were further
examined using multiple experiments. The results of the evaluation and the experiments
have been extensively discussed, highlighting the positive aspects of the solution and
discussing further characteristics requiring improvement.

The outcome of this thesis includes two code repositories that contain a working implemen-
tation for the proposed changes to the DDoS Dissector [7] and the proposed Reassembler
process [8]. All evaluation scripts are included as a package in the Reassembler repository,
facilitating further work and more experiments with the simulated architecture.

85

86 CHAPTER 6. FINAL CONSIDERATIONS

6.2 Conclusions

In conclusion, the feasibility of a global DDoS attack analysis based on attack fingerprints
has been confirmed. Benefits include a more precise analysis of DDoS attacks due to
multiple perspectives that can be reassembled to a global view.

In reference to the use cases, several lessons have been learned. Firstly, a realistic dataset
containing multiple views of the same attack was not available, and attempts to create a
reasonably complex scenario from real data were unsuccessful. The fingerprint generator
proposed as a substitute proved beneficial in enabling rapid iterations, particularly in
extending and testing the new fingerprint format. However, drawbacks to the simulated
scenario could also be observed. One such drawback is the lack of complexity regarding
the mix of attack and background traffic. At the same time, it has also been demon-
strated that specific scenario parameters can strongly impact the resulting analysis. For
instance, the pool of spoofed IPs significantly affected the accuracy of identifying spoofed
attack sources, and the amount of background traffic in the network strongly influenced
the detection thresholds of participating network nodes. In that regard, the influence
of scenario parameters on the resulting analysis was successfully evaluated, but finding
scenario parameters that correspond to the real world was challenging due to the lack of
suitable datasets.

With respect to the proposed Reassembler, existing methods for detecting spoofed IPs
could successfully be applied directly on the fingerprint level using the extended fingerprint
format. Furthermore, novel parameters in the context of DDoS attack analyses could be
derived, such as the number of intermediate nodes. With the derived distance to the
attack target and the observed detection threshold, it has been shown that conclusions
can even be drawn about the network topology. On the other hand, the evaluation also
revealed that there is still room for improvement regarding the precision of detecting
spoofed IPs. The loosened fingerprint definition also impacts the number and size of
attack fingerprints.

Eventually, various perspectives were used to examine potential adversarial attacks. It
was demonstrated that the Reassembler is not significantly impacted by missing or in-
tentionally withheld fingerprints. Additional adversarial attack vectors were discussed
theoretically, revealing that authentication is an important aspect of addressing forged
fingerprints and that further research is still required in this area.

6.3 Future Work

The proposed solution in this thesis provides a first basis for analyzing DDoS attacks on
a global level using attack fingerprints. Still, various aspects can be improved and would
benefit from future research.

The generated fingerprints based on a simulated network topology are limited in com-
plexity. Future work could explore how the mix of attack and background traffic can be
made more realistic. Furthermore, considering other attack types besides the TCP SYN

6.3. FUTURE WORK 87

attack could improve the fingerprint generator. With the main benefit of the simulated
scenario being the possibility for fast iteration, future work could research what scenario
parameters make a simulation realistic and, thus, better applicable to the real world.

The detection of spoofed IPs based on TTL values has been shown to work in a sim-
ulated environment with a small pool of spoofed IPs. Future work could explore how
this detection can be more precise without artificially constraining the number of possible
spoofed IPs. This also includes further research about the cost and benefit of additional
parameters in the attack fingerprint. In this regard, it would also be interesting to explore
whether different fingerprint formats can be combined into a global attack analysis, thus
giving network operators the freedom to choose between smaller and richer fingerprint
formats.

Eventually, further research could apply such a process in a real-world scenario, thereby
testing whether the benefits of a global DDoS attack analysis in a simulated environment
can also be applied in the real world.

88 CHAPTER 6. FINAL CONSIDERATIONS

Bibliography

[1] 2ip.io. ASN list. url: https://2ip.io/analytics/asn-list/ (visited on Apr. 10,
2023).

[2] Paul Aitken, Benoit Claise, and Brian Trammell. Specification of the IP Flow Infor-
mation Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011.
Sept. 2013. url: https://www.rfc-editor.org/info/rfc7011.

[3] Aditya Akella et al. “Detecting DDoS attacks on ISP networks”. In: Proceedings of
the Workshop on Management and Processing of Data Streams. 2003, pp. 1–2.

[4] Sabah Alzahrani and Liang Hong. “Generation of DDoS attack dataset for effective
IDS development and evaluation”. In: Journal of Information Security 9.4 (2018),
pp. 225–241.

[5] Manos Antonakakis et al. “Understanding the Mirai Botnet”. In: 26th USENIX
Security Symposium (USENIX Security 17). 2017, pp. 1093–1110.

[6] Agathe Blaise et al. “Botfp: Fingerprints clustering for bot detection”. In: NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE.
2020, pp. 1–7.

[7] Jonas Brunner. DDoS Dissector. url: https : / / github . com / j0nezz / ddos _

dissector (visited on June 8, 2023).
[8] Jonas Brunner. Reassembler. url: https://github.com/j0nezz/reassembler

(visited on June 8, 2023).
[9] Larry Cashdollar. Mirai Botnet Abusing Log4j Vulnerability. 2022. url: https:

/ / www . akamai . com / blog / security / mirai - botnet - abusing - log4j -

vulnerability (visited on Jan. 20, 2023).
[10] Center for Internet Security. The Mirai Botnet - Threats and Mitigations. url:

https://www.cisecurity.org/insights/blog/the-mirai-botnet-threats-

and-mitigations (visited on Jan. 20, 2023).
[11] Bill Cheswick, Hal Burch, and Steve Branigan. “Mapping and visualizing the In-

ternet.” In: USENIX Annual Technical Conference, General Track. Citeseer. 2000,
pp. 1–12.

[12] Benoit Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954. Oct.
2004. url: https://www.rfc-editor.org/info/rfc3954.

[13] Cloudflare Learning Center. Ping of death DDoS attack. url: https : / / www .

cloudflare.com/learning/ddos/ping- of- death- ddos- attack/ (visited on
Jan. 20, 2023).

[14] Cloudflare Learning Center. SYN flood attack. url: https://www.cloudflare.
com/learning/ddos/syn-flood-ddos-attack/ (visited on Apr. 24, 2023).

89

https://2ip.io/analytics/asn-list/
https://www.rfc-editor.org/info/rfc7011
https://github.com/j0nezz/ddos_dissector
https://github.com/j0nezz/ddos_dissector
https://github.com/j0nezz/reassembler
https://www.akamai.com/blog/security/mirai-botnet-abusing-log4j-vulnerability
https://www.akamai.com/blog/security/mirai-botnet-abusing-log4j-vulnerability
https://www.akamai.com/blog/security/mirai-botnet-abusing-log4j-vulnerability
https://www.cisecurity.org/insights/blog/the-mirai-botnet-threats-and-mitigations
https://www.cisecurity.org/insights/blog/the-mirai-botnet-threats-and-mitigations
https://www.rfc-editor.org/info/rfc3954
https://www.cloudflare.com/learning/ddos/ping-of-death-ddos-attack/
https://www.cloudflare.com/learning/ddos/ping-of-death-ddos-attack/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

90 BIBLIOGRAPHY

[15] Jessica G Conrads. “DDoS Attack fingerprint extraction tool: making a flow-based
approach as precise as a packet-based”. MA thesis. University of Twente, 2019.

[16] Noah Davids. Initial TTL values. url: http://noahdavids.org/self_published/
TTL_values.html (visited on May 31, 2023).

[17] DDoS Clearing House. DDoS Dissector. url: https : / / github . com / ddos -

clearing-house/ddos_dissector (visited on June 7, 2023).
[18] DDoS Clearing House. DDoSDB. url: https://github.com/ddos-clearing-

house/ddosdb/ (visited on June 1, 2023).
[19] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numer.

Math. 1.1 (Dec. 1959), pp. 269–271.
[20] David Dittrich. The DoS Project’s ’trinoo’ distributed denial of service attack tool.

1999.
[21] Haitao Du and Shanchieh Jay Yang.“Discovering collaborative cyber attack patterns

using social network analysis”. In: Social Computing, Behavioral-Cultural Modeling
and Prediction: 4th International Conference, SBP 2011, College Park, MD, USA,
March 29-31, 2011. Proceedings 4. Springer. 2011, pp. 129–136.

[22] Claude Fachkha, Elias Bou-Harb, and Mourad Debbabi. “Fingerprinting internet
DNS amplification DDoS activities”. In: 2014 6th International Conference on New
Technologies, Mobility and Security (NTMS). IEEE. 2014, pp. 1–5.

[23] Martin Fowler. Domain-specific languages. 2010.
[24] Manaf Gharaibeh and Christos Papadopoulos. “Darpa-2009 intrusion detection

dataset report”. In: Tech. Rep. (2014).
[25] Piyush Goyal and Anurag Goyal. “Comparative study of two most popular packet

sniffing tools-Tcpdump and Wireshark”. In: 2017 9th International Conference on
Computational Intelligence and Communication Networks (CICN). IEEE. 2017,
pp. 77–81.

[26] Guofei Gu et al. “BotMiner: Clustering Analysis of Network Traffic for Protocol-
and Structure-Independent Botnet Detection”. In: USENIX Security Symposium.
2008.

[27] Brendon Harris and Ray Hunt. “TCP/IP security threats and attack methods”. In:
Computer communications 22.10 (1999), pp. 885–897.

[28] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362.

[29] Zecheng He, Tianwei Zhang, and Ruby B Lee.“Machine learning based DDoS attack
detection from source side in cloud”. In: 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud). IEEE. 2017, pp. 114–120.

[30] Rick Hofstede et al. “Flow monitoring explained: From packet capture to data anal-
ysis with netflow and ipfix”. In: IEEE Communications Surveys & Tutorials 16.4
(2014), pp. 2037–2064.

[31] KW Hove. “Automated DDoS Attack Fingerprinting by Mimicking the Actions of
a Network Operator”. B.S. thesis. University of Twente, 2019.

[32] Brian Krebs. DDoS-for-Hire Service Webstresser Dismantled. 2018. url: https:
//krebsonsecurity.com/2018/04/ddos- for- hire- service- webstresser-

dismantled (visited on Jan. 20, 2023).
[33] Brian Krebs. Powerful New DDoS Method Adds Extortion. 2018. url: https://

krebsonsecurity.com/2018/03/powerful-new-ddos-method-adds-extortion/

(visited on June 11, 2023).

http://noahdavids.org/self_published/TTL_values.html
http://noahdavids.org/self_published/TTL_values.html
https://github.com/ddos-clearing-house/ddos_dissector
https://github.com/ddos-clearing-house/ddos_dissector
https://github.com/ddos-clearing-house/ddosdb/
https://github.com/ddos-clearing-house/ddosdb/
https://krebsonsecurity.com/2018/04/ddos-for-hire-service-webstresser-dismantled
https://krebsonsecurity.com/2018/04/ddos-for-hire-service-webstresser-dismantled
https://krebsonsecurity.com/2018/04/ddos-for-hire-service-webstresser-dismantled
https://krebsonsecurity.com/2018/03/powerful-new-ddos-method-adds-extortion/
https://krebsonsecurity.com/2018/03/powerful-new-ddos-method-adds-extortion/

BIBLIOGRAPHY 91

[34] Brian Krebs. UK Ad Campaign Seeks to Deter Cybercrime. 2020. url: https://
krebsonsecurity.com/2020/05/uk-ad-campaign-seeks-to-deter-cybercrime

(visited on Jan. 20, 2023).
[35] Fu-Yuan Lee and Shiuhpyng Shieh. “Defending against spoofed DDoS attacks with

path fingerprint”. In: Computers & Security 24.7 (2005), pp. 571–586.
[36] Keunsoo Lee et al.“DDoS attack detection method using cluster analysis”. In: Expert

systems with applications 34.3 (2008), pp. 1659–1665.
[37] Tasnuva Mahjabin et al. “A survey of distributed denial-of-service attack, preven-

tion, and mitigation techniques”. In: International Journal of Distributed Sensor
Networks 13.12 (2017).

[38] Gary S. Malkin. RIP Version 2 Carrying Additional Information. RFC 1388. Jan.
1993. url: https://www.rfc-editor.org/info/rfc1388.

[39] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56 –61.

[40] Jelena Mirkovic, Gregory Prier, and Peter Reiher. “Attacking DDoS at the Source”.
In: 10th IEEE International Conference on Network Protocols, 2002. Proceedings.
IEEE. 2002, pp. 312–321.

[41] Jelena Mirkovic and Peter Reiher. “A taxonomy of DDoS attack and DDoS defense
mechanisms”. In: ACM SIGCOMM Computer Communication Review 34.2 (2004),
pp. 39–53.

[42] Robert Mitchell and Ing-Ray Chen. “A survey of intrusion detection techniques for
cyber-physical systems”. In: ACM Computing Surveys (CSUR) 46.4 (2014), pp. 1–
29.

[43] David Moore et al. “Inferring internet denial-of-service activity”. In: ACM Transac-
tions on Computer Systems (TOCS) 24.2 (2006), pp. 115–139.

[44] John Moy. OSPF Version 2. RFC 2178. July 1997. url: https : / / www . rfc -
editor.org/info/rfc2178.

[45] Masayuki Ohta et al. “Analysis of spoofed IP traffic using time-to-live and identifi-
cation fields in IP headers”. In: 2011 IEEE Workshops of International Conference
on Advanced Information Networking and Applications. IEEE. 2011, pp. 355–361.

[46] Opeyemi A Osanaiye. “Short Paper: IP spoofing detection for preventing DDoS
attack in Cloud Computing”. In: 2015 18th International conference on intelligence
in next generation networks. IEEE. 2015, pp. 139–141.

[47] Atilla Özgür and Hamit Erdem. “A review of KDD99 dataset usage in intrusion
detection and machine learning between 2010 and 2015”. In: PeerJ Preprints (2016).

[48] Dan Pelleg and Andrew W. Moore. “X-Means: Extending K-Means with Efficient
Estimation of the Number of Clusters”. In: Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning. ICML ’00. 2000, pp. 727–734.

[49] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. “Survey of network-
based defense mechanisms countering the DoS and DDoS problems”. In: ACM Com-
puting Surveys (CSUR) 39.1 (2007).

[50] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol 4 (BGP-4).
RFC 4271. Jan. 2006. url: https://www.rfc-editor.org/info/rfc4271.

[51] Martin Roesch. “Snort: Lightweight intrusion detection for networks.” In: Lisa.
Vol. 99. 1. 1999, pp. 229–238.

https://krebsonsecurity.com/2020/05/uk-ad-campaign-seeks-to-deter-cybercrime
https://krebsonsecurity.com/2020/05/uk-ad-campaign-seeks-to-deter-cybercrime
https://www.rfc-editor.org/info/rfc1388
https://www.rfc-editor.org/info/rfc2178
https://www.rfc-editor.org/info/rfc2178
https://www.rfc-editor.org/info/rfc4271

92 BIBLIOGRAPHY

[52] Stefan Savage et al. “Practical Network Support for IP Traceback”. In: Proceedings
of the conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication. 2000, pp. 295–306.

[53] Albin Sebastian. Default Time To Live (TTL) values. url: http://www.binbert.
com/blog/2009/12/default-time-to-live-ttl-values/ (visited on May 31,
2023).

[54] Daniel Senie and Paul Ferguson. Network Ingress Filtering: Defeating Denial of
Service Attacks which employ IP Source Address Spoofing. RFC 2827. May 2000.
url: https://www.rfc-editor.org/info/rfc2827.

[55] Iman Sharafaldin et al. “Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy”. In: 2019 International Carnahan Conference on Se-
curity Technology (ICCST). IEEE. 2019, pp. 1–8.

[56] Richard Sharpe. editcap - Edit and/or translate the format of capture files. url:
https : / / www . wireshark . org / docs / man - pages / editcap . html (visited on
June 11, 2023).

[57] Snort. Snort Rules and IDS Software Download. url: https://www.snort.org/
downloads/#rule-downloads (visited on June 6, 2023).

[58] Alissa Starzak. The latest on attacks, traffic patterns and cyber protection in
Ukraine. 2022. url: https://blog.cloudflare.com/ukraine-update/ (visited
on Jan. 20, 2023).

[59] Jessica Steinberger et al. “Distributed ddos defense: A collaborative approach at
internet scale”. In: NOMS 2020-2020 IEEE/IFIP Network Operations and Manage-
ment Symposium. IEEE. 2020, pp. 1–6.

[60] Minho Sung and Jun Xu. “IP traceback-based intelligent packet filtering: A novel
technique for defending against Internet DDoS attacks”. In: IEEE Transactions on
parallel and Distributed Systems 14.9 (2003), pp. 861–872.

[61] The Tcpdump Group. TCPDUMP & LIBCAP. url: https://www.tcpdump.org
(visited on June 5, 2023).

[62] Marios Thoma and Christoforos N Hadjicostis. “Detection of collaborative cyber-
attacks through correlation and time dependency analysis”. In: 2016 18th Mediter-
ranean Electrotechnical Conference (MELECON). IEEE. 2016, pp. 1–6.

[63] Michael C. Toren. tcptraceroute - Linux man page. url: https://linux.die.net/
man/1/tcptraceroute (visited on May 31, 2023).

[64] Yves Vanaubel et al.“Network fingerprinting: TTL-based router signatures”. In: Pro-
ceedings of the 2013 conference on Internet measurement conference. 2013, pp. 369–
376.

[65] Haining Wang, Cheng Jin, and Kang G Shin. “Defense against spoofed IP traffic
using hop-count filtering”. In: IEEE/ACM Transactions on networking 15.1 (2007),
pp. 40–53.

[66] Joy Weber. “The fundamentals of passive monitoring access”. In: Net Optics, Inc.,
Santa Clara, CA, USA (2006).

[67] Wireshark Foundation. Wireshark. url: https://www.wireshark.org/ (visited on
June 5, 2023).

[68] Chengxu Ye, Kesong Zheng, and Chuyu She. “Application layer DDoS detection
using clustering analysis”. In: Proceedings of 2012 2nd International Conference on
Computer Science and Network Technology. IEEE. 2012, pp. 1038–1041.

http://www.binbert.com/blog/2009/12/default-time-to-live-ttl-values/
http://www.binbert.com/blog/2009/12/default-time-to-live-ttl-values/
https://www.rfc-editor.org/info/rfc2827
https://www.wireshark.org/docs/man-pages/editcap.html
https://www.snort.org/downloads/#rule-downloads
https://www.snort.org/downloads/#rule-downloads
https://blog.cloudflare.com/ukraine-update/
https://www.tcpdump.org
https://linux.die.net/man/1/tcptraceroute
https://linux.die.net/man/1/tcptraceroute
https://www.wireshark.org/

BIBLIOGRAPHY 93

[69] Omer Yoachimik. Cloudflare DDoS threat report 2022 Q3. 2022. url: https://
blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3 (visited on
June 11, 2023).

[70] Omer Yoachimik. Cloudflare DDoS threat report for 2022 Q4. 2023. url: https:
//blog.cloudflare.com/ddos-threat-report-2022-q4 (visited on Jan. 20,
2023).

[71] Omer Yoachimik. DDoS Attack Trends for 2022 Q1. 2022. url: https://blog.
cloudflare.com/ddos-attack-trends-for-2022-q1/ (visited on June 11, 2023).

[72] Shui Yu et al. “Traceback of DDoS attacks using entropy variations”. In: IEEE
transactions on parallel and distributed systems 22.3 (2010), pp. 412–425.

[73] Saman Taghavi Zargar, James Joshi, and David Tipper.“A Survey of Defense Mech-
anisms against Distributed Denial of Service (DDoS) flooding attacks”. In: IEEE
communications surveys & tutorials 15.4 (2013), pp. 2046–2069.

[74] Jiachao Zhang et al. “Flddos: Ddos attack detection model based on federated learn-
ing”. In: 2021 IEEE 20th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). IEEE. 2021, pp. 635–642.

[75] Jian Zhang and Andrew Moore. “Traffic Trace Artifacts due to Monitoring Via Port
Mirroring”. In: 2007 Workshop on End-to-End Monitoring Techniques and Services.
2007, pp. 1–8.

https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3
https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3
https://blog.cloudflare.com/ddos-threat-report-2022-q4
https://blog.cloudflare.com/ddos-threat-report-2022-q4
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q1/
https://blog.cloudflare.com/ddos-attack-trends-for-2022-q1/

94 BIBLIOGRAPHY

Abbreviations

AS Autonomous System
BGP Border Gateway Protocol
CIDR Classless Inter-Domain Routing
CLI Command-Line Interface
DDoS Distributed Denial-of-Service
DNS Domain Name System
EGP Exterior Gateway Protocol
GUI Graphical User Interface
HCF Hop-Count-Filterig
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
IGP Interior Gateway Protocols
IP Internet Protocol
IPS Intrusion Prevention System
OSPF Open Shortest Path First
PCA Principal Component Analysis
RIP Routing Information Protocol
SAV Source Address Validation
SPAN Switched Port Analyzer
TAP Test Access Ports
TCP Transmission Control Protocol
TTL Time-to-Live
UDP User Datagram Protocol
WAF Web Application Firewall

95

96 ABBREVIATONS

List of Figures

3.1 High-level architecture of the Reassembler process 13

3.2 High-level architecture using a Fingerprint Generator 14

3.3 Most simple network topology . 16

3.4 Sophisticated network topology . 17

3.5 Network topology with weighted edges . 19

3.6 Loss of source context in fingerprint aggregation 22

3.7 Assigning spoofed IPs from a pool . 26

3.8 Calculating the distance in hops of an attacker 34

3.9 Calculating the distance in hops between intermediate nodes and target . . 34

3.10 Calculating the distance in hops between intermediate nodes and target . . 35

4.1 Single hierarchical subnet . 43

4.2 Three-step generation process . 45

5.1 DDoS Dissector evaluation scenario . 64

5.2 Visualization of the two networks in Table 5.3 65

5.3 Percentage of nodes observing the attack 67

5.4 Composition of observed attack vectors within each scenario 67

5.5 Intermediate nodes estimation . 67

5.6 Detection thresholds for scenario 2 . 68

5.7 Spoofed sources estimation for scenarios 69

5.8 Execution duration by scenario . 70

97

98 LIST OF FIGURES

5.9 Spoofed sources estimation with different spoofed IP pool size 72

5.10 Distance estimation of intermediate nodes with increasing spoofed percentage 74

5.11 Attack coverage per distance for scenarios S3 and S4 75

5.12 Scenario S3 with increasing amount of dropped fingerprints 76

5.13 Intermediate nodes estimation with an increasing amount of dropped fin-
gerprints . 77

5.14 Fraction of total attack vs. hops to target for scenario S2 79

5.15 Detection threshold vs. fraction of total attack for scenario S2 80

5.16 Detection thresholds for scenario S3 with increasing amount of background
traffic . 81

List of Tables

3.1 Backbone Topologies . 18

3.2 Attack Fingerprint format proposed by [31] 20

3.3 Attack Vector format proposed by [31] . 21

3.4 Additional proposed properties for attack fingerprints 23

3.5 Configuration parameters of the simulated attack scenario 28

3.6 Attack Identification . 31

3.7 Popular operating systems and their default initial TTL values [16, 53] . . 33

3.8 Global Fingerprint format . 38

3.9 Key node attributes in Global Fingerprint 39

4.1 Node attributes . 44

4.2 Edge Attributes . 44

4.3 Simulated traffic characteristics . 47

4.4 Data type for intermediate node aggregation 48

5.1 Simulated scenario output . 60

5.2 Mixing attack and background traffic for evaluation scenario 64

5.3 Different network configurations for the evaluation 65

5.4 Different attack configurations for the evaluation 66

99

100 LIST OF TABLES

Listings

3.1 DDoS Dissector Reference Attack Fingerprint based on CIC-DDoS2019 [55]
Dataset . 25

4.1 Recursive structure of the create hierarchical subnet method 42
4.2 Connecting all subnets . 44
4.3 Generating background traffic paths . 46
4.4 Read fingerprints to Pandas DataFrame . 49
4.5 Flatten fingerprints before analysis . 50
4.6 Reassembler Class . 51
4.7 Find most targeted location . 52
4.8 Reassemble method: Select entries at target 52
4.9 Reassemble method: Find intermediate nodes and merge with baseline . . 52
4.10 Method for calculating hops to target . 53
4.11 Aggregating intermediate nodes . 53
4.12 Assembling a global fingerprint from aggregated DataFrames 54
4.13 Infer attack target by index . 55
4.14 Improved implementation for parallel processing 57
5.1 Fluent Interface of the Generator Class . 60
5.2 Output folder containing fingerprints . 61
5.3 Reassembler with in-memory input . 61
5.4 Reassembler with folder input . 62
5.5 Reassembler output configuration . 62
5.6 Global Fingerprint JSON output . 63
5.7 Creating extended fingerprint using the DDoS Dissector 64
C.1 Global Fingerprint based on simulated scenario S2 107
C.2 Global Fingerprint of evaluation scenario based on [55] 109

101

102 LISTINGS

Appendix A

Contents of the CD

The following deliverables are submitted for this thesis:

• Code: ZIP file containing the source code of the following repositories

– Reassembler Repository: Contains the source code for the Reassembler, Fin-
gerprint Generator, and evaluation scripts. The source code can also be found
on GitHub [8].

– DDoS Dissector: Contains the extended version of the DDoS Dissector, includ-
ing the proposed changes in Chapter 4.3. The source code can also be found
on GitHub [7].

• Thesis:

– ZIP file containing the source code of the thesis

– PDF of the thesis

– Plain text files of the Abstract in English and German

103

104 APPENDIX A. CONTENTS OF THE CD

Appendix B

Installation Guidelines

A comprehensive installation guide with usage examples can be found in the README.md

file of the respective repositories [7, 8].

B.1 Reassembler

1. Clone the Reassembler repository

git clone https://github.com/j0nezz/reassembler

cd reassembler

2. Create a python virtual environment or conda environment for the Reassembler
and install the python requirements

Venv:
python -m venv ./python-venv

source python-venv/bin/activate

pip install -r requirements.txt

Conda:
conda create -n reassembler

conda activate reassembler

conda install pip

pip install -r requirements.txt

3. Run the Reassembler

python main.py

105

106 APPENDIX B. INSTALLATION GUIDELINES

B.2 DDoS Dissector

1. Clone the extended DDoS Dissector repository

git clone https://github.com/j0nezz/ddos_dissector

cd ddos_dissector

2. Create a python virtual environment or conda environment for the DDoS Dissector
and install the python requirements

Venv:
python -m venv ./python-venv

source python-venv/bin/activate

pip install -r requirements.txt

Conda:
conda create -n dissector

conda activate dissector

conda install pip

pip install -r requirements.txt

3. Run the DDoS Dissector with the -e flag to produce fingerprints of the extended
format

python src/main.py -f data/attack_traffic.pcap -e -l 178.0.x.x

Appendix C

Global Fingerprints

C.1 Global Fingerprint of Simulated Scenario

1 {

2 "attack": {

3 "start_time": "2023 -06 -10 T20 :15:35.243738",

4 "end_time": "2023 -06 -10 T20 :25:18.189005",

5 "duration_seconds": 582.9452670000001 ,

6 "service": null ,

7 "protocol": "TCP"

8 },

9 "target": {

10 "ip": "12.172.45.2",

11 "detection_threshold": 1.0

12 },

13 "intermediate_nodes": {

14 "discarded_intermediate_nodes": 6,

15 "nr_intermediate_nodes": 40,

16 "detection_threshold": {

17 "25": 0.6975658707277652 ,

18 "50": 0.8897746820948915 ,

19 "75": 0.9438572376547147

20 },

21 "key_nodes": {

22 "12.160.0.0": {

23 "nr_packets": 112689654.0 ,

24 "hops_to_target": 1.0,

25 "detection_threshold": 0.9958792178351743 ,

26 "time_start": "2023 -06 -10 T20 :15:35.236116",

27 "time_end": "2023 -06 -10 T20 :25:18.181383",

28 "distance": 1,

29 "inferred_distance_diff": 0.0,

30 "fraction_of_total_attack": 1.0,

31 "duration_seconds": 582.945267

32 },

33 "12.0.0.0": {

34 "nr_packets": 112689654.0 ,

35 "hops_to_target": 2.0,

36 "detection_threshold": 0.9515403153645143 ,

107

108 APPENDIX C. GLOBAL FINGERPRINTS

37 "time_start": "2023 -06 -10 T20 :15:35.185994",

38 "time_end": "2023 -06 -10 T20 :25:18.131261",

39 "distance": 2,

40 "inferred_distance_diff": 0.0,

41 "fraction_of_total_attack": 1.0,

42 "duration_seconds": 582.945267

43 },

44 ...

45 }

46 },

47 "sources": {

48 "nr_sources": 115,

49 "pct_spoofed": 0.02608695652173913

50 },

51 "ground_truth": {

52 "nr_attack_av": 732,

53 "nr_background_av": 1026,

54 "nr_participating_nodes": 109,

55 "nr_locations_observing_attack": 36,

56 "sources": [

57 "12.143.220.186",

58 "14.68.148.10",

59 ...

60],

61 "target": "12.172.45.2"

62 },

63 "key": "78898757027057115 e3aefb12d836f62"

64 }

Listing C.1: Global Fingerprint based on simulated scenario S2

C.2. GLOBAL FINGERPRINT OF REAL ATTACK DATA 109

C.2 Global Fingerprint of Real Attack Data

1 {

2 "attack": {

3 "start_time": "2018 -11 -03 T15 :28:00.776482+00:00",

4 "end_time": "2018 -11 -03 T21 :35:47.776482+00:00",

5 "duration_seconds": 22067.0 ,

6 "service": null ,

7 "protocol": "TCP"

8 },

9 "target": {

10 "ip": "192.168.50.4",

11 "detection_threshold": 0.7249111223621241

12 },

13 "intermediate_nodes": {

14 "discarded_intermediate_nodes": 0,

15 "nr_intermediate_nodes": 2,

16 "detection_threshold": {

17 "25": 0.5277473421668619 ,

18 "50": 0.5503294973955934 ,

19 "75": 0.572911652624325

20 },

21 "key_nodes": {

22 "192.168.0.1": {

23 "nr_packets": 2093500 ,

24 "hops_to_target": 1.0,

25 "detection_threshold": 0.5954938078530566 ,

26 "time_start": "2018 -11 -03 T15 :28:00.776282+00:00",

27 "time_end": "2018 -11 -03 T21 :35:47.776282+00:00",

28 "fraction_of_total_attack": 1.0,

29 "duration_seconds": 22067.0

30 },

31 "192.168.2.1": {

32 "nr_packets": 1046531 ,

33 "hops_to_target": 2.0,

34 "detection_threshold": 0.5051651869381303 ,

35 "time_start": "2018 -11 -03 T15 :28:09.666466+00:00",

36 "time_end": "2018 -11 -03 T21 :35:31.666466+00:00",

37 "fraction_of_total_attack": 0.4998953904943874 ,

38 "duration_seconds": 22042.0

39 }

40 }

41 },

42 "sources": {

43 "nr_sources": 25,

44 "pct_spoofed": 0.4

45 },

46 "key": "30 c8aa201ceff1847db9513a49a8d88f"

47 }

Listing C.2: Global Fingerprint of evaluation scenario based on [55]

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Thesis Outline

	Fundamentals
	Background
	Distributed Denial of Service Attacks
	Network Monitoring
	Attack Fingerprints / Signatures

	Related Work
	DDoS Fingerprinting
	A Global DDoS Attack View
	Clustering DDoS Attacks
	Datasets

	Design
	Fingerprint Generator
	Simulated Network Topology
	Attack Fingerprint Format
	Attack Scenario
	Attack Scenario Parameters

	Reassembler
	Pre-process Attack Fingerprints
	Attack Identification
	Attack Analysis
	Global Fingerprint

	Implementation
	Fingerprint Generator
	Network Graph
	Generator

	Reassembler
	Pre-process Fingerprints
	Attack Analysis
	Global Fingerprint Generation

	DDoS Dissector Contributions
	Generating Multiple Fingerprints
	Extending the Fingerprint Format
	Fixing Parallelization Bug

	Evaluation
	Use Case
	Attack Simulation
	Global Analysis
	Real Attack Fingerprints from DDoS Dissector
	Test Scenarios

	Experiments
	Adversarial
	Detection Thresholds

	Discussion
	Deployment Considerations

	Final Considerations
	Summary
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the CD
	Installation Guidelines
	Reassembler
	DDoS Dissector

	Global Fingerprints
	Global Fingerprint of Simulated Scenario
	Global Fingerprint of Real Attack Data

