
Traffic Counting in Mesh Networks

Philip Giryes
Adliswil, Switzerland

Student ID: 19-752-799

Supervisor: Eryk Schiller
Date of Submission: April 21, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Die rasante Entwicklung der Technologie erfordert Architekturen, die sich an diese hohen
Anforderungen anpassen können. Die Verwendung von Mesh-Netzwerken kann eine dy-
namische und kosteneffiziente Möglichkeit für horizontale Skalierbarkeit bieten. Obwohl
Mesh-Netze viele Vorteile haben, verlieren diese Netzwerke die Fähigkeit den Verkehr zu-
verlässig zu überwachen. Ein Monitoring in Mesh-Netzen wäre für die Netzbetreiber von
Vorteil und würde die Opportunitätskosten für die Adaption von Mesh-Netzen, im Ver-
gleich zu herkömmlichen Netzwerk-Topologien, senken. In dieser Arbeit wird mit einem
neuen Protokoll versucht einen neuen Ansatz für die Abrechnung des Datenverkehrs zu
bieten. Das Cascade Encryption Protocol (CEC) koppelt den Überwachungs- und Da-
tenverkehr, indem es Verschlüsselung zur Einbettung der Routing-Informationen in die
Pakete verwendet.
Das CEC-Protokoll wurde in realitätsnahen Umfang auf der Abilene-Topologie simuliert
und zur Ermittlung des erzeugten Overheads in kleinerem Umfang auf einer Linien-
Topologie getestet. Die Analyse zeigte eine Korrelation zwischen dem Overhead und
der Anzahl der Flows bei den Tests im kleinen Umfang. Ausserdem bleibt die Leistung
des Protokolls bei in einem voll ausgelasteten Netz flach und nimmt nur langsam ab, wenn
die Anzahl der Flows steigen.

The rapid development of technology requires architectures that can adapt to this high
demand. Using mesh networks can provide a dynamic and cost-efficient way for hori-
zontal scalability. Although mesh networks have many advantages, these networks lose
the ability to monitor traffic reliably. Traffic monitoring on mesh networks would be
beneficial for network operators. It would reduce the opportunity cost of adapting mesh
networks compared to traditional network topologies. In this thesis, a new protocol will
try to provide a new approach to traffic accounting. The Cascade Encryption Protocol
(CEC) will couple monitoring- and data traffic utilizing encryption to encapsulate routing
information in the packets.
The CEC protocol was evaluated using simulations on a larger scale on the Abilene topol-
ogy for a real-life-like environment and line topology on a smaller scale to determine
created overhead. The analysis showed a correlation between the overhead and the num-
ber of flows on the small-scale tests. Furthermore, the protocol’s performance stays steady
on a fully utilized network and degrades slowly as the number of flows increases.

i

ii

Acknowledgments

I would like to thank my supervisor, Dr. Eryk Shiller for his assistance and patience in
the development of this thesis.

Furthermore, I thank Prof. Dr. Burkhart Stiller head of the Communication System
Research Group (CSG), for allowing me to conduct my bachelor thesis under his group.

Lastly, I am grateful to my parents for their moral support during the writing of my thesis.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 3

2.1 Mesh Networks . 3

2.2 Traffic Accounting . 4

2.3 Abilene Topology . 4

2.4 GNS3 . 4

3 Related Work 7

4 Approach 9

4.1 Protocol Building Blocks . 9

4.1.1 Upstream Accounting . 10

4.1.2 Downstream Accounting . 12

v

vi CONTENTS

5 Implementation 15

5.1 Network Configuration . 15

5.2 Protocol Userspace . 15

5.3 Protocol Router . 17

5.4 Piggyback Extension . 17

5.5 Testing environment . 18

5.5.1 Setup . 18

5.5.2 Tests . 18

5.6 Flow Configuration . 19

5.6.1 Gravity Model . 19

5.6.2 Greedy Model . 19

6 Evaluation 21

6.1 Notes on Comparability . 21

6.2 Traffic distribution . 21

6.3 Global Performance . 22

6.3.1 Throughput . 23

6.3.2 Goodput . 24

6.4 Upstream Performance . 25

6.5 Downstream Performance . 26

7 Discussion 29

8 Summary and Conclusions 31

Bibliography 33

List of Figures 34

List of Tables 36

A Installation Guidelines 39

B Contents of the ZIP Archive 41

Chapter 1

Introduction

1.1 Motivation

The number of Internet of Things devices is estimated to increase globally to 75 billion by
2025. [1]. There is also little indication that the number of devices will decrease soon [2].
With this problem at hand, the need for a scalable and dynamic infrastructure is inherent
for networks requiring ad-hoc connections and generally for more traditional broadband
networks.

Mesh Networks can conveniently provide horizontal scalability, with less network overhead
and less infrastructural dependence [3]. There are multiple large-scale mesh networks in
productive use, for example, the Athens Wireless Metropolitan Network (AWMN). The
AWMN is a Wireless Mesh Network for extending the broadband reach of the Athenian
region with over 2000 nodes [4], and many more [5], [6]. Even though Mesh Networks
have their advantages, the mesh topology structure also bears disadvantages compared to
the more common star typologies. The collaborative, distributive behavior of the systems
makes the traffic less transparent for centralized entities, for example, ISPs and network
admins [7].

A solid Traffic Monitoring (TM) scheme for Mesh Networks would lessen the disadvan-
tages, for a small overhead cost, but simultaneously make the advantages of the usage
overweigh. Additionally, known structures of traditional networks, such as billing, could
be supported based on the statistics gathered on Mesh Gateways. TM could also give some
insight into the traffic for governance, congestion resolution, and detection of illegal activi-
ties [3]. Overall the benefits would improve the quality of service for the organization- and
community-owned networks and the adoption of mesh technology. Research on the topic
of Traffic Accounting in mesh networks has been done extensively, but the approaches
proposed were oftentimes solutions where the TM acts as a separate entity, where TM
itself creates control traffic. This thesis proposes a protocol, that unifies the data- and
monitoring- traffic.

1

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

The protocol proposed in this thesis aims to solve this gap in accounting schemes by not
trusting third parties, with the help of encryption and a structural approach to leverage
nodes to share statistics with the central entity. This approach will bind the routing
information of the mesh network to the packet and reduce redundant monitoring traffic
generated by the nodes, compared to the constant unicasting of statistics. This protocol
will allow the protocol gateway also differentiate between data traffic and forwarding
traffic and deterministically recreate the routed path the packet went through in the
mesh network. This proposed protocol and other added extensions will be evaluated in a
simulated environment, where the performance of handling traffic will be measured and
compared to other accounting schemes.

1.3 Thesis Outline

I will first describe the fundamental pieces of my thesis in the second chapter, starting with
mesh networks and ending with accounting. Chapter 3 will lay the ground of previous
research done until now, and in Chapter 4, I will focus on the high-level view of the
proposed CEC protocol and explain in detail how the accounting scheme functions at its
core. Furthermore, I will describe the technical intricacies of the implementation of the
protocol and describe the infrastructure for the simulation of the system in the following
chapter, where I will focus on some network metrics to evaluate the protocol and compare
it to the performance of other accounting protocols. In the last chapters, I will present
my results, discuss the meaning, and share some insights.

Chapter 2

Background

This chapter tries to lay the foundation for the understanding of the base technologies used
in the following chapters. It begins with Mesh Networks and their properties, continues
with Traffic Accounting and the existing schemes for traditional networks and finishes off
with the GNS3 software, which will play an integral role in the evaluation of the protocol.

2.1 Mesh Networks

Mesh Networks (MN) are networks that, provide a decentralized and dynamic paradigm
[8]. Often times there are one or more nodes in the network that act as gateways to the
internet or other networks. The other interconnected nodes in the network share access
to the gateways and forward the traffic to the nodes, that are not directly connected to
the gateways [9]. This can, as mentioned in the introduction, let these networks scale
well, by adding more nodes, and the network becomes more resilient and independent of
individual nodes [3].

Figure 2.1: Highlevel view on Mesh Networks

To illustrate Mesh Networks with an example, in Figure 2.1, the mesh gateway is marked
in red and the mesh nodes are marked in blue. Given that node B, wants to request

3

4 CHAPTER 2. BACKGROUND

something from the internet, the underlying routing mechanism routes it to one of node
B’s neighbors and so forth until it reaches the mesh gateway, which will make the request
on behalf of node B. The way from the mesh gateway to the receiver node can be the
same route or through another intermediary node, depending on the routing input. This
multi-hop structure is the reason, why IP-based traffic monitoring on traditional network
architectures will not be applicable for MNs.

2.2 Traffic Accounting

Traffic Accounting1 or Traffic monitoring is the process of tracking and monitoring network
usage, by measuring the amount of transmitted and received data by different devices.
This information is used to gain insights into network health and network performance and
allocate resources more effectively [10]. Additionally, could the monitoring give insights on
potential bottlenecks, low utilization of links, and overall help troubleshoot the network,
using traffic engineering [7].
In traditional networks, where the end-devices communicate with the entity in a star-like
topology, the data collection usually takes place on the central node, which is owned by the
organization. This structure allows an accurate collection of the source and destination
of the connected endnotes using NetFlow [11] or IP-based solutions, which are oftentimes
router built ins.

2.3 Abilene Topology

Abilene [12] was a network, developed by the internet2 organization, which was meant to
provide a network backbone for different research and education purposes. The topology
was based on the demographic positions of some larger US cities and the link between the
routers achieved a 10 GB/sec. This topology will be the topology used throughout the
thesis.

2.4 GNS3

Graphical Network Simulator 3 (GNS3), is a powerful tool for network administrators
that allows them to launch network topologies using virtual machines or docker contain-
ers [13]. GNS3 provides a realistic software-based testing environment that doesn’t require
additional hardware to be set up and wired by hand. GNS3 allows you to configure links
between nodes, set up routers, hosts, and switches, and spin up all instances simulta-
neously. The addition of docker functionality in GNS3 has several advantages, such as
the ability to easily integrate containers into network topologies. Furthermore, the use of
docker containers increases the performance in simulation due to the fact that docker con-
tainers are lightweight and require fewer resources than VMs [14]. GNS3 also facilitates

1Traffic Accounting, Traffic Monitoring or simply Accounting will be used interchangeably

2.4. GNS3 5

Figure 2.2: Abilene topology in GNS3

troubleshooting with the option to open a shell on running instances, which improves
the development workflow, especially in a network environment, where the debugging of
processes spans over multiple machines.

Figure 2.3: User-Interface of the GNS3 application

6 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

Research was already done on Traffic Monitoring in Mesh Networks, and different ap-
proaches have been taken. Most works were done on Wireless Mesh Networks since it
has interesting use cases. Regarding accounting, however, the transmission medium takes
less precedence and would not hinder the extension of the research to Mesh Networks in
general.

Huang [15] et al. proposed an aggregated collection of network statistics of end devices
through a Mesh backbone. Huang expanded the definition of network flow with MeshFlows
to encapsulate the mesh-relevant information in the records and group similar documents
together in one MeshFlow. Furthermore, the MeshRouters build these MeshFlows based
on the seen traffic and cache those entries until the Mesh Collector collects the cached
data and aggregates and analyses the data to create a system-wide view based on the
reconstructed history of the network traffic.

A similar approach to [15] was taken by Cruz et al. [16], where every node caches the
hashes of the received and forwarded packets. If a mesh node starts a session at the Base
Station, every received packet will be hashed, and the hashes will be sent bundled to the
Base Station. Every intermediate node will also hash the received packet and report the
hash to the Base Station to claim rewards. The base station keeps track of sessions and
compares the hashes to the pre-calculated hashes to analyze bad forwarded traffic and
verify the reward-claiming of intermediary nodes.

Cruz [16] and Huang [15] are similar in the sense that both rely on the collection of
MeshRouters to keep track of the traffic and then forward the traffic to the Mesh Col-
lector/Base station. However, [16] still adds the ability for the Base station to verify the
traffic using hash functions.

Sailhan [17] takes a structural approach to monitor the system with self-configuring clus-
ters. Those clusters are hierarchies that adapt well to the dynamic nature of WMNs
and organize and collect the network traffic in a distributed manner. Each cluster has
an elected Cluster Head, to which the local nodes will report to. At the same time, the
Cluster Heads are responsible for reporting to the Cluster Controller, which will then
aggregate the data. The cluster structure creates a distributed handling of statistic col-
lection, which can adapt well to the changing topologies and reduce the monitoring traffic

7

8 CHAPTER 3. RELATED WORK

by introducing a hierarchy. Hence the nodes that report to the Cluster Controller are
limited.

Gupta [18] analyzed the different approaches of different schemes and proposed a tiered
monitoring scheme that combines reactive, statistical, and threshold-based methods. The
system configures nodes that satisfy the Minimum-Set-Cover problem to determine the
minimum number of Collecter Nodes that would cover every node in the system using
only one hop, which is the structural aspect. Collector Nodes are preconfigured with a
threshold and reporting frequency to reduce the overhead the monitoring traffic generates.
The threshold reduces the traffic necessary to message the Controller Node, and the
reporting frequency is an additional parameter to further reduce the overhead by setting
delays on reported information.

Frangoudis [19] proposes a system to enable Roaming Capabilities in Wireless Community
Networks, where each user can open up his access point for other WMN users and share his
bandwidth. An incentive for sharing the bandwidth is when the user wants to profit from
the same roaming capabilities and collect his debt for previously issued bandwidth. The
proposed Peer-To-Peer Network Confederation Protocol (P2PWNC) allows each roaming
end device to request access points (transitively also with Request Repositories) after an
established session, where first the node exchanges its receipts for possible requests. The
receipts act as a way to monitor the traffic, verify the correctness, and possibly block
requests of malicious users. Frangoudis was meant for billing or bandwidth balancing.
Nevertheless, this approach could also allow for traffic monitoring since the receipts are
an elegant solution to couple monitoring- and data traffic.

Other systems rely on incentives for nodes to share packet-related information with the
base station and to compensate for the collaborative effort of forwarding nodes [7] and
[16]. The incentives are also argued to be a way to prevent selfish nodes, which only
consume traffic from the network, but don’t forward any traffic to neighboring nodes.
Still, the work of Ben Salem et al. [7] also mentioned that poor incentive systems could
act as an “double-edged sword“ since it can be an incentive for malicious activity to claim
rewards from other nodes.

Even though a lot of research was done on traffic monitoring systems, there seems to be
a pattern emerging; namely, the traffic will be recorded and unicasted to the gateway or
any other central entity. Some improve the structurally as [15], [16], and [17], and others
tried to reduce the messages sent using threshold and other approaches as [18].

[19] took a different approach, which requires receipts as a network communication pre-
requisite. Essentially the receipt does exchange traffic for statistics. The research seems
to be assuming, except [19], that Traffic Monitoring should be a separate entity that also
generates monitoring traffic. Little approaches were taken where the traffic information
is embedded in the data traffic, which would enforce the sharing of statistics.

Chapter 4

Approach

This chapter will give a high-level overview of the new protocol, the necessary components,
and the roles of the different nodes. The focus lies mainly on the accounting scheme.
The encryption used, and other technical details will be discussed in the Implementation
chapter.

4.1 Protocol Building Blocks

To collect reliable statistics of network-based metrics, e.g., throughput or usage of an MN,
the Chain Encryption Protocol (CEC) proposes two necessary components: a Protocol
Gateway and a Protocol Node.

The Protocol Gateway (pg) acts as the gateway for Internet access and takes the producer
role, and the Protocol Node is the consumer and gains the Internet access. Because the
traffic necessarily needs to go through the pg to access the internet, the traffic is bound to
the gateway, which knows the exact amount of MN-outgoing traffic. The pg is assumed
to be a trusted party, mainly because the gateway holds the keys of all the nodes; it
is also essential. The pg also holds an account of the activity that is going on in the
mesh network. With this account, the gateway can measure traffic and theoretically also
engineer the traffic. There can be more than one Protocol gateway, which the Protocol
could also support, but for simplicity’s sake, the assumption is that there is just one
Protocol Gateway.

The Protocol Node (pn), as mentioned before, benefits from Internet access. The traffic
the nodes generate is not always the traffic they generate/request, the pn may additionally
act as an intermediary node for the request of other nodes as an effect of the collaborative
nature of MNs. This is one of the main problems the protocol needs to account for
and hence cleanly separate the forwarding traffic from the generated traffic to not skew
the statistics. The Protocol Nodes could join and exit the Network in a hop-on-hop-off
manner, but since the focus lies more on the core protocol itself, a static topology is
assumed without the loss of generality.

9

10 CHAPTER 4. APPROACH

The Cascade Encryption (CE) used is symmetric encryption because of the lower over-
head during runtime, contrary to asymmetric encryption. The core of the protocol is
Cascade Encryption, which allows the traffic to stay private for other nodes), detects
routing differences, and plays an integral role in the accounting of the traffic. The type of
encryption is not relevant and is also protocol independent, but more about that in the
Implementation chapter.

Real-life scenario:

Internet

Base station
Client Station

1

2

3

4

5

6

Wireless Community Network
Third Party

Protocol Gateway
Operator's

Protocol Gateway

Figure 4.1: Possible scenario of a Wireless Mesh Network

As illustrated in Fig 4.1 the protocol nodes would be nodes (3,4,5,6) and the protocol
gateway would be out of (1, 2) node nr. 2. If for instance, node 4 would make a request
either node 2 or node 3 would act as an intermediate node and forward the request to the
gateway. This illustration will be used as an example, the topology shown will be used,
throughout this thesis without the loss of generality.

The Accounting of the CEC protocol consists of two parts depending on whether the
traffic is from the node to the gateway (upstream) or from the protocol gateway to the
node (downstream). The structure of both procedures is similar, except for some minor
differences on the downstream part. The following section will focus on each protocol part
in more detail.

4.1.1 Upstream Accounting

As mentioned in the Accounting section, the upstream protocol transmits a message
from its current position to the Protocol Gateway, with the help of other intermediate
forwarding nodes. The packet source will encrypt the packet with its encryption, in the
same way, each forwarding node will encrypt the packet upon receipt.

1gw 2 3

Figure 4.2: Simple upstream

4.1. PROTOCOL BUILDING BLOCKS 11

Based on the simple case in Fig. 4.1.1 there can be a situation where the source is node 3,
and there are two intermediate nodes (2 and 1), which act as a forwarding node before
the message gets to the protocol gateway pg.

The process of the upstream can be described within 3 Stages:

Initial encryption at the source

Node 3 encrypts the request (data block) with its secret key and prepends its header and
id to the message. The packet will then be forwarded, from the routing proposed neighbor
to node 2, since the pg is multiple hops away. This step creates the initial encryption layer
of the cascade encryption, which will primarily keep the data private from other nodes.

Resulting Message u1:

Figure 4.3: Message u1 send from node 3 to node 2

Cascade Encryption at the intermediate nodes

Each forwarding node encrypts the package with its key and forwards it to the next node.
Additionally, the header of the forwarding node will be prepended to the package, to
maintain the networking information needed in the lower layers. Moreover, the id of the
node will be added to facilitate the Accounting (in the last step of the Upstream Protocol).

In the example, node 2 receives the package from the message u1 and encrypts the packet
with the key2 and adds id3 and the header. Also, node 2 can’t differentiate if the packet
received originated in node 3 or was only forwarded by the node. The only information
node 2 has been, that the sender one hop away was node 3 and the destination is the
gateway1.

Resulting Message u2:

Figure 4.4: Message u2 send from node 2

1inference could be drawn by measuring the packet size, but this could be prevented by padded packets

12 CHAPTER 4. APPROACH

Message u2 will then be forwarded to node 1, and the same procedure is done as mentioned
for message u2, resulting in message u3, which will then be sent to the pg, because the
gateway is a direct neighbor of node 1.

Resulting Message u3:

Figure 4.5: Message u3 send from node 1

Accounting Process at Protocol Gateway

The gateway will start stripping off the layers of encryption, on the one hand, to get
the data packet, and on the other hand to extract the route the packet took for the
Accounting. The pg will know which packet to use, based on the node id sent in clear text
with the packet. In the example above, the gateway receives the packet from node 1 and
sees the id number 1, therefore the decryption requires the key 1. This could be easily
achieved since the gateway has all the keys. The pg encounters keys 1, 2, and 3 and infers
that the route went first through node 2 and then node 1 (and node 3 is the source node).

4.1.2 Downstream Accounting

The Downstream is analogous to the Upstream Protocol, with the addition of tokens. To
expand on the example given before but on the downstream side consider Fig. 4.1.2.

1gw 2 3

Figure 4.6: Simple downstream

In this case, the packet will take the same route back as it came. The process of the
downstream can be explained in the following four stages:

Initial encryption at the protocol gateway

Since the downstream starts at the protocol gateway, the pg will encrypt the data packet
similar as in the Upstream and construct the message d1, but also add a token unique for
this package for later identification of the packet, and also encrypt it and prepend it to
the data-packet.

4.1. PROTOCOL BUILDING BLOCKS 13

Figure 4.7: Message d1 send from the pg

Resulting Message d1

Cascade encryption at the intermediate node

The cascade encryption on the downstream adds an encryption layer to the data packets
and the token. Continuing the example, d2 will be prepared on node 1, and d3 will be
constructed on node 2 before the packet reaches its final destination: node 3.

Resulting Message d2

Figure 4.8: Message d2 send from node 1

Resulting Message d3:

Figure 4.9: Resulting Message d3 send from node 2

Requests for a temporal key

The received message d3 will be unreadable for node 3, hence the missing decryption keys.
Node 3 needs to extract the encrypted token packet and send it to the protocol gateway to
request the necessary keys. The token acts as proof, more on that in the next subsection.

Resulting Message d4:

Figure 4.10: Message u1 send from node 3

14 CHAPTER 4. APPROACH

Accounting Process at Protocol Gateway

The message d4 is received at the pg, and the Accounting Process starts. First, the layers
of the encryption are stripped, and the ids of the layers are noted to determine the route.
Second, to verify that d4 originated from the source node and isn’t just an arbitrary node
requesting decryption keys, the first layer of encryption must match the source node.
Second, the clear-text token should match the token created at the pg, if they match,
indicating that the request belongs to a legitimate communication session and proof for
the reception of the gateway response started at d1. Third, the node depends on the
token’s sending to read the data; the token acts as a hostage for the keys.

Sends temporal keys

After verifying and accounting using the d4, the gateway generates the correctly configured
keys necessary for encrypting the packet at node 3 and sends the packet encrypted with
the encryption of the receiving node. Intermediary nodes will transparently forward the
packet without reiterating the downstream protocol.

Resulting Message d5:

Figure 4.11: Message d3 send from node 3

Node 3 will be able to peel off the layers of encryption and access the clear-text data, thus
completing the downstream interaction.

Chapter 5

Implementation

This chapter will start with a top-level view of the different components and will gradually
focus on more details of the base CEC-Protocol and the different variations. The end of the
chapter describes the testing environment and paves the way for the evaluation chapter.

5.1 Network Configuration

Topology of the network is the Abilene topology already extensively described in the
background chapter.

Routers are docker containers where the routing and configurations are already installed.
The routers will run the CEC Protocol Router application. The router docker containers
need to be prebuilt before launching the topology using GNS3.

Hosts are docker containers with CEC Protocol Userspace applications installed. The
actively running application is decided on container build time. Like the router containers,
also the host containers need to be prebuilt.

Routing used on the routers is OSPF using the FRRouting implementation. Without
any application running on the routers and hosts, every machine and router is pingable,
even when the machines are not on the same network (which creates the mesh view on
the network).

5.2 Protocol Userspace

This section will be a high-level documentation of the userspace software’s relevant com-
ponents and responsibilities. The detailed functionality of the protocol was described in
Chapter 4, and these elements can characterize the technical structure:

Tunnel interface is configured with an point-to-point connection to the protocol gateway.
Because of the tunnel connections, the overall topology on the top layer looks like a star,

15

16 CHAPTER 5. IMPLEMENTATION

where every pn is directly connected to the pg. This virtual network interface also allows
our userspace program to write and read packets, which facilitates the manipulation of
packets [20].

Tunnel thread listens on the tunnel interface for data packets coming from the userspace
or the socket Thread. When data is found, the tunnel thread encapsulates it into a packet
and sends it to the destination.

Socket thread waits on the socket port for incoming packets, which will be managed
according to their type, and response messages will be sent. Moreover, the socket thread
could utilize the tunnel interface to offload some work to the tunnel thread.

Resource object is a global object containing information relevant to the two different
threads. Packet queues, keys, send-timers, and their respective mutex are included. The
Resource object is a global object and can be accessed by every software component at
runtime.

Multihost support is provided by establishing one running CEC Userspace instance per
pg - pn connection. The ports and tunnel interfaces are configured and passed to the
program as command-line arguments. Each running instance needs its own port and
tunnel interface. Otherwise, conflicts occur.

Inter Process Communication (IPC) Support is necessary to configure userspace inter-
faces in the testing environment simultaneously. Since the userspace program is a server
and does not return when started, the program can not communicate with the outside
when the environment is initialized. This could induce some race conditions or runtime
errors; an example would be the configuration of interfaces that haven’t been created yet.
The implementation of communicating through a Linux named pipe helps to prevent this
issue.

Packet Handler is a class used in the Socket Thread. The responsibility of this class is to
parse received aggregated packets and their subpackets. After recognizing a packet type,
the binary representation will be serialized into the proper packet object, and the handler
takes actions based on the object type.

Symmetric Encryption used is key-based, meaning that a password for the node, a salt
an iteration count is necessary to generate a key [21]. By increasing the counter new keys
could be generated, without compromising any information. The encryption standard
used is not relevant, in a sense, if the standard becomes obsolete, it can be swapped out
as long as the interfaces stay the same.

These components are also a part of the Piggyback- and Router-Extension; if no differences
are mentioned in the corresponding sections, the same structure is assumed.

5.3. PROTOCOL ROUTER 17

6

UDP
src: IP'6
dst: pg

TCP/IP

UDP
src: IP'6
dst: pg

TCP/IP

Tunneling
Application

Encrypting
Daemon

TCP/IP
message
src: IP6

dst: XXX

Lower
Layers

4

K6[s6]

Lower
Layers

UDP
src: IP'4
dst: pg

TCP/IP

Encrypting
Daemon

K6[s6]
K4[s4]

Routing Routing

...

Figure 5.1: Architecture of the protocol

5.3 Protocol Router

The CEC Protocol Router or Filter is a single-threaded application with only one purpose:
to encrypt forwarding traffic with its key, as seen in the approach chapter, with messages
using Cascade Encryption on the down- and upstream.
The filter application utilizes the libnetfilter-queue in combination with an iptables rule
to access packets from the kernel space, modify them (encryption), and reinject modified
packets again [22]. The only exceptions are key packets in message d5, which are not
modified by the Filter application and instead forwarded as is. In Fig. 5.1 the Router
Application is labeled as ”Encryption Daemon”.

5.4 Piggyback Extension

The Piggyback Extension on the CEC-Protocol uses a technical solution to reduce mes-
sages exchanged, especially on the downstream, where, from a high-level-view, are three
messages1 exchanged between the pg and the pn opposed to the upstream where only one
message2 is required. The Piggyback back solution uses the open TCP sliding window of
at most 10 ms to hold some packets back, waiting for packets with similar destinations,

1messages are: (d1-d3), d4 and d5
2message is (u1-u3)

18 CHAPTER 5. IMPLEMENTATION

append to the other packets, and create an aggregated packet. Hence this will save at
least one request.
In the best case, multiple packets could be piggybacked on one another, saving the addi-
tional requests and reducing the monitoring/session traffic. If there are only a few packet
losses in the system and the piggyback mechanism times out a lot, the system will fall
back to the regular scheme; for each keys-request, each response will be sent individually
with a minimal delay. However, the problem is when piggybacked packets get lost, and
the multiple packages will be lost together, amplifying the loss rate.

5.5 Testing environment

5.5.1 Setup

To start the testing environment, the containers must be built, the build docker containers.sh,
the script has two building functions, one for the router and one for the host. The func-
tions facilitate the execution of multistage docker build and are set up to reduce the overall
building time by relying on cached entries.
The GNS3 environment can be set up using the Abilene.gns3 file. GNS3 automatically
updates the docker containers in the configuration file to the latest build. When GNS3
spins up all containers correctly, the routing and the userspace applications should be up
and running (for routers and hosts).

5.5.2 Tests

To test the network performance, iperf3 [23] is a versatile tool that allows bandwidth
testing on various protocols, including other metrics such as packet loss, latency, etc.
Each test will be started, based on the parsed topology, with different parameters preset,
for example, the connection pairs, ports, and the test duration. First, the iperf servers will
be started on the pg and the pns. Then the client connections will be created gradually
to prevent the issue of failing tests due to iperf3-clients connecting to not fully started
servers. Each test between the pg and the pn will be bidirectional, meaning that a server
is always started on both nodes and a client started on both. One sample configuration
of parameters of a test instance can be seen in table 5.1.

From the technical perspective, the iperf3 instances are configured and launched from a
Python script3 on the host machine utilizing the docker SDK [24] for running the bash
scripts on the respective containers. After completing all the instances, some aggregation
and visualization scripts will process the raw data further to the results presented in the
next chapter.

3more details to the processes is in the software documentation written.

5.6. FLOW CONFIGURATION 19

Setting Range Value

Client {1− 12} 4
Server {1− 12} 7
Port {1− 6000} 4004

Protocol UDP/TCP UDP
Parallel N 2
Bitrate {0.0− 10.0}m 1.0m
Duration N 60

Packet length N 1000

Table 5.1: Example iperf3 settings and values

5.6 Flow Configuration

Before running the network tests, an essential component is to predefine the flows, com-
posed of source, destination, and bandwidth allocation. In this section, two models are
presented, the gravity model and the greedy model, though only the latter will be used
in the evaluation.

5.6.1 Gravity Model

This model is based on the work of [25], where the author combined the idea for the
gravity model with the traffic simulation on Abilene topologies. The model is based on
some Newtonian principles, where the connected nodes and the demographic distance
influence the predicted traffic. This is a synthetic traffic model, which is statistically
similar to real Abilene traffic. From this model, a N × N matrix could be derived to
determine the bandwidth for the flows from a node i to a node j. One sample distribution
provided by this model can be found in Fig. 6.1.

5.6.2 Greedy Model

The greedy model is a much simpler traffic model than the model presented before be-
cause it only uses the highest possible bandwidth values without degradation of service
of the least performing process. Each tested flow uses the same bandwidth for sending
the testing requests, unlike the gravity model, where each flow has a different bandwidth
depending on the source and destination. The advantage of this system is that the model’s
parameters are easier to tweak. Additionally, the model helps to determine the perfor-
mance of different systems in relation to the least performing; if this process is of interest,
gives some valuable insight. An example configuration of the greedy model can be found
under Fig. 6.1.

20 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

This chapter will evaluate the different schemes based on the section 5.5. The different
schemes are Cruz-Accounting, CEC-Accounting, and CEC with the Piggyback-Extension.
The network without accounting schemes will be measured alongside the other schemes
to get a sense of the overhead that these protocols create, using the topology and tools
described in section 5.1. The overhead will be the delta between the network performance
without configuration subtracted from the scheme’s performance.

6.1 Notes on Comparability

Since in the CEC-based schemes, the traffic is either issued by some node and forwarded
to the gateway or vice versa, the topology looks like a star, as mentioned before. The
problem lies in the Cruz scheme and the bare-bone network without configured accounting
schemes. Both are suitable for mesh typologies and allow flows with a node as a source
and another as a destination. For the sake of comparability of the different configurations,
the same flows will be used on all schemes (resp. non-schemes), even though the flows
will be a subset of the possible flows of the schemes as mentioned above.

6.2 Traffic distribution

A visual representation can help the understanding of the gravity traffic model described
in 5.6.1. The model generated the traffic matrix based on the underlying topology and
the distribution of end devices on the routers. Fig 6.1 is a heat map representing a
traffic matrix using 24 flows (or 48 connections). The darker blue color indicates a lower
number of allocated traffic, and the dark red color a high amount of traffic. The matrix is
symmetric like the traffic matrix and is also zero-indexed. As an example, the coordinate
(0, 6) is the respective connection from node 1 to node 7 (the gateway).

21

22 CHAPTER 6. EVALUATION

Figure 6.1: Heatmap of gravity model

The diagonal of the matrix has no traffic since that corresponds to the node’s traffic to
itself. The horizontal and vertical are more reddish since node seven lies very central
(demographically), and the connected nodes are very well connected; thus, higher traffic
is expected in this region. The matrix’s four quadrants are heterogeneous and weighted
based on the demographical properties.

Even though a matrix of a total N × N matrix was generated for the simulation, only
an (N − 1) × 2 matrix is necessary, as already pointed out in the section 5.6.1. Only
line 6 would be necessary as input because it encapsulates all the traffic from and to the
gateway.

6.3 Global Performance

To measure the real-life network performance of the protocol, 6 to 24 flows were set
up to test the network. It measures a real-life-like environment with parallel running
network requests, where each process could compete with other processes on bandwidth
and processing power. The simulation environment used was described in this section 5.5.

Throughput/Goodput was tested on four configurations: the bare-bone system, CEC
application, CEC with the Piggybacking extension, and Cruz implementation described
in [16]. The model that was used is the Greedy model described in 5.6.2. The baseline
comparison was CEC because it was expected to have the lowest performance. The
parameters were chosen so that every test passes all configurations and yields the most
throughput. Table 6.1 shows the used configuration on all global tests.

6.3. GLOBAL PERFORMANCE 23

Flows 6 12 18 24

Bandwidth 1.4 0.9 0.5 0.35

Table 6.1: Configuration for the global test environment

Table 6.1 shows the configuration for the CEC application that will be used for all others.
Important to note that the bandwidth per flow will be lower for more flows in the system.
The more flows compete with other flows on the links, the more messages will get dropped,
and more traffic loss will occur on a fully utilized link. Failing tests due to overloaded
links would let tests fail, skew the statistics, and make the results irreproducible.

6.3.1 Throughput

Figure 6.2 depicts the four different test results based on the number of flows. Surpris-
ingly, the Cruz scheme’s performance is similar to the bare-bone system, where only the
routing is an active component. The bare-bone system acts as a practical and theoretical
maximum of throughput that the CEC protocol could achieve and acts as a control group.

	10

	12

	14

	16

	18

	20

	22

	24

	6 	8 	10 	12 	14 	16 	18 	20 	22 	24

Th
ro
ug

hp
ut
	(M

bp
s)

Flows

cec
piggybacking

bare
cruz

Figure 6.2: throughput of the network simulation

A trend on all the schemes is the uptick in throughput with 12 flows configured. This
could be explained based on the “economy of scale“ effect, and each additional flow adds
more productivity to the system than it does compete with other flows. Hence from 6 flows
to 12 flows, only new active machines will be added before running multiple processes on
the machines.

24 CHAPTER 6. EVALUATION

The throughput for the Piggybacking extension and the CEC without any extension is
identical. There seems to be no observable advantage of Piggybacking on the throughput
side. Nevertheless, their identical performance helps to analyze the difference in goodput
later in this chapter.

On a range of flows tested, the CEC application had a steady amount of throughput and
slightly declined on the increasing number of flows. The difference between the bare-bone
system and the CEC-based solutions is higher on a lower node/flow count and insignificant
on a higher one.

6.3.2 Goodput

The data on the global goodput is derived from the throughput test, and the configura-
tions’ parameters are the same. The data gathered on the goodput was created by the
same test instance as the throughput, which means that the goodput on, e.g., flow 12
corresponds to the throughput of flow 12 in 6.2.

	10

	12

	14

	16

	18

	20

	22

	24

	6 	8 	10 	12 	14 	16 	18 	20 	22 	24

Go
od

pu
t	(
M
bp

s)

Flows

cec
piggybacking

bare
cruz

Figure 6.3: Goodput of the network simulation

Also, here, surprisingly, the goodput of the Cruz scheme is almost identical to the perfor-
mance of the bare scheme. The bare-bone system has only a slight observable overhead
and represents the upper bound of maximal achievable goodput, analogously as 6.2.

Even though Piggybacking was minimally performing better on flow number 12, the con-
clusion is that piggybacking doesn’t add any significant improvements on the tests done
with UDP; this could look different on TCP since there are messages exchanged (ACK

6.4. UPSTREAM PERFORMANCE 25

messages). This result is an exemplary visual representation of the fallback mechanism
of Piggybacking, which was described in 5.4. The difference between the goodput- and
throughput- line of the CEC applications is maximally 1 MB/s and only a little decline
over the number of flows.

Summarizing, the results presented in 6.2 and 6.3 are very astonishing; even though the
comparison to Cruz and Piggybacking was reduced, possibly by the reasons mentioned,
the CEC protocol seems to behave very reliably for the tested flows and also, the overhead
observed seemed to be more of fixed, than of variable nature. Furthermore, the conver-
gence of the goodput of the CEC application to the bare-bone performance on increasing
flows beats all expectations. Still, a further evaluation of a broader range of flows needs
to be conducted to support this observation fully.

6.4 Upstream Performance

The tests conducted in this section and in the following section 6.5 are done on a modi-
fied Abilene topology, where the node path resembles a line of a maximum of 10 nodes.
The throughput measurement relating to the number of hops was done on three differ-
ent schemes, and each test was repeated ten times on the same configuration. The Cruz
scheme was left out of this evaluation since the scheme in the global scope was not differ-
entiated from the bare system. Each result entry consists of the population’s mean and
standard deviation.

	7

	8

	9

	10

	11

	12

1 2 3 4 5 6 7 8 9

Th
ro
ug

hp
ut
	(m

bp
s)

Number	of	hops

cec
piggy
bare

Throughput	vs	Hops

Figure 6.4: throughput on upstream

26 CHAPTER 6. EVALUATION

As shown in Fig 6.4, the throughput is at the max value for all schemes, with little
deviation from the mean. The max value is 10 Mbps because the underlying interfaces
were configured only to support this maximum bandwidth. A possible explanation is that
since there is only one test running at a time, as opposed to the environment of the global
network tests, the throughput is not influenced by external variables. That is of benefit
since it creates a clean environment for the experiments. The more exciting part is the
goodput evaluation in 6.5 and how the goodput relates to these results.

	7

	8

	9

	10

	11

	12

1 2 3 4 5 6 7 8 9

Th
ro
ug

hp
ut
	(m

bp
s)

Number	of	hops

cec
piggy
bare

Throughput	vs	Hops

Figure 6.5: goodput on upstream

Figure 6.5 shows a constant value for the bare scheme, with little deviation from the mean.
CEC and the piggybacking extension show similar results with little to no difference, with
slightly more deviation on the side of the base CEC application.

The inverse dependence of goodput versus the number of hops is also interesting. The
performance degradation on multiple hops was expected, though the results show that
the difference between one hop and nine hops is only max 0.5 Mb/s with a little deviation
of the mean. Also important to note is that on one hop, the difference between the
throughput and goodput is 1 Mb/s, which indicates the fixed overhead of the application,
and the difference of 0.5 Mb/s difference between 1 and 9 hops is the variable overhead.

6.5 Downstream Performance

The downstream was measured analogously to the upstream, only that the gateway con-
nects to the server instances on the end nodes. The differentiation between downstream

6.5. DOWNSTREAM PERFORMANCE 27

and upstream is essential since more messages are exchanged on the downstream protocol.
Based on the theoretical structure, it is also expected to perform lower than the upstream.

	4

	6

	8

	10

	12

	14

1 2 3 4 5 6 7 8 9

Th
ro
ug

hp
ut
	(m

bp
s)

Number	of	hops

cec
piggy
bare

Figure 6.6: throughput on downstream

Figure 6.6 shows the mean of throughput achieved over all tests per configuration. This
test result looks almost identical to Figure 6.4. As mentioned, the protocol has no prob-
lems translating the 10 Mb/s bandwidth and fully utilizing the underlying interface’s
maximum capacity.

Results in 6.7 show a different picture than the goodput results on the upstream. The
downstream performance seems arbitrary and not linked to the hop count. For example,
1 and 8 hops show a meager goodput rate, whereas 5 and 6 show the highest rate. The
results are difficult to interpret with this graph alone.

Also, the difference between the piggybacking extension and the standard CEC application
seems minimal to non-existent on the local scale. The reasoning could be similar to the
upstream, namely that the piggybacking is not tested in the right environment for the
optimization to be visible. For Piggybacking, a TCP-based test could be more suitable.

To summarize the results of the local scope, one could say that the throughput reaches
the maximum capacity on the upstream as on the downstream, and even not depending
on the number of flows. In general, the results seemed to have low deviations from the
mean, which increased the significance of the results. The downstream was challenging
to interpret, and no obvious relation could be found between the variables. Though
fascinating insight was derived from the upstream since a fixed overhead of 1Mb/s and
variable overhead of a maximum of 0.5 Mb/s could be determined.

28 CHAPTER 6. EVALUATION

	4

	6

	8

	10

	12

	14

1 2 3 4 5 6 7 8 9

Go
od

pu
t	(
m
bp

s)

Number	of	hops

cec
piggy
bare

Figure 6.7: goodput on downstream

Chapter 7

Discussion

This chapter will discuss the relevance, scope, and meaning of the result presented in the
last chapter and put the results into context for interpretation. The results will also be
critically analyzed from a technical, theoretical, and logical perspective.

The results on the local level1 of the protocol, which only focussed on the performance
of the upstream or downstream, are significant. Since the results with ten hops are a
worst-case scenario in the Abilene topology. The tests were conducted using blocked and
suspended links, forming a line. This scenario is improbable in the Abilene topology and
acts as an upper boundary. Also, the experiments conducted on the local scope are done
in a very focused manner, which on the one hand, is an environment with only a few
parameters that could influence the results. On the other hand, these local experiments
give no insights into how the protocol behaves with a higher load on multiple links.
Results helped to see the relation between flow number and overhead in the upstream.
Furthermore, the CEC protocol‘s throughput seems to be on the local level independent
of the number of flows.

A real-life simulation of the protocol can be observed on the global results2, which gives
insight into the protocol‘s performance with an increasing load and compares the CEC
application with another scheme as Cruz. 6 - 24 flows are relatively low, but this is all
the machine that simulated the network could support CPU-wise. High flows (above
24) would evoke the termination of some necessary application when the system was
running on 100% of the CPU. Especially the filter on the router of the gateway was killed
sometimes, making all the experiments fail because they could not reach the gateway
anymore.

The gravity traffic model mentioned above (5.6.1) could not give a distribution congruent
to the limitations of the iperf level. Some tests created a too-high link load, which would
let different packets get lost; therefore, other tests failed. So the tweaking of the model
parameters was not enough to be supported by the testing environment, so a switch to the
greedy model was necessary. The greedy model is suitable for comparing multiple other
schemes about one variable. Though the greedy model also has weaknesses, some schemes

1sections 6.4, 6.5
2section 6.3

29

30 CHAPTER 7. DISCUSSION

could hypothetically support more bandwidth per node, which will not be reflected in the
model results. The schemes of the global scope could have been performing on a fraction
of the possible bandwidth.

The simulation on the global scope also yielded some exciting results, considering the
number of flows given. Compared to the bare system, the protocol‘s steady performance
and goodput‘s slow degradation were clearly shown. Moreover, the goodput and through-
put of the protocol seemed to converge to the values of the bare system with a rising
number of flows for the tested flow range.

The Cruz scheme implementation needs some revaluation since the performance of Cruz
was optimal. This contradicts the results by [16], meaning that the implementation is not
trustworthy enough to draw conclusions and comparisons. Even if the implementation of
the Cruz scheme was correct and would outperform the CEC application, the compari-
son will be only weak because the CEC protocol has more functionality embedded. For
example, the processing time needed by the Cruz scheme to verify the correctness and
recreate the packet history is not accounted for but inbuilt into the CEC application.
Nevertheless, the comparison is necessary, even if the approaches differ. Additionally, the
Cruz scheme was not evaluated on the local scope, assuming the performance would not
differ from the base system. This assumption could be proven wrong if the Cruz scheme
was implemented correctly.

Furthermore, there are still many aspects to this topic that make it challenging to evaluate.
From the model‘s decision to the technical implementation and the simulation parameters.
For the scope of this thesis, it would be too much to evaluate the protocol holistically
and weigh the differences in results. Nevertheless, an effort was made to highlight the
validity or limitations of the results. It is also important to note that this thesis does not
contain all the reflections and decisions made, except one example of the model selection
and consideration.

Chapter 8

Summary and Conclusions

This thesis proposed a traffic monitoring scheme based on the encapsulation of routing
information to the packets with the help of encryption. The network performance of the
scheme was analyzed and compared to other schemes and configurations. Although the
results were unexpected, several conclusions could be drawn based on the work done.
Some interesting insights into the protocol and its behavior in different environments
could be derived, and sometimes the results beat the intuition. The stable maximum
throughput upstream and downstream suggests that some parts of the protocol have
already reached optimality. Furthermore, the convergence to the optimal performance in
goodput/throughput with higher flow counts provides some interesting conclusions and
provokes some questions for further evaluation.

This thesis still does not cover some areas and could be expanded in future work. The
areas presented are technical, algorithmic, and architectural possible improvements that
could, in future work, extend the work done on this thesis.

Userspace Architecture

Since the router application is single-threaded, this could influence the result that the
protocol can practically achieve. Especially the gateway router is a significant bottleneck
because every incoming and outgoing traffic must necessarily pass through this router.
Minimizing this bottleneck and increasing the traffic handled on the gateway router or all
the routers could improve the performance and remove some technical overhead. Addi-
tionally, some tests measuring the processing time of the userspace applications could be
invaluable.

Experiment Design

Since the CPU was a limitation for running more than 24 flows in the system, evaluating
the same experiments with more computing power would yield more flows and converge
to more real-life scenarios. With a higher flow count, the proposed improvement of the

31

32 CHAPTER 8. SUMMARY AND CONCLUSIONS

global tests, mentioned in chapter 7, could be implemented. This would extend the claim
maid on the performance with a higher flow count.

In addition, a possible replacement of the iperf3 tool for software that is similar but more
reliable in a stressed environment. The simultaneous deployment of iperf3 instances was
sometimes problematic, and the results were often flaky.

Routing-aware extension

A possible improvement in the downstream protocol is to minimize the messages ex-
changed. A routing-aware version of the protocol could help use some additional and
already available information to improve the performance further. In the core, the Rout-
ing Extension’s Accounting assumes that a packet will take the same route as before; if
the routing has changed, the destination node will signal the gateway since it can not
read the encrypted packet (because the nodes encrypted the packet differently). In the
best case, this solution could save two messages downstream and make the downstream
similar to the upstream if the routing stays constant. In the worst case, where the routing
changes, the protocol will fall back to the standard procedure and perform similarly to
the pure CEC application. The solution would be an algorithmic improvement and could
reduce the overhead dramatically.

Security

Not only to see this protocol under normal or stressed circumstances but to see how the
protocol handles common attacks on mesh networks, for example, flooding or denial of
service attacks. Additionally, evaluating the security of the protocol specification itself
based on modern cryptographic methods would prove the correctness and validate the
specification. Security is crucial, mainly because the monitoring- and data traffic are
coupled.

Final thoughts

With the information of chapter 3 in the back mind, the protocol takes a novel approach
and combines different ideas. The picture the results paint should also motivate us to
expand on this protocol further. Overall the CEC protocol and its extension seem to be
promising and should be, in my opinion, further looked into.

Bibliography

[1] D. Georgiev, Internet of things statistics, facts & predictions [2023‘s update], re-
view42, Mar. 2023. [Online]. Available: https : / / review42 . com / resources /

internet-of-things-stats/ (visited on 04/18/2023).
[2] E. Schiller, “Landscape of iot security”, eng, Computer Science Review, 2022, issn:

1574-0137.
[3] M. L. Sichitiu, “Wireless mesh networks: Opportunities and challenges”, in Proceed-

ings of World Wireless Congress, vol. 2, 2005, p. 21.
[4] Awmn wind - wireless nodes database, wind.awmn.net. [Online]. Available: https:

//wind.awmn.net/ (visited on 04/08/2023).
[5] I. Dalmau, What is guifi.net? | guifi.net, guifi.net, Jun. 2009. [Online]. Available:

https://guifi.net/en/what_is_guifinet (visited on 04/08/2023).
[6] “Worum geht’s? - freifunk.net”, freifunk.net, [Online]. Available: https://freifunk.

net/worum-geht-es/ (visited on 04/08/2023).
[7] N. B. Salem, L. Buttyán, J.-P. Hubaux, and M. Jakobsson, “A charging and reward-

ing scheme for packet forwarding in multi-hop cellular networks”, in Proceedings of
the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing,
ser. MobiHoc ’03, Annapolis, Maryland, USA: Association for Computing Machin-
ery, 2003, pp. 13–24, isbn: 1581136846. doi: 10.1145/778415.778418. [Online].
Available: https://doi.org/10.1145/778415.778418.

[8] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: A survey”, Com-
puter Networks, vol. 47, no. 4, pp. 445–487, Mar. 2005. doi: 10.1016/j.comnet.
2004.12.001. [Online]. Available: https://doi.org/10.1016%5C%2Fj.comnet.
2004.12.001.

[9] D. Benyamina, A. Hafid, and M. Gendreau, “Wireless mesh networks design - a
survey”, IEEE Communications Surveys &;c Tutorials, vol. 14, no. 2, pp. 299–310,
2012. doi: 10.1109/surv.2011.042711.00007. [Online]. Available: https://doi.
org/10.1109%5C%2Fsurv.2011.042711.00007.

[10] J. Svoboda, I. Ghafir, V. Prenosil, et al., “Network monitoring approaches: An
overview”, Int J Adv Comput Netw Secur, vol. 5, no. 2, pp. 88–93, 2015.

[11] Cisco ios netflow, Cisco, Jul. 2017. [Online]. Available: https://www.cisco.com/
c/en/us/products/ios-nx-os-software/ios-netflow/index.html.

[12] Abilene backbone network, web.archive.org, Dec. 2007. [Online]. Available: https:
//web.archive.org/web/20071213210730/http://abilene.internet2.edu/

(visited on 04/15/2023).
[13] S. Yuen, Getting started with gns3 | gns3 documentation, mother.github.io, Jul.

2020. [Online]. Available: https://docs.gns3.com/docs/.

33

34 BIBLIOGRAPHY

[14] S. Yuen, Docker support in gns3 | gns3 documentation, mother.github.io, Jul. 2020.
[Online]. Available: https://docs.gns3.com/docs/emulators/docker-support-
in-gns3 (visited on 04/08/2023).

[15] F. Huang, Y. Yang, and L. He, “A flow-based network monitoring framework for
wireless mesh networks”, IEEE Wireless Communications, vol. 14, no. 5, pp. 48–
55, Oct. 2007. doi: 10.1109/mwc.2007.4396942. [Online]. Available: https:
//doi.org/10.1109/Fmwc.2007.4396942.

[16] E. R. Cruz, D. Camara, and H. C. Guardia, “Providing billing support in wimax
mesh networks”, in 2009 IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, IEEE, 2009, pp. 161–166.

[17] F. Sailhan, L. Fallon, K. Quinn, et al., “Wireless mesh network monitoring: Design,
implementation and experiments”, in 2007 IEEE Globecom Workshops, 2007, pp. 1–
6. doi: 10.1109/GLOCOMW.2007.4437816.

[18] D. Gupta, P. Mohapatra, and C.-N. Chuah, “Efficient monitoring in wireless mesh
networks: Overheads and accuracy trade-offs”, in 2008 5th IEEE International Con-
ference on Mobile Ad Hoc and Sensor Systems, 2008, pp. 13–23. doi: 10.1109/
MAHSS.2008.4660026.

[19] P. A. Frangoudis, G. C. Polyzos, and V. P. Kemerlis,“Wireless community networks:
An alternative approach for nomadic broadband network access”, IEEE Communi-
cations Magazine, vol. 49, no. 5, pp. 206–213, 2011.

[20] M. Krasnyansky and F. Thiel, Universal tun/tap device driver, 2002. [Online]. Avail-
able: https://www.kernel.org/doc/Documentation/networking/tuntap.txt
(visited on 04/08/2023).

[21] B. Kaliski, Password-based cryptography specification, Ietf.org, Sep. 2000. [Online].
Available: https://www.ietf.org/rfc/rfc2898.txt (visited on 04/21/2023).

[22] The netfilter.org ”libnetfilter queue” project, 2021. [Online]. Available: https://
wiki.nftables.org/wiki-nftables/index.php/What%5C_is%5C_nftables%5C%

3Fi (visited on 04/08/2023).
[23] What is iperf / iperf3 ?, iperf.fr. [Online]. Available: https://iperf.fr/ (visited

on 04/08/2023).
[24] Docker sdk for python, docker-py.readthedocs.io, Nov. 2016. [Online]. Available:

https : / / docker - py . readthedocs . io / en / stable / index . html (visited on
04/15/2023).

[25] M. Roughan, “Simplifying the synthesis of internet traffic matrices”, ACM SIG-
COMM Computer Communication Review, vol. 35, no. 5, pp. 93–96, 2005.

List of Figures

2.1 Highlevel view on Mesh Networks . 3

2.2 Abilene topology in GNS3 . 5

2.3 User-Interface of the GNS3 application . 5

4.1 Possible scenario of a Wireless Mesh Network 10

4.2 Simple upstream . 10

4.3 Message u1 send from node 3 to node 2 . 11

4.4 Message u2 send from node 2 . 11

4.5 Message u3 send from node 1 . 12

4.6 Simple downstream . 12

4.7 Message d1 send from the pg . 13

4.8 Message d2 send from node 1 . 13

4.9 Resulting Message d3 send from node 2 . 13

4.10 Message u1 send from node 3 . 13

4.11 Message d3 send from node 3 . 14

5.1 Architecture of the protocol . 17

6.1 Heatmap of gravity model . 22

6.2 throughput of the network simulation . 23

6.3 Goodput of the network simulation . 24

6.4 throughput on upstream . 25

6.5 goodput on upstream . 26

35

36 LIST OF FIGURES

6.6 throughput on downstream . 27

6.7 goodput on downstream . 28

List of Tables

5.1 Example iperf3 settings and values . 19

6.1 Configuration for the global test environment 23

37

38 LIST OF TABLES

Appendix A

Installation Guidelines

Extensive documentation on the configuration, building, and running of the simulation is
available on a private GitHub repository, to which the CSG members have access.

39

40 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the ZIP Archive

1. Thesis (PDF)

2. Thesis as Latex source (ZIP)

3. Source code of the protocol and the repositories for the simulations

4. Midterm presentation slides (PDF)

5. Datasets and charts (ZIP)

41

