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Abstract

The Internet of Things (IoT) offers many advantages to our society, including benefits
regarding the economy and human convenience. While these are not empty promises,
IoT devices have the major drawback of being inherently vulnerable to malware due
to various characteristics. As the number of IoT devices is expected to triple by 2030,
possible defense mechanisms against such malware (e.g. Bashlite or Mirai) are essential.
This thesis proposed and implemented a prototype of a cooperative and reactive Moving
Target Defense (MTD) framework that exploits the weaknesses of Bashlite, a well-known
IoT malware. The first weakness is the ability to disrupt the connection of a Bashlite client
from the Bashlite server by changing the client’s IP address. The second vulnerability
is that Bashlite scans and distributes itself via the Telnet port 23. Hence, the infected
device is instructed to change its local IP address to disconnect itself from the Bashlite
server, and the other devices in the network are instructed to temporarily move their
Telnet service port to hide until Bashlite is rendered harmless.

Three different evaluation scenarios were created, all consisting of two virtual machines,
one of which is infected with Bashlite that attempts to infect the second machine. The
scenarios differed in the inclusion of the cooperative component and the trigger of the
execution of the MTD techniques. The two possibilities for the trigger were proactive
(every minute) and reactive (after the detection of Bashlite). The evaluation scenarios
have shown that the proposed cooperative and reactive framework and techniques have
significant advantages over a non-cooperative and reactive approach and a cooperative
but proactive approach. In addition to halving the overall infection time in the system,
the overall availability of the machines, defined by outgoing packet losses and outgoing
and incoming Telnet connections, was also significantly improved. In addition, the CPU
and RAM usage of the framework and techniques executed were minimal. Although the
cooperative and reactive approach provided by far the best results, each MTD approach
has its advantages and further research is required to make use of this promising defense
mechanism.
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Das Internet der Dinge (Internet of Things, IoT) bringt unserer Gesellschaft viele Vortei-
le, unter anderem im Bereich der Wirtschaft und des menschlichen Komforts. Das sind
zwar keine leeren Versprechungen, allerdings haben IoT Geräte den grossen Nachteil, dass
sie aufgrund verschiedener Eigenschaften stark anfällig für Schadsoftware sind. Da sich
zusätzlich die Zahl der IoT-Geräte bis 2030 voraussichtlich verdreifachen wird, sind mög-
liche Abwehrmechanismen gegen solche Schadsoftware (z. B. Bashlite oder Mirai) von
entscheidender Bedeutung. In dieser Thesis wurde ein Prototyp eines Frameworks für ein
kooperatives und reaktives Verteidigungssystem (Moving Target Defense, MTD) vorge-
schlagen und implementiert. Dieser Verteidigungsmechanismus nutzt die Schwachstellen
von Bashlite, einer bekannten IoT Malware, aus. Die erste Schwachstelle ist die Mög-
lichkeit, die Verbindung eines Bashlite-Clients mit dem Bashlite-Server zu unterbrechen,
indem die IP-Adresse des Clients geändert wird. Die zweite Schwachstelle besteht darin,
dass Bashlite den Telnet-Port 23 von anderen Maschinen scannt und sich darüber auch
verbreitet. Wegen diesen zwei Schwachstellen wird die infizierte Maschine angewiesen, die
lokale IP-Adresse zu ändern, um sich vom Bashlite-Server zu trennen, und die anderen Ge-
räte im Netzwerk werden angewiesen, ihren Telnet-Service-Port vorübergehend auf einen
anderen Port zu legen, bis Bashlite unschädlich gemacht ist.

Drei unterschiedliche Bewertungsszenarien wurden erstellt, wobei alle aus zwei virtuellen
Maschinen bestehen, von denen eine mit Bashlite infiziert ist, die dann versucht die zweite
Maschine zu infizieren. Die Szenarien unterschieden sich durch die Einbeziehung der ko-
operativen Komponente und durch den Auslöser für die Ausführung der MTD-Techniken.
Die beiden Möglichkeiten für den Auslöser waren proaktiv (jede Minute) und reaktiv
(nach der Erkennung von Bashlite). Diese Bewertungsszenarien haben gezeigt, dass das
vorgeschlagene Framework und die Techniken (kooperativ und reaktiv) erhebliche Vortei-
le gegenüber einem unkooperativen und reaktiven Ansatz und einem kooperativen, aber
proaktiven Ansatz haben. Neben der Halbierung der Gesamtinfektionszeit im System wur-
de auch die Verfügbarkeit der Maschinen, definiert durch ausgehende Paketverluste und
ausgehende und eingehende Telnet-Verbindungen, insgesamt deutlich verbessert. Darüber
hinaus war die CPU- und RAM-Auslastung des Frameworks und der ausgeführten Tech-
niken minimal. Obwohl der kooperative und reaktive Ansatz bei weitem die besten Ergeb-
nisse lieferte, hat jeder MTD-Ansatz seine Vorteile, und weitere Forschung ist erforderlich,
um diesen vielversprechenden Abwehrmechanismus entsprechend zu nutzen.
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Chapter 1

Introduction

1.1 Motivation

In today’s world, IoT devices are already ubiquitous and can be found in several major
end-use industries such as healthcare, manufacturing or banking [1]. In 2021, there were
11.3 billion IoT devices worldwide and this number is expected to triple by 2030 [2]. These
devices facilitate the integration of the physical world into a computer-based system, pro-
viding various benefits such as improved efficiency and economic advantages [3]. However,
alongside the many benefits, there are also major security concerns, as the devices are
popular targets for malware for a number of reasons. These include poor maintenance
by manufacturers and weak/repetitive device passwords [4], [5]. Infected IoT devices are
ideal as bots for botnets, which can then launch e.g. distributed denial of service attacks.
[6] detected 105 million attacks on its honeypots in the first half of 2019, which is a signif-
icant increase from the 12 million attacks registered in the first half of 2018. The security
problems, the rapidly growing number of devices worldwide and the increasing number of
attacks make a strong defence option indispensable.

One possible defence solution is Moving Target Defence (MTD). This is a cybersecurity
paradigm that was first proposed in 2009 [7]. Its aim is to constantly change the attack
surface of a target to diminish the probability of a successful attack [7]. Examples in-
clude dynamic network techniques, which change network properties such as a device’s IP
address, or dynamic data techniques, which aim to change data representations [8].

IoT malware such as Mirai or Bashlite include a spreading functionality [9]. This allows
the malware to quickly spread to new devices, which in turn increases the power of the
botnet at hand. This thesis aims to take this spreading functionality into account and
create a cooperative MTD framework that mitigates/prevents the malware in a more
effective way than a non-cooperative MTD framework is capable of.

1



2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

This thesis proposes, implements and evaluates a cooperative MTD framework with two
different MTD techniques. The framework is based on [10], but includes a cooperative
component to mitigate the selected malware and prevent its spreading. The selected mal-
ware is Bashlite, a well-known command and control malware, which was modified and
completed for this thesis. After analyzing the weaknesses of Bashlite for possible levers
where MTD techniques can be applied, two MTD techniques are selected and imple-
mented. The first is to change the IP address of the infected device, which permanently
disrupts communication with the Bashlite control server. The second technique is to
temporarily change the Telnet service port of other susceptible machines in the network.
As many IoT malware infect other devices via the Telnet port, temporarily moving the
Telnet service port of the susceptible devices prevents the devices from being found in the
first place. After a specified number of seconds, when the IP address change has finished
securing the infected device, the Telnet service port changes back to port 23.

The framework and techniques are evaluated in three different scenarios using three dif-
ferent metrics. These metrics include the overall infection time of the system, the inter-
ruption of the availability of the machines and the CPU and RAM usage needed by the
MTD framework and its techniques. The base case for the evaluation is a non-cooperative
and reactive MTD framework that only uses the IP address change to clear the devices
after Bashlite is found on them. Reactive means that there is a detection mechanism
for the malware and the MTD techniques start as soon as the malware is found on the
system. So in the first scenario, each machine has to be infected before it can do anything
against Bashlite. The second scenario is cooperative and reactive. As soon as Bashlite is
found on a machine on the network, the infected machine initiates the IP address change
and all other machines in a given IP range change their Telnet service port to a different
port. This is the solution presented in this thesis. The third scenario is cooperative, but
proactive. Proactive means that the MTD techniques are run at a specified interval, in
this case 60 seconds. Following the evaluation, its results are presented and discussed
in-depth.

1.3 Thesis Outline

After this introductory chapter, the thesis continues with the necessary background in-
formation (Chapter 2) for the rest of this thesis. Various information is presented there,
including a general overview of MTD and why IoT devices are susceptible to malware.
This chapter is followed by the related research chapter (Chapter 3), which first presents
the state of research of MTD in IoT, then introduces some MTD IoT frameworks, and
finally introduces some MTD IoT mechanisms/techniques. Chapter 4 is the implementa-
tion chapter, which deals with the selection and adaptation of Bashlite and possible levers
where MTD techniques could be applied to mitigate a Bashlite infection. Additionally,
the final implementation is presented in detail in the implementation chapter. This final
implementation is then evaluated in Chapter 5, which first introduces the methodology
of the evaluation and then presents the results. The last two chapters of the thesis are
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the discussion and the conclusion. Additionally, some limitations are presented in the
discussion and possible future research in the conclusion.
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Chapter 2

Background

This chapter provides an overview of the background knowledge relevant for the thesis.
First, a general overview of Moving Target Defence (MTD) is introduced. Second, some
background information on IoT security is presented. This includes some architectural
information as well as common IoT malware and how they work. A subsection on coop-
erative defence concludes the chapter.

2.1 General Overview of Moving Target Defense

Although the idea of modifying system components to prevent others from disrupting the
systems has been around for some time, the first use of the term ”MTD”was proposed in
2009 by Networking and Information Technology Research and Development (NITRD) [7].
The following paragraph is based on this very NITRD source [11], which despite its age
serves as a good overview of MTD.

One of the main problems of systems is their relatively static configuration. This static
design stems from the fact that, in the past, system requirements focused on simplicity
and elegance rather than security, as exploitation of vulnerabilities was not a concern.
An example are IP addresses and other configuration parameters that remain static over
a relatively long period of time. An adversary needs to know the vulnerabilities of a
system in order to attack it effectively. The longer the vulnerabilities exist, the more
likely they are to be exploited. Therefore, a static system is a significant advantage for
an adversary because it gives them enough time to prepare and plan their attack. This
is the motivation behind MTD, which involves building systems that change rapidly to
minimise the likelihood of a successful attack.

Another great and more recent summary was given by [7]. Since system information
does not expire, an attacker with enough resources (e.g. time) will ultimately find a
vulnerability and succeed in his attack. MTD tries to increase the resources needed for an
attacker to succeed by continuously altering the attack surface of the system. The sum
of a system’s vulnerabilities can be defined as its attack surface [12].

5



6 CHAPTER 2. BACKGROUND

[13] concluded from the existing literature that three elements must be defined for an
MTD technique to achieve the defence objective.

1. What to move: This defines the moving parameter (MP), which is an essential
attribute (e.g. IP address or service port) of an attack target. Each MP has a
domain from which its values can be selected.

2. How to move: This describes how the MP should be moved. This involves selecting
a new MP value from its range and replacing the old MP value. There are several
ways to choose the new value, such as randomly, game theoretically or situationally.

3. When to move: This describes the frequency with which the current value of the
MP should be replaced by the new one. This is a critical element because if the
MP changes too often, it could lead to poor system performance; if it changes too
little, an attacker could be successful. [7] identified three different decision processes
in the literature: time-based, event-based and hybrid.

[8] reviewed five dominant domains of MTD techniques, including the advantages and
disadvantages of each. Below is a presentation of these 5 domains. For each domain, [8]
also indicated the phase of the attack that the domain seeks to disrupt. For this, the
authors chose a five-phase attack consisting of the following phases:

• Reconnaissance: This phase is mainly limited to observation, where the attacker
tries to find a target and collect basic information about it. An example of this is
finding the IP address of a host through IP scanning.

• Access: In this phase, the adversaries collect detailed information about their tar-
get. In the case of e.g. a web server, this could include its operating system or
configuration.

• Development: In this phase, the adversaries develop an attack that targets a pre-
viously found vulnerability. This can be achieved offline without any connection to
the target.

• Launch: In this phase, the adversaries compromise the target by delivering the
attack payload. This can be done in a variety of ways, including infected media or
over the network.

• Persistence: If the adversaries wish to remain in the compromised system, they can
install additional entry points into the system, such as backdoors.

Each of the MTD domains described below attempts to disrupt one or more of these
phases. This is only an overview of the domains and does not cover specific techniques [8].
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2.1.1 Dynamic Networks

MTD techniques in this domain modify network properties to increase the required work-
load for an attacker and thus reduce the probability of a successful attack. These tech-
niques are primarily used to prevent the success of the reconnaissance phase, but can also
be used to prevent a successful launch phase. Possible means to achieve these network
modifications include frequent address and port changes, or changing the logical network
topology. The logical network topology is how devices are arranged in a computer network
and how they communicate with each other [14].

One problem with such techniques is that they may hinder convenient use of the system
when applied to a service of a system that needs to remain in a known network location.
An example are public servers, where such a technique would defeat its purpose as the
server would be hidden even for legitimate users. Another challenge is that the degree of
uncertainty created for attackers is critical to the effectiveness of randomization. Entropy,
a value that depends on the number of possible values and their corresponding probabil-
ities, can measure the uncertainty in a random value, but this entropy is limited in many
dynamic network techniques. One reason for this is that IP addresses and port numbers
can be limited by the network infrastructure.

2.1.2 Dynamic Platforms

MTD techniques in this domain focus on modifying the computing platform character-
istics. The goal is the disruption of attacks that depend on specific platform properties.
There are several properties that can be changed, such as the operating system, storage
systems, virtual machine instances, or communication channels. It is possible for the
same application to run in parallel in different architectural contexts, or for applications
to migrate from machine to machine. In terms of attack phases, these techniques pro-
vide protection in all five phases, but are most beneficial in the access, development and
persistence phases. This is because an attack is much more difficult if it requires exploits
for multiple platforms to succeed. This is especially true if the program is executed in
parallel on several instances.

A problem with dynamic platforms is that these techniques also increase the attack surface
because additional code is used to control and manage migrations. Additionally, an at-
tacker may gain an advantage due to a specific vulnerability in the platform on which the
application is currently running. Another problem with dynamic platforms is that it can
be difficult to maintain or synchronise state across platforms in a platform-independent
format if required by the application. Even if the state transfer can be performed, care
must be taken to ensure that the attacker does not remain in the state, resulting in
persistence of the attacker in the system.

2.1.3 Dynamic Runtime Environment

The goal of dynamic runtime environment techniques is to prevent the exploitation of
software vulnerabilities by randomizing the environment in which the application runs.
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These techniques assume that the attacker already has an exploitable vector, and the tech-
niques are designed to prevent the attack from being executed. One problem that these
techniques can prevent is buffer overflow exploits, which can lead to code injection. These
techniques can be further divided into two sub-domains: Instruction Set Randomization
(ISR) and Address Space Randomization (ASR). ISR can take place in the application,
the operating system, or the hardware, and its goal is to prevent attackers from predicting
how the program will execute. This is done by randomizing the instructions in an appli-
cation. A specific example of ISR is encrypting instructions at load time and decrypting
them just before execution. ASR techniques aim to create a randomized memory layout
from a deterministic one. This prevents the possibility of using a known memory address
for things like control flow redirection. One of the best known and most widely used
runtime techniques is address space layout randomisation (ASLR), which falls into the
ASR subdomain.

Both subdomains have weaknesses, in the case of the ASR subdomain, or more specifically
ASLR techniques, it is the fact that typically only a part of the memory of the application
is randomized, while the other part remains static. This static part may be sufficient for
an attacker to develop a meaningful payload. Another related problem is that only the
base address of the memory segment is randomized, but the relative addresses remain
unchanged. This means that the attacker can bypass ASLR by using relative addresses.
In addition, due to the architectural limitations of the defended system, the randomized
memory spaces are often too small, making them vulnerable to brute-force attacks. Re-
garding ISR, the main weakness is the performance overhead caused by the fact that ISR
techniques often rely on software emulations, as there is often no hardware support. There
are ISR techniques that depend on low overhead methods as e.g. XOR encryption, but
these techniques are weak encryption methods and there is a possibility that the attacker
can recover the key to inject correctly encrypted instructions.

2.1.4 Dynamic Software

The goal of MTD techniques in this domain is to diversify the application without changing
its functionality. Equivalent program instructions substitute each other, changing various
properties such as the internal data structure layout or the sequence of instructions. This
reduces the likelihood of a successful attack, as the attacker must correctly guess the
software variant being used. These techniques aim to disrupt the attacks’ development
and launch phase by creating uncertainty and making code injection and code reuse more
difficult. There are several ways to apply these techniques, either by using an application
that has its own internal randomization capability, or by creating multiple semantically
equivalent binaries.

In practice, there was no widespread use of dynamic software techniques in 2014. The
examples that did exist were mostly limited to academic and research environments. Un-
fortunately, no more recent source on the current situation of dynamic software techniques
could be found. There are also several weaknesses of these techniques, one of which is
that it is complex to ensure that the diversified application provides the same function-
ality as the original. There is also a lack of scalability, the possibility of unexpected side
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effects, and the significant performance overhead associated with heavy binary translation
and emulation. Finally, many applications are designed for maximum performance, and
semantically equivalent applications could reduce this performance.

2.1.5 Dynamic Data

The goal of the dynamic data domain is to change the internal or external data represen-
tation by changing the properties of the data representation, such as syntax or format.
Similar to the dynamic software domain, the semantic context should remain unchanged,
but the change in data representation should prevent unauthorized use or access to the
content. These techniques should also complicate the development and deployment phases
of the attack, as attack development is hampered by the need to find an adequate pay-
load for the various data representations. Some of these techniques have their origins in
techniques developed against data corruption. One example is a technique where com-
putations are performed on multiple data representations, providing the ability to detect
corrupted or malicious input. Figure 2.1 shows two different data representations with
the same semantics.

These techniques also have weaknesses. One is that most standard binary formats support
only one canonical representation, resulting in a lack of diversity in possible data encod-
ings. Another drawback from a practical point of view is that dynamic data techniques
increase the effort required for application development as well as runtime performance,
since multiple data representations may have to be processed and monitored.

Figure 2.1: Two Different Data Representations With the Same Semantics.

2.1.6 Summary

Table 2.1 shows the different moving target defence domains and the corresponding attack
phase they seek to disrupt. In their discussion, [8] identified three critical properties
for effective MTD, namely unpredictability, comprehensiveness and timeliness. The first
property is crucial because if the attacker can predict the next movement of a defence
mechanism, the defence becomes obsolete. Comprehensiveness means the inclusion of all
elements that could work against an attack, as one element alone may not be very useful.
An example is the case where the location of an application’s library is randomized,
but the application remains in a fixed location. This means that attackers can simply
ignore the randomization and attack the fixed code. Timeliness is also important. For
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example, if attackers can observe the outcome of a moving target defence technique,
this knowledge could give them an opportunity to attack. It is also crucial that the
attacker is exposed to the diversity of the environment within the attack time. The
authors gave an example where an application is migrated among three platforms, so that
the attackers would need another vulnerability to continue the attack after the migration
to the new platform. However, if the attack time is smaller than the migration time,
the security is reduced because the attackers have three different platforms from which
to choose vulnerabilities. The authors conclude that some techniques work better for
general-purpose environments and some better for specific purposes, as each technique
has different strengths and weaknesses.

Table 2.1: A Summary of the Moving Target Defense Domains and the Corresponding
Attack Phase They try to Hinder [8].

2.2 Internet of Things

[3] gave a brief introduction about what the Internet of Things (IoT) is. It is about
the collection and exchange of data through networked items embedded with electron-
ics, sensors, software, actuators and a network connection. Examples of these items are
physical devices, vehicles or buildings. These items can be controlled or sensed across
an existing network infrastructure. This enables better integration of the physical world
into computer-based systems, which has several benefits, such as reduced need for human
intervention and economic benefits. But there are also major challenges for IoT, two
of which are security and privacy. For example, a smart meter in a house knows when
someone is at home, and this data is also shared with other devices and databases by
companies that therefore also have this information.

2.2.1 Current and Future Distribution of IoT Devices

According to [2], there existed 11.3 billion IoT devices worldwide in 2021. By 2030, this
number is expected to nearly triple to an estimated 29.3 billion devices. [1] estimated
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the global market size for IoT from 2022 to 2029. They estimated the market size to be
2,465.26 billion in 2029, which is significantly higher than the current 478.36 billion. Also
interesting is the analysis of the current market share by end-use industry. At 21.5%, the
largest share of the end-use industry is accounted for by the healthcare market, followed
by the manufacturing market and the IT & telecom market. These three account for
around 50% of the total market share. Other examples include retail, transportation and
banking, financial services and insurance.

[15] has published a survey conducted in July 2021 on Smart Home solutions (consisting
of IoT devices) and how many users are currently using them and how many users intend
to use them in the future. 5 different groups were formed, which are shown in Table 2.2. It
can be seen that some groups currently have a higher share and others a lower share, but
the intended future use is significantly higher for each group. Another interesting insight
is the breadth of the groups, ranging from lamps to security to garden and balcony. Thus,
IoT devices can already be found in various places, and they will become even more
important than they are today.

Table 2.2: Results of a Survey Regarding IoT Devices in Households Based on Data in
Germany and the UK.

2.2.2 Architecture

[16] published an article on a general overview between architectures, protocols and appli-
cations of IoT. The authors presented three different architectures that are most commonly
found in the literature.

The first architecture is a generic high-level architecture consisting of three layers, namely
perception, network and application. The perception layer is the physical layer that inter-
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acts with the environment through information gathering and processing. Objects with
computing power and the ability to interact with the outside world are an integral part
of this layer. The network layer is the communication layer responsible for transferring
data from the perception layer to the application layer. This layer includes all protocols
and technologies required for this connection. An example of a protocol is 6LoWPAN,
which stands for IPv6 over Low power Wireless Personal Area Network. The personal
area network connects devices in a user’s immediate environment, such as Bluetooth head-
phones with a mobile phone [17]. The final layer is the application layer, which contains
the essential software for a specific service. The data from the preceding layers is stored,
processed, aggregated and filtered in this layer. The processed data is then made available
to the IoT application.

The second architecture is the service-oriented architecture. This architecture extends
the three-tier architecture by adding a service layer between the application layer and the
network layer. This service layer provides services to support the application layer and
consists of several sub-services. The goal of this service-oriented architecture is to enable
software and hardware reuse and to coordinate services. The architecture helps to connect
different functional units through protocols and interfaces.

The third common architecture is the middleware architecture, also known as the five-
layer architecture. This architecture is made up of five layers: the perception layer, the
network layer, the middleware layer, the application layer and the business layer. The
middleware layer, which aggregates and filters data received from the hardware, is an im-
portant layer. Various technologies are hidden in the middleware and standard interfaces
are provided. This means that developers do not have to worry about compatibility be-
tween the infrastructures and the application and can therefore focus on the application
development.

The three architectures discussed can be seen in Figure 2.2. Some additional architectures
that also exist are the cloud-based architectures or the edge computing-based architec-
tures.

Figure 2.2: The Three Most Common IoT Architectures [16].
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2.2.3 Hardware and Software Details of IoT

[18] published a report on an IoT & Edge Developer Survey with interesting insights.
This survey was conducted in 2022 and 910 developers, committers, architects and decision
makers were interviewed. One of the key findings for this thesis was that security concerns
have almost doubled this year and are now in the top three challenges for developers, along
with data collection & analysis and connectivity. The most commonly used programming
languages for constrained devices are Java, C and C++. In terms of the operating system
(OS) for constrained devices, Linux distributions are the top choice with 43%. FreeRTOS
is in second place with 22%. FreeRTOS is a real-time operating system for microcontrollers
that is freely distributed under the MIT Open Source Licence [19]. In third place is No
OS/bare metal for constrained devices. The Linux operating system is further broken
down into its distributions. Ubuntu makes up 23% of all Linux operating systems, the
second distribution is Raspbian with 20%, the third is Alpine with 18% and the fourth is
Debian with 17%. Interestingly, there are many more distributions in use, but they have
a maximum share of 13%. This information can be seen graphically in 2.3.

In terms of architecture for constrained devices, ARM dominates. The most common
architecture is ARM Cortex-M0/m0+ with 26%. ARM Cortex-M3/ARM Cortex-M4
follows with 24%. In third place is the ARM Cortex-M7 with 20%.

Figure 2.3: The Most Commonly Used OSs in Constrained Devices.

2.3 Malware and IoT

This section gives a general overview of malware, especially in the context of IoT devices.
A more detailed analysis can be found in Section 4.3, where Bashlite is analysed.
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Malware or malicious software is a term used to describe malicious code or a program
that is harmful to a system [20]. Examples of malware or malware families related to IoT
are Mirai, Bashlite, Tsunami or Hajime [21]. Mirai and Bashlite are probably two of the
best known examples. Mirai, for example, was still highly prevalent in the first quarter of
2019 [6]. Bashlite, also known as Gafgyt [22], was already much less common in 2019 [6],
but other malware such as Mirai has inherited from its source code [21].

[9] gave a brief overview of Bashlite and Mirai and how they are used to create botnets.
The rest of this paragraph is based on that article. Since the source code of Mirai is based
on that of Bashlite, they share some similarities. For example, both infect IoT devices
that can be accessed with known and/or vulnerable authentication credentials. They also
both aim to create botnets. These botnets have different components. The command
and control (C&C) servers send commands to the infected devices and essentially act as
the operator’s interface to the botnet. The bots are the infected devices that make up
the botnet. They execute the commands received from the C&C servers. There are also
scanners that identify vulnerable devices by looking for Telnet and SSH servers that the
scanners attempt to log into. Loaders download and run the malware of the botnet after
logging into the vulnerable devices. Malware servers provide resources such as executable
binaries to the botnet. A possibly distributed database stores collected information such
as scan results or active bots.

Such botnets can be used for different purposes [5], which are described below. The first
purpose is the aforementioned DDoS attack. The idea is to attack a target by sending
so much traffic from many different machines that the target cannot handle the volume,
eventually taking the target down. Another use for botnets are spam bots. Using botnets,
spam can be sent from IP addresses that are not yet known to be spam relays and therefore
not yet blocked by system administrators. A third purpose are crypto mining bots, which
can be used to mine cryptocurrencies such as Monero. These malware require a device
with sufficient processing power (e.g. smartphones), so constrained devices are not optimal
for such malware to infect.

According to [4], there are five main reasons why IoT devices are advantageous for creating
botnets:

• IoT devices often operate around-the-clock, they do not have on-off cycles like laptop
and desktop computers.

• IoT devices are poorly maintained. A very common problem is that devices are set
up and then forgotten about as long as they are working properly.

• IoT devices are capable of generating significant distributed denial of service (DDoS)
attack traffic, similar to the attack traffic generated by modern desktop systems.

• IoT devices are often either non-interactive or require minimal user intervention,
resulting in infections going unnoticed.

• IoT vendors favour usability and user-friendliness over security, resulting in weak
protection.
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The last item in the enumeration includes a number of known vulnerabilities [5]. The first
are weak passwords to make it easier to set up and use the device. These passwords are
many times printed in the user manual or even outside the packaging. As the credentials
are often the same for all the same devices, this is a huge problem. Even if the credentials
were not so accessible, they are often predictable combinations such as ”admin/admin”.
In addition, many devices lack encryption. Such security features are often not even con-
sidered. In addition, vendors sometimes add hidden access mechanisms, called backdoors,
to devices. They might do this to make it easier to support the device, but it could also
be used by hackers. An example is an open port on the device that cannot be closed.

2.3.1 IoT Malware Statistics

[6] published a report in which the authors researched attacks on IoT devices using hon-
eypots. The authors mentioned that such honeypots are the best option to track attacks,
catch malware or just get a general overview. This subsection is based on that source.
There exist three different common types of honeypots.

• Low-interaction honeypots simulate services such as SSH, Telnet and web servers.
The attacker is fooled into thinking that this is a real susceptible system and attacks
the honeypot.

• High-interaction honeypots are real systems that have the advantage of running
fully POSIX capable systems. POSIX is a standard defined by the IEEE [23]. This
standard helps to maintain compatibility between operating systems [24]. As these
honeypots are real systems, it is important to take action against the malicious
activity of the malware (e.g. prevent further systems from being compromised).

• Medium-interaction honeypots are a combination of low-interaction and high-interaction
honeypots.

The authors collected data from more than 50 honeypots around the world over the course
of more than a year.

In the first six months of 2019, the Telnet honeypot detected more than 105 million attacks
from 276,000 attacking IP addresses. This is significantly more than the 12 million attacks
from 69,000 IP addresses in the first half of the previous year. The most attacking IP
addresses came from Brazil and China with 30% and 19% respectively. Egypt, Russia
and the US followed with 12%, 11% and 8% respectively. Regarding the top malware
threats that attacked the Telnet honeypot, 6 out of 10 were Mirai variants. There are
several reasons for this, including the public availability of the malware and its ability to
create bots of any complexity and for any hardware configuration. The NyaDrop family
of malware was the most common, accounting for around 39% of all attacks. This is a
Linux trojan that targets IoT devices and specifically the MIPS CPU architectures [25].
In second, third, fourth and fifth place were the Mirai variants with 22%, 12%, 2% and
2% respectively.
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Another interesting finding was the most common combination of credentials tried. ”sup-
port/support”was tried 2,627,805 times, ”root/vizxv”was tried 2,376,654 times, and ”ad-
min/admin” was tried 2,359,985 times in the first quarter of 2019. The second is the
default combination for connecting to a vulnerable camera from Dahua via Telnet [26].
The last interesting finding the authors made was in terms of the ports targeted by the
malware. TCP ports were clearly the most targeted, with only a small number of attacks
targeting ICMP and UDP ports. Unfortunately, the authors did not provide statistics for
other protocols such as SSH in the same depth as they did for the Telnet protocol.

2.3.2 P2P IoT Botnets

The botnets described so far correspond to the typical IoT botnet [27]. Adversaries con-
trol the botnet from a C&C server that controls various infected devices. This means that
taking out the C&C servers renders the entire botnet useless, regardless of how many bots
are connected to the system [27]. While taking down many C&C servers can be cumber-
some, it can also be a convenient solution against botnets. For example, this strategy was
used against the Andromeda botnet [28]. Several international authorities took action
against domains and servers that were spreading the Andromeda malware. This involved,
for example, sinkholing 1500 domains. Sinkholing is when traffic is redirected to a server
other than the intended one, such as one controlled by law enforcement authorities [28].
However, this solution vanishes as soon as the botnet is set up as a peer-to-peer (P2P)
network. [29] wrote a technical briefing on the development of IoT botnets in combination
with P2P networking. The rest of this subsection is based on that source.

Unlike a botnet with a central server, a P2P network is much more robust. The authors
use BitTorrent as an example because it has withstood the test of time, having been used
to share illegal content for over 20 years without the authorities being able to shut it
down. In the case of a P2P IoT botnet, each bot would need to be disinfected separately,
as there is no central server. This is also a problem caused by the insecurities of IoT
systems, as discussed in Section 2.3. In the case of a desktop environment, mass cleanup
would theoretically still be possible, e.g. by antivirus vendors, but this is not an option for
IoT devices because there is no antivirus protection. Fortunately, there are not many P2P
botnet families yet, the authors stated that they have only seen five families so far, and
they also suspect that they are not common at the moment. Although they do not know
the actual number of infections, they find it worrying that the rate at which P2P botnet
malware appears is increasing. The authors conclude that this indicates an increased
interest in creating P2P botnet malware. The authors then briefly describe each of the
five malware families. One of these five is described below to give a general idea.

The most recent malware mentioned by the authors is ”HEH”. HEH is written in Go
and scans and infects via Telnet port 23 and port 2323 with hardcoded credentials and
brute-forced passwords. The malware starts by randomly selecting an IP address and
then uses an algorithm to derive the P2P port from that IP address. Thus, no list of
IP addresses and ports is required. Once a victim is infected, it attempts to connect to
other peers. Additionally, the malware stops the HTTP service and starts its own service
instead, which acts as a download site for infected devices. The P2P protocol has 5
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operation codes, 4 of which are for synchronisation and one for receiving commands. The
latter accepts various instructions such as ’exit’, ’attack’, ’execute’ and ’self-destruct’.
According to the authors, the last command was particularly interesting because it is
unusual for a bot to be able to destroy itself.

The authors also shared their thoughts on the future development of P2P IoT botnets.
They emphasized the importance of making money as an incentive for cybercriminals to
develop malware. Since these incentives are critical to development, it makes sense to
take a look at how these incentives have evolved. Routers are an interesting target for
attackers because they act as an entry point into a home network. An infected router
also offers many opportunities such as man-in-the-middle attacks or information theft.
Additionally, an infected router allows lateral movement to infect other unsecured devices
on the network. The authors also mentioned that, in terms of financial incentives, a
distinction needs to be made between the pre-Covid 19 era and now, due to the increase
in home offices. For example, an infected home router could now be an entry point into
a company, which could be a possible financial incentive for adversaries. There is also a
general risk that a successful attack will motivate other cybercriminals to do the same.
For example, the authors predict that once a P2P IoT botnet is successful enough, all
other botnets will start using P2P capabilities as well. As a result, there is a realistic
risk that such P2P malware will be further developed and distributed, but this is highly
dependent on the financial incentives.

As this chapter has shown, there are many problems with the security of IoT devices.
There are several reasons why IoT devices are susceptible to malware, such as poor main-
tenance or a focus on usability rather than security [4]. Infected IoT devices can be used
for malicious behaviour. One problem are botnets, where infected devices act as bots that
execute commands sent by an adversary. As [6] noted, there were about 9.5 times more
attacks in the first half of 2019 (105 million) than in the first half of 2018 (12 million),
which is an extreme increase. Another growing problem are P2P IoT botnets. Even if
they are not very prevalent currently, it is certain that these P2P botnets can become a
major threat in the future because they are almost unkillable. Each of the above points
makes it clear that a way to defend against such threats is essential.

2.4 Cooperative Defense

There were not many resources available on the subject of cooperative defence. The ones
found are presented in this section.

[30] is a relatively old paper from 2005 in which the authors aim to detect DDoS attacks in
the intermediate network. The goal was to enable a DDoS attack detection system to share
information, rather than to improve a currently available detection method. To achieve
this, they proposed a dynamic defence infrastructure consisting of independent defence
nodes and assumed that a DDoS attack heading towards a victim would consume more
bandwidth than a normal use of the Internet. For scalable and resilient communication
to exchange attack information, the authors designed a directional gossip mechanism.
Each defense node sets a limit on the amount of traffic it deems malicious, based on
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its own defense strategy. This usually results in a high number of false positives due
to the dynamic nature of the Internet. The defense accuracy is improved by the gossip
mechanism, which helps to transmit information between nodes. During this information
exchange, the rate limit is adjusted at each individual defence node. When the mechanism
for aggregating information converges, the defense node’s rate limit will have roughly
global information of the attack, which allows it to more accurately block/drop malicious
traffic.

[31] and [32] proposed and evaluated a cooperative defence mechanism based on the
blockchain. The authors presented a scenario in which a web server in an autonomous
system is under a DDoS attack from devices hosted in other autonomous systems. An
autonomous system is a network or group of networks which share a single routing pol-
icy [33]. A routing policy contains a list of IP addresses controlled by the autonomous
system and a list of other autonomous systems to which it is connected [33]. In this
scenario, the web server relies on the defences of the autonomous system where the server
is located. As it is better to block malicious traffic close to its origin, this approach is
not ideal. This is where the blockchain comes in. The idea is to store the attacker’s
IP address in a smart contract created by the collaborative defence participants. In this
way, subscribed autonomous systems on the Ethereum blockchain receive an updated list
of addresses to be blocked and also confirm the authenticity of the attack. Once the
other autonomous systems receive the updated list and confirm the attack, the mitigation
strategies in the autonomous system can be triggered to block malicious traffic close to
its origin.



Chapter 3

Related Work

This chapter presents related work. The first section presents an article on the current
state of research on MTD in IoT. The second section presents related work in the area
of MTD frameworks for IoT devices. The last section gives an overview of specific IoT
techniques and explains how they relate to the work at hand.

3.1 State of Research of MTD in IoT

[7] did a literature review analyzing existing MTD for IOT techniques. This section is
based on that source. The authors defined four research questions, all of which are of
interest in the context of this thesis. The first research question concerned the number of
proposals for MTD techniques that exist for IoT. They concluded that since 2013, 32 novel
proposals have been proposed for the IoT domain. In contrast, more than 80 different
general purpose MTD techniques have been proposed from 2009 to 2018 [34].

The second research question was related to the characteristics that can be observed in
MTD techniques for IoT. For this question, the authors created an MTD taxonomy show-
ing the distribution of these 32 techniques grouped in the MTD domain mentioned in
Section 2.1. The dominant techniques are the networking techniques with 54%, followed
by the dynamic runtime environment techniques with 20%. Software and data techniques
follow with 13% and 10%, respectively. Dynamic platform techniques have the smallest
share with 3%. Figure 3.1 shows these shares graphically. These shares differ from those
of the general-purpose MTD techniques, where, for example, the dynamic network tech-
niques account for only about 21% or the dynamic platform for about 20%. A possible
reason for this is that recently there has been an increasing interest in network-based
MTD techniques [7].

The third research question was how sound the security foundations of the proposed tech-
niques are. To answer this question, the authors classified each of the 32 techniques into
three different cryptographic categories. The first category, which includes twelve tech-
niques, completely lacks cryptography or uses a random process without providing further
information about it. The second category either uses cryptographic techniques that are
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Figure 3.1: Share of IoT MTD Techniques Grouped by MTD Domains [7].

known to be vulnerable or uses custom cryptography without proof. Nine techniques
fall into this second category. The last category is the one that has adequate security
foundations, such as using state-of-the-art cryptography like SHA256. There are eleven
techniques in this category. The authors point out that although they have simplified the
measurement of security, 32% is a small value considering that the central goal of MTD
is to improve security. The fourth research question is the most interesting and relates
to the extent to which the proposals are applicable in a real-world IoT deployment. To
answer this, the implementation and evaluation aspects of the proposed techniques were
examined by the authors. They concluded that 50% of the proposed techniques show very
strong or strong evidence that they can be used in a real IoT deployment. Another 25% of
the techniques show mild evidence, and another 25% have weak to no evidence that they
can be used in a real IoT deployment. The authors conclude that these are encouraging
results.

3.2 MTD IoT Frameworks

[35] presented an MTD framework aimed at mitigating multi-purpose malware. The
framework consists of two modules, the MTD decision module, which decides when to
deploy an MTD mechanism, and the MTD enforcement module, which decides what
MTD mechanism to deploy and how to do that. The authors distinguished between a rule-
based proactive approach and a machine-learning based reactive approach to determine
when the MTD mechanisms should be executed. They were able to detect normal and
malicious behavior in about 10 seconds. [10] wrote a bachelor thesis, whose results are
part of [35]. This thesis is about mitigating cyberattacks on resource-constrained devices
using MTD. To achieve this, the author developed an architecture consisting of three
main components, an MTD Deployer Server, an MTD Deployer Client, and the MTD
solution itself. The MTD Deployer Client serves as an interface for external programs to
notify the MTD Deployer Server of an attack. After the MTD Deployer Server receives
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an attack report, it searches for the appropriate MTD solution, whereupon the MTD
Deployer Server launches the appropriate script of the MTD solution to mitigate the
attack on the affected machine. This architecture was also the basis for the thesis at
hand.

[36] created a framework that helps to answer the fundamental design questions (What,
How, When) described in Section 2.1 by using five different variables: attack success
probability, system downtime, CPU time, energy consumption, and memory usage. The
framework starts with policies, i.e., desirable goals and targets to be achieved. Then
some strategy parameters (what to move, when to move, and how to move) are defined.
These parameters are then applied to the IoT system which will be continuously attacked.
During these attacks, the five variables are measured. These variables are then analyzed
using multiple criteria decision analysis. The result of this analysis is compared to the
targets defined in the policies. Depending on this comparison, either the final strategy
parameters are fixed or different strategy parameters need to be created and the framework
starts over. Finally, the authors used this framework to select the most suitable ”when to
move” parameter for a proposed MTD technique.

[37] proposed a generic MTD framework for IoT called IANVS. This framework consists of
four different components that should facilitate the implementation of MTD in distributed
systems, since in such systems the parties involved need to agree on the MP value. The
four components are

• An authenticated key establishment mechanism called AKE. This provides a secret
cryptographic key that only trusted parties of the MTD strategy must know.

• An authenticated state synchronization mechanism called Auth-SYNC. This pro-
vides a system state value that must be fresh and authenticated.

• A cryptographically secure pseudo random number generator called CSPRNG. This
takes the cryptographic key from the AKE component and the system state from the
Auth-SYNC component and generates a ”cryptographically secure pseudo random
binary key stream”.

• A mechanism called MP-Map that outputs values in the MP domains with equiprob-
ability. This takes the keystream from the CSPRNG and maps it to a value in the
MP domain (e.g. port hopping).

The authors also applied this framework and designed two MTD techniques for IoT.

3.3 MTD IoT Mechanisms

This subsection briefly introduces MTD mechanisms/techniques. Since the intention is to
use dynamic network techniques for the implementation part of this thesis, this subsection
is mostly limited to this type of techniques. However, other techniques that were in the
same articles as the dynamic network techniques are also briefly mentioned.
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[38] proposed ”MT6D”, which stands for Moving Target IPv6 defense, with the goal of
protecting hosts communicating over the public Internet from targeted network attacks
while preserving user privacy. To achieve this, repeated address rotation of the sender
and receiver takes place. This address rotation can also occur in mid-session, preventing
an attacker from knowing who the two hosts are. The MT6D IIDs are computed from
a host’s EUI-64 IID, a timestamp, and a shared session key. The authors ultimately
validated their design with a proof-of-concept MT6D prototype.

[39] further adapted this approach for IoT. The authors investigated how this MT6D can
be used with the ”IPv6 over Low power Wireless Personal Area Network” (6LoWPAN).
The authors concluded that frequent rotation of IPv6 addresses of 6LoWPAN devices can
prevent an attacker from obtaining the IP address of a device and thus prevent an attack.
Further research based on MT6D was done by [40], who presented optimizations and the
design for a Micro-Moving Target IPv6 Defense (MT6D ). This includes the protocols, the
description of the operating modes, and the lightweight hash algorithms. Additionally,
the authors present detailed testing and validation possibilities.

[41] also proposed MTD techniques for resource-constrained devices. Their approach
involves reconfiguring such devices at two different architectural layers. The first is the
security layer, where the reconfiguration is performed by switching between different cryp-
tosystems in the embedded network. The second layer is the physical layer, where the
reconfiguration of the devices can be done through different versions of the firmware. The
authors concluded that their proposed mechanism increases the complexity for a potential
attacker.

[42] suggested 6HOP. This algorithm provides transient addresses, ports, and key infor-
mation for the connection endpoints (e.g. server and client). These endpoints must be
initialized over a residential wireless network to exchange a secret. From this secret,
the corresponding information is deterministically computed using the 6HOP algorithm.
Thus, a server knows which address to assign to itself and on which port to listen for
incoming requests, and the client knows where to connect.

[35], which was mentioned in the previous section, proposed several MTD mechanisms in
addition to the MTD framework. The first mechanism is to honeypot and trap a crypto-
ransomware encryptor with dynamically expanding and collapsing directories of dummy
files. Along with this trapping, the encryptor is identified and killed. The second mecha-
nism is to change the file extension of critical data to prevent it from being encrypted by
crypto ransomware. This works because the file extensions determine whether or not the
files are a target for some malware families. The third mechanism was to remove malware
such as rootkits with a clean ld.so.preload file. The last mechanism was to randomize
private IP addresses to deal with C&C malware, as the IP address change disrupts the
communication between the IoT device and the C&C. These MTD mechanisms were then
successfully tested against real malware.

[43] proposed an address shuffling algorithm (AShA). The idea of this algorithm is to let
each node of a network calculate its new address autonomously. A coordinator ensures
that each new address is not already in use in the network by choosing a set of parameters.
ASha enables secure, fast, and collision-free address renewal in an IPv6 network.
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[37] proposed two concrete MTD techniques using the framework explained above (IANVS).
The first is a single port-hopping strategy using the UDP port number of a service as the
moving parameter. Since known port numbers are a prerequisite for network services to
work, their framework is required for port hopping while informing other parties in the
network of the current port. The second strategy is to prevent DoS attacks on CoAP
servers. The moving parameter here is the /.well-known/core URI, and the idea is that
the server should only respond to GET requests from clients if the encoded GET request
matches the present MTD representation of /.well-known/core. Finally, the authors eval-
uated the port-hopping strategy on real IoT hardware.

[36] proposed an MTD strategy that shuffles between 4 communication protocols between
a node and the gateway in the IoT network by applying their proposed framework that was
presented in the previous chapter. Examples of the communication protocols are WiFi and
Bluetooth. By using the framework the authors found the ideal when to move parameter
for their MTD strategy. This strategy ultimately involved changing the communication
protocol with an uniform random shuffling and at a uniform random time between 1.5
minutes and 2.5 minutes.

Table 3.1 shows the described network techniques with some additional information. It
is evident that there exist several different approaches to defend IoT against malware.
However, no approach has been found that includes a cooperative component to more
effectively defend against IoT malware. As there is an increasing threat caused by such
malware [6] [27], further research is needed. This thesis addresses this research gap.
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Chapter 4

Implementation

This chapter presents the implementation details of the proposed solution, including the
initial architecture created, the process of finding and modifying a suitable malware, and
the explanation of the final implementation.

4.1 Creating the Implementation Environment

Before starting the implementation, a secure environment was essential, as this thesis
deals with malware. To achieve this, Oracle VM VirtualBox Manager, an open source
virtualisation solution [44], was installed to create three virtual machines. These included
a leader machine and two other VMs called VM1 and VM2. While the leader machine is
used to run all the server components, the other two are intended to mimic the IoT devices.
Ubuntu was chosen as the operating system as it is the most widely used operating system
for constrained devices as described in Section 2.2.3. This OS had to be changed later
which will be described in Section 4.5.2. Since the hardware details can be customized
later, no further thoughts were given to this at this stage.

Ideally, a different machine than the main computer would be used to run all the virtual
machines, but unfortunately this was not an option. However, to ensure the highest
level of security for the machine and the network, several security measures were taken.
All the machines created were put into an internal network. This is an option within
VirtualBox that creates a software-based internal network where only the machines in the
network can communicate with each other. In this way, the machines cannot communicate
with the host machine or the outside world, which was exactly the aim as this prevents
uncontrolled spreading. A side effect was that it was not possible to download anything
from the Internet.

The solution to this problem was a shared folder that could be accessed by the host
computer and the virtual machines. For additional security, the shared clipboard has
been disabled and the host machine has been placed on a guest network so that there are
no other devices in the same network. Therefore, even in the unlikely case of the host
machine being infected, the malware could not spread across the network except to the
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router. However, as the default password has been changed and the latest updates are
automatically installed on the router, the risk of infection is negligible. Other security
measures that were already in place included a different OS on my host computer and
Malwarebytes anti-virus protection. Thus, the environment created was as secure as it
could be. The described environment can be seen in Figure 4.1.

Figure 4.1: The Created Environment With 3 Different VMs in an Internal Network
Which Prevents the Malware From Spreading to Other Machines.

4.2 Initial Prototype

The first prototype should help to better understand MTD from an implementation per-
spective, which should ultimately help to find appropriate solutions for the problem at
hand. The architecture of this prototype was very similar to [10]. An overview of this
architecture can be seen in Figure 4.2. The leader machine runs two applications, the
MTD Deployer Client and the MTD Deployer Server. These two do not necessarily have
to run on the same machine, but it is possible. The idea was to have these two programs
do as much of the work as possible, given the hardware limitations of the IoT devices, at
a later stage. The architecture is explained using the numbers in Figure 4.2.

1. VM1 and VM2 continuously send information to the MTD Deployer Client. This
information consists of RAM usage and CPU usage.

2. The Deployer Client continuously checks for anomalies in the information sent by
VM1 and VM2. For simplicity, this anomaly is a RAM or CPU usage greater than
50% in the last ten steps of the information sent.
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3. The Deployer Client notifies the Deployer Server of conspicuous behaviour in VM1
and VM2.

4. The MTD Deployer Server then initiates the MTD techniques, which in this case
is simply changing the private IP addresses of the virtual machines. The Deployer
Server uses the nmap command to find all the occupied IP addresses in the network
and sends each machine a new, unused IP address.

5. The VMs listen for commands sent by the Deployer Server and then migrate to the
newly sent IP address using the ifconfig command.

Figure 4.2: The Architecture of the First Prototype.

The cooperative part of this prototype is that if one VM detects malware, all VMs should
initiate countermeasures, not just the affected one. This approach had several weaknesses,
such as the VMs not checking that the migration to the IP address was working. This
and other weaknesses were addressed in later implementations.

This prototype was implemented in Python using sockets, which can be used to send
messages across a network [45]. The prototype was also briefly tested by running all the
Python scripts and manually setting the CPU usage of a VM to 100%, whereupon the
system handled the fake malware call. The Deployer Server successfully sent messages to
the VMs, which then changed their IP addresses according to the content of the messages.
Thus, everything worked as expected and it was possible to continue.
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4.3 Finding Malware Samples

The first goal after the initial prototype was to find a suitable malware for this thesis.
This was necessary for a number of reasons: Firstly, the malware had to be studied to see
how it interacts with the system in order to develop the most appropriate countermea-
sures. This included studying the underlying code where possible. Second, it would be
more meaningful to evaluate the MTD techniques with real malware. However, finding
suitable malware proved to be a difficult and extremely time-consuming task. On the one
hand, this was due to the rarity of malware code on platforms such as GitHub, which is
understandable, as otherwise anyone could easily compile and distribute the malware. On
the other hand, there were a number of requirements that the malware had to meet:

• The malware should ideally target IoT devices. Although it would have been possible
to use malware targeting desktop devices, the aim was to use IoT malware to get as
close to the real world as possible.

• The malware code should ideally be openly available for study and modification.
This was important as the malware will likely need to be tailored to work for this
thesis. It was also important to study the code in order to find possible weaknesses
in the malware.

• The malware had to run on the created VMs in order to execute and play with it.
This was ultimately to help understand and test the weaknesses of the malware.

• The malware must have a spreading functionality. This is necessary because the
goal of this thesis is to use a cooperative MTD mechanism to mitigate/prevent the
spreading of the malware.

Especially the last point proved to be difficult in the end. Several code repositories such as
GitHub and malware repositories such as MalwareBazaar were searched, but no suitable
malware could be found. On GitHub, there exists a repository [46] that contains the code
of several IoT malware, such as Bashlite, Mirai, Lightaidra and some others. However,
all of them had problems (incomplete, no spreading functionality, not executable) or were
too complex to work with, as they might need to be slightly rewritten. There were other
repositories, such as [47], which again provided the Mirai code, or [48], which provided the
same code as the first repository. The problem with MalwareBazaar was that it provided
mostly executables, which was unsuitable, since code to read and modify was an essential
requirement. Finally, Bashlite was chosen, even though it was initially not executable and
lacked an important piece of code.

4.4 Bashlite

This section presents various aspects of Bashlite. These include the changes required to
get Bashlite running, explanations of how the malware works, and an analysis of where
possible MTD techniques could be applied. Note that from now on the term ”client” will
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be used to refer to the machines that act as infected and susceptible IoT devices. This is
not to be confused with the MTD Deployer Client that runs on the leader machine and
is part of the MTD framework.

The starting point was the code from [48], even though every Bashlite on Github seemed
to provide the same code. Bashlite consists of two files, a server file and a client file, both
written in C. Having encountered the C programming language only once in a university
course and never used it again, the C language was the first obstacle, especially as the
Bashlite code contained few explanatory comments. Once the general idea of the code
was clear, the goal was to run it on the created VMs to see if this would work. The
C files were compiled using the GNU compiler collection, which contains compilers and
development tools [49] and was pre-installed on the Ubuntu systems.

Unfortunately, the execution completely failed in the case of the client script. The server.c
file was executable on the leader machine, but the client threw a fork error that was
unknown to me until then. Fork is used to create a child process, whereupon the parent
and child process use separate memory spaces [50]. Although several possible solutions,
such as running it with sudo or checking that the system had not reached its maximum
number of processes were tried, the problem remained. After some time and a lot of trial
and error, the idea came up that the underlying operating system might be the problem
and not the script itself.

Thus, new machines were set up, but this time with the Raspberry Pi Desktop OS [51].
As shown in Section 2.3, the Raspberry Pi OS (formerly Raspbian) had the second-
largest share of all Linux distributions in IoT devices, so it is a suitable alternative. After
everything was set up, the client was immediately executable on the Raspberry Pi OS.
Therefore, it is not clear whether the OS was the problem in the first place, but changing
it was one possible solution. Below follows a description of Bashlite’s server and client
and how the two files were modified for this thesis.

4.4.1 Bashlite Server

The Bashlite server basically opens two ports on the executing machine. The first port
(8888) was already defined in the code and is the port to which a ”management” connects.
This management then controls the server and the clients. So, to broadcast to the clients
and do anything in general, one must first telnet to port 8888 of the server machine and
enter a password, otherwise the server will not do anything useful with the clients. The
other port opened by the server is passed as an argument when the script is started, along
with the number of threads to create. The port used in this thesis was 6667, but this does
not matter as long as the port is free; all that matters is that the same port is included
in the client code, as this is the port to which the clients will connect after infection. The
bridge between the management and the client is the broadcast function. This function
takes the strings sent by the management and broadcasts them to all the clients, which
then execute some commands/functions based on those strings. The important thing to
note here is that no plain Bash commands can be sent directly from the management to
the clients, so sending an ”ls” as the management will not cause the clients to do anything.
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The server automatically broadcasts a ”PING” to all clients every 60 seconds. Figure 4.3
shows the basic control flow of the server.

Figure 4.3: A Simplified Control Flow of the Server File of Bashlite.

4.4.2 Bashlite Client

The client is much more complex than the server and contains many more lines of code.
At the beginning of the client file, the IP address of the command server must be specified,
and two char arrays containing default usernames and passwords are created. Later in the
code, these are used to check whether another device found is not properly secured, and
if so, the correct username and password combination is stored. Various helper functions
follow (e.g. various printing options, or a function that searches for a string in the buffer),
but these are not important for a rough understanding of the general concept.

One important helper function is getRandomPublicIP(). This function first generates a
random IP address using the rand() function, and then has a while block that basically
checks if the IP address is public, and otherwise generates a new IP that is checked again,
and so on. An invalid example would be if the first two octet portions of the IP address
were 192.168.x.x, as this is a range for private IP addresses. Ultimately, the function
returns a valid public IP address.

There are two other essential functions in the client, the processCmd() function and the
StartTheLelz() function. The former processes strings sent by the management. The
function waits for strings, whereupon the client returns a string or starts the execution
of a function. Interestingly, some management strings are handled in this processCMD()
function (e.g. SCANNER commands) and some strings are handled directly in the client’s
main() function (e.g. ”DUP”). Some commands have to start with an exclamation mark,
otherwise they would not be recognized by the client. Useful inputs were



4.4. BASHLITE 31

• ”DUP”, which terminates all client sessions

• ”!SCANNERON”and ”!SCANNEROFF”, which starts and stops the StartTheLelz()
function.

• ”!SH” arguments which can be used to run shell commands on the clients.

The StartTheLelz() function is the most important and also the most complex function
of the client. At the beginning of this function a struct called telstate t is created. This
struct contains several attributes such as an IP address, the state, the username index or
the password index and is inserted into a file descriptor array (fds[]). The state attribute is
essential as there are 12 different cases in this function and the state attribute determines
which case the current file descriptor is in. The function starts with case 0 and then
increments to the next case if all requirements in the current case are met. The following
paragraph briefly describes the main tasks of each case.

Case 0 checks if it is theoretically possible to connect to an IP returned by getRandom-
PublicIP(), and also increments the index of the username and password if the current
file descriptor was sent back by Case 3 or 5. Case 1 checks for timeouts and the like.
Case 2 checks if a login is requested by the connected IP address, Case 3 sends the user-
name and also resets the file descriptor to Case 0 if the username was wrong, otherwise
it sets the state to 4. Case 4 checks if a password is requested, Case 5 sends the current
password of the file descriptor, and Case 6 checks if the password is correct and resets
the file descriptor to Case 0 if not. Case 7 checks if the shell is accessible and Case 8
checks if Busybox is installed. Case 9 either sends a report to the server or continues with
the subsequent cases which were not needed. The simple report sent to the server is just
a string in the format ”REPORT IPaddress:username:password”. Figure 4.4 shows the
process of the client in a simplified flowchart.

4.4.3 Code Modifications

In order to get Bashlite to work as it is supposed to, several parts of the code had to
be modified. This subsection describes those changes. The client was simpler to modify,
probably because the code was intended to run as it was from the start. In addition to
many print statements to make the code understandable, the first step was to adapt the
IP address of the command server and the arrays of usernames and passwords. Since
the username and password of the susceptible machine are known, the corresponding
combination was put into these arrays and the rest was deleted. Additionally, the script
initializes another variable called ”stillRunLelz”. This variable was necessary because
when the scanner on the first machine resumed scanning after sending the report to the
server, the server often had trouble recognising that a second machine was now connected.
So a workaround was to run the outermost while loop of the startTheLelz() function for
as long as ”stillRunLelz” was 1, and after another vulnerable machine was sent to the
server, ”stillRunLelz” was set to 0 and the scanner stopped. This would certainly not
be an applicable solution in a real malware, but it was sufficient for this thesis, as one
additional infected machine was enough to test the concept.
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Figure 4.4: A Simplified Flow Chart of the Bashlite Client’s Essential startTheLelz()
Function, Which Searches for Other Susceptible Devices. The Incoming Arrows to Case
0 Directly Point to the Action That Will be Executed.
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The getRandomPublicIP() function was also modified to return the IP address of the
susceptible machine directly. Again, this would not make sense in real malware, but it
sped up the development process without compromising the quality. Another problem
was that the code never got further than case 6. This was solved by investigating where
it failed and then sending it directly to case 7. Case 9 also checked a condition that was
somehow not met, but this was solved by ignoring the condition and simply sending the
report to the server at the beginning of case 9. These were all changes that had to be
made to get the client to work so that a report of the vulnerable machine was sent to the
server.

The server was more complex to adapt because some of the code was missing. Again, the
first step was to add print statements to get a deeper understanding of how the server
works. The second step was to add the missing code. This involved code to automatically
exploit the IP address with the information sent by the client’s scanner. To develop this,
a separate C file was created so that Bashlite would not have to be continuously restarted.
The code in this new file splits the report string into substrings to separate the IP address,
username and password. The C function strtok() with ”:” as delimiter helped to achieve
this. The rest was more complex, as the server still had to automatically connect to the
susceptible machine, copy the client file to that machine, and run the client file. The best
way to do this was with a Bash script called from the server.c file with the system call.
The first attempt of a Bash script using Telnet for the connection failed, probably due
to the back and forth interaction between the two machines. The next attempt was an
expect script. These scripts talk to other programs, know what to expect from them and
give them the corresponding response [52].

The expect script starts with a timeout command of 30 seconds, so that it would not run
for too long if it somehow failed. After that, the script creates variables for the arguments
that are passed when the script is called. The call must be made in the following way:

telnetConnection.except IPAddress username password fileToSend

The first three arguments are given by the report string, the last one was a convenience
in case a different file was to be sent to the client. The next step was to spawn the
telnet command with the IPAddress argument, whereupon the script expected the string
”raspberry login:” and then sent the username argument. This pattern continued until
the expect script connected to the susceptible machine via Telnet. The script then needed
to copy the client file from the server machine to the susceptible machine. This copying
functionality was important because it could have provided another defence option at a
later stage. Since installing additional packages or creating an ssh key or password was
not an option, the options to transfer the file were limited. This brought netcat into focus,
as it provided a good way to transfer the client file [53].

Thus, the susceptible machine should open a netcat connection on a port and then wait
for the server to send the file over that connection. This worked perfectly when typed
directly into Bash from both the client and the server, but it became more complicated
than anticipated in the expect script due to two constraints. The first was that the client
obviously had to open a connection before anything could be sent from the server, and
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the second was that it was somehow impossible to send the files from the expect script on
the local machine.

There were considerations to take the sending of the files out of the expect script (and
have it done by another script), but this was not practical. The reason for this was that
the expect script would then have to run partially (until it opened the netcat connection
on the susceptible machine), then pause until the client file was sent by another script,
and then continue running the rest of the expect script. The solution to this problem was
to swap the server and client netcat tasks. Previously, the vulnerable machine would open
a connection and wait for the file to be sent from the server machine. Now the server
machine opens a port to send the corresponding file and waits for the susceptible machine
to request it. This made it possible to first run the netcat command on the server and
then start the expect script in the same system() call in C as the expect script requested
the file from the server. Additionally, the content of the client file had to be pipped into
netcat on the server side, otherwise the transfer would fail. The final command can be
seen in Algorithm 4.1.

Algorithm 4.1 The Bash Command Used to Open a Netcat Connection From the Server to
Send the File Once the Client Requested it and to Start the Expect Script

1 ca t f i l eToSend | ne t c a t −q 5 − l 9899 & expec t t e l n e tConn e c t i o n .
e xpec t IPAddres s username password

Algorithm 4.2 shows the expect script in pseudocode. Now everything worked and exper-
iments with MTD techniques and malware spreading were possible.

Algorithm 4.2 The Expect Script in Pseudocode

1 SET t imeout 30
2 SET IPadd r e s s to argument 0
3 SET username to argument 1
4 SET password to argument 2
5 SET f i l eToSend to argument 3
6 CONNECT to IPadd r e s s w i th t e l n e t
7 EXPECT ”r a s p b e r r y l o g i n ”
8 SEND username v a r i a b l e
9 EXPECT ”password ”

10 SEND password v a r i a b l e
11 SEND ne t c a t command to r e qu e s t the f i l e
12 SEND s l e e p f o r 7 seconds
13 SEND command to make the r e qu e s t e d f i l e e x e c u t a b l e
14 EXPECT ”password f o r ”
15 SEND password v a r i a b l e
16 SEND s l e e p f o r 3 seconds
17 SEND execu t e c l i e n t f i l e
18 EXIT expec t s c r i p t
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4.4.4 Analysis of Bashlite

This section presents an analysis of Bashlite. This includes possible levers where MTD
techniques could be applied to mitigate Bashlite.

As part of the analysis of Bashlite, many timing properties had to be checked. This
required selecting suitable hardware properties for the VMs as a first step. As described
in Section 4.1, the hardware details were not a concern initially. To simulate a Raspberry
Pi device, hardware similar to that used by [35] was used, consisting of a 1.5 GHz CPU
and 3.7 GB of RAM. The device running the VMs is a Surface Book 1 with 16 GB of
RAM and an Intel Core i7-6600U dual-core CPU running at between 2.60 GHz and 3.40
GHz [54]. In VirtualBox it is possible to specify how many cores a VM can use and also
the execution cap for those cores. Unfortunately, it is not possible to simply give the
VM a frequency for its processor (e.g. 1.5 GHz). Thus, the performance information
provided by the Windwows task manager had to be used as a reference to calculate the
required execution cap. The task manager indicated that the laptop’s base speed is 2.81
GHz. This appeared to be correct on average (even with all VMs running). Thus, each
infected VM was given one core and an execution cap of 53%, because 53% of 2.81 GHz
is about 1.5 GHz. In addition, the virtual machines have 3.7 GB RAM allocated to them
by VirtualBox.

An infection process of Bashlite can be divided into four different phases, which are
presented below.

1. The first phase is when the infected client scans for susceptible devices and sends
the information to the Bashlite server.

2. The second phase is when the server receives the report from an infected device and
initializes the Telnet connection to the susceptible client. The duration of this phase
is extremely short.

3. The third phase begins as soon as the Telnet connection to a susceptible device is
started.

4. The fourth phase begins when the Bashlite client is launched on the susceptible
machine.

The first important data to get was the number of seconds these Bashlite phases took
to complete. It is important to note that this could be different for a more sophisticat-
ed/varied malware or much better hardware on the devices, but Bashlite could serve as
a reference. To achieve this, Bashlite was run 10 times and the time was measured by
hand. Due to the various scripts on the server side, it was too complex to measure the
time programmatically, so it was faster to do it manually. Other reasons were that it was
not necessary to know the exact times and that the phases always took about the same
number of seconds. The only time a script measured the execution time was in phase 2,
as this period is too short to measure by hand. For phase 1, all time values were between
14 and 17 seconds, with an average of 15.5 seconds. Phase 2 lasted an average of 0.00007
seconds, making it negligible. Phase 3 time values ranged from 60 to 63 seconds with an
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average of 62 seconds. Thus, on average, 62 seconds pass before the susceptible machine
is infected. The long duration of phase 3 is due to the expect script written to connect,
fetch the client file from the Bashlite server and execute it. This expect script needed
several sleeps to complete the actions, and the Telnet connection also takes some time.
Perhaps the whole script could be written differently, but this was not possible without
putting too much effort in it. Figure 4.5 shows the corresponding timeline, where phase 2
and 3 have been combined and the phases are colour-coded according to whether or not
it is still possible to mitigate the spreading to the second device.

Figure 4.5: The Timeline Showing the Different Phases of a Bashlite Infection of one
Susceptible Device.

4.5 Final Implementation

This chapter presents the final implementation based on the analysis of Bashlite in Section
4.4.4. The implementation is based on the same structure in terms of VMs as the initial
prototype in Section 4.2. Again, the structure consists of three different virtual machines.
The first is a leader machine running two applications, the MTD Deployer Client and
the MTD Deployer Server. Both applications consist of two Python files, one of which
acts as a listening socket, while the other contains the essential helper functions for the
listening socket. For example, the MTD Deployer Server has a listening Python file
called listenToDeployerClient.py and a sendToDevices.py that sends the MTD execution
commands to the devices.

The other two machines are the clients that mimic the IoT devices and also consist of two
files each. The sendToDeployerClient.py notifies the Deployer Client when malware has
been found, and the listenToDeployerServer.py executes the corresponding MTD tech-
nique using the information sent by the sendToDevices.py. Even though this chapter
briefly explains every file, the focus lies on sendToDevices.py (Deployer Server) and lis-
tenToDeployerServer.py (client), as these two form the basis of the MTD techniques.
However, before explaining the code, this section first introduces the chosen MTD tech-
niques and how they relate to the background information from Section 2.

4.5.1 Implemented MTD Techniques

The analysis of Bashlite described in Section 4.4.4, together with the working implemen-
tation of Bashlite described in Section 4.3, provided the opportunity to search for suitable
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MTD techniques. These techniques should ideally protect against classic botnets and
P2P IoT botnets. The first subsection below describes the implemented MTD techniques
based on the analysis of Bashlite in Section 4.4.4, and the second subsection theoretically
evaluates how these MTD techniques against Bashlite could protect against Mirai and
HEH.

Implemented MTD Techniques Based on the Analysis of Bashlite

The first phase of Bashlite ends with the report sent from the infected client to the Bashlite
server. [35] and further experiments in this thesis have shown that it is possible to disrupt
the connection between the Bashlite client and the Bashlite server by changing the IP
address of the client. If the connection is disrupted before phase 2 begins, the report can
be prevented from being sent, resulting in the best possible mitigation case. Once the
second phase begins, the IP address change of the originally infected machine (VM1) will
have no effect on the spreading of Bashlite to the susceptible machine (VM2). Of course,
the IP address change should still be executed to disconnect the infected machine from
the server, but this has no advantage in terms of spreading to the susceptible machine
(VM2). This makes the second technique all the more important. The idea of this
second technique is to move the Telnet port of the susceptible machines for some time
while Bashlite is rendered harmless on the infected machine. This essentially hides the
susceptible machines from the infected machine’s scanner.

This Telnet service port change technique works in phase 1. As just described, this
prevents the infected machine’s scanner from finding the susceptible machines. This tech-
nique theoretically also works in phase 2, although it is unlikely that the Telnet service
port change is applied at this point because phase 2 is so short. The port change also
works in phase 3, but it requires a small adjustment because once the connection between
a susceptible machine and the Bashlite server is established, the port change has no effect.
Thus, a potential Telnet connection must first be killed, and then the port changes must
be applied to ensure that this susceptible machine is completely unreachable to a Bashlite
scanner. In phase 4, the second machine is already infected, but the Telnet service port
change should still be applied to all other machines in the network, as it could protect
other, not yet infected machines (which were not present in the setup). Figure 4.6 graph-
ically shows the MTD techniques in combination with the phases. Note that the colours
only indicate whether the applied MTD technique can prevent Bashlite from spreading
to the susceptible machine. So a red font does not mean that the technique should not
be applied, but that it has no effect on the Bashlite infection of other machines in the
network. A green font means that the Bashlite spreading can be completely mitigated, a
yellow font means that the spreading to the susceptible machine could not be mitigated,
but the port change could still help other machines in the network.

Theoretical Evaluation of MTD Techniques Against Mirai and HEH

A quick examination of Mirai’s scanner file allowed an assessment of whether the proposed
MTD techniques would work against Mirai without running it. Although there is a big
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Figure 4.6: The Timeline of an Infection With Bashlite of a Susceptible Device, Showing
When the Mitigation is Still Possible.

difference in the code, it is obvious that Mirai’s scanner also targets Telnet ports, specifi-
cally port 23 and port 2323. The latter is often used as an alternative for port 23 [55]. The
same holds for the HEH malware presented in Section 2.3.2, as this malware also uses port
23 and port 2323 to infect devices [29]. It is therefore safe to say that MTD techniques
protecting port 23 (2323) should also work against Mirai and HEH, at least in theory.
This is not the case for the IP address change. Although it is not possible to test it in the
scope of this thesis, Mirai has a teardown functionality that is triggered when no response
is received from the C&C server. After this teardown, the client simply reconnects to
the C&C server, making the IP address change only a temporary obstacle. As for the
HEH malware, it is not possible to predict the impact of the IP address change due to the
unavailability of the code. However, as these types of botnets are extremely dangerous by
nature, it is all the more important to prevent them from spreading. Changing the Telnet
service port can therefore be considered an essential tool against all three malware types.

Once the required MTD techniques had been chosen, they needed to be defined according
to the background information given in Section 2. This chapter introduced the three
elements that define MTD techniques [13]. These three elements are ”what”, ”how” and
”when” and are used to formally describe the solution below.

Formal Definition of the Applied MTD Techniques

The ”what” to move is the IP address value and the port value of the Telnet service.
The domain from which these two values are taken is defined in a configuration file, so
that the user can choose in which range the value of the moving parameter should be.
Of course, any IP address or port already occupied in the network or on the machine is
automatically removed from this domain. The ”how” is completely random. A random IP
address or port value that is within the specified range but not yet in use will be used to
replace the current moving parameter value. The final element is the ”when” to move. As
Bashlite has been shown to be detectable [35], the proposed solution uses an event-based
decision process that includes a proactive and a reactive component. The IP address
change technique is the reactive component, as it reacts to the detection of Bashlite and
then initiates the countermeasures. In a sense, the port change is both reactive and
proactive. Although it is also triggered by the detection of Bashlite (reactive), it also acts
as a proactive component on the uninfected machines, as the technique attempts to get
ahead of a Bashlite infection. The information just described can be seen graphically in
Table 4.1.
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Table 4.1: A Summary of the MTD Techniques Applied With Respect to the Three
Fundamental Elements of IoT Techniques.

Although both MTD techniques clearly fall into the dynamic network category, the classi-
fication of the attack phase they seek to disrupt is not as straightforward as [8] indicated.
The reason for this is that I consider the five-phase attack of [8] to be more applicable
when an attacker has a specific target to attack. Bashlite aims to infect as many generic
devices as possible, rather than targeting a specific device. However, Bashlite also has its
different phases, as shown in Section 4.4.4. This allows a comparison between the attack
phases specified by [8] and the phases of Bashlite. The scanning phase of Bashlite corre-
sponds to the Reconnaissance and Access phases, as they both attempt to find a target
and gather information about it. There is no Bashlite counterpart to the Development
phase, as the malware is obviously already developed. The transfer of the client file to
the susceptible machine and its execution corresponds to the Launch phase. Although
Bashlite does not install any additional backdoors, the fact that the client is connected
to a C&C server could be mapped to the Persistence phase of [8]. The information just
described can be seen in Table 4.2.

Since Section 4.4.4 showed in which phases of Bashlite it is possible to mitigate its in-
fection, this can also be expressed in terms of the attack phases of [8]. Hence, the MTD
techniques applied defend against the Reconnaissance phase, the Access phase and the
Launch phase. [8] also indicated that Dynamic Network Domain techniques can hinder the
Reconnaissance and Launch phases of an attack, but they did not indicate that Dynamic
Network Domain techniques can also hinder the Access phase. I assume this is due to the
difference in the type of attack (Bashlite vs. specific target).
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Table 4.2: The Attack Phases of Bashlite and Their Mapping to the Corresponding Attack
Phases.

4.5.2 Issues of the Initial Prototype

The first step towards the final implementation was to test whether the initial prototype
would still run on the current machines. Unfortunately, this was not the case, as the
ifconfig command used to change the IP address in the initial prototype in Ubuntu was
not suitable for changing the IP address in Raspberry OS. Another problem with the
initial implementation was that each machine’s IP address was changed. Assuming that
a machine is infected and Bashlite starts scanning for other susceptible machines in the
LAN, changing the IP address of the other machines would make no difference because
Bashlite continues to scan for IP addresses randomly, meaning that another IP address
would still be found. Furthermore, this thesis has not considered that the LAN setting
could have other negative effects. Section 7.1 briefly discusses this issue, but it was beyond
the scope of this thesis to address it.

4.5.3 Implementation Details

This chapter presents and explains the implemented code. It separates the clients, De-
ployer Client and Deployer Server as well as possible, but the main goal was to explain
the files in the order of the control flow. A recurring Python module in the code is the sub-
process module for running Bash commands in Python. Two different functions from this
module were used, the subprocess.run() and the subprocess.popen(). A difference between
the two is that the run() function waits until the Bash command has finished, whereas
the Popen() executes the command in a child process [56]. In practice, this means that
subprocess.run() will cause the Python code to pause its execution until the passed Bash
command is complete, and subprocess.open() will continue to execute the Python code
without waiting for the Bash code to complete. Depending on the Bash command and its
goal, it was clear which function was beneficial.
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Device Sends Information

The starting script is sendToDeployerClient.py. This script is quite simple and differs
significantly from the initial prototype. First it connects to a listening socket created by
the DeployerClient. This is followed by a try and except block in which the scripts calls
a function that starts Bashlite using the subprocess.Popen() function. This ensures that
Bashlite runs in the background and the Python script can continue. A modified version
of Bashlite that immediately starts scanning for susceptible devices saved a lot of time, as
there was no need to connect to the server as management and manually start the scanner
over and over again. The sendToDeployerClient.py script then sleeps for a certain number
of seconds. This was to fake the time it took to detect Bashlite, as after this sleep the
script sends a ”malware found” message to the Deployer Client listening socket.

Deployer Cient Handling Client Information

The listening socket of the Deployer Client is created by the listenToDevices.py script.
Again, this is a fairly simple script that just listens for virus messages and calls the
send() function of the sendToDeployerServer.py script. This listener supports multiple
connections through multithreading. This was necessary because all devices in the LAN
should be able to send information to the Deployer Client at the same time. In the
send() function of sendToDeployerServer.py, the script connects to the listening socket of
the Deployer Server and sends another virus message along with the IP address of the
infected machine.

Deployer Server Handling Deployer Client Information

The listenToDeployerClient.py script creates this listening socket and receives the virus
message from the Deployer Client. This message is then split to filter out the IP address,
followed by a call to the main function of the sendToDevices.py script with the IP address
as an argument. This IP address argument indicates the IP address of the infected device.

Before explaining the sendToDevices.py script, this paragraph briefly explains the Con-
fig.json file. This is where the user can add configuration values regarding the MTD
techniques. The configuration file can be seen in Listing 4.1. There are several key-value
pairs for each MTD technique (IP address and Telnet service port change). The rootIP,
together with the startIPDevices and endIPDevices, determines the possible range of IP
addresses that could be assigned to an infected device. So, in this listing example, the pos-
sible IP address of an infected device is in the range between 192.168.1.1 and 192.168.1.90
minus the IP addresses already in use. The server IP is generally used on multiple occa-
sions throughout the code. As for the port change MTD technique, the ”startOfPossible”
and ”endOfPossible” keys define the port range that could replace the Telnet service port
on the susceptible devices. The ”timeToChangeBack” key specifies the number of seconds
that susceptible machines should wait before the Telnet service port is changed back to
port 23. This information will eventually need to be sent to the client, but the aim was
to have the entire configuration in one place.
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Listing 4.1 The Configuration File in Which the MTD Values can be Specified.

1 {
2 ”IP ”: {
3 ”r oo t IP ”: ”1 9 2 . 1 6 8 . 1 ” ,
4 ”s t a r t I PD e v i c e s ”: ”1 ” ,
5 ”end IPDev i c e s ”: ”9 0 ” ,
6 ”s e r v e r I P ”: ”1 0 ”
7 } ,
8 ”po r t ”: {
9 ”s t a r t O f P o s s i b l e ”: ”3 000”,

10 ”endO fPo s s i b l e ”: ”4 000”,
11 ”timeToChangeBack ”: ”3 0 0 ”,
12 }}

The sendToDevices.py is one of the two essential files. This file contains two functions.
The first is a helper function called getIPInformation(). This function takes a set of argu-
ments specified in the Config.json file and returns an IP object containing all the relevant
information regarding IP addresses. First, the function creates an array of all possible IP
addresses within the range and the server IP address specified in the configuration. Then
the function runs a nmap scan on that IP range to see which IP addresses are already
in use. The function filters the result of the nmap with a regex expression, removes the
occupied IP addresses from the array of all possible IP addresses, and creates an array
in which it puts all occupied IP addresses except the server IP address and the infected
IP address. This array is needed later and contains all the IP addresses that may need
to move their Telnet service ports for the Telnet service. Finally, the object returned by
the getIPInformation() function is a dictionary with three key-value pairs containing the
IP address of the infected device, the array of all possible/unoccupied IP addresses, and
the array of all IP addresses that may need to change their Telnet service ports for the
Telnet service.

The other function in the sendToDevices.py is the letExecuteMTDMechanisms(). This
function triggers the start of the MTD techniques on the clients and provides them with
the necessary information. It needs the information object returned by the getIPInfor-
mation() function and other arguments from the configuration file. letExecuteMTDMech-
anisms() starts by assigning the values of the information object to variables to keep the
code as clean as possible. This is followed by two main blocks of code, the first dealing
with the IP address change of the infected machine and the second dealing with the port
change.

The code dealing with the IP address change starts with an if statement to check if an
IP address was passed as a parameter in the function call. This allows the user to only
change the port if he/she has a use for this, and it allowed to better test the code as it is
possible to run the port change MTD technique alone. The if statement is followed by a
try and except block to catch any errors. The try block connects to the infected device’s
listener, picks a random IP address from the array of all possible IP addresses, and sends
a message of the form ”IP:IPaddress”. But before this message is sent, a ”-1” is sent to
the listeners (clients) and the response is received. This was an improvised and slightly
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unclean fix, but since the client expects one more round of information from the MTD
Deployer Server in the port change code block than in the IP change code block, this
allowed to leave the code as it was on the client side. After the IP message is sent, the
port is closed. Again, several exceptions are caught to prevent unexpected code failures.
The IP address change code block can be seen in Algorithm 4.3.

Algorithm 4.3 The Code Block for Changing the IP Address on the Server Side From the le-
tExecuteMTDMechanisms() Function in Pseudocode. Everything Related to the Port Change
has Been Ommited Here.

1 de f letExecuteMTDMechanisms ( i p I n f o rma t i o n , timeToChangeBack ,
maxTryOfNewPorts , s t a r tO fP o s s i b l e P o r t s , e ndO fPo s s i b l ePo r t s ) :

2 // NOTE: omi t ted a l l the code f o r the po r t change
3
4 SET a l l P o s s i b l e I P S to i p I n f o rma t i o n [ ” a l l P o s s i b l e I P s ”]
5 SET i n f e c t e d I P to i p I n f o rma t i o n [ ” i n f e c t e d I P ”]
6 IF i n f e c t e d I P i s not None :
7 TRY:
8 CONNECT to c l i e n t v i a s o ck e t
9 SET newIP to random IP o f a l l P o s s i b l e I P S

10 SEND ”−1” to c l i e n t
11 RECEIVE un impor tant answer from c l i e n t
12 SEND ”IP : newIP ” to s o ck e t
13 CLOSE connec t i on to c l i e n t
14 CATCH ERROR:
15 PRINT some k ind o f e r r o r message
16 END IF

The code dealing with the port change starts with a for loop because, unlike the IP address
change, the port needs to be changed on multiple devices. So the script iterates through
all the IP addresses in the array of IP addresses that might need a port change. This
is followed by another try and except block. Several things happen in this try block: a
connection is made to the currently iterated IP address, an array is created containing all
the ports defined as the port range in the configuration, and a random port is selected to
be sent to the device. The script also sends the maximum number of attempts the client
should make to migrate to another port. This is followed by two loops to continuously
talk to the clients.

The inner while loop continuously sends a message (”port:Port”) with the randomly se-
lected port to the client, which checks if the port is still available and sends a corresponding
response. If the port is available, the script exits the inner loop and continues its exe-
cution. If the port is not available on the client, the port is removed from the array of
available ports and a new port is randomly selected and sent again. In addition to these
two options, the script also handles cases where the maximum number of ports to look
up has been reached, or the ports on the client cannot be looked up at all.

As soon as the code breaks out of the inner loop, the script does nothing, but waits for
another message to be received. Here it checks three different cases: either the migration
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to the new port worked, an error was received, or the client asks for the time after which
it should move the telnet service back to port 23. In the first two cases the script returns
from the function, in the third case it sends the value of the timeToChangeBack key from
the configuration file. In the except block, the script catches a ConnectionRefusedError,
because if a device that should change the port of the Telnet service does not have the
listener running, the code would otherwise throw an error and break. The code block for
changing the port on the server side can be seen in Algorithm 4.4.

Algorithm 4.4 The Code Block for Changing the Port of the Telnet Service on the Server
Side From the letExecuteMTDMechanisms() Function in Pseudocode. Everything Related to
the IP Address Change has Been Ommited Here.

1 de f executeMTDMechanisms ( i p I n f o rma t i o n , timeToChangeBack ,
maxTryOfNewPorts , s t a r tO fP o s s i b l e P o r t s , e ndO fPo s s i b l ePo r t s ) :

2 // NOTE: omi t ted a l l the code f o r the IP change
3
4 SET IPsToChangePort to i p I n f o rma t i o n [ ”IPsToChangePort ”]
5 FOR each IP i n IPsToChangePort :
6 TRY:
7 CONNECT to IP o f c l i e n t v i a s o ck e t
8 SET a l l P o s s i b l e P o r t s to range i n c o n f i g f i l e
9 SET newPort to random po r t o f a l l P o s s i b l e P o r t s

10 SEND maxTryOfNewPorts g i v en i n c o n f i g u r a t i o n f i l e
11 RECEIVE unimporTant answer from c l i e n t
12 SET su c c e s s to F a l s e
13 WHILE True :
14 WHILE s u c c e s s i s F a l s e :
15 SEND ”PORT: newPort ” to s o ck e t
16 RECEIVE answer from c l i e n t :
17 IF answer i s t ha t po r t i s f r e e on c l i e n t :
18 SET su c c e s s to True
19 ELSE IF answer i s t ha t t e l n e t po r t not r e t r i e v a b l e :
20 PRINT some k ind o f e r r o r message
21 CLOSE connec t i on to c l i e n t
22 ELSE IF answer i s t ha t max at tempts a r e exceeded :
23 PRINT some k ind o f e r r o r message
24 CLOSE connec t i on to c l i e n t
25 ELSE :
26 REMOVE newPort from a l l P o s s i b l e P o r t s
27 SET newPort to random po r t o f a l l P o s s i b l e P o r t s
28 ENDIF
29 END WHILE
30 SET answer to r e c e i v e d data from c l i e n t
31 IF answer i s t ha t c l i e n t f i n i s h e d :
32 PRINT su c c e s s message
33 CLOSE connec t i on to c l i e n t
34 ELSE IF answer i s t ha t e r r o r o cu r r ed :
35 PRINT some k ind o f e r r o r message
36 CLOSE connec t i on to c l i e n t
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37 ELSE IF answer i s t ha t c l i e n t needs num of seconds :
38 SEND seconds to move back from c o n f i g u r a t i o n
39 ENDIF
40 END WHILE
41 CATCH ERROR:
42 PRINT some k ind o f e r r o r message
43 END FOR

Client Handling Deployer Server Information

The listenToDeployerServer.py is the most important script of the whole solution, as it
actually executes the MTD techniques on the clients. This is the only script that needs to
be run with sudo, as some of the Bash commands included require this security privilege.
The script has four small helper functions and one large helper function. The four small
functions include one that writes to a log file called ”output.txt”, one that queries the
current port of the Telnet service on the machine, one that checks if the Telnet service is
listening on port 23, and one that kills a potential Telnet process. The logging function-
ality was crucial for debugging reasons. It helped to detect errors more quickly, and it is
also essential in a real-world deployment of the MTD techniques.

The second little helper function was to query the current port of the Telnet service. This
was needed because the change back to port 23 was not implemented from the start. This
prevented the need to manually reset to port 23 after each run during the implementation
process. More importantly, the Telnet service port query also catches possible errors that
might occur in general. The getTelnetPort() function first executes the Bash command
shown in Algorithm 4.5.

Algorithm 4.5 The Bash Command Used to Query the Telnet Service Port.

1 s s −t lpHn | grep i n e t u t i l s −i n e t d

The ss command in Algorithm 4.5 can be used to examine sockets, similar to netstat [57].
The options passed are: include tcp sockets, include listening sockets only, include pro-
cesses, output information without the header, and try not to resolve service names [57].
Additionally, the code filters with grep for ”inetutils-inetd”, which was used as an iden-
tifier for the Telnet process. Inetd is a program that listens on certain Internet sockets
and decides which program should respond to the request [58]. Using this as an identi-
fier works perfectly on the VMs because Telnet is the only service on the VMs that uses
inetutils-inetd. As this may be different on other devices, it is possible that this Telnet
port query may fail. To ensure that the script does not query the wrong port for the Tel-
net service and therefore misbehaves, the script also queries the Telnet service port from
the /etc/services file and compares the two. If they are identical, all is good, otherwise
the script throws an AttributeError. The reason for the AttributeError is that it is needed
anyway in case ”ss -tlnpH | grep inetutils-inetd” returns nothing, which would lead to an
AttributeError caused by the regex the script uses to filter the port.
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The third small but important helper function is the checkIfTelnetWorks() function. This
uses a socket to check if the Telnet service port allows a connection or not. This function
is used to check if moving the Telnet service port was successful or not.

The fourth helper function is killTelnetProcess(), which does exactly what it says, again
using the subprocess.run() function to execute the Bash command. The Bash command
passed is a pkill with an echo, which echoes either ”True” or ”False”depending on whether
pkill was successful or not, and logs accordingly.

The fifth and larger helper function is the most complex and is called changePort(). It
again starts with a command passed as an argument to the subprocess.run() function.
The command can be seen in Algorithm 4.6.

Algorithm 4.6 The Bash Commands to Replace the old Telnet Service Port With the new
one and Apply the Change.

1 sed − i ’ s /\<{0}\>/{1}/g ’ / e t c / s e r v i c e s
2 sudo s y s t emc t l r e s t a r t i n e t u t i l s − i n e t . s e r v i c e

The {0} and {1} in Algorithm 4.6 are placeholders which are inserted using Python’s
string.format() function. The first line looks for the old Telnet service port number plus
”/tcp” (e.g. 23/tcp) in /etc/services and replaces it with the new port number plus ”/tcp”
(e.g. 2255/tcp). Initially, the mistake was made of not looking for the exact string, which
led to other ports containing parts of the old port (e.g. 5523/tcp) being changed (e.g. to
552255/tcp). The solution was to surround the first placeholder with ”<” and ”>”, which
resulted in an exact search for the value to replace [59].

The second line of Algorithm 4.6 restarts the inetutils-inet service, which applies the
changes in the /etc/services file without rebooting the system. The script then uses the
grep command to check if the new port can be found in /etc/services and echoes ac-
cordingly. Depending on the echo, the script logs an error, returns from the function, or
continues with the code. Next, the script uses the checkIfTelnetWorks() function to see
if the Telnet service is still listening on port 23. If it is, the script writes an error to the
log file and sends an error message back to the Deployer Server. Otherwise, the code logs
that the Telnet service is no longer listening on port 23 and sends a ”done” to the Deployer
Server. Additionally, the script triggers the Telnet service to change back to port 23 after
a certain number of seconds. This number is also specified in the Deployer Server config-
uration file. To initiate this change back, the script uses the subprocess.Popen() function
instead of the subprocess.run() function, as the Python script should continue to run. The
command passed as an argument to subprocess.Popen() can be seen in Algorithm 4.7.

Algorithm 4.7 The Bash Commands to Change Back to the Telnet Service Port 23 Afer a
Given Number of Seconds

1 p r i n t f ”$ ( date +%F\ %H−%M−%S) SHELL : S l e e p i n g f o r {0} s econds \n
” >> output . t x t

2 s l e e p {0}
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3 sed − i ’ s /\<{1}\>/23\/ tcp /g ’ / e t c / s e r v i c e s
4 sudo s y s t emc t l r e s t a r t i n e t u t i l s −i n e t d . s e r v i c e
5 s l e e p 7
6 sudo l s o f − i : 23 && found=”t r u e ”
7 i f [ ”$found ” = ”t r u e ” ]
8 then
9 p r i n t f ”$ ( date +%F\ %H−%M−%S) SHELL : Went from po r t {2} back

to po r t 23\n\n\n ” >> output . t x t
10 e l s e
11 p r i n t f ”$ ( date +%F\ %H−%M−%S) SHELL : ERROR: The change back

to po r t 23 f a i l e d somehow\n\n\n . ” >> output . t x t
12 f i

The first two lines of Algorithm 4.7 write a log to the same file where the Python code is
logged. Then the script sleeps for the specified number of seconds. Again, these numbers
are inserted using Python’s string.format() function. Lines 4 and 5 are almost identical
to the changePort() function, except that the target port is now port 23 again. After
modifying the /etc/services file, the inetutils-inted.service is restarted to take effect with-
out rebooting the machine. The script then pauses for 7 seconds to allow the changes to
the port to take full effect before continuing. On line 7, the script runs a lsof command
to check if port 23 is listening again. This is the Bash replacement for the checkIfTel-
netWorks() function in Python. Ideally the script would check directly with Telnet if
the connection is possible, but it was not possible to make this work with the subprocess
module. If port 23 is listening, the script logs a success message to the log file (on lines 8
and 9), otherwise it logs an error to the log file (on lines 10 and 11).

The main function of the listenToDeployerServer.py script is listenToDeployer(). First the
listening socket is created, followed by the first while loop. In this loop, the script receives
the maximum number of attempts to look for a free Telnet port sent by the Deployer
Server, which queries the configuration file for the maximum number of attempts. The
script then sends a response that the maximum attempts have been received, which also
ensures that the Deployer Server does not continue with its code as it is forced to wait for
a response. A second loop follows in which the script receives another message from the
Deployer Server that is either ”IP:IPaddress” or ”port:Port”. This message is split into
two variables called ”movingParameter” and ”movingParameterValue”. The script then
checks whether the moving parameter is ”IP” or ” port”.

In the IP case, the script closes the listening socket properly, as it would have been closed
anyway after the IP change, and all the necessary information has been received. It then
kills the Bashlite process. Although the IP change disconnects the Bashlite client from
the command server, rendering it harmless, the Bashlite client continues to run on the
infected machine, which was tedious for testing. Therefore, the Bashlite client was killed.
The IP address of the device is then changed using the command shown in Algorithm 4.8.

Algorithm 4.8 The Bash Commands to Change the IP Address.

1 sed − i ’ s /\<{0}\>/{1}/g ’ / e t c /dhcpcd . con f
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2 i f c o n f i g eth0 down && sudo i f c o n f i g eth0 up

The first line of Algorithm 4.8 replaces the old IP address with the new one in the etc/d-
hcpcd.conf file. The script again inserts the values in Python with the string.format()
function, therefore the {0} and {1} in the Bash code. The second line shuts down the
Ethernet adapter and restarts it immediately. The Raspberry OS needs to do this to mi-
grate to the new IP address, otherwise the changes would not take effect until the system
is rebooted, which is not applicable. After the IP address is changed, the script sleeps for
7 seconds because the Ethernet adapter needs about 5 seconds to reboot. After this time,
the script uses the socket.gethostbyname() function to get the current IP address of the
device, checks whether the IP address change worked or not, and logs a corresponding
message. The Python code block for changing the IP address on the clients can be seen
in Algorithm 4.9

Algorithm 4.9 The Code Block for Changing the IP Address of a Client From the listen-
ToDeployer() Function in Pseudocode. Everything Related to the Port Change of the Telnet
Service has Been Ommited Here.

1 de f l i s t e nToDep l o y e r (HOST, PORT) :
2 CREATE l i s t e n i n g s o ck e t
3 WHILE True :
4 RECEIVE max at tempts f o r t r y i n g to f i n d po r t (−1 he r e )
5 SEND un impor tant answer
6 WHILE True :
7 RECEIVE command from s e r v e r
8 SPLIT command to movingParameter and movingParameterValue
9 IF movingparamter i s ”IP ”:

10 CLOSE connec t i on to c l i e n t
11 KILL t e l n e t p r o c e s s
12 CHECK i f t e l n e t p r o c e s s was k i l l e d
13 CHANGE the IP add r e s s
14 SLEEP f o r 7 seconds
15 CHECK i f the IP change worked
16 // NOTE: omi t ted a l l the code f o r the po r t change
17 ELSE
18 CLOSE sock e t
19 RETURN
20 ENDIF

If the moving parameter is the port, then another machine in the network is infected and
the current machine should move its Telnet service port. There is an additional condition
in the port case if statement. This condition is whether a count variable is below the
maximum number of port change attempts.

The port change code block is more complex than the IP change block above. In a first
step, the script checks the /etc/services file to see if the random port sent by the Deployer
Server is free on this device. If the port is found in the services file, the script sends a
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”taken”message to the Deployer Server, which then sends a new random port as described
above. If this port is free on the device, the script will query the current Telnet port using
the getTelnetPort() function described above. The script also calls the killTelnetProcess()
function. This is necessary because, as mentioned above, if the Bashlite server has already
started a connection to this susceptible machine, changing the port of the Telnet service
would have no effect, and the Bashlite client would normally start on the susceptible
machine.

Note that the killTelnetProcess() function only affects existing connections, not an open
Telnet service in general. Nevertheless, the function is called anyway, as there is no down-
side to calling it. The script then uses the checkIfTelnetWorks() function described above
to check if the current Telnet service is running on the machine on port 23 or not. If
not, the script returns from the listenToDeployer() function and logs accordingly, as no
measurements are required. Otherwise, the port change is initiated by another function
called changePort(), which is described in more detail above. This function changes the
port of the Telnet service from 23 to another random port sent by the Deployer Server,
checks if this port change worked, and also changes the Telnet service back to port 23
after a given number of seconds. After this function finished, the socket is closed and the
script returns from the listenToDeployer() function. The code block for changing the port
of the Telnet service on the clients can be seen in Algorithm 4.10.

Algorithm 4.10 The Code Block for Changing the Port of the Telnet Service of a Client
From the listenToDeployer() Function in Pseudocode. Everything Related to the IP Address
Change has Been Ommited Here.

1 de f l i s t e nToDep l o y e r (HOST, PORT ) :
2 CREATE l i s t e n i n g s o ck e t
3 WHILE True :
4 SET count to 0
5 RECEIVE max attempt f o r t r y i n g to f i n d po r t
6 SEND un impor tant answer
7 WHILE True :
8 RECEIVE command from s e r v e r
9 SPLIT command to movingParameter and movingParameterValue

10 IF movingparamter i s ”IP ”:
11 // NOTE: omi t ted the code f o r the IP add r e s s change
12 ELSE IF movingParameter i s po r t and count <= max attempt :
13 INCREMENT count
14 CHECK i f movingParameterValue ( po r t ) i s used
15 IF po r t i s used :
16 SEND tha t po r t i s a l r e a d y used
17 CONTINUE with WHILE loop
18 ELSE
19 CALL f u n c t i o n to get t e l n e t po r t
20 IF not p o s s i b l e :
21 SEND e r r o r
22 CLOSE sock e t
23 RETURN
24 END IF
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25 SEND tha t po r t i s unused
26 CALL f u n c t i o n to k i l l e x i s t i n g t e l n e t p r o c e s s e s
27 CALL f u n c t i o n to check i f t e l n e t l i s t e n s on po r t 23
28 SEND message to ge t the t ime to change back
29 RECEIVE t ime to change back
30 CALL f u n c t i o n to change po r t
31 CLOSE sock e t
32 RETURN
33 ELSE
34 SEND max attempt a r e exceeded
35 CLOSE sock e t
36 RETURN
37 ENDIF



Chapter 5

Evaluation

This chapter presents the evaluation of the implemented Moving Target Defense (MTD)
framework with its techniques based on different criteria. First, the methodology of
the evaluation is explained, followed by the missing prerequisites for the evaluation to
work. The chapter then presents the evaluation process and its results. These results are
discussed in Chapter 6.

5.1 Evaluation Methodology

The evaluation of the solution was quite complex because the whole setup had so many
parts/scripts distributed across three different VMs. Ultimately, three different metrics
were to be evaluated. The first and main evaluation metric is the total number of seconds
that the two machines in the network are infected. This is reasonable as the goal of this
thesis is to mitigate/prevent the infection of IoT devices and to show that a collaborative
approach yields better results than a non-collaborative one. Thus, the fewer seconds the
malware is running on the devices, the better. The other two metrics are defender metrics
mentioned by [60], who investigated MTD research trends. Both metrics fall into the
system performance category.

The first system performance metric is the amount of time that incoming and outgoing
communication to and from the device is interrupted. This can be further divided into
the interruption caused by the IP address change and the interruption caused by the
Telnet service port change. For the IP address change, only the outgoing connection was
tested. The reason for this is that the incoming connection would only work if there
was a mechanism to keep track of which machine has which IP address, similar to the
one suggested by [37]. However, outgoing connections are more critical, as IoT devices
often need to pass on collected data. Regarding the Telnet service port change, incoming
and outgoing connections to and from the Telnet port were evaluated. The other system
performance metric is the CPU/RAM usage of the deployed MTD techniques, which is
essential due to the hardware limitations of IoT devices.

51
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Other potentially important metrics [60] such as Quality of Service (QoS) to users or
strategy switching costs were not included. This exclusion is due to the fact that these
metrics were either out of scope or not feasible (e.g. power consumption). The three
measured metrics were therefore:

1. Total number of seconds that the machines are infected

2. Interruption of network availability of the machines

3. CPU/RAM usage of the framework and the executing MTD techniques

These metrics were measured in three different environments/systems for comparison.
All environments used the VM structure already described, but differed in the solution
applied and their deployment strategy (i.e. proactive vs. reactive deployment of MTD
techniques). Environment 1 used a reactive, modified solution that did not include a
cooperative component. This was done by only enabling the IP address change of in-
fected machines. This approach already exists [35], but the implementation code of the
approaches are independent. This environment allowed the collection of data from a solu-
tion that uses a non-cooperative and reactive defence approach, and served as a baseline
for this evaluation.

In contrast, Environment 2 used the IP address and the port change to reactively miti-
gate/prevent Bashlite. This environment allowed to collect data from a solution that uses
a cooperative and reactive approach. Environment 3 used the cooperative approach (IP
address change and Telnet service port change), but executed this proactively rather than
reactively. This provided an interesting insight into the trade-offs/differences between
the proactive and reactive approaches. While the reactive approaches were executed 10
seconds after Bashlite was executed, the proactive MTD techniques were executed every
60 seconds, regardless of whether Bashlite was active or not. The 60 seconds were initially
chosen randomly, but proved to be a reasonable value given the results. Furthermore, the
goal was to show the typical differences between the reactive and proactive approaches,
rather than to determine an optimal time to move, as this would be influenced by many
more factors of the system. Table 5.1 summarises the three environments.

The data was collected over 30 runs (entire infection/mitigation process) in each environ-
ment and is presented in Section 5.3. The first five of these 30 runs were removed from
the data as they were used to warm up the entire system. Section 5.2.1 describes the data
collection in more detail.

5.2 Prerequisites for the Evaluation

Even though the implemented MTD mechanism worked, its code had to be adapted on
several occasions. This involved three main tasks:

1. Writing scripts to measure and log the metrics, such as how long Bashlite has been
running on the machine.
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Table 5.1: A Table Showing the Characteristics of Three Different Environments in Which
the Previously Defined Metrics are Measured.

2. Automating the code as much as possible. To get a reasonable amount of data, the
infection/mitigation process had to be run multiple times, which was not feasible
by hand. The idea was to be able to run the whole process once and then repeat it
n times.

3. Modifying the current scripts to fit the different environments. This included, for
example, the adaptation that no Telnet service port change was triggered in Envi-
ronment 1.

The following subsections briefly describe how these tasks were accomplished. However,
first an important aside regarding the Bashlite client. There was the problem that it was
not possible to check whether a Bashlite client was still connected to the Bashlite server
or not. To solve this, the killing of the Bashlite client in the IP address change technique
remained in the code. This was justified by extensive testing and the existing literature [35]
regarding the interruption of the connection between the server and the client, and because
the evaluation would simply not have been possible otherwise. Moreover, Bashlite is killed
as soon as the client loses connection to the server, so there is only a negligible difference in
time. This allowed the simplification that if a Bashlite client was running on the system,
it was also connected to the server and vice versa.

5.2.1 Data Collection

Having solved this problem, a mixture of Bash and Python scripts were written to log the
data into some .csv files, which were later analysed and plotted using Python. The reason
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for using both types of script was that sometimes one or the other was more suitable.
This resulted in several files.

The stopTimeOfClient.sh script checks every 0.05 seconds whether the client process is
running on the machine. If it is, the script stores the time of the start of the client, waits
for it to finish and writes all the information to a bashliteAnalysis.csv file. This script is
continuous and also indicates which Bashlite run the system is on.

The CPURamAnalysis.py script uses psutil to monitor the CPU and RAM usage of the
system and writes this to a CPURamAnalysis.csv file. The original idea was to specifically
measure the CPU and RAM usage of the script that executes the MTD techniques on
each machine. However, as the CPU usage of the script was almost always 0% (measured
with Bash/top and Python/psutil to exclude errors), a graph showing this would not give
much insight. Thus, only the RAM usage was measured with psutil since this was giving
correct and measurable results. The CPU usage of the infected and susceptible machines
was measured once with the MTD mechanism deployed and techniques executing, and
once without the MTD mechanism deployed. This allowed to compare the case with MTD
to the case without MTD on the respective machine. Both measurements were run for 15
infection/mitigation runs, equivalent to 30 minutes.

The sendPacketsToServer.sh script monitors outgoing packet losses. This is achieved by
sending simple one-packet pings to the server machine every 0.5 seconds. The script also
keeps track of the current Bashlite run. This gives interesting insights for the different
environments. In Environment 1 and 2, outgoing packet losses should only occur once
per Bashlite run, as the MTD techniques are executed reactively. In Environment 3,
the MTD techniques are executed proactively, and therefore multiple packet losses are
possible during a Bashlite run. All this information is written to a packetLoss.csv file.

The telnetToLocal.py and telnetToLocalOnlyIP.sh scripts were written to track the inter-
ruption of the incoming Telnet service from the susceptible machine. The former was
created first and uses sockets (or telnetlib) to check whether port 23 of the executing
machine is listening or not. This produced reliable results, but there was an issue in the
non-cooperative environment due to the two possible IP addresses the susceptible machine
could have. Sockets in general were too slow to either get the host IP address or try to
connect to both possible IP addresses, so a shell script that uses netcat to check whether
port 23 of both possible IP addresses are listening was more suitable. All this information
is logged to a file called telnetToLocal.csv or telnetToLocalOnlyIP.csv depending on which
script was used.

The telnetToServer.py file is the last script and monitors whether outgoing telnet con-
nections are possible or not. It does this using the telnetlib module as in this case, it was
essential to use Telnet as the communication protocol for the outgoing connection.

5.2.2 Automation

Regarding automation, the implementation code already fulfilled most of the require-
ments. Only four issues remained. The first was that the script sendToDeployerClient.py
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from VM1 needed some adaptations to separate the start of Bashlite from the start of
the defence technique (notifying the Deployer Client). One reason for this was the paren-
t/child relationship between Bashlite and the Python script, which made it impossible to
kill Bashlite (the child) while the Python script (the parent) was still running. Creating
another Bash script called startBashAndSendToDepClient.sh solved this problem. This
file contains a while loop with each iteration being an entire infection/mitigation process.
First, the while loop starts the Bashlite client and then sleeps for 10 seconds, mimicking
the time it takes to detect Bashlite. After this time it starts the sendToDeployerClient.py
in the background and then sleeps again for 110 seconds. This time period could also
be shorter, but it ensured that the previous infection process is completed with all the
corresponding MTD techniques.

The second problem was that the sendToDeployerClient.py script had to be triggered
somehow on VM2 as well. It was not possible to use the same script as for VM1 (start-
BashAndSendToDepClient.sh), since this started Bashlite manually on VM1 and VM2
needed to detect it somehow. The solution was a Bash script that runs continuously and
checks if Bashlite is running. If Bashlite is running for more than 10 seconds, the script
executes sendToDeployerClient.py which then initialises the MTD mechanism. This func-
tionality was implemented with a shell script called checkForBashliteAndStartMTD.sh.

The third encountered issue was that the Bashlite server would only allow one infection,
after which a restart of the server was required. This was added at the beginning of the
thesis to improve stability, as the Bashlite client was constantly sending the same report
about the susceptible machine, causing the Bashlite server to crash. Since it was not an
option to always restart the server manually, the Bashlite client was adapted to send the
report only once, and thus the restriction on the Bashlite server could be removed.

The fourth issue was that about 15 scripts per environment would have had to be started to
get everything running. To avoid this, a Bash script (runAll.sh) was written containing
all the startup instructions for each machine and environment. This resulted in three
different startup scripts on three different machines, which was acceptable. Additionally,
the counterparts for terminating all scripts started by runAll.sh were created. This allowed
to quickly start all the scripts, let them collect data and then terminate them effortlessly.

5.2.3 Creating Evaluation Environments

Finally, the different environments/systems had to be created. The first environment was
the non-cooperative one, which only involved changing the IP addresses of the infected
machines. The only required server-side adaptation was to instruct the Deployer Server
not to initiate any Telnet service port changes. This was done by replacing the array
containing all the IP addresses that were potentially going to receive a port change with
an empty array.

On the client side, there was the problem that the Bashlite client was only scanning one
IP address for a susceptible machine, so as soon as the IP address change was executed
on VM2, the Bashlite client on VM1 would no longer find VM2 in the next Bashlite run.
To solve this, two hardcoded IP addresses replaced the IP address variable received from
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the Deployer Server. Thus, VM2 simply switches between these two IP addresses instead
of migrating to the one sent by the Deployer Server. This allowed adapting the Bashlite
scanner of the client of VM1 to try only two different IP addresses, which worked perfectly.
Note that this was only needed for the evaluation as the Bashlite implementation is limited.
If it were not for the evaluation, or if Bashlite was scanning in a more sophisticated way,
this adaptation would not be required at all. Besides, this did not make any difference to
the data collected.

The second environment was the original idea, which was Bashlite together with a coop-
erative MTD approach. Since this usecase was the goal from the start, nothing had to be
changed. The third environment involved Bashlite with the proactive MTD execution. To
create this environment, the only required adaptation was to split the startBashAndSend-
ToDepClient.sh script into two subscripts. The first script starts the MTD mechanism
every 60 seconds, the second script starts Bashlite randomly at an interval between 60
and 90 seconds. These two scripts are then executed by the runAll.sh script.

5.3 Results

This section presents the results of the evaluation. It is divided into the three metrics
mentioned in Section 5.1, namely the duration of infection activity in the network, the
interruption of availability, and the CPU/RAM usage.

5.3.1 Duration of Infection Activity in the Network

The duration of infection activity was the most important metric as it defined whether
the defence mechanism was working or not. Figure 5.1 shows the results for Environment
1, which was the non-cooperative and reactive solution. On the x-axis is the current
run (infection/mitigation process). The blue bar of the stacked bars shows the number of
seconds that VM1 was infected with Bashlite, meaning that Bashlite lasted approximately
29 seconds on VM1 in each run. The orange bar shows the number of seconds that VM2
was infected, which was also approximately 29 seconds per run. This gave an average
of 57.6 seconds of total infection activity on the two VMs per run. It is evident that
in this non-cooperative approach, the spreading to the susceptible machine could not be
prevented at all. Bashlite was still mitigated, but each machine had to clean itself after
the infection had occurred.

Figure 5.2 shows Environment 2, which was the cooperative and reactive environment.
Again, the blue bars represent the number of seconds that VM1 was infected, the orange
bars would represent the time that VM2 would have been infected if this had occurred.
It is evident that in the cooperative and reactive environment the spreading to VM2 was
prevented in every run. This resulted in an average of about 28.8 seconds of total infection
activity on the two VMs, which is approximately half of the time of the uncooperative
and reactive environment.
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Figure 5.1: The Duration of Infection Activity on Both Virtual Machines in the Non-
cooperative and Reactive Environment.

Figure 5.2: The Duration of Infection Activity on Both Virtual Machines in the Cooper-
ative and Reactive Environment.
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Figure 5.3 shows Environment 3, which was the cooperative but proactive environment.
Unlike the previous two environments, the Bashlite duration was different for each run.
The mean duration was slightly higher than the mean duration of the cooperative and
reactive environment, but much lower than that of the non-cooperative and reactive en-
vironment.

Figure 5.3: The Duration of Infection Activity on Both Virtual Machines in the Cooper-
ative and Proactive Environment.

Figure 5.4 shows the duration of the average total infection activity on VM1 and VM2
over 25 runs. The cooperative and reactive environment had the shortest duration of
infection activity, the cooperative and proactive environment followed immediately and
the non-cooperative and reactive environment had by far the longest average duration of
infection activity. This was due to the infection of the susceptible machine.

5.3.2 Interruption of Availability

Figure 5.5 shows the share of packet losses out of the total packets sent by the two VMs
in all three environments. Environment 1, which executed the IP address change on
both machines on every run due to the uncooperative nature, had the highest packet loss
with about 4.2%, the remaining 95.8% were successfully delivered. Environment 2, which
consisted of the cooperative and reactive MTD, had by far the lowest packet loss with
about 2.1%. Environment 3 with the cooperative and proactive approach had a similar
packet loss as Environment 1.

The incoming Telnet connection showed a different picture than the packet losses, as
shown in Figure 5.6. Environment 1 had by far the lowest share (4.2%) of failed incoming
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Figure 5.4: A Summary of all Three Environments and Their Respective Infection Dura-
tion.

Figure 5.5: A Summary of all Three Environments and Their Respective Average Share
of Outgoing Packet Losses From all Packets Sent.
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Telnet connections of all incoming Telnet connections. This was due to the fact that no
Telnet port changes were involved here (only the IP address change). Environment 2 was
in the middle with a share of 31.6% failed incoming Telnet connections and Environment
3 had by far the highest share of failed Telnet connections with 61.4%.

In addition to the incoming Telnet connections, the outgoing Telnet interruptions were also
measured. It was evident that changing the Telnet port did not interrupt or prevent any
outgoing connections. The only time that outgoing Telnet connections were not possible
was when the IP address of the device changed. Therefore, the interruption of outgoing
Telnet connections was the same as the share of outgoing packet losses shown in Figure 5.5
for every environment. This means that in the non-cooperative and reactive environment
and the cooperative but proactive environment, approximately 4.2% of outgoing Telnet
connections failed. In the cooperative and reactive environment, around 2.1% of outgoing
Telnet connection failed.

Figure 5.6: A Summary of all Three Environments and Their Respective Average Share
of Failed Incoming Telnet Connections.

5.3.3 CPU and RAM Usage

Figure 5.7 shows the constant RAM usage of the MTD mechanism over 30 minutes with
the MTD techniques executed multiple times on both VMs. VM2 used a minimal amount
more RAM, but this difference is negligible as it is in the byte range and the machines have
gigabytes of available RAM. So in general, the mechanism’s RAM usage was minimal.
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Figure 5.7: The RAM Usage of the Running MTD Framework with Multiple Executions
of the MTD Techniques on Both VMs.

Figure 5.8a shows the CPU usage of VM1 without the MTD deployed. The CPU usage
varied between 20% and 32% with only a few outliers that are higher. In this case, no
other program or script was started except the measurement script, so these outliers must
be caused by the operating system or some other automatically started process. The
average CPU usage was 23.53%. Figure 5.8b shows the same information, but this time
with the MTD framework deployed and the MTD techniques executing multiple times.
On VM1 the MTD technique performed was the IP address change. It is clear that the
fluctuation was higher with the MTD framework deployed, ranging from 20% to about
40%. The high peaks were periodic, but also rather short. The average CPU usage was
0.02% higher with the MTD mechanism deployed than without it.

Figure 5.9a and Figure 5.9b give the same information, but for VM2, which performed
the Telnet service port change. Again, there was a range of 20% to 30% with a few higher
outliers in the base case. The average was 23.79%, which was slightly higher than the
average CPU usage of the base case of VM1. The CPU usage of VM2 with the MTD
framework deployed and the techniques executing also showed more fluctuation than the
base case of VM2. The average CPU usage of the deployed case was also slightly higher,
namely 0.43%. Although there were fewer high peaks on VM2 with the MTD mechanism
deployed than in the respective case of VM1, the average CPU usage was higher on VM2
than on VM1.



62 CHAPTER 5. EVALUATION

(a) The CPU Usage of VM1 Without the MTD Mechanism Deployed.

(b) The CPU Usage of VM1 With the MTD Mechanism Deployed. This
Machine Executed the IP Address Change.
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(a) The CPU Usage of VM2 Without the MTD Mechanism Deployed.

(b) The CPU Usage of VM2 With the MTD Mechanism Deployed. This
Machine Executed the Telnet Service Port Change.
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Chapter 6

Discussion

This chapter presents the discussion of the results shown in Section 5.3. Additionally,
some of the limitations of the thesis are outlined.

6.1 Interpretation of Results

The results of the evaluation turned out as expected. The cooperative and reactive ap-
proach provided the best defence against Bashlite, as the overall infection activity was
the shortest. It also made sense that the variance of the Bashlite durations was so low
in the reactive approaches, because there is no stochastic process involved in the defence
mechanisms. In contrast, the proactive environment involves randomness, resulting in
different overall infection times for each run. Thus, as long as the MTD techniques execu-
tion is reactive and the hardware does not reach its limit, which is unlikely, the mitigation
process will have a similar mitigation time for each run.

This mitigation time was around 29 seconds in the evaluation, which was surprisingly
high. 10 seconds are needed for detection [35], the remaining 19 seconds are needed for
the mitigation process. A large part of these 19 seconds was caused by the nmap scan
on the MTD Deployer Server. Minimising this scan time was beyond the scope of this
thesis, but it would be achievable [61] and should be implemented in a more sophisticated
solution. Another convenient way to reduce the nmap search time would be to change
the range of possible IP addresses in the MTD Deployer Server configuration file. The
evaluation was done with a range of 90 IP addresses, whether this is a reasonable number
depends on the system in which the MTD would be deployed.

The detection time is another crucial variable. In this thesis, a detection time of around
10 seconds was used, as it was shown that Bashlite could be detected in this time [35]. If
this time were longer (e.g. with another malware), it is possible that a reactive approach
would not be able to prevent the malware from spreading. This could force a user to use
a proactive defence mechanism instead of a reactive one. The proactive approach used
in the evaluation was successful in preventing Bashlite from spreading to the susceptible
machine with the variables selected. This is by no means certain. Several variables are
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decisive whether the spreading of Bashlite can be prevented, the most important ones are:
the time interval after which Bashlite is executed randomly, the execution interval of the
MTD mechanism, and the time after which the Telnet service port is moved back to port
23.

If the system protection was the only criterion, it would be best to run the MTD techniques
at a very short interval. For example, an MTD mechanism (e.g. IP address change)
executed every second would result in an extremely short overall infection activity. While
this is desirable, it is not feasible as the connections to and from the device would always
be interrupted, defeating the purpose of the device (e.g. a sensor collecting data). Thus,
there is usually a trade-off between system availability and security.

This trade-off between availability and security was also reflected in the results. In terms
of outgoing packet losses, the non-cooperative and reactive approach had the highest share
of packet loss out of the total number of packets sent. This is evident as both machines
had to change their IP addresses, which is the cause of the packet loss.

The share of failed packet losses can also be approximated mathematically. In this non-
cooperative and reactive environment, a run took 120 seconds on each machine, resulting
in a total of 240 seconds in the system. Restarting the Ethernet adapter to force the
machine to use the new IP address takes about 5 seconds per machine, making a total of
10 seconds. 10 seconds is about 4.2% of 240, which is the approximate interruption per-
centage. This also explains why the packet loss share of all packets sent in the cooperative
and reactive environment was exactly half of the packet loss in the non-cooperative and
reactive environment. Again, the total time was 240 seconds, but this time only one ma-
chine changed its IP address. 5 seconds out of 240 seconds is 2.1%. The same calculations
can be done for the cooperative but proactive environment. Here only one machine had
to change its IP address, but it did so every 60 seconds due to the proactive approach. As
there are two machines again, this gives a total of 120 seconds in the system. 5 seconds
is about 4.2% of 120 seconds.

So far, the cooperative and reactive approach performed best. This approach had the
lowest total infection time and the lowest share of outgoing packet losses. This was
different when looking at the share of failed incoming Telnet connections. Here the non-
cooperative and reactive approach performed best. This is evident as this approach did
not initiate port changes, which are the main cause of failed incoming Telnet connections.
Although not clearly visible in the figures, the share of failed incoming Telnet connections
for this non-cooperative and reactive environment is identical to the share of its packet
loss (4.2%). This is due to the reboot of the Ethernet adapter, as a working IP address is
a prerequisite for successful Telnet connections.

The cooperative and reactive environment had a much higher interruption share of incom-
ing Telnet connections due to the moved Telnet service port. It is important to note that
this share was heavily influenced by the defined time to switch back to port 23, which
can be specified in the MTD Deployer Server configuration file. The 30 seconds selected
for the evaluation were chosen because Bashlite would definitely be rendered harmless on
the infected device and the port could therefore be moved back after 30 seconds. Again,
the share of failed incoming Telnet connections was twice as high in the cooperative but
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proactive environment as in the cooperative and reactive environment. This is because
the former ran the MTD every 60 seconds and the latter every 120 seconds.

As mentioned earlier, there is a trade-off between security and availability and all the
deployment strategies had their advantages. However, the only advantage that the non-
cooperative reactive system had over the cooperative reactive system is the lower rate
of failed incoming Telnet connections. Although it is unlikely that the availability of a
device’s Telnet port is more important than security and the outgoing packet loss rate, a
solution in this case would be to use an uncooperative defence.

The cooperative and reactive approach also showed better results in the evaluation than
the cooperative but proactive approach. However, this case is more complex as it depends
on various factors such as the detection time of the malware or again the trade-off be-
tween security and availability. The proactive approach could theoretically provide better
security results than the reactive approach, but this would also increase the interruption
of the services. In a real system, the requirements of the underlying system would have
to be compared with the advantages and disadvantages of the MTD solution. One way of
doing this is to calculate the interruption time and decide which approach is more suitable
for the system at hand.

In general, the cooperative and reactive approach can be recommended for most systems,
as this will only run the MTD techniques if Bashlite has been found on the system.
This avoids unnecessary interruption of the system that would occur with the proactive
approach. However, it is impossible to make a final statement, as the choice also depends
on the malware. If a really aggressive malware is trying to infect and possibly destroy the
devices, a proactive approach may still be more reasonable. Nevertheless, the possibilities
offered by a cooperative defence mechanism are very promising.

Even in case a proactive approach is the required solution, there is no need to worry
about the resources of the device, as it was found that the MTD framework and executed
techniques used only a minimal amount of hardware resources. This is evident from
the fact that it does not take many hardware resources to execute the sed command to
replace something in a file and then restart either the Ethernet adapter or the inetutils-
inetd service. The peaks seen in the CPU usage of VM1 with the MTD deployed are
almost certainly caused by the restart of VM1’s Ethernet adapter. It is not clear what
caused the peaks of VM2. The reason may be the restart of the inetutils-inetd service, but
as they were not as periodic as VM1’s peaks, it is difficult to determine. However, these
peaks were extremely short and therefore not a problem even for resource-constrained
devices. In terms of RAM usage, the results were similar. The MTD framework and the
executed techniques used only about 10,000 bytes of RAM. This is negligible compared
to the 3.7 GB the machines had at their disposal, as it is less than 0.0003%.

The results of this evaluation could also be usefully combined with two of the frameworks
presented in Section 3.2. The first was the framework that helps to answer the design
questions (What, How, When) for an MTD mechanism. The What and the How are
already determined by the implemented MTD mechanism, as well as the When for the
reactive case, since this is determined by the detection time. However, the When for
the proactive approach could definitely be determined with the help of this framework.
The second framework was the IANVS framework, which aims to help implement MTD
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techniques in distributed systems. Whether this is needed or not depends on the system.
As long as the connections of the IoT devices are outgoing and the target is static, such a
mechanism is not needed because the IoT device can still connect to the target regardless
of what IP address the IoT device currently has. However, if a device needs to connect
to the IoT device, such a mechanism needs to be implemented.

6.2 Limitations

There are some important limitations in several aspects of this thesis. The first is the
operating system of the virtual machines. As described, the initial setup was with the
Ubuntu operating system, which had to be changed to the Raspberry OS in order to run
Bashlite. This change caused the original implementation of the IP address change to
fail. Although the Python parts of the solution should work independently of the OS, it is
possible that the Bash commands executed in the Python code may need to be adapted on
a different OS. This is especially important as there are many different potential operating
systems for constrained devices, as shown in Section 2.2.3.

Another limitation is the chosen malware. In this thesis, Bashlite was used as the malware
to work with. However, there exist more sophisticated malware that may be able to evade
the defence mechanisms presented. Although this could only be evaluated through the
code on GitHub, a malware such as Mirai has implemented the functionality to reconnect
to its server when the client does not receive a response from the server. This makes the
IP address change more of a short-term obstacle than a long-term solution. Additionally,
it is not entirely clear how the IP address change would perform against a P2P malware
such as the HEH malware described in Section 2.3.2. At the very least, the Telnet port
change technique is, in theory, a well working defence against malware such as HEH or
Mirai. However, this also needs to be thoroughly tested in practice. Additionally, it is
worth noting that malware can also target a device’s SSH port. This thesis has only
focused on the Telnet port.

As already described in more detail in the previous Chapter (6), the results of the evalu-
ation were strongly influenced by the chosen variables and the configuration file (e.g. the
proactive execution rhythm or the IP address range to be scanned by nmap). Although
this is normal in such an evaluation, it is important to emphasise this when talking about
the limitations. Even though the variables selected for this thesis were carefully chosen, it
is not possible to draw an absolute conclusion from the result. It is clear that in most cases
it makes sense to use a cooperative and reactive approach where possible, but there may
be environments/systems where the cooperative and proactive approach is more suitable.
Various variables determine how well an MTD approach performs, and different MTD
approaches may have different advantages and disadvantages. It is therefore important to
tailor the chosen MTD approach to the requirements of the system that is to be protected
by the MTD solution.
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Conclusion

This thesis proposed and implemented a cooperative Moving Target Defence (MTD)
framework for IoT devices along with two MTD techniques. IoT devices are inherently
susceptible to malware for several reasons, including poor maintenance and neglect of
security [4]. This insecurity, combined with the immense number of existing IoT devices
[2], makes these devices a popular target for malware. Infected IoT devices can be used
for various malicious behaviours, the most common use case being botnets to perform
DDoS attacks, for example. One way to defend IoT devices against malware is MTD,
that attempts to change the attack surface of a system to defend it against attackers [7].
[35] showed that it is possible to disconnect a Bashlite bot from the Bashlite server by
changing the private IP address of the client. The solution proposed in this thesis builds
on this by adding a cooperative component, as this provides a significant advantage to
the defence mechanism.

In order to find an effective defence, a suitable malware had to be found. The choice
fell on Bashlite, a fairly well-known IoT malware. Even though Bashlite was available
on code repositories, some adaptations had to be made to the code to provide, among
other things, the spreading functionality. With Bashlite working, the cooperative MTD
mechanism could be developed. As a test bed, three virtual machines running Raspberry
OS were used, one as a server machine and the other two to mimic the IoT devices. Of
these two mimicking machines, one was manually infected (VM1) and the other was the
susceptible machine (VM2) that was eventually infected through the spreading of Bashlite.

The implemented solution consists of two different MTD techniques, which are the IP
address change and the Telnet service port change, as IoT malware often infects devices
via Telnet. The currently infected device performs an IP address change to disconnect
itself from the Bashlite server, making communication with the server impossible. All
other devices in a given IP address range should change their Telnet service port for a
specified time to hide from Bashlite.

After the implementation, the solution was evaluated using several metrics, including the
overall infection time of Bashlite on the two virtual machines, the network interruption
caused by the execution of the MTD, and the RAM and CPU usage. These three metrics
were measured in three different environments for comparison. The first environment was
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an non-cooperative and reactive MTD approach. This environment executed the MTD
techniques 10 seconds after Bashlite was detected, but did not include a cooperative
component. This means that Bashlite first had to be detected on the machine in order to
disrupt its connection to the Bashlite server. The second environment was a cooperative
and reactive MTD approach. Again, the MTD techniques were executed 10 seconds after
Bashlite was detected, but here with the cooperative component. This was the solution
developed in this thesis. The third and final environment was a cooperative but proactive
environment. This was used for comparison and to show the trade-off between a proactive
and a reactive MTD approach. This proactive approach ran the MTD techniques after
a specified time interval (1 minute), regardless of whether Bashlite was on the system or
not.

The results showed that in the non-cooperative and reactive approach, the susceptible
machine was infected on every run of Bashlite. This meant that both machines had to
change their IP address to disconnect from the Bashlite server, resulting in each machine
being infected for approximately 29 seconds. The cooperative and reactive approach
completely prevented the spreading of Bashlite to the susceptible machine by changing
the Telnet service port of the susceptible machine. Therefore, only the manually infected
machine was infected for 29 seconds and the susceptible machine was not infected at all.
This meant that the overall duration of infection activity on the two VMs was halved.
Although not tested, this would be even more significant with more susceptible machines,
as any infection other than the first could be prevented. Finally, the cooperative but
proactive approach also prevented Bashlite from spreading to the vulnerable machine with
the chosen configuration. However, it also showed a large variance in Bashlite duration on
the first machine, as randomness partly determines after what time the MTD techniques
are initiated. This resulted in an average Bashlite duration of 34 seconds on VM1 and 0
seconds on VM2. The results of this approach are strongly influenced by the configuration
chosen, i.e. the interval at which the MTD techniques are initiated and other variables.
It is also possible, for example, that the spreading of Bashlite cannot be prevented at all
if the interval between the execution of the MTD techniques is too long.

Besides the overall infection time, the downtime of the machines is an important metric.
The results clearly showed that a cooperative and reactive approach gave better results
in terms of downtime than the uncooperative and reactive approach, as long as Telnet
is not required on the susceptible machine. The cooperative and reactive approach also
caused much less downtime (about 50%) than the proactive and cooperative approach,
which was to be expected. The final metric was the CPU and RAM usage of the MTD
techniques. It turned out that both machines used on average a maximum of 0.43% more
CPU with the MTD mechanism deployed than without it and that the RAM usage of
10000 MB on each machine was negligible.

Although the cooperative and reactive approach performed best in the evaluation, the
other approaches should also be kept in mind. This is due to the different variables that
should be considered when deciding on the most suitable MTD approach. Each approach
has different advantages and disadvantages. For example, a short-interval proactive ap-
proach may be the best solution if the overall infection time of the system is to be min-
imized, and high downtime of connections to and from the machines is not an issue. In
addition, it may be that the malware in question is not (yet) detectable, in which case the
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proactive approach would be required anyway. However, for most systems, the cooperative
and reactive approach will provide the best overall solution.

With the threat of IoT malware increasing both in number [6] and with new highly
dangerous variants such as P2P malware [29], it is essential to have the best possible
defence options. One of these options is the Moving Target Defense which has proven to
be a promising defence strategy for IoT devices, especially when it includes a cooperative
component, as shown in this thesis. To be prepared for future threats and especially
against P2P malware, further research on how cooperative Moving Target Defense can
defend against IoT malware is essential.

7.1 Future Research

As the topic of MTD is large and complex, there are several possibilities for further re-
search. This thesis has shown that the cooperative and reactive MTD approach offers
several advantages over other approaches. Examples of these advantages are a com-
paratively lower duration of infection activity on the system and a comparatively lower
interruption of availability. A prerequisite for a reactive MTD approach to work is the
ability to detect potential malware on the system. Therefore, research on fast and reli-
able malware detection mechanisms is essential. One possible means for that are machine
learning algorithms [35].

Another research option is to further develop the presented solution. Possible improve-
ments are to make the solution faster, for example by optimizing the nmap scan, or to
adapt the solution for other operating systems. A significant research would be to inves-
tigate if and to what extent the current solution works against malware such as Mirai or
P2P botnets. Theoretically, moving the Telnet service port should also protect against
these malwares, but this should be tested in practice.

Another interesting area of research would be to further investigate the impact of the
LAN setting. This has only been touched on slightly in this thesis, but the LAN setting
could provide additional options for the malware that could have a negative impact on an
MTD defence mechanism. For example, one of these potential options are port scanners
that might be able to find the moved Telnet port.

Finally, the presented solution uses a classic client-server architecture. This was due to
the simplicity provided, which allowed the basic concept of cooperative MTD to be tested
more quickly. For a more sophisticated implementation, other architectures should be
considered. For example, one option is a P2P architecture, which would provide the
corresponding advantages, such as e.g. the removal of the single point of failure.



72 CHAPTER 7. CONCLUSION



Bibliography

[1] Fortune Business Insights. “Internet of things (iot) market size, share covid-19
impact analysis, by component (platform, solution services), by end-use industry
(bfsi, retail, government, healthcare, manufacturing, agriculture, sustainable energy,
transportation, it telecom, and others), and regional forecast, 2022-2029”. https:
//www.fortunebusinessinsights.com/industry-reports/internet-of-thing

s-iot-market-100307 (accessed Sep. 18, 2022).

[2] Statista. “Number of internet of things (iot) connected devices worldwide from 2019
to 2021, with forecasts from 2022 to 2030”. https://www.statista.com/statist
ics/1183457/iot-connected-devices-worldwide/#:~:text= The number of

Internet of Things(IoT) devices,in China with around 5 billion consu

mer devices (accessed Sep. 18, 2022).

[3] S. Agarwal, P. Oser, H. Short, and S. Lueders, “Internet of Things (IoT) security”,
Geneva, Tech. Rep., 2017. doi: 10.5281/zenodo.1035034. [Online]. Available:
https://cds.cern.ch/record/2776796.

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and
other botnets”, Computer, vol. 50, no. 7, pp. 80–84, 2017. doi: 10.1109/MC.2017
.201.

[5] J. S. Perry. “Anatomy of an iot malware attack”. https://developer.ibm.com/a
rticles/iot-anatomy-iot-malware-attack/ (accessed Oct. 21, 2022).

[6] D. Demeter, M. Preuss, Y. Shmelev. “Iot: A malware story”. https://securelist
.com/iot-a-malware-story/94451/ (accessed Oct. 19, 2022).

[7] R. E. Navas, F. Cuppens, N. Boulahia Cuppens, L. Toutain, and G. Z. Papadopou-
los, “Mtd, where art thou? a systematic review of moving target defense techniques
for iot”, IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7818–7832, 2021. doi:
10.1109/JIOT.2020.3040358.

[8] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in the blur
of moving-target techniques”, IEEE Security & Privacy, vol. 12, no. 2, pp. 16–26,
2014. doi: 10.1109/MSP.2013.137.

[9] A. Marzano, D. Alexander, O. Fonseca, et al., “The evolution of bashlite and mirai
iot botnets”, in 2018 IEEE Symposium on Computers and Communications (ISCC),
2018, pp. 00 813–00 818. doi: 10.1109/ISCC.2018.8538636.

[10] J. Cedeño, “Mitigating cyberattacks affecting resource-constrained devices through
moving target defense (mtd) mechanisms”, 2022.

73

https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/##:~:text= The number of Internet of Things(IoT) devices,in China with around 5 billion consumer devices
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/##:~:text= The number of Internet of Things(IoT) devices,in China with around 5 billion consumer devices
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/##:~:text= The number of Internet of Things(IoT) devices,in China with around 5 billion consumer devices
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/##:~:text= The number of Internet of Things(IoT) devices,in China with around 5 billion consumer devices
https://doi.org/10.5281/zenodo.1035034
https://cds.cern.ch/record/2776796
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/MC.2017.201
https://developer.ibm.com/articles/iot-anatomy-iot-malware-attack/
https://developer.ibm.com/articles/iot-anatomy-iot-malware-attack/
https://securelist.com/iot-a-malware-story/94451/
https://securelist.com/iot-a-malware-story/94451/
https://doi.org/10.1109/JIOT.2020.3040358
https://doi.org/10.1109/MSP.2013.137
https://doi.org/10.1109/ISCC.2018.8538636


74 BIBLIOGRAPHY

[11] A.K. Ghosh, I. D. Pendarakis, W.H. Sanders. “National cyber leap year summit
2009”. https://www.nitrd.gov/nitrdgroups/images/b/bd/National_Cyber_Le
ap_Year_Summit_2009_CoChairs_Report.pdf (accessed Aug. 19, 2022).

[12] IBM. “What is an attack surface?” https://www.ibm.com/topics/attack-surfa
ce (accessed Jan. 27, 2023).

[13] G.-l. Cai, B.-s. Wang, W. Hu, and T.-z. Wang, “Moving target defense: State of the
art and characteristics”, Frontiers of Information Technology Electronic Engineer-
ing, vol. 17, pp. 1122–1153, 2016. doi: 10.1631/FITEE.1601321.

[14] S. Santra and P. P. Acharjya, “A study and analysis on computer network topol-
ogy for data communication”, International Journal of Emerging Technology and
Advanced Engineering, vol. 3, no. 1, 2013.

[15] gfu Consumer Home Electronics. “Smart homes: Survey in germany and the united
kingdom”. https://gfu.de/en/smart-home-befragung-in-deutschland-und-g
rossbritannien/ (accessed Sep. 18, 2022).

[16] M. Lombardi, F. Pascale, D. Santaniello, “Internet of things: A general overview
between architectures, protocols and applications”, Information, vol. 12, no. 2, 2021.

[17] Cloudflare. “What is a personal area network (pan)?” https://www.cloudflare.c
om/learning/network-layer/what-is-a-personal-area-network/ (accessed
Jan. 07, 2023).

[18] Eclipse Foundation. “Iot & edge developer survey report”. https://5413615.fs1
.hubspotusercontent-na1.net/hubfs/5413615/2022 IoT & Edge Developer

Survey Report.pdf?hsCtaTracking=005f9ab7-5a8b-4efb-8733-ccfc469871fa

%7C49968bbc-8827-4c1d-87cb-836dd8419b3b (accessed Oct. 07, 2022).

[19] freeRTOS. “Freertos”. https://freertos.org/ (accessed Oct. 07, 2022).

[20] Malwarebytes. “Malware”. https://www.malwarebytes.com/malware (accessed
Oct. 21, 2022).

[21] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, “A survey of iot malware
and detection methods based on static features”, ICT Express, vol. 6, no. 4, pp. 280–
286, 2020, issn: 2405-9595. doi: 10.1016/j.icte.2020.04.005.

[22] M. Vicente, B. Gelera, A. Remillano, C. Toyama, J. Urbanec. “Bashlite updated
with mining and backdoor commands”. https://www.trendmicro.com/en_us/re
search/19/d/bashlite-iot-malware-updated-with-mining-and-backdoor-co

mmands-targets-wemo-devices.html (accessed Oct. 20, 2022).

[23] The Open Group. “Ieee std 1003.1™-2017”. https://pubs.opengroup.org/online
pubs/9699919799/ (accessed Oct. 19, 2022).

[24] F. Hofmann. “Is linux posix-compliant?” https://linuxhint.com/is_linux_posi
x_compliant/ (accessed Oct. 19, 2022).

[25] Comodo Antivirus. “Sophisticated linux trojan self-deletes to elude detection?” htt
ps://antivirus.comodo.com/blog/computer-safety/linux-trojan-self-del

etes-elude-detection/ (accessed Oct. 20, 2022).

[26] Security Cam Center. “Dahua default password”. https://securitycamcenter.co
m/dahua-default-password/ (accessed Oct. 20, 2022).

https://www.nitrd.gov/nitrdgroups/images/b/bd/National_Cyber_Leap_Year_Summit_2009_CoChairs_Report.pdf
https://www.nitrd.gov/nitrdgroups/images/b/bd/National_Cyber_Leap_Year_Summit_2009_CoChairs_Report.pdf
https://www.ibm.com/topics/attack-surface
https://www.ibm.com/topics/attack-surface
https://doi.org/10.1631/FITEE.1601321
https://gfu.de/en/smart-home-befragung-in-deutschland-und-grossbritannien/
https://gfu.de/en/smart-home-befragung-in-deutschland-und-grossbritannien/
https://www.cloudflare.com/learning/network-layer/what-is-a-personal-area-network/
https://www.cloudflare.com/learning/network-layer/what-is-a-personal-area-network/
https://5413615.fs1.hubspotusercontent-na1.net/hubfs/5413615/2022 IoT & Edge Developer Survey Report.pdf?hsCtaTracking=005f9ab7-5a8b-4efb-8733-ccfc469871fa%7C49968bbc-8827-4c1d-87cb-836dd8419b3b
https://5413615.fs1.hubspotusercontent-na1.net/hubfs/5413615/2022 IoT & Edge Developer Survey Report.pdf?hsCtaTracking=005f9ab7-5a8b-4efb-8733-ccfc469871fa%7C49968bbc-8827-4c1d-87cb-836dd8419b3b
https://5413615.fs1.hubspotusercontent-na1.net/hubfs/5413615/2022 IoT & Edge Developer Survey Report.pdf?hsCtaTracking=005f9ab7-5a8b-4efb-8733-ccfc469871fa%7C49968bbc-8827-4c1d-87cb-836dd8419b3b
https://5413615.fs1.hubspotusercontent-na1.net/hubfs/5413615/2022 IoT & Edge Developer Survey Report.pdf?hsCtaTracking=005f9ab7-5a8b-4efb-8733-ccfc469871fa%7C49968bbc-8827-4c1d-87cb-836dd8419b3b
https://freertos.org/
https://www.malwarebytes.com/malware
https://doi.org/10.1016/j.icte.2020.04.005
https://www.trendmicro.com/en_us/research/19/d/bashlite-iot-malware-updated-with-mining-and-backdoor-commands-targets-wemo-devices.html
https://www.trendmicro.com/en_us/research/19/d/bashlite-iot-malware-updated-with-mining-and-backdoor-commands-targets-wemo-devices.html
https://www.trendmicro.com/en_us/research/19/d/bashlite-iot-malware-updated-with-mining-and-backdoor-commands-targets-wemo-devices.html
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://linuxhint.com/is_linux_posix_compliant/
https://linuxhint.com/is_linux_posix_compliant/
https://antivirus.comodo.com/blog/computer-safety/linux-trojan-self-deletes-elude-detection/
https://antivirus.comodo.com/blog/computer-safety/linux-trojan-self-deletes-elude-detection/
https://antivirus.comodo.com/blog/computer-safety/linux-trojan-self-deletes-elude-detection/
https://securitycamcenter.com/dahua-default-password/
https://securitycamcenter.com/dahua-default-password/


BIBLIOGRAPHY 75

[27] M. R. Fuentes, S. Hilt, R. McArdle, F. Merces, and D. Sancho. “The future of p2p
iot botnets”. https://www.trendmicro.com/en_us/research/21/c/the-future
-of-p2p-iot-botnets.html#:~:text=For%20P2P%20IoT%20botnets%20to,a%20

mere%20internet%2Dconnected%20device (accessed Dec. 19, 2022).

[28] Europol. “Andromeda botnet dismantled in international cyber operation”. https

://www.europol.europa.eu/media-press/newsroom/news/andromeda-botnet-

dismantled-in-international-cyber-operation (accessed Dec. 19, 2022).

[29] S. Hilt, R. McArdle, F. Merces, M. Rosario, and D. Sancho. “Uncleanable and un-
killable: The evolution of iot botnets through p2p networking”. https://docume

nts.trendmicro.com/assets/pdf/Technical_Brief_Uncleanable_and_Unkill

able_The_Evolution_of_IoT_Botnets_Through_P2P_Networking.pdf (accessed
Dec. 19, 2022).

[30] G. Zhang and M. Parashar, “Cooperative defense against network attacks”, Jan.
2005, pp. 113–122.

[31] B. Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and B. Stiller, “A
blockchain-based architecture for collaborative ddos mitigation with smart con-
tracts”, 2017, pp. 16–29, isbn: 978-3-319-60773-3. doi: 10.1007/978-3-319-6
0774-0_2.

[32] B. Rodrigues, L. Eisenring, E. Scheid, T. Bocek, and B. Stiller, “Evaluating a
blockchain-based cooperative defense”, in 2019 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM), 2019, pp. 533–538.

[33] Cloudflare. “What is an autonomous system? | what are asns?” https://www.c

loudflare.com/learning/network-layer/what-is-an-autonomous-system/

(accessed Oct. 11, 2022).

[34] B. C. Ward, S. R. Gomez, R. W. Skowyra, D. Bigelow, J. N. Martin, J. W. Landry,
H. Okhravi. “Survey of cyber moving targets second edition”. http://web.mit.ed
u/br26972/www/pubs/mt_survey.pdf (accessed Oct. 05, 2022).

[35] J. von der Assen, A. Huertas, P. M. Sánchez, et al., “A lightweight moving target
defense framework for multi-purpose malware affecting iot devices”, 2022. doi: 10
.48550/arXiv.2210.07719.

[36] A. A. Mercado-Velázquez, P. J. Escamilla-Ambrosio, and F. Ortiz-Rodŕıguez, “A
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Abbreviations

6LoWPAN IPv6 over Low power Wireless Personal Area Network
MTD Moving Target Defense
MP Moving Parameter
OS Operating System
C&C Command and Control
DDoS Distributed Denial of Service
P2P Peer-to-Peer
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Glossary

Moving Target Defense A cybersecurity paradigm that aims to change the attack sur-
face of a system by altering its properties, such as the IP addresses or the data
representation.

Moving Parameter The ”what” that should be changed as a part of the Moving Target
Defense. An example is the value of the IP address.

Internet of Things Items such as sensors that are connected through a network and col-
lect and exchange data.

Botnet A collection of bots that are remotely controlled and can be used to launch cyber
attacks.

Bashlite A well-known IoT malware that was the basis for other well-known IoT malware
such as Mirai. Aims to create a botnet of infected devices.

Mirai An IoT malware still prevalent today that, like Bashlite, aims to create a botnet
of infected devices.

HEH One of the few existing P2P malware with the goal of creating a botnet of infected
devices.

Honeypot A way to analyze malware as honeypots attract these malicious software.
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Appendix A

Installation Guidelines

All the files for this thesis can be found at https://github.com/stevna/MScThesi

s_coopMTD. This includes the modified version of Bashlite, all files related to the MTD
framework and techniques, the scripts for data collection, and the Jupyter notebooks for
data analysis. There is also a link to download all three complete virtual machines.

TheWiki tab of this GitHub page contains detailed installation and execution instructions,
including how to run Bashlite and what scripts need to be executed to start the infection
and mitigation processes. It also includes instructions on how to insert the downloaded
virtual machines into Oracle VM VirtualBox so that the virtual machines do not need to
be recreated for future research.
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Appendix B

Contents of the GitHub Repository

The provided GitHub repository has the following contents:

1. This thesis as a PDF.

2. A short summary of the thesis in German.

3. The modified server and client code of Bashlite.

4. All files related to the MTD framework and techniques of all 3 virtual machines.

5. The files and scripts to collect the data for the evaluation.

6. The files and scripts to analyze the data for the evaluation.

7. The Latex source code used for this report,

8. The source files of the graphics and tables used for this thesis which is a Microsoft
PowerPoint document.

9. A SWITCHdrive link where all three virtual machines can be downloaded for the
subsequent insertion into Oracle VM VirtualBox.
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