Communication Systems Group, Prof. Dr. Burkhard Stiller

MASTER THESIS

University of
Zurich™

7

HomeScout: A Modular Bluetooth
Low Energy Sensing Android App

Louis Bienz
Zurich, Switzerland
Student ID: 15-729-403

Supervisor: Katharina Maller
Date of Submission: January 5, 2023

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Master Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Bluetooth Low Energy (BLE) trackers are affordable devices that are misused for stalking
attacks. Apple, for example, offers AirTags as BLE trackers. These are used by users of
their ecosystem to retrieve lost items. Unfortunately, cases have come to light in which
owners of an AirTag have tracked other people with the help of such a tracker. Apple
reacted to this to protect their users. Android users, on the other hand, were not offered
a satisfactory solution. An Android app called AirGuard from the Technical University
of Darmstadt in Germany addressed this issue. The app scans in the background and
informs users about trackers that are following them. Apple and AirGuard use a tracking
algorithm defined by them that decides whether a tracker is following the user. In this
work, an Android app is developed that allows users to customize such a tracking algo-
rithm. This also enabled this work to evaluate through experiments how such a tracking
algorithm should be configured to notify users as quickly as possible of malicious trackers.
Furthermore, this app applies the tracking algorithm not only to BLE trackers but to
BLE devices in general, since in principle not only BLE trackers can be used for stalking

attacks. Moreover, this work investigated whether BLE trackers can be distinguished
from BLE devices using Android’s BLE APIL.

1

Acknowledgments

First and foremost, I would like to thank Katharina Miiller for her full support. As my
supervisor, she was actively available to me with valuable advice, constructive feedback,
and most importantly, her time. Furthermore, it was a pleasure to do my master thesis
in the Communication Systems Research Group (CSG) at the Department of Informatics
of the University of Zurich. The given topic was very motivating. I would also like to
thank my dear partner Corina Syfrig for her patience during the last six months. She has
motivated me and helped me to keep the big picture in mind. Finally, I would like to
thank my friend Marc Zwimpfer and my father Charles Bienz, who critically reviewed my
work and made valuable suggestions for improvement.

iii

v

Contents

Abstract

Acknowledgments

1 Introduction

1.1

1.2

1.3

Motivation
Description of Work o

Thesis Outline

2 Related Work

3 Background

3.1

3.2

3.3

3.4

Bluetooth Low Energy
3.1.1 Specifications
3.1.2 Layer Stack
3.1.3 Manufacturer Specific Data
Find My Network
3.2.1 Losing e
Tracking Protection
3.3.1 Apple’s Tracking Protection on iOS
3.3.2 AirGuard’s Tracking Protection,
Tracking Devices
341 AirTag

iii

vi CONTENTS
3.4.2 Chipolo ONE Spot 21

3.4.3 Samsung Galaxy SmartTag+ 21

344 Tile 21

4 Design and Implementation: Android App 23
4.1 Build Configurations 23
4.2 App Workflow 25
4.3 App Architectureo 25
4.3.1 User Interface (UI) 26

4.3.2 Data Layer 28

4.3.3 Services 30

4.4 Android Bluetooth Low Energy API 36
4.4.1 BluetoothLeScanner 36

4.4.2 ScanResult, ScanRecord, and BluetoothDevice 37

4.5 Tracker Identificationo 38
451 AirTag 38

4.5.2 Chipolo ONE Spot 40

4.5.3 Galaxy SmartTag+ Lo 40

454 Tile 40

5 Results and Evaluation 41
5.1 Advertisements of Tracking Devices 41
5.1.1 Long Time Unpaired vs. Alternating Pairing State 41

5.1.2 RSSI 46

5.2 Tracking Algorithm 48
5.2.1 Experimental Route L. 48

5.2.2 Experimental Procedure 49

5.2.3 BLE Devices in the Wild 50

5.2.4 Testing of Tracking Preferences 51

CONTENTS vii

5.3 Evaluation of Tracker Identification 59
5.3.1 By Company Identifier 59

532 By PDU 60

5.3.3 Holistic 60

6 Discussion 63
6.1 Security Concerns of Trackers 63
6.2 Scanning Behaviour 64
6.3 False Positives of Tracking Protection 65
6.4 Mac Randomization 67
6.5 RSSI asashield 67

7 Conclusion and Future Work 69
7.1 Conclusion 69

7.2 Future Work 70
Abbreviations 79
Glossary 81
List of Figures 81
List of Tables 87
A Android Bluetooth API records 91
A1 AirTag o 92
A2 Chipolo One Spot 98
A3 Galaxy SmartTag+ 104

A4 Tile ..o 110

viii CONTENTS

B Experiments 117
B.1 RSSI . . o 117
B.2 Tracking Algorithm 117
B.3 Long Time Unpaired and Alternating States 117

B.3.1 AirTag 118
B.3.2 Chipolo ONE Spot 119
B.3.3 Galaxy SmartTag+ 120

B34 Tile 121

Chapter 1

Introduction

The intended purpose of Bluetooth Low Energy (BLE) is to enable communication be-
tween devices. Nowadays, it is also used for positioning of devices, especially indoors where
the presence, distance and direction to other devices can be determined [1]. Furthermore,
with Apple's Find My app, it is possible to locate BLE devices not only indoors, but
globally [2]. An owner can locate an item attached to an AirTag anywhere in the world.
For example, an AirTag can be attached to a travel bag. If the airline ships the bag to the
wrong destination the owner is able to see that the bag is in a different country. Likewise,
an AirTag can be attached to keys. If the owner loses those keys on the way home, the
owner will know where in the city those keys are. Hence, an item can be located and
found anywhere. Unfortunately, such AirTags have been misused for stalking purposes.
The news reports cases where people have been stalked with the help of AirTags [3], [4],
as well as cases where AirTags have been hidden in a car to track the person [5] or steal
cars [6].

Apple has reacted to this concern and updated iOS with tracking protection. It notifies
a user if an AirTag or another Find My network accessory is separated from the owner
and is moving with the user, respectively the victim [7]. In case a victim does not own an
iPhone, the AirTag will play a sound once it is separated from its owner. This way victims
are able to detect that an AirTag is following them. However, AirPods for example are
not capable of playing a sound to inform a victim. Additional countermeasures are needed
to prevent stalking attacks with BLE devices in general. For Android user's the Tracker
Detect app allows one to manually find such devices. The app covers all devices which are
compatible with the Find My app. Furthermore, it shows how to disable such trackers
[8]. To further improve the stalking or tracking protection of Android users, AirGuard
has been developed. The benefit of this app is, that it scans for Find My trackers and
Tile trackers in the background [9]. If the app detects a tracker which is following the
victim, it sends a notification to the victim, respectively to the user of the app.

Besides Apple's Find My trackers, which include trackers from Chiplo, and Tile trackers
other companies have released their own trackers as well. Samsung sells the Galaxy
SmartTag+ which works in the same manner as the AirTag, but with the Galaxy Find
network. Trackers from Tile are located via the Tile app. Moreover, the Tile app allows
one to pair third-party accessories, such as HP Laptops, Fitness-Trackers from FitBit,

2 CHAPTER 1. INTRODUCTION

any kind of headphones from Skullcandy, and many more. Hence, not only the mentioned
trackers but BLE-capable devices, in general, can be misused as stalkingware as it has
been the case with AirTags.

To summarize, BLE trackers from Apple, Chipolo and Tile can be detected using the
AirGuard app. At this point, no app is known that protects users from stalking attacks
using a Galaxy SmartTag+. Furthermore, it is likely that more companies release BLE
trackers and Tile provides the possibility to use other BLE devices as trackers. Thus, not
only the mentioned BLE trackers but BLE devices, in general, can be used for stalking
attacks. Therefore, this work creates an Android app that protects users from stalking
attacks using BLE-capable devices.

1.1 Motivation

This work aims to extend tracking protection to the GalaxySmartTag+ as well as for
BLE devices in general. Using the Android Framework to build a tracking detection app,
the motivation is to see if there is a holistic way to identify BLE devices as BLE trackers
and eventually classify them as malicious or non-malicious trackers. This helps stalking
victims to be better protected from stalking attacks.

Furthermore, Apple's stalking protection and the AirGuard app use tracking algorithms,
which classify trackers as malicious or non-malicious. The main questions for this decision
are:

e For how long has a tracker been following a user?
e For how many meters has the tracker been following a user?

e How many times has a signal from this tracker occurred?

Their algorithm is enclosed and cannot be edited by a user. For this reason, the app
developed for this work aims to allow the user to set those parameters individually. On
one hand, this allows a user to raise or lower the tracking protection for their individual
level. On the other hand, it creates the possibility to study which values fit best for a
tracking algorithm with the motivation to notify users as early as possible about malicious
trackers.

1.2. DESCRIPTION OF WORK 3

1.2 Description of Work

The goal of this thesis is to generate new insights into the area of BLE devices used as
trackers. This work investigates if BLE-capable devices can be identified as trackers and
how a tracking algorithm can be designed in order to do so. Thus, the main contributions
of this work are:

(i) Investigation on holistic Bluetooth Low Energy tracker identification.

(ii) Implementation of an app to detect Bluetooth Low Energy trackers with an adapt-
able tracking algorithm.

(iii) Analysis of the parameters used for the tracking algorithm to notify users as early
as possible.

Furthermore, additional secondary contributions are addressed within this work. The
Media Access Control (MAC) address of a BLE device is regarded as a unique identifier.
It helps the tracking algorithm to keep track of a device. This however might impose some
issues, as nowadays some devices implement MAC randomization. Hence, it might not
be possible to track the devices appropriately. Therefore, for the AirTag, Chipolo ONE
Spot, Galaxy SmartTag+ and the Tile tracker additional experiments are conducted to
gain insights regarding their MAC randomization patterns. This is presented in Section
5.1.1.

Finally, out of curiosity, the tracker's Received Signal Strength Indicator (RSSI) values
are under investigation. The corresponding experiments evaluate how the RSSI values
behave in different scenarios. The insights are described in Section 5.1.2.

1.3 Thesis Outline

This thesis is structured as follows: Chapter 2 presents related work in the area of BLE,
Mac randomization, offline finding networks and existing tracking protection. Chapter 3
introduces the basics about BLE, offline finding networks, existing tracking algorithms and
the trackers used in this work. Chapter 4 describes the app developed for this work, what
the Android BLE API provides, and how the trackers used in this work can be identified.
Chapter 5 presents the results and evaluation of the conducted experiments about MAC
randomization, the tracker's RSSI values, and the tracking algorithm. Chapter 6 discusses
the findings of this work. Finally, Chapter 7 closes this work with the conclusion and points
out future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

BLE is used for various applications such as wildlife animal monitoring [10], smartphone-
based indoor localization [11], [12], [13], indoor localization based on the Received Signal
Strength Indicator (RSSI) [14], [15], [16], [17] indoor and outdoor localization in com-
bination with GPS [18], and offline finding networks for BLE trackers [19]. Such offline
finding networks build the basis to locate BLE trackers globally. This means the owner
of the tracker does not have to be within the connection range of the tracker to retrieve
its location. This enables users to find their lost items even if they are far away. Unfor-
tunately, those offline finding networks have led to stalking attacks, where a victim has
been located with the use of a tracker.

With those offline finding networks, tracking a target is easy. Even in crowded places,
tracking a BLE device is possible as shown by Nikodem and Bawiec [20]. In their large-
scale experiment, they tracked BLE devices in a connectionless manner, i.e. using only
BLE advertisements. In a laboratory of 21 m?, they tested the reliability of BLE adver-
tisements using 210 tags. The advertisement interval was set to 250 ms and 750 ms and
the data changed every 10 s. Thus, a passive scanner should receive 40, respectively 13
advertisements with the same data. For both advertisement intervals, the data reception
rate was above 99%. Nikodem and Bawiec showed that advertisement-based BLE com-
munication scales well and has acceptable collision rates such that IoT applications are
reliable. This means in a broader sense, BLE works in a large network of tags, respectively
in crowded places. Therefore, it is likely that also tracking an item or a person in crowded
places using an offline finding network is possible in a reliable manner.

BLE devices emit advertisements to show their presence to other devices. Those packets
include the public Media Access Control (MAC) address of the device. Broadcasting its
own public MAC address enables tracking of the device itself. This may pose a threat
because the person mapped to this very device can be tracked. To prevent this, MAC
randomization can be applied. This is a technique, where a BLE device randomizes its
MAC address in its advertisements. Thus, it does not send its permanent MAC address
anymore. Becker et al. [21] analyzed state-of-the-art devices implementing MAC random-
ization. In their experiment, they mimicked a local adversary, who is a passive external
adversary only reading BLE advertisements. The adversary does not add, remove or mod-
ify any of the traffic nor does the adversary interact with the tracked device either by a

6 CHAPTER 2. RELATED WORK

scan or connect request. In the experiment, the adversary stayed within the connection
range of the device and the tracked device had Bluetooth enabled. Becker et al. were
able to extract so-called identifying tokens from the advertisement payloads. They imple-
mented an address-carryover algorithm and showed that they could track devices beyond
MAC randomization based on those identifying tokens. Windows 10 systems were tracked
unbounded and macOS and iOS devices were tracked for 53 min. Only Android devices
showed no vulnerability.

As mentioned before, offline finding networks build the basis for locating BLE trackers.
The Find My network is Apple's crowd-sourced tracking system which uses Bluetooth to
locate lost devices like MacBooks, iPhones, AirTags or other Apple products. It has been
introduced in 2019. In general, such an offline finding network helps to find lost devices.
So-called finder devices can detect the presence of lost devices via BLE. The finder device
afterwards sends its location via the internet to the owner of the lost device. Thus, the
owner is able to get the location information on his or her lost devices. Besides Apple
devices also non-Apple devices can be located with the Find My network, for example,
Bluetooth-capable devices modified with OpenHayStack [22], which is shortly introduced
in the next paragraph. Apple says that its Find My network is not accessible to Apple
itself. The location data sent from a finder device to Apple's server is encrypted and
deleted after 24 hours [23]. Heinrich et al. [19] analysed the security and privacy of Apple's
Find My network, respectively offline finding network using reverse engineering. Based
on their analysis they assessed the security and privacy of the system. They found that
Apple achieves its security and privacy goals, however, they detected two vulnerabilities
to the system. A correlation can be made between different locations of an owner if those
locations have been reported by the same finder device. This would allow Apple to create
a social graph. Besides that, Heinrich et al. found that malicious macOS applications
are able to retrieve the location reports for the last seven days of the user and all of their
devices without their consent.

OpenHaystack [22] is a framework to track personal Bluetooth devices using Apple's Find
My network. It has been created by Heinrich et al. from the TU Darmstadt in Germany.
With this framework, a user can create tracking accessories out of Bluetooth-capable
devices. It provides firmware images for Nordic nRF5 chips and the ESP32. Along comes
a macOS application to locate the Bluetooth devices. Both are available on GitHub!. The
application allows the creation of new accessories to be tracked and deploys the firmware
on a supported device via USB. After 30 minutes the first location reports are available
via the application. The location of such a device happens via Apple's Find My network,
thus the location of the accessories are uploaded to Apple's server by iPhone participating
in the network.

To fight stalking attacks with AirTags, which is a BLE device, Apple updated their iOS
such that users get notified about malicious AirTags following them. Furthermore, for
Android users, Apple released an app in the Google Play Store called Tracker Detect in
February 2022. This app allows one to manually scan for lost devices of Apple’s Find My
network, such as AirTags [8]. For example, Tracker Detect detects an AirTag, which is
paired with an Apple ID, as soon as it loses connection to its paired account. However,

https://github.com/seemoo-lab/openhaystack

this app does not scan for tracking devices in the background. Hence, in case the user
suspects being tracked he or she needs to manually start a scan in order to identify a
potential tracking device.

AirGuard is an Android App which looks for malicious trackers in the background and
notifies a user if he or she is being tracked by an AirTag for example. This app has
been designed and built within the work of Heinrich et al. [24]. They reverse-engineered
Apple’s tracking protection to identify AirTags based on their manufacturer-specific data.
Furthermore, they compared their App AirGuard against Apple's built-in tracking pro-
tection. In their experiment, they tested both tracking protections against an AirTag,
Chipolo ONE Spot and a self-made OpenHaystack tag. They recorded how much time
has passed until the user gets notified about a malicious tracker. They evaluated three
scenarios. In the first scenario, the tracking devices had been hidden in the pocket of the
jacket of the target person. iOS notified the user about the AirTag and the Chipolo ONE
Spot trackers after 1 h and 45 min. Regarding the self-made OpenHaystack, no notifica-
tion had been sent to the user. AirGuard on the other hand notified the user about all
three trackers within 35 min. In the second scenario, the trackers had been hidden in the
backpack of the target person. iOS again did not notify the user about the OpenHaystack
tag and sent a notification after 4 h 14 min for the AirTag and the Chipolo ONE Spot.
AirGuard sent a notification after 30 min for all three trackers. In the last scenario, the
trackers had been hidden in the car, more precisely on the inside of the fuel cap. After 4
h 18 min, AirGuard notified the user about all three trackers, whereas iOS left the target
person uninformed, respectively did not send any notification.

To summarize, BLE is amongst other applications used to track items via an offline
finding network. This is very reliable, even in crowded places. Those trackers have been
misused for stalking purposes. Therefore, Apple reacted with countermeasures. The app
AirGuard enhanced tracking protection to even more trackers. Both tracking protections
use an algorithm which classifies trackers as malicious or non-malicious devices. Those
tracking algorithms are determined by Apple and AirGuard. The user does not have the
possibility to change how this tracking algorithm evaluates devices as malicious or not.
Today, no app is known which lets users define the values for the tracking algorithm.
Furthermore, no analysis of such a tracker algorithm has been found. Finally, the existing
apps for tracking protection target only actual BLE trackers and not BLE devices in
general. Therefore, for this work, an app is created to inform users about any BLE
devices which might be misused as a tracker to follow and locate them. Furthermore, this
work focuses on how to configure a tracking algorithm such that a user gets notified about
a BLE tracker as early as possible.

CHAPTER 2. RELATED WORK

Chapter 3

Background

This chapter presents the BLE Technology as it builds the foundation for locating BLE
trackers using offline finding networks. How an offline finding network accomplishes lo-
cating trackers is explained by the example of Apple's Find My network. Afterwards,
tracking protection and tracking devices which have been studied or used within this
work are described.

3.1 Bluetooth Low Energy

The technical explanations of BLE in this section are based on the BLE Primer from
the official Bluetooth Special Interest Group (SIG) [25]. Additional resources are cited
accordingly.

BLE enables electronic devices to communicate in three different types of topologies. A
one-to-one communication between two devices is done in a point-to-point connection-
oriented or connectionless manner. This might be used to exchange data for example. A
One-to-many communication broadcasts data to an unlimited number of receivers using
so-called advertisements. The advertisement types are non-connectable, non-scannable,
and undirected. The broadcasting method can also be extended to a mesh topology, where
multiple devices in a network can communicate with any other device in the network. The
mesh as well as the point-to-point topology is neglected in this work since the focus lies on
the passive scanning of trackers. Thus, only the broadcasting topology will be explained
in more detail.

Generally, BLE offers a raw data rate of 2 Mbit/s. It allows to exchange of data wirelessly
between two devices and no additional, respectively intermediate instance is needed. BLE
was designed to be highly energy efficient. This made BLE beneficial for small, wireless
devices such as mice, sensors, wearables, or generally speaking, devices that run on small
batteries for a longer period of time.

10 CHAPTER 3. BACKGROUND

Profiles Services

Defines the communication. Context to store data items.

Bluetooth Core Specification

Defines architecture, layers, key features,
procedures and protocols for communication.

Figure 1: Schema of BLE Specifications. Adapted from [25, Figure 1].
3.1.1 Specifications

The specifications of BLE comprise three parts. The Bluetooth Core Specification defines
the architecture, procedures, and protocols. For devices to be interoperable using BLE,
the specifications of Profiles and Services are relevant. Figure 1 shows an overview of
those three elements.

BLE Core Specification

The Core Specification is the primary specification for BLE and Bluetooth Classic. It
includes the architecture, the layers, key features, procedures and protocols such that
devices can communicate at the corresponding layer.

Profile Specifications

Bluetooth follows the idea of a client-server architecture when two devices are commu-
nicating. A server stores data and a client retrieves data from it. From this point of
view and for this work, a tracking device is regarded as a server and a smartphone trying
to detect a tracking device is regarded as a client. The Profile Specifications define how
such a client-server communication works. Depending on the application an appropriate
Profile needs to be considered. A list of all profiles can be found on the official Website
of the Bluetooth SIG 2.

2https://www.bluetooth.com/specifications/specs/

3.1. BLUETOOTH LOW ENERGY 11

Service Specification

A Service provides context for so-called Characteristics and Descriptors. They formally
define data items which are stored on a server. All services can also be found on the
official Website of the Bluetooth SIG 2.

Assigned Numbers

Services, Characteristics and Descriptors have a universally unique identifier (UUID). It
identifies the type of service, characteristic or descriptor. As an example, some profiles
require a company to identify itself. A list of all the Company Identifiers is provided by
the Bluetooth SIG [26].

3.1.2 Layer Stack

The OSI reference model conceptualizes how to communicate between heterogeneous sys-
tems. The BLE Layer Stack spans over all those levels from the OSI reference model. This
makes BLE independent from external bodies. The BLE Layer Stack is further divided
into a Host and a Controller which in turn are connected via the Host Controller Interface
(HCI).

Physical Layer

BLE operates on the 2.4 GHz ISM Band (2.402 - 2.480 GHz). Those are the same Fre-
quency Bands used for the Bluetooth Classic. It is split into 40 channels with 2 MHz
spacing. To transmit and decode data, respectively radio signals, BLE uses Gaussian
Frequency Shift Keying (GFSK) for its modulation scheme. There are further three mod-
ulation schemes defined which are called PHY. The type LE 1M has a symbol rate of
1Ms/s and must be supported by all devices. Type LE 2M, which has a higher symbol
rate of 2 Ms/s and a different deviation from the channel center compared to LE 1M, is
optional for a device. Lastly, type LE Coded has the same symbol rate as LE 1M but en-
ables Forward Error Correction (FEC). It is also optional. Regarding the communication
scheme, BLE represents a half-duplex mode using Time Division Duplex (TDD), making
it appear as a full-duplex scheme. Furthermore, the specification defines the Transmission
Power and the Receiver Sensitivity. The output power level at the maximum power set-
ting needs to be in between 0.01 mW (-20 dBm) and 100 mW (+20dBm). The Receiver
Sensitivity is defined by the Bit Error Rate (BER). The BER varies in length because
in the Link Layer a Cyclic Redundancy Check (CRC) gets appended. Typical Receiver
Sensitivity is a BER of 0.1%. Lastly, BLE uses two methods to calculate the angle from
which a signal was sent. The Angle of Arrival (AoA) and the Angle of Departure (AoD).

12 CHAPTER 3. BACKGROUND

LSB MSB

Preamble Access Address PDU CRC

(1 or 2 octets) (4 octets) (2 - 258 octets) (3 octets)

Figure 2: Packet format for LE 1M and LE 2M. Adapted from [25, Figure 7].

Link Layer

The Link Layer has the largest specification. It touches Packets, States, Channels and
Addresses which are of interest to this work. Thus, those are described in more detail.

Packets. The packets are transmitted over the air. Depending on the PHYs the Link
Layer shows two packet types. One is used for LE 1M and LE 2M whereas the other
is in place for LE Coded. The packet for LE 1M and 2M are shown in Figure 2. A
figure for the coded packet is not included, since all trackers used in this work do not
use LE Coded, as seen in Appendix A. A receiver uses the preamble to synchronize on
the frequency of the signal. The Access Address helps to distinguish between background
noise, relevant signals, or advertisements which are broadcasted to any device. The CRC
helps to determine if there are errors in one or more bits. Last but not least, the Protocol
Data Unit (PDU) is the part of the packet which is used for data transmission.

States. The Link Layer uses a state machine with seven different states. The states are
depicted in Figure 3. An explanation of the states can be found in Table 1. A device
listening for advertisements of other devices is in the Initiate state. The counterpart to this
is a device in the Advertising state which broadcasts advertisements. Once the two devices
have established a connection two different roles are assigned to the devices involved. The
one transitioning from the Initiating State to the Connection state is regarded as the
Client. The other device, which transitioned from the Advertising state to the Connection
state takes up the role of the Server. In this work, a tracking device refers to a device which
is in the Advertising state. A smartphone which scans for tracking devices represents a
device in the Initiating state. However, no connection will be established.

Table 1: Description of the states in the Link Layer. Source: [25, p. 21]

State Description
Standby Device neither transmits or receives packets.
Initiating Responds to advertisements from a particular device to request a connection.

Transmits advertisements and potentially processes packets sent in response

Advertisi . .
VOTLISIig to advertisements by other devices.
Connection In a connection with another device.
Scanning Listening for advertisements from other devices.

Isochronous Broadcast Broadcasts isochronous data packets.
Listens for periodic advertising belonging to a specific advertising train

Synchronization transmitted by a particular device.

3.1. BLUETOOTH LOW ENERGY 13

Isochronous
Broadcast

Synchroni-
zation

Advertising Initiating

Figure 3: State Machine for States of the Link Layer. Source: [25, p. 21, Figure 9].

Channels. The Link Layer defines 40 Channels. The division of the 2.4 GHz frequency
band is controlled by the link layer. Various spread spectrum techniques are used to
reduce the chances of collisions. This makes communication more reliable. An example
spread spectrum technique used is adaptive frequency hopping. A channel is chosen with
a channel selection algorithm and a table of data called a channel map. This map states
whether a channel is used or unused depending on the quality of communication. This
ensures that the channel selection algorithm does not choose channels with poor quality.

Addresses. Device addresses can be used as device identifiers. It is 48-bits long and
various types exist. A summary of the address types is given in Table 2.

Transport Architecture

To communicate data different schemes can be used, depending on the application. This
always involves four different channels. The Physical Channel, The Physical Link, the
Logical Transport and the Logical Link. The Physical Channel determines the way of
communication. This can be either connected point-to-point communication or a broad-
cast which is connectionless. Those two different schemes differ from each other. A point-
to-point connection for example involves frequency hopping across the 37 communication
channels. For broadcasting, the LE Advertising Physical Channel is used. The Physical
Link describes a specific physical channel and its characteristics. The Logical Link and
Transport define a set of parameters which suit a particular way of data communication
over the physical link using a physical channel.

As an example of the Transport Architecture, a broadcast is based on the LE Advertising
Physical Channel of the LE Advertising Physical Link. Advertising Broadcast (ADVB) is
in place for the Logical Transport where the Logical Link is either an ADVB-C for control
data or an ADVB-U for user data.

14 CHAPTER 3. BACKGROUND

Table 2: Summary of the address types in the Link Layer with their most significant bits
(MSB) below their names. Source [25, p. 22 - 24].

Type Description
Public Device Address Those addresses are allocated by the Institue of Electrical and Electronics (IEEE)

. Addresses which are randomly allocated. There exist three types. Static,
Random Device Address . .
private resolvable and private non-resolvable.

A randomly generated address. A device is allowed to generate a new Address

every time it is power-cycled, but not at any other point in time. It does not

disguise the privacy of a device.

A resolvable private address (RPA) changes periodically. An interval of 15 min

is recommended by the Bluetooth Core Specification. However, recommended

interval is not a requirement and can be implemented differently. Creating an RPA
involves a security key called Identity Resolution Key (IRK). This key is exchanged
between devices when they are bonded and is an application of a hash function. A
bonded device may resolve an RPA by applying the same hash function with each

of the IRK values it possesses from the devices it has bonded with. When this yields a
match, the peer knows it has resolved the address and the true identity of the remote
device. Not bonded devices cannot resolve the RPA.

Static
(MSB = 0bl11)

Resolvable

Private (MSB = 0b01)

This is a randomly generated address which changes with every reconnection.
It offers privacy protection of the device, without the costs of processing
resolvable privacy addresses.

Non-Resolvable
(MSB = 0b00)

LE Advertising Broadcast

LE Advertising Broadcast (ADVB) or simply advertising provides a connectionless com-
munication mode to transfer data or indicate the presence of a device to a client. Ad-
vertisements can be received by anyone who is scanning in the transmitting range. In a
one-to-many topology, an advertising device can communicate with many other scanning
devices at the same time. Data communication happens only in one direction from the
advertising device to the scanning device. A scanning device may respond with a request
for further information by forming a connection. However, when a scanning device does
this, it is understood by the term Active Scanning. In this work, however, only Passive
Scanning is of interest. In this case, a scanning device only listens to and analyzes ad-
vertising messages. Furthermore, ADVB is not regarded as a reliable connection because
no acknowledgements from the scanning device to the advertising device are sent. The
Bluetooth Core Specification defines two types of advertising. Legacy advertising and
extended advertising are discussed in more detail in the following.

Legacy Advertising. The advertisements are broadcasted via channels 37, 38 and 39.
Those are the so-called Primary Advertising Channels. Only one channel at a time is
broadcasting in an arbitrary sequence. The advertisement interval is between 20 ms and
10.24 s [27]. The PDU type is ADV_IND. Those packets are 37 octets long with a header of
6 and a payload of at most 31 octets. Each of the Primary Advertising Channels transmits
the same packet. Figure 4 shows this schematically.

To avoid persistent packet collisions the transmission of advertisements is delayed by a
value known as advDelay. It is a pseudo-random value of 0 - 10 ms after each advertising
interval. This way simultaneously transmitted advertisements become shifted in time after
one interval and permanent collisions are less likely. The advDelay is depicted in Figure

3.1. BLUETOOTH LOW ENERGY 15

uuuuuuuu ADV_IND ADV_IND ADV_IND ADV_IND ADV_IND ADV_IND ADV_IND ADV_IND ADV_IND

nnnnnnnnnnnnn 39 37 38 38 37 39 37 39 38

Advertising Advertising Advertising Advertising

Figure 4: Legacy Advertising using Primary Advertising Channels.
Adapted from [25, p. 32].

5. Legacy Advertising uses a handful of PDU Types. It can be used for undirected or
directed advertising. Undirected advertisements can be received by anyone and directed
advertisements are meant for a specific device. The PDU Type also stores the information
if active scanning is allowed, i.e. whether the scanning device is allowed to establish a
connection to the advertising device or not.

Extended Advertising. With Bluetooth Core Specification Version 5 eight new PDU
Types were defined. Those additional PDU Types bring a new set of advertising capa-
bilities which turn out to be Extended Advertising. Mostly, it allows larger data with
the help of the so-called Secondary Advertising Channels. Those are channels 0 to 36,
which carry most of the data. In Extended Advertising, the Primary Channels are used
to reference the payload which is transmitted with the Secondary Channels. This allows
packets up to 255 octets long. As mentioned before, only header data is sent in the Pri-
mary Channels. This includes the so-called Auxiliary Pointer (AuxPtr). It references an
auxiliary packet in case more data is transmitted on an additional Secondary Channel. In
a nutshell, Extended Advertising enables higher data rates and it operates on all PHYs.

Table 3 lists all PDU Types which are of interest for this work. To recall, Passive Scanning
does not rely on a connection to a server, respectively to a tracking device. However,
connectable PDU Types might be of importance, because they show the presence of a
device. Scannable and non-scannable PDU Types are included as well. Scannable PDU
types allow for a scan request to get more advertising data. However, in this work, a scan
request is never executed. To summarize, undirected PDUs transmitted by the peripheral,
respectively server for Legacy and Extended Advertising are of potential interest.

First Advertising Event Second Advertising Event

————— > -

Advertising Interval advDelay Advertising Interval advDelay

Figure 5: Avoiding permanent packet collision using advDelay. Adapted from [25, p. 33].

16 CHAPTER 3. BACKGROUND

Table 3: Summary of all PDU Types which are relevant for this work. Adapted from

(25, p. 34]
PDU Name Description Channels PHY(s) Scannable Connectable
ADV_IND Undirected Primary LE 1M Yes Yes
Legacy advertising
Advertising Undirect,

non-connectable,

ADV_NONCONN_IND Primary LE 1M No No
non-scannable
advertising
Undirected,
ADV_SCAN_IND scannable Primary LE 1M Yes No
advertising
Extended . LE 1M
Extended ADV-EXT-IND advertising Primary LE Coded No Yes
Advertising Subordinate LE 1M
AUX_ADV_IND extended Secondary LE 2M No Yes
advertising LE Coded

3.1.3 Manufacturer Specific Data

Based on [21], the structure of advertisements carrying manufacturer-specific data is ex-
plained. The manufacturer-specific data is of importance to identify an AirTag which is
explained in more detail in Section 4.5.1.

Advertisements are structured as seen in Figure 2. The payload of an advertisement with
manufacturer-specific data is of PDU type ADV_IND. Such an indirected advertisement can
be received by anyone. The structure of its payload is shown in Figure 6 a). Its AD type
defines the content of the payload in the AD Data. Is this set to manufacturer-specific
data, the resulting format of its structure is shown in Figure 6 b). The Manufacturer ID is
the placeholder for the company identifier. Finally, the Manufacturer Data is defined by
the manufacturer itself to send data to other devices. This data can be of help to identify
a device, as shown in [24] where Heinrich et al. used this data to identify an AirTag.

3.2 Find My Network

This section explains the Apple Find My network schematically and how it helps to find
lost devices based on the work of Heinrich et al. [19]. It is assumed, that offline finding
networks from other manufacturers work in a similar manner. Figure 7 gives an overview
of how an owner, a lost device, finder devices and Apple's server work together to locate
a lost item. First, the owner needs to pair his or her tracking device with an iPhone
or mac. Secondly, in case a tracking device gets lost, it broadcasts BLE advertisements
that contain a rolling public key. As a third step, iPhones participating in the Find My
network which pass by the lost tracking device fetch those BLE advertisements. With
the included public key, the finder device uploads an encrypted report to Apple's server.
This report includes the location of the finder device as an indication of where the lost
device has been found. Lastly, the owner can retrieve the location reports for his or her

3.2. FIND MY NETWORK 17

0 48 bit address

AdvA AdvData
(6 byte) (0-31 byte)

Q— B 32 bit addriss

AD Structure 1| AD Structure 2 IAD Structure n|

s 0 8 6 32 bit address
(> 3 byte) (> 3 byte) (> 3 byte)

Manufacturer ’
Length| OxFF muacturer Manufacturer Data

1D
(2 byte) (Length — 3 byte)

1 hyte)(1 byte

—_— bit-address

w
@

AD Data
(Length — n byte)

Length (1 byte)
AD Type (n byte)

a) b)

Figure 6: a) shows the format of an indirected advertisement. It contains the advertising
address and the advertising data. The advertising data can be subdivided into one or
more advertising structures. b) shows the format of manufacturer-specific data. The AD
type, set in the AD structure, for manufacturer-specific data is 0xFF. Source [21, p. 53
and 54].

lost device in order to find it. In the following step losing is explained in more detail.
This is the relevant step in detecting a lost Apple device and therefore of importance for
this work. The remaining steps included in the Find My network are explained in the
work of Heinrich et al. [19] in more detail, but are not of importance for this work and
therefore neglected.

3.2.1 Losing

Heinrich et al. [19] explain in their work the behaviour of a lost Apple device such as
an iPhone or a mac for example. AirGuard [24] on the other hand focuses on finding
AirTags via the Find My network. Locating both types of devices works the same. It
starts with an apple device which is lost and has no internet connection. Such a device
broadcasts BLE advertisements. The whole advertisement format is depicted in Figure 8.
In its advertisement, it emits the public part of the so-called advertisement key which is
28 bytes long. A BLE advertisement is 37 octets respectively bytes long with a header of
6 and a payload of at most 31 bytes [25]. To be standard compliant with the BLE format
for manufacturer-specific data, the advertisement needs 4 bytes for the manufacturer-
specific data. This leaves 27 bytes for the payload. In this payload, Apple declares service
subtypes such as AirDrop [28] or Find My network [24]. This leaves 25 bytes for the public
part of the key which is however 28 bytes long. Apple solved this with the help of the
random address field to store the 28-byte long public key [19]. Those public keys are used
in the advertisements for 15 min as this is the recommended interval [29]. Afterwards, a

18 CHAPTER 3. BACKGROUND

@) Download and decrypt
Q location reports
7

Apple's server

Owner device

Upload encrypted

(3)) -
location reports M Pairing of
BLE Tracker
(2) Broadcast
< " ((’* BLE Tracker
Bluetooth advertisements

with public key
Lost Device
Finder devices

Figure 7: Simplified Findy My network. Adapted from [19, p. 229].

new public key will be created and emitted. Overall, BLE advertisements are emitted in
an interval every two seconds once they lose internet connection.

3.3 Tracking Protection

Besides Apple's and AirGuard's tracking protection, other apps exist which protect users
from stalking attacks. For example, the Tile and the Tracker Detect app from Apple
allow a user to manually scan for malicious trackers. However, this work and the app
implemented in parallel focus on scanning for malicious trackers in the background. Since
at this point, only Apple's and AirGuard's tracking protection is known to be working in
the background, those apps, respectively their tracking algorithms are explained in the
following subsections.

3.3.1 Apple’s Tracking Protection on iOS

Heinrich et al. [24] reverse-engineered Apple's tracking protection, which is explained
here, based on their findings. They identified three tracking algorithms from Apple which
detect malicious devices. To avoid tracking, Apple stores all detected devices.

General Detection. Their first algorithm looks at all detected devices in an interval of
every two to five minutes. The tracking algorithm classifies all BLE advertisements and
from this decides whether a device is malicious or not. The device needs to follow the user
for at least 10 minutes and over a distance of 840 meters. The algorithm only considers
advertisements received within the last 15 minutes. If a malicious device has been found,
the user receives a notification.

Visit-based detection. Apple uses CLVisit® objects to store a location of a user during

3https://developer.apple.com/documentation/corelocation/clvisit

3.3. TRACKING PROTECTION 19

Bytes Content

0-5 BLE address ((p;[0] | (0b11 < 6)) || p:[1..5])

6 Payload length in bytes (30)
7 Advertisement type (OxFF for manufacturer-specific data)
8-9 Company ID (0x004C)
10 Find My network type (0x12)
11 Data length in bytes (25)
12 Status (e.g. battery level)
13-34 Public key bytes p;[6..27]
35 Public key bits p;[0] > 6
36 Hint (0x00 on iOS reports)

Figure 8: Find My network format for BLE advertisements. Adapted from [19, p. 232].

a specific period of time. How long it takes for a user to remain at a certain location
is, according to Heinrich et al., not specified by apple. Nevertheless, those CLVisit
objects contain information about when a user has arrived and left a certain location.
Those locations in combination with the scanned BLE advertisements at the corresponding
locations are used for their visit-based detection algorithms.

Apple's first visit-based algorithm considers all devices of the current and the last visit lo-
cation. For those locations, all intersecting devices which have been recorded, respectively
BLE advertisements which have been received, are potentially malicious. The second al-
gorithm adds some extra checks to those intersecting devices. The algorithm checks for
every device if the last advertisement has been received within the last 5 min. It checks
whether the device has been travelling with the user for more than 420 m. Finally, if
the device has additionally been travelling with the user for the last 5 min the user gets
notified. Those thresholds are halved compared to the general detection algorithm as
observed by Heinrich et al. [24].

3.3.2 AirGuard’s Tracking Protection

AirGuard [24] scans for BLE advertisements in the background. The app uses the An-
droid's WorkManager? to perform the tracking detection. Those tasks can only be executed
every 15 min. AirGuard filters for Find My advertisements and stores those advertise-
ments together with the current geolocation to the database. After a scan, the app runs
the detection algorithm. It iterates over all devices based on their BLE MAC address.
This address is dependent on the public key used in the advertisements. So for every
device, respectively MAC address their algorithm checks if the advertisements of each
MAC address have been received within the last 30 minutes. Furthermore, it checks if
this device has been fetched at least three times. Lastly, it checks if the device has been
near the target user for 400 m depending on the stored geolocations belonging to the
corresponding BLE advertisements. Their algorithm is based on the BLE MAC address
which depends on the public key. Those keys change once a day at 4 a.m. [30].

“https://developer.android.com/topic/libraries/architecture/workmanager

20 CHAPTER 3. BACKGROUND

Q d)

Figure 9: Images of all trackers used in this work. a) is an AirTag, b) a Chipolo ONE
spot, ¢) a Galaxy SmartTag+, and d) a Tile tracker.

3.4 Tracking Devices

This section gives an overview of the BLE trackers used in this work. Fach subsection
explains the features of the corresponding trackers and in which environment they can be
used. Figure 9 shows an image of every tracker.

3.4.1 AirTag

The following explanation is based on the official website of Apple [31]. An AirTag is
Apple’s tracking device for lost items. It has a diameter of 31.9 mm and a height of 8.0
mm. It weighs 11 grams. An AirTag can be attached to keys for example. Afterwards,
with the Find My app the owner of the AirTag knows at any point in time where his or her
keys are. AirTags have built-in speakers such that the owner can play a sound to find the
item more easily. With the ultra-wideband (UWB) technology, an AirTag can be found
with so-called Precision Finding. This mimics a compass on the owner’s iPhone which
guides them to their lost AirTag, respectively item. With the help of BLE, the AirTag
advertises that it is lost to other devices in the Find My network. Those devices report the
location of the AirTag. In case the AirTag has been set into the Lost Mode by the owner,
the finder can get access to the owner’s contact information via NFC technology. Only
the owner knows where his or her AirTag is. The location is not accessible to Apple. This
enables unwanted tracking. However, if a malicious AirTag is near a person, the iPhone of
that person informs him or her that a malicious AirTag is close. If this particular AirTag
follows that person for a longer period of time, the AirTag will play a sound.

3.4. TRACKING DEVICES 21

3.4.2 Chipolo ONE Spot

This section is based on the official website of Chipolo [32]. Chipolo works in two ways.
Their Chipolo ONE Spot products can be used within Apple's Find My network. This
means a Chipolo ONE Spot can be added to the Find My app on an iPhone. Afterwards,
it works conceptually like an AirTag. How finding an AirTag, respectively a Chipolo ONE
Spot works is explained in section 3.4.1. However, using a Chipolo ONE Spot with the
Chipolo app is not possible. The regular Chipolo ONE on the other hand works with
the Chipolo app. It allows playing a sound to locate the tracker if it is lost nearby. If
the tracker is lost and is not nearby, the app helps to locate the tracker on the map. It
shows the tracker's last known location. Those locations are uploaded by other users of
the Chipolo app when they pass by the lost item. In this work, only the Chipolo ONE
Spot is examined. It can play a sound up to 120 dB within a range of 60 m. It is 37,9 x
6,4 mm small and splashproof. The battery lasts for about one year and can be replaced.

3.4.3 Samsung Galaxy SmartTag+

This section is based on the official description of the Galaxy SmartTag+ from the Sam-
sung website [33]. The purpose of a Galaxy SmartTag+ is to attach it to an item and find
it once it's lost. It uses Bluetooth 5.0 and UWB technology. Its battery life is around 165
days. The SmartTag+ has a width and height of nearly 50 mm and a depth of nearly 10
mm. It weighs 14 g. If the attached item gets lost, the owner can figure out where he or
she left the item with the help of the Galaxy SmartTag+. If the item is lost nearby, the
user has two options to find it. First, Samsung provides users with AR finding. Inside
the SmartThings-App, the user is guided to the SmartTag+ with an AR-guided compass.
However, this feature is only provided if the user has a Samsung account and is registered
at SmartThings®. Furthermore, the tag must be paired with a Galaxy Smartphone which
runs on Android 11 or higher and is equipped with UWB technology. This is the case for
the Galaxy S21 Ultra, Galaxy S21+, Galaxy Note20 Ultra and Galaxy Z Fold2. Secondly,
besides AR finding, the user can play a sound on the SmartTag+ via the smartphone.
Having a direct line of sight to the SmartTag+, it is supposed to have a Bluetooth range
of up to 120 m. Has the device been lost far away, the SmartTag+, respectively item can
be located using the Galaxy Find network. Only Galaxy smartphones and tablets build
up this network. Further, owners or users of those devices need to agree to participate
in the Galaxy Find network. Otherwise, a device would not update the location of the
SmartTag+. Besides tracking an item, a SmartTag+ can also be used to control other
objects which fall into the SmartThings category. For example, a light can be turned on
or off with a SmartTag+.

3.4.4 Tile

The following overview of the Tile is based on their official website [34]. Like all the other
trackers, a Tile tracker is meant to be attached to an item and find the item once lost. Tile

Shttps://www.samsung.com/ch/apps/smartthings/

22 CHAPTER 3. BACKGROUND

provides 4 different trackers. That are the Tile Pro, Tile Mate, Tile Slim, and Tile Sticker
[35]. However, they differ only in their appearance but work the same. Nevertheless,
this work focuses only on the Tile Pro tracker. It has a Bluetooth range of up to 120
m, runs with a replaceable battery, is water-resistant (IP67) and has a dimension of 58
x 32 x 7.5 mm [36]. Tile trackers need to be paired with a smartphone using the Tile
app. It is available for Android and Apple smartphones. Once an item cannot be found
and is nearby, the app allows playing a ringing sound on the Tile tracker. This could be
further controlled using Amazon Alexa or Google Assistant. Playing a sound works in
both ways. Thus, a Tile tracker can be double-pressed to find the missing smartphone.
It will also play a sound even when the phone is on silent. Has the item, respectively the
Tile tracker been lost far away, the app shows the most recent location of the tracker. The
Tile network picks up signals from Tile trackers and updates the most recent location.
The Tile network is composed of all the smartphones running the Tile app and network
extenders. Furthermore, the Tile tracker has a QR code engraved. Within the app,
the contact information can be stored which a person receives by scanning the QR code.
Furthermore, the Tile network is open to adding devices from partners such as HP, Fitbit,
Skullcandy, Dell and many more. After a 30-day free trial, a Tile user however needs to
update to Tile Premium to use the tracking service. It costs 3 CHF on a monthly base
and 32 CHF on an annual base.

Chapter 4

Design and Implementation: Android
App

Parallel to this thesis an Android app has been developed®. This section describes its
configurations, schematic workflow and architecture. The capability of Android's BLE
API is introduced and eventually how the trackers used in this work are identified. This
section not only explains the app but also serves as documentation for future developers.

4.1 Build Configurations

Android Studio manages the build process with Gradle”. The resources, source code, and
packages as well as any dependencies of an app are converted into an Android Application
Package (APK). This compilation process is managed by Gradle. Those APK files are
needed to test, deploy and distribute an Android app. For this project, Gradle 7.3.3 and
the Android Gradle Plugin 7.2.1 are in use.

In the build.gradle file the compileSDK = 32, minSDK = 26 and targetSDK = 28 are
declared. The most important one is the minSDK. It determines the minimum OS version

Shttps://github.com/LouisBienz/HomeScout
"https://gradle.org/

Android Platform

. 7.0 Nougat 8.0 Oreo 8.1 Oreo 9.0 Pie 10
Version
API Level 25 26 27 28 29
Cumulative
o 90.4 % 88.2 % 85.2 % 773 % 62.8%
Distribution

Figure 10: Android API Version Distribution accessed on 26.09.2022 of the Help Me
Chose functionality of the Create Project Wizard. Adapted from [37, Figure 3].

23

24 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

Allow Home Scout to access this\
@ device’s location?
Allow Home Scout to access this

device’s location?

This app may want to access your
location all the time, even when you're not

using the app.[Allow in settings. >

While using the app

Precise Approximate
Only this time
While using the app
Don't allow
Only this time
K Don't allow /
a) b)

Figure 11: a) shows the system message for SDK version 28. The red-marked area
allows the user to jump into the settings where he or she can allow to use the location
permission “all the time”. b) shows the system message for SDK version 32. It is not
possible to allow the locations “all the time” directly. The user would have to do this
manually via the app's settings.

for the app. Devices with a version below 26 are not capable to run the app. minSDK = 26
or Android Oreo (8.0) introduced the support for the BLE 5.0 standard [38]. Since this
app relies on those BLE capabilities, supporting any lower APIs would not make sense.
Furthermore, the Create New Project Wizard® provides a cumulative distribution of the
Android Platform Version. With the Help Me Choose functionality, it provides figures
about how many devices use which Android version, respectively on how many devices
the app will run with the chosen API. Figure 10 represents those numbers in a shortened
and adapted version. As expected, the higher the API version is, the fewer devices are
supported. To make the app available to as many users as possible it makes sense to set
the minSDK to the API Level 26, as nearly 90% of the devices will be capable to run
this app. Besides the minSDK the targedSDK defines for example how system messages
appear. Those system messages of targetSDK = 28 fit best the use case of this app.
The reason is, that the app needs to have the permissions ACCESS_BACKGROUND_LOCATION
and ACCESS_FINE_LOCATION®. The system message of the targetSDK = 28 allows the
user to switch to the permission settings directly. Therefore, the user can grant all the
aforementioned permissions accordingly. Higher SDKs on the other hand restrict the user
to enable the ACCESS_BACKGROUND_LOCATION directly via the system message as shown in
Figure 11. Because it is inevitable for this app to use the ACCESS_BACKGROUND_LOCATION
permission, the targetSDK is set to 28. Using this version, a user can directly navigate
to the appropriate permission settings, without doing a manual detour.

8https://developer.android.com/studio/projects/create-project
Yhttps://developer.android.com/training/location/permissions

4.2. APP WORKFLOW 25

Yes) . .
Location Tracking Service

Bluetooth Scanning Service

Enak:-vle = }Jser Tracker Classification Service
tracking — stationary
protection ?

No—l

Store BLE
devices in
database

Scan for BLE Identify BLE
’ — "
devices devices

No

Run tracking

algorithm on

BLE devices in
database

Store malicious
— trackers in — Notify user
database

Figure 12: Sketch of the app workflow. Once the user enables tracking protection, the
app regularly evaluates if the user is stationary. If the user starts moving, the app starts
scanning for BLE devices and stores them in the database. Concurrently, the tracking
algorithm classifies the devices into malicious and non-malicious trackers. If a malicious
tracker is found, the user gets notified.

4.2 App Workflow

The main functionality of this Android app is to scan, identify and classify BLE trackers
as malicious or non-malicious trackers. This is divided into three services. How those
three services interact conceptually is shown in Figure 12. Firstly, tracking protection
needs to be enabled. Afterwards, the app evaluates if the user is moving or stationary.
Once a user starts to move, BLE advertisements are scanned and stored in a database.
In parallel, the tracking algorithm tries to detect any malicious BLE device among all
scanned BLE devices, respectively BLE advertisements. All those Services are explained
in more detail in Section 4.3.3.

4.3 App Architecture

This app follows the Developer Guides!® from Android and their best practices. The
general architectural components of the app are the User Interface (UI), the data layer
and the services. In the following, those components are described in more detail. Figure
13 shows the general architecture of the app. This helps as a starting point for possible
subsequent developers.

Ohttps://developer.android.com/guide

26 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

Ul Elements
ViewModels KXAJ \
WelcomeFragment

Repositories ScanFragment
Data Sources MainActivity
NotificationsFragment SettingsFragment

Services

Activity . . 3
LocationTrackingService

NotificationsViewModel BluetoothScanningService SettingsViewModel

| | |

MainRepository TrackerClassificationService TrackingPreferencesRepository

[RoomDatabase \ Preferences Datastore

BLEDeviceTable MaliciousTrackerTable

Figure 13: Visualizing the most important classes used in this project sketched with
some of their relations. This serves as documentation for the app as well as for
subsequent developers to quickly get on overview of the code base.

4.3.1 User Interface (UI)

The UI is subdivided into two parts. The app intro and the UI layer itself. The app
intro consists of four screens used to request the necessary permissions. The UI layer
also counts four screens which allow the user to interact with the app. Both parts are
explained in more detail.

App Intro

The app intro is used to guide the user in a user-friendly manner through the permissions
to be granted which are necessary for the app. The Applntro Library!'! has been used
for this task. This library provides an easy way to display slides in a carousel as well
as enables the app to request the necessary permissions. In case those permissions are
not granted and the user wants to execute a function of the app which requires those
permissions, the app intro gets launched. It consists of four screens. The first screen
informs the user about the Bluetooth permission and provides the dialog to grant them.
The second screen informs the user about the location permissions and that the app needs
to access background locations in order to be able to detect malicious trackers properly.
The third screen is a placeholder for the request to ignore battery optimization. At this
point, the proper permission request according to Android's developer Guide has not been
implemented. This permission is needed such that the app is able to run even when the
user locks the phone, respectively when the phone is in doze mode. This needs to be

Uhttps://github. com/AppIntro/AppIntro

4.3. APP ARCHITECTURE 27

Enable Bluetooth Location Permission Battery Optimization Thanks.

3 9 i

Please make s ave Bluetooth enabled. For the location pen ion dialog please

For your safety, this app needs to run while
Also allos for BLE devices in press "Allow in there select i

locked. Therefore, batts nization needs | hope this app suits you =)

Figure 14: Screenshots of the four slides in the app intro. Moving from one slide to the
next one invokes the system services to grant the corresponding permissions. An
example of such a system service asking for location permission is depicted in Figure 11.
a) asks for Bluetooth, b) for location, and c) for battery optimization permissions.
Finally, d) thanks the user for granting the permissions.

implemented in the next version and is therefore noted in Chapter 7. Nonetheless, the
app could still be used to test its functionality and analyse its tracking algorithm even
without this permission. The last screen simply thanks the user for granting the requested
permissions. Screenshots of those four screens can be seen in Figure 14.

UI Layer

The UI Layer is built according to Android's developer Guide which implicitly implements
the Model View ViewModel (MVVM) pattern'?. The UT Layer consists of a MainActivity
which uses a bottom navigation bar to let the user navigate between the fragments. The
MainActivity hosts the Welcome, Notifications, Settings, and Scan fragments. Figure
15 shows screenshots of those four fragments including the bottom navigation bar. The
Welcome fragment gives a short introduction to the purpose of this app and why the per-
missions are required. The Notifications fragment displays all malicious trackers detected
by the app's tracking protection. The tracking protection can be enabled on the Settings
fragment. It also allows setting the preferences of the tracking algorithm. Furthermore,
three buttons provide default preferences. The ones evaluated within this work which are
the default preferences, the ones AirGuard uses and finally the ones Apple uses on the
iPhone to detect AirTags. The Scan fragment allows users to manually scan for any BLE
device. This fragment does not provide much functionality in terms of stalking protection

Lhitps://www. geeksforgeeks.org/mvvm-model-view-viewmodel-architecture-pattern-in-android/

28 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

Noﬁﬁcaﬁﬂns _

ES600 S — Tracking Protection - ‘r\j’r?im . gadam
B9:D7.07.0F:5BE2 ‘ Motifies abouit Bluetooth Low Energy PTECR07B S
Home SCOUt trackers following you s
Polar Vantage M 5C340422 -66 dim
This app protects you from Galaxy SmartTag+ i35 A AUE A 5C34:04
malicious Bluetooth Low Energy SEE6AERADER AleDEiice a2 dam
trackers. It detects when such Distance @ 73;?4 ot
a tracker is following you. AirTag i
Therefore, Bluetooth Low Energy C5:29:97:80:B0:CA e — R Chipolo ONE Spot 95 dBm
(BLE) needs to be enabled and TRFOFAAAB2CT
the app needs your permission Chipolo ONE Spot T Time © AppleDevice S
to scan for BLE devices. Also EGETAT6R65FA FF-DY-5A F2-FD-00
you need to allow the app to o
use your location. This way the Tile AirPods -64 dBm
app can determine if a tracker is fE P R 01.12.22 14:46 Ooourences @ 71:08:53EATTES
following you. Note, no data will MOTIF AN.C. [LE] S
be sent to any third party. The © it
data collected from Bluetooth !
and Location remains on your AppleDevice -66 dBm
phone D6D4:4A52:368:09
APPLY DEFAULT SETTINGS AppleDevice “BEaRn
10:B9.F4BF-B4EC
APPLY AIRGUARD'S SETTINGS
n ! a 4 o ' »
e 2 = B LT * A L e P h L o o

Figure 15: Screenshots of the four screens which represent the main features of the app.
a) is the Welcome, b) the Notifications, c¢) the Settings, and d) the Scan Fragment.

for the user. It was however needed for the experiments regarding the tracking devices as
explained in Section 5.1.1 and the RSSI values described in Section 5.1.2.

As the MVVM pattern suggests, it separates and defines the communication between a
Model, View and a ViewModel. The Model is responsible for the data sources. This is
explained in more detail in the Subsection 4.3.2. For the UI layer, the View respectively
UI elements and the ViewModel are relevant. Figure 16 a) illustrates how these two com-
ponents interact with each other. The View is responsible to handle user interactions and
displays data to the user by observing the ViewModel. In this app, only the Notifications
and Settings fragment rely on data. Therefore, the corresponding NotificationsViewModel
and SettingsViewModel are in place as seen in Figure 13. The Welcome and the Scan
fragment do not rely on data as it is not needed. Hence, no WelcomeViewModel and
ScanViewModel are implemented.

4.3.2 Data Layer

The data layer consists of repositories and data sources as seen in Figure 16 b). A
repository is used to access and gather data from the data sources and make this data
available to the Ul layer. Within the architecture of this app, two repositories are needed.
The MainRepository and the TrackingPreferencesRepository. The MainRepository is the
interface for interactions with a RoomDatabase. The TrackingPreferencesRepository is
the interface for the Preferences DataStore. Both are explained in more detail in the
following.

4.3. APP ARCHITECTURE 29

Application
Data

Ul Layer Data Layer

ul
state

Ul elements

ViewModel Repositories

a) b)

Figure 16: a) Diagram of the Ul layer within an MVVM pattern. The data layer,
ViewModel, and Ul elements in this figure correspond to the Model, the ViewModel,
and the View of the MVVM pattern. Adapted from [39]. b) Diagram of the data layer
within an MVVM pattern. The data layer corresponds to the Model of the MVVM
pattern. Adapted from [40].

Room Database

The Room Database has been implemented according to Android's developer Guide!3. In
this project, two data entities are stored in the database. One for the scanned BLE devices
which are stored in the ble_device_table and one for the BLE devices which have been
classified as malicious, which are stored in the malicious_tracker_table. The schema
for both tables is depicted in Figure 17. Furthermore, for every data table, a Data Access
Object (DAO) has been implemented. The BLEDeviceDao is responsible for SQL queries
on the ble_device_table and the MaliciousTrackerDao is responsible for SQL queries
on the malicious_tracker_table. The DAO build the Data Source according to Figure
16. The task of the repository is to abstract the data from the rest of the app [41]. In
this case, it abstracts the data from the UI layer. For this app, the MainRepository is
used to bundle all operations on the database. Hence, it operates using the instances of
the BLEDeviceDao and the MaliciousTrackerDao. Since both DAOs only provide very
basic SQL queries, it has been decided to provide both of them in the MainRepository.
In case the app needs more complex operations on the database, which means that the
DAOs will grow in functionality, it is recommended to split the MainRepository into a
BLEDeviceRepository and a MaliciousTrackerRepository.

Bhttps://developer.android.com/training/data-storage/room

30 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

BLEDevice MaliciousTracker
Id o* Int Id o* Int
MacAddress String MacAddress String
TimestampInMillis Long TimestampInMillis Long
Lat Double Type String
Lng Double
Type String

Figure 17: Database schema for all data tables used in this work. On the left, the
database schema for BLE devices is shown. On the right, the schema for
MaliciousTrackers is depicted. The key icon states which attribute represents the
primary key of a table.

Preferences DataStore

The Preferences DataStore has been implemented according to Android's developer Guide!4.
It is a solution to store key-value pairs. This perfectly fits to store the tracking prefer-
ences a user can define on the Settings fragment as seen in Figure 15. The read and write
operations to the DataStore are defined in the TrackingPreferencesRepository. Those
are simple operations. Therefore, the data source and the repository according to Figure
16 are combined within the TrackingPreferencesRepository.

4.3.3 Services

The services are implemented according to Android's developer Guide!'®. The whole func-
tionality representing the tracking protection is implemented in three different services.
The first service is responsible to track the location of the user and the second service
scans for BLE devices if needed. The third service runs a classification algorithm on the
scanned BLE devices and informs the user once a malicious tracker has been detected.
The individual services are explained in more detail in the corresponding sections below.

All services are so-called Foreground Services. This means, once the user enables the
tracking protection on the Settings fragment as seen in Figure 15 ¢), the services do their
work while the user can still interact with the app. Furthermore, the app can be closed
and the services still run. If the user locks his or her phone, the phone switches to the doze
mode and the operations of the services are only executed in the maintenance windows
[42]. This breaks the tracking protection to run properly. However, apps that keep a user
safe, are allowed to still run while the phone is in doze mode [42]. For this however an

Ynttps://developer.android.com/topic/libraries/architecture/datastore
https://developer.android.com/guide/components/services

4.3. APP ARCHITECTURE 31

ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS needs to be implemented in the app
[43], which could not yet be implemented properly and is therefore not included in the
app so far. Nonetheless, the tracking protection works as expected while the phone is not
locked and the experiments could be executed as needed. Finally, once the user disables
the tracking protection, the services stop and free their resources.

Location Tracking

The idea behind the LocationTrackingService is to permanently evaluate if a user is sta-
tionary or moving. Once the user is moving, the BluetoothScanningService starts scan-
ning for devices and eventually the TrackerClassificationService evaluates if a tracker
is following the user or not. The app workflow in Figure 12 illustrates this behaviour. The
decision to only scan for BLE devices when the user moves is based on two reasons. Firstly,
scanning for BLE devices consumes a lot of battery. Therefore, the app should not execute
BLE scans permanently. Secondly, while a user is stationary, it is assumed that there is
no threat of being tracked. But as soon as the user leaves a stationary place, the tracking
protection should inform the user about malicious trackers. For example, a user at work,
respectively being stationary, is at first not of much interest to an adversary. A stationary
victim however creates the opportunity for an adversary to slip a tracker into the victim's
belongings. Afterwards, as soon as the user leaves his or her stationary place, it becomes of
interest to the adversary where the user is heading, respectively the actual stalking attack
of a victim begins. At this point in time, it becomes of importance to scan for malicious
trackers. Therefore, the LocationTrackingService permanently evaluates if a user is
moving. If so, the BluetoothScanningService and the TrackerClassificationService
start such that malicious trackers can be detected. Once the user is stationary again, the
BluetoothScanningService and TrackerClassificationService stop.

To determine if a user is stationary the LocationTrackingService uses the function
shown in Figure 18. Figuratively speaking, the user draws a tail behind him or her. This
tail is composed on the basis of the positions where the user has been. It is limited in time
to about two minutes. If the length of the tail exceeds a certain distance, it is assumed
that the user is moving. Figure 19 conceptually illustrates two examples of potential user
tails.

The user's tail is created with a ring buffer (or circular buffer) data structure. Its
size is determined to hold a user position tail of approximately 2 minutes. This cor-
responds to a size of 24 elements. This number is derived from the configuration of
the fusedLocationProviderClient, respectively the LocationRequest update interval
which is set to 5 seconds. However, the location updates can occur faster or slower [44].
Furthermore, the ring buffer provides the function getElementsOrderedTailToHead (),
called in line 177 (Figure 18). It returns the user's position history ordered from tail to
head. Looping over those positions until the second last index of the history ring buffer
allows computing the distance between the current and consecutive position for every it-
eration as it is shown in line 192. At the end of the loop, the computed distance is added
to an array containing all distances calculated from tail to head. Finally, the function re-
turns true or false in line 196, depending on whether the total distance travelled is smaller
or equal to the constant STATIONARY_MOVING_DISTANCE, which is set to 50 meters.

32 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

174 private fun isUserStationary(): Boolean {

175

176 val allDistancesTraveled = mutableListOf<Float>()

177 val orderedUserPositionBuffer = userPositionsHistoryBuffer.getElementsOrderedTailToHead()
178 val secondLastIndex = orderedUserPositionBuffer.size - 2

179

180 for (i in @..secondLastIndex) {

181

182 val currentLocation = Location("currentLocation").apply {
183 latitude = orderedUserPositionBuffer[i].latitude

184 longitude = orderedUserPositionBuffer[i].longitude

185 }

186

187 val nextLocation = Location("nextLocation").apply {

188 latitude = orderedUserPositionBuffer[i + 1].latitude
189 longitude = orderedUserPositionBuffer[i + 1].longitude
190 }

191

192 val distanceBetweenTwolLocations = currentLocation.distanceTo(nextLocation)
193 allDistancesTraveled.add(distanceBetweenTwolLocations)

194 }

195

196 return allDistancesTraveled.sum() <= STATIONARY_MOVING_DISTANCE
197 }

Figure 18: Code snippet of the LocationTrackingService which decides if a user is
stationary or moving.

This implementation which evaluates if the user is stationary or moving might return false
results in at least two cases. First, the function evaluates that the user is not moving, even
though the user is actually moving. This is the case when a user is travelling very slowly.
As mentioned before, the function captures the user's position history of approximately
two minutes. Furthermore, within those two minutes, the user has to travel more than
50 meters in order to be considered moving. Hence, if the user walks less than 50 meters
in two minutes, which equals to a constant velocity of 1.5 km/h, the user will never be
considered moving and the tracking algorithm will never start, respectively detect any
malicious trackers. Second, the function evaluates that the user is moving, even though
the user is regarded as stationary. This happens if the user's stationary movement distance
is larger than 50 meters. To give an example, a user works at a construction site, which
is assumed to have a radius of 100 meters. The user needs to regularly move more than
50 meters to do his or her job. In this case, the function would consider the user to be
moving, even though the whole construction site is regarded as the stationary place of
the user. Finally, it needs to be noted, that once a user comes to a rest, respectively is
regarded as transitioning from the moving to the stationary state, it takes the algorithm
approximately two minutes to realize because the tail of the user position history needs
to catch up with the head, which represents the current stationary position.

4.3. APP ARCHITECTURE 33

po p1 p2

po p1

p4

: T
p3 j /—\
E p2

p3

p4

Figure 19: This figure shows two examples of a user tail that is composed on the basis of
the visited positions. In both examples, the user starts at position p0 and walks up to
position p4. For those examples, it is given that every edge between two consecutive
positions is equidistant and equal to 5 meters. Furthermore, it is given that the
threshold which determines if the user is moving is set to 15 meters. Using the function
isUserStationary() implemented in the LocationTrackingService evaluates both
scenarios as false, respectively that the user is moving, because at p4 the user has
travelled a distance of 20 meters.

Bluetooth Scanning

The BluetoothScanningService handles how the app scans for BLE devices. Figure
20 shows the code snippet of the function startBleScan. It is important to note that
scanning permanently for BLE devices drains the battery [45]. Therefore, an appropriate
scan period and more important a scan interval need to be selected. If the scanning service
is not running, scanning for BLE devices is stopped as declared in lines 173 - 176. As
long as the BluetoothScanningService is running, the function starts to scan for BLE
devices as indicated in lines 169 - 171.

Before the scanning starts, a handler defines the scan period and the scan interval. The
handler from lines 157 - 167 defines the number of seconds to scan for BLE devices,
respectively the scan period. The body of this function is invoked after the constant
SCAN_PERIOD which is set to 12 seconds. After this period, the scanning is stopped (line
159) and the BLE devices are inserted into the database (line 160). The scan period is
set to 12 seconds because the BLE advertisement interval can vary between 20 ms and
10.24 s [27]. Therefore, scanning for 12 seconds makes sure to capture a signal of every
BLE device, as in this period every BLE device advertises at least once.

Within the handler regarding the scan period, a second handler is declared in lines 163 -
165, which invokes the function startBleScan(). Hence, the function runs in a recursive
loop with a delay according to the constant INTERVAL_BLE_SCAN. This constant is set to
18 seconds. Therefore, the whole scanning process is executed twice within one minute.

34

CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

154
155
156
157
158
159

174
175
176

if (!isScanning && isServiceRunning) {

// stop scanning after SCAN_PERIOD
handler.postDelayed({
isScanning = false
bleScanner.stopScan(scanCallback)

insertScanResultsInDb()

// loop: start scanning after INTERVAL BLE_ SCAN
handler.postDelayed({

startBlescan()
}, INTERVAL BLE_SCAN)

}, SCAN_PERTOD)

scanResults.clear()
isScanning = true
bleScanner.startScan(scancCallback)

} else {
isScanning = false

bleScanner.stopScan(scanCallback)

Figure 20: Code snippet of the BluetoothScanningService which handles the scan

period and scan interval.

Once the user is regarded as stationary or the user disables the tracking protection, the
recursive loop stops and the app terminates to scan for BLE devices.

Lastly, the BluetoothScanningService is responsible to store the scanned devices in the
database. As seen in Figure 17, a BLE device has a 1at and 1lng attribute which describes
the latitude and longitude at which the BLE device has been scanned. Those coordinates
are derived from the last known location of the smartphone in use. Hence, those are not
the true coordinates of a BLE device, but rather at which point a signal of the BLE device
has been captured by the user.

4.3. APP ARCHITECTURE 35

169 hashMapBleDevicesSortedByTime.let{ hashMapBleDevicesSortedByTime ->

170

171 for (key in hashmapBleDevicesSortedByTime.keys) {

172

1732 // get all scans of the same mac address

174 val scansOfThisDevice = hashMapBleDevicesSortedByTime[key]!!

175

176 /f check if more than one scan exists or it has less scans than defined by user
177 if (scansOfThisDevice.size == 1 || scansOfThisDevice.size < occurrences!!) {continue}
178

179

180 /I check if the tracker follows according to time defined by user

181 val youngestScanTime = scansOfThisDevice.first().timestampInMilliSeconds
182 val oldestScanTime = scansOfThisDevice.last().timestampInMilliSeconds

183 val diffBetuweenYoungestAndoldestScan = youngestScanTime - oldestScanTime
184 val timeThresholdInMillis = timeinMin!! * ceoee

185 if (diffBetweenYoungestAndOldestScan < timeThresholdInMillis) { centinue }
186

187

188 /[check if the tracker follows according to distance defined by user

189 var distancefollowed = ©.0

196 val secondLastIndex = scansOfThisDevice.size - 2

191 for (i in @..secondLastIndex) {

192

193 val currentLocation = Location("currentLocation").apply {

194 latitude = scansOofThisDevice[i].lat

195 longitude = scansOfThisDevice[i].lng

196 }

197

198 val nextlLocation = Location("nextLocation™).apply {

199 latitude = scansOfThisDevice[i + 1].lat

200 longitude = scansOfThisDevice[i + 1].1lng

201)

202

203 val distanceBetweenTwoLocations = currentLocation.distanceTo(nextLocation)
204 distanceFollowed += distanceBetweenTwolLocations

205 }

206

207 if (distanceFollowed < distance!!) { continue }

Figure 21: Code snippet of the TrackerClassificationService which decides if a tracker
is malicious or non-malicious.

Tracker Classification

The TrackerClassificationService is the heart of the app. Figure 21 shows the lines
which accomplish this task. The variables occurrences, timeInMin & distance, used
in lines 177, 184 and 207 are the values provided by the data store, respectively the user
and make this tracker classification algorithm adaptable. To save battery this code is
executed every 30 seconds. It is assumed that in a period of 30 seconds, all devices in the
database are classified.

The TrackerClassificationService iterates over all scanned BLE devices which are
stored in the hashMapBleDevicesSortedByTime. This hashmap contains as key the MAC
address of a tracker. The corresponding value is a list of all BLE devices, as declared in
the database schema seen in Figure 17, with the same MAC address. The values in the
list are sorted in time. The first value is the value with the youngest timestamp, the last

36 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

value represents the scan with the oldest timestamp. The algorithm evaluates if a tracker
is malicious or not based on the three parameters occurrences, timeInMin & distance
set by the user.

In line 177, the algorithm first checks the occurrences. At least two occurrences have
to exist, otherwise, it is not possible to make any statements regarding the distance and
time parameters. Therefore, the statement scansOfThisDevice.size == 1 is included
in the if statement within an OR clause. The second part evaluates if fewer scans exist
as defined by the user. If both evaluate to false, the loop continues with the next key,
respectively MAC address. Otherwise, the device is not regarded as malicious.

Secondly, the algorithm checks if the time criterion is fulfilled. The difference in time
between the youngest and oldest scans is compared with the time set by the user. The
comparison happens on the basis of milliseconds, that's why the user parameter timeInMin
is multiplied with 60'000. If the time difference is smaller than the user-defined value, the
loop continues, as seen in line 185. Otherwise, the device is not regarded as malicious.

Lastly, the algorithm checks if the tracker has followed the user for the defined distance
parameter. The computation of the distance is done in the same manner as in the
LocationTrackingService, where the distance between consecutive locations is added
and all those distances are summed up. This behaves in the same way as shown in Figure
19. If the summed distances, as seen in line 207, are smaller than the distance value set
by the user, the algorithm continues. Also here, the device is not regarded as malicious
otherwise.

This sums up the classification algorithm. Hence, if all criteria are met, respectively the
code has never continued on any of the described if-statements, the service stores the
current BLE device into the database as a malicious tracker, as defined in the database
schema shown in Figure 17. Finally, the user gets notified instantly and the malicious
tracker is displayed on the Notifications screen as seen in Figure 15 b).

4.4 Android Bluetooth Low Energy API

To scan for BLE signals the app needs Android's BluetoothLeScanner!S. It provides the
functionality to start and stop a scan. The startScan() method needs a callback!” which
handles the scan results. Since the app is a passive scanner only the classes ScanResult,
ScanRecord, and BluetoothDevice are needed. All mentioned components are explained
in more detail in the following sections.

4.4.1 BluetoothLeScanner

The BluetoothLeScanner in the app is initialized using the lazy property in Kotlin. This
way, only one instance of the BluetoothLeScanner is created [46]. This makes sure, that

https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner
"https://developer.android.com/guide/topics/connectivity/bluetooth/find-ble-devices

4.4. ANDROID BLUETOOTH LOW ENERGY API 37

always the same and only one instance is scanning for BLE signals. Its startScan() is
executed with the default parameters. No ScanFilter and no ScanSettings are given.
The default settings are SCAN_MODE_LOW_POWER, which consumes the least power [47].

4.4.2 ScanResult, ScanRecord, and BluetoothDevice

A ScanResult!® is returned from the BluetoothLeScanner and can be processed in
the self-defined callback, handed to the startScan() function as a parameter. The
ScanResult allows to access the ScanRecord!® and BluetoothDevice?’. Example re-
turn values for an AirTag, Chipolo ONE Spot, Galaxy SmartTag+, and the Tile tracker
are shown in Appendix A. Those three elements build all the accessible information an
Android phone is able to receive from BLE advertisements. As this app is a passive

scanner, no Bond or GATT connection to any BLE device is established.

Based on this information, it is assessed in this work if a holistic identification of BLE
trackers is possible. The result of such a holistic tracker identification would be to clas-
sify BLE advertisements into advertisements coming from trackers or non-trackers. This
is evaluated in Chapter 5.3. Besides that, the four trackers can be identified as such.
Meaning, a BLE advertisement can be broken down such that it can be recognized as a
BLE advertisement from an AirTag for example. How every tracker used in this work is
identified is described in the following section.

8https://developer.android.com/reference/android/bluetooth/le/ScanResult
Yhttps://developer.android.com/reference/android/bluetooth/le/ScanRecord
2Onttps://developer.android.com/reference/android/bluetooth/BluetoothDevice

Table 4: Identification of Apple’s device types from the manufacturer-specific data.
Source [24, Table 3].

Device Type Bits Category Example

Other 0b00 Apple devices iPhone, Mac, iPads
D (Durian) 0b01 AirTags AirTag

H (Hawkeye 0bl0 3rd Party Chipolo ONE Spot

HELE Ob1l Headphones AirPods Pro

38 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

19 val manufacturerData = scanResult.scanRecord?.getManufacturerSpecificData(0x004c)
20 val services = scanResult.scanRecord?.serviceUuids

21 if (manufacturerData != null) {

22 val statusByte: Byte = manufacturerData[2]

23 // Timber.d("Status byte $statusByte, ${statusByte.toString(2)}")

24 // Get the correct int from the byte

25 val deviceTypeInt = (statusByte.and(0x30).toInt() shr 4)

Figure 22: How AirGuard identifies an AirTag. Source [48].

4.5 Tracker Identification

The trackers used in this work can be identified as such from a BLE advertisement. Those
identifications on an individual level are explained in the following sections. This enables
to notify users which type of tracker is following them, as seen for example in Figure 15
b) on the Notifications fragment.

4.5.1 AirTag

How an AirTag can be identified has been intensively studied by Heinrich et al. [24]. They
reverse-engineered the BLE advertisements of Apple devices and were able to identify four
different types of devices. One of which is the AirTag. All other device types including
the AirTag are listed in Table 4. This identification of device types is based on the
manufacturer-specific data that Apple devices broadcast in their advertisements. The
interpretation and processing of this manufacturer-specific data is necessary to eventually
identify an AirTag as such. AirGuard's code by Heinrich et al. to identify an AirTag has
been used in this work. For this reason, their implementation regarding the interpretation
of the manufacturer-specific data, as shown in Figure 22 is explained step by step.

Table 5: Apple’s advertisement format. Adapted from [24, Table 1]

Bytes Content

0-5 BLE address

6 Payload length in bytes (30)

7 Advertisement type (0xFF for manufacturer-specific data)
8-9 Company ID (0x0004C)

10 Offline Finding type (0x12)

11 Data length in bytes (25)

12 Status (e.g. battery level)

13-34 Public key bytes

35 Public key bits

36 Hints (0x00 on iOS reports)

4.5. TRACKER IDENTIFICATION 39

First of all, the ScanRecord contains the manufacturer-specific data. In order to access
Apple's manufacturer specific data, the method getManufacturerSpecificData(0x004c)
of Android's BLE API is used. Its argument 0x004c represents Apple's company iden-
tifier [26]. This function returns null if the BLE advertisement does not contain any
manufacturer-specific data or the wrong company identifier has been used. Figure 22,
line 19 shows the access of the manufacturer-specific data and line 21 does the null check.
Thus, the body of the if statement is only executed on Apple's manufacturer-specific data.

Within line 22, AirGuard retrieves the status byte. The format of this status byte is
explained in Table 5. To retrieve one of the four Apple device types, as shown in Table
4, a bitwise and operation with a value of 0x30 and a right shift of 4 bits is applied. How
this ends up as one of the 4 different bits as seen in Table 4 is explained in more detail.

Firstly, Kotlin's .and() and shr functions are explained. The following explanations
of the .and() and shr operations are based on an online example [49]. The .and()
operation is a bitwise operation. This means, the actual .and() is applied on the caller's
binary representation. The argument as well will be shown in binary representation in
the examples below. For every digit of the caller the .and() function compares the
corresponding digit of the argument. If both digits are 1 the .and() function returns 1,
otherwise 0. An example of 45.and (5) is shown below:

001 01110
and 0 0 0 0 0 1 0 1
000 00 T1TO0O0

This .and () operation results in the binary number 00000100 which equals to 4 in decimal
representation.

AirGuard first applies .and (0x30) onto every status byte, as seen in line 25 (Figure 22).
0x30 is 30 in hexadecimal representation which equals to 00110000 in binary representa-
tion. Therefore, the .and (0x30) operation acts as a filter, which only allows the bits at
index 4 and 5 to go through. An example is shown below. The result is 48 in decimal
representation.

111 11111
and 0 0 1 1 0 O O O
001 1 0000

After the .and(0x30), the shr bitshift is executed. This operation also works on the
binary representation of a number. It shifts all bits to the right by the specified number.
Continuing with the result from above, 48 in binary representation is 00110000. Applying
a shift to the right leads to 0011000. Further examples are shown in Table 6.

AirGuard always applies shr 4 on every input, as seen in line 25 (Figure 22). Since
before the .and (0x30) operation has been applied, those bits which get lost due to shr 4
are always 0. Also, the two preceding bits are always 0. Hence, those two operations
combined basically reduce the input from 8 bits to 2 bits, where only the information of
those remaining two bits is stored. This leads to four possible cases, eiter 00, 01, 10 or 11.
Those four possible results eventually represent Apple's device types as shown in Table
4, from which an AirTag can be identified.

40 CHAPTER 4. DESIGN AND IMPLEMENTATION: ANDROID APP

Table 6: Examples of shr which shifts bits to the right.

00110000 shr 1 = 0011000
00110000 shr 2 = 001100
00110000 shr 3 = 00110
00110000 shr 4 = 0011

4.5.2 Chipolo ONE Spot

The identification of the Chipolo ONE Spot works in the same way as the one for the
AirTag, as it is part of the Find My Network. Therefore, it is identified as an AirTag,
as explained in subsection 4.5.1. The only difference is that the Chipolo ONE spot has
a different device type according to Table 4. If the bits are equal to Ob10 the device is
identified as a Chipolo ONE Spot.

4.5.3 Galaxy SmartTag+

The identification of a Galaxy SmartTag+ is fairly simple. It adds its name to the BLE
advertisement. An example of its advertisement is given in the appendix (see Figure 41).
It shows, that the scanRecord of the Galaxy SmartTag+ contains the local name of the
device, which is "Smart Tag”. If this name is found in the scanRecord of a BLE signal,
the device is identified as a Galaxy SmartTag+.

4.5.4 Tile

A Tile tracker can be identified by a UUID. A UUID is a universally unique identifier
which can be created independently [29]. The Tile tracker includes its offline finding
UUID in the BLE advertisement [50]. An example is listed in the appendix (see Figure
44). The UUID equals to 0000FEED-0000-1000-8000-00805F9B34FB. If this UUUID is
found in the scanRecord using the function getServiceUUIDs (), the tracker is identified
as a Tile tracker.

As previously mentioned, the Tile app allows one to pair different BLE devices such as
HP laptops, fitness trackers from Fitbit, headphones from Skullcandy, and many more.
Unfortunately, no such device was available for this thesis. Hence, it could not be studied,
if those devices also include the same UUID as the Tile tracker itself. Furthermore, Tile
has been contacted, to get more information on this. Unfortunately, there was no reply.

Chapter 5

Results and Evaluation

For this work, several experiments were conducted. Those can be distinguished into two
main categories. The first category is about the BLE advertisements of the tracking
devices. Section 5.1 explains those experiments in more detail. The second category
includes experiments to test the tracking algorithm. This is described in the section 5.2.

Since especially the experiments with respect to the tracking algorithm have been held in
an iterative manner, the results are presented and discussed right away. This simplifies the
thought processes which have taken place between two consecutive experiments. Finally,
the evaluation of the holistic tracker identification is described in Section 5.3.

5.1 Advertisements of Tracking Devices

This section describes the conducted experiments regarding the informational content of
the tracker's BLE advertisements. It includes experiments regarding the tracker's MAC
addresses and how they randomize it in different scenarios, as described in Section 5.1.1.
Furthermore, in Section 5.1.2 the RSSI (Received Signal Strength Indicator) value of an
advertisement is measured and evaluated within different scenarios.

5.1.1 Long Time Unpaired vs. Alternating Pairing State

It is assumed that an adversary acts in two different scenarios to track a victim's location.
In the first scenario, the adversary is at a remote location, thus not within the connection
range of the BLE tracker in use. This results in the tracker remaining in the unpaired
state for a long period of time. The second scenario involves the adversary actively
following the victim. This way, depending on the distance between the adversary and
the victim, the BLE tracker might be within or not within the connection range. So the
BLE tracker alternates between the paired and unpaired state, perhaps multiple times.
For both scenarios, the measurements have been restricted to one hour. This interval
of one hour is derived from the fact that on average people in Switzerland commute 29

41

42 CHAPTER 5. RESULTS AND EVALUATION

58

—@

a) b)

Turn phone On

|
|
|
|
|
|
|
|
I Paired Unpaired
|
|
|
|
|
1 Shut phone down
|

Figure 23: Experimental setup. a) shows the pairing of trackers with an iPhone (above)
or Samsung Galaxy (below). b) shows how the trackers transition between paired and
unpaired states.

minutes between their homes and workplaces [51]. Furthermore, in Switzerland on average
people work 1'495 hours per year [52] which is a little less than 29 hours per week. This
makes up almost 70% of a full-time job working 42 hours per week. Hence, on average
Switzerland's population works 70% of a working week and has to commute 30 minutes
one way, this commuting scenario affects many of Switzerland's residents and is therefore
put into focus for those experiments, respectively supports the decision to measure the
BLE advertisements for one hour.

Overall, the unpaired state of a tracker is regarded as the state where a BLE tracker is lost.
In case of Apple’s AirTag, its advertisements can then be picked up by anyone. In case an
iPhone receives this advertisement, it creates a location report for the owner, as described
in section 3.2.1. Those advertisements from all trackers used in this work are under
investigation for this experiment. Especially, the MAC address of those advertisements
are of core interest in those experiments.

Before tracking devices can transition into their lost state, they need to be paired with
an owner. The AirTag, Chipolo ONE Spot, and Tile trackers have been paired with an
iPhone SE running on iOS version 15.6.1. The Samsung Galaxy SmartTag+ on the other
hand needed to be paired with a Samsung Galaxy. The tracker has been paired with a
Samsung Galaxy A51 which runs on Android Version 11. To transition the trackers into
the lost state, the smartphones had been shut down. To transition back to the paired
state the smartphone had been turned on again. The experimental setup is depicted in
Figure 23.

5.1. ADVERTISEMENTS OF TRACKING DEVICES 43

Experiment:
Unpaired for long time

MAC address
changed

Tracker Type
e=0¢

t=0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60

Time (t in minutes)

Figure 24: Results of recorded MAC addresses per Tracker while being unpaired from
the owner. Only the Samsung Galaxy SmartTag+ applies MAC randomization while
unpaired.

Long Time Unpaired

The idea behind the Long Time Unpaired experiment is that a tracker is not within con-
nection range to the owner's phone. Therefore, the owner, respectively the adversary
locates a victim from a remote location. To simulate the scenario in this experiment, the
smartphones had been turned off for the full hour. Within this hour, the BLE advertise-
ments had been scanned for all trackers within an interval of 5 minutes. Only the MAC
address of the trackers had been recorded in this experiment. All the other attributes
were left out. This experiment answered how the trackers randomize their MAC address
when they are unpaired for a longer period of time. Figure 24 depicts those results.

The main insight of this experiment is, that only the Samsung Galaxy SmartTag+ ran-
domizes its MAC address while being in the unpaired state. It does so in an interval
between 5 to 10 minutes. The AirTag, Chipolo ONE Spot and the Tile tracker have
advertised always the same MAC address during this experiment. Thus, it is further
assumed within this work that they do not randomize their MAC address while being in
the unpaired state.

44 CHAPTER 5. RESULTS AND EVALUATION

Pattern:
Alternating Pairing State

U = unpair
R =record
P = pair
(]
S
- _u, _ B . - . _ - . _ _ v
- RP R R R RP R R RP R R R RP
c
(]
Z
I I I I I I N
t=0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60

Time (t in minutes)

Figure 25: Pattern of alternating pairing state experiment.

Alternating Pairing State

The experiment where a tracker alternates between the paired and unpaired state rep-
resents a scenario, where the adversary is following the victim closely. For example, the
victim is in a city and the adversary is maybe a block or two behind. In such a scenario,
the adversary might be close enough to the victim such that the tracker is in connection
range. This is possible considering the accuracy of location reports and the estimated
range of BLE signals in urban and outdoor areas.

In case of Apple's AirTag an accuracy of 30 m has been deduced in urban areas while
walking [19]. As the Chipolo ONE Spot is included in Apple's Find My network, the
same accuracy for it is assumed. For the Galaxy SmartTag+ and Tile, no indication of
the accuracy has been found. However, finding a SmartTag+ and a Tile works with an
offline finding network as well, thus it is assumed that the accuracy is also around 30
meters. In a nutshell, the victim's actual position lies within a radius of 30 meters from
the reported location. This means, in the worst case where the error of the location report
is 30 meters, the victim might be 30 meters closer to the adversary as expected.

The estimated range of BLE advertisements broadcasted over PHY LE 1 in industrial and
outdoor areas lies between 30 to 75 meters [53]. Now, assuming the worst signal strength
which only ranges 30 meters, in combination with an accuracy error of the location report
of 30 meters, and the adversary following the victim with a distance of 50 meters. This
leads to two cases. First, it might be possible that the victim and adversary are only
20 meters apart due to the accuracy error. In this case, the adversary is definitely in
connection range with its tracker. Secondly, it might be possible that the victim and
adversary are 80 meters apart due to the accuracy error. In this case, the adversary is
not in connection range with the victim. Therefore, during a stalking attack switching

5.1. ADVERTISEMENTS OF TRACKING DEVICES 45

Experiment:
Alternating Pairing State

MAC address
changed

Tracker Type
e=0¢

] |] | |]] |]]] | S
7

t=0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60

Time (t in minutes)

Figure 26: Results of recorded MAC addresses per tracker being unpaired while
alternating states as stated in Figure 25. Only the Tile does not apply MAC
randomization.

between cases one and two is possible. Hence, the possibility, that the tracker transitions
between the paired and unpaired state is likely and therefore considered in this experiment.
It needs to be noted, that the stalking distance of 50 meters has been chosen randomly.
There is no evidence of how much distance an adversary should keep from a victim while
stalking.

The trackers transition from the paired to the unpaired state by turning down the smart-
phones. While the trackers are in the unpaired state, their MAC addresses are recorded.
After a measurement, the trackers are paired with the smartphones again. This pattern
has been repeated every 5 minutes, as shown in Figure 25. The results of the experiment
showed that only the Tile tracker does not randomize its MAC address, as shown in Fig-
ure 26. In fact, it never has randomized its MAC address at all. In both experiments,
which lie one week apart, the Tile tracker has always broadcasted the same MAC address
as it can be derived from the measurements in the Appendix B.3. The AirTag and the
Chipolo ONE Spot on the other hand have started to randomize their MAC addresses
compared to the Long Time Unpaired experiment. This leads to the assumption that the
MAC randomization is induced by the iPhone. More precisely, the iPhone randomizes
the tracker's MAC address every 15 minutes. Looking at the Galaxy SmartTag+ it is
interesting to see that the randomization of its MAC address has increased. In this ex-
periment, it changed its MAC address every 5 minutes, whereas in the long time unpaired
experiment the randomization interval was between 5 to 10 minutes.

46 CHAPTER 5. RESULTS AND EVALUATION

Table 7: Received Signal Strength Indicator (RSSI) values measured in dBm for
different Scenarios with Android’s BLE APIL

Scenarios

(approximate distance)
On the phone In the jacket In the bag FEdge of table Corner of room Other room | Size of range

(0 m) (0.3 m) (0.5 m) (1.5 m) (4 m) (10m) | |max|-|min]|
5 AirTag 407 593 65.8 76.1 e 899 492
€ Chipolo ONE Spot -45.9 622 -61 72 -82 939 48
£ Galaxy SmartTag+ -40 -49.3 515 -58.3 -73 89.2 49.2
E Tile -31.1 -50.2 -54 -60.2 -64.6 -86.6 | 555
Mean -39.425 -55.25 -58.075 -66.65 74325 899 1 50475
5.1.2 RSSI

The experiments regarding the Received Signal Strength Indicator (RSSI) value have been
done out of curiosity. One vague idea was, that the RSSI value might help to keep BLE
trackers apart, respectively helps to identify them. Another aspect was, to assess the
RSSI's reliability of the trackers used within this work. In short, those experiments were
a shot into the blue.

Within those experiments, the trackers' RSSI values have been measured with Android's
BLE API. The trackers have been placed away from the scanning smartphone at several
distinct distances. The owning smartphones had been turned off, such that the trackers
transition into their unpaired state and broadcast their BLE advertisements.

In total six scenarios, the RSSI values have been recorded, as depicted in Table 7. The
scenarios "In the jacket” and "In the backpack” are meant to represent a real-life scenario
where the adversary has slipped a tracker into the victim's jacket or backpack. The
scenarios "On the phone”, "Edge of table”, "Corner of room”, and "Other room” do not
represent a real-life situation which can be associated with a tracking scenario. Those
scenarios have only been included, to assess the reliability of the RSSI with more data
points.

The main goal was to figure out how the RSSI values behave for distinct, respectively
increasing distances. Therefore, for every tracker and every distinct distance ten mea-
surements of the RSSI value have been recorded. From those results, the average of every
tracker in each scenario was computed. Table 7 shows this data. It furthermore includes
the mean among all trackers. Besides that, for every row, the range of the RSSI values
with respect to all distinct distances is listed.

Figure 27 depicts the RSSI values and their mean as graphs. The mean is regarded as a
trend line. It shows that the larger the distance, the lower the RSSI value becomes. It
can also be noted that there exists a steeper decline from the scenario "On the phone” (0
m) to the scenario "In the bag” (0.5 m) compared to the decline between the remaining
scenarios (0.5 - 10 m). Generally speaking, the mean indicates that the signal strength
of a BLE advertisement loses very much within the first 50 cm and declines less with a
larger distance. Finally, each tracker never crosses the trend line. Either all its values are
above or below the trend line. Hence, the RSSI values of an individual tracker steadily
decline, as the trend line does.

5.1. ADVERTISEMENTS OF TRACKING DEVICES 47

Tracker's RSSI for distinct distances

=307 ® AirTag
Chipolo ONE Spot
—40 7 Galaxy SmartTag+
® Tile
=50 - \ ® mean
7 —60 A
0
o
_70 .
_80 -
_90 -
0 2 4 6 8 10
Distance

Figure 27: Points representing measured averaged RSSI values at a certain distance for
every tracker. The line connects the points of a tracker to show the trend of the data.

Looking at the size of the ranges of the individual trackers, as shown in Table 7, it describes
the difference between the lowest and highest RSSI value measured for each tracker. The
Chipolo ONE Spot shows the smallest range in RSSI with a value of 48. The AirTag
and the Galaxy SmartTag+ show the same range of 49.2. The Tile tracker shows the
biggest range in RSSI with a value of 55.5. The range of the Tile tracker is nearly 10%
larger compared to the mean. The other trackers deviate in their range from the mean
by approximately 2.5%. The range of the Tile tracker is therefore approximately 4 times
higher with respect to the mean compared to the ranges of the remaining trackers. This
does not speak for reliable RSSI values among all trackers in a general manner.

Furthermore, an effect is noticeable, which will be called the blow-up-convergence effect.
It describes, that the range between the trackers is rather small in the first two scenarios.
Afterwards, the range expands or blows up. For the scenario "Edge of table” and "Corner
of room” all RSSI values lie within a range of 17.8, respectively 17.4. At a distance of 10
m, the RSSI values of all trackers converge to a value between -93.9 and -86.2, respectively
a range of 7.7.

Looking at the individual graphs, a second effect can be observed, which will be called
the crossing-effect. It describes, that the RSSI graph of the Tile tracker crosses the RSSI
graph of the Galaxy SmartTag+. This means, in the scenario "Edge of table” the RSSI
value of the Tile tracker is below the one of the Galaxy SmartTag+. In the following
scenario "Corner of room”, the RSSI value of the Tile tracker is above the one from the
Galaxy SmartTag+. This is also true for the AirTag which crosses the values of the
Chipolo ONE Spot between the scenarios "Edge of table” and "Corner of room”. Thus,

48 CHAPTER 5. RESULTS AND EVALUATION

the behaviour of the Tile tracker and the AirTag is for those scenarios contrary to the
observed trend line. Both trackers show a lower decline in their RSSI values.

Moreover, the Chipolo ONE Spot also shows behaviour which deviates from the trend
line. Between the scenario "In the jacket” and "In the bag” its RSSI value increases from
-62.2 to -61.

Finally, all observations are based on an averaged value out of ten measurements for
every tracker. Since even those averaged results of the individual trackers show strange
behaviour, it is expected that looking at a single experiment, more strange behaviour
would be revealed. This leads to the assumption that the RSSI signal on an individual
level is not reliable or stable.

To summarize, on one hand, the experiments regarding the RSSI values show promising
results that in general, the RSSI value decreases for every tracker with a larger distance.
On the other hand, the blow-up-convergence effect, the crossing-effect, or the sizes of the
ranges show, that the RSSI value is rather unreliable or unstable. Those observations are
based on averaged results and it is further assumed, that on an individual level, even more,
strange behaviour of the RSSI value would be revealed. Hence, with the information from
the RSSI values, no pattern can be derived, which helps to distinguish trackers from each
other or to identify a tracker based on its RSSI values.

5.2 Tracking Algorithm

The Android app which has been developed for this work allows the user to individually
set his or her tracking preferences. Those preferences consist of the minimal time and
distance a tracker needs to follow the user, as well as the minimal number of times a
tracker needs to be scanned. Once all those values are exceeded the user gets notified.
Hence, the app developed for this work allows the investigation of those three preferences.
It can be examined which selection for those values brings the most reliable results, such
that the tracking algorithm notifies the user as early as possible about malicious trackers.
The following subsections describe the route taken to examine the tracking algorithm
and the procedure while walking this route. Afterwards, the individual experiments are
described and evaluated, which vary in their selection of the tracking preferences. The
results are always presented and discussed because the follow-up experiment is based on
the previous one.

5.2.1 Experimental Route

The chosen route depicts three possible scenarios in which a victim might be tracked.
As described in Figure 28, the starting point of the experimental route is surrounded
by grocery stores, a local bar as well as a public place, which is frequently visited. The
destination is regarded as the victim's home. It is assumed, that the starting point is
of interest for an adversary to track a victim. An adversary sees or meets a victim at
the grocery store, bar or public place, and wants to follow the victim back to his or

5.2. TRACKING ALGORITHM 49

Figure 28: Shows the route chosen to test the tracking algorithm. According to Google
Maps, the route is 500 m long and it takes about 5 min to walk from start to finish. The
black play icon represents the starting point. The black flag icon represents the
destination. The route can be subdivided into three parts as indicated by the colors red,
blue and green. Within the red part, there is a Coop and Migros, a bar and a public
place. The blue part is a path along a train station, which is more open and therefore
has fewer objects blocking a BLE signal. The green part fully represents a residential
area with many apartments and a recreational park.

her home. To recall, the starting point is a stationary location of the victim, where
he or she does not cover a large distance, respectively 50 meters, as declared in the
LocationTrackingService described in Section 4.3.3.

5.2.2 Experimental Procedure

For each walk of the experimental route, the user was equipped with the app and enabled
the tracking protection feature before heading home from the starting point. The user,
respectively the victim was carrying all four trackers used within this work in the left
pocket of his or her jacket. The Android smartphone, a realme 9 Pro 5G running on
Android Version 12, had been carried in the right pocket of the user's jacket. The app's
tracking protection remained turned on until the LocationTrackingService, as described
in Section 4.3.3, evaluated that the user is not moving anymore. This always resulted in
the tracking app to stop scanning for BLE devices a few minutes after the user has
returned home. Furthermore, the user was always walking alone, respectively without the
company of another person. Lastly, the app's database was empty, meaning that no BLE
devices or malicious trackers, as described in Figure 17, from previous runs were stored
in the database.

90 CHAPTER 5. RESULTS AND EVALUATION

Total Scans during run with Lowest Numbers

Apple Device A

Unknown A

Chipolo ONE Spot -

Various A

Device Type

AirTag -

AirPods -

Galaxy SmartTag+ A

Tile

0 50 100 150 200 250 300
Number of Scans

Figure 29: This bar chart plots the number of times a device type got scanned during
the run with the lowest number of scanned devices. In total, the run recorded 698 BLE
scans which map to 432 distinct BLE devices according to their MAC address. The
device type Various groups devices which included their name in the BLE
Advertisement.

5.2.3 BLE Devices in the Wild

Before jumping into the experiments regarding the tracking algorithm, an idea is given
about what kind of BLE devices during a run of the experimental route have been scanned.
In total, 15 runs have been performed. These runs were conducted at random times of the
day. This implies that the BLE traffic varied during those experiments, respectively the
number of scanned devices varies. The run with the lowest number of scanned devices,
as well as the run with the highest number of scanned devices, are depicted in Figure
29, respectively Figure 30. For each of the mentioned runs, the types of devices and how
many times such a device appeared are shown.

In both cases, Apple devices and devices of Unknown type are the most scanned ones.
The Tile tracker and the Galaxy SmartTag+ show in both cases the lowest number of
occurrences. AirTags and Chipolo ONE Spots exceed those occurrences by far. Hence,
it is assumed that during those runs, foreign AirTags and Chipolo ONE Spots have been
scanned, respectively trackers of those types which have not been carried by the user. For
the Galaxy SmartTag+ and the Tile tracker, it seems that only the carried-along trackers
have been out in the wild during those runs.

5.2. TRACKING ALGORITHM 51

Total Scans during run with Highest Numbers

AppleDevice 4
Unknown A

AirTag 1

Chipolo ONE Spot A
Various A

AirPods -

Device Type

Tile A
Galaxy SmartTag+ A
ELK-BLEDOM -

ES600 A

0 100 200 300 400 500
Number of Scans

Figure 30: This bar chart plots the number of times a device type got scanned during
the run with the highest number of scanned devices. In total, the run recorded 988 BLE
scans which are mapped to 644 distinct BLE devices according to their MAC address.
The device type Various groups devices which included their name in the BLE
Advertisement.

5.2.4 Testing of Tracking Preferences

Since three parameters are in place to decide if a BLE device represents a malicious tracker,
the analysis of which value to choose for every parameter happens individually and in an
iterative manner. This means, in the first experiments only the parameter distance varied,
where the number of occurrences, as well as the time preference, remained the same.

As described in Section 4.3.3 about the services of the tracking algorithm, the parameter
regarding the distance can decide about a tracker being malicious by having only two scans
of a tracker at hand. The same goes for the time parameter. Contrary, the parameter
occurrences depends on more than two BLE scans if its value is increased by the user.
This implies that the higher the number of occurrences is set, the more time needs to
pass such that enough scans occur. Only after this, the tracking algorithm can classify a
device as a malicious or non-malicious tracker. Therefore, the occurrences parameter has
not been chosen to be the first parameter to evaluate in the experiments.

A decision had to be made to determine whether to start testing the tracking algorithm
with the distance or time parameter first. One disadvantage of the time parameter is,
that the selected time must pass before a user gets notified about a malicious tracker. It
does not matter how fast or slow a user is moving. The distance parameter on the other
hand does not have this artificial delay of a notification. The app allows setting a minimal
distance of 50 meters, a distance which is probably covered below one minute. Hence,
the parameter distance had been chosen to be the first to analyse. It is assumed, that it

52 CHAPTER 5. RESULTS AND EVALUATION

Table 8: Results of the experiments to test the tracking algorithm with an increasing
distance value. The time parameter and the occurrences parameter were left at their
minimal values, which is 1 minute and 2 occurrences.

Results
True False False True Procision Recall Total scanned
Positives Positives Negatives Negatives devices
50 m 4 23 0 470 14.8% 100% 497
§ 100 m 4 9 0 497 30.7% 100% 510
g 150 m 3 3 1 470 50% 75% 477
A 200 m 4 0 0 471 100% 100% 475
250 m 4 0 0 520 100% 100% 524

might have the biggest impact, such that a user can be notified about malicious trackers
as early as possible.

Finally, for every experiment, the true positives, false positives, true negatives and false
negatives have been determined. The true positives represent the four trackers carried
along in the left pocket of the jacket that need to be identified by the tracking algorithm.
The false positives represent scans of BLE devices which are picked up during a run and
which are classified as malicious trackers. However, those false positives are in reality not
used as a BLE device to track the user. A false negative is one of the four BLE trackers
used in this work, which has not been classified as a malicious tracker. Finally, the true
negatives are all the BLE signals which have been captured by the app during a run but
were correctly classified as a non-malicious tracker. From those results, the precision and
recall can be calculated, which are computed for every experiment as well.

Distance

By design, the app allows one to choose a minimal distance of 50 meters. The step
size is 50 meters. The maximal value is 1000 meters. Therefore, the first experiment
has been conducted with the lowest value for the distance parameter, respectively 50
meters. Afterwards, for every consecutive run of the experimental route, the value for
the distance parameter has been increased according to the step size. The values for
the parameters time and occurrences were left at their lowest possible value which is 1
min for the time parameter and 2 occurrences. In total 5 runs have been completed.
The results for the varying distance parameter, the true positives, false positives, false
negatives, true negatives, precision, recall, and the total number of scanned devices in
each run are depicted in Table 8.

The experiments only on the distance parameter showed that using a value of 200 meters
results in the correct classification of malicious and non-malicious trackers. All carried-
along trackers were identified and no other, respectively no false positives occurred. An
extra run with an increased distance value equal to 250 meters showed also correct results.
It is assumed that increasing the distance parameter, even more, would still lead to correct
results. However, this leads to classification problems with respect to a different route. A

5.2. TRACKING ALGORITHM 23

Table 9: Results of all three runs with distance parameter set to 200 meters. The time
and occurrences parameters are set to their minimal values which are 1 minute and 2

occurrences.
Results
True False False True Procision Recall Total scanned
Positives Positives Negatives Negatives devices
First 4 0 0 471 100% 100% 475
Second 4 0 0 524 100% 100% H28
Third 4 1 0 456 80% 100% 461

simple example would be a shorter route of 300 meters and a distance parameter set to 500
meters. In such a scenario, the malicious trackers would not be detected. Thus, since it
is assumed that larger values for the distance parameter still provide correct classification
results, but lead to wrong results depending on the length of the experimental route,
choosing the smallest possible value for the distance parameter fits best. Derived from
the experiments taken so far, this leads to a selection of 200 meters for the distance
parameter.

Taking only a distance parameter of 200 meters already shows promising results. To
further decrease the distance parameter to 150 meters, the time and occurrences parameter
will be taken into consideration. Therefore, in the corresponding follow-up experiments,
the distance parameter is tried to be decreased to 150 meters, but not lower. This way,
the tracking algorithm can be configured with the parameters which take effect as early
as possible, respectively notify the user about malicious trackers as early as possible.

Despite the tracking algorithm classifying correctly with the selection of the distance
parameter of 200 meters, it needs to be pointed out that the run with the parameter
set to 150 meters showed a false negative, respectively did not classify the Chipolo ONE
Spot as a malicious tracker in this very run. This can be regarded as bad luck due to
the scanning frequency. The tracker was not detected early enough, thus its first and last
occurrences do not show a difference in the distance above 150 meters. Nonetheless, this
raised the assumption that with the distance parameter set to 200 meters, the classification
might be correct by chance. Therefore, another two runs with the distance parameter set
to 200 meters were executed. The results of all those three runs are depicted in Table
9. The decision not to repeat the runs with the distance parameter set to 150 meters is
based on the fact that in this run still 3 false positives occurred. Thus, the sum of false
results within the run of 150 meters is 4, whereas the sum of false results within the run
of 200 meters is 0. Therefore, the experiments were repeated with the distance parameter
of 200 meters and not 150 meters.

As seen in Table 9, all three runs show a recall of 100 %. Therefore, the assumption, that
the false negative from the run with the distance parameter set to 150 meters was bad
luck due to the scanning frequency hardens. Nevertheless, the last run shows a lower
precision of 80 %, which means a false positive occurred. It was an Apple device which
was classified wrongly as a malicious tracker. This device had two occurrences during the
experiment. It got first scanned at lat: 47.393039, lon: 8.5291302 and afterwards at lat:

o4 CHAPTER 5. RESULTS AND EVALUATION

First Scan of
Apple Device
0F25:30

Second Scan of
Apple Device
09:29:34

Figure 31: The third run, as seen in Table 9, testing the tracking algorithm with respect
to the distance parameter showed a false positive. It was an Apple device which crossed
the experimental route. The device got scanned exactly twice during the experiment.
The locations of both scans are indicated with the blue circle and the according
timestamp. A potential route of this Apple device taken is drawn with a black line. The
route taken in the experiment is drawn with a grey line. According to Google Maps the
route of the Apple device is 350 meters long and walking this route takes approximately
5 minutes. Hence, the owner of the Apple device probably has taken this route at the
same time the experimental route was taken and finally, the crossing happened at the
destination of the victim.

47.3921147, lon: 8.5258758. Checking those coordinates using Google Maps, the device
appeared at the beginning of the experimental route and at the destination, respectively
the home of the victim. Figure 31 shows where the Apple device got scanned, and a
potential route the Apple device could have taken. The timestamp of the first scan is at
1669278330905 milliseconds which is the 24th of November 2022 at 09:25:30. The second
scan was recorded at 1669278574751 milliseconds, which is the 24th of November 2022 at
09:29:34. Therefore, the route the Apple device has taken is roughly 4 minutes long. This
is plausible, Google Maps states that this route is approximately 5 minutes long. Hence,
the false positive of the Apple device perhaps happened, because the person carrying the
Apple device got crossed at the beginning of the experimental route and at the end of
the experimental route. Therefore, for this experiment and its set parameters, it can be
noted, that false positives can occur, when people cross the user on his or her way, as this
is shown with the aforementioned example of the Apple device.

Investigating further on the occurrences of those three experiments, the true positives,
respectively the actual BLE trackers showed 6 (Tile), 8 (Galaxy SmartTag+), 11 (Chipolo
ONE Spot), and 12 (AirTag) occurrences. In the second run the trackers showed 5 (Tile),
6 (Galaxy SmartTag+), 8 (AirTag), and 9 (Chipolo ONE Spot) occurrences. Finally, in
the last run the devices got scanned 4 (Galaxy SmartTag+), 7 (AirTag), 8 (Tile), and 9
(Chipolo ONE Spot) times. Considering all three runs, the range in occurrences for the

5.2. TRACKING ALGORITHM 5}

AirTag is 5, for the Chipolo ONE Spot 2, for the Galaxy SmartTag+ 4, and for the Tile
3. The AirTag shows the largest range, but the Galaxy SmartTag+ and the Tile Tracker
show the lowest number of occurrences which is 4 and 5 respectively.

Since it is known from the experiments regarding the tracking devices in Section 5.1 that
the Galaxy SmartTag+ randomizes its MAC address, it is not surprising that it showed the
lowest number of occurrences. It might be possible that the Galaxy SmartTag+ changed
its MAC address during the experiment. For the Tile tracker on the other hand it might
be explained that it has a larger advertising interval, which means it sends out its BLE
advertisement less frequently. Therefore, it shows a lower number of occurrences. This
would need to be tested in a further experiment to confirm the assumption. However,
those numbers on the occurrences of all the true positives lead to the assumption that
the parameter for the occurrences can be raised up to 4 occurrences in order to get rid of
the false positives, while still keeping the true positives. This number has therefore been
chosen as a base for the experiments regarding the occurrences which are described in the
following subsection.

Also, it has been decided not to undertake any experiments regarding the advertising
interval of the Tile tracker, since the insights gained from those experiments would only
fit the Tile tracker and none of the other trackers. Thus, it would not improve the tracking
algorithm in a general manner.

Occurrences

So far, setting the distance parameter to 200 meters shows good results in classifying
signals into malicious and non-malicious trackers. With the help of the occurrences pa-
rameter, it will be tested if the distance parameter can be decreased to 150 meters. From
the BluetoothScanningService, as described in Section 4.3.3, it is known that the app
scans for trackers twice within a minute with a scan period of 12 seconds. The maximal
scanning interval of BLE advertisements is 10.24 seconds [27]. Thus, it can be assumed
that every tracker is at least scanned twice within a minute, respectively showing two
occurrences. Raising the value for the number of occurrences therefore also delays the
point in time when the user gets notified about a malicious tracker. Therefore, to still be
able to inform the user as early as possible, it is beneficial for the user to keep the number
of occurrences as low as possible.

From the previous experiments, it could be shown that the true positives always showed
at least 4 occurrences. Therefore, two experiments will be executed. The first run raised
the occurrences to 4, whereas in the second run, the occurrences are set to 5. Using those
values for the occurrences parameter should allow the app to identify malicious trackers
below 3 minutes. The distance value is set to 150 meters, and the value for the time
parameter was left at its minimal value, which is 1 minute. The results are shown in
Table 10. For a better overall comparison, it also includes the run from the previous
experiments with 150 meters for the distance parameter, 2 occurrences, and the time
parameter set to 1 minute.

The first run has not detected all trackers. The reason for this has been discussed already
in the experiments regarding the distance parameter as described above. The second and

96 CHAPTER 5. RESULTS AND EVALUATION

Table 10: Results of all three runs with different occurrences parameter. The distance
and time parameters remained constant. The distance parameter is set to 150 meters
and the time parameter is set to its minimal value, which is 1 minute.

Results
True False False True Precision Recall Total scanned
Positives Positives Negatives Negatives devices
£ #2>2 3 3 1 470 50% 75% 477
S #>4 4 2 0 426 66% 100% 432
S #>5 4 1 0 614 80% 100% 614

the third run with the occurrences above or equal to 4, respectively 5 have a recall rate of
100 %. However, all runs show false positives. In short, this means that the parameter for
the occurrences is not capable to support the distance parameter, respectively allow the
distance parameter to be decreased from 200 meters to 150 meters. Nonetheless, the higher
the number of occurrences is used, the fewer false positives are recorded, respectively the
precision increases.

At this point, it has been decided to stop investigating on a higher value for the occurrences
parameter for two reasons. First, increasing the occurrences to 6 or more also postpones
the point in time when the user will be notified about malicious trackers. In the worst
case, it takes three minutes, because a tracker might only get scanned twice within a
minute due to the design of the BluetoothScanningService. Because using a distance
parameter of 200 meters, occurrences of 2 and a value of 1 minute for the time parameter
has already shown good results, it does not make sense to further increase the value for the
occurrences. Nonetheless, the design of the BluetoothScanningService in the tracking
algorithm seems to restrict the usage of higher values for the occurrences parameter.
However, the scan interval and scan period of the BluetoothScanningService could be
adapted. An idea is discussed in Section 6.2.

The second problem with a higher value for the occurrences parameter might be a de-
crease in the recall rate. As described within the three experiments with a distance value
of 200 meters and the occurrences and time parameter set to its minimal values, the true
positives, respectively the Galaxy SmartTag+ and Tile trackers showed 4, respectively
5 occurrences only. Due to this fact, increasing the occurrences parameter more, also
increases the likelihood of false negatives, because those two trackers would not be rec-
ognized as malicious trackers anymore. From a victim's point of view, false negatives
impose a greater threat than false positives, since the victim would not be notified about
a malicious tracker in contrast to being falsely notified about a tracker which is not a
malicious tracker. To conclude, for those two reasons, no more experiments using 150
meters for the distance parameter and an increasing value for the occurrences parameter
have been executed.

5.2. TRACKING ALGORITHM 57

Table 11: Results of the three runs with occurrences parameter set to 4. The distance
parameter is set to 200 meters and time parameter remained at its minimal value of 1
minute. The reason for those runs is, to figure if the occurrences parameter properly
supports the distance parameter of 200 meters, where it performed best. This should
support the distance parameter of 200 meters to eliminate false positives.

Results
True False False True Procision Recall Total scanned
Positives Positives Negatives Negatives devices
First 4 0 0 461 100% 100% 465
Second 4 0 0 471 100% 100% 475
Third 4 0 0 567 100% 100% 571

Despite the fact, that the occurrences parameter did not allow to decrease the distance
parameter to 150 meters, it is still unanswered, if increasing the occurrences to 4 properly
supports the distance parameter of 200 meters. As described within the experiments with
respect to the distances parameter with a value of 200 meters, there was one run, where
a false positive occurred. This false positive however only had two occurrences, whereas
all true positives were scanned 4 or more times. Therefore, two additional runs of the
experimental route have been taken using 200 meters for the distance parameter, 4 for
the occurrences and the time parameters with its minimal possible value of 1 minute. The
results are shown in Table 11.

All three runs show a precision and recall rate of 100 %. Therefore, the parameter oc-
currences with a value of 4 strengthens the performance of the distance parameter set
to 200 meters. This can be assumed, since all three runs classified the malicious and
non-malicious trackers correctly, compared to the experiments where the value of the oc-
currences was set to 2, as seen in Table 9. There, one false positive occurred, which is
now eliminated.

Furthermore, the number of scanned devices in the current runs ranges from 465 to 571.
In the earlier experiments, the range of scanned devices is between 461 to 528. Hence, the
number of scanned devices is slightly higher for the current runs compared to the earlier
ones. This also indicates, that the occurrences parameter supports the distance parameter
and makes the results a little more robust, even when more devices are scanned during a
run.

Finally, looking at the occurrences in the current runs, the AirTag was scanned 8, 7, and
8 times, the Chipolo ONE Spot 8, 10, and 9 times, the Galaxy SmartTag+ 7, 6, and 7
times, and the Tile was recorded 4, 8, and 8 times. The Tile tracker occurred within the
first run only 4 times, which is the lowest number. Therefore, raising the occurrences
would potentially produce false negatives which should be omitted.

To conclude, increasing the occurrences parameter to a value of 4 did not break the already
good retained results with a distance parameter set to 200 meters. It even supports the
distance parameter properly. Since also increasing the occurrences value more would lead
to a potential delay of the point in time when the user gets notified about a malicious
tracker, setting the value 4 for the occurrences parameter appears to be a good selection.

o8 CHAPTER 5. RESULTS AND EVALUATION

Table 12: Results of the three runs with the time parameter set to 2 minutes. The
distance parameter is set to 150 meters and the occurrences remained at their minimal
value of 2. The reason for those runs is to figure out if the time parameter is able to
decrease the distance parameter to 150 meters.

Results
True False False True Procision Recall Total scanned
Positives Positives Negatives Negatives devices
First 4 3 0 637 57.1% 100% 644
Second 4 1 0 525 80% 100% 530
Third 4 3 0 437 57.1% 100% 444

Time

At this point, the experiments with respect to the distance and occurrences parameters,
especially their combination, showed promising results in classifying malicious and non-
malicious trackers. Hence, the question arises whether it is necessary to investigate on
the time parameter. On one hand, due to the nature of the time parameter, it is assumed
that the time parameter is rather a restricting parameter because it might delay the point
in time a user gets notified about a malicious tracker. On the other hand, it makes
sense to classify a BLE device as malicious or not, depending on the time it follows
a user. This would clearly distinguish BLE signals from people passing by and BLE
signals from trackers which actually follow the user. Lastly, the time parameter might
help to decrease the distance parameter to 150 meters. Hence, the first argument advises
against doing experiments with an increasing value for the time parameter. The other
two arguments, however, suggest seeing if setting the time parameter to 2 minutes enables
decreasing the distance parameter to 150 meters. Therefore, three runs are executed with
a time parameter set to 2 minutes. The distance parameter is set to 150 meters and the
occurrences are set to their minimum value of 2. The results are shown in table 12.

The results regarding the time parameter with a fixed distance and occurrences parameter
show a recall rate of 100 % in all three runs. However, none of these runs show a precision
rate of 100 %, thus in every run false positives occurred. In all runs, 7 false positives have
occurred. This leads to the conclusion, that the time parameter does not help to decrease
the distance parameter to 150 meters. Furthermore, the combination of the distance
parameter set to 200 meters and the occurrences set to 4 provides good classification
results. Thus, it seems that the time parameter can be neglected within this combination,
as it would unnecessarily delay the point in time a user gets notified about a malicious
tracker. For this reason, it has been decided to leave the time parameter at its minimal
value of 1 minute.

Moreover, taking again another look at the occurrences of the Tile tracker, it has been
recorded 4 times in the first run with respect to the occurrences parameter. The current
runs with respect to the time parameter deliver some more data to analyse this number.
The Tile tracker got scanned 10 times in the first, 8 times in the second, and 5 times
in the third run. Hence, those numbers further harden the selection of the occurrences
parameter with a value of 4, since the Tile tracker has never appeared less than 4 times.

5.3. EVALUATION OF TRACKER IDENTIFICATION 59

Finally, it appears that there is an order of the parameters. The distance parameter on
its own already provides good classification results. With the help of the occurrences
parameter, those good results could be strengthened. The time parameter in the end
seems to only delay the point in time where a user gets notified. Hence, the distance
parameter can be regarded as the leading parameter, the occurrences can be seen as a
supporting parameter, whereas the time parameter seems to be a restricting parameter.
The distance parameter in this setting is set to 200 meters, the occurrences are set to 4
and the time parameter is left at its minimal value of 1 minute. This conclusion addresses
(iii) as mentioned in Section 1.2.

5.3 Evaluation of Tracker Identification

Within this work, three ideas have been pursued to figure, if BLE advertisements can
be distinguished into tracking versus non-tracking BLE devices, respectively how trackers
can be identified as such. The first approach uses company identifiers. The second idea
follows the work from Becker et al. [21], in which they found identifying tokens within
the PDU's of an advertisement. Those approaches are done from the perspective of an
Android smartphone. Finally, Android's BLE API is studied in more detail, to see if a
holistic tracker identification is possible.

5.3.1 By Company Identifier

In Android, scanning for BLE devices returns so-called ScanResults that contain a
ScanRecord. Examples are presented in Appendix A. One important property of it
is the manufacturer-specific data. Using the function getManufactuereSpecificData()
with the appropriate company identifier returns a SparseArray<byte[]>. Those com-
pany identifiers are uniquely defined by the Bluetooth SIG [26]. As an example, having
an advertisement from an Apple device at hand and using the function call with Apple's
company identifier getManufactuereSpecificData(76), the manufacturer-specific data
is returned as a byte array. Using the function with a different company identifier would
return null in case of having an advertisement from an Apple device at hand.

The returned byte array is not interpretable for the human eye. Reverse Engineering is
one approach, to break down this structure such that its information is accessible, as it
has been done by Heinrich et al. [24]. However, reverse engineering BLE advertisements
exceeds the focus of this work. Furthermore, as seen in the advertisement examples in
Appendix A, not all BLE advertisements do include manufacturer-specific data by design.
This is the case for the Tile tracker and the Galaxy SmartTag+. Thus, those devices can
not be mapped to their manufacturer using the company identifier and no manufacturer-
specific data could be used for tracker identification.

To conclude, manufacturer-specific data can not be interpreted right away in order to
possibly figure out if an advertisement originates from a tracking device. Furthermore,
the company identifier only tells, from which manufacturer the device is. It is not possible
to learn if this device is a tracking or non-tracking BLE device.

60 CHAPTER 5. RESULTS AND EVALUATION

5.3.2 By PDU

The address-carryover algorithm from Becker et al. [21] is based on so-called identifying
tokens. For this, they used log files and decoded the BLE advertisements, respectively
they observed the PDU Payloads as depicted in Figure 2. An identifying token might
be for example a MAC address or a byte sequence in the PDU payload which does not
change over time [21]. In this work, an Android app is used to scan and identify BLE
devices, respectively to interpret BLE traffic. Therefore, the app relies on the API's to
process BLE traffic.

As of writing, besides the known Android BLE API, other APIs, libraries, tools or a PDU
parser which can be used in an Android application to investigate BLE advertisements are
not known. Also, Android's BLE API does not allow to access raw PDU Payloads. The
only track would be the function getBytes(), which returns the manufacturer-specific
data. This however cannot be further used as explained above. In a nutshell, the address-
carryover algorithm to track or identify BLE devices does not apply to this work as it is
not possible to analyse PDU payloads in the same format as Becker et al. did.

5.3.3 Holistic

With the approaches described above, no tracker identification using Android's BLE API
is possible. Nonetheless, the remaining properties the API provides, which have not been
touched on in the two approaches above, are evaluated. From all those properties, two
insights regarding the identification of BLE devices into tracking and non-tracking devices
can be drawn.

Firstly, every BLE tracker advertises with an individual structure, as derived from the
example advertisements in Appendix A. Apple's AirTag and the Chipolo ONE Spot,
which has been designed as third-party accessory for Apple's Find My network, pack all
their relevant advertisement information into the manufacturer-specific data. Using this
data, those trackers can be identified, as described in Section 4.5.1. The Tile Tracker
and the Galaxy SmartTag+ use service data to send information, which the AirTag and
Chipolo ONE Spot do not use. Further, the Tile and the GalaxySmartTag+ advertise
slightly different service UUID's. The Tile tracker is identified via its service data and
the Galaxy SmartTag+ includes its name. To conclude, all trackers are identified in their
individual way.

Secondly, for all the remaining properties, it is assumed that there is no pattern to distin-
guish BLE trackers from non-BLE trackers. Reasons for this assumption are, that many
properties are undefined or do not show equal values. An undefined example is the function
getAdvertisingSID(). None of the trackers has defined this value. Moreover, only the
Tile tracker and the Galaxy SmarTag+ have values defined for the getAdvertiseFlags ()
function, but those properties are defined differently (Tile = 6, SmartTag+ = 4). Fur-
thermore, only the Galaxy SmartTag+ returns a value for the getType() = 2 function.
According to Android's documentation, this value represents a BLE device. Other re-
turn types are classic, dual, or unknown. Those return values do not allow to distinguish
tracking and non-tracking BLE devices.

5.3. EVALUATION OF TRACKER IDENTIFICATION 61

Besides many further undefined properties or properties with sparse information, some re-
maining properties focus on physical attributes, such as the functions getPrimaryPhy (),
getTimeStampNanos (), getTxPower(), and getRssi(), or they focus on version at-
tributes like isLegacy(). Those attributes are assessed to be too soft to use as crite-
ria for this identification task. Thus, Android's BLE API does not allow for a holistic
identification of tracking vs non-tracking BLE devices.

Summarizing the insights regarding tracker identification, it has been assessed, that iden-
tifying trackers by company identifiers or PDU's as well as a holistic classification is not
possible. The trackers used in this work can be identified down to their type as shown
in Section 4.5. Hence, those 4 trackers can be identified as BLE trackers. Nonetheless,
the identification of an AirTag, Chipolo ONE Spot, and Tile tracker is only possible due
to heavy analysis of the corresponding BLE advertisements done by Heinrich et al.[24].
Within this work, the identification of a Galaxy SmartTag+ has been studied. Luckily,
it did not require a lot of work, since it advertises its name. Furthermore, Tile has been
contacted in order to retrieve information how to identify other accessories which they
support within the Tile app, but no reply was received.

To conclude, at this point, identifying a BLE tracker, is only doable by studying the
advertisements of every individual tracker, where the approach regarding the company
identifier, respectively the manufacturer-specific data, as well as the idea using the PDU's
is restricted from an Android perspective. Those insights address (i) as mentioned in
Section 1.2.

62

CHAPTER 5. RESULTS AND EVALUATION

Chapter 6

Discussion

This section discusses the results in order of the contributions of this work. Those contri-
butions are listed in Section 1.2. The discussion ranges from security concerns of trackers,
the app's scanning behaviour, additional false positives, MAC randomization, and how
RSSI might be of further use for tracking protection.

6.1 Security Concerns of Trackers

A holistic identification of a tracker is not possible using Android's BLE API, as explained
in Chapter 5.3. Each tracker needs to be analysed individually in order to identify it.
This may include some heavy work as it has been done for the AirTag and Chipolo ONE
Spot by Heinrich et al. [24]. Contrary, the Galaxy SmartTag+ and Tile tracker are
rather identified fast in terms of workload. Hence, the AirTag and Chipolo ONE Spot
are hard to identify, whereas the Galaxy SmartTag+ and the Tile tracker are easy to
identify. In case more trackers will appear on the market, it might need heavy work in
order to protect victims appropriately from stalking attacks using new BLE trackers. To
avoid such heavy work, finding a way to holistically identify trackers still can be a good
solution to solve this problem. This might be achieved by adapting the BLE protocols,
respectively advertisements or it needs further studies to find a way which accomplishes
this task. This would help victims to protect themselves from stalking attacks in an easy
and future-oriented way.

In contrast, a holistic tracker identification might result in security issues regarding the
intended usage of a tracker. The actual purpose is to find lost items, such as a key or
perhaps a bag in which the owner stores his or her valuable items. Now, let's turn the
tables, where an adversary tries to steal an item attached to a BLE tracker. A holistic
tracker identification would enable the adversary to track down any of those trackers,
respectively steal the attached item. To give an example, where a Galaxy SmartTag+
represents a holistically identified tracker since the Galaxy SmartTag+ is regarded as
easily identifiable. An adversary with an app that scans for a Galaxy SmartTag+ among
BLE advertisements, can enter a room and check if there is such a tracker present. If this

63

64 CHAPTER 6. DISCUSSION

is the case and the owner is not present, the adversary can simply search the room for
the tracker and probably find a valuable item attached to it. Also, the owner would not
notice that the item has been stolen. Extending this scenario, it can be even easier for an
adversary to locate an item. Some trackers are capable of playing sound or can be found
by using an AR compass with the help of UWB technology. This makes it even easier for
an adversary to locate an item.

To summarize the discussion about tracker identification, easily identifiable trackers have
the benefit to protect victims from stalking attacks in a fast manner. Not much work
is needed to identify such a tracker and hence protect the user. On the other side,
easily identifiable trackers pose security concerns, as they can be located without heavily
studying their BLE advertisements. Thus, an item attached to such a tracker is more
easy to track down for an adversary.

6.2 Scanning Behaviour

For this work, an app has been built, which is described in Section 4.3. The way its
services have been designed is not heavily based on scientific research. Furthermore, as
mentioned in the experiments regarding the occurrences in Section 5.2.4, the design of
the BluetoothScanningService might restrict the ability of the occurrences parameter
to classify malicious from non-malicious trackers. Hence, this service is discussed in more
detail.

In the app, two values define the scanning behaviour. One is the INTERVAL_BLE_SCAN and
the other is the SCAN_PERIOD. The INTERVAL_BLE_SCAN is set to 18 seconds, whereas the
SCAN_PERIOD is set to 12 seconds. The reason for the decision on those values is found in
the explanation regarding the BluetoothScanningService in Section 4.3.3. With those
values and within a full minute, the app scans in total for 24 seconds, at two distinct time
windows as it can be seen in Figure 32 a). Furthermore, with this configuration, the app
always scans in the identical time windows of a minute. That is from second 0 to second
12 and from second 30 to second 42. In the following minute, scanning is carried out
during the same time windows. Moreover, this scanning behaviour only allows getting
two BLE advertisements of a BLE device within a minute.

Changing the value for the INTERVAL_BLE_SCAN, a different scanning behaviour can be
achieved. Changing the SCAN_PERIOD is not recommended, as it would become likely that
advertisements for some BLE devices might not be scanned at all during a scan period
due to the allowed advertisement interval of 10.24 seconds [27]. Nonetheless, adapting
the INTERVAL_BLE_SCAN results in a different scan behaviour, as seen in Figure 32 b). In
this configuration, the INTERVAL_BLE_SCAN is set to 12 seconds. Hence, within the first
minute, the app would scan from second 0 to 12, 24 to 36, and 48 to 60. This results in
an additional scan of BLE advertisements. Moreover, within the second minute, the app
would scan from second 12 to 24 and from second 36 to 48. In the second minute, the
number of scanned BLE advertisements remains the same compared to the established
configuration. Nonetheless, one more interesting behaviour can be observed, as the time
windows of the scan periods alternate.

6.3. FALSE POSITIVES OF TRACKING PROTECTION 65

Scanning in first minute

a) Scanning in second minute b)

Figure 32: Visualizing a scan period of 12 seconds with different scan intervals over a
total time period of two minutes. In a) the scan interval is set to 18 seconds. In b) the
scan interval is set to 12 seconds.

To conclude, other values for the INTERVAL_BLE_SCAN and SCAN_PERIOD might be chosen.
Depending on those values, the scanning behaviour changes. This has an impact on how
to treat the occurrences parameter within the tracking algorithm. Moreover, the distance
parameter might also be affected by this new scanning behaviour. For example, consider
the user making a turn in between two scans of a BLE device. The computed distance
might be smaller compared to the actual distance covered. This would be improved by
an additional scan between the existing scans. Finally, the time parameter would not be
affected by this new scanning behaviour. The measured time between the two existing
scans would not change if an additional scan occurs between them.

6.3 False Positives of Tracking Protection

First of all, the tracking algorithm shows promising results as described in Section 5.2.4.
The main insight is, that the distance parameter appears to be the leading parameter
regarding a decision on whether a BLE device should be classified as a malicious or non-
malicious tracker. Figure 33 shows how false positives and false negatives were eliminated
by increasing the value for the distance parameter. Hence, a user travelling by him- or
herself, gets notified about malicious trackers appropriately. It is assumed that this can be
transferred to a scenario where a user is driving a car, bicycle or other vehicles, provided
they are travelling alone. The only difference is, that the user travels faster, thus the
threshold of the distance parameter is exceeded faster in time.

66 CHAPTER 6. DISCUSSION

Evaluation of Distance Parameter

® False Positives
False Negatives

20 A
2
o

= 154
18]
C
k)
-t
S

& 10 4
0n
(%3]
fo
(@)

5 .

0 .

50 75 100 125 150 175 200 225 250
Distance

Figure 33: Graph showing the performance of the tracking algorithm where the distance
parameter has been increased iteratively. The occurrences and the time parameter were
set to their minimal values which is 2 occurrences and 1 minute.

However, a user of the app, travelling with a friend or surrounded by people will receive
false positives. For example, assuming a scenario where the user travels with a friend, who
also carries a BLE-capable device such as a smartphone. In this scenario, the tracking
protection will not be able to realize that the user is travelling with a friend. Hence, the
thresholds of the tracking algorithm will most likely be exceeded due to the carried along
BLE device of the friend and therefore a false positive occurs. The same is true for a user
travelling on public transportation. Usually, other people are present in public transport,
which probably carry some BLE-capable devices. Here, the app is also not capable of
realizing that the user is surrounded by people. Hence, false positives can not be avoided
with the given selection of the values for the tracking algorithm.

Moreover, by the behaviour of the LocationTrackingService which is explained in Fig-
ure 19 cases can exist where a user receives false positives. This is due to the fact, that
this service evaluates how long the distance is that the user has travelled, whereas the
direction of travelling is not considered. For example, a user can walk back and forth
within a distance of 10 meters. At some point, the LocationTrackingService considers
the user to be moving. Thus, if a BLE-capable device is near, it might be classified as a
malicious tracker. The reason for this is, that the tracking protection can only use the
location received from the app. It is not possible to get the actual location of a tracker
which is not moving in this scenario. Hence, as the user keeps walking back and forth,
the BLE device is regarded as travelling with the user and at some point, the thresholds
of the tracking algorithm will be exceeded and a false positive occurs.

Finally, within the experiments regarding the distance parameter as described in Sec-
tion 5.2.4, a false positive has occurred, where another person crossed the way of the
user. This has been further evaluated and the occurrences parameter has been raised to

6.4. MAC RANDOMIZATION 67

4 occurrences, such that this false positive is eliminated. Nonetheless, with those configu-
rations, considering a scenario where another person would cross the user 4 times, a false
positive would still occur.

6.4 Mac Randomization

All trackers used in this work have been analyzed regarding their MAC randomization
pattern. The AirTag, Chipolo ONE Spot and the Tile tracker do not randomize their
MAC address while they are not in connection range with their corresponding owner
device. At least for one hour, this is true. The Galaxy SmartTag+ on the other hand
randomizes its MAC address no matter if it is close to the owner or not.

Furthermore, detecting a malicious tracker is based on its MAC address. This means
the tracker algorithm decides if a tracker is malicious or non-malicious based on all BLE
advertisements mapped to the same MAC address. Hence, if a BLE device randomizes
its MAC address, it is regarded as a new BLE device, respectively tracker. In the case of
a Galaxy SmartTag+, which randomizes its MAC address every 5 to 10 minutes, a false
positive occurs due to this fact. Users for example travelling with a Galaxy SmartTag+
for over 10 minutes will receive two notifications about two different Galaxy SmartTag+
following them, as the tracker has changed its MAC address. This will also be true for
other devices that randomize their MAC address and are used to track a user.

6.5 RSSI as a shield

It seems, the basic analysis of the RSSI values only states that the RSSI value decreases
the further away a tracker is. However, while working on this topic, the idea arose to
include the RSSI value in theBluetoothScanningService. This general decline of the
RSSI value could be used as a shield for trackers which are far away. In other words,
the experiments showed that the trackers have an RSSI value of around -75 if they are
4 meters away and a value of around -90 if they are 10 meters away. This information
can be used to filter for example trackers which have a lower RSSI value than -90. It is
regarded as very unlikely, that a BLE device is tracking a victim with an RSSI value of
-90, respectively a tracker which is about 10 meters away from the victim. Nonetheless,
the experiments regarding the RSSI values have only been conducted with BLE trackers.
Hence, this cannot be transferred directly to any BLE device. It might be that non-BLE
trackers, which are 10 meters away from the receiver, might broadcast their advertisements
with a higher or lower RSSI value.

68

CHAPTER 6. DISCUSSION

Chapter 7

Conclusion and Future Work

This last chapter concludes this work. Additionally, recommended future work is pointed
out in the field of tracking protection. Moreover, the section Future Work includes app
improvements for developers continuing this work.

7.1 Conclusion

This work aimed to protect Android users from stalking attacks using BLE devices in
general. To achieve this, it has been assessed, if BLE trackers can be identified and
distinguished from BLE devices. From the perspective of Android's BLE API, it has
been shown that it is not possible. This addresses contribution (i). However, studying
the BLE advertisements of the Galaxy SmartTag+ showed, that it is possible to map
its advertisement, respectively that it is possible to determine that the advertisement is
emitted by a Galaxy SmartTag+. This is also true for the AirTag, Chipolo ONE Spot
and Tile trackers which have been identified in previous work from Heinrich et al. [24].
Therefore, it is likely that BLE advertisements from not yet-identified trackers can be
assigned to the respective trackers. However, this needs to be accomplished for every
tracker individually.

Furthermore, an app has been built with an adaptable tracking algorithm to detect ma-
licious trackers. This addresses contribution (ii). The app represents a prototype and
serves as a basis to fully protect users from stalking attacks. A scenario where a user
walks from a starting point to a destination can be covered with the app such that the
user gets notified about malicious trackers as early as possible. It is assumed that the app
covers scenarios where a user drives in a car, rides a bike, or any other vehicle as long as
he or she is travelling alone. This is due to the fact, that in those scenarios the user of
the app simply travels with a faster velocity.

Additionally, the app has been used to study the parameters of the implemented track-
ing algorithm that decides whether a BLE device is a malicious tracker or not. The
aim of the tracking algorithm is to inform the user as early as possible about malicious

69

70 CHAPTER 7. CONCLUSION AND FUTURE WORK

trackers. Within the given scenario, where the user walked a distance of around 500 me-
ters in around 5 minutes the tracking algorithm is capable of detecting and notifying of
malicious trackers. The tracking algorithm shows promising results setting the distance
parameter to 200 meters, the time parameter to 1 minute, and the occurrences parameter
to 4 occurrences. This addresses contribution (iii). Furthermore, it could be identified,
that the distance parameter is the leading parameter to identify malicious trackers. The
occurrences parameter supports the distance parameter such that the classification of the
tracking algorithm improves. The time parameter is so far considered to be a restricting
parameter, as it delays the point in time when a notification about a malicious tracker is
sent to the user.

Regarding secondary contributions of this work, tracking protection still faces the problem
of BLE devices that randomize their MAC address. Those devices will be classified as
additional malicious trackers, as soon as they randomize their MAC address. This is
definitely the case for the Galaxy SmartTag+.

Furthermore, the investigation of the RSSI values shows, that the RSSI value cannot be
used to distinguish between trackers. However, the RSSI values might be able to enhance
tracking protection on a different level. These values could be used as a shield to filter
respectively ignore signals from BLE devices that are considered too far away to act as
stalking ware.

To summarize this work, the developed Android app equips users with tracking protection.
The tracking algorithm of the app can be adapted by the user. Once such a device
respectively a malicious tracker is detected according to the tracking algorithm, the app
notifies the user instantly. Where possible, the app states which type of tracker has been
detected due to the implemented tracker identification. Furthermore, with the adaptable
tracking algorithm, several experiments have been conducted to analyze the performance
of the tracking algorithm. With the values declared above, the tracking algorithm shows
promising results. Selecting those parameters allows notifying users as early as possible
about malicious trackers. This eventually prevents users from stalking attacks. In a
nutshell, this work and the associated app build a basis for future work which aims at

enhancing tracking protection, such that users are fully protected from stalking attacks
with BLE devices.

7.2 Future Work

The app built for this work is a prototype, hence it is not ready for the market. It can be
used to protect users from stalking attacks, but further improvements are necessary. The
most important issue is to allow the app to work while the phone is locked, respectively
in doze mode. At this point, the app only works while the phone is awake so to speak.
Thus, a user would need to make sure all the time that the phone remains unlocked.
This is not manageable. Nevertheless, this can be solved by properly implementing a
ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS. Afterwards, the app would need to
be tested, if it works as intended.

7.2. FUTURE WORK 71

The experiments regarding the tracking algorithm showed good results. However, the
identified values for the tracking algorithm are related to a scenario, in which a user
walks from a starting point to a destination by himself or herself. Other scenarios, where
a user for example travels with a friend or by public transportation, will lead to false
notifications about malicious trackers. One idea to solve this is, that the app can detect
in which scenario it is. This means the app would realize for example that the user
travels with a friend. Hence, recurring BLE advertisements from the devices a friend
might carry along could be filtered or the values for the tracking parameters would need
to be adapted. Another idea that can be pursued is studying the time parameter in more
depth. For example, in a scenario where the user travels by public transportation, the
time parameter might be of use to avoid false notifications. The assumption is, that the
time spent on public transportation is limited. Hence, the time parameter might be able
to cover this time period. Thus, it is recommended to further investigate in this direction.

In this work, a trade-off has been identified regarding holistic tracker identification. As
described in Section 5.3 this trade-off is between how easily a tracker can be identified
versus the security concerns it brings along. Generally, a holistic tracker identification
needs to address this trade-off. It needs to be designed such that trackers can be identified
easily. On the other hand, it needs to be complex enough such that the security of an owner
is guaranteed, respectively the owner's item cannot be stolen without much effort. Hence,
a solution to this trade-off depends on how holistic tracker identification is achieved. A first
idea is to use artificial intelligence to identify trackers based on their BLE advertisements.
This way, a pattern might be found, which has not yet been discovered, to classify BLE
advertisements into advertisements coming from a BLE tracker or BLE device. In case
such a holistic tracker classification based on artificial intelligence is possible, the question
is how this solution addresses the security concerns. At this point, it is assumed, that the
benefit of this solution might lie in the nature of artificial intelligence. A model which
classifies BLE trackers versus BLE devices is based on a lot of labelled training and test
data. Gathering this data results in a lot of work concerning time. Moreover, knowledge
is needed in this area to create such a model. Hence, an adversary trying to steal items
attached to trackers would need to invest time and knowledge to create such a model.
This might not be worth the effort. However, this is only a barrier with respect to time.

Regarding the secondary contributions, one problem that remains is devices that ran-
domize their MAC address. Those devices will generate false notifications about mali-
cious trackers as soon as they change their MAC address and exceed the thresholds of
the tracking algorithm. Overcoming this problem will improve the app from the user's
perspective. Having two notifications of the same tracker does not harm the user, but
might give the user the impression that the app does not work properly. In the case of the
Galaxy SmartTag+, the data retrieved from the service UUID might be a starting point.
This data could be held against the data from a second Galaxy SmatTag+ tracker to see
if eventually the advertisement can be mapped to the corresponding tracker.

Finally, the experiments regarding the RSSI values assured, that the RSSI value of a
tracker decreases the further away the tracker is from the receiver. This behaviour can be
used as a shield. Trackers that are regarded to be too far away from the victim do not have
to be considered by the tracking algorithm. In other words, a tracker with an RSSI value
of -90 dBm is approximately 10 meters away. Such a tracker is most likely not used as

72 CHAPTER 7. CONCLUSION AND FUTURE WORK

stalking ware. However, it needs to be evaluated at which distance respectively at which
RSSI value a tracker is to be considered too far away. Moreover, those RSSI experiments
are all based on actual BLE trackers. Whether BLE devices show the same behaviour can
not be answered at this point. Therefore, experiments to evaluate the appropriate RSSI
threshold to filter signals are recommended to be conducted. Furthermore, analysing the
behaviour of the RSSI values of BLE devices should be included in those experiments.

Bibliography

[10]

“Bluetooth Technology Overview | Bluetooth@®) Technology Website,” [Online].
Available:
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/, last
accessed: 20/12/2022.

“Use the Find My app to locate a missing device or item - Apple Support,”
[Online|. Available: https://support.apple.com/en-us/HT210515, last accessed:
09/12/2022.

“Airtag-Stalking: Hat Apple die Gefahr unterschitzt?” [Online]. Available:
https://www.nzz.ch/panorama/airtag-stalking-hat-apple-die-gefahr-
unterschaetzt-1d.16887657reduced=true, last accessed: 09/12/2022.

“Apple AirTags are ’dangerous’ device used by stalkers, lawsuit alleges,” [Online].
Available: https://eu.usatoday.com/story/tech/news/2022/12/06/apple-
airtags-stalking-lawsuit/10843997002/, last accessed: 09/12/2022.
“Stalking-Werkzeug: Bernerin (19) findet fremden Airtag unter ihrem Beifahrersitz
- "Ich geriet in Panik” - 20 Minuten,” [Online|. Available:
https://www.20min.ch/story/ich-hatte-panik-bernerin-19-findet-
fremden-airtag-unter-ihrem-beifahrersitz-460234987350, last accessed:
09/12/2022.

“How thieves use Apple AirTags to steal high-end cars and track them with their
iPhones | The US Sun,” [Online]. Available:
https://www.the-sun.com/tech/4225369/apple-airtags-track-cars-theft/,
last accessed: 09/12/2022.

“What to do if you get an alert that an AirTag, Find My network accessory, or set
of AirPods is with you - Apple Support,” [Online|. Available:
https://support.apple.com/en-us/HT212227, last accessed: 09/12/2022.
“Tracker Detect - Apps on Google Play,” [Online]. Available: https://play.
google.com/store/apps/details?id=com.apple.trackerdetect&hl=en&gl=US,
last accessed: 09/09/2022.

“AirGuard - AirTag Schutz - Apps bei Google Play,” [Online]. Available:
https://play.google.com/store/apps/details?id=de.seemoo.at_tracking_
detection.release&gl=US, last accessed: 15/10/2022.

E. D. Ayele, N. Meratnia, and P. J. M. Havinga, “An asynchronous dual radio
opportunistic beacon network protocol for wildlife monitoring system,”

in 2019 10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), IEEE, 2019, pp. 1-7, 1SBN: 1728115426.

73

74

[11]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

BIBLIOGRAPHY

Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy, “Smartphone-Based Indoor
Localization with Bluetooth Low Energy Beacons,”

Sensors 2016, vol. 16, p. 596, Apr. 2016, 1SSN: 1424-8220.

DOIL: 10.3390/516050596. [Online]. Available:
https://www.mdpi.com/1424-8220/16/5/596/htm.

P. Kriz, F. Maly, and T. Kozel, “Improving Indoor Localization Using Bluetooth
Low Energy Beacons,” Mobile Information Systems, Vol. 2016, 2016,

ISSN: 1875905X. DOI: 10.1155/2016/2083094.

R. Giuliano, G. C. Cardarilli, C. Cesarini, et al., “Indoor Localization System
Based on Bluetooth Low Energy for Museum Applications,”

Electronics 2020, vol. 9, p. 1055, Jun. 2020, 1SSN: 2079-9292.

DOI: 10.3390/ELECTRONICS9061055. [Online]. Available:
https://www.mdpi.com/2079-9292/9/6/1055/htm%20https:
//www.mdpi.com/2079-9292/9/6/1055.

S. Chai, R. An, and Z. Du, “An Indoor Positioning Algorithm using Bluetooth
Low Energy RSSI,” pp. 274-276, Apr. 2016, 1SSN: 2352-5401.

DOI: 10.2991/AMSEE-16.2016.72. [Online]. Available:
https://www.atlantis-press.com/proceedings/amsee-16/25858154.

A. Mussina and S. Aubakirov, “RSSI Based Bluetooth Low Energy Indoor
Positioning,” IEEE 12th International Conference on Application of Information
and Communication Technologies, AICT 2018 - Proceedings, Oct. 2018.

DOI: 10.1109/ICAICT.2018.8747020.

S. Sadowski and P. Spachos, “RSSI-Based Indoor Localization with the Internet of
Things,” IEEE Access, vol. 6, pp. 30149-30161, Jun. 2018, 1SSN: 21693536.

DOI: 10.1109/ACCESS.2018.2843325.

Z. Jianyong, L. Haiyong, C. Zili, and L. Zhaohui, “RSSI based Bluetooth low
energy indoor positioning,” IPIN 2014 - 2014 International Conference on Indoor
Positioning and Indoor Navigation, pp. 526-533, 2014.

DOI: 10.1109/IPIN.2014.7275525.

X. Li, D. Wei, Q. Lai, Y. Xu, and H. Yuan, “Smartphone-based integrated
PDR/GPS/Bluetooth pedestrian location,”

Advances in Space Research, vol. 59, no. 3, pp. 877-887, Feb. 2017,

ISSN: 0273-1177. por: 10.1016/J.ASR.2016.09.010.

A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who Can Find My
Devices? Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location
Tracking System,”

Proceedings on Privacy Enhancing Technologies, pp. 227-245, Jul. 2021.

DOI: 10.2478/POPETS-2021-0045.

M. Nikodem and M. Bawiec, “Experimental evaluation of advertisement-based
bluetooth low energy communication,” Sensors, vol. 20, no. 1, p. 107, 2019,
ISSN: 1424-8220.

J. K. Becker, D. Li, and D. Starobinski, “Tracking Anonymized Bluetooth
Devices,” Proceedings on Privacy Enhancing Technologies, vol. 2019, no. 3,

pp. 50-65, Jul. 2019. DOI: https://doi.org/10.2478/popets-2019-0036.

A. Heinrich, M. Stute, and M. Hollick, “OpenHaystack: A framework for tracking
personal bluetooth devices via Apple’s massive find my network,”

WiSec 2021 - Proceedings of the 14th ACM Conference on Security and Privacy in

BIBLIOGRAPHY 75

[23]

[24]

[25]

[26]

[27]

[28]

[31]
[32]

[33]

[34]

[35]

[36]

Wareless and Mobile Networks, pp. 374-376, Jun. 2021.

DOI: 10.1145/3448300.3468251.

“iCloud - Find My - Apple,” [Online|. Available:
https://www.apple.com/icloud/find-my/, last accessed: 29/09/2022.

A. Heinrich, N. Bittner, and M. Hollick, “AirGuard-Protecting Android Users from
Stalking Attacks by Apple Find My Devices,” in Proceedings of the 15th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, 2022,

pp- 26-38.

“The Bluetooth®) Low Energy Primer | Bluetooth(®) Technology Website,”
[Online]. Available: https://www.bluetooth.com/bluetooth-resources/the-
bluetooth-low-energy-primer/?utm_source=internal&utm_medium=blog&
utm_campaign=technical&utm_content=the-bluetooth-low-energy-primer,
last accessed: 08/09/2022.

“Assigned Numbers | Bluetooth@®) Technology Website,” [Online]. Available:
https://www.bluetooth.com/specifications/assigned-numbers/, last
accessed: 03/11/2022.

“Ellisys Bluetooth Video 3: Advertisements - YouTube,” [Online|. Available:
https://www.youtube.com/watch?v=be9ct70KI7s, last accessed 16/10/2022.
G. Celosia, M. Cunche, and U. Lyon, “Discontinued Privacy: Personal Data Leaks
in Apple Bluetooth-Low-Energy Continuity Protocols,” Proceedings on Privacy
Enhancing Technologies, vol. 2020, no. 1, pp. 26-46, Jan. 2020, 1SSN: 2299-0984.
DOI: 10.2478/POPETS-2020-0003. [Online|. Available:
https://www.bluetooth.com/specifications/assigned-.

“Core Specification - Bluetooth@®) Technology Website,” [Online]. Available:
https://www.bluetooth.com/specifications/specs/core-specification-5-
3/, last accessed: 08/12/2022.

“Find My Network Accessory Specification Developer Preview Release R1,”
[Online]. Available: https://images.frandroid.com/wp-content/uploads/
2020/06/Find_My_network_accessory_protocol_specification.pdf, last
accessed: 02/01/2025.

“AirTag - Apple,” [Online]. Available: https://www.apple.com/airtag/, last
accessed: 08/09/2022.

“Finde deine Schliissel, Portemonnaie und Telefon - Chipolo,” [Online|. Available:
https://chipolo.net/de/, last accessed: 10/10/2022.

“Galaxy SmartTag Black | Bluetooth Tracker | Samsung Schweiz,” [Online].
Available: https://www.samsung.com/ch/mobile-accessories/galaxy-
smarttag-black-ei-t5300bbegeu/, last accessed: 16/10/2022.

“Learn How Tile’s Bluetooth Tracking Device & Tracker App Helps You Find
Your Lost Things | Tile,” [Online]. Available:
https://ch.tile.com/en/how-it-works, last accessed: 03/11/2022.

“Find Your Keys, Wallet & Phone with Tile’s App and Bluetooth Tracker Device |
Tile,” [Online|. Available: https://ch.tile.com/en, last accessed: 03/11/2022.
“Pro 2-pack | Tile,” [Online|. Available:
https://ch.tile.com/en/product/686612/pro-2-pack, last accessed:
03/11/2022.

76

[37]

[41]

[42]

[43]

[45]

[46]

[47]

[48]

BIBLIOGRAPHY

“Create a project | Android Developers,” [Online|. Available:
https://developer.android.com/studio/projects/create-project, last
accessed: 24/12/2022.

“Android 8.0 Features and APIs | Android Developers,” [Online]. Available:
https://developer.android.com/about/versions/oreo/android-8.0, last
accessed: 24/12/2022.

“UI layer | Android Developers,” [Online]. Available:
https://developer.android.com/topic/architecture/ui-layer, last
accessed: 02/12/2022.

“Data layer | Android Developers,” [Online]. Available:
https://developer.android.com/topic/architecture/data-layer, last
accessed: 02/12/2022.

“Repository Pattern,” [Online]. Available:
https://developer.android.com/codelabs/basic-android-kotlin-
training-repository-pattern#0, last accessed: 03/12/2022.

“Optimize for Doze and App Standby | Android Developers,” [Online]. Available:
https://developer.android.com/training/monitoring-device-state/doze-
standby, last accessed: 03/12/2022.

“Settings | Android Developers,” [Online]. Available:
https://developer.android.com/reference/android/provider/Settings#
ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS, last accessed: 03/12/2022.
“LocationRequest | Google Play services | Google Developers,” [Online]. Available:
https://developers.google.com/android/reference/com/google/android/
gms/location/LocationRequest#getIntervalMillis(), last accessed:
03/12/2022.

“Find BLE devices | Android Developers,” [Online]. Available: https:
//developer.android.com/guide/topics/connectivity/bluetooth/find-
ble-devices, last accessed: 05/12/2022.

“Learn Kotlin - lateinit vs lazy,” [Online|. Available:
https://blog.mindorks.com/learn-kotlin-lateinit-vs-lazy, last accessed:
18/10/2022.

“ScanSettings | Android Developers,” [Online]. Available: https:
//developer.android.com/reference/android/bluetooth/le/ScanSettings,
last accessed: 20/12/2022.

“AirGuard/DeviceManager.kt at main - seemoo-lab/AirGuard - GitHub,” [Online].
Available: https://github. com/seemoo-
lab/AirGuard/blob/main/app/src/main/java/de/seemoo/at_tracking_
detection/database/models/device/DeviceManager.kt, last accessed:
10/10/2022.

“Kotlin Bitwise and Bitshift Operations (With Examples),” [Online]. Available:
https://www.programiz.com/kotlin-programming/bitwise, last accessed:
03/11/2022.

“AirGuard/Tile.kt at main - seemoo-lab/AirGuard,” [Online|. Available:
https://github.com/seemoo-lab/AirGuard/blob/main/app/src/main/java/
de/seemoo/at_tracking_detection/database/models/device/types/Tile.kt,
last accessed: 08/12/2022.

BIBLIOGRAPHY 7

[51] “Pendlermobilitdt | Bundesamt fiir Statistik,” [Online]. Available:
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-
verkehr/personenverkehr/pendlermobilitaet.html, last accessed: 27/10/2022.

[52] Arbeitsvolumenstatistik (AVOL), DE. Bundesamt fiir Statistik (BFS), Nov. 2021,
p. 10. [Online]. Available:
https://dam-api.bfs.admin.ch/hub/api/dam/assets/19904368/master.

[53] “Understanding Bluetooth Range | Bluetooth@®) Technology Website,” [Online].
Available: https://www.bluetooth.com/learn-about-bluetooth/key-
attributes/range/, last accessed: 21/10/2022.

78

BIBLIOGRAPHY

Abbreviations

ADVB
AoA
AoD
API
APK
AR
BER
BLE
CRC
DAO
dBm
FEC
GFSK
GPS
HCI
LSB
MAC
MSB
MVVM
NFC
OSI
PDU
RSSI
SDK
SIG
TDD

Ul
UUID
UWB

Advertising Broadcast

Angle of Arrival

Angle of Departure

Application Programming Interface
Android Application Package
Augmented Reality

Bit Error Rate

Bluetooth Low Energy

Cyclic Redundancy Check

Data Access Object
decibel-milliwatts

Forward Error Correction
Gaussian Frequency Shift Keying
Global Positioning System

Host Controller Interface

Least Significant Bit

Media Access Control

Most Significant Bit

Model View ViewModel

Near Field Communication

Open Systems Interconnection
Protocol Data Unit

Received Signal Strength Indicator
Software Development Kit
Special Interest Group

Time Division Duplex
Transaction

User Interface

Universally Unique Identifier
Ultra-wideband

79

80

ABBREVIATONS

Glossary

BLE device Any device which has BLE capabilities.
BLE tracker A BLE device with the intended purpose of tracking and locating an item.

Client/Server Bluetooth follows a Client/Server pattern when two devices communicate
with each other. A server stores data and a client operates with data from the server.
In this work, a server is regarded as a tracking device and a client is a smartphone
trying to detect such a tracking device.

Connectable PDU Types of advertisements can be connectable. This means that a device
receiving may connect to the advertising device.

MAC Address Media Access Control Address of a device.

Malicious Tracker A tracker which has been attached by an adversary to a victim in
order to track the position of the victim, without the victim knowing it.

Scannable PDU Types of advertisements can be scannable. This means that a device
receiving this particular advertisement can respond with a scan request PDU to get
more advertising data.

Scan Period Number of seconds during which the app scans for Bluetooth Low Energy
devices.

Scan Interval Number of seconds between two scan periods, respectively where the app
is not scanning for BLE devices.

Tracker classification This term is used to classify an identified tracker into either a
malicious tracker or a non-malicious tracker.

Tracker identification This term is used to determine the type of tracker. That is either
an AirTag, Chipolo ONE Spot, Galaxy SmartTag+ or a Tile tracker.

81

82

GLOSSARY

List of Figures

10

11

Schema of BLE Specifications. Adapted from [25, Figure 1]. 10
Packet format for LE 1M and LE 2M. Adapted from [25, Figure 7). 12
State Machine for States of the Link Layer. Source: [25, p. 21, Figure 9]. . 13

Legacy Advertising using Primary Advertising Channels.
Adapted from [25, p. 32].. 15

Avoiding permanent packet collision using advDelay. Adapted from [25, p.
B3], 15

a) shows the format of an indirected advertisement. It contains the ad-
vertising address and the advertising data. The advertising data can be
subdivided into one or more advertising structures. b) shows the format
of manufacturer-specific data. The AD type, set in the AD structure, for
manufacturer-specific data is OxFF. Source [21, p. 53 and 54]. 17

Simplified Findy My network. Adapted from [19, p. 229]. 18
Find My network format for BLE advertisements. Adapted from [19, p. 232]. 19

Images of all trackers used in this work. a) is an AirTag, b) a Chipolo ONE
spot, ¢) a Galaxy SmartTag+, and d) a Tile tracker. 20

Android API Version Distribution accessed on 26.09.2022 of the Help Me
Chose functionality of the Create Project Wizard. Adapted from [37, Fig-
Ure 3. ..o 23

a) shows the system message for SDK version 28. The red-marked area
allows the user to jump into the settings where he or she can allow to use
the location permission "all the time”. b) shows the system message for
SDK version 32. It is not possible to allow the locations "all the time”
directly. The user would have to do this manually via the app's settings. . 24

83

84

12

13

14

15

16

17

18

19

20

LIST OF FIGURES

Sketch of the app workflow. Once the user enables tracking protection, the
app regularly evaluates if the user is stationary. If the user starts moving,
the app starts scanning for BLE devices and stores them in the database.
Concurrently, the tracking algorithm classifies the devices into malicious
and non-malicious trackers. If a malicious tracker is found, the user gets

notified. L

Visualizing the most important classes used in this project sketched with
some of their relations. This serves as documentation for the app as well
as for subsequent developers to quickly get on overview of the code base.

Screenshots of the four slides in the app intro. Moving from one slide to
the next one invokes the system services to grant the corresponding permis-
sions. An example of such a system service asking for location permission
is depicted in Figure 11. a) asks for Bluetooth, b) for location, and c) for
battery optimization permissions. Finally, d) thanks the user for granting

the permissions.o

Screenshots of the four screens which represent the main features of the
app. a) is the Welcome, b) the Notifications, ¢) the Settings, and d) the

Scan Fragment.

a) Diagram of the UI layer within an MVVM pattern. The data layer,
ViewModel, and UI elements in this figure correspond to the Model, the
ViewModel, and the View of the MVVM pattern. Adapted from [39].
b) Diagram of the data layer within an MVVM pattern. The data layer
corresponds to the Model of the MVVM pattern. Adapted from [40].

Database schema for all data tables used in this work. On the left, the
database schema for BLE devices is shown. On the right, the schema
for MaliciousTrackers is depicted. The key icon states which attribute

represents the primary key of a table.

Code snippet of the LocationTrackingService which decides if a user is

stationary or moving. L.

This figure shows two examples of a user tail that is composed on the basis
of the visited positions. In both examples, the user starts at position p0 and
walks up to position p4. For those examples, it is given that every edge
between two consecutive positions is equidistant and equal to 5 meters.
Furthermore, it is given that the threshold which determines if the user is
moving is set to 15 meters. Using the function isUserStationary() imple-
mented in the LocationTrackingService evaluates both scenarios as false,
respectively that the user is moving, because at p4 the user has travelled a

distance of 20 meters.

Code snippet of the BluetoothScanningService which handles the scan

period and scan interval.o

26

29

LIST OF FIGURES

21

22

23

24

25

26

27

28

29

30

Code snippet of the T'rackerClassi ficationService which decides if a tracker

is malicious or non-malicious.o,

How AirGuard identifies an AirTag. Source [48].

Experimental setup. a) shows the pairing of trackers with an iPhone
(above) or Samsung Galaxy (below). b) shows how the trackers transi-
tion between paired and unpaired states.

Results of recorded MAC addresses per Tracker while being unpaired from
the owner. Only the Samsung Galaxy SmartTag+ applies MAC random-
ization while unpaired.

Pattern of alternating pairing state experiment.

Results of recorded MAC addresses per tracker being unpaired while alter-
nating states as stated in Figure 25. Only the Tile does not apply MAC
randomization.

Points representing measured averaged RSSI values at a certain distance
for every tracker. The line connects the points of a tracker to show the
trend of the data.

Shows the route chosen to test the tracking algorithm. According to Google
Maps, the route is 500 m long and it takes about 5 min to walk from start
to finish. The black play icon represents the starting point. The black flag
icon represents the destination. The route can be subdivided into three
parts as indicated by the colors red, blue and green. Within the red part,
there is a Coop and Migros, a bar and a public place. The blue part is
a path along a train station, which is more open and therefore has fewer
objects blocking a BLE signal. The green part fully represents a residential
area with many apartments and a recreational park.

This bar chart plots the number of times a device type got scanned dur-
ing the run with the lowest number of scanned devices. In total, the run
recorded 698 BLE scans which map to 432 distinct BLE devices accord-
ing to their MAC address. The device type Various groups devices which
included their name in the BLE Advertisement.

This bar chart plots the number of times a device type got scanned during
the run with the highest number of scanned devices. In total, the run
recorded 988 BLE scans which are mapped to 644 distinct BLE devices
according to their MAC address. The device type Various groups devices
which included their name in the BLE Advertisement.

85

42

43

86

31

32

33

34
35
36
37
38
39
40
41
42
43
44

45

46

47

LIST OF FIGURES

The third run, as seen in Table 9, testing the tracking algorithm with
respect to the distance parameter showed a false positive. It was an Ap-
ple device which crossed the experimental route. The device got scanned
exactly twice during the experiment. The locations of both scans are indi-
cated with the blue circle and the according timestamp. A potential route
of this Apple device taken is drawn with a black line. The route taken in
the experiment is drawn with a grey line. According to Google Maps the
route of the Apple device is 350 meters long and walking this route takes
approximately 5 minutes. Hence, the owner of the Apple device probably
has taken this route at the same time the experimental route was taken
and finally, the crossing happened at the destination of the victim. 54

Visualizing a scan period of 12 seconds with different scan intervals over
a total time period of two minutes. In a) the scan interval is set to 18
seconds. In b) the scan interval is set to 12 seconds. 65

Graph showing the performance of the tracking algorithm where the dis-
tance parameter has been increased iteratively. The occurrences and the
time parameter were set to their minimal values which is 2 occurrences and

T minute.o 66
Appendix: ScanResult of an AirTag., 93
Appendix: ScanRecord of an AirTag. 95
Appendix: BluetoothDevice of an AirTag. 97
Appendix: ScanResult of a Chipolo ONE Spot. 99
Appendix: ScanRecord of a Chipolo ONE Spot. 101
Appendix: BluetoothDevice of a Chipolo ONE Spot. 103
Appendix: ScanResult of a Galaxy SmartTag+. 105
Appendix: ScanRecord of a Galaxy SmartTag+. 107
Appendix: BluetoothDevice of a Galaxy SmartTag+. 109
Appendix: ScanResult of a Tile. 111
Appendix: ScanRecord of a Tile. 113
Appendix: BluetoothDevice of a Tile. 115

Appendix: Measured MAC addresses of an AirTag for the long time un-
paired and alternating states experiments. 118

Appendix: Measured MAC addresses of a Chipolo ONE Spot for the long
time unpaired and alternating states experiments. 119

LIST OF FIGURES 87

48 Appendix: Measured MAC addresses of a Galaxy SmartTag+ for the long
time unpaired and alternating states experiments. 120

49 Appendix: Measured MAC addresses of a Tile for the long time unpaired
and alternating states experiments. L. 121

88

LIST OF FIGURES

List of Tables

10

11

Description of the states in the Link Layer. Source: [25, p. 21] 12

Summary of the address types in the Link Layer with their most significant
bits (MSB) below their names. Source [25, p. 22-24]. 14

Summary of all PDU Types which are relevant for this work. Adapted from
25, p. 34] . . 16

Identification of Apple’s device types from the manufacturer-specific data.

Source [24, Table 3]. 37
Apple’s advertisement format. Adapted from [24, Table 1] 38
Examples of shr which shifts bits to the right. 40

Received Signal Strength Indicator (RSSI) values measured in dBm for
different Scenarios with Android’s BLE APL. 46

Results of the experiments to test the tracking algorithm with an increasing
distance value. The time parameter and the occurrences parameter were
left at their minimal values, which is 1 minute and 2 occurrences. 52

Results of all three runs with distance parameter set to 200 meters. The
time and occurrences parameters are set to their minimal values which are
1 minute and 2 occurrences. 53

Results of all three runs with different occurrences parameter. The distance
and time parameters remained constant. The distance parameter is set to
150 meters and the time parameter is set to its minimal value, which is 1
minute. L e 56

Results of the three runs with occurrences parameter set to 4. The distance
parameter is set to 200 meters and time parameter remained at its minimal
value of 1 minute. The reason for those runs is, to figure if the occurrences
parameter properly supports the distance parameter of 200 meters, where it
performed best. This should support the distance parameter of 200 meters
to eliminate false positives. oo o7

90

12

LIST OF TABLES

Results of the three runs with the time parameter set to 2 minutes. The
distance parameter is set to 150 meters and the occurrences remained at
their minimal value of 2. The reason for those runs is to figure out if the
time parameter is able to decrease the distance parameter to 150 meters. . 58

Appendix A

Android Bluetooth API records

The following sections show for every tracker used in this work an example of a ScanResult?!,
a ScanRecord??, and a BluetoothDevice?. The following results have been recorded
during the advertisement state of the BLE Trackers. This means, the tracker has lost
connection to its owner and is now advertising or broadcasting its presence.

2https://developer.android.com/reference/android/bluetooth/le/ScanResult
22https://developer.android.com/reference/android/bluetooth/le/ScanRecord
Zhttps://developer.android.com/reference/android/bluetooth/BluetoothDevice

91

92 APPENDIX A. ANDROID BLUETOOTH API RECORDS

A.1 AirTag

Example ScanResult of an AirTag

Method Value Description

Describe the kinds of special objects
describeContents() 0 contained in this Parcelable instance's
marshaled representation.

Returns the advertsing id

getAdvertisingSid() 255 SID_NOT PRESENT = 255

Returns the data Status
getDataStauts() 0 DATA_COMPLETE=0
DATA_TRUNCATED = 2

see: Example BluetoothDevice

: Returns remote BluetoothDevice
for an AirTag

getDevice()

Returns the periodic advertising
interval in units of 1.25ms between 6
getPeriodicAdvertisingInterval() 0 (7.5ms) and 65536 (81918.75ms)
PERIODIC_INTERVAL_NOT _PRESENT =
0

Returns the primary Physical Layer of
the advertisement
PHY_LE_ 1M =1
PHY_LE_CODED =3

getPrimaryPhy() 1

Returns the received signal strength

getRssi() 47 in dBm within the range of [-127, 126]

see: Example ScanRecord for an

: Returns an instance of a ScanRecord
AirTag

getScanRecord()

Returns the secondary Physical Layer
of the advertisement
PHY_LE_ 1M =1, PHY_LE_ 2M =2
PHY_LE_CODED =3, PHY_UNUSED =0

getSecondaryPhy() 0

A.l

AIRTAG

Returns timestamp since boot when

getTimestampMNanos() 3287669350801853 tie e paehr e ahEehiad.

Returns the transmit power in dBm
getTxPower() 127 [-127,126]
TX_POWER_NOT_PRESENT = 127

Returns a hashcode value for the

hashCode() 772993152 current object

: Returns boolean if this object
isConnectable() true
represents a connectable scanr esult
Returns true if this object represents
a legacy scan result. Those do not
isLegacy() true contain advanced advertising
information as specified in Bluetooth
Core Specification v5.

ScanResult{
device=DD:CB:15:04:4D:26,
scanRecord=ScanRecord[
mAdvertiseFlags=-1,
mServiceUuids=null,
mServiceSolicitationUuids=[],
mManufacturerSpecificData={76
=[18, 25, 16, 108, -28, 119, -73,
39,-89, 125, 29, -23, 107, -73, -78,
-61,10,-112, -36, 39, 64, 79, -86,
22,93, 1, 38]}, mServiceData={},
mTxPowerlLevel=-2147483648,
mDeviceName=null,
mTDSData=null],
rssi=-47,
timestampNanos=32876693508
01853,
eventType=27,
primaryPhy=1,
secondaryPhy=0,
advertisingSid=255,
txPower=127,
periodicAdvertisingInterval=0}

toString() String Representation of object

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanResult

Not included Functions and why:

- equals(): comparing ScanResults while analyzing ScanResults was neither possible nor necessary

Figure 34: Appendix: ScanResult of an AirTag.

93

94

APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example ScanRecord of an AirTag

Method Value Description
Returns the advertising flags
: indicating the discoverable made and
getAdvertiseFlags() ! capability of the device. Returns -1 if
the flag field is not set.
getBytes() [B@e&bafaf Returns raw bytes of scan record.
getDeviceName() _ Returns the local name of the BLE

device.

getManufacturerSpecificData()

{76=[B@3bbafbc}

Returns a sparse array of
manufacturer identifier and its
corresponding manufacturer specific
data.

getServiceData()

{

Returns the service data byte array
associated with the serviceUuid

getServiceSolicitationUuids()

getServiceUuids()

l

null

Returns a list of service solicitation
UUIDs within the advertisement that
are used to identify the Bluetooth
GATT services.

Returns a list of service UUIDs within
the advertisement that are used to
identify the bluetooth GATT services.

AIRTAG

Returns the transmission power level
of the packet in dBm. Returns
-2147483648 if the field is not set. This
getTxPowerlLevel() -2147483648 value can be used to calculate the
path loss of a received packet using
the following equation:
pathloss = txPowerLevel - rssi

ScanRecord
[mAdvertiseFlags=-1,
mServiceUuids=null,

mServiceSolicitationUuids=[],
mManufacturerSpecificData={76
=[18, 25, 16, 108, -28, 119, -73,
toString() 39, -89, 125, 29, -23, 107, -73, -78, String Representation of object
-61, 10, -112, -36, 39, 64, 79, -86,
22,93 1,38]),
mServiceData={},
mTxPowerlLevel=-2147483648,
mDeviceName=null,
mTDSData=null]

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanRecord

Not included Functions and why:
- getAdvertisingDataMap(): has been added in API level 33

Figure 35: Appendix: ScanRecord of an AirTag.

APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example BluetoothDevice of an AirTag

Method Value Description

Perform a service discovery on the
remote device to get the UUIDs
fetchUuidsWithSdp() true supported.

Returns a boolean.

Returns the hardware address of this

getAddress() DD:CB:15:04:4D:26 .

Get the locally maodifiable name (alias)

geplia=g ol of the remote Bluetooth device.

return Bluetooth Class of Remote
getBluetoothClass() 0 device
PROFILE_HEADSET =0

Get the bond state of the remote
device.
getBondState() 10 BONDE_NONE = 10
BOND_BONDING =11
BOND_BONDED =12

Get the friendly Bluetooth name of

getName() null the remote device.

A.1. AIRTAG

getType()

getUuids()

toString()

Get the Bluetooth device type of the
remote device.
DEVICE_TYPE_CLASSIC =1
DEVICE_TYPE_LE=2
DEVICE_TYPE_DUAL =3
DEVICE_TYPE_UNKNOWN =0

Returns the supported features (UUIDs)

null .
of the remote device.

DD:CB:15:04:4D:26 string representation of object

The description of the functions is based on:

https://developer.android.com/reference/android/bluetooth/BluetoothDevice

Not included Functions and why:

- connectGatt() up to equals(): no connection was in scope as well comparing to other device
- hashCode(): creates a hash of the object which for this task is of no further use
- setAliats() up to setPin(): setters are of no help analyzing a bluetooth device

Figure 36: Appendix: BluetoothDevice of an AirTag.

98 APPENDIX A. ANDROID BLUETOOTH API RECORDS

A.2 Chipolo One Spot

Example ScanResult of a Chipolo ONE Spot

Method Value Description

Describe the kinds of special objects
describeContents() 0 contained in this Parcelable instance's
marshaled representation.

Returns the advertsing id

getAdvertisingsid) = SID_NOT PRESENT = 255

Returns the data Status
getDataStauts() 0 DATA_COMPLETE=0
DATA TRUNCATED =2

see: Example BluetoothDevice

for a Chipolo ONE Spot Returns remote BluetoothDevice

getDevice()

Returns the periodic advertising
interval in units of 1.25ms between 6
getPeriodicAdvertisingInterval() 0 (7.5ms) and 65536 (81918.75ms)
PERIODIC_INTERVAL NOT PRESENT =

0

Returns the primary Physical Layer of
the advertisement
PHY_LE_TM =1
PHY_LE_CODED =3

getPrimaryPhy() 1

Returns the received signal strength

getRssi() =0 in dBm within the range of [-127, 126)

see: Example ScanRecord for a

Chipolo ONE Spot Returns an instance of a ScanRecord

getScanRecord()

Returns the secondary Physical Layer
of the advertisement
PHY_LE_1TM =1, PHY_LE_ 2M =2
PHY_LE_CODED = 3, PHY_UNUSED =0

getSecondaryPhy() 0

A.2. CHIPOLO ONE SPOT

Returns timestamp since boot when

getTimestampNanos() 3292098953890580 L BRI

Returns the transmit power in dBm
getTxPower() 127 [-127,126]
TX_POWER_NOT_PRESENT = 127

Returns a hashcode value for the

hashCode() 1656043611 :
current object

Returns boolean if this object

isConnectable() true
represents a connectable scanr esult

Returns true if this object represents
a legacy scan result. Those do not
isLegacy() true contain advanced advertising

information as specified in Bluetooth
Core Specification v5.

ScanResult{
device=DD:DB:24:A3:1B:54,
scanRecord=
ScanRecord [
mAdvertiseFlags=-1,
mServiceUuids=null,
mServiceSolicitationUuids=[],
mManufacturerSpecificData={76
=[18, 25, 32, 78, 115, 40, 1, 55,
11,9,-74,-9, 78, 70, 53, -100,
-111,39,17,13,28,82,91, 71,
-40, 2, 84]}),
toString() mServiceData={}, String Representation of object
mTxPowerlLevel=-2147483648,
mDeviceName=null,
mTDSData=null],
rssi=-50,
timestampNanos=32920589538
90580,
eventType=27,
primaryPhy=1,
secondaryPhy=0,
advertisingSid=255,
xPower=127,
periodicAdvertisingInterval=0}

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanResult

Not included Functions and why:
- equals(): comparing ScanResults while analyzing ScanResults was neither possible nor necessary
« writeToParce(): this function included no property or constant containing valuable information

Figure 37: Appendix: ScanResult of a Chipolo ONE Spot.

100 APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example ScanRecord of a Chipolo ONE Spot

Method Value Description

Returns the advertising flags
indicating the discoverable mode and

tAdvertiseF! -1
SHBETISRRES] capability of the device. Returns -1 if
the flag field is not set.
getBytes() [B@1c8431b Returns raw bytes of scan record.
Returns the local name of the BLE
getDeviceName() null :
device.
Returns a sparse array of
getManufacturerSpecificData() {76=[B@898fch8} manufac'turer Identifier and |t5'
corresponding manufacturer specific
data.
. Returns the service data byte array
s Dat
gRCEneDaag b associated with the serviceUuid
Returns a list of service solicitation
getserviceSalicitationUulds() 0 UUIDs within the advertisement that

are used to identify the Bluetooth
GATT services.

Returns a list of service UUIDs within
getServiceUuids() null the advertisement that are used to
identify the bluetooth GATT services.

A.2.

CHIPOLO ONE SPOT 101

Returns the transmission power level
of the packet in dBm. Returns
-2147483648 if the field is not set. This
getTxPowerlLevel() -2147483648 value can be used to calculate the
path loss of a received packet using
the following equation:
pathloss = txPowerlLevel - rssi

ScanRecord [
mAdvertiseFlags=-1,
mServiceUuids=null,

mServiceSolicitationUuids=[],
mManufacturerSpecificData={76
=[18, 25, 32, 78, 115, 40, 1, 55, 11,

toString() 9,-74,-9, 78,70, 53,-100, -111, String Representation of object
39,17, 13, 28, 82,91, 71, -40, 2,
841},

mServiceData={},
mTxPowerLevel=-2147483648,
mDeviceName=null,
mTDSData=null]

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanRecord

Not included Functions and why:
. getAdvertisingDataMap(): has been added in API level 33

Figure 38: Appendix: ScanRecord of a Chipolo ONE Spot.

102

APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example BluetoothDevice of a Chipolo ONE Spot

Method

fetchUuidsWithSdp()

Value

true

Description

Perform a service discovery on the
remote device to get the UUIDs
supported.

Returns a boolean.

getAddress()

getAlias()

DD:DB:24:A3:1B:54

null

Returns the hardware address of this
BluetoothDevice.

Get the locally modifiable name (alias)
of the remote Bluetooth device.

getBluetoothClass()

getBondState()

getName()

10

null

return Bluetooth Class of Remote
device
PROFILE_HEADSET =0

Get the bond state of the remote
device.
BONDE_NONE =10
BOND_BONDING =11
BOND_BONDED =12

Get the friendly Bluetooth name of
the remote device.

CHIPOLO ONE SPOT 103

Get the Bluetooth device type of the
remote device.
DEVICE_TYPE_CLASSIC =1
DEVICE_TYPE_LE=2
DEVICE_TYPE_DUAL =3
DEVICE_TYPE_UNKNOWN =0

getType() 0

Returns the supported features (UUIDs)

getUuids() null of the remote device.

toString() DD:DB:24:A3:1B:54 string representation of ohject

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/BluetoothDevice

Not included Functions and why:
- connectGatt() up to equals(): no connection was in scope as well comparing to other device
- hashCode(): creates a hash of the object which for this task is of no further use
- setAliats() up to setPin(): setters are of no help analyzing a bluetooth device

Figure 39: Appendix: BluetoothDevice of a Chipolo ONE Spot.

104

A.3 Galaxy SmartTag+

APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example ScanResult of a Galaxy SmartTag+

Method Value Description
Describe the kinds of special objects
describeContents() 0 contained in this Parcelable instance's
marshaled representation.
—— Returns the advertsing id
getAdvertisingSid() 255 SID_NOT_PRESENT = 255
Returns the data Status
getDataStauts() 0] DATA COMPLETE=0
DATA_TRUNCATED =2
. see: Example BluetoothDevice .
getDevice() for a Galaxy SmartTag+ Returns remote BluetoothDevice
Returns the periodic advertising
interval in units of 1.25ms between 6
getPeriodicAdvertisingInterval() 0 (7.5ms) and 65536 (81918.75ms)
PERIODIC_INTERVAL_NOT_PRESENT =
0
Returns the primary Physical Layer of
: the advertiserment
tP Ph 1
BELEImBnEy) PHY LE TM = 1
PHY LE_CODED =3
. Returns the received signal strength
getR=sI) B4 in dBm within the range of [-127, 126]
iE le ScanR d fi .
getScanRecord() 56e: Example scanrecordfora | peturns an instance of a ScanRecord
Galaxy SmartTag+
‘Returns the secondary Physical Layer
getSecondaryPhy() 0 of the advertisement

PHY_LE_ 1M =1, PHY LE 2M =2
PHY_LE_CODED =3, PHY_UNUSED =0

A.3. GALAXY SMARTTAG+ 105

getTimestampNanos() 3297626644218419 Returns Amestampisines boct when
the scan record was observed.

Returns the transmit power in dBm

getTxPower() 127 [-127,126]
TX_POWER_NOT_PRESENT = 127

hashCode() 1091512122 Returns a hashcode lualue for the
current object

. Returns boolean if this object
isConnectable() true
represents a connectable scanr esult

Returns true if this object represents
a legacy scan result. Those do not
isLegacy() true contain advanced advertising
information as specified in Bluetooth
Core Specification v5.

ScanResult{
device=6A:9F:.CA:2C:F7:87,
scanRecord=5canRecord [

mAdvertiseFlags=4,
mServiceUuids=
[0000fd5a-0000-1000-8000-0080
5fob34fb],
mServiceSolicitationUuids=[],
mManufacturerSpecificData={},
mServiceData={0000fd5a-0000-1
000-8000-00805f9b34fb=[19, -20,
56,1,111, -84, 74, 90, -36, -115,
toString() -36,-14,-74,0,0,0,-71, -54, -82, String Representation of object
117
mTxPowerLevel=-2147483648,
mDeviceName=5Smart Tag,
mTDSData=null],
rssi=-34,
timestampMNanos=32976266442
18419,
eventType=27,
primaryPhy=1,
secondaryPhy=0,
advertisingSid=255,
txPower=127,
| periodicAdvertisinginterval=0} |
The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanResult

Not included Functions and why:
+ equals(): comparing ScanResults while analyzing ScanResults was neither possible nor necessary
- writeToParce(): this function included no praperty or constant containing valuable information

Figure 40: Appendix: ScanResult of a Galaxy SmartTag+.

106 APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example ScanRecord of a Galaxy SmartTag+

Method Value Description

Returns the advertising flags
indicating the discoverable mode and

getAdvertiseFlagsi) 4 capability of the device. Returns -1 if
the flag field is not set.
getBytes() [B@3018866 Returns raw bytes of scan record.
etDeviceName() SHATETE Returns the local name of the BLE
g g device,
Returns a sparse array of
getManufacturerSpecificData) 0 manufacturer identifier and its

corresponding manufacturer specific
data.

{0000fd5a-0000-1000-8000-

00805f9b34fb=[19, -20, 56,

1,111,-84,74,90, -36,-115, | Returns the service data byte array

-36,-14,-74,0,0, 0, -71, -54, associated with the serviceUuid
-82, 1117}

getServiceData()

Returns a list of service solicitation
UUIDs within the advertisement that
are used to identify the Bluetooth
GATT services.

getServiceSolicitationUuids() 1

[0000fd5a-0000-1000-8000- | Returns a list of service UUIDs within
getServiceUuids() 00805f9b34fh] the advertisement that are used to
identify the bluetooth GATT services.

GALAXY SMARTTAG+ 107

Returns the transmission power level
of the packet in dBm. Returns
-2147483648 if the field is not set. This
-2147483648 value can be used to calculate the
path loss of a received packet using
the following equation:
pathloss = txPowerLevel - rssi

getTxPowerlevel()

ScanRecord [
mAdvertiseFlags=4,
mServiceUuids=
[0000fd5a-0000-1000-8000-0080
5fab34fb],
mServiceSolicitationUuids=[],
toString() n:;gf\,?:;gzt;r:{?(f ge{)cflggg_a(;g(;é%lq String Representation of object
000-8000-00805f9b34fb=[19, -20,
56, 1, 111, -84, 74, 90, -36, -115,
-36,-14,-74,0,0,0,-71, -54, -82,
1111}
mTxPowerlLevel=-2147483648,
mDeviceName=Smart Tag,
mTDSData=null]

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanRecord

Not included Functions and why:
« getAdvertisingDataMap(): has been added in API level 33

Figure 41: Appendix: ScanRecord of a Galaxy SmartTag+.

108 APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example BluetoothDevice of a Galaxy SmartTag+

Method Value Description

Perform a service discovery on the
remote device to get the UUIDs
fetchUuidsWithSdp() true supported.

Returns a boolean.

Returns the hardware address of this

getAddress() 6A9F:CA:2C:F7:87 T ——

Get the locally modifiable name (alias)

getAlias() BiarEiog of the remote Bluetooth device.

return Bluetooth Class of Remote
device
PROFILE_HEADSET = 0
(7936 not declared)

getBluetoothClass() 7936

Get the bond state of the remote
device.
getBondState() 10 BONDE_NONE =10
BOND_BONDING =11
BOND_BONDED =12

Get the friendly Bluetooth name of

getName() Smart Tag the remote device.

A.3. GALAXY SMARTTAG+ 109

Get the Bluetooth device type of the
remote device.
DEVICE_TYPE_CLASSIC =1
DEVICE_TYPE_LE =2
DEVICE_TYPE_DUAL =3
DEVICE_TYPE_UNKNOWN = 0

getType() 2

Returns the supported features (UUIDs)

getUuids() null of the remote device.

toString() 6A:9F.CA:2C:F7:87 string representation of object

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/BluetoothDevice

Not included Functions and why:
- connectGatt() up to equals(): no connection was in scope as well comparing to other device
- hashCode(): creates a hash of the object which for this task is of no further use
« setAliats() up to setPin(): setters are of no help analyzing a bluetooth device

Figure 42: Appendix: BluetoothDevice of a Galaxy SmartTag+.

110 APPENDIX A. ANDROID BLUETOOTH API RECORDS
A.4 Tile
Example ScanResult of a Tile
Method Value Description
Describe the kinds of special objects
describeContents() 0 contained in this Parcelable instance's
marshaled representation.
s e Returns the advertsing id
getAdvertisingSid) 285 SID_NOT _PRESENT = 255
Returns the data Status
getDataStauts() 0 DATA_COMPLETE = 0
DATA_TRUNCATED =2
getDevice() =R Examl?cfrzh';ﬁ:;mh Beuice Returns remote BluetoothDevice
Returns the periodic advertising
interval in units of 1.25ms between 6
getPeriodicAdvertisingInterval() 0 (7.5ms) and 65536 (81918.75ms)
PERIODIC_INTERVAL_NOT_PRESENT =
0
Returns the primary Physical Layer of
. the advertisement
getPrimaryPhy() 1 PHY LE 1M = 1
PHY LE CODED =3
; Returns the received signal strength
getRssi() 43 in dBm within the range of [-127, 126]
getScanRecord() SREREXApIA ?ﬁ:nRecord for: Returns an instance of a ScanRecord
Returns the secondary Physical Layer
getSecondaryPhy() 0 of the advertisement

PHY_LE_TM =1, PHY_LE 2M =2
PHY_LE_CODED =3, PHY_UNUSED =0

A4. TILE

111

Returns timestamp since boot when

getTimestampNanos() 3296299765530748 N f—

Returns the transmit power in dBm
getTxPower() 127 [-127,126]
TX_POWER_NOT_PRESENT = 127

Returns a hashcode value for the

hashCode() 953065192 current object

Returns boolean if this object

isConnectable() true
represents a connectable scanr esult

Returns true if this object represents
a legacy scan result. Those do not
isLegacy() true contain advanced advertising
information as specified in Bluetooth
Core Specification v5.

ScanResult
{device=DB:EE:05:2C:9F:97,
scanRecord=ScanRecord [

mAdvertiseFlags=6,
mServiceUuids=
[0000feed-0000-1000-8000-0080
5f9h34fb],
mServiceSolicitationUuids=[],
mManufacturerSpecificData={},
mServiceData={0000feed-0000-1
000-8000-00805f9h34fb=[2, 0,
96, 30, 106, -113, -15, -1, -113,
-116]},
mTxPowerlLevel=-2147483648,
mDeviceName=null,
mTDSData=null],
rssi=-43,
timestampNanos=32962997655
30748,
eventType=27,
primaryPhy=1,
secondaryPhy=0,
advertisingSid=255,
txPower=127,
periodicAdvertisinglnterval=0}

toString() String Representation of ohject

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanResult

Not included Functions and why:
- equals(): comparing ScanResults while analyzing ScanResults was neither possible nor necessary
- writeToParce(): this function included no property or constant containing valuable information

Figure 43: Appendix: ScanResult of a Tile.

112 APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example ScanRecord of a Tile

Method Value Description

Returns the advertising flags
indicating the discoverable mode and

getAdvertiseFlags() 6 capability of the device. Returns -1 if
the flag field is not set.
getBytes() [B@ca87e3d Returns raw bytes of scan record.
StDeVICENATED it Returns the local name of the BLE
g device,
Returns a sparse array of
getManufacturerSpecificData() 0 manufacturer identifier and its

corresponding manufacturer specific
data.

| {0000feed-0000-1000-8000- |
00805f9b34fb=[2, 0, 96, 30, = Returns the service data byte array
106, -113, -15, -1, -113, associated with the serviceUuid
116}

getServiceData()

Returns a list of service solicitation
UUIDs within the advertisement that
are used to identify the Bluetooth
GATT services.

getServiceSolicitationUuids() N

[0000feed-0000-1000-8000- Returns a list of service UUIDs within
getServiceluids() 00805f9b34fb] the advertisement that are used to
identify the bluetooth GATT services,

A4

TILE 113

Returns the transmission power level
of the packet in dBm. Returns
-2147483648 if the field is not set. This
getTxPowerlLevel() -21474836438 value can be used to calculate the
path loss of a received packet using
the following equation:
pathloss = txPowerLevel - rssi

ScanRecord [
mAdvertiseFlags=6,
mServiceUuids=
[0000feed-0000-1000-8000-0080
5f9b34fh],
mServiceSolicitationUuids=[],
toString() mManufacturerSpecificData={}, String Representation of object
mServiceData={0000feed-0000-1
000-8000-00805f9b34fb=[2, 0, 96,
30,106, -113, -15, -1, -113, -116]},
mTxPowerlLevel=-2147483648,
mDeviceName=null,
mTDSData=null]

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/le/ScanRecord

Not included Functions and why:
- getAdvertisingDataMap(): has been added in APl level 33

Figure 44: Appendix: ScanRecord of a Tile.

114 APPENDIX A. ANDROID BLUETOOTH API RECORDS

Example BluetoothDevice of a Tile

Method Value Description

Perform a service discovery on the
remote device to get the UUIDs
fetchUuidsWithSdp() true supported.

Returns a boolean.

Returns the hardware address of this

getAddress() DB:EE:05:2C:9F:97 Bl iR

Get the locally modifiable name (alias)

getAlias) ul of the remote Bluetooth device.

return Bluetooth Class of Remote
getBluetoothClass() 0 device
PROFILE_HEADSET =0

Get the bond state of the remote
device.
getBondState() 10 BONDE_NONE =10
BOND_BONDING =11
BOND_BONDED =12

Get the friendly Bluetooth name of

getName() null the remote device.

TILE 115

Get the Bluetooth device type of the
remote device.
DEVICE_TYPE_CLASSIC =1
DEVICE_TYPE_LE=2
DEVICE_TYPE_DUAL = 3
DEVICE_TYPE_UNKNOWN =0

getType() 0

Returns the supported features (UUIDs)

getUuids() null of the remote device.

toString() DB:EE:05:2C:9F:97 string representation of object

The description of the functions is based on:
https://developer.android.com/reference/android/bluetooth/BluetoothDevice

Not included Functions and why:
- connectGatt() up to equals(): no connection was in scope as well comparing to other device
- hashCode(): creates a hash of the object which for this task is of no further use
- setAliats() up to setPin(). setters are of no help analyzing a bluetooth device

Figure 45: Appendix: BluetoothDevice of a Tile.

116 APPENDIX A. ANDROID BLUETOOTH API RECORDS

Appendix B

Experiments

B.1 RSSI

All measurements of the RSSI experiments can be found here: https://github.com/
LouisBienz/HomeScout/tree/main/experiements/RSSI

B.2 Tracking Algorithm

All measurements from every run testing the tracking algorithm can be found here: https:
//github.com/LouisBienz/HomeScout/tree/main/experiements/Tracking_ Algorithm

B.3 Long Time Unpaired and Alternating States

117

118 APPENDIX B. EXPERIMENTS

B.3.1 AirTag

Measured Results for AixTag

LONG TIME UNPAIRED ALTERNATING PAIRING STATE
State transition: Paired --> Unpaired t=0
State transition: Paired --> Unpaired
t=0 AirTag with MAC address = FD:75:4F:02:FA:AB
AixrTag with MAC address = FO:E1:35:8E:39:0C State transition: Unpaired --> Paired
t=5 t=5
AirTag with MAC address = FO:E1:35:8E:39:0C State transition: Paired --> Unpaired
AirTag with MAC address = FD:75:4F:02:FA:AB
t =10 State transition: Unpaired --> Paired
AirTag with MAC address = FO:E1:35:8E:39:0C
t =10
t =15 State transition: Paired --> Unpaired
AirTag with MAC address = FO:E1:35:8E:39:0C AirTag with MAC address = FD:75:4F:02:FA:AB
State transition: Unpaired --> Paired
t =20
AirTag with MAC address = FO:E1:35:8E:39:0C t = 15
State transition: Paired --> Unpaired
t =25 AirTag with MAC address = D7:21:4F:A4:9B:E8
AirTag with MAC address = FO:E1:35:8E:39:0C State transition: Unpaired --> Paired
t = 30 t = 20
AirTag with MAC address = FO:E1:35:8E:39:0C State transition: Paired --> Unpaired
AirTag with MAC address = D7:21:4F:A4:9B:E8
t =35 State transition: Unpaired --> Paired
AirTag with MAC address = FO:E1:35:8E:39:0C
t =25
t =40 State transition: Paired --> Unpaired
AirTag with MAC address = FO:E1:35:8E:39:0C AirTag with MAC address = D7:21:4F:A4:9B:E8
State transition: Unpaired --> Paired
t =45
AirTag with MAC address = FO:E1:35:8E:39:0C t =30
State transition: Paired --> Unpaired
t = 50 AirTag with MAC address = C8:C6:C8:7A:74:AF
AirTag with MAC address = FO:E1:35:8E:39:0C State transition: Unpaired --> Paired
t =55 t =35
AirTag with MAC address = FO:E1:35:8E:39:0C State transition: Paired --> Unpaired
AirTag with MAC address = C8:C6:C8:7A:74:AF
t = 60 State transition: Unpaired --> Paired
AirTag with MAC address = FO:E1:35:8E:39:0C
t = 40
State transition: Unpaired --> Paired State transition: Paired --> Unpaired

AirTag with MAC address = C8:C6:C8:7A:74:AF
State transition: Unpaired --> Paired

t = 45
State transition: Paired --> Unpaired
AirTag with MAC address = D8:35:92:36:29:7E
State transition: Unpaired --> Paired

t = 50
State transition: Paired --> Unpaired
AirTag with MAC address = D8:35:92:36:29:7E
State transition: Unpaired --> Paired

t =55
State transition: Paired --> Unpaired
AirTag with MAC address = D8:35:92:36:29:7E
State transition: Unpaired --> Paired

t = 60
State transition: Paired --> Unpaired

AirTag with MAC address = CD:FE:8D:CE:E1:A9
State transition: Unpaired --> Paired

Figure 46: Appendix: Measured MAC addresses of an AirTag for the long time unpaired
and alternating states experiments.

B.3. LONG TIME UNPAIRED AND ALTERNATING STATES

B.3.2 Chipolo ONE Spot

Measured Results for

LONG TIME UNPAIRED

State transition: Paired --> Unpaired

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

Chipolo with

t=0
MAC address = DO:B6:68:CE:96:C2

t=5
MAC address = DO:B6:68:CE:96:C2

t =10
MAC address = DO:B6:68:CE:96:C2

t =15
MAC address = DO:B6:68:CE:96:C2

t =20
MAC address = DO:B6:68:CE:96:C2

t =25
MAC address = DO:B6:68:CE:96:C2

t =30
MAC address = DO:B6:68:CE:96:C2

t =35
MAC address = DO:B6:68:CE:96:C2

t = 40
MAC address = DO:B6:68:CE:96:C2

t =45
MAC address = DO:B6:68:CE:96:C2

t =250
MAC address = DO:B6:68:CE:96:C2

t =55
MAC address = DO:B6:68:CE:96:C2

t =60
MAC address = DO:B6:68:CE:96:C2

State transition: Unpaired --> Paired

Figure 47: Appendix:

Chipolo One Spot

ALTERNATING PAIRING STATE

t=0
State transition: Paired --> Unpaired

Chipolo with MAC address = DF:3D:4A:3A:C5:

State transition: Unpaired --> Paired

t =5
State transition: Paired --> Unpaired

Chipolo with MAC address = DF:3D:4A:3A:C5:

State transition: Unpaired --> Paired

t =10
State transition: Paired --> Unpaired

Chipolo with MAC address = DF:3D:4A:3A:C5:

State transition: Unpaired --> Paired

t =15
State transition: Paired --> Unpaired

Chipolo with MAC address = E2:CA:05:1C:3C:

State transition: Unpaired --> Paired

t =20
State transition: Paired --> Unpaired

Chipolo with MAC address = E2:CA:05:1C:3C:

State transition: Unpaired --> Paired

t =25
State transition: Paired --> Unpaired

Chipolo with MAC address = E2:CA:05:1C:3C:

State transition: Unpaired --> Paired

t =30
State transition: Paired --> Unpaired

Chipolo with MAC address = D3:41:26:41:4A:

State transition: Unpaired --> Paired

t =35
State transition: Paired --> Unpaired

Chipolo with MAC address = D3:41:26:41:4A:

State transition: Unpaired --> Paired

t = 40
State transition: Paired --> Unpaired

Chipolo with MAC address = D3:41:26:41:4A:

State transition: Unpaired --> Paired

t =45
State transition: Paired --> Unpaired

Chipolo with MAC address = F5:BD:D6:6E:34:

State transition: Unpaired --> Paired

t =50
State transition: Paired --> Unpaired

Chipolo with MAC address = F5:BD:D6:6E:34:

State transition: Unpaired --> Paired

t =55
State transition: Paired --> Unpaired

Chipolo with MAC address = F5:BD:D6:6E:34:

State transition: Unpaired --> Paired

t = 60
State transition: Paired --> Unpaired

Chipolo with MAC address = D7:8F:00:08:DA:

State transition: Unpaired --> Paired

time unpaired and alternating states experiments.

31

31

31

88

88

F7

F7

F7

49

49

49

AA

119

Measured MAC addresses of a Chipolo ONE Spot for the long

120 APPENDIX B. EXPERIMENTS

B.3.3 Galaxy SmartTag+

Measured Results for Galaxy SmartTag+

LONG TIME UNPAIRED ALTERNATING PAIRING STATE
State transition: Paired --> Unpaired t=0
State transition: Paired --> Unpaired
t=0 SmartTag with MAC address = 6E:E6:1B:90:F8:E1
SmartTag with MAC address = 6C:8D:C3:87:33:64 State transition: Unpaired --> Paired
t=5 t=25
SmartTag with MAC address = 54:7A:4E:5D:92:4F State transition: Paired --> Unpaired
SmartTag with MAC address = 53:F6:4C:1A:F7:2C
t =10 State transition: Unpaired --> Paired
SmartTag with MAC address = 54:7A:4E:5D:92:4F
t =10
t =15 State transition: Paired --> Unpaired
SmartTag with MAC address = 55:5B:09:61:64:3A SmartTag with MAC address = 7E:E9:26:D7:7A:7B
State transition: Unpaired --> Paired
t = 20
SmartTag with MAC address = 43:EC:92:C6:87:F2 t =15
State transition: Paired --> Unpaired
t =25 SmartTag with MAC address = 48:47:D7:92:52:E4
SmartTag with MAC address = 43:EC:92:C6:87:F2 State transition: Unpaired --> Paired
t = 30 t =20
SmartTag with MAC address = 6F:CQ:7B:B8:AF:85 State transition: Paired --> Unpaired
SmartTag with MAC address = 44:C2:8F:02:3F:75
t =35 State transition: Unpaired --> Paired
SmartTag with MAC address = 63:0F:8B:9E:8F:48
t =25
t = 40 State transition: Paired --> Unpaired
SmartTag with MAC address = 63:0F:8B:9E:8F:48 SmartTag with MAC address = 7B:25:84:7F:0A:13
State transition: Unpaired --> Paired
t =45
SmartTag with MAC address = 6A:FF:9B:16:34:57 t =30
State transition: Paired --> Unpaired
t = 50 SmartTag with MAC address = 5C:3C:EF:76:8B:B1
SmartTag with MAC address = 78:AE:BB:E6:71:79 State transition: Unpaired --> Paired
t = 55 t =35
SmartTag with MAC address = 78:AE:BB:E6:71:79 State transition: Paired --> Unpaired
SmartTag with MAC address = 7D:07:06:D2:56:2A
t = 60 State transition: Unpaired --> Paired
SmartTag with MAC address = 5B:50:A6:4B:B3:EA
t = 40
State transition: Unpaired --> Paired State transition: Paired --> Unpaired

SmartTag with MAC address = 53:83:EF:0A:EA:B4
State transition: Unpaired --> Paired

t =45
State transition: Paired --> Unpaired
SmartTag with MAC address = 60:6A:1E:81:4C:D7
State transition: Unpaired --> Paired

t =50
State transition: Paired --> Unpaired
SmartTag with MAC address = 4B:A1:15:A7:74:35
State transition: Unpaired --> Paired

t =55
State transition: Paired --> Unpaired
SmartTag with MAC address = 57:E7:C0:FD:7D:24
State transition: Unpaired --> Paired

t = 60
State transition: Paired --> Unpaired

SmartTag with MAC address = 64:AF:19:F9:E1:02
State transition: Unpaired --> Paired

Figure 48: Appendix: Measured MAC addresses of a Galaxy SmartTag+ for the long
time unpaired and alternating states experiments.

B.3. LONG TIME UNPAIRED AND ALTERNATING STATES

B.3.4 Tile

State transition: Paired --> Unpaired

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Tile with

Measured Results

LONG TIME UNPAIRED

t=0

MAC address = DB:

t=5

MAC address = DB:

t =10

MAC address = DB:

t =15

MAC address = DB:

t =20

MAC address = DB:

MAC address = DB:

MAC address = DB:

MAC address = DB:

t = 40

MAC address = DB:

t =45

MAC address = DB:

t =50

MAC address = DB:

t =55

MAC address = DB:

t = 60
MAC address = DB

(EE:05:

State transition: Unpaired -->

EE:05:

EE:05:

2C

2C

:2C

:2C

:2C

:2C

:2C

:2C

:2C

:2C

:2C

:2C

2C:9F:

S9F:

S9F:

9F:

9F:

JOFS

:9F;

JOF:

t9F:

$9FE

9E:

29

19F

97

97

97

97

97

97

97

97

97

97

97

197

97

Paired

for Tile

ALTERNATING PAIRING STATE

t=0
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t=5
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t = 10
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =15
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =20
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =25
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =30
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =35
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t = 40
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =45
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =250
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =255
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

t =60
State transition: Paired --> Unpaired
Tile with MAC address = DB:EE:05:2C:9F:97
State transition: Unpaired --> Paired

121

Figure 49: Appendix: Measured MAC addresses of a Tile for the long time unpaired and
alternating states experiments.

