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Abstract

Isolation forest is a popular anomaly detector due to its model-free structure and validity in detecting outliers
across different types of datasets. This thesis presents solutions for two main issues in terms of isolation-based
outlier detection algorithms. First, there is an adjustment to the isolation-based outlier detection model to improve
the detection accuracy of Isolation Forest (iForest) and Extended Isolation Forest (EIF). The EIF is an extension
of iForest, which addresses the block artifacts issue of iForest. Motivated by the failures of outlier detection on
some real-world benchmark datasets by EIF, an adjusted EIF regarding the problem arising from the randomness
of split hyperplane is presented. The outlier detection accuracy and precision of the adjusted EIF show that it
is capable of enhancing the performance of both iForest and EIF. However, the drawback of the adjustment is
that it is not time efficient. Second, this thesis proposes methods to generate a credible image presentation with
outliers scattered in the relative areas based on isolation-based detection for multi-variate datasets. Inspired by
the fact that neither iForest nor EIF can detect local outliers for each class in multi-class datasets, and few related
works have been done in this direction, several class-wise detectors based on EIF and adjusted EIF are proposed
in this thesis. By comparing the graphs, one of the methods achieves the best performance in providing insights
for identifying potential outliers in clustering datasets.
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1 Introduction

Outlier detection refers to finding patterns in data that do not match the expected behavior [CBK09]. With the
digitization of society, outlier detection finds various applications in different domains, such as diagnosis, fraud
detection, computer vision, sensor network, data cleaning, cybersecurity, etc. [WBH19]. Some researches fo-
cus on finding and removing the outliers from the datasets, such as when doing data preprocessing for machine
learning, while others are interested in identifying the outliers and abstracting insights from them. Therefore,
algorithms for outlier detection, also known as anomaly detection, have been widely studied. Basically, different
outlier detection algorithms are designed to improve the accuracy and speed of identifying the outliers in different
types of datasets. Among them, according to the documentation of PyOD [ZNL19], one of the most comprehen-
sive Python libraries for outlier detection, Isolation Forest (iForest) [LTZ12], which is renowned for its model-free
structure, is believed to be both effective and efficient on various types of data [HKB19].

1.1 Motivation

Drilled from the assumption that outliers are those rare and distinct data points in a dataset, iForest applies an
isolation mechanism upon sub-sampled datasets to generate anomaly scores (possibility of being an anomaly)
and find outliers based on the scores without calculating and building complex mathematical models. Explicitly
speaking, first, the algorithm builds a binary search tree-like structure iTree by splitting a random sub-sample of
the dataset based on a random split value on a randomly selected dimension each time iteratively till all the data
points are isolated; second, assembles a certain number of iTrees with different sub-samples into a forest ;third,
passes each test data point through the forest to generate the anomaly score by calculating the average depth from
the root to the leaf node it reaches on each iTree in the forest. Unlike many other proposed algorithms, such as
Proximity-Based and Neural Network-Based algorithms, iForest is computationally efficient with only linear time
complexity but shows relatively stable effectiveness on different datasets. Therefore, iForest is suitable for large
datasets.

However, iForest is subject to several limitations. First of all, because in iForest, the split is only on one
dimension each time, it introduces block artifacts in the axis-parallel directions of the clusters. It assigns falsely
low anomaly scores for them, which significantly reduces the detection accuracy. To address and remedy these
problems, Extended Isolation Forest (EIF) [HKB19] was introduced. It shares a similar basic concept as the
iForest, which is to split the data space until isolating each data point, but with a different implementation strategy
to eliminate the mentioned issues. While each time iForest picks a random value in a random feature, which means
doing an axis-parallel split, EIF rules the split hyperplane by randomly selecting a slope and a random intercept,
so that the split will be non-axis-parallel. It has proved to be able to remove the “ghost” artifacts generated
by iForest on 2-D synthetic data. In addition, another shortcoming of iForest is that it could only select limit
features for splitting the high dimensional datasets, making it challenging to cover sufficient relevant dimensions
to identify multifeatured anomalies [BTA+18]. For this problem, EIF allows the split hyperplane to intersect with
different numbers of axes. Thus, each partition will correspondingly retain more dimensions.

Although EIF fixes the problems of artifacts and dimension loss, it is still unable to detect correct outliers
in some real-world datasets, especially those high-dimensional datasets that do not have d-variate distribution
(multi-variate normal distribution) properties. Due to the randomness of generating a split hyperplane, the EIF
faces the problem that it might fail to split the data points in some iterations, and this risk is increased with the
dimension of dataset growth [LBST21].

Furthermore, neither iForest nor EIF extends the method to identify and visualize outliers for multi-class data.
Investigation shows that isolation-based algorithms are weak at detecting the local anomalies for each class,
primarily those anomalies that lie in between the clusters [BTA+18]. Because it might vary if applying the
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1.2. DESCRIPTION OF WORK

algorithms separately on each class, this thesis dedicates to generating a reasonable decision boundary of anomaly
scores and intuitive visualization of the outliers for multi-variate datasets by applying isolation-based algorithms
on each variate. Moreover, for high-dimensional data that do not present d-variate distribution, as EIF implements
purely random split, it would be possible that the algorithm sometimes fails to split the dataset, making the
anomaly scores biased.

1.2 Description of Work

Based on the aforementioned issues, this thesis proposes several solutions. Firstly, it adjusts the EIF on the gen-
eration of cutting hyperplane and the calculation of anomaly scores to improve detection accuracy on benchmark
multidimensional datasets from Outlier Detection DataSets (ODDS) [Ray16]. The experiments show that the for-
mer of the adjustments significantly improves detection accuracy over some real-world high-dimensional datasets.
Secondly, it tackles the detection of outliers and visualization of decision boundaries for multi-variate datasets.
After calculating the anomaly scores for each variate, a score map depicts the distribution of aggregated anomaly
scores for the multi-variate datasets, over which superimposed a scatter plot with local outliers indicated.

1.3 Thesis outlines

This thesis is outlined as follows. Chapter 1 introduces the background of the thesis and describes the contribution
and work of the thesis. Chapter 2 summarizes the related work in the domain of anomaly detection, with a focus
on isolation-based algorithms. In chapter 3, the two research problems of this thesis are stated and investigated
in detail. Moreover, the next chapter poses solutions for each problem mentioned. Different solutions for each
research goal are then implemented, tested, and compared in chapter 5 across both synthetic and real-world
datasets. To the end, the last chapter briefly discusses the experiment results and makes a short conclusion.
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2 Related Work

2.1 Anomaly detection algorithms

In the past decades, outlier detection algorithms that consider efficiency, accuracy, and the dimension of data based
on different data characteristics such as distance, density, cluster,statistical-related have been widely researched
[XPWW22]. As one of the most classical outlier detection techniques, Statistical approaches apply a statistical
model. For instance, Iglewicz et al. utilized a robust measure of Median Absolute Deviation (MAD)[IH93] to
identify the outliers instead of the standard deviation. Since the diversity and complexity of datasets increase
explosively, the statistical methods are insufficient to detect anomalies due to limited assumptions on data dis-
tribution. Cluster-based methods, for example, Ordering Points To Identify the Clustering Structure (OPTICS)
[ABKS99] relies on data clustering to exclude the outliers from clusters of normal points. However, most cluster-
based methods require setting specific parameters learned from data distributions, and only provide a binary
decision of whether a data point belongs to the cluster. For example, K-Means [Mac67] works as an anomaly
detector only with a predefined number of clusters. Therefore, they can provide only a limited explanation for the
outliers [BTA+18]. Density-based and distance-based methods, such as Local Outlier Factor (LOF) [BKNS00],
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [EKS+96] and k-Nearest Neighbors
(kNN) [AP02], assume that anomalies are points that lie in the area that is less dense or far from non-anomalies.
These algorithms consider either the global or relative density of the data and compare the value with other data
points, and overcome the limitation of setting data-related parameters manually. Nevertheless, the cost, especially
the time complexity, is susceptible to the data size or number of neighbors, which means they are not scalable
for large datasets. In recent years, deep learning-based outlier detection methods [RVG+18, NM19, ZRF+18] are
also developed to better detect different types of anomalies on high-dimensional and complex sets. However, the
effort for training can exponentially increase because of the neural network structures.

2.2 Isolation-based algorithms

On the other hand, the isolation-based approaches identify the anomalies by measuring the level of difficulty
of isolating a point based on the assumption that outliers are few and distinct. iForest first iteratively partitions
the subsets drawn from the dataset. Then a binary search tree can simulate the partition by sending samples to
the left or right branches. The shorter path a point traverses on those trees, the more probable it is an anomaly.
Though iForest outperforms both in speed and effectiveness for detecting outliers in some real-world benchmark
datasets [ZNL19], it still has drawbacks. For instance, iForest has a bias on separating the space because of the
axis-parallel partition [HKB19] strategy, and it lacks a theoretical explanation for the anomaly score assessment
that uses the mean of all the path length [AFHR21, BHM20]. Therefore, several methods are proposed to remedy
and improve the performance of iForest in different aspects.

The first aspect is to change how the split value and direction of the hyperplane are chosen when partitioning
the data space. Rather than randomly select a cutting value in a random dimension, EIF [HKB19] shares a similar
basic idea but defines the cutting hyperplane by random normal vector and intercepts. Generalized Isolation Forest
(GIF) [LBST21] improves EIF by randomly selecting the split values on data projected on the randomly chosen
slope to avoid an empty branch cut. PIDForest [GSW19] implements PIDScore, a new isolation-based method,
for feature extraction and split points picking based on sparsity [XPWW22]. Probabilistic Generalization of
Isolation Forest (PGIF) [TK22] introduces a new probability, enabling more effective partitions between clusters.
These algorithms contribute to tackling the biased split issue introduced by iForest or EIF. However, most of them
still suffer from algorithmic bias, and are unable to handle complicated datasets. For instance, PIDForest still has
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2.3. ISOLATION-BASED ALGORITHM FOR MULTI-CLASS DATASETS

the block artifacts issue similar to iForest though it generally achieves better performance on outlier detection.
Hence, how to decide effective split hyperplanes to isolate data points is still a researchable problem.

The second aspect is to change the split criteria. For example, SCiF [LTZ10] proposes a new criterion for
branch cut to construct a split hyperplane.

The third aspect is to change the definition of anomaly score. Instead of calculating the average paths that each
point passes through the trees, Buschjäger et al. modify the anomaly scores of iForest and EIF by introducing an
estimate of mixture coefficients of mixture distribution as the scoring method [BHM20, AFHR21].

The last aspect is to combine the distance-based algorithms with the isolation progress. For instance, Pang et
al. instruct an ensemble method that uses the least similar nearest neighbors with linear time complexity [PTA15].
Since iForest is weak at detecting local outliers, which are close to normal points than the global outliers, Isolation-
based anomaly detection using Nearest-Neighbor Ensembles (iNNE), however, is capable of isolating a point by
building a hypersphere with a radius determined by nearest neighbors [BTA+18].

2.3 isolation-based algorithm for multi-class datasets

Few studies focus on visualizing outliers for multi-variate datasets based on isolation-based algorithms. Fuzzy
C-Mean-based Isolation Forest [KKPC21] enhances the iForest by applying membership grades of elements,
indicating how possible a given instance belongs to a group of similar elements. This is a combination of the
clustering algorithm and iForest. By weighting each anomaly score with membership grades, Fuzzy C-Mean-
Based Isolation Forest is able to detect outliers more accurately than iForest. However, it does not examine and
visualize the decision boundaries of outliers in multi-class clustering datasets, and there is no clue for how it
performs on these data. Melquiades et al. propose a semi-supervised model based on Hybrid Isolation Forest to
aggregate known anomalies in multiple classes [MdLN22]. The accuracy of detecting outliers improves in several
multi-class datasets. However, it requires human effort to label and aggregate the data for training models as a
semi-supervised technique. Therefore, further studies on unsupervised isolation-based methods to detect as well
as visualize the decision boundary of anomalies in multi-class datasets are still needed.

Inspired by these researches and the mentioned problems in iForest and EIF, this thesis attempts to adjust EIF
on the following aspects. First, changing partitioning hyperplane decision rules by combining other algorithms.
Second, altering anomaly scoring functions. Moreover, since the previous work of isolation-based algorithm and
its extensions do not focus on the visualization of outliers on 2-D multi-variate datasets, this thesis also provides
solutions to tackle it.
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3 Problem Statement

This thesis is a combined work of improving the visualization of the isolation-based algorithm on multi-variate
datasets and improving the performance of EIF on real-world datasets. This chapter explains why the improve-
ments are needed explicitly in the following two sections.

3.1 Improvement of EIF

An isolation tree (iTree) is a binary tree structure used to isolate instances. In iForest and EIF, building an iTree
represents splitting data instances iteratively so that each split can be regarded as one branch cut in the iTree.
Because it is hard to show the process in a tree structure, a schematic diagram illustrating how to split samples on
a 2-D plane is given in figure 3.2.

(a) iForest (b) EIF

Figure 3.1: Score map and data points visualization of iForest and EIF applying on a Gaussian-distributed blob

Figure 3.1 displays the score maps generated by iForest and EIF from a Gaussian-distributed blob. It demon-
strates that EIF fixes the “ghost” region issue introduced by the coordinate-parallel split in iForest. However,
because of the complete randomization of slope and intercept selection, EIF suffers from an empty branch cut
problem. Figure 3.2 simulates two cuts in EIF. The black line represents the first cut, which splits the data points
into two parts successfully. However, as the red line shows, the second cut fails since it actually does not split
the data points due to the randomness of the cut hyperplane. At the same time, as the height limit of an iTree is
restricted by the size of subsamples, the empty branch cut issue will make more data points stop at the same leaf
nodes. Since the length that a point travels through iTrees decides its anomaly score, this problem makes more
data points receive indistinguishable anomaly scores, which causes unwanted deviations in identifying outliers.
Therefore, the accuracy of detection by EIF on various datasets might be affected to some extent. The solution is
either to change the direction or the split value of the split hyperplane. And the effort to reduce the false positive
rate on EIF has been made through this work.

3.2 Visualize outliers and plot score map on multi-class datasets

Although the global outliers, which are those scattered points that appear in a relatively low-density area, can be
detected, neither iForest nor EIF has underperformance in identifying local anomalies, which are the points that
show different attributes for each cluster. Figure 3.3 illustrates the visualization of both algorithms on a three-
clusters dataset with equal numbers of data points in each class. The outliers are indicated with gray scatters
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3.2. VISUALIZE OUTLIERS AND PLOT SCORE MAP ON MULTI-CLASS DATASETS

Figure 3.2: The simulation of a cut in EIF

in the figures, while others are normal points in each cluster. In observation, firstly, the scatter plot shows that
both methods only classify the points around the data space rather than those far from each cluster as outliers.
Secondly, the contour map indicating different degrees of anomaly scores is displayed. The darker the area, the
higher the anomaly score is. It shows unreasonable results that if detecting outliers in each cluster, the detected
outliers fall in the area with low anomaly scores. Therefore, how to combine the outlier visualization from cluster-
wise detection with a reasonable score map showing the potential anomaly area is also an essential issue to be
addressed.

(a) iForest (b) EIF

Figure 3.3: Score map and data points visualization of iForest and EIF applying on three-clusters dataset

6



4 Technical Solution

4.1 Overview of EIF

Generally, isolation-based algorithms [LTZ12, HKB19] have three phases to generate the final anomaly score for
each data point:

Phase 1: Training an iTree

Phase 2: Ensemble iTrees into iForest

Phase 3: Evaluation and scoring data

To start, suppose there is a dataset X with M features and N instances. At phase 1, the algorithm first chooses a
random subsample X∗ with a size of n from the dataset X . Then a random slope for branching is selected, which
is represented by constructing a M -dimension normal vector n, where each coordinate of n is drawing from the
standard normal distribution N (0, 1) [HKB19]. A parameter extension level l is set to randomly drop M − l
coordinates from the original normal vector here. By setting the extension level, the method can be more flexible
in dealing with various-dimensional datasets. After that, it draws a random intercept p, where each coordinate of
p is drawn from a uniform distribution in the range of the subsample X∗. Once the slope and the intercept are
decided, the method splits the sample X∗ by a criterion as follows:

(x − p) · n ≤ 0, (4.1)

All the data points xi that satisfy this inequality are sent to the left branch, and vise versa. This procedure
splits the sample into two parts. EIF repeats the selection and branching process until one instance is isolated
as a leaf node or the height limit hlim is reached. Here, the limit of height in an iTree Tt is predefined by the
depth of unsuccessful search in a Binary Search Tree (BST), which is log2n [LTZ12]. After a number of iTrees
are constructed, as in the above steps, the algorithm jumps to phase 2, which assembles the generated iTrees
Tt, t ∈ 1, 2, ...,K in an iForest F, F = T1, T2, ..., TK . The training phase is complete till then.

In phase 3, each test data point x passes through each tree, whose direction is decided by the criteria as equation
4.1, and gains a path of length h(x). By assuming the outlier is sparse and rare, the depth h(x) of an outlier is
expected to be significantly shorter than that of the normal data. An average path that the point x traversed down
all iTrees in the iForest is then computed as E(h(x)). Based on this, an anomaly score for the point x is then
calculated by the Equation:

s(x, n) = 2−E(h(x))/c(n), (4.2)

where c(n) is a normalized factor representing the mean value of depths of unsuccessful search in a size n BST,
which is defined as:

c(n) = 2H(n− 1)− (2(n− 1)/n), (4.3)

where n represents the size of subsample and H(i) represents the harmonic number which can be estimated by
Euler’s constant (ln(i) + 0.5772156649) [LTZ12]. Since the anomaly score s(x, n) indicates the possibility of a
point being an anomaly, the points with higher scores are believed to be outliers.

4.2 Isolation-based algorithm adjustment

In this thesis, several adjustments in phase 1 and phase 3 are posed, while the algorithm of phase 2 remains the
same. As known, both EIF and iForest assume that outliers are more vulnerable to random isolation process
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4.2. ISOLATION-BASED ALGORITHM ADJUSTMENT

Figure 4.1: The simulation of a cut in adjusted EIF

regardless of the distribution of the datasets. However, although EIF eliminates the bias introduced by axes-
parallel partition in the iForest, it sometimes fails to split the data points and has insufficient accuracy in detecting
specific datasets.

4.2.1 Branching in building an iTree

Regarding the problem occurring because of randomness selection of slope and intercept, in phase 1, firstly, this
work applies Principal Component Analysis (PCA) [SCSC03] to decide the normal vector of the split hyperplane.
PCA is a statistical technique to extract main feature components through a linear transformation. Specifically,
before each partition, selecting the first component of PCA as the normal vector and projection hyperplane, on
which the data have the largest variance. This selection ensures that data points are away from each other as
far as possible to be split. After that, projecting the samples on the first component and calculating the mean
value of distance di, i ∈ 1, ..., n between each point and their k nearest neighbors. Choose the intercept randomly
in the range of the points with the highest values di1 and second-highest values di2. Note that the k-nearest
neighbors algorithm suffers from curse of dimensionality [KE11], thus, the projection process is executed before
the distance calculation. This process balances the randomness and robustness to split the data points into two
parts in an efficiency-performance trade-off and prioritizes a cut in a sparse region. Similar to EIF, this work
continues to use extension levels to drop features randomly to keep flexibility on different datasets. Moreover, the
branching criteria of EIF remain the same. That is, all the points fulfill (x − p) · n ≤ 0 will be passed to the left
branch, and the rest go to the other side.

Figure 4.1 visualizes the new branching process on the same simple 2-D data space as in figure 3.2. The dotted
line represents the first component of PCA from the data. After projecting the data on this component, the method
calculates the average distance between each point and three neighbors, finding the two with the highest distances,
which are indicated by the red and blue dots. Then a random intercept p is drawn in the range of these two points,
and the split is executed in the direction perpendicular to the component passing through the value.
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4.3. VISUALIZATION OF CLUSTER-WISE DETECTION

4.2.2 Anomaly scoring

When evaluating the test points on the ensembled iForest, EIF records depths h(x) that each data point passes
through each iTree, and then calculates the average of the depths E(h(x) for each piece of data. Different from
EIF, a new normalized scoring is performed by applying the median instead of the mean to calculate the expected
depth of the branches E

′
(h(x). This is inspired by the fact that the median is less affected by the extreme values,

hence, catching a more representative depth for each instance.
Another tryout on the scoring is to retain the average depth of the branches E(h(x), but switch the final scoring

to the equation as follows:

s
′
(x, n) =

2

1 + e
log2

E(h(x))
c(n)

,

As a non-linear function, the scoring increases the anomaly score for the E(h(x)) that smaller than c(n). Com-
pared with the scoring in other iForest-based methods, the new one enables instances with lower depths than the
depth of a tree to gain higher weight.

4.3 Visualization of cluster-wise detection

To address another issue mentioned in chapter 3, cluster-wise outlier detection and visualization for 2-D multi-
variate datasets, this work proposes a solution as follows. Assume there is a multi-class dataset X , for each class
c, c ∈ 1, ..., C, there is Xc ⊂ X . The method first detects the outliers Oc, Oc ⊂ Xc for each class c. Thereafter,
for each pixel p(i, j) with coordinate (i, j) on the contour map, generating an anomaly score s(pci,j) in each class
c based on the adjusted EIF. Finally, the method provides several ways to calculate the final anomaly score for
each pixel:

• Averaging C anomaly score, and normalized it by

s(pi,j) =

∑C
c=1 s(p

c
i,j)

C

,

• Computing the n-norm of C anomaly scores. It means computing the vector length formed by each class’s
scores in each pixel. Having s(pi,j , n) and normalizing it by

s(pi,j) =
s(pi,j , n)

C
1
n

,

• Multiplying C anomaly scores, and normalized it by

s(pi,j) = s(pi,j)
1
C

,

Finally, according to the anomaly score of each pixel, plot the contour map with data points (normal and
outliers) overlapping on top of it.
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5 Experiments and Results

This section presents the implementation of the algorithms proposed in chapter 4, and evaluates them on different
2-D uni- and multi-variate datasets and various high-dimensional benchmark datasets as required. Besides, mea-
surements indicating the accuracy and precision of outlier detection in several widely-used unsupervised anomaly
detection algorithms are computed to compare with the proposed method in section 5.1. In section 5.2, the pre-
sented EIF-based outlier detectors for multi-variate clustering datasets are compared with the original EIF through
a score map and scatter of outliers. Further experiments concern the failure cases in section 5.2, and test two more
methods. The first method combines the solutions of both two sections, and the other method avoids the deviation
of anomaly scores from the previous methods. For all the situations, the experiments are conducted in Python 3.7
environment.

5.1 Isolation-based algorithm adjustment

5.1.1 Implementation

The implementation of the adjusted EIF described in subsection 4.2.1 is based on the python version of EIF
[HKB19]. In the training phase, the work replaces the random selection of normal vector and intercept with the
core process, as the pseudocode shows below. In detail, the PCA and Nearest Neighbor algorithms in this process
utilize the decomposition and neighbors packages in Python Scikit-learn library [PVG+11].

1 # Applying the PCA on the subsample with d dimension
2 pca = PCA(n_components = dimension)
3 # Select the first component as the normal vector
4 normalVector = pca.component[0]
5 # Project the instances on the first component of PCA
6 projectedSample = pca.fit(Sample)
7 # Calculate the distances between each point and its two neighbors
8 distances = NearestNeighbors(n_neighbors = 3).fit(Sample)
9 # Select two samples with the largest mean distance

10 Sample[1], Sample[2] = argsort(mean(distances))[-1],argsort(mean(distances))[-2]
11 # Randomly draw a point in the range of the two samples
12 intercept = random.uniform(Sample[1], Sample[2])

In addition, another implementation of anomaly scoring modified as illustrated in section 4.2.2 performs in the
evaluation phase. However, changing the anomaly scoring function from average to median or adapting the new
normalization of anomaly score contributes little to improve the performance of EIF on either the real-world or
synthetic datasets. Therefore, this chapter omits the experiments of this part and only discusses them in section
6, with results shown in Appendix. The following experiment is only based on the implementation of subsection
4.2.1.

5.1.2 real-world datasets

To evaluate the performance of adjusted EIF, in this subsection, ten real-world high-dimensional datasets from
Outlier Detection DataSets (ODDS) [Ray16] are considered. Table 5.1 describes the properties, including name,
sample size, number of dimensions, and the number as well as the proportion of anomalies of each real-world
dataset. For comparison, as adopted partially in adjusted EIF, the results of KNN [AP02] and PCA [SCSC03]
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Table 5.1: High-dimensional Benchmark Datasets

Name Sample Size Feature Anomalies

Ionosphere 351 33 126 (35.8974%)
Optidigits 5216 64 150 (2.8758%)
Glass 214 9 3511 (4.2056%)
Vowels 1456 12 50 (3.4341%)
Musk 3062 166 97 (3.1679%)
Satimage-2 5803 36 71 (1.2235%)
Speech 3686 400 61 (1.6500%)
Satellite 6435 36 2036 (31.6395%)
Letter 1600 32 100 (6.2500%)
Cardio 1831 21 176 (9.6122%)

for anomaly detection are also included. Besides, another statistical-based method, HBOS [GD12], and a deep
learning-based algorithm, DeepSVDD [RVG+18], are considered. Therefore, the experiment can compare the
performance of adjusted EIF with not only isolation-based algorithms but also with other classical density-,
proximity- and neural network-based algorithms.

Table 5.2: Parameters setting of EIF

Parameters Meaning Value

sample size n The number of subsamples for each iTree min(256, data size)
n trees t The number of iTree in the iForest 200
extension level el The number of coordinates kept for the normal vector 1
height limit hl The maximum depth of an iTree log2n

The area under the receiver operating characteristic curve (AUC-ROC) [Nar18] and the associated Preci-
sion/Recall (AUC-PRC) [SR15] are applied as indicators for performance evaluation. Specifically, AUC-ROC
is a commonly used probability measurement to evaluate the prediction performance of machine learning binary-
classifiers [SR15], where a higher AUC-ROC value usually represents a better prediction ability of an algorithm.
And the AUC-PRC is an alternative indicator that evaluates the fraction of true positives among positive predic-
tions [SR15], thus providing a more accurate measuring for imbalance binary classification missions, for exam-

Table 5.3: Comparison of AUC-ROC values for outlier detection algorithms

Name adjusted EIF iForest EIF KNN PCA HBOS DeepSVDD
Ionosphere 0.9095 0.8569 0.8737 0.8623 0.8135 0.6674 0.5625
Optidigits 0.7483 0.6800 0.7062 0.3982 0.5166 0.8528 0.5786
Glass 0.7888 0.6982 0.7543 0.7408 0.6571 0.7718 0.5750
Vowels 0.8310 0.7528 0.7921 0.9717 0.5660 0.6461 0.5596
Musk 0.9995 0.9997 0.9993 0.7011 1.000 1.000 0.3500
Satimage-2 0.9979 0.9932 0.9955 0.9099 0.9862 0.9859 0.7141
Speech 0.4749 0.4768 0.4765 0.4732 0.4700 0.4764 0.5207
Satellite 0.7400 0.7117 0.7198 0.6461 0.6094 0.7681 0.5264
Letter 0.6606 0.5952 0.6312 0.8671 0.5270 0.5406 0.5416
Cardio 0.9276 0.9202 0.9240 0.7015 0.9611 0.8653 0.6728
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Table 5.4: Comparison of AUC-PRC values for outlier detection algorithms

Name adjusted EIF iForest EIF KNN PCA HBOS DeepSVDD

Ionosphere 0.8803 0.8108 0.8325 0.8207 0.7640 0.4395 0.4721
Optidigits 0.0553 0.0432 0.0489 0.0224 0.0275 0.1339 0.0316
Glass 0.0971 0.0776 0.0938 0.1097 0.1175 0.1248 0.0662
Vowels 0.1647 0.1253 0.1464 0.7023 0.1273 0.1950 0.0463
Musk 0.9915 0.9901 0.9802 0.1392 1.0000 1.0000 0.0703
Satimage-2 0.9650 0.9287 0.9485 0.2735 0.8438 0.7950 0.0348
Speech 0.0172 0.0171 0.0189 0.0173 0.0174 0.0163 0.0354
Satellite 0.7054 0.6650 0.6841 0.5017 0.6188 0.6984 0.3951
Letter 0.0940 0.0870 0.0867 0.2731 0.0879 0.0754 0.0912
Cardio 0.5338 0.5545 0.5717 0.3303 0.6523 0.5171 0.3095

ple, the outlier detection. Similarly, a higher AUC-PRC proves a higher capacity of a method to identify outliers.
Therefore, this experiment compares both perform measurements across different algorithms.

Due to the randomness of the sampling and training process of isolation-based algorithms, the experiment
iterates each algorithm ten times. It then calculates the average value for each measurement as the final result.
The iForest algorithm is based on Scikit-learn library [PVG+11], and EIF is based on the source code published
by Hariri and Kind (2018) [HKB19] with parameter setting as shown in the table 5.2. For those non-isolated-
based detectors, the experiment is executed on the code of AD-Benchmark [HHH+22] with the best parameters
tuned from 100 epochs of iterative training. Table 5.3 and table 5.4 summarize the results comparing the adjusted
EIF with standard iForest, EIF, and other types of anomaly detection methods on the above real-world datasets.

As shown in table 5.3 and table 5.4, the adjusted EIF moderately or considerably outperforms both iForest
and EIF for most of the listed benchmark datasets on both AUC-ROC and AUC-PRC, except for datasets Musk,
Speech, and Cardio. Adjusted EIF and EIF exhibit a slightly disadvantage on AUC-ROC than iForest on datasets
Musk and Speech, while EIF outstands on the AUC-PRC value for the dataset Cardio. Compared to HBOS,
isolation-based methods experience a hard time detecting some extremely high-dimensional datasets, such as
Optidigits, Musk, and Speech. KNN, which uses the distance to the k-nearest neighbor as the outlier score
[ZNL19], on the contrary, performs better on small datasets, for example, Glass, and Vowels. To conclude, as we
can see, the adjusted EIF shows better accuracy in detecting high-dimensional real-world datasets than iForest
and EIF in general. Furthermore, it is more advantageous to identify outliers in large datasets without too much
dimensionality than other anomaly detection algorithms.

5.1.3 Synthetic datasets

In order to compare the difference between isolation-based algorithms intuitively, there are experiments on four
2-dimensional synthetic datasets. As depicted in figure 5.1, they are datasets with a single blob, double blobs,
sinusoidal, and a circle around a blob. Each dataset is of 500 nodes following a deviation from the Gaussian
distribution. The first three datasets are similar to that of the experiment conducted in [HKB19], while this ex-
periment extends to have another circle-blob dataset to investigate the anomaly score between two nested clusters
for isolation-based algorithms.

At first, the experiment detects the outliers of each dataset with each algorithm (iForest, EIF, and adjusted EIF)
separately. Data points are shown on a scatter plot, where the outliers are highlighted in red. Second, for each
pixel on a 50 × 50 mesh grid in the range of data space, it calculates the anomaly score and shows them by a
contour map.

A comparison of the detection performance across iForest, EIF, and adjusted EIF for the first dataset is shown
in figure 5.2. Intuitively, all methods are able to detect the outliers located around the dense cluster. However, in
figure 5.2(a), a considerable cross artifact centered on the cluster is produced on the score map, with a relatively
low anomaly score. It is counter-intuitive for a blob-shape dataset to have such a score distribution. As mentioned
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(a) Single Blob (b) Double Blob

(c) Sinusoidal (d) Circle around Single Blob

Figure 5.1: Synthetic 2-D datasets
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before, this happens since the axes-parallel split process in the training stage of iForest. On the other hand, the
score maps of EIF and adjusted EIF show a nearly concentric circle shape, with higher scores on the outer part
from the center of the cluster. The serrated shape for each contour on the score maps occurs due to the random
split and the data distribution.

(a) iForest (b) EIF (c) adjusted EIF

Figure 5.2: Score map and scatter plot for iForest, EIF and adjusted EIF on the single blob dataset

In the second case, as figure 5.3 illustrates, both EIF and adjusted EIF overcomes the problem that iForest
introduces axis-parallel rectangular areas around both blobs. In figure 5.3(a), it even produces another two “ghost”
clusters at the overlaps of these rectangular, where low scores are assigned. As a lower anomaly score represents
fewer probabilities of being an outlier, it will hardly be identified as an anomaly if there is a point located in the
“ghost” region. Comparing the contour maps of the other two methods, basically, EIF and adjusted EIF share a
similar score map. Nevertheless, the adjusted EIF has a slightly wider low score area assigned to the top of the
right blob. It is probably because PCA is sensitive to the shape of the cluster. Since the outliers of the right blob
locate far from the top, the projection on the direction with the highest data variance could lead to an irregular
cutting.

Regarding the sinusoidal case, the same issue of rectangular artifacts is more severe, as demonstrated in figure
5.4(a). The contour of iForest is numerous crosses overlapping along the axes, forming a large band on the data
space instead of a sinusoidal shape. Interestingly, unlike the other two methods, iForest regards points on the
crest and trough as outliers, while EIF and adjusted EIF find most outliers on the far left and rightmost side with
almost no difference. The explanation for this phenomenon remains the same as the previous illustration: iForest
tends to ignore the points buried by the contour along the direction of axes. It can be proved that points far from
the cluster but parallel to the main direction of data can be identified in EIF and adjusted EIF, where the contour
of the score shows a precise sine shape.

(a) iForest (b) EIF (c) adjusted EIF

Figure 5.3: Score map and scatter plot for iForest, EIF and adjusted EIF on the double-blobs dataset

The result of the last case is in figure 5.5. Similarly, iForest treated the composite graphics as a small cross
upon a large cross. At the same time, other methods are able to separate the circle and the blob with a relatively
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high score region between them. However, a new problem arises. None of the three mentioned algorithms can
detect the outliers between the circle and the blob. From the visualization of detection, Only the points outside
the circle are recognized as anomalies. This is also an issue stated on section3. Therefore, the following section
introduces the implementation of solutions in subsection 4.3 for the multi-class detection issue.

(a) iForest (b) EIF (c) adjusted EIF

Figure 5.4: Score map and scatter plot for iForest, EIF and adjusted EIF on the sinusoidal dataset

In conclusion, this section implements the adjustment of EIF mentioned in section 4.2 and evaluates it on two
types of datasets. Comparing the AUC-ROC and AUC-PRC with other anomaly detection algorithms on real-
world high-dimensional datasets, the adjusted EIF is manageable to achieve relatively high accuracy in identifying
outliers of most of the listed datasets. And for 2-D normally distributed datasets, basically, it has a similar
performance as EIF, and thus can address the problem introduced by iForest.

(a) iForest (b) EIF (c) adjusted EIF

Figure 5.5: Score map and scatter plot for iForest, EIF and adjusted EIF on the circle around a blob dataset

5.2 Visualization of cluster-wise detection

This section contributes to solving another issue: isolation-based algorithms fail to detect the local outliers in
each cluster for multi-class datasets as explained in chapter 3.2. In this section, experiments consider various
datasets with various numbers and distributions of clusters representing different situations. As the EIF addresses
the problem of unusual score maps for 2-D datasets in iForest, the following implementations and experiments
are based on EIF.

5.2.1 Implementation

The work is mainly implemented based on NumPy library [HMdW+20] and EIF source code [HKB19] in Python
3.7 environment. Firstly, for the points in each class, identify the outliers by the decision value from EIF. Secondly,
for each pixel in the 50 × 50 mesh grid in the range of minimum and maximum of each coordinate of data, it
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computes an anomaly score for each class. Thirdly, aggregate the anomaly scores in each pixel cluster-wisely and
normalize the aggregation value to have a final score. There are three different tryouts to be tested here. They
are computing the arithmetic mean, the n-norm (0.5-, 1-, 1.5-, and 2-norm), and the geometric mean of scores,
respectively. The following pseudocode indicates the implementation of this method.

1 # Generate a 50*50 meshgrid in the range of dataset X
2 xx,yy = meshgrid(linspace(min(X[:,0]),max(X[:,0]),50), linspace(min(X[:,1]),max(X[:,1])

,50))
3 # For each class i in dataset X
4 for i in range(n_class):
5 # EIF implemented to detect outliers
6 Begin
7 # Train iTrees using nodes in class i
8 F1 = iso.iForest(X[class_i])
9 # Evaluate each node in class i with an anomaly score

10 S1 = F1.compute_paths(X_in = X[class_i])
11 # Sort the anomaly score
12 ss1 = argsort(S1)
13 # Pick the 10 points with the highest anomaly score in that class as outliers
14 X_outliers = X[cluster_i][ss1[-10:]]
15 # EIF implemented to generate score map
16 # Evaluates each pixel on the meshgrid with an anomaly score
17 S2_i = F1.compute_paths(X_in = (xx,yy))
18 End
19 # Define an array that store the anomaly score of pixels in each class
20 S2 = [S2_1,...,S2_n_class]
21 # Compute the arithmetic mean and normalize
22 If (method = ’arithmetic mean’):
23 Begin
24 # For each pixel, average the sum of its score in each class
25 S = sum(S2)/n_class
26 # Normalize the results to [0,1]
27 normalized_S = (S-min(S))/(max(S)-min(S))
28 End
29 # Compute the norm of anomaly score vector
30 Elif (method = ’norm’):
31 Begin
32 # Calculate n-norm of the cluster-wise anomaly score for each pixel, and normalize
33 S = norm([S2], norm = n)/(power(n_class,(1/n))
34 # Normalize the results to [0,1]
35 normalized_S = (S-min(S))/(max(S)-min(S))
36 End
37 # Compute the geometric mean and normalize
38 Else:
39 Begin
40 # For each pixel, compute the n_class root of the product of scores in each pixel
41 S = prod(S2)/power(Z,1/n_class)
42 # Normalize the results to [0,1]
43 normalized_S = (S-min(S))/(max(S)-min(S))
44 End

The normalized S in code represents the final anomaly score assigned to each pixel. A contour map of the grid
data space and scatter plot with outliers highlighted are displayed based on the normalized S eventually.

5.2.2 Synthetic datasets

Several synthetic datasets from [Yoo22] with different variate distributions are considered in this experiment.
As figure 5.6 shows, three other datasets are applied except for the three-cluster dataset mentioned in section 3.
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(a) Three Balanced Linear Classes (b) Three Balanced Blobs

(c) Twelf Imbalanced Classes (d) Three Sparse Blob

Figure 5.6: Synthetic 2-D datasets
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Figure 5.6(a) illustrates a dataset with three linearly distributed classes that have similar numbers from left to
right. The second dataset, visualized in figure 5.6(b), has three equal number blobs with several points scattered
around each blob. The next dataset displayed in figure 5.6(c) contains 12 imbalanced clusters arranged in a square
space. And the last one in figure 5.6(d) is formed by three sparse blob-shape classes, where several points are
relatively far from each class. These datasets cover different situations for anomaly identification to ensure the
proposed method can be utilized in general.

(a) Train with Whole Dataset (b) Arithmetic Mean

(c) Geometric Mean (d) 1 Norm

Figure 5.7: Comparison of score map and scatter plot for treating the whole dataset as one with three proposed
cluster-wise training methods on three balanced linear classes

Following the implementation steps mentioned in 5.2.1, different score maps joined with scatters are generated
for each dataset. For a particular dataset, the scatter plot of each method shall remain similar because it is executed
before the production of the score map. The comparison is made on the score map across the three aggregation
approaches, as well as training the whole dataset directly with EIF. Precisely, for the n-norm method, as four
kinds of norm (0.5, 1, 1.5, 2) are examined, this work only displays the one with the best performance and puts
the rest of the results in the Appendix part. The outliers are defined as the ten points with the highest anomaly
scores in each dataset class (the numberofclass× 10 points with the highest scores for the case of full datasets
training). The scatter colors each class distinctively, while the outliers are in red.

As illustrated in figure 5.7, there is no doubt that treating the whole dataset as one class is not a choice since
it is not able to neither detect the obvious outliers on the left of the first class (the orange cluster) nor drawing a
clear demarcation line to separate the classes, while the other proposed methods have a relatively better capacity
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(a) Train with Whole Dataset (b) Arithmetic Mean

(c) Geometric Mean (d) 0.5 Norm

Figure 5.8: Comparison of score map and scatter plot for treating the whole dataset as one with three proposed
cluster-wise training methods on the three balanced blobs dataset
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of drawing decision boundary. As for the arithmetic mean method, it does not show an apparent contour between
the middle (the flesh color cluster) and the right (the brown) classes. Although the 1-norm method can sketch
a precise contour for each cluster, the geometric mean method handles separate classes smoothly, with higher
anomaly scores assigned to the middle between classes.

(a) Train with Whole Dataset (b) Arithmetic Mean

(c) Geometric Mean (d) 0.5 Norm

Figure 5.9: Comparison of score map and scatter plot for treating the whole dataset as one with three proposed
cluster-wise training methods on the 12 imbalanced classes dataset

In the second case, which is demonstrated in figure 5.8, the original EIF treats the whole dataset as a huge
triangle-like shape and considers those points lying in the outer circle as anomalies. The arithmetic means method
and 0.5-norm method share a similar distribution on the score map, while the geometric mean method gives higher
anomalies in the surrounding area of each blob. In addition, the geometric mean method is the only one that
designates the space center with high anomaly scores. It is an intuitively sensible result since the center is rather
far away from the centroid of each blob.

The third case describes a rather complicated situation with 12 imbalanced classes. Figure 5.9 produces an
interesting insight. The original EIF is even weaker at detecting local outliers in dense clusters since it only regards
the corners of the rectangular space as outliers. And the arithmetic mean method, surprisingly, has a favorable
performance in indicating the contour of each cluster, even slightly better than the 0.5-norm method case between
some classes. And the geometric mean method, as previously, maps the outliers with higher anomaly scores and
has higher scores for the in-between regions among several close classes.
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(a) Train with Whole Dataset (b) Arithmetic Mean

(c) Geometric Mean (d) 0.5 Norm

Figure 5.10: Comparison of score map and scatter plot for treating the whole dataset as one with three proposed
cluster-wise training methods on the three sparse blob dataset
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The experiment result of the last case is portrayed in figure 5.10. For this unusually distributed sparse dataset,
The EIF could generate a blur gap in the center of the graph, although the outliers of each class near the center can
still be detected. The geometric mean method retains its strong cluster-wise detection ability. The band between
the left and the top clusters is crystal clear, as they are physical with great distances. The 0.5-norm method
allocates the upper left corner with a higher score, while the arithmetic mean method gives the center bottom a
clear high score region.

To conclude, compared with the original EIF, which treats the whole dataset as one variate, all proposed ap-
proaches are able to indicate the area where the outliers and potential outliers sit with higher anomaly scores.
Among them, the geometric mean method can better sketch the contour of each class on synthetic datasets, with
the outliers always appearing on the high score space.

5.2.3 Real-world datasets

This subsection investigates eight real-world datasets involved in the work of [YXX+21] with more complicated
distributed classes. However, to keep the work concise and representative, only the results of three datasets
with the most representative situations are displayed and analyzed in this subsection, while the others are in the
Appendix.

The detailed description of all eight datasets is presented in the table 5.5 as follows. The outliers are set as
2% of points in each dataset class. Most of the datasets in this subsection contain more classes and overlapping
between classes. Therefore, these cases are more realistic, reflecting a more real-world situation than the ideal
synthetic datasets. A similar experiment as in subsection 5.2.1 is executed across these datasets. It compares
the score map of the original EIF that treats the whole dataset as one class with the three proposed cluster-wise
detection methods. Similarly, here in the result figures, the work only presents the best performance n − norm
solution and puts other results from other norms in Appendix. Furthermore, the majority of the datasets have
numerous cluttered data points on scatter plots, covering the whole score map and making it hard to recognize
the detail. Therefore, in the following experiment, the results drop the scatter plot for the whole dataset and
only retain the outliers. In addition, visualization of original data points is added to judge the quality of outlier
detection.

Table 5.5: Real-world 2-D clustering datasets

Name Size Class Outlier

Abalone 4177 3 83
Crowdsourced mapping 10845 6 216
Condition based maintenance 10000 9 200
Clothes 26569 10 531
Epileptic seizure 11500 5 230
Mnist 70000 10 1400
Swiss roll 2d 8000 4 160
Swiss roll 3d 10000 4 200

The first case compares the graphs in figure 5.11(a). There are four curved classes indicated with orange,
brown, green, and khaki, respectively. Note that some points are scattered in other classes and far away from their
main clusters. All listed methods can identify those points, except the original EIF, which basically processes the
whole dataset as a giant blob and considers the center as the dentist area. The other three methods are capable
of sketching a blurred contour for each cluster and finding the points away from most of the points in one class.
Generally, it is difficult to tell who performs best for this dataset. However, the arithmetic mean method places
the outliers in relatively darker areas, especially for the outliers falling in the khaki class.

The following case investigates a rather sophisticated dataset, Conditionbasedmaintenance. Illustrated in
figure 5.12(a), the dataset is a sparse nine-cluster set with the violet class intertwined with the dark purple class.
Figure 5.12 demonstrates that the EIF is incapable of finding the outliers that fall in the “crack” between the
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(a) Original Dataset

(b) Train with Whole Dataset (c) Arithmetic Mean

(d) Geometric Mean (e) 0.5 Norm

Figure 5.11: Comparison of score map and outliers for treating the whole dataset as one with three proposed
cluster-wise training methods on the Swiss roll 3d dataset

23



5.2. VISUALIZATION OF CLUSTER-WISE DETECTION

(a) Original Dataset

(b) Train with Whole Dataset (c) Arithmetic Mean

(d) Geometric Mean (e) 2 Norm

Figure 5.12: Comparison of score map and outliers for treating the whole dataset as one with three proposed
cluster-wise training methods on the Condition based maintenance dataset
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clusters. The proposed methods, however, merged the intersected classes and recognized this region as a place
where outliers will have less possibility to appear. For the 2-norm method, the range of data points is assigned with
a relatively evenly low score, although there are still obvious gaps around classes. The outliers in this method are
scattered around each class as the arithmetic mean and the geometric mean methods do. Overall, the arithmetic
mean method scores the four corners evenly, while the other two methods favor the right corners with higher
scores.

A super complex dataset is displayed given the results in figure 5.13. In this biased dataset, the largest class
has 7509 nodes, while the smallest has only 100. For the result figures, obviously, the EIF regards it as a sizeable
sparse blob with outliers around the outer. Unexpectedly, other methods produce entirely distinct outcomes.
The low score areas are shaped as a semi-oval, which is intuitively incompatible with the original dataset. This
happens because for each pixel in the largest class (the brown class), though it assigned a low score in this class,
the other five classes raise the scores as they are even weighted in the calculation. That means the lower score in
one class is “diluted” by the other five higher scores in other classes. As scores of those points are pulled up, the
region of the largest class is then invisible on the score map. In order to tackle this issue, a further experiment is
conducted based on another method in the following subsection.

In conclusion, in the real-world 2-D dataset with no class overlapping on other classes, all the listed methods
can detect the local outliers and generate clear contour lines by anomaly score to indicate the potential anomalies.
Among them, in complex real-world cases, the arithmetic mean method is moderately better in viewing the
score map with outliers. However, when the dataset is uneven and imbalanced, with points belonging to one
class scattered in another class, the proposed methods have limitations in generating a reasonable score map that
outliers can situate in appropriate locations. Based on this issue, further tryouts are examined. The first is to
combine the adjusted EIF proposed in section 4.2 with the methods proposed in section 4.3. And the second is to
devise a new visualizing method for each pixel, deciding the score by the minimum of scores in all clusters.

5.2.4 Further experiments

This subsection attempts to extend the experiment. Likewise, to keep it concise and interpretable, the two tryouts
are examined on one synthetic dataset and two real-world datasets listed in this section. And the comparison
is made between the two new methods and the geometric mean method since it generally has the most sensible
results both in synthetic and real-world 2-D clustering datasets. At first, a brief description of the two methods
are presented.

Combination of adjusted EIF with geometric mean method

Because the adjusted EIF handles improve the detection performance of EIF on real-world datasets, it is mean-
ingful to evaluate it in the cluster-wise visualization mission. Furthermore, since the geometric mean method
achieves a relatively better performance than the norm and arithmetic mean method in general, testing the com-
bination of it and adjusted EIF is logically reasonable. The implementation of this idea is to replace the EIF with
the adjusted EIF in each class detection, and the setting remains the same as the table 5.2.

Minimum method

Due to the dilution that happens in imbalanced class cases, the minimum method is proposed. The method alle-
viates the effect of other classes by always choosing the minimum score across classes for each pixel. Moreover,
the method still allocates a high score for a pixel away from data points since every class will still assign it with
a high anomaly score. The implementation is similar to the pseudocode in subsection 5.2.1 by only switching the
geometric mean to the minimum. Then the same linear normalization is conducted to scale the scores to [0, 1]
range.

The experiments are based on the three balanced linear classes, Condition based maintenance, and Crowd-
sourced mapping datasets, where the distributions have been instructed in the last subsections. Moreover, the
visualization is similar to the corresponding results from the last subsections. Outliers are marked in red, and the
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(a) Original Dataset

(b) Train with Whole Dataset (c) Arithmetic Mean

(d) Geometric Mean (e) 0.5 Norm

Figure 5.13: Comparison of score map and outliers for treating the whole dataset as one with three proposed
cluster-wise training methods on the Crowdsourced mapping dataset
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score map from shallow to dark represents the smallest to largest scores. The comparison is made between two
new methods with the geometric mean method upon EIF.

Figure 5.14 compares the first experiment’s results. The adjusted EIF combined with the geometric mean
generates uneven borders between clusters, with no outliers lying there. This phenomenon might occur due to the
vertical cut in the direction of maximum variance from PCA. Since the algorithm always splits the data points in
one class by that direction, the in-between areas always need more cuts than the end of clusters, which means they
always gain lower scores, though still higher than the dense points area. However, the minimum method shows a
powerful capability to delineate the clusters. Note that the whole areas around the clusters have very high scores,
which frankly indicates the region where the potential outliers will sit.

(a) Geometric Mean (b) Adjusted EIF with Geometric Mean (c) Minimum

Figure 5.14: Comparison of score map and outliers for geometric mean method with two new proposed methods
on the three balanced linear classes

The second results are delivered in figure 5.15. The first new method improves the class distinguishability of
EIF in this case. The in-between “cracks” are more evident than the EIF to show where the outliers fall. However,
the minimum method is somewhat more robust in that it produces perfectly noticeable gaps between each class,
even the two interlocking classes. All the listed methods treated it as a whole blob in the two clusters, except the
minimum method. It is reasonable that the points between the two classes should be outliers intuitively since they
are far from each class.

(a) Geometric Mean (b) Adjusted EIF with Geometric Mean (c) Minimum

Figure 5.15: Comparison of score map and outliers for geometric mean method with two new proposed methods
on the Condition based maintenance dataset

In the last experiment, as in figure 5.16, the first method basically shares a similar score map as the original
geometric mean method. The only difference between them is the outliers detected. That for the first new method,
the rightmost points are anomalies, while for the EIF-based geometric mean method, the small upper cluster is
recognized as the outlier. Nevertheless, the advantage of the minimum method comes through in this highly
complex dataset. In figure 5.16(c), each of the classes is colored in light, especially those dense small clusters,
whereas in the other two methods, they only figure out a blur large semi-oval shallow area. The other insight that
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can be abstracted from this graph is that the minimum method can indicate where the biggest class is, with a high
score showing between it and other small clusters. The color for the outer class is rather shallow, since the data
points there are relatively sparse.

In conclusion, the geometric mean method based on adjusted EIF achieves to handle a relatively complex
dataset compared to the method based on EIF. However, when the class shows a distribution of linear, it may
experience a hard time to split the clusters due to the limitation of PCA. On the other side, the minimum method
achieves distinguishing each class and assigning the corresponding score in diverse clustering datasets, no matter
how simple or complex the class distribution is. It can be explainable to identify potential outliers by viewing the
score map.

(a) Geometric Mean (b) Adjusted EIF with Geometric Mean (c) Minimum

Figure 5.16: Comparison of score map and outliers for geometric mean method with two new proposed methods
on the Crowdsourced mapping dataset

To conclude this section, several experiments to compare different cluster-wise EIF/adjusted EIF-based meth-
ods are conducted. As the results show, the geometric mean method is able to detect local outliers and depict a
sensible score map for simple synthetic datasets, while the n-norm and arithmetic mean methods are relatively
weak at the contour map generation. The adjusted EIF has limitations to improving the EIF on specific datasets
but has a similar to slightly better performance on other datasets. Among all the proposed methods, the minimum
method is manageable for scoring the multi-variate classes with a plausible contour map, revealing the distribution
of classes, and implying the potential outliers for the dataset.

5.3 Discussion

Note that this thesis dedicates to achieving two goals. The first is to improve the performance of isolation-based
algorithms. And the second is to come up with a visualization solution for detecting outliers in multi-class datasets
based on isolation-based algorithms.

5.3.1 Algorithm improvement

To address the problem of generating abnormal scores for axes-parallel areas in the score map, the EIF algorithm
is presented [HKB19]. However, despite the fact that EIF solves the issue by creating the hyperplane deter-
mined by random normal vector and intercept, it still has shortcomings. For example, it fails to split the data
points due to randomness. This thesis proposes adjusted EIF which modifies the random split hyperplane to a
certain hyperplane decided by the first component of PCA and KNN. The results demonstrate that the adjustment
makes significant progress in the detecting accuracy across several real-world datasets than classical anomaly
detection algorithms, especially the iForst and EIF. The drawback of this adjustment is that as the dimension
of the dataset rises, the training time will also increase exponentially. That is because the time complexity of
PCA is O(min(N3,M3)) in an M -dimension dataset with N instances, as it needs to compute the covariance
matrix and eigenvalues for the datasets. And the time complexity of KNN for the following value selection step
is O(N ∗ M). Therefore, the PCA process on each partition limits the efficiency of the adjusted EIF. However,
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thanks to the sampling and ensemble characteristics of isolation-based algorithms, the time of each cut is then
reduced accordingly. In addition, since the distance calculation by KNN in the adjusted EIF is performed on the
projection values of data on the 2-D plane, the complexity also substantially reduces. Given that the sample size
and dimension are reduced in each split process, the adjusted EIF is still obviously faster than the PCA [SCSC03]
and KNN [AP02] algorithms for anomaly detection. The generalized Isolation Forest (GIF) [LBST21], another
isolation forest algorithm, is proposed by Lesouple et al. to deal with the empty branching issues in EIF. However,
although it shortens the execution time for the training phase, it fails to improve the precision of outlier detection.
Generally speaking, the proposed method enhances both EIF and iForest on the capacity of outlier detection in
most high-dimensional real-world datasets.

Another tryout on modifying the scoring rules of EIF is proposed. Switching the scoring of anomaly from
computing the mean of the depths a node travels in each tree to computing the median does not help strengthen
the outlier identification. It might be because extreme values of depths for a point to pass all the iTrees are less
likely to appear than normal values. Since the height of iTree limits the depth, the extreme value has little impact
on the final score. That means, practically, the median might yield a roughly equivalent value to the mean. In
addition, altering the normalization from exponential to sigmoid-like function contributes little to improve the
accuracy, because revising the normalizing rules is simply scaling the final results. Thus, the rankings of anomaly
scores for each point stay the same.

5.3.2 Visualization of outlier detection on multi-class dataset

This thesis also provides several solutions for the local outlier detection issue in isolation forest algorithms. That
is, for each variate, detecting the corresponding outliers. Moreover, drawing a decision boundary by combining
the collection of anomaly scores for each class is also researched. Specifically, this thesis proposes three methods
(arithmetic mean, geometric mean, and n-norm of anomaly scores for each pixel in the data space) and compares
them with the method treating the whole datasets as one variate based on EIF. The results on simple synthetic
datasets demonstrate that all the proposed methods allow the identification of the local outliers for each class.
Among them, the geometric mean method generates the most straightforward final decision boundaries to imply
the potential outliers in simple, balanced datasets, while the arithmetic mean method provides a relatively more
explainable score map for complex real-world datasets.

Inspired by the fact that all three listed methods are not well performed to draw an interpretable score map
on datasets with intertwined classes, further experiments on the adjusted EIF-based geometric mean method and
minimum method are conducted. One can see that the former has limited performance on particular datasets, for
example, the three linear classes dataset. The reason is that for a class with linear distribution, each split of data
points is more likely to happen at the end of the class rather than the middle because the PCA always selects the
perpendicular direction of the main direction of the linear class. As this is the case, the pixels near the middle
of the class would always need more cuts to be isolated and, thus, have lower anomaly scores. Surprisingly,
the minimum method outperforms all three proposed methods in simple to interlaced and complex datasets. The
reason might be, for in-class pixels, merely picking the minimum from the anomaly score sets of all classes always
designates a low score for the in-class area. But for the regions out of classes, this method only picks the minimal
score for each pixel, which is consistently higher than the in-class pixel. The final score map is then plausible by
scaling the scores with a linear normalization.
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6 Conclusion and Future work

In conclusion, this thesis studies two main problems. For the problem of performance improvement of isolation-
based algorithms, an adjusted EIF approach is presented. The proposed method settles both the block artifacts
problems introduced by iForest and the empty branching problems introduced by EIF. The limit of the proposed
method is that the complexity of PCA limits the execution time. Generally, it has a similar score map as the EIF
when visualizing the 2-D synthetic datasets. However, evaluating the method with an accuracy of detection, the
results indicate that compared to that of both iForest and EIF, it manages to improve the detection accuracy as well
as precision and reduce the false positive rate significantly. As for the multi-class outlier visualization problem,
comparisons over several cluster-wise solutions are made. The minimum method is tested to be the most efficient
approach in depicting the score map to indicate where the outliers and potential outliers are.

There are several directions for future work. The adjusted EIF somehow sacrifices the time efficiency to im-
prove accuracy. The follow-up for the adjusted EIF algorithm is to shorten the execution time by modifying the
PCA and KNN steps to make it more efficient while maintaining the accuracy in detecting outliers because the
most distinct feature of isolation-based algorithms is their low time complexity. Meanwhile, it is worth investigat-
ing credible anomaly scoring functions on a scale of [0,1]. The scoring rules could vary based on different split
rules. Furthermore, as in the experiments on real-world datasets, all studied isolation-based algorithms degrade
the precision of outlier detection in some specific datasets, further research on why this happens can also provide
insights for the improvement of isolation-based algorithms.

For the outliers and decision boundaries visualization of EIF on multi-class datasets, a simpler way to detect the
local outliers that do not need to merge the anomaly scores is the direction of further work. Another finding from
the experiments is that outliers that fall into other classes might be assigned low anomaly scores, reducing the
convince of the indicators. Thus, methods such as weighting the anomaly scores from each class and combining
isolation-based algorithms with other clustering algorithms deserve further study.
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Appendix

This appendix displays all the results of experiment that does not listed in the body oh thesis. First, for the
adjustments of EIF, the results of AUC-ROC and AUC-PRC on real-world datasets, and also the score map of
both methods on synthetic datasets are illustrated. Second, for the merging of cluster-wise score maps, figures of
all the n-norm methods, the minimum method and the adjusted EIF based geometric mean method are shown in
this chapter.

Results of adjusting anomaly scoring

(a) Median (b) Sigmoid-based function

Figure 6.1: Comparison of score map and outliers of median scoring and sigmoid-based function scoring for
single blob dataset

(a) Median (b) Sigmoid-based function

Figure 6.2: Comparison of score map and outliers of median scoring and sigmoid-based function scoring for
double blobs dataset
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(a) Median (b) Sigmoid-based function

Figure 6.3: Comparison of score map and outliers of median scoring and sigmoid-based function scoring for
sinusoidal dataset

(a) Median (b) Sigmoid-based function

Figure 6.4: Comparison of score map and outliers of median scoring and sigmoid-based function scoring for circle
around single blob dataset
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Results of proposed Outlier detectors for multivariate datasets

(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.5: Comparison of score map and outliers of all proposed cluster-wise detection methods for three linear
classes
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.6: Comparison of score map and outliers of all proposed cluster-wise detection methods for the three
balanced blobs dataset

37



Bibliography

(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.7: Comparison of score map and outliers of all proposed cluster-wise detection methods for the 12 im-
balanced classes dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.8: Comparison of score map and outliers of all proposed cluster-wise detection methods for the three
sparse blobs dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.9: Comparison of score map and outliers of all proposed cluster-wise detection methods for the Crowd-
sourced mapping dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.10: Comparison of score map and outliers of all proposed cluster-wise detection methods for the Abalone
dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.11: Comparison of score map and outliers of all proposed cluster-wise detection methods for the Condi-
tion based maintenance dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.12: Comparison of score map and outliers of all proposed cluster-wise detection methods for the Clothes
dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.13: Comparison of score map and outliers of all proposed cluster-wise detection methods for the
Epilepic seizure dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.14: Comparison of score map and outliers of all proposed cluster-wise detection methods for the Mnist
dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.15: Comparison of score map and outliers of all proposed cluster-wise detection methods for the
Swiss roll 2d dataset
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(a) Train the whole dataset (b) 0.5 norm (c) 1 norm

(d) 1.5 norm (e) 2 norm (f) Geometric Mean

(g) Arithmetic Mean (h) Minimum (i) adjusted EIF based Geometric Mean

Figure 6.16: Comparison of score map and outliers of all proposed cluster-wise detection methods for the
Swiss roll 3d dataset
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