
Quantifying the Trustworthiness
Level of Federated Learning Models

Ning Xie
Zürich, Switzerland

Student ID: 20-736-104

Supervisor: Dr. Alberto Huertas Celdran & Muriel Franco
Date of Submission: November 9, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

In the last decade, the rise of Deep Learning (DL) in the development of Artificial In-
telligence (AI) has greatly improved the performance of AI models which are becoming
increasingly relevant as a support to the human decision-making process. With the ever
widening spread of AI applications powered on Big Data, centralized machine learning
became challenging due to the existing data silos in many industries where data contain
sensitive information. The rising concern for data privacy in AI is promoting the devel-
opment of privacy-preserving Machine and Deep Learning (ML/DL) techniques such as
Federated Learning (FL) where model training is performed collaboratively by distributed
data contributors in a decentralized manner. FL enables data privacy by design since lo-
cal data are not exposed. The increasing interest and adoption of FL systems prompt
the need to investigate the ability to trust the decisions made by FL models as compared
to centralized machine learning. There is a large body of existing literature on the topic
of Trustworthy AI where the requirements are drawn out for an AI system under the
five pillars of trust: i) robustness, ii) privacy, iii) fairness, iv) explainability and v) ac-
countability. These pillars were developed in the context of traditional ML/DL systems.
As the attention of AI shifts to FL, more efforts are needed to identify trustworthiness
pillars and evaluation metrics relevant for FL models. This work analyzed the existing
requirements for trustworthiness evaluation in AI and adapted the pillars and metrics for
state-of-the-art FL models. A comprehensive taxonomy for Trustworthy FL is proposed as
a result of the analysis. Based on the taxonomy, an evaluation algorithm, FederatedTrust,
was designed and implemented as a third-party Python library which can be imported
as a plugin to an FL development framework to evaluate the trustworthiness level of FL
models. The FederatedTrust library harnesses the meta data and configuration settings of
FL models gathered from the development framework and generates inputs and outputs
for trustworthiness analysis based on the metrics identified in the taxonomy. At the end
of an FL training, a report containing the trust scores of each metric and pillar that make
up the aggregated trustworthiness level is generated for the FL model created. The report
helps to identify the areas impacting trust within the model configuration and execution
so that improvements can be made to make the model more trustworthy. Validation of
the algorithm was conducted in the form of experiments to test the usefulness of the trust-
worthiness report generated by FederatedTrust under different FL settings. Observations
and discussions were made on the experiment results to analyze what can be improved in
the future development of this evaluation framework for Trustworthy FL.

i

Zusammenfassung

In den letzten zehn Jahren hat der Aufstieg von Deep Learning (DL) in der Entwicklung
der künstlichen Intelligenz (KI) die Leistung von KI-Modellen erheblich verbessert, die
als Unterstützung für den menschlichen Entscheidungsprozess immer relevanter werden.
Mit der immer größeren Verbreitung von KI-Anwendungen, die auf Big Data basieren,
wurde zentralisiertes maschinelles Lernen aufgrund der bestehenden Datensilos in vielen
Branchen, in denen Daten sensible Informationen enthalten, zu einer Herausforderung.
Die zunehmende Sorge um den Datenschutz in der KI fördert die Entwicklung von Tech-
niken zum maschinellen und tiefen Lernen (ML/DL), bei denen die Privatsphäre gewahrt
wird, wie z. FL ermöglicht Datenschutz durch Design, da lokale Daten nicht offengelegt
werden. Das zunehmende Interesse und die zunehmende Akzeptanz von FL-Systemen
erfordern die Untersuchung der Fähigkeit, den von FL-Modellen getroffenen Entschei-
dungen im Vergleich zum zentralisierten maschinellen Lernen zu vertrauen. Es gibt eine
große Menge an vorhandener Literatur zum Thema vertrauenswürdige KI, in der die
Anforderungen an ein KI-System unter den fünf Säulen der Verantwortlichkeit des Ver-
trauens dargelegt werden: i) Robustheit, ii) Datenschutz, iii) Fairness, iv) Erklärbarkeit
und v) . Diese Säulen wurden im Kontext traditioneller ML/DL-Systeme entwickelt. Da
sich die Aufmerksamkeit der KI auf FL verlagert, sind weitere Anstrengungen erforder-
lich, um Vertrauenswürdigkeitssäulen und Bewertungsmetriken zu identifizieren, die für
FL-Modelle relevant sind. Diese Arbeit analysierte die bestehenden Anforderungen an
die Vertrauenswürdigkeitsbewertung in der KI und passte die Säulen und Metriken für
State-of-the-Art-FL-Modelle an. Eine umfassende Taxonomie für Trustworthy FL wird
vorgeschlagen ein Ergebnis der Analyse. Basierend auf der Taxonomie wurde ein Bewer-
tungsalgorithmus, FederatedTrust, entworfen und als Drittanbieter-Python-Bibliothek im-
plementiert, die als Plugin in ein FL-Entwicklungsframework importiert werden kann, um
die Vertrauenswürdigkeit von FL-Modellen zu bewerten. Die FederatedTrust-Bibliothek
nutzt die Metadaten und Konfigurationseinstellungen von FL-Modellen, die aus dem En-
twicklungsframework gesammelt wurden, und generiert Ein- und Ausgaben für die Ver-
trauenswürdigkeitsanalyse basierend auf den in der Taxonomie identifizierten Metriken.
Am Ende eines FL-Trainings wird für das erstellte FL-Modell ein Bericht erstellt, der die
Vertrauenswerte jeder Metrik und Säule enthält, die das aggregierte Vertrauenswürdigkeit-
sniveau bilden. Der Bericht hilft bei der Identifizierung der Bereiche, die sich auf das Ver-
trauen innerhalb der Modellkonfiguration und -ausführung auswirken, sodass Verbesserun-
gen vorgenommen werden können, um das Modell vertrauenswürdiger zu machen. Die
Validierung des Algorithmus wurde in Form von Experimenten durchgeführt, um die
Nützlichkeit des von FederatedTrust generierten Vertrauenswürdigkeitsberichts unter ver-
schiedenen FL-Einstellungen zu testen. Es wurden Beobachtungen und Diskussionen zu

ii

iii

den Versuchsergebnissen durchgeführt, um zu analysieren, was in der zukünftigen En-
twicklung dieses Bewertungsrahmens für Trustworthy FL verbessert werden kann.

Acknowledgments

I would like to express my sincere appreciation for the Communication Systems Group at
the University of Zurich for providing me with this opportunity to conduct an insightful
thesis project. Many thanks to Dr. Alberto Huertas Celdran, Dr. Muriel Franco and Prof.
Dr. Burkhard Stiller for supervising and guiding me throughout the process. A special
thanks goes to Dr. Alberto Huertas Celdran and Mr. Pedro Miguel Sánchez Sánchez for
the continuous encouraging support and feedback during the project.

I would also like to thank the FederatedScope project team who made such a user friendly
and yet powerful federated learning deployment framework where students and researchers
can easily test out this new machine learning paradigm. The timely project provided me
with many inspirations and help for the deployment and validation of the evaluation
algorithm.

Lastly, I am happy that this project came to a good conclusion with meaningful contri-
butions after six months of hard work. I am very grateful for my family and partner for
their unconditional support during this challenging period of time.

iv

Contents

Abstract i

Acknowledgments iv

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 3

1.3 Thesis Outline . 4

2 Related Work 5

2.1 Trustworthy AI . 5

2.1.1 Related Scientific Work . 6

2.1.2 Related Tools . 7

2.2 State-of-the-Art FL . 8

2.3 Trustworthy FL . 9

2.3.1 Related Scientific Work . 9

2.3.2 Related Tools . 11

3 Six Pillars of Trust in FL 13

3.1 Robustness Pillar . 14

3.1.1 Resilience to Attacks . 14

3.1.2 System-level Robustness . 16

3.1.3 Algorithm-level Robustness . 17

v

CONTENTS vi

3.1.4 Client and Data Reliability . 18

3.1.5 Limitations . 19

3.2 Privacy Pillar . 19

3.2.1 Privacy-preserving Approaches . 20

3.2.2 Information Gain/Loss . 21

3.2.3 Uncertainty . 21

3.2.4 Indistinguishability . 22

3.2.5 Limitations . 23

3.3 Fairness Pillar . 24

3.3.1 Client Selection Fairness . 24

3.3.2 Performance Fairness . 25

3.3.3 Group-level Fairness . 25

3.3.4 Class Distribution . 26

3.3.5 Limitations . 27

3.4 Explainability Pillar . 28

3.4.1 Interpretability . 28

3.4.2 Post-hoc Explainability Methods 29

3.4.3 Limitations . 30

3.5 Accountability Pillar . 31

3.5.1 FactSheet Completeness . 31

3.5.2 Monitoring . 33

3.5.3 Limitations . 33

3.6 Architectural Soundness Pillar . 34

3.6.1 Client Management . 34

3.6.2 Model Management . 35

3.6.3 Optimization . 36

3.6.4 Limitations . 36

3.7 Trustworthy FL Taxonomy . 37

CONTENTS vii

4 Trustworthy FL Evaluation Algorithm 38

4.1 Algorithm Design . 39

4.1.1 Exploring Open-Source FL Frameworks 39

4.1.2 FederatedScope . 41

4.1.3 Context and Assumptions . 42

4.1.4 Requirements and Constraints . 42

4.1.5 Architecture . 43

4.2 Implementation . 46

4.2.1 Taxonomy . 46

4.2.2 Metric Definitions . 47

4.2.3 FederatedTrust Algorithm . 50

4.3 Deployment . 63

4.3.1 Use Case . 64

4.3.2 Result Discussion . 66

4.4 Limitations . 71

5 Summary and Conclusions 72

5.1 Future Work . 73

References 73

Abbreviations 82

Glossary 84

List of Figures 85

List of Tables 86

A Metric Calculation References 88

Chapter 1

Introduction

1.1 Motivation

The last decade was a revolutionary time for the development of AI with the rise of DL
[1]. Started from IBM Watson [2], ImageNet [3], AlphaGo [4] and Siri [5], all the way to
GPT-3 [6], DALL·E 2 [7] and Tesla Autopilot [8], AI can now see, speak, paint and drive
like a human. Traditionally, the hype was focused on achieving ever higher accuracy and
performance of the algorithms. However, since AI models became more complicated with
the use of black box algorithms such as Deep Neural Network (DNN) and Convolutional
Neural Network (CNN) [9], explainable AI (XAI) was needed to promote understand-
ability and trust in AI. In parallel, the growth of Big Data through the widespread of
AI-powered applications in our daily life and society has made it possible for data owners
to access and influence consumer behaviours, public opinions and individual decisions.
Meanwhile, we start to hear more mishaps of AI in the news as more responsibilities got
delegated to AI such as in criminal risk profiling [10], childcare support fraud detection
[11] and autonomous driving [12]. This lead to a rising concern on data privacy and the
general safety of AI applications.

Since 2016, laws and regulations have been drawn in response to the growing need for
improved data protection and privacy, such as the General Data Protection Regulation
(GDPR) within the European Union (EU) and the California Consumer Privacy Act
(CCPA) in the state of California. On the AI technology front, a revolutionary step was
the development of Federated Learning (FL), a type of decentralized machine learning with
the preservation of data privacy. It was originally born out of the need to build models
efficiently while keeping sensitive user data distributed on mobile devices by Google in
2016 [13]. In a way, FL is the solution to the data silo and fragmentation problems
caused by the new legislation that prohibits freely sharing of data and forces data to be
maintained by isolated data owners [14]. Over the past few years the research community
of FL has grown and the global FL market size is projected to be USD 210 million by
2028 [15]. In fact, the federated approach is regarded as a key player in the future of
digital health where clinical data can remain confidential [16] and in the emerging AI
market where there is growing need for scale, inter-organizational collaboration and data
integrity.

1

CHAPTER 1. INTRODUCTION 2

Beyond data privacy and safety, there is a general push from the society and the gov-
ernment for Responsible AI (RAI) [17] systems. Trustworthy AI is an emerging concept
towards RAI that encompasses several of the existing terminologies such as XAI, ethi-
cal AI [18], fair AI [19] and so on. In 2019, the ethics guidelines for AI set up by the
European Commission defined three high-level guidelines and four principles of trustwor-
thiness that an AI should follow [20]. A tremendous amount of research and discussions
also went into Trustworthy AI in recent years [21][22][23][24][25][26] that produced various
interpretations and definitions of trust in the context of AI systems.

To better understand the trustworthiness of an FL model, comparisons to classical central-
ized learning and extension on existing Trustworthy AI studies have to be made. Similar
to the traditional way of centralized ML/DL, FL is subject to the common risks of algo-
rithmic bias, adversarial attacks, data privacy breaches and reliability issues. However,
unlike centralized learning, FL involves different and more stakeholders, actors, informa-
tion exchanges, communication infrastructures and attack surfaces. It also presents new
challenges in architectural design, opportunities for privacy-preserving standards, new
perspectives on fairness and explainability beyond the underlying ML/DL models. [27]

In order to make FL models trustworthy, a methodology to evaluate and quantify trust-
worthiness in such systems needs to be developed. It requires examining the applicability
of existing evaluation methods from Trustworthy AI as well as curating new trustworthi-
ness pillars and metrics specifically for the context of FL that are missing from the current
literature. In the existing literature, the development on the technicality of trustworthy
algorithms overshadows the development on the evaluation frameworks for FL. The goal
of this thesis is to bridge the gap by studying and extending the Trustworthy AI taxon-
omy with requirements specifically for Trustworthy FL and to implement an evaluation
algorithm based on the taxonomy. The main contributions of the thesis are the build-
ing of the taxonomy and the implementation of the prototype evaluation algorithm for
trustworthiness level of FL models.

CHAPTER 1. INTRODUCTION 3

1.2 Description of Work

This work surveyed the state-of-the-art FL frameworks and the requirements for trust
in AI models. Each pillar and metric used to evaluate the trustworthiness of classical
and federated ML/DL models was reviewed, compared and eventually curated into a
general taxonomy for trust in FL models. Six pillars have been identified as the main
building blocks of the taxonomy: i) robustness, ii) privacy, iii) fairness, iv) explainability,
v) accountability and vi) architectural soundness. Each pillar represents a dimension of
trust that is further broken down into different notions which are then quantified by a
number of metrics.

Based on the taxonomy, methods of metric calculation were surveyed and investigated
strictly following the distributed nature of FL systems and the priority of preserving data
privacy. A list of feasible metrics and their theoretical calculation methods were collected.

As the goal was to implement a prototype trustworthiness quantification algorithm that
could be deployed on an FL system, various state-of-the-art open-source FL develop-
ment and simulation frameworks, including TensorFlow Federated (TFF) [28], Flower
[29], FLUTE [30], LEAF [31] and FederatedScope [32], were surveyed and compared for
their compatibility to the project. Eventually, FederatedScope, a recent project by the
Data Analytics and Intelligence Lab (DAIL) of Alibaba DAMO Academy [33], was cho-
sen as the reference framework to deploy the prototype algorithm for demonstration. The
FederatedScope framework uses the most up-to-date technologies and provides a compre-
hensive environment to simulate various types of FL models with flexible configurations
and attack simulation capabilities.

Considering the inner workings of the FederatedScope framework, the prototype algorithm
was designed and implemented as a Python library/package that could be imported into
the framework to generate inputs and outputs needed for the trust evaluation process.
The Python package, named FederatedTrust [34], works by harnessing the FL model con-
figurations, the built-in evaluation pipeline and the messaging channels of the framework.

For the validation, four experiments with various numbers of clients and training rounds
were executed for the use case of training an image classifier on the FEMNIST [31] dataset
in a cross-device client-server based FL context using a baseline FederatedAveraging (Fe-
dAvg) [13] algorithm. After each experiment run, the trustworthiness evaluation results
were compiled into a JSON report directly under the experiment’s evaluation output direc-
tory together with the other performance evaluation results. The goal was to compare the
experiment results to identify the factors impacting the trustworthiness level in different
scenarios of federation and to assess the usefulness of the FederatedTrust algorithm.

CHAPTER 1. INTRODUCTION 4

1.3 Thesis Outline

This thesis contains four main chapters. Chapter 1 introduces the recent development of
AI and the background of trustworthy AI and FL that motivate the topic. It outlines the
goal, the main contributions and the methodology of the thesis work.

Chapter 2 contains findings from the literature review on the related work in Trustworthy
AI and the state-of-the-art FL. In addition, existing work on the topic of Trustworthy
FL from the perspectives of privacy, fairness, robustness and design were surveyed as a
foundation for the taxonomy.

Chapter 3 presents the first contribution of this work with the detailed analysis of six
Trustworthy FL pillars: robustness, privacy, fairness, explainability, accountability and
architectural soundness. In the analysis of each pillar, the defining notions and metrics
are explained and limitations in terms of feasibility and effectiveness are discussed. This
chapter concludes with the comprehensive taxonomy on Trustworthy FL that was created
from the analysis.

Chapter 4 presents the second contribution of this work with the detailed explanation and
discussions on the design and implementation of the prototype trustworthiness evaluation
algorithm, FederatedTrust. The algorithm design section includes the main design process,
decisions, requirements and architecture. The implementation section contains the list
of metric definitions and the code structure of the algorithm. The deployment section
demonstrates the use of FederatedTrust with one specific use case in an FL framework
and presents results from the experiment runs. Observations on the results are discussed.

Chapter 5 concludes this work by providing summary and conclusions. Possible limitations
and future work on the topic are discussed.

Chapter 2

Related Work

As mentioned in the introduction, a large body of literature on Trustworthy AI has
emerged in recent years along side with the growing interest in FL research. This section
details the findings from the literature review of Trustworthy AI (2.1), State-of-the-Art
FL (2.2) and Trustworthy FL (2.3). Each section concludes with examples of the relevant
tools that have been developed.

2.1 Trustworthy AI

Over the past few years, researchers, society and governing bodies have proposed various
definitions and interpretations of Trustworthy AI from multiple perspectives. In 2019,
the High-Level Expert Group on Artificial Intelligence (AI HLEG) of the European Com-
mission [20] defined three foundations of Trustworthy AI: i) lawful, ii) ethical and iii)
robust. Under the three foundations, there are four principles: i) respect for human au-
tonomy, ii) prevention of harm, iii) fairness and iv) explicability. Following the principles
there are seven key requirements for the realisation of Trustworthy AI: i) human agency
and oversight, ii) technical robustness and safety, iii) privacy and data governance, iv)
transparency, v) diversity, non-discrimination and fairness, vi) societal and environmental
wellbeing and vii) accountability.

At the same time, AI researchers also developed specific approaches and techniques that
an AI system should adopt to be trustworthy. The systematic reviews on Trustworthy
AI conducted by Liu et al. [21] and Li et al. [22] summarized five key pillars of trust:
robustness, privacy, fairness, explainability and accountability. The existing work related
to these five areas in AI are presented in the following section.

5

CHAPTER 2. RELATED WORK 6

2.1.1 Related Scientific Work

Robustness

The research on robustness in AI mainly focuses on adversarial robustness. Carlini et al.
[35] provided a comprehensive survey of methodologies on evaluating adversarial robust-
ness. They discussed ways to define adversarial goals and capabilities and provided a
guideline for the best practices. Liu et al. [21] provided the taxonomy of different types
of threat models in AI and discussed the representative defense methods for evasion and
poisoning attacks. Li et al. [22] discussed robustness in terms of generazaility to diverse
data distributions, algorithmic vulnerabilities and system-level security.

Privacy

Privacy is a big topic in machine learning. Al-Rubaie and Chang [36] discussed the poten-
tial privacy threats for ML applications regarding the current methods of collecting data
and building ML models. Their work touched on privacy attacks such as reconstruction
attacks, model inversion attacks, membership inference attacks and de-anonymization.
They also presented cryptographic approaches such as homomorphic encryption and per-
turbation approaches such as differential privacy as privacy-preserving ML techniques.
Liu et al. [37] provided a comprehensive taxonomy of privacy attacks in ML and dis-
cussed using ML models to help protect privacy. A survey by Wagner and Eckhoff [38]
explained and discussed about over eighty privacy metrics and developed a method to help
identify the right privacy metrics for a given scenario by asking nine questions. A study
by Mehner et al. [39] generalized a differential privacy model to a more understandable
interpretation of epsilon for measuring a global privacy risk metric.

Fairness

Feuerriegel et al. [19] introduced and explained the term “fair AI” based on the origins
and mathematical notions. They further discussed the sources of unfairness in AI and
the algorithms for achieving fair AI. Pessach and Shmueli [40] conducted a comprehensive
review on fairness in ML and detailed the different causes of unfairness and the various
measurements of algorithmic bias such as disparate impact, demographic parity, equalized
odds and equal opportunity. They also discussed the trade-offs between different fairness
measurements and between fairness and accuracy.

Explainability

Doshi-Velez and Kim [41] provided the definition for interpretability in AI and a taxon-
omy for evaluating interpretability. They proposed a data-driven approach to discover
facotrs of interpretability. The work by Arrieta et al. [42] is a comprehensive review on
the topic of XAI and provides a taxonomy of transparency. They categorized ML models

CHAPTER 2. RELATED WORK 7

by their level of transparency and explained the post-hoc explainability methods for non-
transparent models. In the area of post-hoc explainability methods, Ribeiro et al. [43]
proposed the Local Interpretable Model-Agnostic Explanations (LIME) method to explain
the predictions of any machine learning classifier by learning a linear Support Vector Ma-
chine (SVM). Blanco-Justicia et al. [44] proposed using shallow decision trees to explain
the behaviour of deep learning models. In another research, Lundberg and Lee [45] pre-
sented a unified framework for interpreting predictions, Shapley Additive exPlanations
(SHAP), which assigns each feature an importance value for a particular prediction.

Accountability

Wieringa [46] defined algorithmic accountability as a networked account for a socio-
technical algorithmic system following the various stages of the system’s lifecycle. During
the lifecycle, multiple actors (i.e. stakeholders, developers, users) have the obligation to
explain and justify their use, design and/or decisions concerning the system and the sub-
sequent effects of that conduct. Li et al. [22] suggested using checklist-based assessments
to evaluate accountability. Raji et al. [47] proposed an auditing framework for the de-
velopment and deployment of large-scale artificial intelligence systems by learning lessons
from aerospace, medical services and finance sectors. Arnold et al. [48] introduced AI
FactSheet which is modeled after a supplier’s declaration of conformity (SDoC) to show
a product conforms to a standard or technical regulation. Their work envisioned such
document to contain the purpose, performance, safety, security, and provenance informa-
tion which would be completed by AI service providers and examined by consumers to
promote transparency and trust.

2.1.2 Related Tools

The previous UZH master project work [49] implemented a trust certification algorithm
for traditional ML/DL models combining four pillars of trust - fairness, explainability,
robustness and training methodology. The algorithm was deployed on a web application
to allow users to calculate the trustworthiness of their models by uploading the model
parameters and the dataset used.

The IBM AI Factsheet 360, based on the FactSheet project [48], is a platform with a list
of example templates illustrating how to properly use a FactSheet for various machine
learning projects.

The IBM AI 360 Toolkit [50] is platform with a collection of three tools for exploring three
pillars of trust in AI - fairness, explainability and robustness. The AI Fairness 360 is an
extensible open source toolkit for examining, reporting and mitigating discrimination
and bias in machine learning models throughout the AI application lifecycle. The AI
Explainability 360 contains eight state-of-the-art algorithms for interpretable machine
learning as well as metrics for explainability. The Adversarial Robustness 360 Toolbox
(ART) is a Python Library for machine learning security that enables developers and
researchers to defend and evaluate ML/DL models and applications against the adversarial
threats of evasion, poisoning, extraction, and inference attacks.

CHAPTER 2. RELATED WORK 8

2.2 State-of-the-Art FL

Yang et al. [51] defined an FL system as a learning process where two or more parties or
data owners collaboratively train a model during which any data owner does not expose
its data to others. Based on the partitioning of the data among the parties, Yang et al.
[51] further categorized the learning process into Horizontal Federated Learning (HFL)
where datasets share the same feature space but different in samples and Vertical Fed-
erated Learning (VFL) where datasets share overlapping sample ID space but differ in
feature space. Federated Transfer Learning (FTL) applies to the scenarios that datasets
do not share any overlapping sample or feature spaces. In other terms, Kairouz et al.
[27] categorized FL settings into “cross-device” and “cross-silo” respectively. Cross-device
setting involves mobile devices as clients and is by default HFL, while cross-silo is usually
among multiple organizations and can be either HFL or VFL depending on whether the
organizations share sample space or feature space.

The work by Lo et al. [52] outlines a typical architecture of FL which involves the roles
of a learning coordinator (i.e. system owner or manager) and data contributors (i.e. local
model trainers). Yin et al. [53] explain that in HFL there are two main communication
architectures: client-server and peer-to-peer. Client-server, also known as centralized FL,
is where N clients collaboratively train a model with the help of a server. Peer-to-peer,
also known as decentralized FL is when there is no central server and clients communicate
model updates to one another. As for VFL, the two common communication architectures
are an architecture with a third-party coordinator and one without. Li et al. [54] further
explain that in cross-device setting the manager is usually a powerful central server, as in
the case of client-server architecture, while in cross-silo setting the manager can be one
dominating organization among the participants, as in the scenario without a third-party
coordinator.

An FL system can be viewed as a large-scale distributed system with numerous par-
ticipants and different components, therefore designing such a system requires software
system design thinking apart from the machine learning knowledge. Lo et al. [52] pro-
posed several recommended design patterns based on a systematic literature review which
covers the areas of client and model management. A well maintained client management
system enables the tracking of dishonest or dropout nodes and improves the performance
of the model with optimized client selection. A good model management system ensures
traceability of local model contributions and improves accountability and communication
efficiency.

Regarding how the training process works, the computation happens on both the manager
and the participants. A most widely used basic framework for cross-device HFL is the
FedAvg algorithm proposed by McMahan et al. [13] when they first introduced the term
Federated Learning in 2016. In FedAvg, the central server first broadcasts an initial global
model and training parameters to selected parties before training starts. Then in each
iteration, each party receives the current global model and updates it with their local
training data before sending the updated models back to the central server. Next, the
server aggregates all the received local models into a new global model. The process
repeats for a number of iterations and the global model of the server is the final output.

CHAPTER 2. RELATED WORK 9

For VFL, the work by Yang et al. [51] illustrates that a typical process involves a third-
party collaborator and multiple participating organizations where one holds all the label
data. The first part of the process is encrypted entity alignment where encryption-based
user ID alignment techniques are used to align entities across the data from different
organizations. The second part of the process is encrypted model training where parties
encrypt and exchange intermediate gradient results with the help of the collaborator.

In an earlier study in 2018, Nilsson et al. [55] compared the performance of FedAvg with
Federated Stochastic Variance Reduced Gradient (FSVRG) [56] and CO-OP [57] and re-
ported that FedAvg achieved the highest accuracy. Since then, researchers have proposed
several improvements to FedAvg. Reddi et al. [58] proposed the FedOpt algorithm that
incorporates adaptivity in FL by allowing the server to update weights with a server op-
timizer on top of simply averaging the collected weights. Li et al. [59] proposed FedProx
that tackles heterogeneity in federated networks by updating the model with a proximal
regularizer and provides convergence guarantees when learning over data from Non-IID
distribution. Li et al. [60] proposed another approach called FedBN that tackles the
features shift Non-IID issue by using local batch normalization before averaging models.
T Dinh et al. [61] proposed pFedMe, an effective personalized FL approach to address
data heterogeneity, in which the personalized model and global model are decoupled with
Moreau envelops.

Given the above background knowledge of state-of-the-art FL, important works related
to each Trustworthy AI pillar in the context of FL models were surveyed and presented
in the following sections.

2.3 Trustworthy FL

2.3.1 Related Scientific Work

Robustness

Although FL already provides a first level of privacy protection by not sharing local train-
ing data, the framework is still vulnerable to privacy attacks in certain cases. Jere et al.
[62] provided a taxonomy of attacks on FL that included two categories of attacks: model
performance attacks and data privacy attacks. Model performance attacks can be done by
data or model poisoning where the integrity of the training data or gradient updates are
compromised. Data privacy attacks include membership inference attacks, model inver-
sion attacks and Generative Adversarial Networks (GAN) reconstruction attacks where
adversaries can gain information on sensitive properties. Bhagoji et al. [63] reported that
even a highly constrained adversary could carry out stealthy model poisoning attacks high-
lighting the vulnerability of an FL setting. Jere et al. [62] suggested using Differential
Privacy (DP), robust aggregation and outlier detection as main defenses based on a sur-
vey. Naseri et al. [64] showed empirical evidence that DP could defend against backdoor
attacks and mitigate white-box membership inference attacks in FL. Muñoz-González
et al. [65] introduced Adaptive Federated Averaging (AFA). AFA is a Byzantine-robust

CHAPTER 2. RELATED WORK 10

FL algorithm that detects and discards bad or malicious client updates at every iteration
by comparing the similarity of these individual updates to the one for the aggregated
model. Rodŕıguez-Barroso et al. [66] proposed Robust Filtering of one-dimensional Out-
liers (RFOut-1d), a new FL approach resilient to model-poisoning backdoor attacks by
filtering out the model updates of the adversarial clients. In another study on robustness,
Alfarra et al. [67] revealed that a simple federated averaging technique was effective in
building more certifiably-robust models.

Privacy

As seen from the types of vulnerabilities and attacks on FL, privacy is the central point of
focus since parameter gradients are shared among participants and the server. There has
been a lot of studies on Privacy-preserving Federated Learning (PPFL) techniques. Three
main categories are: i) encryption-based, ii) perturbation-based and iii) anonymization-
based. In the encryption-based category, Dong et al. [68] designed a privacy-preserving
protocol against semi-honest adversary by combining TernGrad with secret sharing and
homomorphic encryption. Hardy et al. [69] developed a privacy-preserving entity res-
olution and an additively homomorphic encryption scheme for VFL setting. Bonawitz
et al. [70] designed the Secure Aggregation aggregator by leveraging Secure Multiparty
Computation (SMC) to compute sums of model parameter updates from individual users’
devices in a secure manner. In the pertubation-based category, the global DP scheme has
been widely used in many FL methods. Choudhury et al. [71] demonstrated that global
DP offered strong level of privacy in protecting sensitive health data in a FL framework.
Geyer et al. [72] proposed a procedure using DP to ensure that a learned model does not
reveal whether a client participated during decentralized training. Unlike perturbation-
based techniques, anonymization-based techniques can provide privacy defense without
compromising data utility. Choudhury et al. [73] proposed using the k-anonymity scheme
at the client level together with a global anonymization mapping process to achieve better
privacy preservation and model performance than DP-based FL models. For measuring
privacy in FL, Liu et al. [74] proposed a novel method to approximate the mutual in-
formation between local gradient updates and batched input data during each round of
training.

Fairness

Fairness is another point of focus for FL as multiple parties are contributing data to the
model training and are eventually rewarded with the same aggregated global model. A
survey by Shi et al. [75] provide an overview of fairness notions adopted in fairness-aware
FL approaches. The notions include accuracy parity which measures the degree of uni-
formity in performance across FL client devices, selection fairness which aims to mitigate
bias and reduce under representation and never representation, and contribution fairness
which aims to distribute payoff proportionately to the contributions of clients. Yue et al.
[76] proposed GIFAIR-FL, a framework that imposed group and individual fairness to FL
settings, by penalizing the spread in the loss of clients to drive the optimizer to fair solu-
tions. Zhang et al. [77] developed FairFL that facilitated fairness across all demographic

CHAPTER 2. RELATED WORK 11

groups by employing a Multi-agent Reinforcement Learning (MARL) based scheme to
solve the fair classification problem in FL by enforcing an optimal client selection policy
on each client. Huang et al. [78] proposed a long-term fairness constraint that took into
consideration an expected guaranteed chosen rate of clients that the selection scheme must
fulfill. Fan et al. [79] proposed the completed federated Shapley value (ComFedSV) to
evaluate data owners’ contributions in FL based on solving a low-rank matrix completion
problem for the utility matrix.

Explainability

Even with active research on XAI, there are still challenges specifically to FL models as
most client data are private and cannot be read or analyzed. For VFL, some explainability
methods such as feature importance can reveal underlying feature information from other
parties. For an HFL model, since clients share the same feature space, Wang [80] suggested
that it can be safely explained by calculating the Shapley value of each feature using the
definition by Molnar [81]. But for VFL models, their work proposed a variant version
of SHAP [45] by combining the parties’ features into individual united feature space so
that parties do not get information of the features from other parties. Chen et al. [82]
proposed EVFL, a credible federated counterfactual explanation method [83] to evaluate
feature importance for VFL models by utilizing the Kullback-Leibler (KL) divergence [84]
to minimize the distribution of the counterfactual and query instances in the client party.

Accountability

Even though FL models are promising regarding privacy, they would require far more
transparency and trustworthiness as compared to classical centralized ML/DL models.
Baracaldo et al. [85] from IBM Research introduced the Accountable FL FactSheet Frame-
work (AFˆ2 Framework) that could instrument accountability in FL models by fusing
verifiable claims with tamper-evident facts. The framework requires different actors (i.e.
project owner, data owner, aggregator) to log claims about the various processes during
the lifecycle in a distributed immutable ledger. They also expanded the AI FactSheet
project to account for the complex model compositions of FL. Desai et al. [86], Mugun-
than et al. [87] and Awan et al. [88] incorporated smart contracts to introduce different
auditing mechanisms to FL models by leveraging the immutability and decentralized trust
properties of blockchain.

2.3.2 Related Tools

Caldas et al. [31] developed LEAF, na open-source benchmarking framework for FL, based
on three metrics - performance, amount of computing resources and weighted accuracy.
LEAF provides a suite of federated datasets for experiment and produces granular statis-
tical and system analysis.

CHAPTER 2. RELATED WORK 12

Chai et al. [89] developed FedEval, an open-source evaluation framework for FL systems,
based on five metrics - accuracy, communication, time efficiency, privacy and robustness
(ACTPR). FedEval was designed as a benchmarking system with a built-in evaluation
model. For accuracy, the evaluation strategy is to compare the federated learning accuracy
with the centralized training accuracy to determine whether the FL model has achieved
better or worse accuracy. The communication metric measurement relies on the number
of communication rounds and the total amount of data transmission during training. The
time efficiency metric measures the overall time needed for getting a converged model
and the time needed for sub modules in the model. The privacy metric is calculated by
implementing two state-of-the-art gradient attacks in the framework and check the model
accuracy or review attack results. The robustness metrics is simply the performance under
Non-IID data.

The IBM AI FactSheet 360 platform [90] provides an example FactSheet template for
Accountable Federated Learning.

Chapter 3

Six Pillars of Trust in FL

Despite the active research and development to make AI trustworthy, there is a lack of
systematic surveys or studies on how to improve the trustworthiness of FL models as a
whole. In thoery, the five key pillars are applied to FL as well. However, in order to
make meaningful and effective evaluations in the FL setting, where privacy and security
are priorities, adaptations and additions of notions, metrics and evaluation methods are
needed.

Based on the literature review of state-of-the-art FL, this work proposes a new pillar,
Architectural Soundness Pillar, in order to capture the complex compositions and design
challenges of FL systems in the development of Trustworthy FL.

In the following sections, the first major contribution of this thesis is presented. The
six pillars of trust in FL - robustness (3.1), privacy (3.2), fairness (3.3), explainability
(3.4), accountability (3.5), architectural soundness (3.6) - are introduced and explained,
together with their underlying notions and evaluation metrics, followed by discussion of
the limitations.

If not specified otherwise, FL means horizontal FL with baseline FedAvg as this is the
most widely used model and the main use case in this work.

13

CHAPTER 3. SIX PILLARS OF TRUST IN FL 14

3.1 Robustness Pillar

Robustness is regarded as one of the three foundations of trustworthy AI, along with
lawfulness and ethics, as defined by the AI HLEG of the European Commission [20].
AI systems must be technically robust to ensure that they are not open to malicious
use or bring harm to humans. A robust AI system should be able to withstand input
perturbations, erroneous inputs, unseen data or distributional shifts [22]. In practice, this
means resilience to attacks, system robustness, high level of accuracy and reliable results.
Building resilience in an AI system requires assessing potential forms of attacks, employing
defense mechanisms and verifying the system behaviour under unexpected situations.
To achieve system level robustness, it requires assessing the system functionalities and
operational reliability. High level of accuracy is an indication of performance that falls
under algorithm level robustness which also considers generalizability. Lastly, this work
proposes adding client and data reliability as a notion for robustness in FL because reliable
client resources increases the probability of successful training, and quality data are the
key to any reliable ML/DL models.

3.1.1 Resilience to Attacks

According to the literature, FL models are susceptible to poisoning attacks during training
and privacy attacks during the learning process. Poisoning attacks in FL have two major
categories: data poisoning and model poisoning. In data poisoning attacks, typically the
integrity of the training data is compromised so as to compromise the performance of the
model. Common methods are flipping or permuting the labels and inserting backdoor
patterns or perturbations to the training data. Model poisoning attacks have a broader
range and the goal is to manipulate the training procedure. In FL, this could be gradient
manipulation, or model update poisoning attack, which is performed by corrupting the
updates of a client directly or during model exchanges. Defence against poisoning attacks
is therefore a desirable property of a resilient FL model [91]. Privacy attacks include class
representative inference attack which is performed by a GAN attack and membership
inference attack which is done by passively observing updated model parameters and
performing inference. The current state-of-the-art defense against privacy attacks heavily
relies on differential privacy and secure multiparty computation, which are discussed in
the privacy pillar (3.2).

Evaluation of this notion is performed by first checking if the FL model is equipped
with any desirable defense mechanisms and then verifying the model’s defense capabilities
against representative attacks empirically. For demonstrating dense capabilities, there are
the concepts of empirical and certified robustness. Empirical robustness demonstrates how
well a model performs against known adversaries by computing the minimal perturbation
that the attacker must introduce for a successful attack. Certified robustness goes a
step further by providing a formal robustness guarantee for any input perturbations, for
example, a classifier is said to be certifiably robust if for any input x, one can easily obtain
a guarantee that the classifier’s prediction is constant within some set around x [92].

CHAPTER 3. SIX PILLARS OF TRUST IN FL 15

Poisoning Defence:

Byzantine-resilient Defense. It is a popular defense mechanism against untargeted model
update poisoning attacks. Various robust aggregation methods are provably effective
defense mechanism under this category [27]. Using a robust aggregator to detect malicious
client updates lowers an FL model’s susceptibility to poisoning attacks.

Outlier Detection. On the other hand, explicitly identifying and denying malicious influ-
ence is a more proactive form of defense against poisoning attacks. Approaches include
rejecting updates with too large error rates, measuring the distribution of parameter
updates or looking for dormant neurons that are not frequently activated [93]. Outlier de-
tection is a defense mechanism that increases the probability of finding malicious updates
and hence lowering the possibility of poisoning attacks.

Empirical Robustness:

We can measure empirical robustness by implementing a model poisoning attack: a typical
poisoning attack is to implant backdoor triggers to alter some local data (data poisoning)
or the gradients (model poisoning) [91]. A mathematical explanation of how a model
replacement attack work is provided by Wu et al. [93] and illustrated as follows:

It is assumed that least one compromised client could apply the backdoor patterns to
administer a model replacement attack. Let wt be the current model and N be the
number of all clients. The global model w at time t + 1 is an averaged mean of model
updates from N clients at time t + 1, and the goal is to replace the global model w at
t+ 1 with the attacker’s model xatk:

xatk = wt+1 = wt +
1

N

N∑
i=1

(xi
t+1 − wt) (3.1)

Now let xm
t+1 be the update from the malicious client m at time t+1, then by rearranging

equation 3.1, we have:

xm
t+1 = N · xatk −N · wt −

N−1∑
i=1

(xi
t+1 − wt) + wt (3.2)

Assuming
∑N

i=1(x
i
t+1 − wt) ≈ 0 [94], then we have the attacker’s update be simplified as

the following:
xm
t+1 = N · (xatk − wt) + wt (3.3)

Certified Robustness:

The idea of the robustness guarantee is to define an“attack lower bound”which is the least
amount of perturbation that is required for the attacker to succeed. Or in other words, a
model is certifiably robust for an upper bounded amount of perturbations. Many certified

CHAPTER 3. SIX PILLARS OF TRUST IN FL 16

robustness approaches and techniques have been proposed. Alfarra et al. [67] showed
that certification technique like randomized smoothing [92] can be used to certify the
robustness of a ResNet18 trained on FL setting. Weng et al. [95] developed the CLEVER
metric (short for Cross Lipschitz Extreme Value for nEtwork Robustness) using the local
Lipschitz constant for neural networks. CLEVER is an attack-agnostic derivation of the
universal lower bound on the minimal distortion required for a successful attack. The
CLEVER metric is available in the ART Python library mentioned in section 2.1.2.

3.1.2 System-level Robustness

System-level robustness should be considered in productionalized FL models where proper
software development and deployment standards are expected and observed. Convention-
ally, testing is an essential approach to evaluate and enhance the robustness of any software
system [22]. Fuzz testing [96] and bug bounty programs [97] are effective approaches to
detect vulnerabilities of a system from malicious inputs. As FL systems involve more
actors and more communication steps, there are more chances and attack surfaces for
adversaries. Continuous testing and validation are key to ensure that the system behaves
as intended. A robust system should also have fallback plans when things go wrong. For
FL, there is a high risk of uncertainty and errors when training in a distributed environ-
ment. A reliable FL system should be able to mitigate the risks to ensure an efficient and
effective collaborative learning process.

Functional Robustness:

Testing Coverage. There are various testing methodologies for robust system delivery,
ranging from code review, unit testing, integration testing, system testing and acceptance
testing. The purpose of testing is to make sure that the developed functionaries adhere to
the requirements. The reason why this is important to FL is that an FL model requires
more procedures like broadcasting messages to distributed clients, client selection and
model aggregation. During development, developers should make sure that the functions
for client selection are selecting the correct clients based on the required criteria and the
functions for aggregation are following the aggregation steps correctly. An important
metric in testing is the coverage, which is the percentage of code, branches or features
that have been fully tested. Conventionally, the higher the testing coverage, the more
verified the system is in terms of functional robustness.

System Reliability:

Error Rate. The key elements of reliability include the probability and the duration of
time of failure-free operation [98]. A simple evaluation approach is to calculate the failure
rate with is the number of failures over a given amount of time.

Maximum Timeout. The ability to recover from failure with error handling mechanisms
is also an important reliability feature. In an FL configuration, there is the practice to

CHAPTER 3. SIX PILLARS OF TRUST IN FL 17

define a maximum timeout duration and a dropout mechanism that determines how long
the server should wait to receive model updates from the clients.

Dropout Rate. With the maximum timeout defined, straggler client nodes are often
dropped to speed up convergence and optimize resources. In a way, a high dropout
rate can also indicate a less reliable FL system that needs to improve on either network
stability or the client selection effectiveness.

3.1.3 Algorithm-level Robustness

At the algorithm level, robustness evaluation is mostly focused on performance and gener-
alizability. Performance benchmarking is a widely used approach to showcase how good an
ML/DL model is. However, good performance does not necessarily imply generalizability
which is a more long-term robustness indicator. In fact, generalizability is a major chal-
lenge in FL because each client has different local data heterogeneity and the aggregated
global model might not be able to capture the data pattern of each of them. Non-IID
data especially class imbalance may cause severe learning divergence to parametric mod-
els mainly in HFL [99]. Therefore, having a mechanism to deal with heterogeneous data
is a desirable and recommended design pattern in FL [52]. There are data-based and
algorithm-based approaches to tackle Non-IID data. In FL research, the algorithm-based
approach focuses on personalization.

Performance:

Average Test Accuracy. The performance of an ML/DL algorithm is measured by test/val-
idation loss and accuracy. In FL there are two approaches of measuring the performance.
One is by reserving a set of test or validation data on the server side to be used for global
model evaluation. The other is by evaluating test accuracy at each client’s device (using
client test data and the global model) and aggregating the test accuraries on the server
side.

Personalization:

Several methods have been proposed for this category.

Regularization. Regularization is one of the personalized FL approaches which aims at
minimizing the disparity between the global and local models.

Multi-tasking Learning. This is a method where multiple learning tasks are solved at
the same time. This is beneficial for FL models by the nature of collaborative learning.
Multiple organizations participating in the FL models can be training their personalized
models to achieve better performance. For example, MOCHA [100] generates separated
but related models on local client devices using data of related tasks.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 18

Clustering. Clustered Federated Learning (CFL) groups client populations into clusters
based on their similarity [101].

Personalized Layer. Another personalization method for neural network models is intro-
ducing personalized layers for each client in the model. FedPer [102] is such an example
that uses the base layers as the shallow layers and personalized layers as the deep layers
while keeping everything else the same as the baseline FedAvg algorithm. The experiment
results showed that FedPer can achieve higher test accuracy than FedAvg.

3.1.4 Client and Data Reliability

This additional notion of robustness deals with client and data reliability in terms of
client reputation and data quality. In the study by Kang et al. [103], the concept of
reputation metric was introduced to gauge the trustworthiness of client workers. The
reputation metric is supposed to help detect malicious updates early and to ensure that
selected clients can be trusted. High quality data are essential for the development of
machine learning models and even more so for FL models with inconsistent data qualities
among clients. In the work by Pejó and Biczók [104], a novel approach was proposed to
infer the data quality in an FL environment taking advantage of the round-wise training
mechanism.

Scale:

Number of Clients. The scale of project also impacts the reliability of the system. In the
case of FL, the number of clients determine the number of distributed network, devices or
machines that need to be working together seamlessly to co-train an ML/DL model. In
different FL settings, the scale is different. For example, a cross-silo VFL between a few
organizations could be considered a smaller scale (10 to 100 clients) than a cross-device
HFL setting among millions of mobile phones. With more clients, the network stability,
computation power and availability of clients are all influential factors to the success and
reliability of the FL system. Therefore, scale in terms of the number of participating
clients is used as an approximation of how reliable the FL model is.

Client Reputation:

Reputation Score. In the work by [103], a novel reputation metric was proposed and a
subjective logic model was used to calculate reputation score for each client interaction.
After each training iteration, the server uses a poisoning attack detection scheme and
the elapsed time to determine if the local update from the client is reliable. Reliable
updates are treated as positive interactions and improves the reputation value, and vice
versa. When the reputation value is below a certain threshold, then the client is treated
as malicious and unreliable.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 19

Data Quality:

Inferred Quality Score. Similarly, in the proposed method [104], after each round of
training, the local updates are compared with the current global model to see if the new
local updates are better or worse (or the same as) the global model. The inference is that
if a round of training at one client improves the performance of the global model, then
the data from that client has a higher quality score, and vice versa.

3.1.5 Limitations

For building resilience to attacks, existing defenses against backdoor attacks requires ac-
cess to or analysis of training data and local updates. Evaluating the empirical robustness
by administering attacks to the system also requires access to the training dataset to in-
sert perturbations. The data access requirements may not hold in an FL setting where
data privacy should be protected.

For system-level robustness, testing coverage alone cannot guarantee the degree of func-
tional verification because the quality of the tests are not considered. It is difficult to
use a generalized definition for failure rate as failures are defined differently according
to different system requirements and some failure reports may not be triggered in the
system. Emphasis on system reliability in terms of efficiency may also sacrifice fairness
when certain clients with slower network speed or computation power do not get selected
or get dropped more frequently.

For algorithm-level robustness, evaluating global model performance on the server side
with even a small amount of reserved test/validation data may reveal sensitive client
information to the server. Participating clients need to reach an agreement on test data
usage for this type of global performance evaluation. Furthermore, aggregating the mean
test accuracy of the global model from clients may not be accurate enough for evaluating
the performance of personalized FL models [105].

For client reliability, calculating the reputation value at each round of training adds a
large amount of overhead in a large scale FL system at the expense of resource cost.
Similarly, comparing each local update with the global update at each round of training
for measuring data quality is also a costly task.

3.2 Privacy Pillar

The biggest driving force for the development of FL has been data privacy because the
whole point is to train ML/DL models over distributed data that could be sensitive and
should be kept confidential. It is important that an FL model keeps up the promise of
preserving data privacy within its lifecycle in order to gain trust from the training partic-
ipants and users. Even though FL already elicits a degree of data privacy by definition,
assumptions have to be made about the integrity of the multiple actors and parties in the

CHAPTER 3. SIX PILLARS OF TRUST IN FL 20

system. If clients are honest but the server is honest-but-curious, prevention of informa-
tion leakage from model parameter exchanges between clients and the server needs to be
in place. If clients are honest-but-curious in peer-to-peer or VFL settings, then prevention
of information leakage should focus on secure communication between clients. Moreover,
information can still be leaked by malicious attacks from the outside.

Privacy-preserving techniques is a big topic in Trustworthy AI and FL. The comprehensive
survey by Yin et al. [106] summarized the state-of-the-art PPFL approaches which served
as a reference for this work for the evaluation of privacy-preserving capabilities of FL
models. The representative techniques from the three major categories are used as a
checklist to verify if an FL model has certain privacy defense.

Furthermore, the effectiveness of the privacy-preserving mechanisms need to be assessed
to provide a full picture of the degree of privacy preserved. The list of technical privacy
metrics provided by Wagner and Eckhoff [38] is helpful for evaluating privacy in ML/DL
models.

3.2.1 Privacy-preserving Approaches

Thanks to the active research on privacy in AI, various privacy-preserving techniques have
been proposed and some of them are shown effective in preventing information leakage or
protecting data privacy in FL setting. Employing these techniques in an FL system can
show that the system is committed to protecting privacy and has the technical capability
to do so.

Perturbation-based:

Differential Privacy. The key idea of perturbation-based techniques is to add noise to the
raw data so that the perturbed data are statically indistinguishable from the raw data.
The most widely adopted scheme in this approach is differential privacy (DP). In FL there
are global and local DP. Global DP requires a trusted central server but is more accurate
than local DP. Local DP adds noise to the clients’ gradient updates to conceal the true
values from attacks during model exchanges or aggregation. Employing global or local DP
in an FL system will preserve the data or gradient information to some extent depending
on the amount of noise added.

Encryption-based:

Homomorphic Encryption. The most widely adopted scheme in this approach is homo-
morphic encryption (HE). Using additive HE on gradients will further prevent information
leakage during model exchanges. Another popular scheme is SMC that enables distributed
participants to collaboratively calculate an objective function without revealing their data.
SMC is particularly useful in VFL setting where parties have to share intermediary gra-
dient results.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 21

Anonymization-based:

K-anonymity. The most widely adopted schemes in this approach are k-anonymity and
l-diversity. K-anonymity is satisfied if each sample in the dataset cannot be re-identified
from the revealed data of at least k − 1 samples. L-diversity extends on k-anonymity so
that the sensitive attributes of the samples are protected. Choudhury et al. [73] showed
that the k-anonymity scheme could effectively preserve privacy even better than DP in
an FL model.

3.2.2 Information Gain/Loss

The most direct evaluation of privacy protection effectiveness is the amount of information
gain or loss which is quantified by the amount of privacy lost by the users or the amount of
information gained by the adversary due to leakage or disclosure of information [38]. The
state-of-the-art privacy metrics, to name a few, include Amount of Leaked Information
(counting the information items disclosed by a system), Relative Entropy (measuring
the distance between two probability distributions), Mutual Information (quantifying the
shared information between two random variables) and so on. Liu et al. [74] developed a
quantitative metric based on mutual information to evaluate privacy leakage in FL which
is used in this work.

Information Leakage Risk:

In an FL system, model gradients are shared either between clients and server (HFL) or
among participants (VFL) and the gradients can carry enough information for adversaries
to reconstruct the model or infer original data. Liu et al. [74] developed a hierarchical
mutual information estimation method, H-MINE, to measure the mutual information be-
tween the high-dimensional gradients and batched input data. The proposed metric can
reflect the extent of information leakage during training when clients send the updated lo-
cal gradients to the server for aggregation. The H-Mine algorithm can be seen in appendix
A.6.

3.2.3 Uncertainty

Even with information leakage, the uncertainty of estimation by the adversary can still
make a difference to the level and effectiveness of privacy breach. Under normal circum-
stances, high uncertainty in the adversary’s estimation correlates with high privacy. Many
uncertainty metrics are based on entropy which is used in this work for this category as
well.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 22

Entropy:

In general, entropy measures the uncertainty in predicting the value of a random variable.
In FL, an adversary may be interested in identifying which data samples belong to a
particular client or organization participating in the training. The entropy of X where X
represents a participating client can be expressed as follows:

privENT ≡ H(X) = −
∑
x∈X

p(x) log2 p(x) (3.4)

where p(xi) is the estimated probability of this client being the target.

3.2.4 Indistinguishability

In other cases, the adversary may be interested in distinguishing between two data samples
of interest, and indistinguishability metrics analyze whether an adversary is able to do to.
Privacy is high if the adversary cannot distinguish between two outcomes of the model.
DP is a popular mechanism to enable indistinguishability in the training data by adding
random noise. It is a formal statistical guarantee that any disclosure is equally likely
whether a sample is in the dataset or not. The formal DP proof for privacy mechanism,
a randomized function K, is to check if the output random variables for two datasets D1,
D2 that differ at most to some extent (e.g. one row of data) differ by at most exp(ϵ):

privDP ≡ ∀S ⊆ Range(K) : p(K(D1) ∈ S) ≤ exp (ϵ) · p(K(D2 ∈ S) (3.5)

Since the proof requires knowing if the model outputs came from two different datasets, it
is difficult to evaluate the effectiveness of global or local DP in FL without any knowledge
of the training dataset.

Global Privacy Risk:

Mehner et al. [39] devised a worst-case scenario analysis method to evaluate a global pri-
vacy risk by reducing the complexity of a DP model. They generalized the interpretation
of privacy risk based on ϵ and the number of participants only. Based on their work, the
simplified global privacy risk for a DP-based privacy mechanism is given by:

P =
1

1 + e−ϵ
(3.6)

where P indicates the success probability of identifying the target.

The selection of ϵ in private machine learning with DP is often a difficult task. As seen in
the worst-case global privacy risk, the value of ϵ determines how much noise is added to the
raw data and how much protection the DP policy has. In FL, there is also the consideration
of global versus local DP. Global DP is applied at the server side on the aggregated model

CHAPTER 3. SIX PILLARS OF TRUST IN FL 23

parameters whereas local DP is applied at the client level with local model updates. The
study by Wei et al. [107] proposed the Noising before model Aggregation FL (NbAFL)
approach to add artificial noise to the parameters at the client’s side before aggregation
happens. They performed a few comparative experiments and showed that the lower
range of ϵ which has higher privacy protection is below 10 and the higher range from 50
to 100 had poorer privacy protection. The NbAFL techniques is used in the experiments
of this work and so are the ϵ ranges for metric evaluation.

3.2.5 Limitations

Regarding perturbation-based privacy-preserving techniques, a global DP can be effective
if the central server can be trusted. However, if the server or the third-party cannot be
trusted, then local DP needs to be added on the client side, resulting in a much larger
totla amount of noise. Although perturbation-based techniques are simple and effective,
they may degrade the data utility and decrease model accuracy. It is also known that the
decrease in accuracy caused by adding noise is distributed unevenly across classes which
explicably decreases fairness. Regarding encryption-based techniques, the disadvantages
of homomorphic encryption and SMC are computation overhead and high communication
costs. Anonymization-based techniques are vulnerable to inference attacks on the sensitive
attributes.

For information gain/loss, the study [74] suggests that there are some inherent factors
affecting the information leakage risk. One is that at the beginning of the training, the
information leakage is usually high because the model has not yet been fitted to the data.
The leakage reduces over time during the training as the model stabilizes. The other factor
is that the inherent data distribution could also affect the risk of information leakage. The
more unbalanced the dataset is, the more information could be leaked from the gradients.
Furthermore, the proposed H-MINE framework runs two multi-layer perception models
during the training to calculate the information leakage risk, which could be costly too.

For uncertainty, although entropy is an intuitive interpretation, it is not always an ac-
curate representation of uncertainty because it is easy to construct different probability
distributions that yield the same entropy value. For example, a uniform distribution over
20 clients and an almost uniform distribution over 101 clients where one has a probability
of 1/2 has the same entropy [38]. Therefore it is difficult to use entropy to compare the
uncertainty between different systems.

For indistinguishability, the generalization of DP by using the worst-case scenario, though
more understandable and privacy-preserving, may be highly pessimistic as it estimates the
maximal privacy risks for varying ϵ values independent of other parameters. Other metrics
with more accurate and realistic estimations should be explored in this category.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 24

3.3 Fairness Pillar

Putting trust in an AI-powered system is no different than putting trust in the underlying
systems like companies, government, financial institutions or law enforcement where one
believe should do the right thing. An important facet of doing the ring thing in human
society is making just decisions with non-discrimination and fairness. In fact, a lack of
fairness had been demonstrated in AI application and research when credit loan applica-
tions were found to favor certain demographic groups or facial recognition applications
reflected racial discrimination. In the EU guideline for Trustworthy AI [20], fairness is
listed as one of the four ethical principles rooted in fundamental rights that an AI system
must respect in a trustworthy manner.

In fair AI [19], fairness is broken down into group-level fairness and individual-level fair-
ness, each with various definitions. Group-level fairness means members of a particular
group should not be subject to discrimination or demographic bias, which is often mea-
sured by the difference in classification accuracy among different groups. Individual-level
fairness, on the other hand, means that similar individuals should receive similar treat-
ment independent of their group membership. Whether an ML/DL model is trained in a
classical centralized way or in a federated setting should not change the requirement that
the model should strive to maintain both the group-level and the individual-level fairness.

One main source of unfairness in AI models are coming from the data. Different clients
may be contributing different amount of data with various quality levels and class dis-
tributions. When data are not representative of the wider population then there is a
selection bias which can then be propagated into the model. The selection bias can be
manifested by feature distribution skew or label distribution skew [27], both of which are
major challenges in FL where heterogeneity and randomness are multiplied by the large
number of clients in the learning process.

Another perspective of fairness special to FL is the contribution fairness. Since multiple
clients are training a global model together, the payoff or reward for each client should be
proportional to their data contribution. Fairness in this respect is important for gaining
trust from the clients and encouraging them to actively contribute to the learning process.
Some approaches leveraging on concepts from game theory were proposed to devise fair
incentive and reward mechanisms in FL.

3.3.1 Client Selection Fairness

An FL system can be of different scales. In the cross-silo VFL setting, there are typically
2 − 100 clients representing different organizations. In a cross-device setting, the scale
could be as massive as up to 1010 clients representing edge devices. Usually in FL, not
all the clients would participate in every round of training due to various reasons such as
availability, communication costs, etc. Only a fraction of clients are selected to participate
in training process in each round. In the basic case, the client selection scheme is to
randomly sample the specified fraction of clients. In practice, there are more criteria than
random selection, such as the availability, network speed, computation power, battery level

CHAPTER 3. SIX PILLARS OF TRUST IN FL 25

of the clients’ machines. In the worst case, clients located in regions with low network
speed or models with weaker computation power could never get selected and represented
in the training data. Under representation is a source of selection bias that could lead to
unfair model outcome towards the under represented group.

Participation Rate Variation:

In statistics, Coefficient of Variation (CV) is the measurement of how far the data values
from a set are dispersed from the mean. It is used to analyze the distribution of partici-
pation rates among all clients. The assumption here is here is that, with similar clients,
the more dispersed the distribution of participation rate, the less fair the client selection
mechanism is, and vice versa.

3.3.2 Performance Fairness

Even though performance fairness already exists in AI as in individual and group fairness,
in FL, another grouping needs to be considered which is the client-level fairness. Li et al.
[108] suggest a definition that a model provides a more fair solution to the FL learning
objective on the clients if the performance is more uniform than that of another model.

Accuracy Variation:

The test accuracy is used as a representation of performance. The aggregated global
model and test data from each client are used to measure the test accuracies. The more
uniform the test accuracies among the clients, the more fair is the model performance.

3.3.3 Group-level Fairness

Evaluating and mitigating demographic bias in FL is more difficult than in centralized
learning, First of all, raw training data, labels and sensitive demographic information
of each participant cannot be revealed. Second, in centralized learning, all the training
data can be analyzed and pre-processed to balance the class distribution before training,
whereas in FL, different clients pre-process their data locally so additional mechanisms
are needed to adjust the global data distribution in a secure and protected manner.

Discrimination Index:

In the work by Zhang et al. [77], the discrimination index metric was used. This metric
measures the difference in the F1 score between a particular demographic group and the
rest in the population. The metric value falls between [−1, 1] where the ideal discrimina-
tion index should be as close to 0 as possible. To calculate this index globally would reveal

CHAPTER 3. SIX PILLARS OF TRUST IN FL 26

sensitive attributes and statistics of the demographic group in the client data. The work
proposed using secure aggregation meaning that the clients send their calculated discrim-
ination indices to the server which then uses secure aggregation method to combine the
indices together into a global value.

3.3.4 Class Distribution

As mentioned in section 3.3, the heterogeneity problem in class distribution can be closely
related to client selection fairness. Class imbalance goes hand in hand with unfavorable
client selection, resulting in a slow converge rate of the global model. Analyzing the
class distribution of the training data used in an ML/DL model provides insight into
whether the data samples are selected properly to reflect a fair representation of the
wider group. In theory this should apply to FL models as well except that in practice
this often requires access to and analysis of the raw training data, which goes against the
priority of privacy protection in FL. Yang et al. [109] proposed an estimation scheme to
reveal the class distribution without the awareness of raw data specifically for FL setting.
Secure aggregation can also be considered for aggregating class distribution information
among clients.

Class Imbalance:

Two approaches can be used to evaluate the class imbalance. One is the estimation scheme
using an auxiliary well-balanced dataset and the gradients of a DNN model [109]. When
the auxiliary data samples are fed to the updated model, we can obtain gradients vector
like so:

{∇Laux(w1),∇Laux(w1), ...,∇Laux(wC)} (3.7)

where each ∇Laux(wi) is related to the ith neuron and class Ci. When training DNN in
classification tasks, the gradient square for different classes have the following expected
approximation relation:

E ∥ ∇Laux(wi) ∥2

E ∥ ∇Laux(wj) ∥2
≈ n2

i

n2
j

(3.8)

where L denotes the cost function of the neural network and ni and nj are the number of
samples for class i and class j. This theorem reveals the correlation between the gradients
and class distribution. Then for class Ci, the estimation of class ratio can be defined as:

Ri =

β

e∥∇Laux(wi)∥2∑
j e

∥∇Laux(wi)∥2
(3.9)

CHAPTER 3. SIX PILLARS OF TRUST IN FL 27

where β is a hyperparameter that can be tuned to control the normalization between
classes. Once we obtain the composition vector R = [R1, ..., RC] that indicates the dis-
tribution of raw data, we can use the Kullback-Leibler (KL) divergence to evaluate the
class imbalance of each client like so:

DKL(R ∥ U) =
∑
i∈C

Ri log
Ri

Ui

(3.10)

where U is a vector of ones with magnitude C. When two distributions perfectly match,
the KL divergence equals 0, otherwise it can take values between 0 and ∞. Therefore, the
closer the KL value is to 0, the more balanced the class distribution is. This estimation
scheme can only apply to neural networks.

Another more general way to get the class imbalance information in FL is to ask every
client to submit their class distribution to the server where secure aggregation method
combines all the class distribution into one unified distribution. Then the coefficient of
variation of the class distribution can be used to calculate the level of variation of the
class sample sizes to determine the class imbalance level. This more generalized approach
is used in this work to evaluate class imbalance level in an FL model.

3.3.5 Limitations

For client selection fairness, enforcing equal participation rate without considering the
other qualities of the clients may result in unsuitable or ineligible clients being selected.
The Architectural Soundness pillar in the later section 3.6.1 would explain that a client
selector scheme with predefined criteria can be used to make sure that the selected clients
fulfill certain requirements for the particular learning task in order to optimize resource
usage and performance. Therefore, there is an inevitable trade-off between client selection
fairness and suitability.

For performance fairness, the measurement of accuracy variation does not fully explain
the fairness in personalized FL models. It is suggested to study the per-client personal-
ized accuracy and the accuracy improvements among clients with an equitable notion of
fairness [105]. New fairness metrics need to be explored for personalized models.

For group-level fairness, although the global discrimination index or a particular demo-
graphic group can be calculated through secure aggregation, how to coordinate clients in
calculating their local discrimination index of the demographic group without revealing
the sensitive attribute of the group remains unclear.

For class distribution, the proposed privacy-preserving estimation scheme only works for
DNN models where the gradient square to class ratio approximation holds. Aggregating
the class distribution among clients may still leak some degree of private data information
in terms of the sample size per class. Furthermore, the unified class distribution among all
clients may not reflect the individual class imbalance within each client’s dataset where
personalzation is concerned.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 28

3.4 Explainability Pillar

The AI HLEG of the European Commission deem explicability as a crucial building block
for user’s trust in AI system. Their trustworthy AI guideline demands that AI processes
should be transparent, with the capabilities and the purpose of AI systems openly commu-
nicated and decisions explainable to those directly and indirectly impacted. The reason
is that without such transparency, an AI outcome or decision cannot be fully justified as
lawful, ethical and respectful to human rights.

In fact, according to the guideline, transparency is one of the seven key requirements
for the realisation of Trustworthy AI. Transparency is often expressed as interpretability
which is often wrongly mistaken as interchangeable with explainability. Interpretability
is the passive characteristic of a model referring to the level of understandability for
humans, whereas explainability is the active characteristic of a model referring to any
action or procedures taken by the model to clarify the intent of its internal functions
[42]. Needless to say that both interpretability and explainability are important facets of
transparency. The early AI systems were fairly interpretable, but with the rise of black
box algorithms that are not easily interpretable for human understanding, explainability
became highly demanded from various stakeholders in order to seek confidence and trust
in the system because humans are generally reluctant to adopt technologies that are not
directly interpretable.

Overall, explainability is the ability to provide an explanation about the technical pro-
cess of an AI system and the resultant decisions in the applications, and interpretability
facilitates part of the explanations from the perspective of model design. Interpretable
models can be explained by analyzing the model itself but for non-interpetable models,
post-hoc explainability methods are diverse means to enhance the interpretability.

For FL, since ML/DL models are also used in the training process, the requirement of
explainability for the algorithmic model also applies. However, as mentioned in section
2.3.1, the privacy constraint makes it difficult to directly access and analyze any raw
data or protected model features in some FL setting. Researchers had to come up with
a privacy-preserving version of SHAP for explaining VFL models [80]. Since FL is also
larger in scale with additional processes, like the distribution of tasks to decentralized
local models, collection and aggregation of model updates, privacy mechanisms and so
on, more explanations have to be made about these processes in the pipeline regarding
how they affect the output of the system.

3.4.1 Interpretability

As mentioned before, some ML/DL models are interpretable by design and some are not,
depending on the algorithm. The comprehensive review on XAI [42] categorizes ML/DL
models by their transparency level which can be used to indicate the interpretability of
the models. In literature, model size is also widely used as a measure of interpretability
[110]. The definition of model size could vary depending on the algorithm design.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 29

Algorithmic Transparency:

A model is considered transparent if it is understandable by itself. This definition could be
very subjective to different levels of intellectual grasp. However, algorithmically transpar-
ent models must first be fully explorable by means of mathematical analysis and methods,
and then the assessment considers model complexity (in terms of the number of variables
and interactions) and decomposability (in terms of interpretability of each component of
the model) [42]. In summary, the recognized interpretable models are: linear regression,
logistic regression, decision trees, decision rules, k-nearest neighbors (KNN), Bayesian
models. Even within the interpretable models, the level of interpretabiilty slightly varies
as seen in the table (appendix A.1). The non-interpretable models include tree ensembles,
support vector machines (SVM), multi-layer neural network (MNN), convolutional neural
network (CNN) and recurrent neural network (RNN).

Model Size:

Different algorithms have different definitions of model size. For instance, it could be
the number of decision rules, the depth of a decision tree, the number of features in a
linear/logistic regression model, the number of trainable parameters in a neural network,
etc [110]. The larger the model size, for example, the higher the number of features and
interactions, the harder it is to understand and explain the causal relationship between
input and output. This is because with more features and interactions there is a more
combined influence on the prediction outcome.

3.4.2 Post-hoc Explainability Methods

The three most common post-hoc explanation methods are simplification, feature rel-
evance and visualization [42]. Simplification means reducing the complexity of a non-
interpretable model into a simpler surrogate model that is more easily interpreted and
understood. For example, in the study by Haffar et al. [111], they added explainability
to an FL black box model by using random forests containing decision trees to compute
the importance of the features in predictions. Given that the simplification of multi-layer
neural networks becomes more complex as the number of layers increases, explanation by
feature relevance becomes more popular. Feature relevance explanation method measures
the influence, relevance or importance of each feature in the prediction output, hoping to
explain what aspect of the training population cause certain behaviour of the model. The
most recognized technique is SHAP [45] that calculates an additive feature importance
score for each particular prediction. Visualization method provides visual representations
of AI models to facilitate better understanding by humans. For example, a linear re-
gression model can be represented by a relationship diagram between the dependent and
independent variables. This type of visualization is more achievable with interpretable
Machine Learning (ML) models than with high-dimensional DL models. For black box
DL models, novel visualization methods have been proposed using sensitivity analysis
[112]. Additionally, the mean square error per epoch diagram and the receiver operating
characteristic (ROC) curve are common performance evaluation plots in ML.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 30

Feature Importance:

It is argued in the work by Wang [80] most of the model explanation methods can be
directly used for HFL because all participants share the full feature space in their local
data. However, even for HFL, exposing feature information to the server for calculating
feature importance score is not ideal given that the server may not be honest. For VFL,
methods like SHAP cannot be directly used because parties do not share the full feature
space. The idea of the variant version of SHAP for VFL [80] is to combine one party’s
features into a federated feature space when being referenced by another party for the
feature importance calculation. The algorithm can be seen in appendix A.3. The Shapley
values of features can be either positive or negative. A large positive values indicates that
the features has a high positive impact on the outcome prediction whereas a negative
value indicates negative impact from the feature. By using the absolute Shapley values of
features, we can get a list of feature importance strengths and calculating the variation
among theses strengths can give us an idea how spread out the feature impacts are. The
key idea for this metric is that the more spread out the feature importance scores are,
the higher the chance that we have some feature with very high or low explanatory power
which indicates that the outcomes can be explained by the big difference. On the contrary,
if the feature importance scores are uniform, which implies that no feature stands out,
then the level of explainability by feature is low.

Visualization:

In fact most visualization techniques for DL-based classification models resort to the
visual representation of the feature importance by illustrating how each feature impacts
certain prediction output [42]. Two examples of feature importance visualization can be
seen in appendix A.5 and A.4. For explainable FL, the study by Ungersböck et al. [113]
proposed a lifecycle dashboard that visualizes information from the server, starting from
client registration to training, validation and deployment. The dashboard shows which
clients participated at which round of training and the current status of the model. This
type of dashboard representation approach follows the status of the FL system and paints
a good picture of how the aggregated global model evolves throughout the lifecycle.

3.4.3 Limitations

For interpretability, measuring algorithmic transparency requires analyzing the model
architecture and parameters which could be confidential in productionalized industry en-
vironment. There is the trade-off between preserving the intellectual property and the
explainability of AI systems.

For post-hoc explainability methods, the popular feature relevance technique has not been
shown effective in multi-layer neural networks. The challenge is defining the relationship
between the network output and the input neurons in order to assign a correct feature
importance score to the proper feature component.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 31

3.5 Accountability Pillar

Accountability is one of the seven key requirements for the realisation of Trustworthy AI
defined by the EU guidelines for trustworthy AI [20]. It is the state of being responsible
and answerable for a system about its behaviours and potential impact [114]. The first
step towards accountability is good documentation where claims about the AI system
and procedures are logged and verified throughout the life cycle of the process. The
documentation should contain evidences of the 5W: what, where, when, who, why. These
evidences can help clarify how an ML/DL model is built and how it arrives at certain
outcomes. Good documentation provides transparency and instills trust in the system.

IBM Research was the first to propose a FactSheet to record facts about the overall
ML/DL pipeline [48]. Subsequently, they extended the FactSheet approach to enable
accountability in FL as well [85]. The accountable FL FactSheet template [115] is a com-
prehensive document that contains meta information about the project, the participants,
the data and the model configurations and performance. This thesis uses a simplified and
extended version of the template as a way to quantify document completeness.

Another important aspect of accountability is monitoring because even with complete and
detailed documentation, every responsible party has to make an effort to ensure that the
system is built strictly following the intended architecture, development and deployment
processes. In literature, auditing is a widely proposed approach to monitor accountability
of an AI system.

3.5.1 FactSheet Completeness

As compared to traditional ML, it is even more challenging to achieve accountable FL
because of the distributed nature of the system and the potential lack of trust among differ-
ent parties involved in the training pipeline. In fact, the decentralized training method-
ology and privacy mechanisms make FL non-transparent by design. Since FL is more
complicated in architecture and more privacy-preserving, the FactSheet should contain
information about the additional layer of configurations and avoid sensitive information
about participating clients. Based on the IBM Accountable FL FactSheet template, this
work proposes a simplified but extended version with seven major sections that should
be either extracted from the system or manually filled by administrators for the purpose
of recording the basic facts about an FL system. The evaluation of the metrics under
this notion uses a checklist based approach which means verifying if the content of each
section can be found in the FactSheet.

Project Specifications:

This section of the FactSheet documents the overview, the purpose and the background
of the project. The overview explains what the project is about. The purpose details
the goals of the project and the background elaborates on the relevant information and
knowledge that motivate the project.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 32

Participants:

This section documents the information regarding the participants of the federated learn-
ing process. The original template suggests a table with participants’ names and their
organization unit names for identity verification. In practice, this should be taken care of
by a dedicated client registry that manages all client information [52]. Therefore, in this
version, the section contains more macro-level statistical information about the partici-
pants, for instance, the total number of clients, the sample client rate in percentage and
the client selection scheme (name).

Data:

This section documents the information regarding the data used in the FL learning pro-
cess. Two aspects are included: data provenance and pre-processing procedures. Provid-
ing data provenance can help trace the origin and the flow of the data to access validity
and even reputation. Pre-processing steps can tell us how the raw data have been handled
before being fed to the model for training. Depending on the FL setting, different clients
may have different data pre-processing steps. For example, a bank and an e-commerce
company collaboratively training a VFL model have different types of data that need to
be handled differently. In that case, individual clients should report their data handling
steps to the FactSheet.

Configuration:

This section contains all the important configurational information about the FL model.
First of all, the type of optimization algorithm and the trainer ML/DL model should be
mentioned. Then, the global hyper-parameters used by the aggregator should be defined,
for instance, the number of rounds, the maximum timeout and the termination accuracy.
Lastly, the local hyper-parameters used by the trainer at each client, such as the learning
rate and the number of epochs, should be defined as well.

Performance:

This section showcases model evaluation results reported from the aggregator, for instance,
the test loss, accuracy, and feature importance variance. The performance of the model is
important information that can validate the utility of the model. Conventionally, a higher
model performance correlates to a higher confidence and trust in the model.

Fairness:

This section documents the level of fairness of the FL model in terms of the variance
of performance, client selection rate and class imbalance among the clients. These three
aspects form a basic indication of how fair the model is among the participants.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 33

System:

This section documents the system information for the learning process. It includes the
average time spend on training, the model size, the model upload and download speed
in bytes. This information gives an indication of the amount of resources expected to be
utilized for the process.

3.5.2 Monitoring

Traditionally, monitoring of a system comes in the form of auditing. There are external
and internal audits. External auditing is a process during which justification of the system
is reviewed and assessed from the outside to ensure compliance with company policies,
industry standards and government regulations. Internal auditing is usually more techni-
cal and related to quality assurance. For AI systems, there is algorithmic auditing which
is a range of approaches to audit algorithmic processing systems. The evaluation of the
metrics under this notion uses a checklist based approach which means verifying if the FL
system employs any external or internal algorithmic auditing.

Algorithmic Auditing:

In the simplest form, algorithmic auditing can be testing like functional testing, perfor-
mance testing, user acceptance testing, etc. It could also be system anomaly or attack
monitoring. Some organizations even invite or hire external hackers to find vulnerabilities
as a measure of monitoring. For a more systematic approach, the SMACTR framework
proposed by Raji et al. [47] is a good option. It is an internal auditing framework that
includes five stages of scoping, mapping, artifact collection, testing and reflection. Each
stage yields a set of documents which together form an overall audit report. The pro-
cess starts with the organization defining the values or principles that should be followed
and upheld. Then along the pipeline, interviews, checklists, testing and retrospection are
carried out considering the core values or principles defined in the scoping stage.

3.5.3 Limitations

The major challenges of the FactSheet approach are authenticity, quality of content and
immutability. Many sections contain information that could be extracted from the FL
model artifact. However, the method to automatically retrieve these information is dif-
ficult to be framework-agnostic as there is no guideline or standard for FL frameworks.
For the manually entered information, we have to make sure the information is singed
off by the appropriate person and role. Another limitation here is that the quality and
the immutability of the content are not evaluated. A complete FactSheet does not auto-
matically reflect accountability if the quality and the immutability of the content are not
guaranteed. Blockchain technology has been widely proposed to enhance the accountabil-
ity of FL, however, there is also a trade-off between transparency and privacy as not all

CHAPTER 3. SIX PILLARS OF TRUST IN FL 34

information about the client data and model can be publicly documented. As for moni-
toring, there is still a lack of guideline on the proper framework of algorithmic auditing
and quantifying the effectiveness of algorithmic auditing is difficult.

3.6 Architectural Soundness Pillar

The EU AI guideline [20] states that Trustworthy AI should provide the foundation for
those affected by the AI system to trust that the design, development and use of AI
are lawful, ethical and robust. Having a robust design that optimizes performance and
ensures security instills trust in the system.

As compared to traditional centralized machine learning, an FL model has to consider
both algorithmic design and architectural design because it is not just one ML/DL model
but an entire distributed system that presents more architectural design challenges. The
quality of algorithmic design have been covered and discussed from the perspectives of
explainability and accountability. Architectural design focuses on how different compo-
nents of the FL system should work according to best practices to produce a trustworthy
FL model.

The major architectural design challenges of FL have to deal with communication, effi-
ciency, resource limitation and security. To put in perspective, it is very challenging to
coordinate the learning process among tens of thousands of client devices while ensuring
model integrity and security. Global models might converge slowly due to heterogeneous
client data. Inconsistent client network and limited resources might cause clients to drop
out and training failures could impact model quality. Although there is active research in
FL algorithms, there is still a lack of research and guideline on the architectural design of
FL systems.

In the work by Lo et al. [52], a collection of design patterns suitable for the lifecycle of an
FL pipeline was presented. Two key patterns each from the area of client management
and model management were selected as metrics here. The evaluation method of the
metrics in this pillar uses a checklist based approach which means verifying if the required
design patterns are being used in the FL system.

3.6.1 Client Management

Just like how traditional machine learning needs to first collect or gather enough quality
data, an FL model needs to first attract clients to participate in the collaborative training.
Setting up incentive mechanisms to encourage clients’ participation is topic for another
discussion. Here we assume that we have enough interested parties willing to participate
in the FL process. Then, a mechanism is needed to gather meta data about the clients
so that the server can broadcast messages to the interested parties to start training.
Managing client information requires a client registry where clients can register themselves
for training. A client registry can verify the identities of clients and track client interactions
with the server. Even with verified clients, it is not guaranteed that the clients’ data are

CHAPTER 3. SIX PILLARS OF TRUST IN FL 35

suitable for a particular learning task. A client selector can be used to filter eligible clients
for training.

Client Registry:

The proposed design pattern maintains the client registry in the central server for the
client-server architecture. The server sends a request for information along with the
initial local model to the clients when they first connect to the system. The information
requested includes device ID, connection up and down time, device computation power
storage, etc. Having a client registry enables the system to manage client connections and
track the status of all client devices.

Client Selector:

The proposed design pattern also maintains the client selector in the central server where
the selection takes place. Before each round of training, the client selector actively selects a
certain number of clients for the training according to predefined criteria for the purpose of
reducing convergence time and optimizing the performance of the model. Having a client
selector optimizes resource usage and reduces the risk of client dropout and communication
latency.

3.6.2 Model Management

In a distributed learning process like FL, multiple rounds of training and aggregation of
models generates numerous local model updates and aggregated global models during the
process. For instance, running 100 rounds of training on 100 clients will generate 10,000
local models and 100 global models. Most of the time an FL experiment run will only
record the evaluation results in each training round and produces the ultimate global
model when training stops. Without recording the local models and the intermediary
global models, there is neither traceability nor fallback when something goes wrong in
the training process. A model co-versioning registry can help trace the model quality
and improve system accountability. A common challenge in AI model management is
dealing with concept drift which is the phenomenon when the performance of an ML/DL
model degrades over time due to the unforeseen changes in the underlying data generation
models [116]. This is a bigger challenge in FL where concept drift could happen to different
clients’ data samples at different times. A model replacement trigger is a mechanism that
can detect model degradation and alarm the system to retrain the model.

Model Co-versioning:

A co-versioning system aligns the local model versions with their corresponding aggregated
global models. It can be a registry where local model versions are stored and mapped

CHAPTER 3. SIX PILLARS OF TRUST IN FL 36

to the associated global models. With this registry, model updates and aggregations
do not always have to be synchronous because the server can refer to the mapping to
perform asynchronous aggregations. Another advantage is that it provides the option
of early stopping if a model converges before the specified number of rounds so that an
intermediary global model can be used as the final global model.

Model Replacement Trigger:

A model replacement trigger works by detecting the global model performance dropping
below a certain threshold level. It has to first compare the global modal performance in
all clients to see if the performance degradation is a global event. If the degradation is
global and persistent, then the a new global model training task is triggered.

3.6.3 Optimization

Algorithm:

As discovered in the literature review (2.2), FedAvg is considered the baseline aggregation
algorithm. Several other optimization algorithms have been proposed as an extension to
the baseline for various purposes. Based on the goal and the context of a FL model, the
choice of optimization algorithm can impact the performance of the model. Various studies
have conducted performance benchmarking of FL optimization algorithms. For example,
Nilsson et al. [55] and Xie et al. [32] compared different FL algorithms to showcase the
performance benchmarking of FL models. The comparisons serve as a reference for this
metric.

3.6.4 Limitations

The major limitation of this pillar is how to quantify the quality of architectural design.
Information on whether an FL system has certain design patterns is not readily available
in the model artifact as it involves organizational and management decisions.

The client registry pattern may have a drawback on data privacy because recording the
client device information on the central server can lead to privacy leakage. The client
selector pattern may also lead to privacy issues due to requesting resource information
from the clients. Excluding certain clients because of the selection scheme can also have
fairness drawback which may lead to data heterogeneity issue and loss of model generality.

The model co-versioning strategy may incur expensive storage cost for storing the local
and global models and their mapping. The drawbacks of the model replacement trigger
are higher cost of computation for periodic performance evaluation and higher cost of
communication for comparing the global model performance degradation among all clients.

CHAPTER 3. SIX PILLARS OF TRUST IN FL 37

3.7 Trustworthy FL Taxonomy

The six pillars of trustworthiness together constitute a comprehensive taxonomy describ-
ing the requirements for a trustworthy FL model. Figure 3.1 presents a visual repre-
sentation of the taxonomy that combines the six pillars of trust explained in the previ-
ous sections - robustness, privacy, fairness, explainability, accountability, architectural
soundness.

Under each pillar, the major aspects defining the pillar are grouped into notions, for
instance, the robustness pillar has four notions - resilience to attacks, system-level robust-
ness, algorithm-level robustness, client and data reliability.

Under each notion, the specific metrics that can be calculated to quantify the level of
utility towards trustworthiness are defined.

This taxonomy serves as a basis for the evaluation and assessment of the trustworthiness
level of an FL model. Customization such as adding, removing or modifying metrics based
on individual system context is advised.

Figure 3.1: Trustworthy FL Taxonomy

Chapter 4

Trustworthy FL Evaluation Algorithm

The second contribution of this work is the design and implementation of a prototype
evaluation algorithm, FederatedTrust, to quantify the trustworthiness level of FL models.
The Trustworthy FL taxonomy presented in section 3.7 in Chapter 3 was used as the
basis of the algorithm design. The goal is to create a light-weight, modular and extensible
trust evaluation framework. So far this work is the first attempt to evaluate the overall
trustworthiness level of an AI model in the federated learning context.

Extensive research and analysis was conducted on existing FL development and bench-
mark frameworks. Several design options were considered: 1) implement a new trust-
worthy FL framework with a built-in evaluation module, 2) extend on an existing FL
benchmarking framework to incorporate additional trust metrics, and 3) implement a
configurable trust evaluation module/library/package that can be deployed or imported
by an existing FL development framework. The scope of option 1 is too large considering
the focus of this work is on the evaluation part. Option 2 presents several challenges in ex-
tending existing benchmarking frameworks due to flexibility and requirement constraints.
The final design decision was to go in the direction of option 3.

In fact, the initial goal was to build a framework-agnostic evaluation algorithm, however,
it was found challenging given the requirements of this prototype because the evaluation
of several pillars, mainly accountability and architectural soundness, requires extracting
meta data about the FL model such as configuration details. Different FL frameworks
have been developed differently meaning that there is no standard way to gather meta data
among the frameworks. For demonstration purpose, one FL framework was selected as a
reference framework for the design and implementation of the trustworthiness evaluation
algorithm in this work. The long-term goal is that with extensibility and future work, the
evaluation features of the algorithm can be extended, updated and consolidated for the
use in multiple FL frameworks as well.

In the following sections, the design details and the structure of the evaluation algorithm
are presented (4.1), followed by the explanations of the implementation with respect to
the chosen FL framework and the selected metrics from the taxonomy (4.2). After that,
the deployment of the FederatedTrust is demonstrated (4.3) with a chosen use case in the
FL framework. Lastly, limitations of the algorithm are discussed (4.4).

38

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 39

4.1 Algorithm Design

Before designing the trustworthiness evaluation framework, it is important to understand
the current state-of-the-art FL frameworks and their architectures. This work focuses on
open-source FL libraries and frameworks that have been developed in recent years and are
popular in the research community. The early FL simulations using popular ML libraries
like TensorFlow and PyTorch usually synthetically generate federated clients by dividing
a large dataset into a specified number of chunks and each chunk simulates a set of client
data [28]. Later on, more realistic frameworks were developed using different processes [29]
or docker containers [89] as representation of different clients. Event-driven architecture
was also employed in a few frameworks [29][32] to properly simulate a distributed learning
setting.

The architectures of FL frameworks determine the location and the kind of information
available for evaluation. The availability and accessibility of input data from the frame-
work for metric calculation is an important consideration for the design of the evaluation
algorithm. For example, some frameworks do not expose the client selection process so
that participation information can only be retrieved from the client side for evaluating
fairness. Additionally, due to privacy constraint, the design has to define where each met-
ric calculation takes place. To make such design decisions requires the analysis of how the
FL framework performs messaging between clients and server and what are the practical
assumptions according to industry standards. For example, does the server in HFL hold
all the labels? Is there a global FactSheet and numerous local FactSheets? Where are the
FactSheets stored? Questions like theses are essential for the design of the trustworthiness
evaluation algorithm.

4.1.1 Exploring Open-Source FL Frameworks

Since the term Federated Learning was introduce in 2016, many FL development libraries,
frameworks and platforms have been developed. The following list of FL libraries and
frameworks was assessed:

TensorFlow Federated (TFF) [28]: It is a federated learning module introduced in
2018 by TensorFlow, a popular open-source library for ML. Although TFF has a well-
maintained documentation and a suite of tutorials on their website, the module code
has become incompatible with the latest version of Python due to a deprecated internal
library.

PySyft [117]: It is an open-source multi-language library enabling secure and private
machine learning by wrapping and extending popular DL frameworks such as PyTorch.
It has been used to set up FL workflows and use cases since 2019 [118].

Flower [29]: It is a user-friendly FL framework developed by Adapt since 2020. A basic
FL set up using Flower only takes less than 20 lines of code. Even though very easy to
use, the simplicity also hinders the extent of customization and flexibility.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 40

FLUTE [30]: It is an open-source industrial grade FL platform developed by Microsoft
since 2019. It provides integration with Azure ML and can support high-performance
large scale FL.

LEAF [31]: It is a basic performance benchmarking tool for FL developed in 2019.
LEAF includes a suite of open-source federated datasets. The evaluation mainly focuses
on performance and computation resource usage and the FL simulations are very basic
without privacy or adversarial defenses.

FedEval [89]: It is a general-purpose benchmarking framework for FL developed in 2020.
The framework has five evaluation metrics - accuracy, communication, time efficiency,
privacy and robustness. Although FedEval has two overlapping pillars as this work, it is
unclear how to add or customize evaluation metrics from the source code.

FedML [119]: It is a Federated Learning/Analysis and Edge AI platform developed as a
start up in 2020. FedML aims to create a platform for the AI community can collabora-
tively build FL models on an open cloud. This is a platform for the FL community rather
than a framework.

FederatedScope [32]: It is an open-source FL framework recently developed in 2022 by
the Data Analytics and Intelligence Lab (DAIL) of Alibaba DAMO Academy [33]. Fed-
eratedScope employs an event-driven architecture to provide users with great flexibility.
It is a comprehensive framework that builds on many existing research work in FL such
as [31] and provides a suite of functionalities for privacy and adversarial attacks.

After careful comparison and analysis, FederatedScope was chosen as the reference FL
framework for the following reasons:

1. Standalone mode and distributed mode allow for setting up clients in an experimen-
tal or realistic manner.

2. Data zoo contains a suite of federated dataset such as FEMNIST and Celeba from
the LEAF study.

3. Algo zoo contains a list of state-of-the-art optimization algorithms such as FedAvg,
FedProx, FedOpt, pFedMe, etc.

4. Model zoo contains a list of state-of-the-art computer vision and language models.

5. Configuration of differential privacy, personalizationa and privacy attacks are easy.

6. Steps to add customized evaluation metrics is straight forward and well-documented.

7. The framework was validated for its usefulness. A standalone experiment with 200
clients and 40% sampling rate trained a global CNN model on the FEMNIST dataset
for 300 rounds and gave a test accuracy of 83.25%.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 41

4.1.2 FederatedScope

Figure 4.1 shows an overview of the actors and steps within one round of FL training
implemented in FederatedScope. Considering the basic cross-device client-server HFL
case, there is one central server and N number of clients. The basic FL learning process
is as follows:

1. Server selects a fraction of M clients and broadcasts the initial global model to each
client

2. Once receive the global model, client 1, ..,M perform local training using their
trainer based on their private data

3. After local training, clients return the model updates to the server

4. With the help of an aggregator, the server performs federated aggregation on the
received model updates, and optimizes the global model.

5. Steps 1 - 4 repeats for a specified number of rounds.

Figure 4.1: Overview of an FL round implemented with FederatedScope

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 42

4.1.3 Context and Assumptions

Based on the background knowledge of state-of-the-art FL and the architecture of the
FederatedScope framework, the following contexts (C) and assumptions (A) are defined:

C-1: The basic use case that the algorithm should be developed for is a client-server HFL
model.

A-1: The central server is honest and maintained by a trusted system owner.

4.1.4 Requirements and Constraints

Based on the goal of quantifying trustworthiness in FL, the basic functional requirements
(FR), non-functional requirement (NFR) and privacy constrains (PC) are defined:

FR-1: Each of the six trustworthy FL pillars must be represented in the algorithm, meaning
at least one metric from each pillar must be calculated towards the final score.

FR-2: The final trustworthiness score is a weighted average of the trustworthiness scores
from all the pillars.

FR-3: The trustworthiness score of each pillar is a weighted average of the trustworthiness
scores from all the notions.

FR-4: The trustworthiness score of each notion is a weighted average of the trustworthiness
scores from all the metrics.

NFR-1: The algorithm should add minimal computation overhead and complexity to the FL
model.

NFR-2: The algorithm should be modular and configurable.

PC-1: The algorithm is allowed to gather and process input data and export the processed
data to a given output directory provided by the FL model.

PC-2: The algorithm is not allowed to store or download any data from the FL model
within its local project.

PC-3: The algorithm is not allowed to share any data from the FL model with other
entities.

PC-4: Any reports or documents generated by the algorithm do not leave the FL model
framework.

PC-5: The calculations of metrics can only take place either at the clients’ local devices or
the central server not at any other third parties.

PC-6: If there is any aggregation of metrics from the clients at the central server, the
aggregation should be performed securely if the individual client metrics contain
sensitive information.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 43

4.1.5 Architecture

Figure 4.2 shows an overview of the interactions between FederatedScope, the FL frame-
work, and FederatedTrust, the trustworthiness evaluation algorithm. FederatedTrust is
designed as a third party library that that be imported into the FederatedScope frame-
work. This figure expands on the original overview diagram (Fig 4.1) by adding the
missing steps and components that are part of the original framework.

The FederatedScope framework uses a “Config” file to store all the configuration parame-
ters of the FL model. The framework also performs metric evaluation after every round
of training be default. Once training is done, an “Eval Results” file is generated with
the global model performance on all clients and the aggregated performance. These two
files are important input documents for the FederatedTrust algorithm to calculate metric
scores for a few pillars. Meanwhile, FederatedTrust generates a “Client Selection” file con-
taining a map of encrypted client ids to their selection frequency. This file is generated
duirng the training process.

Figure 4.2: Overview of the interaction between FederatedScope with FederatedTrust

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 44

The explanations of the components and interaction steps are as follows:

1. The FedRunner initiates the training process and sets up the sever and the clients
with the configurations from the config file and at the same time populates the
FactSheet with the config file through FederatedTrust.

2. The server selects the specified percentage of clients and generates or updates the
“Client Selection” file through FederatedTrust.

3. The server broadcasts the current global model to the selected clients.

4. Selected clients receive the current model and starts local training. When training
is finished, each client sends their model updates back go the server.

5. The server calls the Aggregator to perform federated aggregation over all the received
model updates.

6. After each round of training, clients receive the message from server (not shown on
the figure) to perform model evaluation. Clients call the metric builder to perform
metric calculations. The evaluation results are written into the “Eval Results” file.

7. After the final round of training, the FedRunner stops the training process and pop-
ulates the aggregated evaluation results to the FactSheet through FederatedTrust.

8. FederatedTrust the populates FactSheet with the final client selection frequency map
from the “Client Selection” file.

9. FederatedTrust calls the evaluate function to evaluate a trustworthiness score from
the FactSheet and generates trustworthiness report in the output directory of the
FederatedScope framework.

* Note that the both the files in gray color - “Config”file and “Eval Results” - are doc-
uments generated by the FederatedScope framework originally. Additional custom
metrics are added under the Metric Builder.

Algorithm Pseudocode

The detailed step-by-step execution of the training of an FL model in FederatedScope
using FederatedTrust as a third party library to evaluate the trustworthiness level is sum-
marized in Algorithm 1.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 45

Algorithm 1 Training in FederatedScope with FederatedTrust
Input: N clients, sampling size m, a central server S, total number of iterations T ,
initial model w̄(0), setup configurations C, FederatedTrust metric manager ft
Output: Evaluation results, trustworthiness report
1: S sends the hashed ids of all clients i ∈ [N] and C to ft
2: ft creates FactSheet with information from C
3: ft creates a map of hashed client ids to values of 0 representing initial selection rate
4: S sends the model meta data to ft
5: S request class distribution information from all clients i ∈ [N]
for clients i ∈ [N] do

Client i uses ft function to calculate the sample size per class of local data
ft creates or updates the class distribution map of hashed labels to sample size

end for
for t = 0 to T do

S randomly samples D(t) ⊂ [N] clients withe size of m
S sends the hashed ids of the selected clients to ft
ft updates the client selection rate map
S broadcasts the current model w̄(t) to all clients i ∈ D(t)

for clients i ∈ D(t) do
Client i performs local training with w̄(t)

Client i sends new model updates w
(t+1)
i back to S

end for
S performs secure aggregation of all updates received into a new global model w̄(t+1)

end for
S sends final global model w̄

′
to every client i ∈ [N] for performance evaluation

for clients i ∈ [N] do
Client i computes evaluation metrics with local test data and global model w̄

′

Client i sends the evaluation results back to S
end for
S aggregates the evaluation results and sends them to ft
ft receives the evaluation results and populates the FactSheet with them
S asks ft to evaluate the trustworthiness of the model
ft computes the trustworthiness score and generates a report JSON and print message

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 46

4.2 Implementation

As discussed in the limitation sections under each pillar in Chapter 3, not all metrics have
feasible methods of calculation in a non-productionalized research environment. For the
implementation of FederatedTrust in this work, the strategy is to build a minimum viable
product, Prototype v1, with the basic features and metrics that can be calculated in the
FederatedScope framework. Prototype v1 is a proof-of-concept algorithm showing how a
unified way of calculating the trustworthiness score of FL models can work in an existing
FL framework based on a well-researched taxonomy. Future versions of the prototype can
be developed based on v1 by incorporating all the metrics from the full taxonomy as seen
in Fig 3.1.

4.2.1 Taxonomy

Figure 4.3 shows a reduced taxonomy tailored for Prototype v1. There are still six pillars
of trustworthy FL in the reduced taxonomy:

- Robustness - Privacy - Fairness - Explainability - Accountability

- Architectural Soundness

Figure 4.3: Reduced Taxonomy for Prototype v1

The list of omitted notions and metrics and the reasons for not including them in Prototype
v1 are:

• Poisoning Defense: The use of poisoning defense is often integrated in the algorithm,
for example, robust aggregation. It is difficult to quantify the usage of poisoning

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 47

defense mechanism unless the information is documented. However, another way to
verify this metric could be checking the empirical or the certified robustness against
poisoning attacks.

• System-level Robustness: Neither testing data nor error rates are readily available
in the FL framework.

• Client Reputation: There is no clear way to measure client reputation in a simulated
environment. It requires more inspections to the client data provenance and this
kind of inspection is not easily quantifiable.

• Data Quality: The proposed calculation for this metric needs to be executed during
every round of training which creates a high computation overhead for the FL model
training process.

• Privacy Preserving Techniques: One representative technique is selected as a met-
ric because the use of encryption-based or anonymization-based techniques is not
documented in the configuration file.

• Information Leakage Risk: The proposed calculation for this metric needs to be
executed during every round of training by running extra neural networks which
would incur computation overhead.

• Discrimination Index: This metric requires the knowledge of one protected sensitive
attribute. It is unclear how this kind of calculation can be carried out in practice
without the sharing of sensitive information among clients and the server.

• Monitoring: Auditing information is not readily available in a simulated environ-
ment.

• Model Management: Versioning and model replacement trigger information are not
readily available.

4.2.2 Metric Definitions

This section contains six tables of metrics for each pillar as seen in the reduced taxonomy
(Figure 4.3). Each metric has the following properties:

• Metric: name of the metric, as seen in Chapter 3

• Description: definition of metric and examples

• Input: input document and/or input data needed to calculate the metric

• Output: raw output of the metric before normalization in one of the formats below:
- 0/1 - [m,n] - % - Integer - Real
where [m,n] means that it is a range from m to n.

• Dependency: dependent elements or pre-conditions required for the computation

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 48

Robustness
Metric Description Input Output Dependency
Certified Ro-
bustness

Minimum perturbation re-
quired to change the clas-
sification

Test sample,
Model, Num-
ber of classes

Real Model is neural net-
work

Performance Test accuracy of the global
model

Model, Test
data

% Metric Builder and
FactSheet

Personalization Use of personalized FL
techniques

FactSheet 0/1 Can be found in
Config file

Scale Number of clients repre-
senting the scale of the
project

FactSheet Integer Can be found in
Config file

Table 4.1: Metrics for Robustness

Privacy
Metric Description Input Output Dependency
Differential
Privacy

Use of global or local DP
as a privacy defense

FactSheet 0/1 Can be found in
FactSheet

Entropy Uncertainty in predicting
the value of a random vari-
able

Number of
clients

[0, 1] Number of clients
can be found in Con-
fig file

Global Privacy
Risk

Maximum privacy risk
with DP based on ϵ

ϵ in Fact-
Sheet

% DP is used and ϵ
value can be found
in Config file

Table 4.2: Metrics for Privacy

Fairness
Metric Description Input Output Dependency
Participation
Rate Variation

Uniformity of distribu-
tion of participation rate
among clients

Client selec-
tor info

[0, 1] Client Selection file

Accuracy Vari-
ation

Uniformity of distribution
of performance among
clients

Model, Test
data

[0, 1] Metric Builder and
FactSheet

Class Imbal-
ance

Average class imbalance
estimation among clients

Training
data, labels

[0, 1] Secure aggregation

Table 4.3: Metrics for Fairness

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 49

Explainability
Metric Description Input Output Dependency
Algorithmic
Transparency

Interpretability of the
model by design

Algorithm
name, Score
map

[1, 5] Algorithm name to
score map is defined

Model Size Number of featurs/Depth
of decision tree/Number
of trainable parameters in
neural networks

FactSheet Integer Model meta data

Feature Impor-
tance

Average variance of feature
importance scores

Model, test
sample,
batch size

[0, 1] Test sample data

Table 4.4: Metrics for Explainability

Accountability
Metric Description Input Output Dependency
Project Specs Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template
Participants Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template
Data Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template
Configuration Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template
Performance Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template
Fairness Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template
System Existence of content in the

FactSheet
FactSheet 0/1 Correct FactSheet

template

Table 4.5: Metrics for Accountability

Architectural Soundness
Metric Description Input Output Dependency
Client Selector Use of a client selector

scheme other than random
selection

FactSheet 0/1 Can be found in
FactSheet

Optimization
Algorithm

Choice of optimization al-
gorithm

FactSheet,
Score map

% Algorithm bench-
marks are available
and reliable

Table 4.6: Metrics for Architectural Soundness

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 50

4.2.3 FederatedTrust Algorithm

As seen in the list of metric definitions in Table 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, the FactSheet
is the input for a majority of the metric calculations. The algorithm was implemented
based on the three following concepts:

1. Consolidate as much facts about the FL model as possible into the FactSheet and
use it as the major source of input for metric calculations

2. Create a generic pillar class that can be used by every type of pillar to reduce code
repetition since the structure and the main functional requirement of the metric
calculation (FR3 and FR4) apply to all pillars

3. To enable the flexibility for point 2, use a configurable approach for the metric
definition so that by simply defining the input, output and calculation operation
function new metrics can be added to the evaluation algorithm

Technology Stack

The FederatedTrust algorithm was implemented as a Python package since most FL frame-
works had been developed using Python libraries. The implemented solution does not run
the FL model but in the unit tests PyTorch library is used because that is the ML library
used in the FederatedScope framework. The statistical calculations in the code are done
by using the numpy, scipy and sklearn libraries.

Inputs and Configurations

1. FactSheet:

Code listing 4.1 shows part of the FactSheet template that is built on the IBM Account-
able FL FactSheet example [85]. This template is to be populated with facts from the
configuration file and the evaluation results from the FederatedScope framework. It is a
JSON file containing seven sections of facts describing an FL model:

• Project Specification: overview, purpose, background

• Data: provenance, pre-processing

• Participants: number of clients, sample client rate, client selector

• Configuration: optimization algorithm, training model, personalization, differential
privacy, hyperparameters

• Performance: test loss, test accuracy, test feature importance CV, CLEVER score

• Fairness: test accuracy CV, selection CV, class imbalance CV

• System: average training time, average model size, average upload bytes, average
download bytes

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 51

1 {

2 "project ": {

3 "overview ": "",

4 "purpose ": "",

5 "background ": ""

6 },

7 "data": {

8 "provenance ": "",

9 "preprocessing ": ""

10 },

11 "participants ": {

12 "client_num ": 0,

13 "sample_client_rate ": 0,

14 "client_selector ": ""

15 },

16 "configuration ": {

17 "optimization_algorithm ": "",

18 "training_model ": "",

19 "personalization ": false ,

20 "differential_privacy ": false ,

21 "dp_epsilon ": 0,

22 "trainable_param_num ": 0,

23 "total_round_num ": 0,

Listing 4.1: FactSheet Template

2. Configuration File:

The following is an example of the configuration file used in the FederatedScope frame-
work. It details the federated learning setting with client numbers, total round of training,
model name, learning rate, etc. This configuration files is fed into the FederatedTrust al-
gorithm to populate the FactSheet.

1 seed: 34567

2 expname: exp_1

3 federate:

4 mode: standalone

5 client_num: 50

6 total_round_num: 25

7 sample_client_num: 30

8 sample_client_rate: 0.6

9 join_in_info: [" num_sample "]

10 data:

11 root: data/

12 type: femnist

13 splits: [0.6 ,0.2 ,0.2]

14 batch_size: 10

15 subsample: 0.05

16 num_workers: 0

17 transform: [[’ToTensor ’], [’Normalize ’, {’mean ’: [0.1307] , ’std ’:

[0.3081]}]]

18 model:

19 type: convnet2

20 hidden: 2048

21 out_channels: 62

22 train:

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 52

23 local_update_steps: 1

24 batch_or_epoch: epoch

25 optimizer:

26 lr: 0.01

27 weight_decay: 0.0

28 nbafl:

29 use: True

30 mu: 0.1

31 constant: 1

32 w_clip: 0.1

33 epsilon: 20

34 grad:

35 grad_clip: 5.0

36 criterion:

37 type: CrossEntropyLoss

38 trainer:

39 type: cvtrainer

40 eval:

41 freq: 10

42 metrics: [’acc ’, ’correct ’]

3. Class Distribution Map:

An example of the class distribution map is shown in the code listing below. The hashed
IDs represent either the labels or classes, and the values represent the sample size per
class.

1 {

2 "oj": 688,

3 "mO": 674,

4 "v2m": 62,

5 "nR": 626,

6 "q2": 680,

7 "p2": 709,

8 "BBX": 50,

9 "k5": 690,

10 "MA": 54,

11 ...

4. Client Selection Map:

The following is an example of the client selection map. The hashed IDs represent the
client IDs and the values are the current selection or participation rate at a particular
round of training.

1 {

2 "jR": 0.46,

3 "k5": 0.52,

4 "l5": 0.58,

5 "mO": 0.66,

6 "nR": 0.602,

7 "oj": 0.40,

8 "p2": 0.582,

9 "q2": 0.50,

10 "rE": 0.68,

11 ...

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 53

5. Metric Configuration:

The metric configurations are stored in a JSON format and the metric object structure is
illustrated in Figure 4.4.

Figure 4.4: Metric Object Structure

The input object contains the source of the input data and the field path which is the
reference of the input data within the source. For example, the input data for the number
of clients is sourced from the “FactSheet”, and the field path of the data is “partici-
pants\client num”.

Overall, there are five types of metrics:

• true score: the input value directly reflects the output score

• ranges: the defined range where the input value falls in reflects the output score

• score mapping: the input value is mapped to another value as the output score

• score ranking: the input value is mapped to a ranking as the output score

• property check: the input value should be be present

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 54

Code listing 4.2 shows two examples of true score metrics. For example, under the algo-
rithm robustness notion, there are two metrics: performance and personalization. Both
metrics have input values from the FactSheet which can be directly used in the trustwor-
thiness score calculation without any post-processing.

1 "performance ": {

2 "inputs ": [

3 {

4 "source ": "factsheet",

5 "field_path ": "performance/test_acc_avg"

6 }

7],

8 "operation ": "get_value",

9 "type": "true_score",

10 "description ": "Performance of the model."

11 },

12 "personalization ": {

13 "inputs ": [

14 {

15 "source ": "factsheet",

16 "field_path ": "configuration/personalization"

17 }

18],

19 "operation ": "get_value",

20 "type": "true_score",

21 "description ": "Use of personalized FL techniques ."

22 }

Listing 4.2: True Score Metrics

Code listing 4.3 shows an example of a metric that calculates based on ranges. For
example, the number of clients which reflects the scale of the FL model can fall in the
ranges [0, 100], [10, 100], [100, 1000] and so on. and Each range reflects a score. In this
case, the smaller the scale, the higher the client reliability so that the lower ranges have
better trustworthiness scores than the higher ranges.

1 "client_reliability ": {

2 "scale": {

3 "inputs ": [{

4 "source ": "factsheet",

5 "field_path ": "participants/client_num"

6 }],

7 "operation ": "get_value",

8 "type": "ranges",

9 "direction ": "desc",

10 "ranges ":[10 ,100 ,1000 ,10000 ,100000 ,1000000 ,10000000] ,

11 "description ": "Scale of the project ."

12 }

13 }

Listing 4.3: Range Metric

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 55

Code listing 4.4 shows an example of a metric that uses score mapping. This algorithmic
transparency metric is a direct reference from the previous work of Trusted AI algorithm
[49]. In this example, every type of ML/DL model is assigned a score from 1 to 5 repre-
senting their level of algorithmic transparency as suggested in the work by Arrieta et al.
[42].

1 "algorithmic_transparency ": {

2 "inputs ": [{

3 "source ": "factsheet",

4 "field_path ": "configuration/training_model"

5 }],

6 "operation ": "get_value",

7 "type": "score_mapping",

8 "score_map ": {

9 "RandomForestClassifier ": 4,

10 "KNeighborsClassifier ": 3,

11 "SVC": 2,

12 "GaussianProcessClassifier ": 3,

13 "DecisionTreeClassifier ": 5,

14 "MLPClassifier ": 1,

15 "AdaBoostClassifier ": 3,

16 "GaussianNB ": 3.5,

17 "QuadraticDiscriminantAnalysis ": 3,

18 "LogisticRegression ": 4,

19 "LinearRegression ": 3.5,

20 "Sequential ": 1,

21 "CNN": 1

22 },

23 "description ": "Mapping of Learning techniques to the level of

transparency ."

24 }

Listing 4.4: Score Mapping Metric

Code listing 4.5 shows an example of metric that checks whether a property exists or
not. This example is used for checking if the client selector property has any value in the
FactSheet.

1 "client_management ": {

2 "client_selector ": {

3 "inputs ": [{

4 "source ": "factsheet",

5 "field_path ": "participants/client_selector"

6 }],

7 "operation ": "get_value",

8 "type": "property_check",

9 "description ": "Use of a non random client selector scheme ."

10 }

11 }

Listing 4.5: Property Check Metric

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 56

Metric Operations

For metric categories that cannot directly use the input value as the output score, addi-
tional calculation operations need to be performed. In this section, each metric operation
is explained regarding their functionality, code and the sample usage for a metric in the
Taxonomy.

Operation 1: check properties

This operation maps each argument to 0 for undefined value or 1 for defined value. The
mean of the resultant list of binary values computes the percentage of value definitions
among the all arguments. This is used for calculating the metrics under the FactSheet
completeness notion of the Accountability pillar. For example, in the FactSheet, the
project specifications metrics is calculated by checking if the overview, purpose and back-
ground input values are defined in the FactSheet.

1 def check_properties (*args):

2 result = map(lambda x: x is not None and x != "", args)

3 return np.mean(list(result))

Operation 2: get entropy

This operation is to calculate the entropy of a dataset. In this calculation, n represents
the number of samples and the assumption is that every sample has an equal probability
of being identified. Therefore, this is a simplified way to evaluate the entropy. This is
used to calculate the entropy metric under the privacy pillar.

1 def get_entropy(n):

2 entropy = -1 * np.sum(np.log2 (1/n)*(1/n))

3 return entropy

Operation 3: get global privacy risk

This operation calculates the maximum privacy risk in a model that uses DP based on
the ϵ value. The mathematical equation can be found in section 3.2.4.

1 def get_global_privacy_risk(dp, epsilon , n):

2 if dp is True and isinstance(epsilon , numbers.Number):

3 return 1 / (1 + (n - 1) * math.pow(e, -epsilon))

4 else:

5 return 1

Operation 4: get cv

The CV is a standardized measure of dispersion of a probability distribution. It calculates
the ratio of the standard deviation to the mean and shows the extent of variability of data
in a sample in relation to the mean of the population. This is used to calculate all the
metrics under privacy pillar and is part of the calculation for the feature importance
metric under the explainability pillar.

1 def get_cv(std , avg):

2 return std / avg

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 57

Operation 5: get feature importance

The feature importance is calculated by the Shapley value. The Shapley value of of one
specific feature is the average marginal contribution of this feature across all possible
feature combinations. The algorithm can be seen in appendix A.2. The DeepExplainer
function of the shap library in Python provides approximate SHAP values for deep learning
models. This is used to calculate the feature importance metric under the explainability
pillar. The dispersion of the feature importance scores is calculated to show how vaired
the importance scores are. The more dispersed the feature importance scores, the higher
the chance that the model is more explainable.

1 import shap

2

3 def get_feature_importance_cv(test_sample , model , cfg):

4 cv = 0

5 batch_size = cfg[’batch_size ’]

6 device = cfg[’device ’]

7 if isinstance(model , torch.nn.Module):

8 batched_data , _ = test_sample

9

10 n = batch_size

11 m = math.floor (0.8 * n)

12

13 background = batched_data [:m].to(device)

14 test_data = batched_data[m:n].to(device)

15

16 e = shap.DeepExplainer(model , background)

17 shap_values = e.shap_values(test_data)

18 sums = np.array([shap_values[i].sum() for i in range(len(

shap_values))])

19 abs_sums = np.absolute(sums)

20 cv = variation(abs_sums)

21 return cv

Operation 6: get clever score

The CLEVER score is calculated by using the ART Python library. This operation takes
a test sample, the global model and configurations like the batch size, number of classes,
and the learning rate as parameters. The output is the CLEVER score for an untargeted
attack, which represents the lower bound of perturbations required for the adversary to
succeed in changing the classifier.

1 from art.estimators.classification import PyTorchClassifier

2 from art.metrics import clever_u

3

4 def get_clever_score(test_sample , model , cfg):

5 nb_classes = cfg[’nb_classes ’]

6 lr = cfg[’lr’]

7 images , _ = test_sample

8 background = images [-1]

9

10 criterion = nn.CrossEntropyLoss ()

11 optimizer = optim.Adam(model.parameters (), lr)

12

13 # Create the ART classifier

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 58

14 classifier = PyTorchClassifier(

15 model=model ,

16 clip_values =(0.0, 255.0) ,

17 loss=criterion ,

18 optimizer=optimizer ,

19 input_shape =(1, 28, 28),

20 nb_classes=nb_classes ,

21)

22 score_untargeted = clever_u(classifier ,

23 background.numpy(),

24 10,

25 5,

26 R_L2 ,

27 norm=2,

28 pool_factor =3,

29 verbose=False)

30 return score_untargeted

Scoring Functions

The output value of the metric operations come in different formats as indicated in the
metric definitions (4.2.2). In order to combine these values into an understandable trust-
worthiness score, different scoring functions are used to translate the output values into
a normalised score between [0, 1]. The logic of each scoring function is explained below.

Scoring Function 1: get range score

This function takes an input value, an array of range boundaries and a direction enum
as parameters to calculate the index of the range that the input value corresponds to.
The index and the total number of ranges are then used to calculate a normalized score.
The direction can be specified in the metric definition: “asc”means that the ranges at the
higher indices in the ranges array has higher scores than those at the lower indices; “desc”
means the opposite holds. This is used to evaluate the scale metric under the robustness
pillar, the entropy metric under the privacy pillar, all metrics under the fairness pillar,
and the model size and the feature importance metrics in the explainability pillar.

1 def get_range_score(value , ranges , direction):

2 score = 0

3

4 if ranges is None:

5 logger.warning("Score ranges are missing")

6 else:

7 total_bins = len(ranges) + 1

8 bin = np.digitize(value , ranges , right=True)

9 if direction == ’desc’:

10 score = 1 - (bin / total_bins)

11 else:

12 score = bin / total_bins

13

14 return score

Scoring Function 2: get normalized score

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 59

This function takes a key and a defined score map as parameters to calculate the normal-
ized mapped score for the given key. This is used to evaluate the algorithmic transparency
metric under the explainability pillar.

1 from sklearn import preprocessing

2

3 def get_normalized_score(score_key , score_map):

4 score = 0;

5

6 if score_map is None:

7 logger.warning("Score map is missing")

8 else:

9 keys = [key for key , value in score_map.items()]

10 scores = np.array([value for key , value in score_map.items ()])

11 normalized_scores = preprocessing.normalize ([scores])

12 normalized_score_map = dict(zip(keys , normalized_scores [0]))

13 score = normalized_score_map.get(score_key , np.nan)

14

15 return score

Scoring Function 3: get ranked score

This function takes a key, a defined score map and a direction enum as parameters to
calculate a ranked score. The score map is first sorted by the score values by the direction
specified. Based on the sorted array, the key is used to find the position of the mapped
score in the sorted array. The index and the length of the score array is used to calculated
a normalized ranking for the key in the score map. This is used to calculate the algorithm
metric under the Architectural Soundness pillar.

1 def get_ranked_score(score_key , score_map , direction):

2 score = 0

3

4 if score_map is None:

5 logger.warning("Score map is missing")

6 else:

7 sorted_scores = sorted(score_map.items(),

8 key=lambda item: item[1],

9 reverse=direction == ’desc’)

10

11 sorted_score_map = dict(sorted_scores)

12

13 for index , key in enumerate(sorted_score_map):

14 if key == score_key:

15 score = (index + 1) / len(sorted_score_map)

16

17 return score

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 60

Metric Scoring System

The previous section 4.2.3 describes the functional calculation steps to evaluate a metric
from the necessary input data to an output value by the metric definition. For example,
how to calculate the coefficient of variation or the global privacy risk from raw input
values of test accuracy or the ϵ. In order to present an understandable trustworthiness
level, a score within the range of [0, 1] or in other words 0-100%, is aggregated from all
the metrics. Section 4.2.3 presents the utility functions available to arrive at a normalized
trust score. However, the logic for comparison is missing and this section fills the gap with
the design behind the scoring system for each metric based on the analysis in Chapter 3.
As illustrated in section 4.2.3, each Metric object has a type, a direction, optional ranges
and score mappings. The direction, ranges and score mappings are used in the scoring
functions to calculate the trust score based on the metric value.

1. Robustness Pillar

• certified robustness:
the CLEVER score falls in one of the ranges below, the higher the range the higher
the robustness level

1 [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4,

2.6, 2.8, 3.2, 3.4, 3.6, 3.8, 4.0]

• performance: value is percentage and therefore is bounded by [0, 1]

• personalization: True or False values correspond to 1 or 0

• scale: the lower the number of clients in the range [101, 1010], the higher the higher
the robustness level

2. Privacy Pillar

• differential privacy: True or False values correspond to 1 or 0

• entropy: value is bounded by [0, 1], the higher the entropy the higher the privacy
level

• global privacy risk: value is bounded by [0, 1], the lower the risk the higher the
privacy level

3. Fairness Pillar

• selection variation: value is bounded by [0, 1], the lower the variation the higher
the fairness level

• accuracy variation: value is bounded by [0, 1], the lower the variation the higher
the fairness level

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 61

• class imbalance: value is bounded by [0, 1], the lower the imbalance the higher the
fairness level

4. Explainability Pillar

• algorithmic transparency:
The score mapping from the previous work [49] based on the level transparency is
used. The higher the score, the higher the transparency level.

1 "score_map ": {

2 "RandomForestClassifier ": 4,

3 "KNeighborsClassifier ": 3,

4 "SVC": 2,

5 "GaussianProcessClassifier ": 3,

6 "DecisionTreeClassifier ": 5,

7 "MLPClassifier ": 1,

8 "AdaBoostClassifier ": 3,

9 "GaussianNB ": 3.5,

10 "QuadraticDiscriminantAnalysis ": 3,

11 "LogisticRegression ": 4,

12 "LinearRegression ": 3.5,

13 "Sequential ": 1,

14 "CNN": 1

15 }

16

• model size:
The number of features (i.e. trainable parameters in NN) falls in one of the ranges
below. The lower the range, the higher the interpretability level.

1 [10, 50, 100, 500, 1000, 5000, 10000, 50000 , 100000]

2

• feature importance variation: value is bounded by [0, 1], the higher the variation
the higher the explainability level of the features

5. Accountability Pillar

• project specifications: existence of information corresponds to 1, otherwise 0

• participants: existence of information corresponds to 1, otherwise 0

• data: existence of information corresponds to 1, otherwise 0

• configuration: existence of information corresponds to 1, otherwise 0

• performance: existence of information corresponds to 1, otherwise 0

• fairness: existence of information corresponds to 1, otherwise 0

• system: existence of information corresponds to 1, otherwise 0

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 62

6. Architectural Soundness Pillar

• client selector: use of a selector scheme corresponds to 1, otherwise 0

• optimization algorithm:
The following benchmarking of FL algorithms provided by FederatedScope is used
as a ranking system for the algorithms. The higher the benchmarked performance,
the higher ranked the is the algorithm. However, if resources allow, it is more
advisable to test run each of the FL algorithm on the intended federated client data
to produce more accurate benchmarking information pertaining for the FL data and
task of interest.

1 "score_map ": {

2 "FedAvg ": 0.8493 ,

3 "FedOpt ": 0.8492 ,

4 "FedProx ": 0.8477 ,

5 "FedBN": 0.8548 ,

6 "pFedMe ": 0.8765 ,

7 "Ditto": 0.8661 ,

8 "FedEM": 0.8479

9 }

10

Algorithm Structure

Figure 4.5 shows the code structure on the left and the UML diagrams for the TrustMet-
ricManager and the TrustPillar classes on the right.

Figure 4.5: Code Structure and UML Class Diagram

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 63

As seen in the code structure, the configs folder holds all the configuration files such
as the initial FactSheet template (factsheet template.json) and the metric definitions
JSON (eval metrics v1.json). The example folder holds the example configuration file
(fs config.log) and evaluation report (eval results.log) from the FederatedScope frame-
work. Examples of a populated FactSheet document and the generated client selection
map (client selection.json) are also provided.

The core functionalities of the algorithm are written in the pillar.py and metrics.py mod-
ules. The TrustPillar class defines the pillar objects that are deserialized from the metric
definitions JSON. The TrustMetricManager serves as an interface object between the
parent FL framework and the trustworthiness evaluation algorithm. The calculation.py
module contains all the metric operations (4.2.3) and scoring functions (4.2.3), and the
utils.py module contains utility functions used for file I/O operations.

Figure 4.6 below shows the design of the FederatedTrust algorithm. A FactSheet is first
generated and populated in the process as illustrated in section 4.1.5. The inputs from
the FactSheet are evaluated against the corresponding metrics by performing metric op-
erations and scoring functions to arrive at a normalized trust score. The metric scores
under each notion are then aggregated based on their weights. The notion trust scores
are then aggregated into the pillar scores. The final trust score of the model is a weighted
average of the pillar scores.

Figure 4.6: Design for the FederatedTrust Algorithm

4.3 Deployment

To demonstrate the usefulness of the proposed FederatedTrust algorithm, Prototype v1
was developed and built as a local Python package and was tested in the FederatedScope
framework as a proof-of-concept. The following section details the steps to build and
import the FederatedTrust library in any FL development framework.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 64

Installation Guide

1. The following Python packing libraries are the prerequisites for building the Federat-
edTrust package locally.

1 > pip install wheel

2 > pip install setuptools

3 > pip install twine

2. Navigate to the FederatedTrust directory and run the following command to build the
package.

1 ..\ FederatedTrust > python setup.py bdist_wheel

3. Within the FederatedScope framework, install the FederatedTrust package locally.

1 ..\ FederatedScope > pip install ..\ FederatedTrust -0.1.0 -py3 -none -any.whl

4. Import the TrustMetricManager and initiates instance with a required output directory.

1 from federatedTrust.metric import TrustMetricManager

2

3 # set up TrustMetricManager

4 # a output directory path is required

5 trust_metric_manager = TrustMetricManager(output_dir)

5. Example uses of the TrustMetricManager instance

1 # populates the FactSheet with the configuartion file

2 trust_metric_manager.populate_factsheet(cfg_file="config.yaml")

3

4 # populates the FactSheet with the evaluation results file

5 trust_metric_manager.populate_factsheet(eval_results_file="eval_results.

log")

6

7 # updates the client selection frequency map

8 trust_metric_manager.register_selection(clients , total_round_number , -1)

9

10 # updates the unified class distribution with the training data on the

client side

11 trust_metric_manager.register_class_distribution(data)

12

13 # evaluates the trustworthiness level of the given model

14 trust_metric_manager.evaluate(test_sample , model , cfg)

4.3.1 Use Case

FederatedScope framework offers a range of datasets, machine learning models and FL
algorithms. For testing the deployment of the trustworthiness evaluation algorithm, a
basic use case in the framework is chosen and four different sets of environmental config-
urations were tested and compared. Table 4.7 shows the basic configurations for the use
case. The use case runs an FL training in standalone mode with clients and one central

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 65

server over a defined number of iterations. The optimization algorithm is FedAvg and the
training model is a convolutional neural network, CovNet2. The federated datasets that
the clients hold locally are from the FEMNIST image dataset of handwritten digits and
letters. The dataset has 62 different classes (10 digits, 26 lowercase, 26 uppercase) and
the images are 28 by 28 pixels. The client selector strategy is random sampling based on
a defined percentage.

Mode Standalone
Algorithm FedAvg
Dataset FEMNIST
Trainer Model CovNet2

Table 4.7: Use case Basic Configurations

Evaluation

Experiment 1: The experiment set up 10 clients for the federation, with 50% sampling
rate. The training ran 5 rounds to produce a an aggregated global mode. This experiment
did not use personalization techniques therefore all clients shared the same global model.
The expected result was that performance and fairness levels would be very low due to
few number of rounds of training and low sampling rate. The privacy protection level was
expected to be low because no DP was added.

Client Number 10
Sample Rate 20%
Rounds 5
Personalization No
Differential Privacy No

Table 4.8: Experiment 1 Setting

Experiment 2: 50 clients were set up for the federation. In every iteration, the server
randomly sampled 60% of the clients to participate in the training. The experiment ran
25 rounds of iterations. No personalization techniques were used but DP was added by
switching on the NbAFL approach. The expected performance and fairness levels would
be higher due to higher sampling rate and higher number of training rounds. The privacy
protection level was expected to be low because the DP ϵ was set as 20.

Client Number 50
Sample Rate 60 %
Rounds 25
Personalization No
Differential Privacy ϵ = 20

Table 4.9: Experiment 2 Setting

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 66

Experiment 3: Similar configurations as Experiment 2 were used. The difference was in
the ϵ value used for DP. The expected privacy protection would be higher.

Client Number 50
Sample Rate 60%
Rounds 25
Personalization No
Differential Privacy ϵ = 6

Table 4.10: Experiment 3 Setting

Experiment 4: The experiment was medium scaled among all the experiment runs con-
sisting of 100 clients with 40% sampling rate and 50 rounds of training. DP ϵ value was
low at 6.

Client Number 100
Sample Rate 60%
Rounds 50
Personalization No
Differential Privacy ϵ = 6

Table 4.11: Experiment 4 Setting

4.3.2 Result Discussion

For the four experiments, some variables are constant. Because of the same environment
in FederatedScope framework, the same amount of meta data about the project speci-
fications, data and participants can be extracted from all the models. For the project
specification section, only the overview of the project could be inferred from the config-
uration file. The purpose and the background of the project were not specified in the
model. The models all used a random sampling client selector so they all received the
full 1 or 100% trust score for the client management notion. Since all experiments ran on
the FedAvg aggregation algorithm, the optimization algorithm score was also the same
for all experiments. The common results are shown in the Table 4.12 below. As of now,
all metrics and notions have the same weights because the mechanism to determine the
importance of each metric has not been analyzed and implemented.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 67

Common Results in the Experiments

accountability 0.9

factsheet completeness 0.9

project specs 0.33
participants 1
data 1
configuration 1
performance 1
fairness 1
system 1

architectural soundness 0.78
client management 1 client selector 1
optimization 0.57 algorithm 0.57

Table 4.12: Common Results in the Experiments

Comparing Experiment 1 and 2

The following list of observations were made from the results of Experiment 1 and 2:

OB-1 The certified robustness score dropped from 0.48 to 0.19 from Experiment 1 to 2.

OB-2 The scale for both experiments have similar score since both have less than 50 clients.

OB-3 The privacy score increased from 0.31 to 0.64 from Experiment 1 to 2.

OB-4 The indistinguishability score is still 0 regardless of the use of DP.

OB-5 The fairness score increased from 0.25 to 0.47 with significant increase in selection
fairness (from 0.08 to 0.83).

OB-6 The performance fairness dropped from 0.58 to 0.50 from Experiment 1 to 2.

OB-7 The explainability score increased from 0.61 to 0.73 with an increase for the feature
importance score from 0.67 to 0.92.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 68

trustworthiness score 0.56
robustness 0.5
resilience to attacks 0.48 certified robustness 0.48

algorithm robustness 0.035
performance 0.07
personalization 0

client reliability 1 scale 1
privacy 0.31
technique 0 differential privacy 0
uncertainty 0.92 entropy 0.92
indistinguishability 0 global privacy risk 0
fairness 0.25
selection fairness 0.08 selection variation 0.08
performance fairness 0.58 performance variation 0.58
class distribution 0.08 class imbalance 0.08
explainability 0.61

interpretability 0.55
algorithmic transparency 0.09
model size 1

post-hoc methods 0.67 feature importance 0.67

Table 4.13: Experiment 1 - 10 clients, 20% sampling rate, 5 rounds, no DP

trustworthiness score 0.65
robustness 0.38
resilience to attacks 0.19 certified robustness 0.19

algorithm robustness 0.05
performance 0.1
personalization 0

client reliability 0.91 scale 0.91
privacy 0.64
technique 1 differential privacy 1
uncertainty 0.92 entropy 0.92
indistinguishability 0.0 global privacy risk 0.0
fairness 0.47
selection fairness 0.83 selection variation 0.83
performance fairness 0.50 performance variation 0.50
class distribution 0.08 class imbalance 0.08
explainability 0.73

interpretability 0.55
algorithmic transparency 0.09
model size 1

post-hoc methods 0.92 feature importance 0.92

Table 4.14: Experiment 2 - 50 clients, 60% sampling rate, 25 rounds, DP with ϵ = 20

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 69

The drop in certified robustness level in OB-1 could be related to the increase in the
number of clients and the number of rounds. In theory, more aggregating parties provide
more entries and surfaces for adversaries to insert backdoor perturbations for poisoning
attacks. There is also higher chances for parties to collude when they are more in number.
The higher number of rounds also mean that adversaries have more chances to administer
attacks.

Even though the privacy score increased overall because of the use of DP in OB-3, the
effectiveness of the privacy mechanism was not good because of the large value of ϵ cho-
sen for the NbAFL approach. By relaxing the ϵ to a large value like 20, the privacy
protection became lower because the larger the ϵ value the less noise was added to the
data and therefore higher probability of identification by the adversary. The resultant
indistinguishability score of 0 reflected the low privacy level in OB-4.

The significant increase for the fairness score in OB-5 was resulted from the overall increase
in the number of clients, the client sampling rate and the number of rounds. The selection
fairness improved with more clients participating and more training rounds, however, the
drop in performance fairness in OB-6 could be due to the increased number of clients as
well. More clients with different levels of heterogeneity in their data could influence the
generalizability of the global model hence affecting the individual test accuracy at the
client level. Furthermore, personalization techniques were not used so the global model
were not be adapted to the clients.

Comparing Experiments 3 and 4

The following list of observations were made from the results of Experiment 3 and 4:

OB-8 The overall robustness score only increased from 0.36 to 0.38 from Experiment 3 to
4, even though there was a significant increase in the model performance from 0.09
to 0.36.

OB-9 The privacy score increased due to the increase in indistinguishability from Experi-
ment 3 to 4.

OB-10 The client reliability score remained the same for both experiments.

OB-11 The feature importance score continued to increase to 0.92 in Experiment 4.

OB-12 The fairness score were almost the same for both experiments.

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 70

trustworthiness score 0.64
robustness 0.36
resilience to attacks 0.14 certified robustness 0.14

algorithm robustness 0.045
performance 0.09
personalization 0

client reliability 0.91 scale 0.91
privacy 0.68
technique 1 differential privacy 1
uncertainty 0.92 entropy 0.92
indistinguishability 0.11 global privacy risk 0.11
fairness 0.47
selection fairness 0.83 selection variation 0.83
performance fairness 0.50 performance variation 0.50
class distribution 0.08 class imbalance 0.08
explainability 0.65

interpretability 0.55
algorithmic transparency 0.09
model size 1

post-hoc methods 0.75 feature importance 0.75

Table 4.15: Experiment 3 - 50 clients, 60% sampling rate, 20 rounds, DP with ϵ = 6

trustworthiness score 0.67
robustness 0.38
resilience to attacks 0.05 certified robustness 0.05

algorithm robustness 0.18
performance 0.36
personalization 0

client reliability 0.91 scale 0.91
privacy 0.71
technique 1 differential privacy 1
uncertainty 0.92 entropy 0.92
indistinguishability 0.20 global privacy risk 0.20
fairness 0.50
selection fairness 0.83 selection variation 0.83
performance fairness 0.58 performance variation 0.58
class distribution 0.08 class imbalance 0.08
explainability 0.73

interpretability 0.55
algorithmic transparency 0.09
model size 1

post-hoc methods 0.92 feature importance 0.92

Table 4.16: Experiment 4 - 100 clients, 60% sampling rate, 50 rounds, DP with ϵ = 6

CHAPTER 4. TRUSTWORTHY FL EVALUATION ALGORITHM 71

The improvement in the indistinguishablity score in OB-9 was caused by the increase in
the number of clients. Assume random guessing was used, it was twice as difficult to
guess the correct target among 100 clients as compared to 50 clients. The equal client
reliability score in OB-10 was because the numbers of clients in both experiments fell
within the range [50, 100] which gave the same score. The increase in feature importance
score in OB-11 may be related to the increase in data samples from more clients and the
better model performance. When the model learned the data better, the features had
more impact on the prediction outcomes. The similar fairness score in OB-12 may be due
to the fact that the ratio of between the increase in the number of clients and the increase
in the number of rounds were the same while the sampling rate remained the same as
well.

4.4 Limitations

As seen from the experiment results, there are several limitations to the FederatedTrust
algorithm in terms of quantifying the trustworthiness level of FL models. On the one
hand, some metrics are easily quantifiable and can represent a component of the trust-
worthiness level well. For example, the certified robustness is an attacker lower bound
which is directly associated to resilience to attacks. On the other hand, some other met-
rics, like scale under client reliability, often have to be considered with other factors in
order to represent the notion well. For example, the analysis in Chapter 3 shows that in
practice , the individual client reputation level is an important factor for client reliability
as well. However, it was difficult to quantify client reputation in the simulated experi-
ment. Another example would be the selection fairness notion. Although the selection
fairness metric was easily quantifiable by computing the dispersion of selection rate among
the clients, this variation metric alone may not be the best representation of fairness for
client selection in FL. Increasing the number to clients, the sample rate and the round
of training could easily bring up the selection variation, but equality does not necessarily
imply equity which is important for true fairness.

Another limitation of the algorithm is pertaining to the scoring system. In order to
aggregate all the scores into a trustworthiness level between 0 and 1, all the metric values
had to go through the metric operations and the scoring functions. The logic of the scoring
functions has a high impact on how the trust score of each metric came out. Based on the
pillar analysis in Chapter 3, there were a general directions of how every metric should
impact the overall trustworthiness level, however, the concrete scoring maps and ranges
were created based on subjective understanding and standards used from other studies.
Their generalizability for other systems were not fully evaluated. Furthermore, the current
weighing system for the metrics does not implement varied weights, meaning that every
metric has the same weight under one notion and every notion has the same weight when
aggregated into the final trustworthiness level. The weighing system could be enhanced by
further analysis of the trade offs between pillars and metrics to produce a more balanced
trustworthiness level of FL models.

Chapter 5

Summary and Conclusions

This thesis work first took a deep dive into the literature to study the existing work on
Trustworthy AI and the state-of-the-art FL. During the survey and analysis of the existing
Trustworthy AI pillars, namely robustness, privacy, fairness, explainability and account-
ability, comparisons to FL modes were made and the applicability of metric evaluations
were considered. At the end of the analysis a comprehensive taxonomy describing the
requirements for Trustworthy FL was created. A new pillar, Architectural Soundness,
was added to the taxonomy as a special pillar for FL models to address the lack of trust
brought by the complex distributed system. Furthermore, different notions and new met-
rics were added to each pillar specifically for the FL models, for example, system-level
robustness, information leakage risk and client selection fairness. The limitations and
drawbacks of individual metrics were also discussed. Based on the comprehensive taxon-
omy, a trustworthiness evaluation algorithm, named FederatedTrust, was designed with
the goal to be a light-weight, configurable and flexible trust evaluation algorithm library.
Before designing the algorithm, a list of existing state-of-the-art open-source FL devel-
opment and benchmarking frameworks were assessed and one of the newest framework,
FederatedScope, was selected as the reference FL framework to deploy and test the eval-
uation algorithm. The architecture of FederatedTrust and its interactions with the parent
FL framework were designed and a list of functional requirements and privacy constraints
were defined. The algorithm was implemented and tested in FederatedScope with the
baseline FedAvg optimization algorithm on the FEMNIST dataset, A total of four ex-
periments were ran with different FL settings varying the number of clients, rounds and
differential privacy parameters. The generated experiment results, which were reports of
the trustworthiness level of each components of the pillars, were compared and discussed.
The trustworthiness report was able to report accurately the quantifiable metrics but less
accurate for the notions or metrics that needed qualitative justifications as well. The ex-
periments demonstrated the complexity of the task to quantify the trustworthiness level
of FL models, and the FederatedTrust algorithm was the first attempt to a holistically
assess an FL model based on a comprehensive trustworthiness taxonomy.

72

CHAPTER 5. SUMMARY AND CONCLUSIONS 73

5.1 Future Work

Currently, the FederatedTrust evaluation algorithm only supports the FederatedScope
framework. Because of the focus on FederatedScope framework, input variables were
gathered mostly from the configuration file and the evaluation results generated by the
FederatedScope framework itself. The design of the interactions between the framework
and the FederatedTrust algorithm was also heavily based on how the framework conducted
FL training processes. In the future, more FL development frameworks can be integrated
and supported by further expanding the sources of inputs and the adaptability of the
algorithm. Further more, the score aggregation step could be improved by performing
more analysis on the trade offs between pillars and metrics to best handle the weight as-
signments. The scoring functions could also be improved by designing better score ranges
and mappings. Furthermore, the current algorithm only supports computing trustwor-
thiness scores of pillars and metrics either before or after training starts. Some metrics
need to be calculated during every round of training, however, due to large computation
overhead, conducting round-wise trust score evaluation with complex calculation meth-
ods was not feasible. There are still a number of metrics in the full taxonomy that were
not implemented in the Prototpye v1 of the FederatedTrust algorithm. Potential future
work can also focus on bringing a more realistic use case into the evaluation framework so
that metrics that were omitted due to practical environmental constraints can be added.
Lastly, further evaluation experiments should be conducted on different FL optimization
algorithms and federated datasets for more comparative analyses.

Bibliography

[1] Y. Bengio, “Springtime for AI: The Rise of Deep Learn-
ing,” 2016. [Online]. Available: https://www.scientificamerican.com/article/
springtime-for-ai-the-rise-of-deep-learning/

[2] D. A. Ferrucci, “Introduction to “This is Watson”,” IBM Journal of Research and
Development, vol. 56, no. 3.4, pp. 1:1–1:15, 2012.

[3] J. D. Olga Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[4] D. Silver, A. Huang et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan 2016. [Online].
Available: https://doi.org/10.1038/nature16961

[5] Siri Team, “Hey Siri: An On-device DNN-powered Voice Trigger for Apple’s
Personal Assistant,” Apple Machine Learning Research, 2017. [Online]. Available:
https://machinelearning.apple.com/research/hey-siri

[6] T. B. Brown, B. Mann et al., “Language models are few-shot learners,” 2020.
[Online]. Available: https://arxiv.org/abs/2005.14165

[7] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.06125

[8] Tesla, “Autopilot and Full Self-Driving Capability,” 2022. [Online]. Available:
https://www.tesla.com/support/autopilot

[9] G. Ras, N. Xie, M. van Gerven, and D. Doran, “Explainable deep
learning: A field guide for the uninitiated,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.14545

[10] K. Hao, “AI is sending people to jail—and getting it wrong,” 2019.
[Online]. Available: https://www.technologyreview.com/2019/01/21/137783/
algorithms-criminal-justice-ai/

[11] R. Rao, “The Dutch Tax Authority Was Felled by AI—What Comes Next?
European regulation hopes to rein in ill-behaving algorithms,” 2022. [Online].
Available: https://spectrum.ieee.org/artificial-intelligence-in-government

74

https://www.scientificamerican.com/article/springtime-for-ai-the-rise-of-deep-learning/
https://www.scientificamerican.com/article/springtime-for-ai-the-rise-of-deep-learning/
https://doi.org/10.1038/nature16961
https://machinelearning.apple.com/research/hey-siri
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.06125
https://www.tesla.com/support/autopilot
https://arxiv.org/abs/2004.14545
https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai/
https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai/
https://spectrum.ieee.org/artificial-intelligence-in-government

BIBLIOGRAPHY 75

[12] N. E. Boudette, “‘It Happened So Fast’: Inside a Fatal Tesla Autopilot
Accident,” 2021. [Online]. Available: https://www.nytimes.com/2021/08/17/
business/tesla-autopilot-accident.html

[13] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized Data,”
in Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, A. Singh and J. Zhu,
Eds., vol. 54. PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[14] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,”
Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 13, no. 3,
pp. 1–207, 2019.

[15] researchandmarkets.com, “Global Federated Learning Market by Application
(Drug Discovery, Industrial IoT, Risk Management), Vertical (Healthcare &
Life Sciences, BFSI, Manufacturing, Automotive & Transportation, Energy
& Utilities), and Region - Forecast to 2028,” 2022. [Online]. Available:
https://www.researchandmarkets.com/reports/5311706

[16] N. Rieke, J. Hancox et al., “The future of digital health with federated learning,”
npj Digital Medicine, vol. 3, no. 1, p. 119, Sep 2020. [Online]. Available:
https://doi.org/10.1038/s41746-020-00323-1

[17] V. Dignum, Responsible artificial intelligence: how to develop and use AI in a re-
sponsible way. Springer Nature, 2019.

[18] L. Floridi, J. Cowls et al., “AI4People - An Ethical Framework for a Good
AI Society: Opportunities, Risks, Principles, and Recommendations,” Minds
and Machines, vol. 28, no. 4, pp. 689–707, Dec 2018. [Online]. Available:
https://doi.org/10.1007/s11023-018-9482-5

[19] S. Feuerriegel, M. Dolata, and G. Schwabe, “Fair AI,”Business & information sys-
tems engineering, vol. 62, no. 4, pp. 379–384, 2020.

[20] AI HLEG of the European Commission, “Ethics guidelines for trustworthy ai,” 2019.
[Online]. Available: https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.
html

[21] H. Liu, Y. Wang et al., “Trustworthy AI: A Computational Perspective,” 2021.
[Online]. Available: https://arxiv.org/abs/2107.06641

[22] B. Li, P. Qi et al., “Trustworthy AI: From Principles to Practices,”
ACM Comput. Surv., aug 2022, just Accepted. [Online]. Available: https:
//doi.org/10.1145/3555803

[23] S. Thiebes, S. Lins, and A. Sunyaev, “Trustworthy artificial intelligence,”Electronic
Markets, vol. 31, no. 2, pp. 447–464, 2021.

https://www.nytimes.com/2021/08/17/business/tesla-autopilot-accident.html
https://www.nytimes.com/2021/08/17/business/tesla-autopilot-accident.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://www.researchandmarkets.com/reports/5311706
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1007/s11023-018-9482-5
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html
https://arxiv.org/abs/2107.06641
https://doi.org/10.1145/3555803
https://doi.org/10.1145/3555803

BIBLIOGRAPHY 76

[24] D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trustworthy artificial intelli-
gence: a review,”ACM Computing Surveys (CSUR), vol. 55, no. 2, pp. 1–38, 2022.

[25] K. R. Varshney, “Trustworthy machine learning and artificial intelligence,” XRDS:
Crossroads, The ACM Magazine for Students, vol. 25, no. 3, pp. 26–29, 2019.

[26] J. M. Wing, “Trustworthy AI,” Communications of the ACM, vol. 64, no. 10, pp.
64–71, 2021.

[27] P. Kairouz, H. B. McMahan et al., “Advances and open problems in federated learn-
ing,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210,
2021.

[28] TensorFlow, “TensorFlow Federated: Machine Learning on Decentralized Data.”
[Online]. Available: https://www.tensorflow.org/federated

[29] Adapt, “Flower: A Friendly Federated Learning Framework.” [Online]. Available:
https://flower.dev/

[30] D. Dimitriadis, M. Hipolito Garcia, D. Madrigal, A. Manoel, and
R. Sim, “FLUTE: A Scalable, Extensible Framework for High-
Performance Federated Learning Simulations,” March 2022. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
flute-a-scalable-extensible-framework-for-high-performance-federated-learning-simulations/

[31] S. Caldas, S. M. K. Duddu et al., “Leaf: A benchmark for federated settings,”
2018. [Online]. Available: https://arxiv.org/abs/1812.01097

[32] Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang, Y. Li, B. Ding, and J. Zhou,
“Federatedscope: A flexible federated learning platform for heterogeneity,” arXiv
preprint arxiv.2204.05011, 2022.

[33] Alibaba DAMO Academy, “Data Analytics and Intelligence Lab.” [Online].
Available: https://damo.alibaba.com/labs/data-analytics-and-intelligence

[34] Xie, Ning, “FederatedTrust: A Trustworthiness Evaluation Framework,” 2022.
[Online]. Available: https://github.com/ningxie1991/FederatedTrust

[35] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Good-
fellow, A. Madry, and A. Kurakin, “On evaluating adversarial robustness,” arXiv
preprint arXiv:1902.06705, 2019.

[36] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and
solutions,” IEEE Security & Privacy, vol. 17, no. 2, pp. 49–58, 2019.

[37] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, “When machine
learning meets privacy: A survey and outlook,”ACM Computing Surveys (CSUR),
vol. 54, no. 2, pp. 1–36, 2021.

[38] I. Wagner and D. Eckhoff, “Technical privacy metrics: a systematic survey,” ACM
Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–38, 2018.

https://www.tensorflow.org/federated
https://flower.dev/
https://www.microsoft.com/en-us/research/publication/flute-a-scalable-extensible-framework-for-high-performance-federated-learning-simulations/
https://www.microsoft.com/en-us/research/publication/flute-a-scalable-extensible-framework-for-high-performance-federated-learning-simulations/
https://arxiv.org/abs/1812.01097
https://damo.alibaba.com/labs/data-analytics-and-intelligence
https://github.com/ningxie1991/FederatedTrust

BIBLIOGRAPHY 77

[39] L. Mehner, S. N. von Voigt, and F. Tschorsch, “Towards Explaining Epsilon: A
Worst-Case Study of Differential Privacy Risks,” in 2021 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2021, pp. 328–331.

[40] D. Pessach and E. Shmueli, “A review on fairness in machine learning,”ACM Com-
puting Surveys (CSUR), vol. 55, no. 3, pp. 1–44, 2022.

[41] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv preprint arXiv:1702.08608, 2017.

[42] A. B. Arrieta et al., “Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.10045

[43] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”Explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[44] A. Blanco-Justicia, J. Domingo-Ferrer, S. Martinez, and D. Sanchez, “Machine
learning explainability via microaggregation and shallow decision trees,”Knowledge-
Based Systems, vol. 194, p. 105532, 2020.

[45] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,”Advances in neural information processing systems, vol. 30, 2017.

[46] M. Wieringa,“What to account for when accounting for algorithms: a systematic lit-
erature review on algorithmic accountability,” in Proceedings of the 2020 conference
on fairness, accountability, and transparency, 2020, pp. 1–18.

[47] I. D. Raji, A. Smart, R. N. White, M. Mitchell, T. Gebru, B. Hutchinson, J. Smith-
Loud, D. Theron, and P. Barnes, “Closing the ai accountability gap: Defining an
end-to-end framework for internal algorithmic auditing,” in Proceedings of the 2020
conference on fairness, accountability, and transparency, 2020, pp. 33–44.

[48] M. Arnold, R. K. Bellamy et al., “Factsheets: Increasing trust in ai services through
supplier’s declarations of conformity,” IBM Journal of Research and Development,
vol. 63, no. 4/5, pp. 6–1, 2019.

[49] A. Celdran, J. Bauer, M. Demirci et al., “Quantifying Trustworthiness of Supervised
Machine and Deep Learning Models,”UZH Master Project, 2022.

[50] IBM Research,“The AI 360 Toolkit: AI models explained,”2022. [Online]. Available:
https://developer.ibm.com/articles/the-ai-360-toolkit-ai-models-explained/

[51] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and
applications,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 10, no. 2, pp. 1–19, 2019.

[52] S. K. Lo, Q. Lu et al., “Architectural patterns for the design of federated learning
systems,” Journal of Systems and Software, vol. 191, p. 111357, 2022.

https://arxiv.org/abs/1910.10045
https://developer.ibm.com/articles/the-ai-360-toolkit-ai-models-explained/

BIBLIOGRAPHY 78

[53] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions,” ACM Computing Surveys
(CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[54] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on
federated learning systems: vision, hype and reality for data privacy and protection,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[55] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A performance
evaluation of federated learning algorithms,” in Proceedings of the second workshop
on distributed infrastructures for deep learning, 2018, pp. 1–8.

[56] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated opti-
mization: Distributed machine learning for on-device intelligence,” arXiv preprint
arXiv:1610.02527, 2016.

[57] Y. Wang, “Co-op: Cooperative machine learning from mobile devices,” University
of Alberta Libraries, 2017.

[58] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Ku-
mar, and H. B. McMahan, “Adaptive federated optimization,” arXiv preprint
arXiv:2003.00295, 2020.

[59] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,”Proceedings of Machine Learning and Sys-
tems, vol. 2, pp. 429–450, 2020.

[60] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Federated learning on
non-iid features via local batch normalization,” arXiv preprint arXiv:2102.07623,
2021.

[61] C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning with moreau
envelopes,”Advances in Neural Information Processing Systems, vol. 33, pp. 21 394–
21 405, 2020.

[62] M. S. Jere, T. Farnan, and F. Koushanfar, “A taxonomy of attacks on federated
learning,” IEEE Security & Privacy, vol. 19, no. 2, pp. 20–28, 2020.

[63] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing federated learning
through an adversarial lens,” in International Conference on Machine Learning.
PMLR, 2019, pp. 634–643.

[64] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential privacy
for robustness and privacy in federated learning,” arXiv preprint arXiv:2009.03561,
2020.

[65] L. Muñoz-González, K. T. Co, and E. C. Lupu,“Byzantine-robust federated machine
learning through adaptive model averaging,”arXiv preprint arXiv:1909.05125, 2019.

BIBLIOGRAPHY 79

[66] N. Rodŕıguez-Barroso, E. Mart́ınez-Cámara, M. V. Luzón, and F. Herrera, “Back-
door attacks-resilient aggregation based on Robust Filtering of Outliers in federated
learning for image classification,” Knowledge-Based Systems, vol. 245, p. 108588,
2022.

[67] M. Alfarra, J. C. Pérez, E. Shulgin, P. Richtárik, and B. Ghanem, “Certified Ro-
bustness in Federated Learning,” arXiv preprint arXiv:2206.02535, 2022.

[68] Y. Dong, X. Chen, L. Shen, and D. Wang, “EaSTFLy: Efficient and secure ternary
federated learning,”Computers & Security, vol. 94, p. 101824, 2020.

[69] S. Hardy, W. Henecka et al., “Private federated learning on vertically partitioned
data via entity resolution and additively homomorphic encryption,” arXiv preprint
arXiv:1711.10677, 2017.

[70] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ra-
mage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving
machine learning,” in proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, 2017, pp. 1175–1191.

[71] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and
A. Das, “Differential privacy-enabled federated learning for sensitive health data,”
arXiv preprint arXiv:1910.02578, 2019.

[72] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A
client level perspective,” arXiv preprint arXiv:1712.07557, 2017.

[73] O. Choudhury, A. Gkoulalas-Divanis et al., “A syntactic approach for privacy-
preserving federated learning,” in ECAI 2020. IOS Press, 2020, pp. 1762–1769.

[74] Y. Liu, X. Zhu, J. Wang, and J. Xiao, “A quantitative metric for privacy leakage
in federated learning,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 3065–3069.

[75] Y. Shi, H. Yu, and C. Leung, “A survey of fairness-aware federated learning,” arXiv
preprint arXiv:2111.01872, 2021.

[76] X. Yue, M. Nouiehed, and R. A. Kontar, “Gifair-fl: An approach for group and
individual fairness in federated learning,” arXiv preprint arXiv:2108.02741, 2021.

[77] D. Y. Zhang, Z. Kou, and D. Wang, “Fairfl: A fair federated learning approach to
reducing demographic bias in privacy-sensitive classification models,” in 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 2020, pp. 1051–1060.

[78] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya, “An efficiency-boosting
client selection scheme for federated learning with fairness guarantee,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 7, pp. 1552–1564, 2020.

[79] Z. Fan, H. Fang, Z. Zhou, J. Pei, M. P. Friedlander, C. Liu, and Y. Zhang, “Im-
proving fairness for data valuation in horizontal federated learning,” in 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 2022, pp.
2440–2453.

BIBLIOGRAPHY 80

[80] G. Wang, “Interpret federated learning with shapley values,” arXiv preprint
arXiv:1905.04519, 2019.

[81] C. Molnar, Interpretable machine learning. BOOKDOWN, 2020. [Online].
Available: https://christophm.github.io/interpretable-ml-book/shapley.html

[82] P. Chen, X. Du, Z. Lu, J. Wu, and P. C. Hung, “Evfl: An explainable vertical fed-
erated learning for data-oriented artificial intelligence systems,” Journal of Systems
Architecture, vol. 126, p. 102474, 2022.

[83] R. Guidotti, “Counterfactual explanations and how to find them: literature review
and benchmarking,”Data Mining and Knowledge Discovery, pp. 1–55, 2022.

[84] T. van Erven and P. Harremos, “Rényi divergence and kullback-leibler divergence,”
IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 3797–3820, 2014.

[85] N. Baracaldo, A. Anwar, M. Purcell, A. Rawat, M. Sinn, B. Altakrouri, D. Balta,
M. Sellami, P. Kuhn, U. Schopp et al., “Towards an accountable and reproducible
federated learning: A factsheets approach,” arXiv preprint arXiv:2202.12443, 2022.

[86] H. B. Desai, M. S. Ozdayi, and M. Kantarcioglu, “Blockfla: Accountable federated
learning via hybrid blockchain architecture,” in Proceedings of the eleventh ACM
conference on data and application security and privacy, 2021, pp. 101–112.

[87] V. Mugunthan, R. Rahman, and L. Kagal, “Blockflow: An accountable and privacy-
preserving solution for federated learning,” arXiv preprint arXiv:2007.03856, 2020.

[88] S. Awan, F. Li, B. Luo, and M. Liu, “Poster: A reliable and accountable privacy-
preserving federated learning framework using the blockchain,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, 2019,
pp. 2561–2563.

[89] D. Chai, L. Wang, K. Chen, and Q. Yang, “Fedeval: A benchmark system
with a comprehensive evaluation model for federated learning,” arXiv preprint
arXiv:2011.09655, 2020.

[90] IBM Research, “Ai factsheets 360.” [Online]. Available: https://aifs360.mybluemix.
net/

[91] L. Lyu, H. Yu, X. Ma, L. Sun, J. Zhao, Q. Yang, and P. S. Yu, “Privacy and robust-
ness in federated learning: Attacks and defenses,” arXiv preprint arXiv:2012.06337,
2020.

[92] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via random-
ized smoothing,” in International Conference on Machine Learning. PMLR, 2019,
pp. 1310–1320.

[93] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks in federated
learning,” arXiv preprint arXiv:2011.01767, 2020.

https://christophm.github.io/interpretable-ml-book/shapley.html
https://aifs360.mybluemix.net/
https://aifs360.mybluemix.net/

BIBLIOGRAPHY 81

[94] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to back-
door federated learning,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2020, pp. 2938–2948.

[95] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel,
“Evaluating the robustness of neural networks: An extreme value theory approach,”
arXiv preprint arXiv:1801.10578, 2018.

[96] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang, “Fuzz testing in practice:
Obstacles and solutions,” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018, pp. 562–566.

[97] S. S. Malladi and H. C. Subramanian, “Bug bounty programs for cybersecurity:
Practices, issues, and recommendations,” IEEE Software, vol. 37, no. 1, pp. 31–39,
2019.

[98] S. U. Farooq, S. Quadri, and N. Ahmad, “Metrics, models and measurements in
software reliability,” in 2012 IEEE 10th international symposium on applied machine
intelligence and informatics (SAMI). IEEE, 2012, pp. 441–449.

[99] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-IID data: A survey,”
Neurocomputing, vol. 465, pp. 371–390, 2021.

[100] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task
learning,”Advances in neural information processing systems, vol. 30, 2017.

[101] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints,” IEEE trans-
actions on neural networks and learning systems, vol. 32, no. 8, pp. 3710–3722, 2020.

[102] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated learn-
ing with personalization layers,” arXiv preprint arXiv:1912.00818, 2019.

[103] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, “Reliable federated
learning for mobile networks,” IEEE Wireless Communications, vol. 27, no. 2, pp.
72–80, 2020.

[104] B. Pejó and G. Biczók, “Quality inference in federated learning with secure aggre-
gation,” arXiv preprint arXiv:2007.06236, 2020.

[105] S. Divi, Y.-S. Lin, H. Farrukh, and Z. B. Celik, “New metrics to evaluate
the performance and fairness of personalized federated learning,” arXiv preprint
arXiv:2107.13173, 2021.

[106] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions,” ACM Computing Surveys
(CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[107] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V.
Poor, “Federated learning with differential privacy: Algorithms and performance
analysis,” IEEE Transactions on Information Forensics and Security, vol. 15, pp.
3454–3469, 2020.

BIBLIOGRAPHY 82

[108] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated
learning,” arXiv preprint arXiv:1905.10497, 2019.

[109] M. Yang, X. Wang, H. Zhu, H. Wang, and H. Qian, “Federated learning with class
imbalance reduction,” in 2021 29th European Signal Processing Conference (EU-
SIPCO). IEEE, 2021, pp. 2174–2178.

[110] S. R. Islam, W. Eberle, and S. K. Ghafoor, “Towards quantification of explainability
in explainable artificial intelligence methods,” in The thirty-third international flairs
conference, 2020.

[111] R. Haffar, D. Sánchez, and J. Domingo-Ferrer, “Explaining predictions and attacks
in federated learning via random forests,”Applied Intelligence, pp. 1–17, 2022.

[112] P. Cortez and M. J. Embrechts, “Opening black box data mining models using
sensitivity analysis,” in 2011 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), 2011, pp. 341–348.

[113] M. Ungersböck, T. Hiessl et al., “Explainable Federated Learning: A Lifecycle Dash-
board for Industrial Settings,”TechRxiv, 2022.

[114] N. Kohli, R. Barreto, and J. A. Kroll, “Translation tutorial: a shared lexicon for
research and practice in human-centered software systems,” in 1st Conference on
Fairness, Accountability, and Transparancy. New York, NY, USA, vol. 7, 2018.

[115] IBM AI FactSheets 360, “Accountable Federated Learning: A Classifying
Citizen Participation Ideas Use Case,” 2022. [Online]. Available: https:
//aifs360.mybluemix.net/examples/federated learning

[116] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,
pp. 50–60, 2020.

[117] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke,
J.-M. Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose, T. Ryffel,
Z. N. Reza, and G. Kaissis, PySyft: A Library for Easy Federated Learning.
Cham: Springer International Publishing, 2021, pp. 111–139. [Online]. Available:
https://doi.org/10.1007/978-3-030-70604-3 5

[118] OpenMinded, “Federated Learning.” [Online]. Available: https://blog.openmined.
org/tag/federated-learning/

[119] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh,
H. Qiu et al., “Fedml: A research library and benchmark for federated machine
learning,” arXiv preprint arXiv:2007.13518, 2020.

https://aifs360.mybluemix.net/examples/federated_learning
https://aifs360.mybluemix.net/examples/federated_learning
https://doi.org/10.1007/978-3-030-70604-3_5
https://blog.openmined.org/tag/federated-learning/
https://blog.openmined.org/tag/federated-learning/

Abbreviations

AI Artificial Intelligence

ART Adversarial Robustness 360 Toolbox

CCPA California Consumer Privacy Act

CNN Convolutional Neural Network

CV Coefficient of Variation

DAIL Data Analytics and Intelligence Lab

DL Deep Learning

DNN Deep Neural Network

DP Differential Privacy

EU European Union

FedAvg FederatedAveraging

FL Federated Learning

FTL Federated Transfer Learning

GAN Generative Adversarial Networks

GPT-3 Generative Pre-trained Transformer 3

HFL Horizontal Federated Learning

IBM International Business Machines Corporation

KL Kullback-Leibler

MARL Multi-agent Reinforcement Learning

ML Machine Learning

ML/DL Machine and Deep Learning

NbAFL Noising before model Aggregation FL

83

BIBLIOGRAPHY 84

PPFL Privacy-preserving Federated Learning

RAI Responsible AI

Siri Speech Interpretation and Recognition Interface

SMC Secure Multiparty Computation

SVM Support Vector Machine

TFF TensorFlow Federated

VFL Vertical Federated Learning

XAI explainable AI

Glossary

AI HLEG High-Level Expert Group on Artificial Intelligence

Big Data Big data refers to vast amounts of data that traditional storage methods cannot
handle.

DALL·E 2 DALL. E 2 is a new AI system that can create realistic images and art from
a description in natural language

85

List of Figures

3.1 Trustworthy FL Taxonomy . 37

4.1 Overview of an FL round implemented with FederatedScope 41

4.2 Overview of the interaction between FederatedScope with FederatedTrust . 43

4.3 Reduced Taxonomy for Prototype v1 . 46

4.4 Metric Object Structure . 53

4.5 Code Structure and UML Class Diagram 62

4.6 Design for the FederatedTrust Algorithm 63

A.1 Transparent ML Models . 88

A.2 Feature Importance Calculation for HFL 89

A.3 Feature Importance Calculation for VFL 89

A.4 Shapley Value Visualization . 90

A.5 Feature Importance Visualization on Images 90

A.6 Information Leakage Risk H-MINE Algorithm 91

86

List of Tables

4.1 Metrics for Robustness . 48

4.2 Metrics for Privacy . 48

4.3 Metrics for Fairness . 48

4.4 Metrics for Explainability . 49

4.5 Metrics for Accountability . 49

4.6 Metrics for Architectural Soundness . 49

4.7 Use case Basic Configurations . 65

4.8 Experiment 1 Setting . 65

4.9 Experiment 2 Setting . 65

4.10 Experiment 3 Setting . 66

4.11 Experiment 4 Setting . 66

4.12 Common Results in the Experiments . 67

4.13 Experiment 1 - 10 clients, 20% sampling rate, 5 rounds, no DP 68

4.14 Experiment 2 - 50 clients, 60% sampling rate, 25 rounds, DP with ϵ = 20 . 68

4.15 Experiment 3 - 50 clients, 60% sampling rate, 20 rounds, DP with ϵ = 6 . . 70

4.16 Experiment 4 - 100 clients, 60% sampling rate, 50 rounds, DP with ϵ = 6 . 70

87

Appendix A

Metric Calculation References

Figure A.1: Transparent ML Models

88

APPENDIX A. METRIC CALCULATION REFERENCES 89

Figure A.2: Feature Importance Calculation for HFL

Figure A.3: Feature Importance Calculation for VFL

APPENDIX A. METRIC CALCULATION REFERENCES 90

Figure A.4: Shapley Value Visualization

Figure A.5: Feature Importance Visualization on Images

APPENDIX A. METRIC CALCULATION REFERENCES 91

Figure A.6: Information Leakage Risk H-MINE Algorithm

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Related Work
	Trustworthy AI
	Related Scientific Work
	Related Tools

	State-of-the-Art FL
	Trustworthy FL
	Related Scientific Work
	Related Tools

	Six Pillars of Trust in FL
	Robustness Pillar
	Resilience to Attacks
	System-level Robustness
	Algorithm-level Robustness
	Client and Data Reliability
	Limitations

	Privacy Pillar
	Privacy-preserving Approaches
	Information Gain/Loss
	Uncertainty
	Indistinguishability
	Limitations

	Fairness Pillar
	Client Selection Fairness
	Performance Fairness
	Group-level Fairness
	Class Distribution
	Limitations

	Explainability Pillar
	Interpretability
	Post-hoc Explainability Methods
	Limitations

	Accountability Pillar
	FactSheet Completeness
	Monitoring
	Limitations

	Architectural Soundness Pillar
	Client Management
	Model Management
	Optimization
	Limitations

	Trustworthy FL Taxonomy

	Trustworthy FL Evaluation Algorithm
	Algorithm Design
	Exploring Open-Source FL Frameworks
	FederatedScope
	Context and Assumptions
	Requirements and Constraints
	Architecture

	Implementation
	Taxonomy
	Metric Definitions
	FederatedTrust Algorithm

	Deployment
	Use Case
	Result Discussion

	Limitations

	Summary and Conclusions
	Future Work

	References
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Metric Calculation References

