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Abstract

Distributed Denial-of-Service (DDoS) Attacken treten täglich auf und nehmen aufgrund
der Beliebtheit des Internets der Dinge immer mehr zu. Da viele dieser Geräte von vorn-
herein unsicher sind, können Botnets diese nutzen, um gross angelegte Angriffe zu starten.
DDoS-Angriffe sind stark verteilt, daher umfasst der beste Abwehrplan auch eine verteilte
Verteidigung, um den Angriff an mehreren Standorten zu reduzieren, die möglicherweise
näher an ihrem Ursprung liegen.

In dieser Arbeit wird versucht, ein DDoS-Signalisierungsnetzwerk mit dem Namen Gossip-
Sub DDoS Signaling System (GoDDSSy) zu entwickeln, das in einer vertrauenswürdigen
Umgebung betrieben wird und agil und widerstandsfähig ist.

Der Leser erhält zunächst einen theoretischen Überblick über die Grundlagen von DDoS-
Angriffen und Publish-and-Subscribe-Systemen. Ausserdem werden ähnliche Arbeiten zu-
sammengefasst. Anschliessend wird das Design von GoDDSSy vorgeschlagen, das ansch-
liessend implementiert, eingesetzt und evaluiert wird.

Die Ergebnisse zeigen, dass GoDDSSy agil und widerstandsfähig funktioniert. Darüber
hinaus wird deutlich, wo die Grenzen des implementierten Systems liegen und wie es im
Vergleich zu ähnlichen Systemen abschneidet.
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Distributed Denial-of-Service (DDoS) attacks occur daily and are growing in size due to
the Internet of Things (IoT) popularity. Since many of these devices are designed to be
insecure, botnets can use them to launch large-scale attacks. DDoS attacks are highly
distributed; thus, the best counter plan also includes a distributed defense to reduce
attacking traffic at several locations that may be closer to their origins.

This thesis tries to develop a DDoS signaling network called GossipSub DDoS Signaling
System (GoDDSSy), which operates in a trusted environment and is agile and resilient.
The reader is first provided with a theoretical overview covering the fundamentals of DDoS
attacks and publish-and-subscribe systems. Furthermore, a summary of related work is
given. Additionally, the design of GoDDSSy is proposed, which is then later implemented,
deployed, and evaluated.

Results show that GoDDSSy operates in an agile and resilient way. In addition, we show
the limits of the implemented system and how it performs compared to related systems.
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Chapter 1

Introduction

Distributed Denial-of-Service (DDoS) attacks are a major threat to Internet availability
that remain unmitigated despite many commercial and research efforts. DDoS attacks
happen daily, and as society follows an increasing digitization trend, they can pose a
great threat to businesses and individuals. A common reason is the large number of
unsecured devices connected to the Internet, and their growing processing capacity, which
allows attackers to take control of a vast amount of unsecured devices that range from
connected cameras to smart fridges to launch malicious attacks [15, 26]. Many of these
devices are insecure by design and are not often impossible to secure due to their hardware
and software constraints.

Due to the widely distributed nature of DDoS attacks, an ideal counter strategy also
involves a distributed defense to mitigate attacking traffic at different points, possibly
closer to their origin. Nonetheless, there exist challenges in different dimensions to provide
agile and robust communication between cooperating domains. For example, technical,
legal, economic, and social dimensions impact how such a signaling network is deployed
and operated. This thesis is limited in technical scope, answering how to provide an agile
and resilient network for signaling DDoS attacks within trusted domains. In this sense,
this thesis should propose and implement a communication protocol enabling a party to
simultaneously communicate with one or multiple parties on an ongoing or past cyber
attack.

Other work has covered related DDoS defense areas such as detection [9] and mitigation
[19, 28]. Still, major related works can be found in the cooperative DDoS literature,
such as [10, 28]. A previous approach [24] developed at the University of Zurich details
a signaling protocol using blockchain and smart contracts as a basis to intermediate the
cooperation between a target and a mitigator, which has benefits in terms of increased
transparency and embedded financial incentive features. Nonetheless, this thesis should
approach the issues considering a slightly different set of characteristics involving an agile
and resilient signaling protocol to communicate cyber-threats in general.

The design of GoDDSSy is described in this thesis. GoDDSSy’s architecture enables
decentralized DDoS attack signaling over a publish-and-subscribe paradigm. A protocol is
presented that allows actors to participate in the cooperative system. Results demonstrate

1



2 CHAPTER 1. INTRODUCTION

that GoDDSSy is agile and resilient. Furthermore, observing the implemented system’s
limitations and how it performs concerning similar systems is possible.

1.1 Thesis Goals

This thesis has as its goals:

• Develop a solution for a cooperative DDoS signaling system that exchanges attack
information between one or more systems operating in a trusted environment.

• A definition of agile and resilient should be presented to define quantitative bound-
aries for assessing the proposed signaling protocol.

• To fulfill the suggested signaling protocol against the definitions of agility and re-
siliency presented in the thesis, a proof-of-concept should be constructed and as-
sessed.

1.2 Methodology

This thesis can be divided into two parts. The theoretical section includes the funda-
mentals of DDoS attacks and cooperative DDoS defense, which inspired GoDDSSy. As
a result, a new signaling system is designed. The second section focuses on practical
matters. The emphasis is on system implementation, configuration, and deployment. Fol-
lowing that, the system is evaluated in various scenarios to determine whether the goals
were met.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses the fundamentals of DDoS at-
tacks, how publish and subscribe (pub/sub) systems work, and how other papers have
addressed cooperative defense mechanisms. The GossipSub signaling system is proposed
in Chapter 3, and the architecture with the individual components and protocol processes
is presented. Chapter 4 describes how the system is run and how the functionalities were
implemented. Chapter 5 presents various scenarios tested, evaluated, and discussed to
evaluate the system. Finally, Chapter 6 summarizes and concludes the work and provides
information about future work.



Chapter 2

Fundamentals

2.1 Background

This section provides background on the thesis’s fundamentals. It is divided into two sec-
tions, one covering the fundamentals of DDoS and providing a broad overview of different
types of these attacks, as well as where the challenges lie in detecting them (Subsection
2.1.1), and the other providing insight on publish and subscribe systems and how they
work in general (Subsection 2.1.2). Both topics are combined later because they both
contribute to the achievement of these thesis’s goals.

2.1.1 Distributed-Denial-of-Service (DDoS)

A DDoS attack is a large-scale distributed attack that aims to disrupt the victim’s system’s
service availability. There are several methods of carrying out an attack, but in the
majority of the time, a lot of traffic is given to the victim to overwhelm its resources. Due
to the bandwidth used by the attackers, this attack stops legitimate users from accessing a
particular network resource [4]. The duration of DDoS attacks varies. An average DDoS
attack lasted just under four hours in the second quarter of 2022, whereas he longest
recorded attacks lasted 140 hours [11].

Many DDoS attacks are carried out by zombie botnets. They consist of hijacked devices,
which are controlled by the attackers. The growing popularity of Internet of Thinks (IoT)
devices is a benefit for attackers. IoT devices are ideal zombies, since they are continuously
connected to the internet and therefore ideal hosts for DDoS Attacks. To hijack a new
zombie for a botnet, victim devices are infected with malicious software, which causes
them to respond to commands from the command and control server. The control server
identifies the target and directs the zombies, which subsequently attack the target. One
popular botnet that was discovered for the first time in 2016 is called Mirai. After the
creators of Mirai published the source code, other hackers used it to create zombie botnets,
which they rented out. Some of them contained as many as 400’000 bots [13].

3



4 CHAPTER 2. FUNDAMENTALS

Attacker Control Server Compromised Devices Victim

Figure 2.1: DDoS attack carried out by a botnet of compromised devices.

2.1.1.1 Types of DDoS Attacks

There are two primary types of attacks. It can be distinguished between DDoS attacks
on the application layer and attacks on the network/transport layer.

Attacks on the application level, which are also called Layer 7 attacks, are used to exhaust
a server’s resources and target application characteristics such as HTTP, DNS. To carry
out an attack like this, knowledge about the application has to be acquired beforehand.
As an example, in an HTTP DDoS attack a lot of GET or POST requests are sent to
the target which requests or sends images, documents, or other resources. By performing
these operations, the application running the service can be overloaded.[28]

Network/transport-level attacks do not directly target an application on a server. They are
trying to bring down a server through overtaxing its bandwidth by flooding the network.
The most common attacks use SYN flooding and UDP flooding. During an SYN-Flood
attack, the 3-Way TCP handshake is exploited. The attacker sends a high amount of SYN
packets to the server. The server answers with an SYN/ACK packet and leaves a port
open to receive an answer and waits for the ACK packet of the attacker, which he will
never send. During a specific waiting time, the server blocks that port. If the amount of
SYN-packets exceeds the number of available ports, the server cannot function anymore.
[2]
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2.1.1.2 Detection of DDoS Attacks

One difficulty of DDoS attacks is detecting them, since it can be challenging to distinguish
between malicious and legitimate network traffic. For example, a flooding attack could
be mistaken for a web service access request from a flash crowd, which occurs when many
legitimate users utilize a web service. However, the following methods exist to discover a
DDoS attack [28].

In the Activity Profile method described in [3], network flows are monitored with the help
of header information of packets. It is possible to inspect packets with similar header
information like address, port, and protocol. A network flow, which consists of numerous
consecutive packets with similar characteristics, can be used to calculate the average
flow, by measuring the time between them. Then, average packet rates of the inbound
and outbound flows can be added to determine network activity. Similar flows can be
clustered to reduce high-dimensionality issues and are then monitored. A rise in activity
in one cluster can indicate that some agents are increasing their attack rate, while a rise
in activity in different clusters can signify a Distributed DoS attack [3].

The Change-Point detection is a different technique for spotting DDoS attacks. This
process can be carried out posteriorly or sequentially. This method involves observing a
time series of network traffic and determining if it is statistically homogeneous. Because
it can be done instantly, the sequential technique is utilized to identify attacks, while the
posterior method analyzes the traffic after it has been collected [27].

2.1.1.3 Signaling DDoS Attacks in a Cooperative Defense

Since huge DDoS attacks can potentially overwhelm a single organization’s defense system,
sharing resources for detection and mitigation is crucial. A signaling platform is used
to exchange bidirectional messages, which are used for exchanging information about
the attack that is relevant for the mitigation. These messages may include requests for
mitigation as well as various status reports [16].

2.1.2 Publish/Subscribe Systems

Publish/subscribe is a paradigm in which publishers can raise an event and subscribers
can declare their interests in events so that they are always notified when this kind of
event occurs. One can also see the publisher as the producer and the subscriber as the
consumer. The event is the information they exchange, and the notification is the delivery
of information. They communicate with one another via an event manager (EM), who
serves as a neutral mediator. If a subscriber is interested in a new event, it uses the EM’s
subscribe function without knowing where the event is coming from. On contrary, the
publisher is unaware of the recipients of his information [8].

There are two established addressing methods in the publish and subscribe pattern. While
publish is group-based, subscribe is subject-based. When using the group-based technique,
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an agent subscribes to a particular user group. The agent is informed if any of these users
publish something. The subject-based system is built on a predefined or arbitrary string.
Every event has a subject attached to it, and under this system, an actor can select the
subjects in which he is interested. If an occurrence relating to his topic happens, he is
informed [12].

The two main types of architectures of a publish/subscribe system can be split up into a
centralized and distributed approach. In the centralized approach, there is only one EM.
The EM holds the information about which agent is interested in which information and
takes care of new subscriptions and notifications from the subscribers.

The centralized approach is limited to a single EM, which can serve as a bottleneck. To
overcome this problem a distributed architecture can be used, which consists of multiple
EMs. The distributed architecture can be divided into distributed broadcast and multi-
cast. Every time a message is published, in the distributed broadcast, the message is sent
to all the EMs. This can cause a lot of network traffic, since all the EMs are flooded with
messages. To bypass this problem, distributed multicast can be used which assures that
the EM only forwards the messages, if one the subscribers are subscribed to this event.

If an event is published, the event is forwarded through any EM, who is responsible to
inform the other EMs. This approach can create a lot of network traffic. For this reason,
there exists an alternative approach called the multicast method. In this method, an event
is only forwarded to the next EM, if the EM has a subscriber to the specific event[12].

2.2 Related Work on DDoS Signaling

In the past, there has been a lot of research in the area of Cooperative DDoS Defense and
various approaches have been propose to address this problem. In this section, different
signaling systems that already exist are presented.

The Cossack, developed by Papadopoulos et al. [20], is an early technique for Cooperative
DDoS defense. The project developed an architecture that helps coordinate effective
countermeasures to avoid DDoS attacks. With the Cossack, each organization on the
network employs watchdog software. The watchdogs then communicate with one another
using a peer-to-peer multicast technique. If a target is attacked, a watchdog close to the
victim detects the attack and receives data from the intrusion detection system. The data
is thereafter sent to other watchdogs via multicast. The signaling is done on an out-of-
bound channel to ensure that communication is maintained during an assault. When the
other peers receive the attack information, they examine it and take steps to mitigate the
attack.

Rashidi and Fung [22] proposed another approach for collaborative DDoS defense. They
created the CoFence system, which uses Network Function Virtualization technology and
can thus offer a low-cost, flexible solution. CoFence provides a collaborative framework
for mitigating DDoS attacks. If one peer is attacked, other peers can offer their spare
network resources to assist. The target’s traffic is then redirected to other nodes that can
help filter the traffic and return the filtered traffic to the target.
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CoFence employs three distinct sorts of requests. One for seeking and providing assistance
to others, one for adding neighbors to work with, and one for removing them. The system
routes these requests through a separate defensive network rather than using the network
for normal traffic.

One recent paper about cooperative DDoS defense is the Blockchain Signaling System
(BloSS) [23]. BloSS offers a platform on which various autonomous systems can work
together to defend against DDoS attacks. BloSS utilizes Blockchain and Smart Contracts
to reach agreements regarding services provided by various autonomous systems, such as
the exchange of mitigation services. The signaling system also ensures that the reputation
of each system actor is monitored. Due to its size and the need to reduce signaling latency,
an off-chain P2P network is used to exchange blacklisted address lists.

A strictly defined collaboration protocol is used by BloSS for the signaling to make sure
that mitigation services are provided reliably. The protocol defines the interaction between
the target (T) and the mitigator (M). If T is under attack, it sends a mitigation request
to M. If M approves the T sends funds to the M, which are locked in the Smart Contract.
Then the T writes attack information onto an off-chain storage device that is accessible to
the M. From then on, the M has a Service Deadline in which the M has time to mitigate
the attack and upload proof for the M. After this deadline, the T has time to rate the
services of the M. Subsequently, the M has time to proof, that it has done its work. In
the best case, money and services are exchanged.

2.3 Tooling

Pub/sub systems are widely used to support fast communication across distributed sys-
tems. This thesis briefly describes selected pub/sub systems outlined in Table 2.3.

Pub/Sub Frameworks
Name Kafka Emitter RabbitMQ GossipSub
Developer Apache Emitter.io Pivotal Software Protocol Labs
Architecture Distributed Distributed Distributed Decentralized
Written in Scala, Java Go Erlang Go, Javascript, Rust
Open Source Yes Yes Yes Yes

Table 2.1: A comparison of different pub/sub libraries.

Emitter is a basic implementation of a pub/sub system. Real-time communication is
supported, and it can adapt to various programming languages. It is no more complex
than conventional one-to-one communication because it only consists of a simple event
broker conveying messages from a sender to a receiver. It supports many-to-one and
many-to-many communication, in addition to straightforward one-to-one communication
[6].

Many pub/sub systems employ native flooding, which forwards messages to subscribers.
This generates a lot of traffic, which is sometimes unnecessary. Because of this, the
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GossipSub uses, as the name implies, a method based on gossip that is much more effective.
It is an unstructured and unmanaged P2P pub/sub with a networked mesh of agents, with
gossip and lazy push functionality added. The lazy push strategy involves only sending
metadata to the other peers. Peers can specifically ask for the entire message if they are
interested in it. In addition to the mesh used for the exchange of metadata only, each
peer also has a limited number of full-message connections. To establish new connections
and exchange messages, the control flags GRAFT, PRUNE, IHAVE, and IWANT exist
in this protocol. Combining all those technologies makes GossipSub extremely responsive
to changing network conditions, which is a key characteristic[15, 25].

Apache Kafka provides a different pub/sub platform. The distributed event store that was
described in section 2.1.2 consists of both producers and consumers. The Kafka cluster is
split up into various partitions made up of various topics. Different partitions are used to
divide up topics. The system may consist of clusters with one or more event brokers, and
the topics may be duplicated across various nodes such that a copy is always present. In
Kafka, events can be requested as often as necessary and are not lost after delivery. How
long each topic’s lifetime for an event should last can be specified [1].



Chapter 3

Design

3.1 Overview

The main module built in this thesis is GoDDSSy, short for GossipSub DDoS Signaling
System. GoDDSSy consists of different nodes forming a decentralized overlay network,
where each node belongs to another independent system and can be integrated on top of
it. The system relies on another module that the autonomous system has to have, called
the mitigation module. The mitigation module can detect and mitigate DDoS attacks.
However, since mitigation is not in the scope of this thesis, it is not further elaborated
upon. GoDDSSy’s design has different interfaces considering different purposes. One is
(a) to exchange information with the mitigation module. In one way, GoDDSSy receives
a list of IPv4-Addresses from the Mitigation Module; in another, GoDDSSy delivers a list
of IP-Addresses to mitigate, serving a mitigation request from another module. The other
interface (b) is an interconnection between other nodes with the same system, where they
exchange mitigation requests if one node is the target of such a DDoS attack.

3.2 Architecture

The system is designed in a way that it can be added to an existing web service. The
core of GoDDSSy is a cooperative signaling protocol that handles attack and mitigation
requests. So that these actions can be performed, it has different interfaces with which
it can communicate with other parties on the system. For example, GoDDSSy can be
interfaced with network protection systems, such as a network monitoring system, and
trigger signaling to other parties in a cooperative defense.

One interface concerns the mitigation module. If the node is under attack, the mitigation
module notifies GoDDSSy for mitigation, and if another node is under attack, GoDDSSy
informs the mitigation module. In this regard, GoDDSSy exposes a RESTful interface
that can be used locally so they can communicate with each other. The other interface is
for communication between the nodes. This interface uses a pub/sub protocol to notify

9



10 CHAPTER 3. DESIGN

GoDDSSy-Network

Basic Network

Figure 3.1: The GoDDSSy network as an overlay.

and listen to other peers. The system’s core uses a state pattern so communication can
occur systematically.

3.2.1 Components

GoDDSSy is a system consisting of different components (Figure 3.2), each of which
has its responsibility. They work in synergy to form a signaling system. The different
components communicate with one another via various APIs.

3.2.1.1 REST API

The RESTful API is the interface that exposes services to the outside. Several different
routes are exposed, so that information from the mitigation module to the signaling
system can be sent or that the mitigation module or even a system administrator can
read information from GoDDSSy. RESTful information exchange is accomplished through
HTTP POST and GET requests. JSON is the data exchange format that is used. JSON
has the advantage of being faster and using fewer resources than other formats, such as
XML.
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REST API ROUTER

LOGGER

GoDDSSy Instance
Event Handler

Peer-
Discovery
Handler

Mitigation 
Request 
Handler

DATABASE

enable interaction 
with the outside from the

system
initiate commands

log / retrieve logs

persist logs / 
write logs to the database

Figure 3.2: The architecture of GoDDSSy.

3.2.1.2 Router

The router is in charge of mapping REST API calls to various methods, which are for-
warded to GoDDSSy system. The router creates a GoDDSSy object and calls the various
methods on the object specified via RESTful API.

3.2.1.3 GoDDSSy Instance

The GoDDSSy instance contains an event handler which can be divided in two different
sub handlers, namely the peer discovery handler (PDH) and the mitigation request handler
(MRH), as shown in Figure 3.2. If GoDDSSy receives a new message, it is analyzed in
the event handler, which then decides whose responsibility it is to process this message
further. If it is a discovery message, the message is forwarded to the PDH. A peer discovery
message contains information about other peers in the network. The PDH then checks
this information and decides if it wants to connect with them or not. If it is a mitigation
request, it is forwarded to the MRH, which checks the state of GoDDSSy. Depending
on the state, the MRH forwards the message to the responsible function, which performs
further action. These actions are described in Section 3.4.

3.2.1.4 Logger

The logger is a layer between the database and the GoDDSSy instance. It establishes a
connection to the database. To keep track of interactions, a set of parameters is logged
each time the system communicates with another node. Additionally, the instance has
the ability to get the history from the logger and deliver it to the router, which will then
make it available to the RESTful API.
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3.3 Communication

The interconnection between the different nodes happens in a pub/sub manner and with
p2p technology. The pub/sub pattern is ideal for this application since it is a reliable
protocol. In addition, it is relatively fast (e.g., in contrast to a blockchain-based approach
[23]) and enables the nodes to interact with each other in real time. The p2p approach
is chosen since these nodes should be able to interconnect between different organizations
and, therefore, cannot share one infrastructure. For this reason, of all the different pub/-
sub technologies considered for this thesis, the libp2p GossipSub implementation best fits
this purpose.

The mitigation of DDoS attacks is most effective close to the attacker, i.e., close to the
source of attacking traffic. Therefore, GoDDSSy makes use of a topic-based pub/sub
protocol. Each node can subscribe to one or many regions. If one of the nodes is under
attack, it can publish a message under the specific region (mapped as a pub/sub topic) in
which the attack is happening. There exist multiple possibilities of different regions that
can be regarded (a) in a national manner, as an example; for Switzerland, the different
cantons could be seen as regions; or (b) in an international setting, the different continents
or even countries can be split into different topics.

3.4 GoDDSSy Protocol

IDLE

STARTREQUEST

REPORTAPPROVE

Accept request

Is under attack

Request got accepted

Mitigating the Attack

Go back to the IDLE state

Timout occurs

States of M and T

States of M

States of T

Figure 3.3: The states of the GoDDSSy protocol.

When an attack is happening, GoDDSSy makes use of the signaling protocol. The protocol
procedure can be shown in Figure 3.3. In this example, two actors exist the target (T)
and the mitigator (M). Both of these actors are interconnected with other nodes in the
signaling system. If the Target is under attack, it sends a message to the other nodes
in the GoDDSSy network. After this event, T goes into a REQUEST state. Since the
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system is based on a topic-based pub/sub, T sends out this notification on the topic, to
be more precise, the region of the T’s location. M has to be subscribed to the topic of
the same region to act. Then, M has two possibilities. (a) M can approve the message,
or (b) M cannot respond to the request.

T establishes a window of time for M’s response. M is not eligible for mitigation if M does
not respond promptly, i.e., in a specified time frame defined in the protocol. If M responds
quickly, M switches to the APPROVE state, and T sends M a list of the attackers’ IPv4
addresses. T’s state changes from REQUEST to the START, where T is open for a report
once the time available for receiving approvals has expired.

M also receives an IPv4 address list and a time window. This window specifies the time
range in which T may receive reports. When the window closes, M has time to complete
the mitigation and sends a report to T before changing its state back to the REPORT
state. Upon receiving the report, T acknowledges the report. Then, M switches to the
initial state IDLE and is ready for another Mitigation. The same holds for T. After the
time window for reports ends, T switches to the state IDLE.
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Chapter 4

Implementation

4.1 Software Stack

An appropriate software stack is defined to implement the required design from Chapter
3. In section 2.3, various pub/sub frameworks were examined. Their primary distinc-
tion is in their architecture, which differs between distributed and decentralized models.
Once GoDDSSy is intended to be used as a signaling service between different organi-
zations, a decentralized method is the most suitable choice. Since the libp2p GossipSub
implementation is the only decentralized framework available, it is ideal for this project.

The pub/sub protocol is implemented in two ways in libp2p, which provides a flexible net-
work stack. GossipSub is one of them, and FloodSub is another. Compared to FloodSub,
GossipSub is more resource efficient due to the more sophisticated routing [25].

As GoDDSSy primarily relies on libp2p’s network stack [21], and libp2p has implemented
its modules in various programming languages, the best fit is chosen. The goal of libp2p
is to have implementations for various programming languages. To date, no language
implementations have been completed; however, the stack is specified as useable for Go
and JavaScript. The latter option is chosen due to a relatively higher knowledge of
JavaScript language.

GoDDSSy exposes a REST interface to interact with the mitigation module. The web-
framework express [18] was used for this functionality. For the runtime environment,
Node.js [17] was selected as a basis to develop the entire project because it can execute
JavaScript without a browser and is suitable for web servers.

Docker [5], a virtualization tool, was used as a basis to ensure portability and straight-
forward deployment of the project. Docker has various advantages, such as simplifying
scaling a container to multiple instances. Furthermore, Docker simplifies the software
deployment process.

15
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4.2 Configuration

A configuration file must be passed to the GoDDSSy node before it can be used. These
configurations are considered for the signaling protocol and the connection to other nodes.

1 export const config = {

2 topics: ["WORLD"],

3 connection: {

4 peerInfo: undefined ,

5 relayInfo: {

6 id: "12 D3KooWKBNWEq4kGPfDSZasihaiGijfoQBqzuAViL1GSV6CA1SF

",

7 ipv4: "172.18.1.3"

8 }

9 },

10 deadlines: {

11 Request: 680,

12 Approve: 680,

13 Start: 680,

14 Report: 680

15 }

16 }

Listing 4.1: The configuration of the neutral GoDDSSSy

First, there is a topic configuration. The configuration file lists the topics that should be
considered because it is a topic-based signaling system. It is possible to list one or more
topics. The topic world is selected in listing 4.1. This is for evaluation purposes, as the
signaling system is tested with nodes worldwide.

In the connection section, the peerInfo can be defined. This is only the case if it is a relay
node since they have static ids. This is required since the neutral nodes in the network
have to connect on startup to a known relay node. The configuration in 4.1 does not have
a peerInfo defined since it is the configuration of a neutral node.

The relayInfo is the counterpart to the peerInfo. This only applies if the node is neutral. It
contains information about the relay node’s ipv4 address and id. This configuration allows
the node to connect to a known relay on startup (bootstrap). Furthermore, deadlines for
the signaling protocol must be established as input. A deadline in milliseconds is specified
for each step.

4.3 Core Functionality

4.3.1 Configuring the libp2p Node

The libp2p networking stack is built modularly, and each module used in the libp2p node
is imported and initialized separately in the configuration.
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1 #nodeConfig = {

2 addresses: {

3 listen: ["/ip4 /0.0.0.0/ tcp /8080"],

4 },

5 transports: [new TCP()],

6 streamMuxers: [

7 new Mplex({

8 maxMsgSize: Infinity ,

9 maxStreamBufferSize: Infinity ,

10 maxInboundStreams: Infinity ,

11 maxOutboundStreams: Infinity ,

12 disconnectThreshold: Infinity ,

13 }),

14 ],

15 connectionEncryption: [new Noise()],

16 pubsub: new GossipSub ({

17 allowPublishToZeroPeers: true

18 })

Listing 4.2: The configuration of the libp2p node

A multi-address is defined to listen to other network peers. The address then is provided
to the underlying transport protocol. In this project, the address listens for all incoming
IPv4 addresses on port 8080 via the Transmission Control Protocol (TCP). A transport
method is defined so the node can listen for new connections. The node connects to other
nodes via a TCP connection, as specified in the listen address.

In addition, a stream multiplexer is defined to share a single TCP connection while having
multiple streams with other peers. The multiplexer module also determines the maximum
message size, maximum inbound and outbound streams, and buffer size. Since we want
to test the protocol’s limits, the maximum value is set for all values.

An encryption module is included in the node’s configuration. In the libp2p framework,
the noise encryption module is the only encryption module for JavaScript. By upgrading
the transport, the encryption module creates a secure channel.

Finally, the pub/sub module is defined in case the nodes should be able to interact via
the pub/sub protocol. This is where the GossipSub module comes in. This configuration
allows publishing messages to zero peers, allowing discover messages to be sent even if no
other peers are connected.

4.3.2 Initialization

GoDDSSy is initialized with the initialize function upon startup. Since the implementation
adheres to the singleton pattern, no multiple GoDDSSy instances exist. After creating a
GoDDSSy object, the initialize function is called, which accepts configuration information.

1 if (this.# config.connection.peerInfo) {

2 this.# nodeConfig.peerId = await createFromJSON(

3 config.connection.peerInfo

4 );
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5 } else {

6 this.# nodeConfig.peerId = await createEd25519PeerId ();

7 }

If a Peer ID is specified in the configuration, the Peer ID with the public and private keys
is generated using this information. Otherwise, the node is assigned a random Peer ID.

It is determined whether relay information is specified in the configuration once the node
has started. If so, to establish a connection, the node manually dials the relay using its
multi-address.

1 if (this.# config.connection.relayInfo) {

2 const dialAddress = ‘/ip4/${config.connection.relayInfo.ipv4}/

tcp /8080/ p2p/${config.connection.relayInfo.id}‘;

3 await this.#node.dial(dialAddress);

4 }

After dialing the relay node successfully, the node adds the subscriptions to the pub/sub
module. First, topics defined in the configuration files are added. Besides that, the
node subscribes to its own Peer ID so that other peers can contact it directly. The node
also subscribes to a discover channel, which is required for discovering other peers in the
signaling network.

1 this.# config.topics.forEach ((topic) => {

2 this.#node.pubsub.subscribe(topic);

3 });

4 this.#node.pubsub.subscribe(this.#node.peerId.toString ());

5 this.#node.pubsub.subscribe("discover");

The event listener is defined in the final phase of initialization. A message event is triggered
whenever a message is sent across GossipSub and received by another node. An event
listener is defined to process these events. GoDDSSy registers two event listeners, one for
handling signaling protocol messages and the other for handling discovery messages.

1 this.#node.pubsub.addEventListener("message", (evt) => {

2 this.connectionHandler(evt);

3 this.messageHandler(evt);

4 });

4.3.3 Peer Discovery

GossipSub handles peer discovery on a local level. However, if the signaling system is
deployed to servers worldwide, the peers are not discovered by the libp2p protocol. As a
result, a peer-finding method is built into GoDDSSy.

The interval function is used during the relay’s initialization to convey information about
known peers to the connected nodes. Once nodes connect to the relay nodes upon launch,
they can profit from the information they receive. The discovery mechanism is divided into
two parts: (a) event emission by the relay node and (b) event handling by the network’s
neutral nodes.
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In a given interval, the sendPeerInformation is called. This function’s task is to gather all
of the multi-adresses of the nodes to which the relay is connected. They are designed so
that peers receiving this information can connect with them. The structured data is then
distributed to the peers via the specified topic, “discover”.

1 sendPeerInformation () {

2 const conMultiAddr = this.getConnectedMultiAddr ();

3 const adresses = conMultiAddr.map((a) => {

4 return { peerId: a.split("/")[6], multiAddr: a };

5 });

6 this.sendMessage("discover", { adresses }, true);

7 }

When the “discover” event occurs, the counterpart to the emitting function registered in
the message event handler is executed. After parsing the relay’s received messages, the
node compiles a list of all connected peers. Following that, the node goes through the list
of received addresses and determines whether the node is already connected to the node
or if the address is the node’s own. If this is not the case, the node dials the address in
order to connect.

1 async connectionHandler(evt) {

2 if (evt.detail.topic != "discover") {

3 return;

4 }

5 const adresses = this.parseMessage(evt).adresses;

6 const connectedPeerIds = this.#node

7 .getConnections ()

8 .map((c) => c.remotePeer);

9 for (let address of adresses) {

10 if (

11 !connectedPeerIds.includes(address.peerId) &&

12 address.peerId != this.#node.peerId.toString ()

13 ) {

14 this.dialMultiAddr(address.multiAddr);

15 }

16 }

17 }

4.3.4 The GoDDSSy Protocol

The core of GoDDSSy is revealed in this section. The protocol described in Section 3.4
has been implemented. As previously stated, it follows a state pattern and is triggered
by a message sent by the mitigation module via the REST API.

Following the call to the REST API, the function for sending a mitigation request is
invoked. A list of IPv4 addresses as well as a topic and a message is specified in the call.
The addresses are then stored in the object, and its state is changed to that of a request.
For evaluation purposes, a durations object is initialized to store the various mitigators
and their response durations. The deadlines for switching states and the time frame for
carrying out the mitigation are defined. All time limits are defined by the configuration
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described in section 4.2. Following all of these steps, the function responsible for sending
messages via the pub/sub protocol is called.

1 sendMitigationRequest(topic , msg , addresses) {

2 this.# addressesToBlock = addresses;

3
4 this.#state = states.Request;

5
6 this.# durations = {

7 amountOfAddresses: addresses.length ,

8 nodes: {},

9 };

10 this.# durations.RequestStateStartTime = this.getMillis ();

11
12 this.defineDeadlines ();

13
14 this.# timeWindow = {

15 start: this.getMillis () + this.# config.deadlines.Request ,

16 end:

17 this.getMillis () +

18 this.# config.deadlines.Request +

19 this.# config.deadlines.Start ,

20 };

21 this.sendMessage(topic , { message: msg });

22 }

After this initial request, the protocol is initiated, and whenever a message is received
by any node, this message handler is invoked. First, the message’s content is analyzed
to ensure that it is a topic of interest to the node. Following that, the message content
is parsed so that it can be analyzed in greater depth. The responsible function is then
called based on the state of the object.

1 async messageHandler(evt) {

2
3 if (

4 !this.#node.pubsub.getTopics ().includes(evt.detail.topic) ||

5 evt.detail.topic == "discover"

6 ) {

7 return;

8 }

9
10 const message = this.parseMessage(evt);

11 const topic = evt.detail.topic;

12 const from = evt.detail.from.toString ();

13 this.logToStatus(

14 ‘received message: "${message.message}" on topic ${evt.detail.

topic.slice(

15 -5

16 )} from ${from.slice(-5)}‘

17 );

18 this.logToStatus(‘Latency: ${this.getMillis () - message.time}‘);

19
20 switch (this.#state) {

21 case states.Idle:

22 this.handleIdleState(topic , from);

23 break;



4.3. CORE FUNCTIONALITY 21

24 case states.Request:

25 this.handleRequestState(topic , from , message);

26 break;

27 case states.Approve:

28 this.handleApproveState(topic , from , message);

29 break;

30 case states.Start:

31 this.handleStartState(topic , from , message);

32 break;

33 case states.Report:

34 this.handleReportState(topic , from);

35 break;

36 }

37 }

In the IDLE state, where peers remain if they are not mitigating an attack or requesting
mitigation, they first ensure that they are not responding to their own requests. The step
is saved to the database so that the node’s actions can be tracked. The target is then sent
an approve message to confirm that the peer is open for mitigation. After these steps are
completed, the node transitions from the IDLE state to the Approve state. A deadline
is set to prevent the node from being blocked indefinitely if the target does not respond.
When the deadline is reached, the node returns to its initial state and becomes idle for
further mitigations. The ID of the timeout is stored in a field so that it can be cleared if
the target responds in time.

1 handleIdleState(topic , from) {

2 if (topic === this.#node.peerId.toString ()) {

3 return;

4 }

5 this.logToDatabase(from , topic , this.#state);

6 this.sendMessage(from , { message: "Approve" });

7 this.# targetID = from;

8 this.#state = states.Approve;

9 this.# timeout = setTimeout (() => {

10 this.#state = states.Idle;

11 this.logToStatus("Going back to IDLE");

12 }, this.# config.deadlines.Approve);

13 }

The target has been in the request state since the beginning of the mitigation and is
waiting for the mitigators to respond. If the mitigators respond correct according to
the protocol, the responding node is considered for further action. The durations object
stores the time the message was sent, the time it was received, and the delta for evaluation
purposes. Following the logging, the adressInformation object is created, which contains
a message, a list of addresses to be blocked, and the time window that was previously
specified when the mitigation request was invoked. This object is then delivered to the
potential mitigators.

1 handleRequestState(topic , from , message) {

2 if (message.message != "Approve") {

3 return;

4 }

5 this.# durations.nodes[from] = {};

6 this.# durations.nodes[from]. Approve = {
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7 sent: message.time ,

8 received: this.getMillis () - this.# durations.

RequestStateStartTime ,

9 delta: this.getMillis () - message.time ,

10 };

11 this.logToDatabase(from , topic , this.#state);

12 const addressInformation = {

13 message: "addresses",

14 addresses: this.# addressesToBlock ,

15 timeWindow: this.#timeWindow ,

16 };

17 this.sendMessage(from , addressInformation);

18 }

Upon receiving a message in the approved state, it is verified that the message comes from
the initial target. The timeout which was specified to return back to the IDLE state if
the target does not answer in time is cleared so that it can move on with the mitigation.
The duration of the transfer then is calculated to report back to the target. Completing
these steps, the mitigator would have time for mitigation. So that the node can answer
in the time window specified by the target, the node waits until the time window is open.
Then the mitigator reports back to the target.

1 handleApproveState(topic , from , message) {

2 if (from != this.# targetID) {

3 return;

4 }

5 clearTimeout(this.# timeout);

6 this.# ipTransferDuration = this.getMillis () - message.time;

7 this.logToDatabase(from , topic , this.#state);

8 const adressesToBlock = message.addresses;

9 this.logToStatus(

10 ‘Received ${adressesToBlock.length} IPv4 adresses to block ‘

11 );

12 // Mitigation would be done at this place

13 setTimeout (() => {

14 this.sendMessage(from , {

15 message: "Mitigation is done",

16 ipTransferDuration: this.# ipTransferDuration ,

17 });

18 this.#state = states.Report;

19 this.# timeout = setTimeout (() => {

20 this.#state = states.Idle;

21 }, this.# config.deadlines.Report);

22 }, message.timeWindow.start - this.getMillis ());

23 }

The target waits for incoming confirmations during the open time window and only con-
siders peers who were involved in previous steps. The duration and the state are recorded
once more. To provide confirmation, an acknowledgment message is sent back to the
mitigators, completing the process. If the timeout specified at the start of the mitigation
request expires, the node returns to the IDLE state. In this state, the node is ready to
mitigate and assist other peers if necessary.

1 handleStartState(topic , from , message) {



4.4. LOCAL TESTING 23

2 if (!this.# durations.nodes[from]) {

3 return;

4 }

5 this.# durations.nodes[from].Start = {

6 sent: message.time ,

7 received: this.getMillis () - this.# durations.

RequestStateStartTime ,

8 delta: this.getMillis () - message.time ,

9 timeWindow: this.#timeWindow ,

10 ipTransferDuration: message.ipTransferDuration ,

11 };

12 this.logToDatabase(from , topic , this.#state);

13 this.sendMessage(from , { message: "Ack" });

14 }

In the last state which concerns the mitigator in this situation, the timeout is cleared
again. The step is then logged to the database. Similar to the target, the mitigator
returns back to the IDLE State where the node is open for further mitigations.

1 handleReportState(topic , from) {

2 clearTimeout(this.# timeout);

3 this.logToDatabase(from , topic , this.#state);

4 this.#state = states.Idle;

5 }

4.4 Local Testing

The OS-level virtualization tool docker was used to test the interaction between the peers.
The docker-compose tool is used to run multiple instances.

This is required in order to provide the application with different configuration files.
Docker uses volumes to solve this issue. The volumes defined in the docker-compose file
are shared by the machine’s storage and the running docker container. Listing 4.3 shows
that the goddssy-node and goddssy-relay have different configuration files mounted to the
container’s configuration folder.

Specific ports are defined in order to have access to the container from the outside of
GoDDSSy. As a result, port 3000 is open for access to the REST API.

In addition, networks must be configured in the docker-compose.yml file. If no network
is configured, the containers run in isolation and cannot communicate with one another.
In this scenario, the network, referred to as net, solves the problem of isolation. As can
be seen, the relay has a static IPv4 address, allowing other nodes to dial the known peer.

Aside from the ease of starting the various nodes, the docker-compose setting has another
benefit for testing. It is possible to choose to scale up an existing service during the
startup process. As a result, to have five instances of the GoDDSSy node, one can simply
run docker-compose up -d -scale goddssy-node=5.
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1 version: "3.3"

2 services:

3 goddssy -relay:

4 image: tobifra/goddssy

5 volumes:

6 - ./ multiconfig/relay :/usr/src/app/config

7 - ./ connections :/usr/src/app/connections

8 networks:

9 net:

10 ipv4_address: 172.18.1.3

11
12 goddssy -node:

13 image: tobifra/goddssy

14 volumes:

15 - ./ multiconfig/node:/usr/src/app/config

16 - ./ connections :/usr/src/app/connections

17 ports:

18 - 3000

19 depends_on:

20 - goddssy -relay

21 networks:

22 - net

23
24 networks:

25 net:

26 driver: bridge

27 ipam:

28 config:

29 - subnet: 172.18.1.0/24

Listing 4.3: The docker-compose.yml file, used for local testing
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Evaluation

5.1 Evaluation Setup

Beauharnois (CA)

London (GB)

Frankfurt (DE)

Sydney (AU)

Figure 5.1: GoDDSSy deployment locations on the world map.

In practice, GoDDSSy is integrated into an existing web service. Four GoDDSSy instances
are deployed around the world to simulate a real-world scenario. As a result, four Virtual
Private Server (VPS) instances are deployed in Beauharnois, London, Frankfurt, and
Sydney. Each VPS comes equipped with a one-core processor, 1 gigabyte of memory, 10
gigabytes of SSD storage, and a 100 megabit-per-second bandwidth. Debian 11 is the
operating system that the VPS is using.

Since a Docker setup is already in place for local testing, it aids the deployment. Sepa-
rate docker-compose configuration files are created, similar to those shown in listing 4.3.
The local configuration differs from the deployment configuration in that the latter only

25
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contains the configuration for one node. In addition, another port is exposed for interac-
tion over GossipSub. A Python script is used to connect to each server and deploy the
software. Secure Shell (SSH) and the Secure Copy Protocol (SCP) are used to transfer
the files and restart the containers.

5.2 Scenarios

Transfer Limit of attack information. We want to see how many IPv4 addresses can be
sent over GoDDSSy in the first setup. We use the deployed GoDDSSy network to test
this. The target is selected, and a list of addresses is sent via the RESTful interface.
The list of IP addresses has a fixed length and is then linearly increased. Following each
mitigation request, the durations of nodes are collected, which allows to determine which
node responded. This script is run until none of the nodes respond.

Transmission Time Versus Amount of Attack Information. In the next scenario, we want
to determine if the transmission time is affected by the amount of attack information being
exchanged. To do this, a target is selected, and several mitigation requests are sent to the
one node using an automated script. The list of addresses starts with a specific length.
The log is played 100 times for each length to the point where the system stops working.
The transmission times are then compared with the number of addresses.

Determination of the Optimal Time Constraint per Step. In this scenario, we want to
figure out how to adjust the deadlines for each step in the signaling protocol so that the
response time is as short as possible while allowing as many mitigators as possible to
respond to the attack. Therefore, the geographical distance between each node must be
considered. To test this, the deployed setup is used, and the time delta from sending a
mitigation request to receiving approval for all nodes is measured to determine the optimal
time constraint per step.

Disruption by Flooding with Messages. The system is tested to see whether it can
withstand a peer who floods the network with messages. Therefore, the deployed setup
is used in two scenarios. In one case, a peer receives 100 mitigation requests with no
disruption; in the other, the same number of mitigation requests are sent, but one peer
floods the network with spam on an unrelated topic. The time difference between sending
a mitigation request and receiving approval is measured and compared in both cases.

5.3 Results

5.3.1 Transfer Limit of Attack Information

In this scenario, the address list is increased by 1000 addresses in each step, beginning with
270’000 and ending with 285’000 addresses. Table 5.1 shows that the GoDDSSy protocol
works with 279’000 addresses and completes all steps. If 1’000 addresses expand the
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address list, the other nodes no longer respond to attack information sent to them. The
other nodes do not respond with an approved message at 280’000 addresses. Messages of
4’359 kilobytes are the largest that can be sent over GossipSub, even though the stream
buffer size and maximum message size are set to infinity in the node configuration, as
shown in section 4.3.1. If the message size is increased afterward, the target node loses
connection.

Server Location
Addresses KB United Kingdom Canada Australia

Approval Report Approval Report Approval Report
279’000 4359 ✓ ✓ ✓ ✓ ✓ ✓

280’000 4375 ✓ ✗ ✓ ✗ ✓ ✗

281’000 4391 ✗ ✗ ✗ ✗ ✗ ✗

Table 5.1: The transfer limits of attack information.

5.3.2 Transmission Time Versus Amount of Attack Information
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Figure 5.2: The transfer duration compared to the number of IPv4 addresses per node.

To give each GoDDSSy node enough time to respond, the deadline for each step is set to
5000 milliseconds. Following that, a list of 1000 IPv4 addresses is sent to the node in Ger-
many, which requests mitigation from the other nodes. The same request is repeated 100
times to eliminate outliers, and 10’000 addresses increase the address list after repetitions.
This is carried out up to the determined maximum in the first scenario. Times from all
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Figure 5.3: The comparison of the transfer time of 1’000 versus 271’000 addresses for all
the nodes.

Server Location
N Australia Canada United Kingdom

Mean Duration [ms] Standard Deviation [ms] Mean Duration [ms] Standard Deviation [ms] Mean Duration [ms] Standard Deviation [ms]
1’000 377.15 3.98 146.25 5.09 31.69 4.35
11’000 876.16 14.27 331.69 4.27 67.93 9.65
21’000 1125.36 17.51 422.28 5.89 84.68 8.5
31’000 1380.8 26.62 511.7 17.88 101.79 17.63
41’000 1392.06 27.5 520.86 9.08 114.56 12.53
51’000 1418.24 46.79 539.62 15.04 132.73 13.22
61’000 1658.77 31.87 614.63 11.92 160.38 28.05
71’000 1678.37 35.77 621.75 12.25 166.77 19.99
81’000 1694.9 35.34 641.42 21.96 183.83 14.84
91’000 1709.81 38.01 659.93 25.55 194.87 10.32
101’000 1728.18 30.83 721.94 41.53 218.54 11.06
111’000 1745.83 38.2 736.19 47.95 236.21 21.25
121’000 1768.15 57.79 749.64 28.59 289.48 39.45
131’000 1949.87 39.7 787.25 32.72 334.56 22.35
141’000 1978.89 44.1 812.83 31.56 350.51 29.29
151’000 2018.9 61.68 830.3 32.36 361.37 19.04
161’000 2046.9 60.35 864.34 42.4 371.58 22.66
171’000 2085.48 54.84 876.22 38.63 385.15 21.94
181’000 2089.59 61.76 909.67 68 399.95 31.62
191’000 2124.37 60.62 948.28 119.39 414.11 23.95
201’000 2143.81 56.94 967.36 136.9 431.05 21.38
211’000 2164.44 97.56 992.8 75.13 462.98 35.48
221’000 2297.23 255.21 1018.47 134.24 511.47 49.3
231’000 2373.47 259.53 1040.13 111.24 553.68 61.42
241’000 2358.77 136.08 1078.31 55.62 595.52 60.28
251’000 2387.05 109.6 1080.96 45.5 631.54 53.83
261’000 2407.61 96.41 1102.98 51.34 653.24 58.25
271’000 2405.91 72.59 1181.99 263.09 664.13 48.69

Table 5.2: The means and standard deviations of the scenario in Section 5.3.1.

nodes are retrieved and collected after each request. For the evaluation, the median IP
transfer time of each 100 attempts from each node for each address list length is taken.

In Figure 5.3, the transmission times are plotted against the length of the address list. It
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can be seen that with a shorter address list, the transmission time is significantly shorter
than with a long address list. One can also see that the transmission time depends very
much on the geographical distance.

5.3.3 Determination of the Optimal Time Constraint per Step

The measurements were taken from the scenario in section 5.3.2, which measures 2’800
signaling requests. Each step measures the time between sending a request and receiving
approval. The findings reveal that the node in the UK responds in a median time of
75 milliseconds, the node in Canada in a median time of 300 milliseconds, and the node
in Australia in a median time of 778 milliseconds. However, nodes are not always time
consistent. The node in Australia, for example, has a maximum response time of 970
milliseconds.

When configuring GoDDSSy, one must consider whether the protocol should run as quickly
as possible or allow as many nodes to respond. Because the topic in this scenario was the
entire world, the nodes were sometimes geographically far apart. The high response time
would not be an issue if one chose a regional topic.
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Figure 5.4: Time delta between sending the mitigation request and receiving approval.
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Mean [ms] Standard Deviation [ms]
Australia 780.42 47.59
Canada 307.85 28.94
United Kingdom 76.82 15.76

Table 5.3: The means and standard deviations of the scenario in Section 5.3.3.

5.3.4 Disruption by Flooding with Messages

To give enough time, the deadlines in the first scenario are set to 2’000 milliseconds for
each step, and 10’000 addresses are sent in each request to the GoDDSSy node in Germany.
After each request, the durations of nodes are collected, and the time difference between
sending a mitigation request and receiving approval is determined. The same was done
in the second scenario. Still, during mitigations, another node sends a mitigation request
every ten milliseconds on a topic to which one of the other nodes is subscribed, so the
GossipSub is flooded with messages. Figure 5.5 compares both times. As can be seen,
there is no significant difference in measurement time between the scenarios with and
without spam.
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Figure 5.5: Comparison of the answering time in the case with and without spam.

Mean [ms] Standard Deviation [ms]
With Spam 419.47 356.87
Without Spam 375.31 290.02

Table 5.4: The means and standard deviations of the scenario in Section 5.3.4.
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5.4 Discussion

The evaluation examined four different scenarios. The first scenario addresses the overall
system’s performance. The speed of GoDDSSy is measured concerning the data size in
the second scenario. This experiment demonstrates a significant difference in transfer
speed between small and large data loads. In the third scenario, the protocol’s speed is
investigated when no large amounts of data are exchanged. The round trip times of the
approved request are compared for all nodes and revealed substantial differences due to
geographical distances. All the scenarios discussed above deal with protocol deadlines.
The final scenario addresses the protocol’s resistance to attacks. The node response times
are compared in a scenario with and without flooding of the GossipSub. The results show
that there is no significant difference between the two scenarios.

GoDDSSy has a fixed limit of 279’000 addresses that can be exchanged, which is only
4359 kilobytes of data. This can be limiting if an attack occurs with multiple attackers
exceeding this limit. Using the Mirai botnet as an example, which has up to 380’000
devices [14], the system would be overwhelmed. This data-exchange limit is reached
because the libp2p framework does not support larger payloads, and communication is
done via the pub/sub framework. To overcome this limitation, the design could be altered
to transfer attack information via a more appropriate channel for larger payloads rather
than directly over GossipSub. BloSS [23] for example solves this problem by exchanging
a link by which the mitigator can retrieve attack information.

Setting deadlines is a tradeoff, as demonstrated in scenarios in the section 5.3.2 and 5.3.3.
On the one hand, the system should allow for quick mitigations; on the other hand, nodes
should be able to participate in signaling. In each scenario described above, the node in
Australia has a significantly longer response time than the node in the United Kingdom.
Furthermore, because the deadlines are highly dependent on the data loads exchanged by
the signaling system, no general statement can be made. However, in this configuration,
a decentralized system with nodes distributed across large distances is evaluated. The
deadlines could be set shorter if the topics were narrowed to a more specific region, such
as CH instead of WORLD, as mentioned in section 3.3. This would include both the
time it takes to transmit attack information and the time it takes to approve a response.
Nonetheless, the amount of attack information that can be exchanged over GoDDSSy is
limited, so the deadlines could always allow the maximum transmission time to exchange
the limit of 279’000 addresses.

The final scenario demonstrates GoDDSSy’s resistance to message flooding. Even if a peer
sends many messages at a high frequency, the system can handle it. However, sending
a high volume of attack messages to a topic to which other peers are subscribed is still
possible. Peers would then attempt to mitigate the attack, but would be prevented from
doing other mitigations.
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Chapter 6

Final Considerations

6.1 Summary

The thesis proposes a signaling protocol that enables actors in a trusted environment to
exchange attack information. A description of agile and resilient is given to establish
quantifiable parameters and assess the suggested signaling protocol. In the end, the
proposed system is evaluated according to the description.

To reach the goals, a closer look at DDoS attacks is given. It is distinguished between
application and network/transport layer attacks, and insights are given into how DDoS
attacks occur today. Also it is explained how DDoS attacks are detected and where the
challenge lies in this task. In addition, an explanation of how a pub/sub system works,
which can be used to exchange information in a subject-based manner, is provided.

A review of related work is also given, outlining the signaling strategies used by the
cooperative defense systems Cossack and CoFence. A closer examination of BloSS and
its protocol, which outlines the various phases between the mitigator and the target in
cooperative DDoS signaling, is conducted. Besides that, an overview of different pub/sub
tools is given. Kafka, Emitter, RabbitMQ, and GossipSub are explained and compared.

In addition, an overview of the design of GoDDSSy is provided, and the use of the system
is explained. The architecture is described in more detail, including information about
the RESTful API, the router, the database, and the GoDDSSy instance. This thesis also
describes how the protocol operates if a system actor is attacked.

A prototype of the designed system is then implemented using the libp2p network stack
and Node.js to have a server-side JavaScript application. The software is then packed
inside docker containers to simplify the deployment process and was then tested locally.

Four GoDDSSy instances are deployed to servers in the United Kingdom, Germany,
Canada, and Australia for the evaluation process. The system is then evaluated in four
scenarios to test GoDDSSy for resiliency and agility. The limit of the amount of attack
information that can be transferred is evaluated, and the transfer limit lies at 279’000
addresses. In addition, the transfer time of attack information is measured regarding the
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size of the information, and it is found that the duration is dependent on the size. Fur-
thermore, it evaluates the optimal time constraint per step of the mitigation protocol. It
is found that it strongly depends on the actor’s geographical location in the system. The
final scenario tests if the system can withstand if a node floods GoDDSSy with spam, and
measurements reveal that GoDDSSy could withstand an attack like this.

6.2 Conclusions

The goal of this thesis is to design and build a cooperative signaling system that allows
multiple actors in a trusted environment to exchange attack information while remaining
agile and resilient. These requirements are met. The various scenarios tested in the
Evaluation (Chapter 5) provide evidence for this.

To make claims about GoDDSSy’s agility and resiliency, it must be compared to another
signaling system. BloSS provides a foundation for this. In the best-case scenario, the
system built in the scope of this thesis can exchange up to 279’000 IPv4 addresses. This
includes all in all with additional required information 4.375 Megabytes. Compared to
BloSS, which uses Ethereum blocks with an average size of about 0.093 MB [7], this is
comparatively much. In terms of the transmission time of attack information and the
time constraint of each step, the transmission time is as low as a few seconds and the
response time is as low as a few hundredths of a second. When compared to BloSS, this is
fast because BloSS is based on Ethereum and a new block is generated every 15 seconds.

The requirement of resilience is met because GoDDSSy can withstand the flood of mes-
sages from malicious peers. The system is still operational, and the response times are
not significantly influenced, as can be seen in Figure 5.5.

However, one of the main limitations of GoDDSSy is that data exchange is still very
limited due to limitations in the pub/sub framework that was used. If the attack involves
more than 279’000 addresses, GoDDSSy is unable to notify other peers. Furthermore,
unlike BloSS, GoDDSSy does not track node reputation and does not penalize malicious
actors in the system.

The main challenges were using a network framework that was relatively new and was
not widely used. The libp2p network stack is still in development, and many breaking
changes continue to occur. The lack of documentation and examples also made it difficult
to build a working system, requiring a closer look into the framework’s source code.

Another challenge encountered during this thesis was the deployment of the setup after
it had been tested locally. Despite the fact that the application had been running inside
a Docker container since the beginning, it was still difficult to deploy the application in
a continuous and fast manner. The fact that the deployed version of GoDDSSy didn’t
function the same way as it did on the local setup presented another challenge during the
thesis. Finding other peers proved to be difficult for the system. So that it could find
other peers, the signaling mechanism had to be modified during the deployment phase.
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6.3 Contributions

The following contribution were made throughout this thesis:

• Design and implementation of a system to detect DDoS attacks across multiple
nodes.

• Examination of the libp2p network stack and document a libp2p node’s setup.

• Description of the libp2p GossipSub implementation’s restrictions in detail.

• Containerization of a system which implements the libp2p network stack.

6.4 Future Work

In this thesis, GossipSub was used for establishing the core communication module of
GoDDSSy. Since its advantage, compared to other signaling approaches, is that it is fast
and has low overhead, it is not the best fit to transmit a lot of data, as seen in the evalua-
tion. For further work, one could still communicate the protocol over GossipSub, but use
another method to exchange the attack information. The target could, for example, send
a link to the mitigator, enabling it to access the information. This could have a benefit
in increasing the limit for data transmission. As of now, GoDDSSy does not track each
node’s reputation to measure how credible each actor in the system is. In further work,
a reputation tracking system could be developed to punish malicious nodes or exclude
them from the cooperative signaling system if they send false attack alarms. This could
contribute to the stability of the system.
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TCP Transmission Control Protocol
VPS Virtual Private Server
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SCP Secure Copy Protocol
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