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Abstract
Graffiti are omnipresent in today’s urban areas. A special form of graffiti are stencils

which are mostly two-tone and easy to replicate. The research objective of the present

thesis is to evaluate whether it is possible to automatically create stencils from an arbitrary

image. While research on image abstraction is present in relevant literature, automatic

stencil creation is understudied in scholarly work. In order to automatically create a

stencil, a known algorithm is implemented and extended to create artistically pleasing

stencils. The created stencils are then assessed using guidelines driven by research and

expert input. Consequently, this work shows that the combination of already existing

algorithms with carefully chosen parameters leads to the production of objectively well-

made stencils.
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Joël Rüttimann 1 INTRODUCTION

1 Introduction
Modern-style graffitis, a visual communication tool in public space, are omnipresent

in today’s society. However, there exist multiple different styles of graffitis in the modern

era. Whether those are tags, which simply are the artist’s signature sprayed in one colour,

or stylistic symbols or phrases in different colours. However, a specific type of graffiti are

stencils. Made out of cardboard or paper, stencils allow to replicate an image multiple

times. Using a stencil allows to transfer the image on a surface by using paint. Unlike

traditional graffiti which most people perceive as colourful and eye-catching, stencils are

mostly two-coloured to be easily transferable. The most famous stencil artist worldwide

known is Banksy whose graffiti are mainly black and white.

In order to produce stencils, images have to be simplified and reduced to the essential

parts that still leave the image recognisable. Hence, an abstract image has to be produced.

The goal of this thesis is not only to produce abstract images, the created images should

also be aesthetically pleasing. This raises two questions: First, how is this possible, and

second, how can the result be judged? In order to answer the first question, the goal is to

create a stencil that can be sprayed on a wall or any other type of surface. But how do we

get from a picture to a black and white abstraction, such that the original picture is still

recognisable? In an image with colour, the colour plays a huge role as without the colour

a lot of detail would be lost. If we now look at the transition from one colour to another

colour in an image, there is a visible change. This can be considered as an edge and

is further explained in section 2.2. But what can be already said is that these changes,

or edges, are important. Thus, it becomes clear that the transition from one colour to

another colour has to be preserved during the abstraction process. Furthermore, the main

feature of the images should still be visible. But what is a main feature? This is not easy

to answer and strongly relies on the viewer. For example, if we look at a portrait, the

eyes should still be somewhat visible in the abstracted picture as those are a defining

feature of a face. Or in an image of a car, the wheels should be round and not just a

black square. The goal of this thesis is to create or implement a program which generates

a stencil from an arbitrary input image including an analysis of the result. Thus, apart

from computationally producing abstract images, the measurement of the results is a key

challenge.

Judging the result objectively is hard if not even impossible. It is more subjective

what one would classify as a nice picture while someone else will say the opposite. There

exist no exact guidelines or scientific papers on what a good-looking stencil must include.

In order to solve this problem the idea is to include and talk tho experts in the art/graffiti

world. With the help of experts, a guideline will be developed and then used to judge the

results.

1



Joël Rüttimann 1 INTRODUCTION

To give a better visualization what this thesis intends to achieve, we take a look at an

example of a graffiti stencil in figure 4. In the area of stencil art, aforementioned Banksy

is the figurehead of the scene. Banksy has presented his work at exhibitions all over

the wold and his art is being sold for millions of US-Dollars while remaining anonymous

(Ellsworth-Jones 2012). Hence, some of Banksy’s artwork is used as a guideline to compare

the achieved results to his art. This does not mean to goal is to create exactly the same

artwork as that of Banksy as this would be impossible but to analyse whether the results

of the implementation go into the preferred direction.

1.1 Graffiti

Since it is the goal to create a specific type of graffiti, the question arises what a graffiti

exactly is apart from the brief description given in section 1. The singular of graffiti is

graffito which is Italian and means “to engrave”. The definition of graffito is “a drawing

scratched on a wall” (Campbell 2003).

The first examples of what can be considered as a graffiti dates back to the pharaohs

in Egypt (Frood and Ragazzoli 2013). Graffiti are usually placed at highly frequented

places, such that they can be seen by a wide variate of spectators (Lohmann 2020).

(a) Graffito, Kom Ombo Temple, Egypt (b) Graffito, Ancient Graffiti Museum
Marsilly, France

Figure 1: Ancient Graffiti (Rémih 2009; Helfer 2006)

By looking at the graffiti in figure 1 and the pure definition of the word graffiti/graffito

given before, quite a lot can be judged in a graffiti. Usually, if somebody thinks about

graffiti, they do not have an ancient image scratched to a wall in mind but instead the

colourful, bold letters that are sprayed on bridges or walls. What most people think of

graffiti can be referred to as the modern day graffiti introduced above. Modern day graffiti

mostly originated from New York and there are large varieties of different styles of graffiti

(Dimitri Ehrlich 2006). Additional pictures and information on these graffiti can be found

in appendix C.

2



Joël Rüttimann 1 INTRODUCTION

(a) Heavily tagged subway car of the NYC
subway graffiti

(b) 1970’s NYC Subway Graffiti

Figure 2: Modern Graffiti (Calonius 1973; alphabetcityblog 2008)

In figure 2 picture b) an example of a modern day graffiti from the New York subway

is displayed.

1.2 Graffiti stencils

While the previously given description and definition focused on graffiti in general,

the following part introduces stencils which are a specific type of graffiti.

1.2.1 Definition

A piece of cardboard, paper or another medium is normally taken and a cut-out

template with the help of which outlines, patterns, characters or else is produced. This

is called stencil, a template, which is then used to spray the outline onto a wall or any

other surface (Truman 2010). Hence, a graffiti stencil refers to the method of producing

the graffiti and the specific sub-type of graffiti simultaneously.

(a) Stencil example (b) Stencil in Lagos, Portugal

Figure 3: Example of stencils, a) from Put (2020) b) photographed by Rüttimann 2022

3



Joël Rüttimann 1 INTRODUCTION

There are other techniques to display the graffiti stencil as well but spraying is the

most common one. This is done in two tones most of the time, but some stencils do have

more colours (e.g. the coloured heart in figure 3 a)). Hereby, the difficult step is to get

from a picture to a point where the picture can be transferred into two tones while the

original picture is still recognisable. Stencils are not only special graffiti which can be

quickly replicated. A lot of the artwork of stencil artists is often politically influenced and

communicates ideas or emotions on specific topics (Philipps 2015).

Figure 4 is an artwork from the previous mentioned artist Banksy. A lot of Banksy’s

artwork do communicate a political opinion or current societal problems and challenges

(D’Cruz et al. 2010).

1.3 Abstraction

One definition of “abstraction” is “the action of removing something from something

else; the process of being removed from something else” (Dictionaries 2022). Keeping

this definition in mind, how do we get from an image to a stencil? Looking at figure 4,

which a stencil Banksy sprayed to a wall in Beit Sahour in the West Bank, the interesting

question is how it was created.

Figure 4: Flower Thrower by Banksy in the West Bank (Levinger 2005)

Except for the flower bouquet, the stencil is two-toned. Black paint is used to spray

the stencil while the other defining colour of the stencil is defined by the surface, the

background, it was sprayed upon. In this case it is a white wall. Apart from these two

tones, it is clearly visible that the stencil shows a man throwing a flower bouquet. What

can be seen as well is that the main features of the person are still intact. Such as the

eyes or the cap of the flower thrower. Looking at the definition of “abstraction”, there

have clearly been parts or features that have been taken away from the original picture

such as the colour or more refined details of the person. With that, it can be said that

this picture is an abstraction of the original coloured picture and that parts have been

4
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removed whilst the picture is still recognisable. Consequently, this is what is meant when

talking about abstraction and important features.

Figure 5: Abstraction example (Winnemöller et al. 2012)

As can bee seen in figure 5, the most right picture still resembles a face. It is still

recognisable what has been there in the original image: A face. For sure, the more right

you go, the less you can recognise the the man on the left. But the essence of the picture,

it displaying a man, can still be seen in the most right, abstracted, picture. What is to

say about the “main feature” of on image, the feature differs from image to image and

defining what actually should be preserved is objective and has to be judged from picture

to picture. The main challenge is to automate this abstraction while still keeping the

individual features of each specific original image.

1.4 Guidelines to judge stencils

To judge the result of this thesis, two experts have been asked about the features of a

good-looking stencil and what characteristics it must have. With the help of the experts

a guideline was developed to judge the automatically produced stencils. The first expert I

talked to is Noah Hertzog, a student of visual communication in Basel. The other expert is

Michael Müller an artist with experience in the creation of graffiti stencils (Müller 2022).

With these two experts the following guideline was developed. First, the original image

still needs to be recognisable. Second, the stencil has to be an abstraction of the original

image, while the main features are preserved. Noah pointed to figure 6 to illustrate

his thoughts on abstraction. Third, the different parts of the original image have to be

distinguishable, for example the face should be separated from the body. Fourth, the

level of detail has to be considered. The stencil should have less details than the original

image. Small details are harder to spray and if the stencil is appraised from further away,

small details disappear. Less detail is most of the time better. Fifth, larger black and

white areas should be present such that a contrast is visible.

5



Joël Rüttimann 2 TECHNIQUES

Figure 6: Level of abstraction and detail (Niemann n.a.)

2 Techniques
As mentioned in the introduction, the main objective is “choosing or designing an

algorithm which generates stencils from an arbitrary image, considering the literature”.

Often designing an algorithm by oneself can be more interesting than just choosing one

which already exists. Therefore, it is decided to design and develop an algorithm. As this

is a big challenge, the process of designing and developing an algorithm is described in

detail below.

In the following section some techniques which could be useful to create an abstracted

image are presented. The idea was to combine and adjust them in such a way that in the

end a stencil can be extracted from an image. As mentioned in section 1.3, details of the

original image have to be extracted, altered, some preserved and simplified. Most of the

techniques focus on edge detection whereby the concept is described in section 2.2.

2.1 Canny edge detector

The canny edge detector was developed by John F. Canny in 1986 (Canny 1986). The

canny edge detector follows these subsequent steps (Ding and Goshtasby 2001). First,

reduce noise. Second, determine gradient magnitude and gradient direction at each pixel.

Third, non-maximum suppression. Fourth double threshold and fifth edge tracking by

hysteresis. Figure 7 is an example result of the canny edge detector by Sahir (2019a).

One could argue that the canny edge detectors is an algorithm itself and does not belong

into the technique section and the description given is rather short. Although this is true,

it is argued that the canny edge detector still belongs in this section because it was the

6



Joël Rüttimann 2 TECHNIQUES

(a) Canny edge detection (b) Canny edge detector 2

Figure 7: Canny edge detection by Sahir (2019a)

gateway and inspiration to look deeper into edges, how they work, and edges detectors in

general. More specific, the explanation on how the canny edge detector works by Sahir

(2019a) delivered the inspiration. The canny edge detector will be used in the end to

compare the implementation to see if and what improvements have been made during the

time of this thesis.

2.2 Edge

In order to apply edge detection, it is crucial to know what an edge is. According to

Jain (1989), an edge is a line which divides an image into different parts, or the image

brightness having discontinuities at this point. To find these lines, the different intensity

variations occurring in different points on the image can be used. An edge is where a

discontinuity appears (Dharampal 2015).

(a) Clear edge (b) Difficult edge

Figure 8: Example of edge in image, Rüttimann 2022

First we take a look at figure 8 a): example of a discontinuity which can be judged as

an edge. By looking at the difference values in square 4 and 5. The visual difference can

be seen clearly. With the definition from above this would account as an edge. But it is

7
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no always that obvious. Looking at figure 8 b) regarding the values it could be seen as

two edges between square three and four and the second edge between square four and

five. But visually it can easily be seen as one. And since the computer has no eyes, the

computer has to look at the values and judge from there whether it is one or two edges.

As seen with this example, it as not always obvious where an edge is located.

Edges in computer vision are thin, mostly 2x2 pixels or sometimes even smaller. The

edges are also as accurate as possible (Winnemöller et al. 2012). But this kind of edge is

not the right fit for graffiti stencils. For graffiti, wider and bigger edges which have artistic

touches are needed (Winnemöller et al. 2012). It is also important to have coherent edges.

Therefore, in the following, “artistic edges” is referred to when suited for a graffiti stencil

and “edges” for computer vision-like edges.

2.3 Gradient of an image

The gradient by itself is not a technique. But it is used in the final algorithm and is the

central part from which all the following steps are influenced. For an image, the gradient

is defined as a change in the intensity or colour. Looking at one pixel, the gradient is

given by two derivatives, one in the horizontal and one in the vertical axis. At the given

pixel, the gradient vector points in the direction of the biggest change as can be seen in

figure 9 (Shrivakshan and Chandrasekar 2012). A more technical description is that the

gradient of image is the vector of its partials (equation 1) (Gonzalez 2008).

∇f =

(
gx

gy

)
=

(
∂f
∂x
∂f
∂y

)
(1)

In equation 1, ∂f
∂x

is the derivative in x direction and ∂f
∂y

the derivative in y direction

(Gonzalez 2008).

Figure 9: Vector in gradient direction (Shrivakshan and Chandrasekar 2012)

2.4 Gaussian Blur

As well as the gradient, the Gaussian Blur is not an edge technique by itself but it is

used extensively in the final algorithm. What happens when an image is blurred is that

8
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each pixel is mixed with its surrounding pixel. More precisely, the blurring is achieved by

convolving the image with a low pass filter. This has the effect of removing noise from

the image (Haddad et al. 1991). These filters work with convolution and a kernel which

will be elaborated upon in the following section.

2.4.1 Convolution

Image convolution is defined by the following equation:

g(x, y) = ω ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

ω(dx, dy)f(x− dx, y − dy) (2)

with g(x, y) in equation 2 being the filtered image, f(x, y) being the original image and ω

the kernel and a half the kernel width (Akgün and Erdoğmuş 2015). Convolution can be

used as filter effect for images. To achieve this a matrix is applied to every pixel in the

image. The new pixel values are determined by the applied kernel and the neighbours of

the pixel. According to Ludwig “a convolution is done by multiplying a pixel’s and its

neighboring pixels color value by a matrix” (Ludwig 2013: p. 3). The kernel is a matrix

of numbers. The example in table 1 shows how convolution works by taking pixel 1, 1

from figure 10 a) and the kernel in table 1.

0 1 0
1 1 1
0 1 0

*1/5 convolved pixel p(1, 1) = (150+165+208+84+119)/5 = 726/5 = 145.2

Table 1: Simple Kernel

Figure 10 shows a larger example with the kernel from table 1.

(a) Original Image (b) Convolved Image

Figure 10: Convolution example, Rüttimann 2022
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Instead of just using a simple kernel like in table 1, the Gaussian can be used to

compute the values in the matrix. The Gaussian function in one dimension is defined as

displayed in equation 3 (Lindeberg 1994):

Gσ(x) =
1

2πσ2
exp(− x2

2σ2
) (3)

In two dimensions it is the product of two Gaussian functions in each direction as

displayed in equation 4 (Shapiro et al. 2001):

Gσ(x) =
1

2πσ2
exp(−x2 + y2

2σ2
) (4)

Here x and y are the distance to the origin. To clarify further, let p be the current

pixel for which the Gaussian blur is calculated and let px and py be the x and y position

in the image. Then let w be a pixel in the image and in the kernel range of p. Then x

is the distance from px to wx, similar for y. What might not be obvious from looking at

the Gaussian equation is that the further away w is from p, the less influence w has on

p. This can be seen by letting the distance between p and w get to infinity. This would

mean that x and y go to infinity.

limx → ∞, lim y → ∞ 1

2πσ2
exp(−x2 + y2

2σ2
) → 1

2πσ2
exp(− inf) = 0 (5)

Example of a Gaussian kernel with σ = 2 is shown in table 2.

0.1553 0.1760 0.1553
0.1760 0.1995 0.1760
0.1553 0.1760 0.1553

Table 2: 3x3 Gaussian Kernel

Two parameters exist for the Gaussian blur, the kernel size and σ. The influence of

the kernel size and σ is shown in figure 11. The larger the kernel is and the higher σ, the

more blurred is the resulting image.

10
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Figure 11: Influence of different kernel sizes and σ for Gaussian blur, Rüttimann 2022,
original picture from Kyprianidis and Döllner (2008)

2.5 Difference of Gaussian

For the difference of Gaussian, a Gaussian blurred image is subtracted from a less

blurred version. In the following, the difference of Gaussian is referred to as DoG. Actually,

DoG is not an edge detector by itself and cannot be compared directly to other standard

computer vision techniques (Winnemöller et al. 2012). Nevertheless, the DoG is quite

important since the final implementation relies on an enhanced DoG. The DoG algorithm

removes high-frequency spatial components which represents noise and enhances edges

(Misra et al. 2019). To explain the DoG more simply, one can look at it from a signal

processing point of view. Looking at the Gaussian, it can be considered as a low pass

filter. This means that low spatial frequencies can pass, while higher spatial frequencies

are eliminated. Looking at the difference of two Gaussian’s with different sigma, they

create a band pass filter (Winnemöller et al. 2012). A band pass filter is a filter which

only lets signals pass in a frequency band. The frequency ranges below and above the

band are blocked or significantly attenuated (Shenoi 2005).

11
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Figure 12: Band Pass Filter explained (Winnemöller et al. 2012)

In figure 12 in picture a, the green is a surrounding Gaussian and blue is the inner

Gaussian. The surrounding Gaussian is subtracted from the center Gaussian to produce

the DoG. In figure 12 picture b, the center is a low pass filter cutting off all frequencies

above a threshold. Same goes for the surrounding Gaussian. When the difference between

the Gaussian is taken the DoG is created. The frequencies which “survive” this process

are the ones in bright yellow in the last plot in figure 12 picture b. The DoG will then

extract the image features within this characteristic band and those features tend to

correspond to edges (Pallás-Areny and Webster 1999). The DoG is usually applied to a

greyscale image (Wang et al. 2012). The Dog for one pixel x, y is given by equation 6

with v = (x, y) (Winnemöller et al. 2012).

Gσ(v)−Gσr(v) (6)

Most of the time, r = 1.6 is used to approximate the Laplacian of Gaussian filter. Also,

r = 1.6 is a good compromise between accurate approximation and reasonable sensitivity

(Marr and Hildreth 1980). Kernel size and sigma are the two parameters for the DoG,

the influence of them is illustrated in figure 13.
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Figure 13: Influence of different kernel sizes and σ and r=1.6, Rüttimann 2022

2.6 Sobel Operator

A Sobel Operator is an algorithm which emphasises edges in images. It is a discrete

differentiation operator computing an approximation of the gradient intensity function.

The algorithm is based on convolving the image with a small filter in x and y direc-

tion of the image (Sobel and Feldman 2015). Therefore, the computations are restively

inexpensive. But there is also a down side, the gradient approximation is rather crude,

particularly for high-frequency variations of the image (Sobel and Feldman 2015). Table 3

and 4 is an example if 3x3 kernel which is used for the Sobel filter.

+1 0 -1
+2 0 -2
+1 0 -1

Table 3: Sobel filter in x direction

+1 +2 +1
0 0 0
-1 -2 -1

Table 4: Sobel filter in y direction

For a pixel p(x, x) in the image I, the filter is calculated by the following equation 7

(Shrivakshan and Chandrasekar 2012).

Gx =


1 0 −1

2 0 −2

1 0 −1

 ∗ I Gy =


1 2 1

0 0 0

−1 −2 −1

 ∗ I (7)

Here I denotes the input picture and ∗ the convolution operation. The final result,
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the gradient magnitude, is given by equation 8 (Kanopoulos et al. 1988).

G =
√

G2
x +G2

y (8)

Figure 14 is an example of the Sobel Operator applied to example picture.

(a) Sobel filter (b) Sobel filter 2

Figure 14: Sobel Operator examples, Rüttimann 2022

2.7 K-Means clustering

Edge detection is not the only approach for an image abstraction. Another idea was

to divide the image into different areas. Furthermore, the different areas should all have

the same colours. To achieve this, a k-means clustering algorithm could have been used.

However, a downfall of this approach is that the number of clusters k should have been

known before starting the algorithm. The sketch of the k means clustering would involve

the following steps. First, choosing the number of clusters, k. Second, randomly assign

the data points to any of the k clusters. Third, calculate the center of the clusters. Fourth,

calculate the distance of the data points from the centers of each of the clusters. Fifth,

depending on the distance of each data point from the cluster, reassign the data points

to the nearest clusters. Sixth, calculate the new cluster center. Seventh, repeat steps

4, 5 and 6 until data points do not change the clusters or until the assigned number of

iterations is reached (Timbers et al. 2022). The results of this technique are not promising

by itself since the abstraction level is not high enough. However, the idea was to combine

it with a technique mentioned before. Figure 15 is an example of an image with different

number of clusters.

14



Joël Rüttimann 2 TECHNIQUES

Figure 15: k-Means clustering, Rüttimann 2022

2.8 Seam Carving

Seam Carving is used to resize and enlarge images. The process considers geometric

constraints and the image content. The image can be reduced and expanded. A seam

is a 8-connected optimal path of a pixel from top to bottom or left to right. What is

considered an optimal path is defined by the energy function (Avidan and Shamir 2007).

The algorithm consists of the following steps. First, assign an energy to every pixel.

Second, find the optimal path. Third, delete all the pixels in the path and then repeat

the previous steps. The energy for the image I is calculated as displayed in the following

equation 9 (Avidan and Shamir 2007).

e(I) = | ∂
∂x

I|+ | ∂
∂y

I| (9)

The partial deviation are computed by 3x3 Sobel filters. Figure 16 is an example

of an image and its energy. The seam with the least energy is calculated by dynamic

programming shown in equation 10 (Avidan and Shamir 2007):

M = e(i, j) +min(M(i− 1, j − 1),M(i− 1, j),M(i− 1, j + 1)) (10)

This means, that M [i, j] contains the smallest seam at that point in the image con-

sidering all the possible seams to this point. The minimum seam can then be found in

the last row of this matrix. To find the path, backtracking is applied from the point with

the minimum energy (Avidan and Shamir 2007).

In figure 17 a) is an example of the first seam which will be removed in b) is the

originally image from 16 a) with 0.75 width of the original image. What can be seen, is

that the image is now way smaller but almost all of the details are still there.

2.9 Technique summary

As stated in section 2.2, the goal is to get artistic edges. By looking at the results

of the different techniques in the previous sections, the resulting edges are not looking
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(a) Original image (b) Energy of image

Figure 16: Image with energy map, picture taken by Rüttimann 2022

(a) Original image (b) Image reduced width with
seam carving

Figure 17: Seam carving applied, Rüttimann 2022

nice and nowhere near the stencils from Banksy. They are just normal edges and neither

in any way artistically pleasing nor do they produce artistic edges. After adjusting the

parameters for the techniques and joining different techniques the conclusion is made,

that it is not possible to design an algorithm in a reasonable time to create well-made

stencils. Therefore, an already existing algorithm with the focus on image abstraction is

used.
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3 Related work
There are different papers which employ an artistic abstraction of an image. But, there

is no paper which does a stencil creation. Some papers which do an image abstraction

include steps which could be used to create Banksy-like stencils. In the following section

an overview of interesting and related papers are presented. For each paper, the result

which could be used for a stencil creation is shown.

3.1 Image abstraction papers

3.1.1 Image abstraction by structure adaptive filtering

This paper, written by Kyprianidis and Döllner (2008), is later discussed in more

detail, therefore just some results of this paper are presented here. The baseline of the

paper is that they use an enhanced DoG filter which follows the edges. The results of the

steps which could be used in the present work are displayed in figure 18

Figure 18: Kyprianidis and Döllner (2008) result

3.1.2 Flow-based image abstraction

Like Kyprianidis and Döllner (2008), Kang et al. (2008) create a flow-based difference

of Gaussian. First, an Edge Tangent Flow (ETF) is calculated. This is a flow field which

will guide the filter. Then, the DoG filter is steered along the ETF field to enhance the

line qualities. Different to a normal DoG, the resulting edges are sharper and have more

detail. The FDoG can be applied iteratively to get better results. After this step, a

flow-based bilateral filter is applied. Figure 19 shows the results the authors achieved.

3.1.3 An eXtended difference-of-Gaussians compendium including advanced

image stylization

Similar as Kyprianidis and Döllner (2008), this paper written by Winnemöller et al.

(2012) is later discussed in detail. The important key takeaway of their research is the
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Figure 19: Kang et al. (2008) result

suggestion of further enhancement to Dog or FDog. The results of the steps which could

used for the present work are shown in figure 20

Figure 20: Winnemöller et al. (2012) result

3.1.4 Tangent-based binary image abstraction

Wu et al. (2017) use a similar approach as Kyprianidis and Döllner (2008). First, the

structure tensor is computed the same way as done by Kyprianidis and Döllner (2008).

Then, a line integral convolution is applied which follows the vector field from the structure

tensor. Afterwards, an enhanced DoG is applied to the line integral convolution result,

however not a flow-based DoG. As a last step a binarization with a threshold is applied.

The results of the steps which could be used can be seen in figure 21

Figure 21: Wu et al. (2017) result
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3.1.5 Stylized black and white images from photographs

Mould and Grant (2008) propose three different algorithms. The first two use energy

minimization, using loopy belief propagation and graph cuts to produce binary images.

The third algorithm computes a base layer which consist of large flat-coloured regions.

This is done by energy minimization. Then, a detail layer containing small high contrast

details is computed by adaptive thresholding. The final labeling is done by removing

small components and smoothing the region boundaries. The approaches from Mould

and Grant (2008) are the only ones not including a Difference of Gaussian. Figure 22

shows the results of their approaches.

Figure 22: Mould and Grant (2008) result

3.2 Choosing the right algorithm

As already stated in the technique summary, an existing algorithm has to be used.

Considering all the papers in section 3, Winnemöller et al. (2012) has the best results with

respect to a stencil creation. The quality of how the paper is written and the amount of

citations are convincing as well. Winnemöller et al. (2012) focuse on an artistic extraction

of edges. And this is exactly what is needed for the stencil creation process. But would

the XDoG implementation from Winnemöller et al. (2012) be enough to create a stencil?

No. The reason is that for a stencil to be cut out, all what should not be cut out has to

be coherent.
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(a) Holes (b) Example areas which needs attention

Figure 23: Problematic areas, Rüttimann 2022, original image from Winnemöller et al.
(2012)

Figure 23 a) is an example result from Winnemöller et al. (2012). When taking a

closer look, there are quite a lot of white areas completely surrounded by black areas. If

for a stencil the black areas are cut away, the surrounded white areas will be cut away

as well. Figure 23 b) is an example of a white areas surrounded by black pixels. The

two white areas would fall away if the black is cut out. Therefore, this problem has to

be fixed. In order to do this, there are two possibilities: closing small holes or connecting

the white areas with each other. Closing the smaller holes can be achieved by comparing

the hole area to the image area. If the ratio is below a certain threshold, the hole could

be forced to be turned black. Connecting the white areas is more difficult. From where

to where should the connection be, how should the the connection line be chosen and

how is this possible in a reasonable time are some of the questions to be answered in the

following.

Figure 24 a) and b) is an example of a straight connection versus a more natural

connection. Clearly the straight connection is the worse fit. In order to speed up the

(a) Straight Connection (b) Natural Connection (c) Border Pixels to
Consider

Figure 24: Connection Styles, Rüttimann 2022

process of connecting two areas, not all the pixels in a white area have to be considered.
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One can only look the the pixel which are direct next to an edge as shown in figure 24 c)

with the red line. From here, there are different approaches thinkable. The first approach

is to select the most left, right, top and bottom red pixel and follow the gradient until a

white pixel is found, then select the shortest connection. The second approach would be

to follow the gradient from each red pixel until a white pixel is found and then use the

shortest connection. Or the third approach is to search for the nearest neighbour in two

different white areas and connect them.

The idea is, following the gradient would lead to a more natural connection like in

figure 24 b). Just connecting the nearest neighbour would lead to straight connections like

in figure 24 a). For sure the natural connection would be better suited for a stencil. But

just following the gradient did almost never lead to a connection to another white area,

and when a connection was found, the result was highly questionable regarding aesthetics.

Therefore, the decision was made to use the nearest neighbour approach even if it is the

worse fit. But in comparison to following the gradient, the areas are at least connected

in the end.
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4 Implementation
As stated in section 3, the best fit is the XDoG by Winnemöller et al. (2012). This

means the goal is to implement the XDoG and then extend it with closing and connecting

the white area problem.

4.1 Parameterisation

The final algorithm has ten parameters. This is more than the original XDoG im-

plementation. To get better looking results each of the σ′s which control the different

Gaussian functions can be adjusted.

Ten parameters are quite a lot of parameters to adjust. On one side, the algorithm can

be fine-tuned really nicely. But on the other hand, finding the right parameter settings

is also extremely difficult. Winnemöller et al. (2012) did provide the original parameter

settings which can be found in table 6. This is a good guideline but the implementation

does slightly differ from the implementation done by Winnemöller et al. (2012). The

difference of the approach will be clarified in the following section. Winnemöller et al.

(2012) use only one σ for the bilateral filter step and one for the gradient direction DoG

step and then use the value 1.6 to calculate the second σ. These σ control the Gaussian

functions. In the implementation for this thesis, the factor 1.6 has been replaced by two

more σ parameters to have a better control of the edge details. In order to make the

parameterisation more comprehensible and clearer, they are divided into to steps which

will be described in a step-by-step walk-through below. The proposed values have been

empirically proved to be a good starting point.

Local orientation estimation

The higher the values, the more coherent are gradient and tangent vector, starting with

σa = 4

• σa: This value controls the Gaussian for the coherent orientations.

Bilateral filter

The higher the values, the more blurred is the image. σd = 3, σr = 4.25.

• σd: This value controls the first Gaussian.

• σr: This value controls the second Gaussian.

DoG in gradient direction

Higher σ values lead to less detailed σe = 2, σf = 1.6σe, p = 20 is a good starting point.

• σe: This value controls the first Gaussian.

• σf : This value controls the second Gaussian.
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• p: Sharpening and blurring

Smoothing along tangent flow field

Higher values will produce smoother pictures with more coherent edges. But high values

need a lot more of computation time. How big the influence is depends also on the other

parameters. Starting with σ = 2 is usually fine.

• σm: This value controls the Gaussian.

Thresholding Higher values turn more of the image black. Starting with ϵ = 70, σz =

2, area = 0.01 is fine most of the time.

• σz: Final smoothing with Gaussian blur.

• ϵ: Controls the threshold for the binary conversation.

Closing and Connecting Holes

• area: The percent of an area which will be turned black.

4.2 XDoG implementation

The goal is to implement a version of the XDoG described in Winnemöller et al. (2012)

and as the name already says, it is an extended difference of Gaussian. Winnemöller

et al. (2012) proposed a re-parameterisation of the DoG and then apply a thresholding

as displayed in equations 12 and 13. The re-parameterisation for the DoG is shown in

equation 11 and has the effect of sharpening the image.

Sσ, k, p(x) = (1 + p) ∗Gσ(x)− p ∗Gσk(x) (11)

Tϵ(Sσ, k, p(x)) (12)

Tϵ(u) =

1 u ≥ ϵ

0 otherwise
(13)

There is another threshold function for the “otherwise” case. This would lead to

greyscale images and this is not important for the stencil creation. What is more interest-

ing is that Winnemöller et al. (2012) explained that the XDoG is a stand-alone extension

and can be applied to a normal DoG or a FDoG. When looking at the results, the FDoG

combined with XDoG gives the best results. Therefore, an FDoG implementation had

to be done as well. Winnemöller et al. (2012) proposed two papers which do an FDog

implementation: Kyprianidis and Döllner (2008) and Kang et al. (2008). After compar-

ing the two papers, the first idea was to implement Kang et al. (2008) but after some

discussions the switch was made to Kyprianidis and Döllner (2008). Figure 25 shows the
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overview of how the different steps of the FDoG interact with each other. The last step,

“colour quintization”, is not of interest for this thesis since this step is not needed for the

stencil creation. After each step, the result is passed on to the next step. All the steps

are explained in detail in the following part, section 4.3. The equations, referenced with

the ∗ symbol have been provided by Kyprianidis and Döllner (2008).

Figure 25: Framework visualization (Kyprianidis and Döllner 2008)

4.3 FDoG implementation

4.3.1 Local orientation estimation

The structure tensor is used to approximate the local orientation, the gradient and

tangent directions. These are the directions in which the different filters will be applied.

The orientations are based on the eigenvalues of the structure tensors. More precisely,

a Principal Component Analysis is done here (Winnemöller et al. 2012). The PCA is

applied to gij which is a two dimensional symmetric matrix, therefore two eigenvectors

are obtained. The first one pointing in the direction of the greatest change, the gradient

direction, the second one is perpendicular to it and called tangent direction. To compute

the structure tensor, a Sobel filter in the x and y direction is applied. This gives the

derivations in x and y direction. R, G and B are representing the three colour channels
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from the image as displayed in equation 14*.

∂f

∂x
=
(

∂R
∂x

∂G
∂x

∂B
∂x

)t
,

∂f

∂y
=
(

∂R
∂y

∂G
∂y

∂B
∂y

)t
(14)

Then the structure tensor is given by equation 15*,

J =

(
∂f

∂x
,
∂f

∂y

)
gij = J tJ =

(
E F

F G

)
(15)

whereby gij is representing one pixel in the image.

After this step, Gaussian smoothing is applied with sigmaa. This is done by applying

it to each E, F and G. E,F,G are values for each pixel. Looking for example at all the

E from all the pixels, they represent a matrix with the dimension of the input image. To

this matrix, the Gaussian filter can be applied. Kyprianidis and Döllner (2008) proposed

to use an 9x9 filter. The Gaussian filter has to be applied in order to get connected edges.

Then, for each pixel in the image, two eigenvectors v1, the gradient direction and v2, the

tangent, are computed. All the v1 or v2 introduce a discrete vector field.

In the following, the notation v(c0) means the vector v at position c0. v is either v1

or v2 and c0 a vector with x and y coordinates corresponding to a pixel in the image.

The gradient v1 and tangent v2 vector are computed as shown below. The computation

of the eigenvector is given by equations 16* and 17*.

λ1,2 =
E +G±

√
(E −G)2 + 4F 2

2
D =

√
(E −G)2 + 4F 2 (16)

v1 =

(
F

λ1 − E

)
v2 =

(
λ2 −G

F

)
(17)

Looking at equations 16* and 17*, it can be seen that the vectors are orthogonal to

each other (equation 18).

⟨v1, v2⟩ =

〈(
F

E+G+D
2

− E

)
,

(
E+G−D

2
− E

F

)〉
= F (E +G− E −G) = 0 (18)

The same can be achieved be looking at gij which is a symmetric matrix. By definition,

the eigenvector of an symmetric matrix are orthogonal to each other (Horn and Johnson

2012). By looking at the doctoral thesis from Kyprianidis (2013), we can see that only v1

is calculated and v2 is derived from v1 in the following way (equation 19) (Kyprianidis

2013).

v2x = v1y v2y = −v1x (19)
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Therefore, it is sufficient to only calculate v1 and save some computation time. With

this, the computation of v2 is unnecessary. The eigenvectors are then normalised. This

step was not described in Kyprianidis and Döllner (2008), but is needed in order to make

the tangent smoothing step work. Another hint that this is right is given by Kang et al.

(2008) which have a similar approach to normalise the direction vector they use. Applying

the Sobel filter in x and y direction, and calculating the E, F and G values can lead to

large positive or negative numbers due to the convolution from the Sobel filter. Without

normalisation one would end up with pixels which are not in the image anymore in a later

step of the implementation.

4.3.2 Bilateral filter

A bilateral filter is a non-linear filter to blur images while still leaving the edges intact.

The colours and the difference in the colours are taken into account from the neighbouring

pixels to calculate the new pixel value (Tomasi and Manduchi 1998).

The filter is first applied in gradient direction, then in tangent direction. The only

difference is that we use v1 for gradient or v2 as the tangent direction. The filter can be

applied multiple times, Kyprianidis and Döllner (2008) proposed to use three iterations.

On iteration consists of one pass in the gradient and tangent direction. The more often it

is applied, the more abstract the images becomes. For each pixel c0 = (x, y) the following

is computed (equation 20*), for the computation, the RGB input image is converted to

the cielab colour space.

δ(v)

(1, vx
vy
) |vx| ≥ |vy|

( vy
vx
, 1) |vx| < |vy|

(20)

t0 is the step direction. The idea is that we start at c0 = (x, y) and from there N steps

are taken with and against the direction from v1 or v2. Each of the steps have the same

length. t0 the step direction at c0 is given by equation 21*:

t0 = δ(v1(c0) or t0 = δ(v2(c0) (21)

The pixel values at c0 are actually a vector with three entries corresponding to the three

colour channels. The new value of a pixel at c0 is given by equation 22* and 23*:

c± = c0 ± it0 (22)
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f(c0) =
1

k

[
f(c0) +

N∑
i=1

Gσd
(i∥t0∥)

[
Gσr(∥f(c+i )− f(c0)∥)f(c+i )

+ Gσr(i∥f(c−i )− f(c0)∥)f(c−i )
]] (23)

Figure 26 visualizes the aforementioned process.

Figure 26: Explanation of Bilateral Filter (Kyprianidis and Döllner 2008)

On the left side of figure 26, the filter in gradient direction is shown and on the right

side of figure 26, the filter in tangent direction is displayed. The procedure for the filter

for both directions is the same, therefore the filter is explained from the first picture in

gradient direction. In reference to equation 23, the red point in the middle corresponds

to f(c0) at position x, y. Starting from the value f0 at position c0, we go one step in the

gradient direction, this is ti, i is the current step. The step is done with and against the

direction of the gradient, as shown in figure 27 a) the first two black points next to the

middle point in the red boxes. Then from each of the points, the interpolation (yellow

points) is taken. The interpolation is needed since with adding the step the sample point

will not be exactly in the center of one pixel. The interpolated points are f(c+) and f(c−).

Then, the Gaussian is calculated of the interpolated points and normalised with k.
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(a) Gradient step one (b) Gradient step two

Figure 27: Gradient steps (Kyprianidis and Döllner 2008)

This is repeated N times. Figure 27 b) shows the second step i = 2. K, the normal-

ization factor, is given by equation 24.

k = 1 +
N∑
i=1

Gσr(i∥t0∥)
[
Gσd

(∥f(c+i )− f0∥) +Gσr(∥f(c−i )− f0∥)
]

(24)

N is given by equation 25*.

N = 2σr/∥t0∥ (25)

4.3.3 DoG in gradient direction

“To evaluate the one-dimensional DoG filter in gradient direction we use the same ap-

proach as described in the previous section” (Kyprianidis and Döllner 2008: p. 6). There

were no exact equations or more explanations given on how to calculate the Difference

of Gaussian. The DoG in gradient direction is applied to the luminance channel of the

picture. Different to a normal DoG, the flow based version has no kernel. The kernel is

replaced by steps along the gradient direction. What might be the equation considering

the previous step is shown in equation 26. In equation 26 the proposed reformulation

from Winnemöller et al. (2012), shown in equation 11, is already considered.

f(c0) =
p+ 1

k1

[
f(c0) +

N∑
i=1

(Gσe(∥i ∗ i∥)(f(c+i ) + f(c−i ))

]

− p

k2

[
(f(c0) +

N∑
i=1

Gσf
(∥i ∗ i∥)(f(c+i ) + f(c−i ))

] (26)
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k1 =
N∑
i=1

(Gσe(∥i ∗ i∥) ∗ 2, k2 =
N∑
i=1

(Gσf
(∥i ∗ i∥) ∗ 2 (27)

Equation 26 and 27 were partly reverse-engineered from the code in the PhD thesis by

Kyprianidis (2013). He uses a CUDA implementation, therefore equation 26 might not

be completely right. In terms of how it is applied, it is the same as in the bilateral filter

in gradient direction. Only the calculation of the equation for the image value f(c0) is

different.

4.3.4 Smoothing along tangent flow field

This step is used to average out the calculated filter response. A one dimensional

Gaussian filter is applied along the flow field induced by the tangent directions. In contrast

to the gradient direction, we do not sample across a straight line and the sampling points

are not uniformly distributed. After each of the N steps, ti, the direction, and li, the step

length, is newly calculated leading to curved line as seen in figure 28 on the right side

(Kyprianidis and Döllner 2008). Calculation steps for each pixel: c0 the starting point

Figure 28: Left gradient direction, right tangent (Kyprianidis and Döllner 2008)

with t0 the starting step length (equation 28*).

t+0 = v2(c0) t−0 = −t+0 (28)

As a step direction the orientation of the tangent v2(ci−1) is used, the tangent does

not define a particular direction therefore the direction with the smaller change is taken

(equations 29* and 30*).

ti = sgn⟨v2(c+i−1), t
+
i−1⟩ ∗ v2(c+i−1) (29)

ci = cii + liti, N = 2σm (30)
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The step length is chosen in such a way that the new sampling position is aligned to the

center for the pixel in either x or y axis (Kyprianidis and Döllner 2008) (equation 31*).

li =


∣∣∣ ci−1,x−⌊ci−1,x⌋1/2sgn(ti,x)

ti,x

∣∣∣ |ti,x| ≥ |ti,y|∣∣∣ ci−1,y−⌊ci−1,y⌋1/2sgn(ti,y)
ti,y

∣∣∣ |ti,x| < |ti,y|
Li =

N∑
j=1

lj (31)

The result of smoothing along the flow curve is shown in equation 32*.

f(c0) =
1

k

[
∥t+0 ∥
2

f(c0) +
N∑
i=1

∥t+i ∥+ ∥t+i−1∥
2

Gσm(L
+
i )f(c

+
i )+

∥t−0 ∥
2

f(c0) +
N∑
i=1

∥t−i ∥+ ∥t−i−1∥
2

Gσm(L
−
i )f(c

−
i )

] (32)

c0 being any pixel in the picture. t+ or t− do not matter as this is only the direction

for the sampling position as can be see in figure 28 on the right side. Therefore, ti is

referred to instead of t+i or t−i . Taking a closer look at ti equation 29, ti is +1 or −1 times

v2(ci−1) at an interpolated point. This means ti is an interpolation of normalized vectors,

therefore ∥ti∥ = 1 and the equation can be rewritten as:

1

k

[
f(c0) +

N∑
i=1

Gσm(L
+
i )f(c

+
i ) +

N∑
i=1

Gσm(L
−
i )f(c

−
i )

]
(33)

k =
N∑
i=1

(
Gσe(∥L+

i ∗ L+
i ∥) +Gσe(∥L−

i ∗ L−
i ∥)
)

(34)

4.3.5 Interpolation

In the previous section often c0 or f(c0) is used. The position c0 can be anywhere

in the pixel plan and is mostly not an integer-valued vector. This means, c0x = x and

c0y = y do not necessarily have an integer value. But only the pixel values for integer x

and y are known. To solve this problem, Kyprianidis and Döllner (2008) proposed to use

linear interpolation. This function checks as well if the values are still in the image as

it handles the edge cases. To implement linear interpolation, the following function was

used and applied whenever f(c0) was used in an equation. x and y are the non-discrete

position and img(x, y) the pixel values at position x, y.

xInt = ⌊x⌋, yInt = ⌊y⌋, x0 = xInt, x1 = xInt+ 1, y0 = yInt,

y1 = yInt+ 1 a = x− xInt, c = y − yInt

interpolation = (img(x0, y0) ∗ (1− a) + img(x1, y0) ∗ a) ∗ (1− c)

+img(x0, y1) ∗ (1− a) + img(x1, y1) ∗ a) ∗ (1− c)

(35)
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4.3.6 Threshold and connecting areas

First, a Gaussian Blur with a kernel size of 3x3 and sigmaz is applied. Then the

threshold equation 13 is used, this determines which pixel is turned black. Afterwards, all

the pixel on the edges of the picture are turned white. This has the effect of connecting

areas which are on the edge of the image. The next step is to connect or to get rid of

the white areas, which are surrounded by black pixels as seen in figure 23. This is done

by extracting the different segments of the images. If the area of the segment is white

and below the parameter area, the whole segment is made black. If the segment is larger,

all the edges pixel (the white pixels which are next to a black pixel see figure 24 c))

are extracted within the area and outside the area. Then, the nearest white edge pixel

is searched for each of the edge pixel. This is done by searching the shortest distance

from any edge pixel in the area and any edge pixel outside the area. Then, the shortest

distance within the area and outside area is connected with a straight line. The further

away the areas to connect the more recognisable is the connection. But the results with

(a) nearest neighbour in
different ares

(b) straight connection (c) highest energy seam
connection

Figure 29: Improved connections, Rüttimann 2022

this approach are just not satisfying enough. To improve the connections, the idea is to

use the seams from section 2.8 to connect two areas. Like before, the nearest neighbour

was searched. With the orientation of the vector connecting the two points, figure 29

picture a), the image was turned into the direction of the connecting vector. This had to

be done to use the top-to-bottom approach from the seam carving algorithm. To speed

up the process only the surroundings from the two areas are considered and not the whole

picture. Then, the highest energy seam going through the pixel was taken. For this,

equation 10 was adjusted to extract the maximum instead of the minimum. The pixel

through which the seam goes is the one nearest neighbour pixel from the area which is

further down the y axis. Afterwards, it is checked whether the connection was successful,

if not, the straight connection is taken. The highest energy seam is taken since it follows

the pixel with the biggest change and that path can resemble an edge since it has a lot of
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discontinuities with a high energy. This leads to more natural connections as can be seen

in figure 29 b), straight connection, and c) highest energy seam connection. The seam

connection was only checked when the length of the connection is higher than five pixel.

There are further improvements thinkable: Instead of searching the nearest neighbour,

the most extreme, the corner points from an area are extracted. Then, from each of this

points, the highest energy seam is followed in all four directions, top, bottom, left, right.

Then the shortest connection to another ares is selected.

4.4 Problems

Winnemöller et al. (2012) pointed to Kyprianidis and Döllner (2008) and Kang et al.

(2008) for the details of the FDog implementation, both describe similar approaches but do

not use the exactly same steps. After an recommendation by my supervisor, the decision

to follow the approach by Kang et al. (2008) is taken. Looking deeper into Kyprianidis

and Döllner (2008), the following problems appeared.

K is described as the normalization factor, and no further information was given.

Hence, I had to figure out myself what k should be. At some point a normalization of the

structure tensor had to be done in order to get usable numbers for the tangent step, since

there the length of the vector is used. But a normalization has never been mentioned by

Kyprianidis and Döllner (2008). Also at a first glance, f(c0) being the same as f0 was not

obvious. There are even more smaller inconsistencies which made it hard to know what

exactly they tried to describe. Later, they described the DoG in gradient direction as “To

evaluate the one-dimensional DoG filter in gradient direction we use the same approach

as described in the previous section”(Kyprianidis and Döllner 2008: p. 6).

Finding all these missing pieces and combining them to a working algorithm is ex-

tremely frustrating and time-consuming. Alone getting an idea how the flow DoG in

gradient direction could probably work took multiple days. Figuring out what the equa-

tions or factors exactly are is one thing. What made it really challenging is that there

are no values to check if the results from a calculation are right. For example, after

the computation of the structure tensor it was not possible to compare if the values are

accurate. At the end, one can see whether the result is good or not. But figuring out

where the actual bug could be if the result is not good is almost impossible. As already

mentioned, Winnemöller et al. (2012) provided the exact parameters for their test images.

But without knowing what exact equations they used, it is not possible to use the exact

parameters they used. However, they can act as a guideline.

4.5 Getting to know the algorithm

The algorithm is split into three parts. The bilateral filter, extracting the edges and

finally connection the areas. The ideas is to first calculate the bilateral filter and saving the
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result. From there, the parameters for extracting the edges are altered until as pleasant

result is found. The parameters for this step have way the higher impact then the bilateral

filter in terms of how the result will look like. After extracting the edges, connecting the

areas can be done. The reason for this is that connecting the areas can get extremely

expensive. Therefore, not too many holes should be present when starting this process.

The implementation was one step but with ten parameters the algorithm is extremely

hard to control. Since for each pass the algorithm takes several minutes, checking the

result of different parameters is time-consuming. To get more ore less good results, the

parameters have to be fine-tuned for each picture. The best approach to do this is to

give the algorithm a wide spread of parameters and then select the best result. From

there, one adjusts the parameters slightly and compares the result. This procedure has

to be done multiple times. In table 6 are the exact parameters from Winnemöller et al.

(2012) displayed. What can bee seen is the wide variety and how specific the parameters

are. With this example it can be seen that it is hard to find the perfect parameters.

The resolution of the image is also important. If the resolution is higher, details are kept

better but a higher resolution means longer computation times.

4.6 Performance

The first implementation was done such that it is as understandable as possible and

without any means of optimisation. This allows to find bugs faster while this obviously

leads to longer run times. This is comprehensible since for-loop after for-loop is used to

calculate all the values. And this is done in each step. After the implementation was run,

it was time to apply some optimisations. The most effective one being vectorisation and

introducing a maximal resolution of 500x500 pixel. With vectorisation the idea is instead

of looking at each pixel individually to calculate all the values for the image at once. This

was first applied for the local orientation estimation. With this, the run time for the local

orientation estimation was cut down to a fraction to what it was before. Unfortunately,

it was (for me) not possible to apply vectorisation to other steps. And all the these steps

combined used up the majority of the computation time. Especially the bilateral filter

which is applied multiple times takes a certain time to run. Another attempt to speed

up the process was replacing library calls, like calculating the norm with “numpy”, with

in-place calculation. This reduced the run time by around 20 percent. To speed up the

calculation time even more, an improvement step would be to write the algorithm in

C++.

4.6.1 Big O notation

In order to make the big O notation easier, we assume that the image is a square and

has n pixel in length and width.
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Step Run time

Bilateral filter O(3 ∗ n ∗ n ∗ 2σr/∥t0∥) = O(n2)

DoG in gradient direction O(n ∗ n ∗ 2σe/∥t0∥) = O(n2)

Smoothing along tangent flow O(n ∗ n ∗ 2σm) = O(n2)

Threshold O(n ∗ n)

XDoG (all steps combined) O(4 ∗ n2) = O(n2)

Table 5: Run time approximation for the XDoG implementation

As we can see in table 5, the XDoG is dependent on the resolution. The run time for

the connection of the holes is more complicated. Assuming the picture has l << n ∗ n

holes, each hole has i << n ∗ n edge pixel and k << n ∗ n are all the edge pixels not in

the hole. Then, each i is compared to each k for each hole l. This leads to a maximal run

time of Θ(n6). Imperial measurements have shown that connecting the holes is less costly

than the bilateral filter and xDoG computation as can be seen in table 7. The faster run

time works only if there are not too many areas which need connecting. Connecting the

areas has the potential of extreme high run times. In table 7, the connection time for

figure 37 b) is high. Th reason for that is that 46 areas need connections. The parameter

area was intentionally left low to show the problematic run time.
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5 Results

Figure 30: Example stencil one Figure 31: Example stencil two

While the choice of images for testing the algorithm may seem arbitrary, there are

reasons for this diverse selection. The giraffe was chosen since it is my favourite animal.

The image of former German chancellor Angela Merkel was used because my supervisor

showed me an abstracted example of her at the start of this thesis. The two actors,

Bradley Cooper and Emma Stone, have been used in the canny edge detector project by

Sahir (2019a). As it was the first project looked into, the same images are used to be able

to make a comparison between the obtained results and to track what progress has been

made in this thesis.

Looking at the results in figures 30, 31, 32 and 33, the pictures are two-tone, abstract

and all the white areas are connected. Hence it can be concluded that the implementation

works. The parameters can be found in table 8. Taking now into consideration the

guidelines from section 1.4, the original picture in appendix B, figure 38, 39, 40 and 41

have to be considered. In all these examples, the original image is still recognisable and

has larger black areas. This means that the main feature preservation works and the

images are more abstracted than the original ones. In figure 30, 31 and 32 the different

parts from the image are distinguishable from each other. In figure 33 an artefact above

the right shoulder can be detected, however this can be blamed on the input image. More

problematic are the hole connections in figure 31 as they look artificial. Creating physical

stencils with this would be challenging due to the thin connections. In all four pictures
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Figure 32: Example stencil three Figure 33: Example stencil four

there are larger black and white areas which leads to a good contrast.

Seeing the results on “paper” is one thing, but how good are they transferable to a

physical medium? Figure 34 shows figure 30 and 32 sprayed onto canvas. With this, the

last point from section 1.4 “details have to be recognisable after the stencil is sprayed”

can be checked and it can be concluded that the details are still recognisable after the

stencil is sprayed.

When comparing the results to the canny edge detector presented in section 2.1 and

displayed in figure 7, the results differ a lot. The results in figure 7 do not have coherent,

artistic edges and the edges are mostly to thin. The original image is still recognisable

and the different parts of the image are separated. The level of detail is too high and

not abstract enough. The black and white ares not big enough to create a good contrast.

Therefore, it can be concluded that the implementation this thesis uses does a significantly

better job of producing stencils compared to the canny edge detector by Sahir (2019a).

Figure 35 a) and b) have been created by the online stencil creator from Chris (2022).

Comparing the giraffe in figure 30 and figure 35 a) the results are similar. But the level

of detail from Chris (2022) a) is a bit too high. The edges from the the result in figure 30

are smoother and the black areas are more coherent. The level of detail from 35 b) is not

at the right level. The original is still recognisable but the face misses details and the

right arm is not visible enough. On the same level are the connections in both figure 31

and figure 35 b). In some points they look good and sometimes artificial. Generally, it
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(a) Example stencil one sprayed on canvas (b) Example stencil three sprayed on
canvas

Figure 34: Physical stencils

can be said that the online stencil creator by Chris (2022) works well but the algorithm

developed in this thesis works better.

5.1 Direct comparison with used sources

5.1.1 Bilateral Filter

The first step leading to a result which is comparable is the Bilateral Filter from

Kyprianidis and Döllner (2008).

Figure 36: Bilateral Filter comparison between (Kyprianidis and Döllner 2008) and my
implementation with same parameters

In figure 36, the left picture is the original image. The result from Kyprianidis and

Döllner (2008) is displayed in the middle and on the right side the implementation of this
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(a) Example stencil one (b) Example stencil

Figure 35: Stencil created with stencil creator from Chris (2022)

thesis is displayed with the same parameters. The results are not the same but go into

a similar direction. What can be seen is that the result from Kyprianidis and Döllner

(2008) is more blurred and abstract. Why the results differ is hard to tell, it might be the

resolution, slightly different implementation or a small bug. But the result goes clearly in

the right direction. In figure 45 on top is the original result from Kyprianidis and Döllner

(2008) and on the bottom the implementation results with the number of iteration shown.

One can see that with higher iterations the two picture are getting more similar. But there

is always a small difference. In figure 44 are more results for the Bilateral Filter from the

implementation displayed.

5.1.2 XDoG

The second comparable result is the XDoG from Winnemöller et al. (2012). For the

only two-tone picture for which the original was in the paper used by Winnemöller et al.

(2012), they did not provide the parameters. The other examples cannot by used since

they use the greyscale threshold function. Comparing figure 37, a) the original algorithm

from 20 and b) the implementation shown in this thesis, there is a clear difference. The

result from Winnemöller et al. (2012) has smoother and more coherent edges. Another big

difference is the right side of the face, where in the implementation of thesis shows larger

black ares. Generally speaking the result from Winnemöller et al. (2012) looks better but
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(a) Original (b) My implementation

Figure 37: Comparison XDoG (Winnemöller et al. 2012)

the reproduced results goes in the right direction. The difference might come from not

the exact parameters, another resolution, different implementation, or simply just a bug.
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Joël Rüttimann 6 CONCLUSION

6 Conclusion
In most fields of IT, or at least in the areas where I have worked so far, the work is

done digitally and often the result cannot be directly seen or touched. At the end, one

cannot tell why all the work had to be done and where all the time was spent. In this

thesis it is refreshingly different.

This research aimed to automatically create abstracted images, so-called stencils, and

evaluate their looking. Based on a thorough analysis of present algorithms used for image

abstraction as well as its components, and a general overview on graffiti and stencils

particularly, it can be concluded that the extended algorithm is able to automatically

produce stencils from input images. In addition, the stencils are physically touchable and

usable as they have been printed and sprayed on canvas. Connecting back to Banksy, the

produced stencils are comparable to this type of art judging by the level of abstraction

and level of appearance. Hence, this thesis shows how to develop and adapt a data

visualisation task from a technical perspective, while at the same time it demonstrates

how the output can be used in the urban sphere as art.

Big improvements have been made throughout this thesis, beginning with the canny

edge detector and then the final results. The key part of the algorithm is the XDoG

combined with the FDoG. The combination of these two algorithms leads to an artistic

abstract image. Extending this combination with connecting the white areas then creates

a stencil. Although is was not always easy, as especially implementing the papers with the

missing information was time-consuming and frustrating, the present work satisfies with

its results and with some fiddling, the right parameters can be found. Certainly, there are

some downfalls such as the run time which could be better so as a higher resolution could

be used when the algorithm is faster. In addition, with higher resolution, the algorithm

could be better adjusted for the different pictures. Furthermore, the connection of the

white area needs some improvement. The results would look better if the connection

would always follow the natural lines present in the original image. Overall it can be said

that the automated creation of stencils works.

Based on these elaborations, some recommendations can be made to further develop

and improve on the issue of image abstraction. In order to speed up the algorithm, the

algorithm could be implemented in C++. Another method would be to use parallelisation

to compute different pixels at the same time. Relating back to the problem of the white

areas, the connection of the white areas could be improved by adjusting the maximum

seam approach. Not only the nearest neighbours could be considered for connecting,

every pixel at the edge of an white area could be checked. This could lead to more

natural looking connection. Another interesting avenue would be to find the parameters

automatically. However, the implementation of this certainly poses a certain problem.
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Joël Rüttimann 7 BIBLIOGRAPHY

Marr, D. and Hildreth, E. (1980), ‘Theory of edge detection’, Proceedings of the Royal

Society of London. Series B. Biological Sciences 207(1167), 187–217.

Misra, S., Li, H. and He, J. (2019), Machine learning for subsurface characterization, Gulf

Professional Publishing.

Mould, D. and Grant, K. (2008), Stylized black and white images from photographs, in

‘Proceedings of the 6th international symposium on Non-photorealistic animation and

rendering’, pp. 49–58.

Müller, M. (2022), ‘About me’, Online. [Accessed September 15, 2022].

URL: https://michaelmueller.me

Niemann, C. (n.a.), ‘The abstract-o-meter’, Online. [Accessed September 10, 2022].

URL: https://www.christophniemann.com/detail/my-life-in-illustration/

Pallás-Areny, R. and Webster, J. G. (1999), Analog signal processing, John Wiley & Sons.

Papari, G., Petkov, N. and Campisi, P. (2007), ‘Artistic edge and corner enhancing

smoothing’, IEEE Transactions on Image Processing 16(10), 2449–2462.

Philipps, A. (2015), ‘Defining visual street art: In contrast to political stencils’, Visual

anthropology 28(1), 51–66.
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Winnemöller, H., Kyprianidis, J. E. and Olsen, S. C. (2012), ‘Xdog: An extended

difference-of-gaussians compendium including advanced image stylization’, Computers

& Graphics 36(6), 740–753.

Wu, Y.-T., Yeh, J.-S., Wu, F.-C. and Chuang, Y.-Y. (2017), ‘Tangent-based binary image

abstraction’, Journal of Imaging 3(2), 16.

www.pexels.com (2019), ‘Porträtfoto einer giraffe lokalisiert auf blauem hintergrund’,

Online. [Accessed September 5, 2022].

URL: https://www.pexels.com/dede/foto/portratfotoeinergiraffelokalisiertaufblauem-

hintergrund2541407/

IX
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Appendices

A Tables

σc σe σm p ϵ σa

2.28 1.4 4.4 21.7 79.5 1.0
2.45 1.0 6.0 18.0 82.2 NA
3.76 1.4 2.20 15.7 78.3 2.4
5.84 0.8 3.2 120 72.6 .75
0.1 2.0 20 40 100 7.2
0.1 6.8 20 70 80.0 0.6
4.16 1.4 12 22 88.0 4.0
4.16 1.4 12 22 79.0 4.0

Table 6: Parameters from Winnemöller et al. (2012)

figure σa σd σr σe σf p σm σz ϵ area
30 6 3 4.25 3 4.8 10 5 1 70 0.00035
31 4 3 4.25 2.1 3.36 11.5 3 2 105 0.0025
32 4 3 4.25 2.1 3.35 9.1 8 4 70 0.0025
33 4 3 4.25 1.6 2.56 14 10 3 110 0.001
37 4 3 4.25 1.9 3.5 19 8 2 19 0.00025

Table 8: Parameters

figure Resolution Bilateral filter
XDoG
(extracting edges)

Connecting
areas

combined

30 332x500 140 s 145 s 1 s 286 s = 4 min 46 s
31 411x500 177 s 102 s 60 s 339 s = 5 min 39 s
32 297x345 91 s 120 s 1 s 212 s = 3 min 32 s
33 318x499 134 s 226 s 11 s 371 s = 6 min 11 s
37 434x500 201 s 264 s 529 s 996 s = 16 min 36 s

Table 7: Run time, 1.4 GHz Quad-Core Intel Core i5, 16 GB Ram
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B Original Images

Figure 38: Example stencil one orig-
inal (www.pexels.com 2019)

Figure 39: Example stencil two original
(Linnartz 2010)

Figure 40: Example stencil three original
(Sahir 2019b)

Figure 41: Example stencil four
original (Sahir 2019c)
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C More Graffiti

Figure 42: Graffiti example one, picture taken by Rüttimann 2022

Figure 43: Graffiti example two, picture taken by Rüttimann 2022
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D Bilateral Filter

Figure 44: Bilateral filter example. 3 passes with σd = 3 and σr = 7

Figure 45: Multiple iteration bilateral filter
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