
Computing the Trustworthiness
Level of Unsupervised AI-based

Intrusion Detection Systems

Mauro Doerig
Appenzell, Switzerland
Student ID: 18-731-919

Supervisor: Dr. Alberto Huertas Celdran, Muriel Franco
Date of Submission: September 14, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r



Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/



Abstract

Systems utilizing artificial intelligence (AI) are becoming more and more useful in support-
ing human decision-making tasks. Unsupervised AI algorithms play a significant role in the
detection of intrusions and cyberattacks on devices with limited resources. However, current
solutions focus on achieving the best detection performance, missing the importance of quan-
tifying the trustworthiness level of the trained models and their predictions. This work focuses
on computing the level of trustworthiness for unsupervised anomaly detection models. In this
work a taxonomy with four different pillars of trust and associated metrics is proposed. Further,
an algorithm has been developed which takes unsupervised anomaly detection models together
with the underlying training, test and outlier data sets as inputs to compute an overall trust score.
This algorithm has further on been embedded in a web application which is available to model
developers and serves as a global solution to evaluate unsupervised anomaly detection models
towards trustworthiness. Lastly, an in-depth analysis on different models has been conducted in
order to evaluate the proposed algorithm and to point out strengths and limitations.

i



ii



Zusammenfassung

Systeme, die künstliche Intelligenz (KI) nutzen, werden immer häufiger zur menschlichen
Entscheidungsfindung herangezogen. Unüberwachte KI-Algorithmen spielen eine wichtige
Rolle bei der Erkennung von Cyberangriffen auf Geräten mit begrenzten Ressourcen. Aktuelle
Lösungen konzentrieren sich jedoch darauf, die beste Erkennungsleistung zu erzielen und ver-
nachlässigen dabei die Wichtigkeit der Vertrauenswürdigkeit solcher Modelle und ihrer Vorher-
sagen. Diese Arbeit konzentriert sich auf die Berechnung des Vertrauenswürdigkeitsgrades für
unüberwachte Anomalieerkennungsmodelle. In dieser Arbeit wird eine Taxonomie mit vier
verschiedenen Säulen des Vertrauens und zugehörigen Metriken vorgeschlagen. Darüber hin-
aus wurde ein Algorithmus entwickelt, der Anomalieerkennungsmodelle zusammen mit den zu-
grundeliegenden Trainings-, Test- und Ausreisserdatensätzen als Eingaben verwendet, um einen
allgemeinen Vertrauenswert zu berechnen. Dieser Algorithmus wurde in eine Webanwendung
eingebettet, die Modellentwicklern zur Verfügung steht und als globale Lösung zur Bewertung
von unüberwachten Anomalieerkennungsmodellen hinsichtlich ihrer Vertrauenswürdigkeit di-
ent. Abschliessend wurde eine eingehende Analyse verschiedener Modelle durchgeführt, um
den vorgeschlagenen Algorithmus zu evaluieren sowie dessen Stärken und Grenzen aufzuzeigen.

iii



iv



Acknowledgments

First and foremost, I want to express my gratitude to the Communication Systems Research
Group at UZH for their assistance and support during the project. I would like to express
special thanks to Dr. Alberto Huertas and Prof. Dr. Burkhard Stiller for enabling me to work
on this project and consistently supporting me in both words and acts.

A special thanks also goes out to Jan Bauer, who helped me dive into the subject and the rest of
his team that laid the foundation for this work.

After half a year of dedicated work, I’m happy how far we came with the project, and I’m proud
of what I, with all the support around me, have accomplished. I appreciate the unwavering
support that my family and partner have given me throughout this challenging period.

v



vi



Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Description of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3

2.1 Related Work in Supervised ML Environment . . . . . . . . . . . . . . . . . . 3

2.2 Related Work in Unsupervised ML Environment . . . . . . . . . . . . . . . . 4

2.2.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Computing Trustworthiness for Unsupervised Anomaly Detection 7

3.1 Trustworthiness in Machine Learning . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Trustworthy Anomaly Detection Introduction . . . . . . . . . . . . . . . . . . 7

3.2.1 Difference between Novelty Detection and Outlier Detection . . . . . . 8

3.3 Pillars of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.1 Underfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.2 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.3 Statistical Parity Difference . . . . . . . . . . . . . . . . . . . . . . . 10

vii



viii CONTENTS

3.4.4 Disparate Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.5 Fairness Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Feature Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.2 Model Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.3 Permutation Feature Importance Score . . . . . . . . . . . . . . . . . . 16

3.5.4 Explainability Overview . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6.1 CLEVER Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6.2 Robustness Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7.3 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.4 Train Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.5 Factsheet Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7.6 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Webapp 23

4.1 Trusted-AI Webapp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Webapp Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Extension of Webapp for Unsupervised Anomaly Detection . . . . . . . . . . . 29

4.4.1 Scenarios Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.2 Upload Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.3 Analyze Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.4 Compare Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS ix

5 Evaluation 41

5.1 Scenario: IT Security - IoT Data Anomaly Detection . . . . . . . . . . . . . . 41

5.2 Solutions: IT Security - IoT Data Anomaly Detection . . . . . . . . . . . . . . 41

5.3 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.2 Local Outlier Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.3 Learning One-Class Support Vector Machine . . . . . . . . . . . . . . 48

6 Discussion 51

6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Summary and Conclusions 53

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.1 Improvement of Computation Speed . . . . . . . . . . . . . . . . . . . 54

7.1.2 Additional Robustness Metrics . . . . . . . . . . . . . . . . . . . . . . 54

7.1.3 Webapp Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.4 Extension for Other Unsupervised Scenarios or Semi-Supervised Sce-
narios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

List of Figures 56

List of Tables 58



x CONTENTS



Chapter 1

Introduction

1.1 Motivation

In the twenty-first century, artificial intelligence (AI) has made incredible advancements. Face
recognition, natural language processing, audio recognition, text production, language transla-
tion, medicine research, and other technologies that use artificial intelligence are examples of
its accomplishments [1]. As capabilities grew, AI became also more relevant as a tool to support
human decision-making. In these scenarios it became obvious that we do not only rely on the
performance of such models but also heavily on its trustworthiness. For instance, it was discov-
ered that a AI-based software used by judges to score pretrial recidivism was racially prejudiced
[19]. Similar discrimination against women was perpetrated by a model used to screen job ap-
plicants at a large technology company [2]. Examples like these had a far-reaching impact and
led to higher awareness and thus to intensive research in the area of trustworthy AI.

Research has identified different pillars of trustworthiness to structure and further specify the
term. Many different pillars of trustworthiness in AI are described in the literature of which
fairness, explainability, robustness and methodology have crystallized out of it [11] [9] [12].
Most of this work has been done for supervised machine learning which is defined by its use
of labeled data sets to train classification or prediction algorithms. Several metrics have been
proposed to calculate and quantify trustworthiness and most of them rely on labels for its cal-
culation. Metrics such as statistical parity, equal opportunity, average Odds, and other fairness
measures are all included in IBM’s AI Fairness 360 toolbox [11] and can be used to identify bias
in machine learning models and datasets. The entire lifecycle of AI-based systems is covered by
algorithms that can reduce bias during the pre-processing, in-processing, and post-processing
stages. Note that the given example metrics rely on labeled data sets for their computation.

Difficulties arise when we want to compute metrics related to trustworthiness for unsupervised
machine learning models where no labels are given. There is a whole new approach to it.
The motivation of this thesis is to follow this new approach and develop an algorithm which
computes the pillars of fairness for unsupervised machine learning models with existing and
new metrics at hand.

1



2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

Anomaly detection has several practical uses, including the detection of cyber attacks and bank
fraud. Many anomaly detection models have been developed during the last ten years, which
has greatly advanced the ability to accurately detect a variety of anomalies. Even though, the
performance of detecting anomalies has substantially improved with enhanced anomaly de-
tection approaches, there are still major hazards when using models in sensitive applications
for automatic decision-making, such as financial or healthcare systems [23]. In the context of
anomaly detection, trustworthy algorithms should adhere to common societal norms in addition
to being effective in detecting anomalies.

This Bachelor thesis will design, develop, integrate, and evaluate an algorithm that can quan-
tify the degree of trustworthiness of unsupervised machine learning and deep learning models
focusing on anomaly detection.

1.3 Thesis Outline

The thesis is structured into seven chapters.

Chapter 2 goes more into detail about existing theoretical and practical work which has been
done in the research area of trustworthy AI. This chapter has a research nature and paves the
way to the practical part of this thesis: implementing metrics to compute trustworthiness for
unsupervised models.

Chapter 3 takes a closer look at the proposed pillars and its metrics. Fairness, explainability,
robustness, and methodology are described. The key metrics for analysing a model towards
trustworthiness are discussed for each pillar. Also the approach of adjusting metrics proposed
for supervised models into metrics for unsupervised models is given.

In Chapter 4 the described pillars and metrics from Chapter 3 are taken and built into an algo-
rithm which computes the final trust score of a model. This new algorithm is named Trusted-
Anomaly-Detection. A python-based webapp is then extended by this algorithm and allows in
addition to supervised models also unsupervised anomaly detection models to be evaluated.

Chapter 5 contains the evaluation of the proposed algorithm. Different unsupervised anomaly
detection models are taken at hand and fed into Trusted-Anomaly-Detection.

Chapter 6 addresses the contributions of this bachelor thesis and further on points out limitations
of the conducted work.

Finally, Chapter 7 provides a summary and conclusion on the bachelor thesis. Also, limitations
and future work are discussed.



Chapter 2

Related Work

In this part of the bachelor thesis, an in-depth literature review was conducted focused first
on supervised metrics and thereafter on unsupervised metrics relating to trustworthiness. The
literature research became increasingly more specific to unsupervised anomaly detection, with
first a global search for all possible existing metrics and then for each pillar individually. The
related work found is described in the following section.

There has been no tool been found which is able to quantify the trustworthiness of unsupervised
anomaly detection models. However, this bachelor thesis is strongly oriented towards an already
existing tool, which is able to do exactly this for supervised models. The work of Jan Bauer,
Joel Leupp and Melike Demirci [12] on an algorithm and webapp named ”Trusted-AI” for
calculating the trustworthiness of supervised models serves as the basis for this bachelor thesis.

In addition to Trusted-AI, many other literature sources have been consulted, which have led to
a great deal of work on the individual pillars of trust which are separated into supervised and
unsupervised machine learning (ML) categories in the following part.

2.1 Related Work in Supervised ML Environment

Fairness metrics such as statistical parity, equal opportunity, average odds, and other metrics
for supervised ML models are all included in IBM’s AI Fairness 360 toolbox [11] and can be
used to identify bias in machine learning models and datasets. The entire lifetime is covered by
algorithms that can reduce bias during the pre-processing, in-processing, and post-processing
stages.

A python library called Fairlearn gives creators of AI systems the ability to evaluate the fair-
ness of their systems and address any concerns with reported unfairness. Fairlearn includes
metrics for model evaluation as well as mitigation algorithms. This repository includes Jupyter
notebooks with usagesvasa examples for Fairlearn in addition to the raw code [6].

Numerous explainability algorithms and methods are included in IBM’s AI Explainability 360
toolbox [10]. The algorithms aim to develop explanations for ML models or aid in improving

3



4 CHAPTER 2. RELATED WORK

the accuracy of models like decision trees that are already explainable. It is not about rating
the degree of global model explainability, but rather about evaluating explanation methods for
various models. Additionally, many Python libraries have local explanatory methods like LIME
or SHAPE available. All of those toolkits are designed to explain model decisions, not to
categorize models according to how easily they can be understood.

The IBM-provided Adversarial Robustness Toolbox (ART) [9] is an open-source Python tool-
box that contains a wide range of adversarial robustness methods for supervised machine learn-
ing models. It includes adversarial attack and defense implementations, mechanisms for de-
tecting attacks in real time, a way to detect poisoning and robustness metrics [7]. They offer a
library that may be downloaded, imported and utilized while writing Python code. Additionally,
ART employs a variety of attack detection and defense strategies that are not the primary focus
of the reliable AI algorithm.

2.2 Related Work in Unsupervised ML Environment

2.2.1 Literature

Trustworthiness for unsupervised anomaly detection is described in different pillars and prop-
erties. Trustworthy anomaly detection models should be performant, interpretable, fair, robust
and privacy-preserving [23].

Performance: All anomaly detection models must, at a minimum, be capable of accurately
detecting anomalies. Aiming to decrease the rate of incorrectly classifying normal samples as
anomalies, the rate of missing anomalies, or both.

Interpretability: It is important to understand why models predict some data points as anoma-
lies, since for users and providers of models miss-predictions can be a threat to both. For
instance, both the account holder and the bank would like an explanation, such as what actions
caused a suspension, if a bank account were to be automatically suspended by algorithms built
to suspected fraudulent activity.

Fairness: There should be no algorithmic bias against specific groups in anomaly detection
algorithms, as this is a fundamental ethical need from the general public.

Robustness: The anomaly detection model must have consistent outputs while confronted by
attacking samples in order be robust and save. When models are used in real-world settings,
such as identifying outliers in roadways for intelligent transportation systems, model robustness
is essential for maintaining the model’s reliability.

Privacy-Preservation: Sensitive user data must be properly protected, as mandated by laws and
regulations. Anomaly detection should be able to secure the privacy of data in three different
ways: training data used to train a model, the model itself, and the model’s predictions. In the
entire process of training and deploying an anomaly detection model, private user information
shouldn’t be disclosed.



2.2. RELATED WORK IN UNSUPERVISED ML ENVIRONMENT 5

Apart from advances in classifying and describing different aspects of trustworthiness in anomaly
detection, scientific work in trustworthy unsupervised anomaly detection has mainly focused on
proposing more trustworthy models by improving the above stated properties in standard mod-
els. As an example, the work of Hongjing Zhang and Ian Davidson proposes a new architecture
and model for fair anomaly detection called “Deep Fair SVDD”. This model is trained such
that the relationships between the sensitive attributes and the learned representations are de-
correlated which improves the fairness of the model [25]. As another example, Minh-Nghia
Nguyen and Ngo Anh Vien proposed an Autoencoder-Based One-Class Support Vector Ma-
chine called “AE-1SVM” which allow to study decision making for anomaly detection and thus
makes the model more interpretable [17].

However, it seems that even after intensive literature research, no global solution can be found,
being able to measure pillars of trust in terms of applicable metrics.



6 CHAPTER 2. RELATED WORK



Chapter 3

Computing Trustworthiness for
Unsupervised Anomaly Detection

3.1 Trustworthiness in Machine Learning

Statistical models developed using deep learning and machine learning techniques are increas-
ingly being used as core components of products and services. It takes more faith to use these
algorithms in high-stakes situations like credit applications, court rulings and medical advice
[3]. But according to a survey of corporate executives, they find it very difficult to put their trust
in AI systems. As humans we rely a lot on automated systems. As an illustration, we rely on an
airplane’s autopilot and accept that it will fly safely. According to IBM, the four main pillars of
fairness, explainability, robustness and methodology are what people trust in AI. A transparent
AI life cycle is required in order to guarantee trust in outcomes based on AI. The key design
decisions need to be documented at every stage of the life cycle.

3.2 Trustworthy Anomaly Detection Introduction

The goal of anomaly detection is to identify instances that differ from typical ones. Anomaly
detection has drawn a lot of interest recently as a classic machine learning topic with numer-
ous applications. The performance of detecting anomalies has substantially improved with en-
hanced anomaly detection approaches, however there are still major hazards when using models
in sensitive applications for automatic decision-making, such as financial or healthcare systems.
The detection of bank fraud, online trolls and malicious insiders are just a few of the anomaly
detection tasks involving humans. Because every individual has the potential to be a victim of
algorithms due to intentional or inadvertent misuse, it is only natural to question whether we
should trust algorithms to identify people as anomalies.

Designing reliable AI algorithms is the fundamental goal in order to meet social expectations
for increasing AI capability and societal benefits without endangering anyone or posing a threat
to them.

7



8CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

Anomaly detection is typically carried out in unsupervised and semi-supervised contexts due
to the limited amount of anomalies in the training data set. According to the underlying nature
of data distributions in real-world scenarios, the unsupervised anomaly detection setup often
assumes unlabeled data in the training set with rare anomalies [23].

3.2.1 Difference between Novelty Detection and Outlier Detection

In novelty detection, you have a data set that contains only good data and you are trying to
check if new observations are similar to the the good data. In other words, our goal is to check
if new observations are outliers. In outlier detection, the data set may already have outliers and
your goal is to identify them. Both novelty detection and outlier detection are used to detect
anomalies. Outlier detection is an unsupervised anomaly detection algorithm. The term “outlier
detection” and “anomaly detection” is used interchangeably in the following sections.

3.3 Pillars of Trust

The following sections describe the pillars of trust that emerged from the literature review. In
addition, selected metrics for each pillar are listed and explained. At the end of each section, an
overview of the pillar and metrics is provided.

3.4 Fairness

As machine learning dominated more application domains in recent years, fairness became
more and more crucial. When a system or decision treats certain protected elements impartially
or neutrally, it is typically referred to as fair. However, the precise meaning of fairness relies on
the context and the defining subject.

Legislative regulations exist to protect people against prejudice based on delicate or protected
characteristics like religion, ethnicity or demographics. For instance, the American Fair Hous-
ing Act of 1968 forbids housing discrimination based on racial, ethnic, national, religious, sex,
family and disability reasons [24].

In the following different metrics are taken at hand to evaluate fairness of the model and its
underlying data. It is also discussed how metrics which were originally proposed for supervised
solutions are adjusted to evaluate unsupervised anomaly detection models.

3.4.1 Underfitting

The term underfitting in supervised ML environment is used when a model is incapable of
predicting training data as well as unseen data well enough. In this case, the model is incapable



3.4. FAIRNESS 9

of establishing the dominant trend within the data. This occurs when a model is too simple,
which could be a result of the model needing more features, more degrees of freedom, less
regularization or simply more training time [15]. Since an underfitting model cannot generalize
to new data, the model won’t be usable for classification tasks or prediction tasks.

Adapting an underfitting metric to unsupervised outlier detection models is a difficult task, since
the ground truth of the data is not given without labels. However, there is another approach
to measure underfitting in an anomaly detection scenario. Underfitting can be measured by
comparing the detected outlier ratio in the training data and the test data. This procedure is
shown in algorithm 1. The algorithm takes training and test data as inputs and computes for both
data sets the ratio of outliers which is done by the function compute_outlier_ratio(clf, data).
Finally, the absolute difference of both ratios is computed as an indicator of underfitting. Notice
that test data is a fraction of the training data which is separated before training the model.
Therefore, test data is unseen data, but can be treated as training data for in the given scenario
of an unsupervised outlier detection model.

Algorithm 1: Underfitting
Data: train_data, test_data
ratiotrain = compute_outlier_ratio(clf, train_data)
ratiotest = compute_outlier_ratio(clf, test_data)
score = abs(ratiotrain − ratiotest)
return compute_score(score, threshold)

In table 3.1 the underfitting trust score mappings are shown.

Underfitting Score Map
x = abs(ratiotrain − ratiotest) trust score
0 ≤ x < 0.01 5
0.01 ≤ x < 0.025 4
0.025 ≤ x < 0.05 3
0.05 ≤ x < 0.1 2
0.1 ≤ x 1

Table 3.1: Underfitting Score Map.

3.4.2 Overfitting

Compared to underfitting models, overfitting models have low training error, but are also bad in
predicting unseen data accurately. Overfitting is the opposite of underfitting, occuring when the
model has been overtrained and contains too much complexity [15].

As we switch to the unsupervised approach of measuring overfitting, it is necassary to adapt
certain aspects. Again, the ground truth of the training data is not given without labels. For
this reason, we take another dataset at hand which contains only outliers. With this implicitly
labeled outlier dataset, it is now possible to calculate the models overfitting score which is
shown in algorithm 2.



10CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

The algorithm takes the training, test and outlier data sets as inputs together with the outlier
percentage (outlier_percentage) which is needed to compute how much the detected outlier
ratio deviates from the real outlier ratio in normal behaviour data (training and test data). First
the underfitting metric score is computed. Then the mean value of the outlier ratio in the outlier
data set and the relative outlier detection accuracy in the test data is calculated which serves as
an indicator of overfitting. Note that this last step is only computed when there is little to no
underfitting (underfitting score ≥ 3). Otherwise the overfitting score is 1.

Algorithm 2: Overfitting
Data: train_data, test_data, outlier_data
Input: outlier_percentage = 0.1
scoreunderfitting = compute_underfitting_score(clf, train_data, test_data);
if scoreunderfitting ≥ 3 then

ratiooutlier = compute_outlier_ratio(clf, test_data);
ratiotest = compute_outlier_ratio(clf, outlier_data);
diff = abs(ratiooutlier − ratiotest);
diffabs = abs(outlier_percentage− diff)/outlier_percentage;
return mean(ratiooutlier, diffabs);

else
return 1;

Table 3.2 lists the score mappings for the overfitting metric. Note that overfitting is only com-
puted when no to little underfitting occurs (scoreunderfitting ≥ 3), otherwise the score of over-
fitting will be 1.

Overfitting Score Map
x = mean(ratiooutlier, diffabs) trust score
1 ≥ x > 0.95 5
0.95 ≥ x > 0.9 4
0.9 ≥ x > 0.8 3
0.8 ≥ x > 0.75 2
0.75 ≥ x 1

Table 3.2: Overfitting Score Map.

3.4.3 Statistical Parity Difference

The population is represented as a set X with a known subset S ⊆ X that represents the “pro-
tected” group. For example X might be a set of applicants that applied for an open position
and S is the set of people that has tattoos. We are afraid that a firm’s program that recommends
inviting applicants could discriminate against people with tattoos by relatively inviting fewer
people from the protected minority group compared to the unprotected majority of people with
no tattoos. The discriminatory behaviour of the program’s model can origin from the underlying
training data with hidden bias. Computing statistical parity difference (SPD) provides informa-
tion about whether the same ratio of samples belonging to the minority and majority receive a



3.4. FAIRNESS 11

favourable prediction (Ŷ = 1). Pr(Ŷ = 1|P = p) represents the probability of receiving a
favourable prediction, if the sample belongs to the protected minority (P = 1) or the unpro-
tected majority (P = 0). SPD is then computed as shown in equation 3.1. The closer SPD
comes to zero, the more a classifier is regarded as fair. Equation 3.2 presents perfect fairness as
the ratio of positive outcomes for the majority and minority group is the same.

SPD(Ŷ , Y, P ) = |Pr(Ŷ = 1 | P = 1)− Pr(Ŷ = 1 | P = 0)| (3.1)

Pr(Ŷ = 1 | P = 1) = Pr(Ŷ = 1 | P = 0) (3.2)

We now take a look at the approach of computing SPD for unsupervised outlier detection. Since
one cannot take the labels from the training data set directly to compute SPD, we now must take
the ratio of detected outliers from both groups and take the absolute difference. This fulfils the
same purpose as the standard approach for supervised models, measuring whether more outlier
are detected in a minority group compared to the majority group. This adjusted calculation
represents a shift from the intended outcome to the actual outcome.

In the following algorithm 3 the calculation of SPD for unsupervised outlier detection is shown
in more detail. The function takes training data as input and splits it into a protected and
unprotected group regarding the defined protected feature and protected values. After that, the
outlier detection ratios for both groups are computed. Giving that, the proportion of outliers for
each group (ratio(un)protected_group) can be computed by dividing the number of detected outliers
(num_outliers(un)protected_group) by the number of total outliers (num_outlierstotal). In the last
step, both proportions are taken to calculate SPD by measuring the absolute difference as in
equation 3.1.

Algorithm 3: Statistical Parity Difference
Data: train_data
protected_group = train_data.get_group(protected_feature, protected_values);
unprotected_group = train_data \ protected_group;
outliers = detect_outliers(clf, train_data);
num_outlierstotal = outliers.count();
num_outliersprotected_group = (outliers ∩ protected_group).count();
num_outliersunprotected_group = (outliers ∩ unprotected_group).count();
ratioprotected_group = num_outliersprotected_group/num_outlierstotal;
ratiounprotected_group = num_outliersunprotected_group/num_outlierstotal;
return abs(ratioprotected_group − ratiounprotected_group);

Table 3.3 shows the trust score mappings for the SPD metric. The less statistical parity differ-
ence occurs (abs(ratioprotected_group − ratiounprotected_group)) the higher score is given.

3.4.4 Disparate Impact

The disparate impact (DI) metric computes the ratio of samples from the protected group receiv-
ing a favourable prediction divided by the ratio of samples from the unprotected group receiving



12CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

Statistical Parity Difference Score Map
x = abs(ratioprotected_group − ratiounprotected_group) trust score
0 ≤ x < 0.01 5
0.01 ≤ x < 0.025 4
0.025 ≤ x < 0.05 3
0.05 ≤ x < 0.075 2
0.075 ≤ x 1

Table 3.3: Statistical Parity Difference (SPD) Score Map.

a favourable prediction. This can be seen in equation 3.3. Pr(Ŷ = 1|P = p) represents the
probability of receiving a favourable prediction, if the sample belongs to the protected minority
(P = 1) or the unprotected majority (P = 0).

DI(Ŷ , Y, P ) =
Pr(Ŷ = 1|P = 1)

Pr(Ŷ = 1|P = 0)
(3.3)

A value of 1 indicates parity for the protected feature. Values higher than 1 indicate a higher pre-
dicted positive outcome for the protected group. This is called a positive bias. A negative bias
is present if the value is less than 1. An example of disparate treatment could be an employer
using information about an applicant’s vaccination status to exclude non-vaccinated applicants.
Federal laws in the US prohibit such discrimination based on race, color, sex, sexual orientation,
gender identity, national origin, religion, age, disability and genetic information. Because there
may be correlation between features, it is not sufficient to simply exclude sensitive attributes
from decision making. For example, removing sensitive demographic attributes from a training
data set that still includes zip code as a feature may still have unfair treatment of subgroups,
because zip codes can serve as a proxy for other demographic information.

Evaluating disparate impact towards unsupervised outlier detection models does not present
major difficulties. The calculation depends on the predicted outcome, for which we can neglect
the non-existence of labels. We now compute disparate impact as the ratio of outliers detected
in the protected group and outliers detected in the unprotected group shown in algorithm 4. The
algorithm differs in only two points to the statistical parity difference algorithm 3. Firstly, test
data instead of training data is taken as input. And Secondly, in the last step the DI equation 3.3
is used instead of the SPD equation 3.1.

Algorithm 4: Disparate Impact
Data: test_data
protected_group = test_data.get_group(protected_feature, protected_values);
unprotected_group = train_data \ protected_group;
outliers = detect_outliers(clf, test_data);
num_outlierstotal = outliers.count();
num_outliersprotected_group = (outliers ∩ protected_group).count();
num_outliersunprotected_group = (outliers ∩ unprotected_group).count();
ratioprotected_group = num_outliersprotected_group/num_outlierstotal;
ratiounprotected_group = num_outliersunprotected_group/num_outlierstotal;
return abs(ratioprotected_group/ratiounprotected_group);



3.4. FAIRNESS 13

Trust score mappings for disparate impact are given in table 3.4.

Disparate Impact Score Map
x = abs(ratioprotected_group/ratiounprotected_group)) trust score
1 ≥ x > 0.95 5
0.95 ≥ x > 0.9 4
0.9 ≥ x > 0.8 3
0.8 ≥ x > 0.75 2
0.75 ≥ x 1

Table 3.4: Disparate Impact (DI) Score Map.

3.4.5 Fairness Overview

An overview of the Fairness metrics is provided in table 3.5.

Fairness Metrics
Metric Description Dependencies Condition
Underfitting Computes both the ratio of detected

outliers in the training and test data
and measures the absolute differ-
ence.

Model,
training data,
test data

-

Overfitting Computes the mean value of the
outlier ratio in the outlier data set
and the relative outlier detection ac-
curacy in the test data. Note that
overfitting is only computed when
there is little to no underfitting
(underfitting score ≥ 3).

Model,
training data,
test data

An expected
outlier percent-
age for the test
data set must be
defined.

Statistical Parity
Difference

Computes the spread between the
ratio of detected outliers in the pro-
tected and unprotected group given
the training data set as input.

Model,
training data,
factsheet

A protected fea-
ture and protected
values must be
defined.

Disparate Impact Divides the ratio of samples de-
tected as outliers in the protected
group by the ratio of samples de-
tected as outliers in the unprotected
group given the test data set as in-
put.

Model,
test data,
factsheet

A protected fea-
ture and protected
values must be
defined.

Table 3.5: Overview Fairness Metrics



14CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

3.5 Explainability

Unsupervised machine learning provides a way to assess the massive amounts of unlabeled real-
world data produced at a rapid speed. The majority of the current unsupervised ML techniques,
however, do not offer a way for users to comprehend the underlying logic behind their decisions.
These models serve as “black boxes” especially for those without domain expertise. Numerous
negative effects result from this black box behavior, including limiting the user participation in
improving the model and harming the user trust in these models, which prevents people from
using them in real-world settings [22].

Receiving predictions from unsupervised ML models whether an anomaly exists or not is not
enough for anomaly detection systems. It is important to have a justification for why it is
an anomaly. We do need such information at hand to determine any potential catastrophic
implications and make decisions to recover the system. Consequently, it is important to evaluate
and explain the inner workings of these unsupervised ML models.

Different metrics are selected to deliver explanations about unsupervised outlier detection mod-
els and are described in the following part. The goal is to better understand decisions of AI
based systems, what it has done, what it is doing currently and what will happen in the future.

3.5.1 Feature Correlation

This metric calculates how many features are highly correlated as described in algorithm 5.
The input features should ideally not correlate with each other and strongly correlated features
should have been removed. When attempting to represent feature contribution, biases are intro-
duced by having a high correlation across features in most explanation methodologies. Partial
dependence plots, for instance, are frequently used to demonstrate the significance of features
by displaying the small marginal impact of a single feature on the model’s anticipated outcome
for supervised models. However, if two features are associated and one of them is permuted
the other feature is still included in the model. The outcome would not significantly alter as a
result, and the marginal effect would be biased. Due to the association, one of the feature would
not be relevant. Additionally, many ML models assume that the variables are uncorrelated. If
this assumption is incorrect, then previously interpretable models are no longer interpretable.
In general, it is challenging to develop explanations for highly correlated features since it is
impossible to separate the impacts of highly correlated features from each other, which results
in biased explanations.



3.5. EXPLAINABILITY 15

Algorithm 5: Feature Correlation
Data: train_data, test_data
Result: computes the percentage of highly correlated features
data = concat(test_data, train_data)
correlation_matrix = correlation(data)
upper_matrix = upper_triangle(correlation_matrix)
num_high_occurences = 0
for corr in upper_matrix do

if corr ≥ high_corr_thresh then
num_high_occurences = num_high_occurences+ 1

end
perc_corr_feat = num_high_occurences/num_of_features(data)

end
return perc_corr_feat

Table 3.6 contains the trust score mappings for the feature correlation metric. The more per-
centage of correlated features the worse the trust score results.

Feature Correlation Score Map
x = perc_corr_feat trust score
x < 0.05 5
0.05 ≤ x < 0.15 4
0.15 ≤ x < 0.25 3
0.25 ≤ x < 0.4 2
0.4 ≤ x 1

Table 3.6: Feature Correlation Score Map.

3.5.2 Model Size

The model size metric is based on the number of feature parameters a model takes as input
and does not have to be adjusted for unsupervised models. This number of feature parameters
correlates with the input dimension of models such as logistic regression or the number of edge
weights and biases in neural networks and therefore have an impact on the complexity and com-
prehensibility of the underlying model. It is also assumed, that the comprehensibility inversely
correlates with the models degrees of freedom, which is again dependent on the number of fea-
ture parameters. However, the model size metric does not capture any semantics, which means
that as a stand-alone metric for explainability, it would not be enough [8]. As an example a
big decision tree is still more interpretable than a small neural network. But when we take the
same ML model and only vary the number of feature parameters, the model with smaller size
is always more comprehensive. Therefore, the model size metric still contributes to measuring
the level of explainability and can be taken into account.



16CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

Model Size Score Map
x =
num_of_features

trust score

x < 10 5
10 ≤ x < 25 4
25 ≤ x < 50 3
50 ≤ x < 100 2
100 ≤ x 1

Table 3.7: Model Size Score Map.

3.5.3 Permutation Feature Importance Score

The key idea of the permutation feature importance is to measure the importance of each feature
individually by permuting its values. The increased prediction error by permuting the feature’s
values is taken as a measurement for the feature’s importance. A feature is important if shuffling
its values increases the prediction error, because the higher the observed error the more impact
a feature must have on the prediction. Vice verca, if shuffled values of a feature leaves the
prediction unchanged, the model does not rely on this feature for its prediction [16]. A big
advantage of this algorithm is that you don’t need to know the model’s underlying classifier to
calculate the importance of a feature. The model can thus be evaluated as a black box, with no
details of the model and training data at hand.

The permutation feature importance algorithm was first developed for random forest classifiers
and generalised for all classifiers by [7].

In algorithm 6 the computational details of the permutation feature importance metric is given.
The function computes the importance of the features by iterating over each feature column,
shuffling its column vector and measuring the error in the shuffled prediction outcome compared
to to the non-shuffled prediction outcome (errno_shuffle − errshuffled). The error indicated the
importance of the feature. The metric also yields a features list sorted by the importance of each
feature in descending order.



3.6. ROBUSTNESS 17

Algorithm 6: Permutation Feature Importance
Result: computes the importance of each feature
dictscores = {}
num_redundant_feat = 0
errno_shuffle = L(clf, data)
for f in features do

datashuffled = shuffle(f, data)
errshuffled = L(clf, datashuffled)
impf = (errno_shuffle − errshuffled)
dictscores.append(impf )
if impf == 0 then

num_redundant_feat = num_redundant_feat+ 1
end

end
return sort(dictscores, desc), num_redundant_feat/num_feat

Trust score mappings for the permutation feature importance metric are shown in table 3.8.

Permutation Feature Importance Score Map
x = num_redundant_feat/num_feat trust score
0 ≤ x ≤ 0.05 5
0.05 < x ≤ 0.1 4
0.1 < x ≤ 0.15 3
0.15 < x ≤ 0.2 2
0.2 < x 1

Table 3.8: Permutation Feature Importance Score Map

3.5.4 Explainability Overview

An overview of the Explainablility metrics is provided in table 3.9.

3.6 Robustness

Machine learning has proven to be a useful method for developing secure computer networks
using anomaly detection-based intrusion detection systems. Data is essential for the creation of
ML systems and can be targeted by hackers. In essence, one of the methods most frequently
used to deceive ML models using data is data poisoning or contamination. These attackers aim
to increase the classification errors in supervised ML environments or anomaly detection errors
in unsupervised ML environments at test time [18].



18CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

Explainability Metrics
Metric Description Dependencies Condition
Feature Correla-
tion

Computes the percentage of highly
correlated features with a correla-
tion reference value at hand.

Model,
train data,
test data

The reference
value of corre-
lation is set to
0.9 by default
but can be set
individually.

Model Size Computes the size of the model by
counting the number of features.

Test data -

Permutation Fea-
ture Importance

Computes the importance of the
features by iterating over each fea-
ture column, shuffling its column
vector and measuring the error (=
importance of the feature) in the
shuffled prediction outcome com-
pared to to the non-shuffled pre-
diction outcome. The metric also
yields a features list sorted by the
importance of each feature in de-
scending order.

Model,
outliers data

-

Table 3.9: Overview Explainability Metrics.

A model is said to be robust if it can withstand exposure to unexpected data when performing
the same task. The capabilities of anomaly detection models are threatened in real-world appli-
cations by data contamination and adversarial attacks. Therefore, it is necessary to evaluate ML
models towards robustness before setting it up in real world.

3.6.1 CLEVER Score

The Cross Lipschitz Extreme Value for Network Robustness, in short CLEVER, is an extreme
value theory approach [21]. Figure 3.1 illustrates the main intuition behind the Lipschitz con-
stant estimation on robustness. The constant is used to estimate an upper bound on changes in
the prediction outcome g(x0+δ) with respect to input perturbations δ and x0 being a known data
point. An upper bound is given by g(x0)+Lq||δ||p and a lower bound is given by g(x0)−Lq||δ||p,
where Lq is the local Lipschitz constant and ||δ||p is the lp norm of distortion δ with p ≥ 1.



3.7. METHODOLOGY 19

Figure 3.1: Intuition behind CLEVER [21].

In order to retrieve a neural networks local robustness, the minimal perturbation to change the
prediction outcome is calculated by using the Lipschitz constant [21].

The CLEVER metric was introduced for classification models (supervised), but can be used for
unsupervised anomaly detection models as well, since the implementation from the IBM art
library [9] (clever_u) does not depend on class labels.

3.6.2 Robustness Overview

In table 3.10 an overview of the Robustness metrics is provided.

Robustness Metrics
Metric Description Dependencies Condition
CLEVER Computes the minimal perturbation

that is required to change the pre-
diction outcome.

Model Can only be cal-
culated on neural
networks.

Table 3.10: Overview Robustness Metrics.

3.7 Methodology

The methodology pillar examines and validates the documentation and communication of sig-
nificant decisions made during the life cycle of a ML model. The model training and validation
process is described in the methodology score. It verifies whether the choices were consis-
tent with accepted best practices. Having access to this knowledge is meant to increase users’
confidence in the system.

The stability of predictions and stable outlier detection are increased by using the right data
pre-processing techniques. Given this, we cannot exclude the impact of data pre-processing
methods used for the calculation of the trust score. The end users’ ability to understand the
algorithm’s specifics must also be taken into account. This can be measured by computing the
completeness of the models’ factsheet.



20CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

3.7.1 Normalization

Normalizing the data is one of the main pre-processing procedures for many statistical learning
tasks. Because distinct features in a data set may utilize different measurement units, normal-
ization is particularly crucial in unsupervised outlier detection [14].

Various normalizing techniques, including mean and standard deviation normalization, min-
max normalization, and median normalization, are described in the literature. Normalization is
a best practice as it is recognized to improve the performance of machine learning models [13].
It therefore is important to know whether a model was trained on normalized or non-normalized
data.

Normalization Score Map
Normalization technique Trust score
Training and test data are standardized 5
Training data is standardized 4
Training and test data are normalized 3
Training data is normalized 2
None 1

Table 3.11: Overview Methodology Metrics.

3.7.2 Regularization

Due to the presence of input noise, the small size of the training set, and the complexity of
classifiers, overfitting is a fundamental problem in supervised machine learning. One of the key
methods of preventing machine learning algorithms from overfitting data is regularization [20].
Regularization techniques like Lasso, Ridge, and ElasticNet are just a few that can be applied.
When deep neural networks are trained with millions of parameters, regularization is generally
a need to avoid memorization. Regularization enhances the model’s quality and is regarded as a
best practice in the literature. In order to calculate a final trust score, it is necessary to take this
metric into consideration that verifies the regularization method.

Regularization Score Map
Regularization technique Trust score
Elastic net regression 5
Lasso regression 4
Other 3
None 1
Not specified Not computable

Table 3.12: Score Map Regularization.



3.7. METHODOLOGY 21

3.7.3 Missing Data

The missing data metric computes the number of missing values in the training data and test
data. A model trained on a dataset with many missing values cannot be reliable. Also evaluating
the model with test data containing missing values can lead to inaccuracies in the test metrics.

A common approach is to fill missing values with mean values, which is achieved by the
missing-indicator method. Even though this method is commonly used, it still creates a bias
on prediction [5].

Another method is to fill missing values with random values, which would disturb the statistical
properties of the data and is therefore regarded as a bad practice. It is difficult to trust a model,
if missing values are existent or filled with bad practice methods. The missing data metric thus
comes well at hand.

Missing Data Score Map
Missing data Trust score
No missing values 5
Missing values 1

Table 3.13: Missing Data Score Map.

3.7.4 Train Test Split

Creating training and testing splits from the data is important. If the training split does not
contain enough data, the performance of the model will not be sufficient. If the test split does
not contain enough data, it cannot represent the overall data, and the values of the performance
metric for the test data cannot be generalized. For example, the test data may be insufficient to
accurately represent the performance of the data if the model is trained on 95% of the data and
tested on only 5% of it. Therefore, the split proportion must be chosen carefully. The split size
not only affects the performance, it also determines whether the performance metrics are still
applicable. Therefore, this is an important metric to consider when calculating trust scores.

In listing 3.1 the mappings for a trust score are shown. A train test split of 80% to 20% is well
known and is often used as the state-of-the-art split and therefore receives a trust score of 5. The
further off the train test split is from this reference point the worse the trust score becomes.

Listing 3.1: Train Test Split Score Map
1 {
2 "50-60 95-97": 1,
3 "60-75 90-95": 2,
4 "70-75 85-90": 3,
5 "75-79 81-85": 4,
6 "79-81": 5
7 },



22CHAPTER 3. COMPUTING TRUSTWORTHINESS FOR UNSUPERVISED ANOMALY DETECTION

3.7.5 Factsheet Completeness

Factsheets are a necessity for the end user to assess trustworthiness and specifically method-
ology of an AI-based system. It summarizes key meta-information about a trained machine
learning model and includes information about the structure, the creator, the goal and the data
used of a model. The completeness of the factsheet measures whether the factsheet contains all
the necessary information that users need (see algorithm 7). It is impossible to trust a model if
we are not informed about the structure of the model.

Algorithm 7: Factsheet Completeness
Input: general_inputs, factsheet
Result: computes the completeness of the factsheet
n = len(general_inputs)
counter = 0
for e in general_inputs do

if ”general” in factsheet and e in factsheet then
counter = counter + 1

end
end
return round(counter/n ∗ 5)

3.7.6 Methodology Overview

An overview of the Methodology metrics is provided in table 3.14.

Methodology Metrics
Metric Description Dependencies Condition
Normalization Takes the normalization technique

used to calculate the metrics score.
Training data,
test data,
factsheet

-

Regularization Takes the regularization technique
to calculate the metris score.

Training data,
test data,
factsheet

-

Missing Data Counts the number of missing val-
ues in the training and test data.

Training data,
test data,
factsheet

-

Train Test Split Takes the ratio of training data to
test data to calculate the metrics
score.

Training data,
test data,
factsheet

-

Factsheet Com-
pleteness

Computes the completeness of re-
quired properties in the factsheet by
counting the ratio the required prop-
erties.

Training data,
test data,
factsheet

-

Table 3.14: Normalization Score Map.



Chapter 4

Webapp

4.1 Trusted-AI Webapp

For the last task in the scope of this bachelor thesis an existing webapp was extended. The web
application called Trusted-AI was implemented by three former master students as part of their
master’s thesis. The webapp was created to evaluate models not only by their performance, but
also by their trustworthiness. The trust score can supplement a solely performance-based eval-
uation when comparing different models. When choosing pretrained models, trustworthiness
may be a key consideration depending on the application scenario. Monitoring the evolution of
a model’s trustworthiness over time might also help to spot potential improvements.

So far, the webapp has the ability to evaluate only supervised models. The main contribution
of this bachelor thesis was to extend the given webapp and design and implement the under-
lying algorithm quantifying the trustworthiness for unsupervised models. This new algorithm
is named Trusted-Anomaly-Detection. In order to design an algorithm that can quantify the
trustworthiness of unsupervised models a taxonomy containing the most important metrics for
trust was created. The theoretical background of these metrics can be found in chapter 3. The
webapp allows the user to interact with the algorithm and analyse the outcomes of the metrics
with provided details. The details are provided as different types of graphs and textually written
explanations of all the different metrics.

4.2 Algorithm Design

To understand the design and implementation for unsupervised solutions, it makes sense to first
take a closer look on the existing webapp and the underlying algorithm for supervised solutions:

The Trusted-AI algorithm evaluates over twenty different metrics while taking into account the
four trust pillars of fairness, explainability, robustness and training methodology. The algo-
rithm’s main concept is that it accepts a machine learning model, its training and testing data,
and the most crucial meta-data encoded in a factsheet as inputs. The algorithm then calculates

23



24 CHAPTER 4. WEBAPP

all applicable metrics for each pillar and combines the results to get a final trust score [12].
Below is a detailed explanation of the technique and design of the algorithm for supervised
solutions and its application for unsupervised solutions.

Pillars

Four different pillars of trust have been selected from the literature which include fairness,
explainability, robustness and methodology for supervised solutions [12].

During literature research for trustworthiness in unsupervised machine learning the same pil-
lars of trust have crystallized out. Therefore, the pillar of fairness, explainability, robustness
and methodology have stayed the same and been selected for the algorithm design and imple-
mentation for unsupervised solutions.

Taxonomy

Trusted-AI proposes several different metrics for each pillar and are shown in the following
graph:

Figure 4.1: Trusted-AI [12]: Taxonomy.

All of these metrics have been analysed and tested as candidates to evaluate unsupervised so-
lutions towards trustworthiness. Many of the metrics were not described for unsupervised so-
lutions in the literature and had to undergo major adjustments (see chapter 3 for more details)
to make it suitable for unsupervised solutions. Other metrics relied on labels and simply were
not possible to adopt. All applicable metrics have been implemented in the final algorithm for
unsupervised solutions and are listed in the tabular below. Note that the permutation feature
importance metric does not originate from the Trusted-AI algorithm for supervised solutions.



4.2. ALGORITHM DESIGN 25

Metrics for Unsupervised Solutions
Fairness Explainability Robustness Methodology
Underfitting Correlated Fea-

tures
CLEVER Normalization

Overfitting Model Size Missing Data
Statistical Parity
Difference

Permutation Fea-
ture Importance

Regularization

Disparate Impact Train Test Split
Factsheet Com-
pleteness

Table 4.1: Metrics for unsupervised solutions.

Parameters

Trusted-AI takes several artefacts as input parameters in order to calculate each pillars metrics
and out of that the final trust score.

1. ML model: machine learning model

2. Training data: training data on which the given model was trained on

3. Test Data: test data to evaluate the model with non-seen data

4. Factsheet: containing the metadata of the model

All of these parameters are taken at the top level of the Trusted-AI algorithm and handed over to
the next lower level, the pillars (fairness, explainability, robustness, methodology). Finally, the
artefacts are handed over as input parameters to each metric for its computation. Each metric
is implemented as a separate function and returns the metric value which is mapped to a trust
score between 1-5. A trust score of 5 represents the highest trust related to a metric and the
opposite is valid for a trust score of 1. On the final step, the Trusted-AI algorithm aggregates all
individual metric trust scores into a final combined trust score.

The algorithm for unsupervised solutions works exactly the same but with an additional artefact
as input parameters. The outlier data set. Note that this implementation focuses on unsuper-
vised anomaly detection scenarios and is not applicable to all unsupervised machine learning
scenarios.

1. ML model: machine learning model

2. Training data: training data on which the given model was trained on

3. Test Data: test data to evaluate the model with non-seen normal data

4. Outlier Data: outlier data to evaluate the model with non-seen outlier data

5. Factsheet: containing the metadata of the model



26 CHAPTER 4. WEBAPP

Weights and Configurations

As mentioned before, Trusted-AI takes each metrics trust score to compute the final trust score.
Figure 4.2 illustrates the aggregation process, which demonstrates how the algorithm creates a
final trust score from the separate metric trust scores.

Each of the four pillar is paired with a set of metrics, and within each set, each metric has a
weight assigned in order to create a weighted average of the metric scores. Prioritizing more
relevant metrics is made possible by the weights. It is debatable if each metric is equally sig-
nificant and how much each one should differ in weight. Every metric has default weights that
represent their value in the broadest sense (listing 4.1).

Listing 4.1: Default weights of metrics.
1 {
2 "fairness": {
3 "underfitting": 0.35,
4 "overfitting": 0.15,
5 "statistical_parity_difference": 0.15,
6 "disparate_impact": 0.1
7 },
8 "explainability": {
9 "correlated_features": 0.15,

10 "model_size": 0.15,
11 "permutation_feature_importance": 0.15
12 },
13 "robustness": {
14 "clever_score": 0.2
15 },
16 "methodology": {
17 "normalization": 0.2,
18 "missing_data": 0.2,
19 "regularization": 0.2,
20 "train_test_split": 0.2,
21 "factsheet_completeness": 0.2
22 },
23 }

For each pillar individually, the weighted average of the metric scores is determined, and this
yields an overall trust score for each pillar. Similar to calculating pillar scores, the final trust
score is computed. The four pillars are given weights (listing 4.2), and the final trust score is
the weighted average of those scores [12].

Listing 4.2: Default weights of pillars.
1 {
2 "pillars": {
3 "fairness": 0.25,
4 "explainability": 0.25,



4.2. ALGORITHM DESIGN 27

5 "robustness": 0.25,
6 "methodology": 0.25
7 }
8 }

Figure 4.2: Trusted-AI: Final trust score computation
[12]

Since the same approach can be used computing the final trust score for unsupervised solution
does not present major difficulties. The implementation follows the same implementation as for
supervised solutions.

Algorithm 8: Trusted Unsupervised Anomaly Detection Algorithm
Result: computes the final trust score for unsupervised anomaly detection solutions
Input: model, trainingdata, testdata, outlierdata, factsheet, configmap, configweights

trust_score = 0
scores_pillars = {}
for p in pillars do

scorep = 0
scores_metrics = {}
metrics = get_metrics(p)
for m in metrics do

args = configmap[m]
scores_metrics[m] = get_scorem(args)

end
for (m ∈ keys, v ∈ values)inscores_metrics do

wm = configweights[m]
scorep = scorep + wm ∗ v

end
scores_pillars[p] = scorep

end
for (p ∈ keys, v ∈ values)inscores_pillars do

wp = configweights[p]
trust_score = trust_score+ wp ∗ v

end
return trust_score



28 CHAPTER 4. WEBAPP

In algorithm 8 the computation of the final trust score for unsupervised solutions is shown
in more details. The model, trainingdata, testdata, outlierdata, factsheet, configmap and
configweights are received as input parameters. The algorithm iterates over all pillars and com-
putes each associated metric separately. For a given metric all the arguments are extracted from
the configmap and after that the computed score is stored in the scores_metrics dictionary.
As soon as every metrics trust scores for for a given pillar is computed and stored the algo-
rithm iterates over the scores_metrics dictionary and adds the weighted scores according to
the configweights. This added value corresponds to the aggregated trust score for a given pillar
and is stored in the scores_pillars variable. In the last iteration the final trust_score is com-
puted by adding the scores of each pillar which are weighted according to the configweights.

4.3 Webapp Design

There are two different kinds of modules: upload modules, which let the user create scenarios
and upload ML solutions for those scenarios to the server; and analyze modules, which let
users get trust analyses for specific solutions that are calculated using the Trusted-AI algorithm
and compare various solutions to each other. The analysis is shown graphically and may be
interactively customized and thoroughly investigated. The suggested Trusted AI Algorithm is
placed in the backend along with a database that stores the ML models and configurations.

Figure 4.3: Webapp: Architecture
[12]

The Scenarios and Upload page (upload modules) and the Analyze and Compare page (analyze
modules) make up the application’s original navigation bar.

Figure 4.4: Webapp: Original Navigation Bar.



4.4. EXTENSION OF WEBAPP FOR UNSUPERVISED ANOMALY DETECTION 29

A toggle to switch the mode from supervised to unsupervised has been newly implemented
in the navigation bar. The selected mode is saved globally in the application and is therefore
applied to all pages. The default mode of the application is the supervised mode (4.5) and
without switching the mode the application can be used exactly as before.

Figure 4.5: Webapp: Navigation Bar (in supervised mode).

As soon as the toggle is clicked the application switches to unsupervised mode where the dif-
ferences and extensions to the old application become visible (see figure 4.6).

Figure 4.6: Webapp: Navigation Bar (in unsupervised mode).

The user has the option to specify and create a scenario on the initial scenarios page, as well as
view previously saved scenarios. The user has the option to upload solutions for the specified
scenario and to add further details about the solution on the following upload page. The user
can then evaluate the trust analysis for a specific solution on the analyze page and modify the
configuration of the algorithm. The whole trust analysis for the solution is also available to
users as a PDF download. On the final compare page, the user can compare the trust ratings of
other solutions [12].

4.4 Extension of Webapp for Unsupervised Anomaly Detec-
tion

4.4.1 Scenarios Page

On the scenarios page a user has the overview of all currently applicable scenarios and its model
solution. One supervised scenario for example is the credit card approval which is a classifi-
cation problem that separates credit applicants into approved or disapproved applicants. For
this given scenario different classification models (solutions), such as random forest classifier,
support vector machine etc. are listed beneath (see figure 4.7. The user also has the ability to
upload new solutions for a given scenario which can then be analyzed on the other pages.



30 CHAPTER 4. WEBAPP

Figure 4.7: Scenarios page: Supervised scenarios.

Within the scope of this bachelor thesis, the scenarios page was extended to list also unsu-
pervised scenarios with different solutions 4.8. When no unsupervised scenarios are uploaded
by the user yet, the “IT security outlier detection scenario” is listed by default with different
solutions to it.



4.4. EXTENSION OF WEBAPP FOR UNSUPERVISED ANOMALY DETECTION 31

Figure 4.8: Scenarios page: Unsupervised scenarios

Additional, it is now possible to add a new unsupervised scenario by clicking on the plus icon
next to the title “SCENARIOS UNSUPERVISE”.

Figure 4.9: Scenarios page: Create new unsupervised scenario.

After the form is filled out with name, link to the data set and description the create button can
be clicked and the new scenario is listed on the scenarios page as shown in figure 4.10.



32 CHAPTER 4. WEBAPP

Figure 4.10: Scenarios page: New unsupervised scenario.

It is also possible to delete the newly added scenario by clicking on the delete icon seen on
figure 4.10.

4.4.2 Upload Page

On the upload page for supervised solutions a user can pick a given scenario and upload a new
solution to it. A user then has to provide the solutions name and description, upload the training
data and test data, as well as specifying further details. These details contain protected features,
protected values target column and favourable outcomes. As a last step the user has to upload a
factsheet belonging to the specified solution (.json file) or create a new factsheet directly on the
upload page. The factsheet again contains several details and is together with the other uploaded
material necessary to do the final trust score calculation. The factsheet holds information about
the developer, purpose and name of the model and contact information.



4.4. EXTENSION OF WEBAPP FOR UNSUPERVISED ANOMALY DETECTION 33

Figure 4.11: Upload page: Upload supervised solution.

The information given on the upload page is used to display the automated trust report on
the analyze page. Other information such as protected features or protected values is used to
compute certain metrics.

When switching into the unsupervised mode by clicking on the toggle in the navigation bar 4.6
the upload page updates its form such that a user can upload a new solution for a chosen anomaly
detection scenario 4.12. Note that the scenario input field (1. SCENARIO) does only list
anomaly detection scenarios to select. The mandatory outlier upload field (6. OUTLIER DATA)
appears as this data set is necessary to compute several metrics. Also, the target column and
favorable outcomes field disappear as unsupervised solutions do not have target columns in their
respective data sets and therefore also no favourable outcomes to select. The implementation of
creating a factsheet has not been changed as this does not require modification.



34 CHAPTER 4. WEBAPP

Figure 4.12: Upload page: Upload unsupervised solution.

4.4.3 Analyze Page

On the analyze page the user can select a given scenario and choose the solution to analyze. As
soon as both are selected, the application triggers the Trusted-AI algorithm and calculates all
pillars with its metrics for the selected solution. A report is visible and consists of two parts:
Firstly, the general information that illustrates the chosen solution with scenario description and
model information and secondly, the trustworthiness report which shows the trust scores of the
algorithm. By navigating to the different pillars further details of the metrics scores appear.

There have been major changes to the analyze page to make it work for unsupervised solu-
tions. If the unsupervised mode is active, both the scenarios and solutions drop-down only list



4.4. EXTENSION OF WEBAPP FOR UNSUPERVISED ANOMALY DETECTION 35

unsupervised scenarios and solutions. By selecting a solution as seen on figure 4.13 the we-
bapp triggers the newly implemented Trusted-Anomaly-Detection algorithm for the trust scores
calculations.

Figure 4.13: Analyze page: Select unsupervised scenario and solution.

As soon as the scores are available the report is shown on the page below consisting of the
general information and trustworthiness report:

Figure 4.14: Analyze page: General information.



36 CHAPTER 4. WEBAPP

Figure 4.15: Analyze page: Trustworthiness report.

Major changes are applied on the given Figures above (4.14, 4.15). Firstly, the before used
performance metrics are not possible to calculate for unsupervised solutions, since there are
no labels in the data sets. For that reason, performance metrics are not shown. Secondly,
scenario description and model information in the general information part had to be adopted for
unsupervised solutions. Lastly, in the trustworthiness report, each pillars metrics for supervised
solutions were replaced by metrics for unsupervised solutions. This includes also changes in
the given details for each metric.

If for example the methodology pillar is selected by clicking on the green fairness button shown
in figure 4.15 more details on the used metrics appear containing a graph (figure 4.16) which
shows the scores for each metric and details on every computed metric (figure 4.17).



4.4. EXTENSION OF WEBAPP FOR UNSUPERVISED ANOMALY DETECTION 37

Figure 4.16: Analyze page: Methodology metrics scores.

Figure 4.17: Analyze page: Methodology metrics details.



38 CHAPTER 4. WEBAPP

4.4.4 Compare Page

On the compare page a user can select two different solutions within a selected scenario and do
a side-by-side comparison. The page shows both solutions trust reports which allows the user
to compare each metrics outcome to a high level of details.

Changes on this side were similar to the changes on the analyze page. As soon as the unsu-
pervised mode is activated a user can select a anomaly detection scenario from the drop down
menu and choose two different solutions.

Figure 4.18: Compare page: Select and compare two solutions for a scenario.

By scrolling further down the page figures for each trust pillar appear and let the user compare
each pillar and metric scores for both solutions side by side (figure 4.19). Note that the outcomes
on figure 4.19 do not correspond to the selected solutions on figure 4.18 and are plotted for
demonstration purposes.



4.4. EXTENSION OF WEBAPP FOR UNSUPERVISED ANOMALY DETECTION 39

Figure 4.19: Compare page: Comparison of two selected solutions.



40 CHAPTER 4. WEBAPP



Chapter 5

Evaluation

In order to evaluate the trusted AI algorithm for unsupervised solutions a scenario detecting
outliers in IT data was chosen which serves as an ideal example as this scenario is deeply
concerned with the pillars of trust, namely fairness, explainability, robustness and methodology.
Multiple solutions to this scenario were created and are described in the following parts.

5.1 Scenario: IT Security - IoT Data Anomaly Detection

Anomaly detection in the field of IT security is a common practice in real-life as it protects
enterprises against cyber attacks by monitoring anomalous user behaviour on different kinds of
IT systems. An anomaly detection solution can identify a user behaving abnormally to then
take appropriate actions to limit users’ access to the system.

This scenario is focused on detecting anomalies in data collected by a Raspberry Pi 3. The
data set simulates how the Raspberry Pi behaves on the inside with regard to the network, CPU,
RAM, tasks, the number of instructions executed, cache failures, etc. Data from the Linux
Perf tool has been collected from when the Raspberry Pi is operating normally and when it has
been infected with 6 separate attacks. Around 4000 data samples with 72 features are present.
Different models are trained to detect anomalies in the monitoring data referred to as solutions.

5.2 Solutions: IT Security - IoT Data Anomaly Detection

Beneath every trained model lies the model’s algorithm which is trained for different scenario
cases to decide whether a data point is an anomaly or not. Different algorithms were selected
for this scenario’s case and are named as following:

1. Isolation Forest (IF)

2. Local Outlier Factor (LOF)

41



42 CHAPTER 5. EVALUATION

3. Learning One-Class Support Vector Machine (OSCVM)

4. Autoencoder

5. Cluster-Based Local Outlier Factor (CBLOF)

6. Lightweight On-Line Detector of Anomalies (LODA)

7. Copula-Based Outlier Detection (COPOD)

8. Lightweight On-Line Detector of Anomalies (LODA)

9. Histogram-Based Outlier Score (HBOS)

10. Single-Objective Generative Adversarial Active Learning (SO_GAAL)

11. Multi-Objective Generative Adversarial Active Learning (MO_GAAL)

5.3 Model Analysis

In the following section, different solutions for the given anomaly detection scenario are se-
lected from above and analyzed. The following three models, Isolation Forest, Local Outlier
Factor and Learning One-Class Support Vector Machine were trained by Alberto Huertas and
handed to me to evaluate the webapp with the underlying Trusted-Anomaly-Detection algo-
rithm. The same training, testing and outlier data sets were used in order to have an insightful
comparison between the models. Also, the same train-test split 89%|11% were applied and no
regularization nor normalization technique were used for all the models. The properties are
shown in figure 5.1 and are valid for all the solutions.

Figure 5.1: Analyze page: Properties.

Before evaluating the given models towards their trustworthiness the outlier detection ratios on
different data sets are discussed 5.1. The outlier detection ratio on outlier data sets is the only
applicable performance metric for unsupervised anomaly detection models. Other performance



5.3. MODEL ANALYSIS 43

Outlier Detection Ratio
Data set IF LOF OCSVM
Normal behaviour: training data 5.0%

(225/4496)
5.0%
(225/4496)

4.72%
(212/4496)

Normal behaviour: test data 12%
(66/550)

13.82%
(76/550)

11.82%
(65/550)

Backdoor behavior:
ssh+commands

100%
(116/116)

100%
(116/116)

100%
(116/116)

Backdoor behavior: dataleak 1s 26.67%
(16/60)

100%
(60/60)

100%
(60/60)

Backdoor behavior: dataleak 50s 9.84%
(6/61)

9.84%
(6/61)

11.48%
(7/61)

Outlier dataset (all backdoor be-
haviour data)

58.23%
(138/237)

76.79%
(182/237)

77.22%
(183/237)

Table 5.1: Outlier Detection Ratio.

metrics like Accuracy, Recall, Precision etc. rely on labels. The outlier detection ratio measures
how many outliers a model detects in a given data set.

The first striking thing is that all three models show noticeably fewer outliers in the training
data set than in the test data set. This deviation is not optimal and indicates underfitting. When
calculating the underfitting metric in the next section, this can be confirmed. Next, you can see
that IF detects outliers in data set “dataleak 1s” much worse than LOF and OCSVM. This also
results in a worse outlier detection ratio on the “outlier dataset”, where all backdoor behaviour
data sets are concatenated. All models perform poorly in detecting outliers in data set “dataleak
50s” dataset LOF and OCSVM are performance-wise very similar.

Jumping into the evaluation of the models towards trustworthiness, the methodology pillar can
be analyzed once for all together. Since the methodology metrics do not focus on the model
and its prediction of data, the methodology metrics have the same score output for all the three
solutions. The metrics outcome for IF, LOF and OCSVM in the methodology pillar can be seen
on figure 5.2. Further details on each metric are shown in figure 5.3.



44 CHAPTER 5. EVALUATION

Figure 5.2: Analyze page: Methodology Score.

Figure 5.3: Analyze page: Methodology metrics details.

For the following solutions namely Isolation Forest, Local Outlier Factor and One-Class Sup-
port Vector Machine no protected features and protected values were defined since there is no
privacy data to protect. Therefore, statistical parity difference and disparate impact are not
computable and do not carry any weight in the final trust score.



5.3. MODEL ANALYSIS 45

5.3.1 Isolation Forest

In an Isolation Forest, data that has been sub-sampled randomly is processed in a tree structure
using randomly chosen features. As they require more cuttings to separate, samples that travel
further into the tree are less likely to be anomalies. Similar to this, samples that end up on
shorter branches tend to be anomalies because the tree found it easier to distinguish them from
other observations.

On figure 5.4 general information about the solution are shwon. The overall trust-score with the
respective metrics are plotted in figure 5.5.

Figure 5.4: Analyze page: General information IF.

Figure 5.5: Analyze page: Overall trust score IF.



46 CHAPTER 5. EVALUATION

IF: Fairness Pillar

In the Fairness Pillar the only computed metric is underfitting. As seen in table 5.1 the training
data and test data outlier detection ratio differ clearly which matches with the low underfitting
score of 2.

Explainability Pillar

With a very high feature correlation of 42.65% computed by the correlated features metric, the
score evaluates correspondingly low with a value of 1.

The low model size score of 2 is due to the large number of features, namely 67. A large
number of features makes a model less explainable and thus less trustworthy. Since all three
models have the same number of features, they all have the same model size score.

The last calculated metric in this pillar, the permutation feature importance metric, calculates
20 redundant features out of a total of 68 features. The high ratio of 29.41% redundant fea-
tures results in a score of 1. The number of shuffling iterations is set to 8, which makes the
computation more accurate. The three most important features are “kmem:kmem_cache_free”,
“kmem:mm_page_free”, “writeback:writeback_dirty_inode” in descending order.

Figure 5.6: Analyze page: Explainability Score IF.

IF: Robustness Pillar

No Robustness metrics have been computed. The only applicable metric is the CLEVER Score
metric which is only available for Keras models. Because this metric cannot be calculated, a
very low trust score for the robustness pillar results, which in turn leads to a low overall trust
score.



5.3. MODEL ANALYSIS 47

5.3.2 Local Outlier Factor

The Local Outlier Factor algorithm calculates the local density deviation of a particular data
point with respect to its neighbors. It is an unsupervised anomaly detection technique. The
samples that have a significantly lower density than their neighbors are considered outliers.

General information for the LOF solution is shown in figure 5.7.

Figure 5.7: Analyze page: General information LOF.

Figure 5.8: Analyze page: Overall Trust Score LOF.

LOF: Fairness Pillar

Similar to the Isolation Forest a large outlier detection ratio difference in the training and test
data set exists which leads to a bad score of 2 in the underfitting metric.



48 CHAPTER 5. EVALUATION

LOF: Explainability Pillar

The metrics Correlated Features and Model Size have the same scores for all three models, since
they both take only training and test data as input for its calculations, which are all the same for
the three models.

The Permutation Feature Score performs better than Isolation Forest with only 4 redundant
features out of a total of 68. this ratio of 5.88% redundant features results in a score of 4.
“Tcp:tcp_probe”, “net:netif_rx”, “skb:consume_skb” are the most important features in de-
scending order.

Figure 5.9: Analyze page: Explainability Score LOF.

LOF: Robustness Pillar

No Robustness metrics have been computed. The only applicable metric is the CLEVER Score
metric which is only available for Keras models.

5.3.3 Learning One-Class Support Vector Machine

Contrary to the more popular approaches of binary classification or multi-class classification,
where all classes are well described by the training data, the task of one-class classification is
to characterize a single class that is well described by the training data and distinguish it from
all others. The effectiveness of one-class support vector machine algorithms like OCSVM has
been demonstrated in a variety of applications [4].

General information and overall trust score for OCSVM are shown in figure 5.10 and 5.11.



5.3. MODEL ANALYSIS 49

Figure 5.10: Analyze page: General information OCSVM.

Figure 5.11: Analyze page: Overall trust score OCSVM.

OCSVM: Fairness Pillar

The underfitting metric computes a score of 2, which is because of the large outlier detection
difference in the training and test data set. Similar as for IF and LOF. Values are shown in table
5.1.

OCSVM: Explainability Pillar

As for the correlated features and model size metric the outcomes evaluate to the same scores 1
and 2.



50 CHAPTER 5. EVALUATION

The permutation feature importance metric computes 6 redundant features out of 68 which gives
a ratio of 8.82%. This ratio corresponds to a score of 4. The three most important features are
“block:block_touch_buffer”, “writeback:writeback_dirty_inode_enqueue”, “signal:signal_deliver”
in descending order.

Figure 5.12: Analyze page: Explainability Score OCSVM.

OCSVM: Robustness Pillar

The CLEVER Score metric, which is exclusively available for Keras models has not been cal-
culated.



Chapter 6

Discussion

6.1 Contribution

Taxonomy of most relevant metrics for unsupervised ML solutions

Literature has not yet proposed a general taxonomy of pillars and metrics to quantify the trust-
worthiness of unsupervised ML models. In the work of this bachelor thesis the main pillars
of trust have been identified and aggregated to a total of four pillars (fairness, explainability,
robustness, methodology). Also, the most relevant metrics for each pillar have been reviewed
and analysed for the application in unsupervised ML environment.

Adopting supervised metrics into unsupervised metrics

Most of the metrics to quantify the level of trustworthiness have been proposed for supervised
ML models. The main reason is that they rely on labels for its computation. Another reason is
that the ground-truth without labels is not given in unsupervised ML environment and makes
some metrics outcome meaningless. As a solution to this problem the outlier data set was taken
to calculate specific metrics. A disadvantage of this approach is that it serves not as a general
solution for all unsupervised ML solutions, but specifically for unsupervised anomaly detection
solutions. By having an implicitly labeled outlier data set at hand where only outliers occur, it
becomes possible to transform supervised metrics into unsupervised metrics.

A lot of effort has been put into transforming metrics originally proposed for supervised solu-
tions into metrics for unsupervised anomaly detection solutions. This approach has not yet been
proposed in literature and is the main contribution of this bachelor thesis.

Algorithm to compute trustworthiness for unsupervised anomaly detection models

As described in chapter 4 Trusted-AI is a proposed algorithm to quantify the trustworthiness for
supervised ML models. The idea of computing each pillar’s metrics individually and aggregat-
ing the weighted scores to a final trust score was adopted for unsupervised ML models.

51



52 CHAPTER 6. DISCUSSION

The main work for this part of the bachelor thesis consisted of integrating the algorithm for com-
puting the trustworthiness of unsupervised anomaly detection models into the existing Trusted-
AI algorithm. Since the metrics for unsupervised anomaly detection models differ from the
supervised metrics they had to be newly implemented. Also mappings and weights configura-
tions were adjusted to fit the unsupervised environment.

Extension of trusted-AI Webapp for unsupervised ML solutions

The heavily entangled application did not permit a clear separation at the top level of code, so
each page was processed separately. Some parts of the application could be reused, others did
not exist yet. The folder structure in the codebase is customized for each page and is divided
into supervised and unsupervised categories. This restructuring now also allows to better extend
the application in case semi-supervised scenarions or others are added.

In the frontend, the separation between supervised and unsupervised becomes apparent as soon
as the toggle is switched. If the unsupervised mode is on, the application in the background
branches to the unsupervised part for the metric calculations.

Validation of the newly implemented algorithm for unsupervised anomaly detection solu-
tions

The implemented algorithm for unsupervised solutions was tested using one application sce-
nario, which verified the algorithm’s usability and gave in-depth insights into the reliability of
the various solutions with visualizations and comprehensive explanations of each metric. The
application allows the user to fully customize the parameters to any application case.

6.2 Limitations

The work of this bachelor thesis does not present a general solution for all unsupervised scenario
solutions to quantify their trustworthiness, but is limited to unsupervised anomaly detection
scenarios where an implicitly labeled data set can be given as input (in this case outlier data
set). However, there are still several metrics presented that can be computed without the need
of such a data set. Most of these metrics are contained in the methodology pillar.

Another limitation is presented in the robustness pillar, where most of the metrics only exist for
supervised ML models. The literature review has not yet proposed such metrics and there is a
lack of scientific work in this area. The only applied metric in the Trusted-Anomaly-Detection
algorithm was the CLEVER metric that was originally proposed for supervised ML models and
was adopted for unsupervised ML models within the scope of this thesis. For other supervised
metrics related to robustness it was not possible to adapt it in the same style, because they relied
on labels for its computations.



Chapter 7

Summary and Conclusions

In the first part of this bachelor thesis, an in-depth literature review was conducted focusing first
on supervised metrics and then on unsupervised metrics related to trustworthiness. A deeper
understanding of different trust pillars was established also by analyzing the work of my pre-
decessors on Trusted-AI ([12]). The literature research became increasingly more specific to
unsupervised anomaly detection, with first a global search for all possible existing metrics and
then for each pillar individually. This was one of my main challenges, as even after intensive
literature research, little could be found in this area.

When i moved from literature research to practical implementation in the next step of this work,
I first concentrated on programming prototypes of the metrics on a separate jupyter notebook.
The main focus was to analyze and reprogram already implemented metrics from Trusted-AI
so that they could be used for unsupervised anomaly detection solutions.

Parallel to this work, there was a constant search in the scientific literature for the same or
similar work to confirm and support my work. In the literature, as already mentioned before,
there was little to almost no comparable work and the necessity for such work was underlined.

The programmed prototypes of the metrics were looked at with my supervisors Dr. Alberto
Huertas and Muriel Franco. Some of them have had several iterations of improvement. After
this work was completed, it was time for the final implementation of the Trusted-Anomaly-
Detection algorithm with all its pillars and metrics to extend the existing webapp. Extending
Trusted-AI presented some difficulties, firstly it took a lot of time to understand the complex
code base and to learn the framework used. After that a method was worked out to extend
the code base in the best possible way, which consisted of separating each page separately for
a supervised and unsupervised approach. Each page in turn presented its own problems, as
components were so different from each other that much of the code had to be rewritten from
scratch.

Finally, several trained models were used to evaluate Trusted-Anomaly-Detection. It has been
shown in chapter 5 that Trusted-Anomaly-Detection algorithm is able to quantify the trustwor-
thiness of unsupervised anomaly detection models. This project helps in bridging the knowledge
and trust gap between model consumers and model developers.

53



54 CHAPTER 7. SUMMARY AND CONCLUSIONS

7.1 Future Work

7.1.1 Improvement of Computation Speed

Computing all metrics takes a rather high amount of time. The metric Permutation Feature
Importance is the most significant, since each feature column has to be shuffled for a given
number of times. By setting down the number of shuffles the computation time decreases on
one side, but on the other side the computed importance of a feature becomes less meaningful.
A trade-off of 3 shuffling periods has been chosen.

For future work more sophisticated shuffling algorithm could be explored to bring down the
computation time.

7.1.2 Additional Robustness Metrics

For future work, additional robustness metrics should be evaluated and added. Currently, the
entire robustness pillar trust score depends on a single metric, which means that no meaningful
statement can be made about this pillar. In this bachelor thesis, a lot of research was done to
find additional metrics, but it turned out to be a big challenge because not much could be found
on this topic. With even more in-depth research, this gap could possibly be filled in future work.

7.1.3 Webapp Usability

If a user wants to analyze a solution to a scenario the computation is triggered in the backend,
but does not give any feedback. This lack of usability could be fixed by implementing a loading
spinner to give a user better feedback of what is going on in the background.

7.1.4 Extension for Other Unsupervised Scenarios or Semi-Supervised
Scenarios

This work has focused on unsupervised anomaly detection scenarios. The webapp however does
not cover all unsupervised scenarios to compute the trustworthiness. Also, semi-supervised
scenarios are not covered. Extending the webapp for other unsupervised scenarios and semi-
supervised scenarios could be part of future work. The major restructuring conducted in this
bachelor thesis supports the extension for other scenarios to a higher degree than before.



Bibliography

[1] The 21st century’s ai biggest achievements.

[2] Amazon scraps secret ai recruiting tool that showed bias against
women howpublished = https://www.reuters.com/article/
us-amazon-com-jobs-automation-insight-iduskcn1mk08g, note =
Accessed: 2022-25-08 author = Jeffrey Dastin.

[3] M Arnold et al. Factsheets: increasing trust in ai services through supplier’s declarations
of conformity. corr (2019). arXiv preprint arXiv:1808.07261.

[4] Abdenour Bounsiar and Michael G. Madden. One-class support vector machines revisited.
In 2014 International Conference on Information Science & Applications (ICISA), pages
1–4, 2014. doi: 10.1109/ICISA.2014.6847442.

[5] A Rogier T Donders, Geert JMG Van Der Heijden, Theo Stijnen, and Karel GM Moons.
A gentle introduction to imputation of missing values. Journal of clinical epidemiology,
59(10):1087–1091, 2006.

[6] Fairlearn. Improve fairness of ai systems. https://github.com/fairlearn/
fairlearn, 2022.

[7] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class of prediction
models simultaneously. J. Mach. Learn. Res., 20(177):1–81, 2019.

[8] Alex A. Freitas. Comprehensible classification models: A position paper. SIGKDD Explor.
Newsl., 15(1):1–10, mar 2014. ISSN 1931-0145. doi: 10.1145/2594473.2594475. URL
https://doi.org/10.1145/2594473.2594475.

[9] IBM. adversarial-robustness-toolbox. https://github.com/Trusted-AI/
adversarial-robustness-toolbox, 2022.

[10] IBM. Ai explainability 360. https://aix360.mybluemix.net/?_ga=2.
88374680.2057431906.1637135405-1405718511.1620651272, 2022.

[11] IBM. Ai fairness 360. https://github.com/Trusted-AI/AIF360, 2022.

[12] Melike Demirici Jan Bauer, Joel Leupp. Quantifying the Trustworthiness Level of Artifi-
cial Intelligence Models and Decisions. Master’s thesis, University of Zurich, Department
of Informatics, 2022.

55



56 BIBLIOGRAPHY

[13] T Jayalakshmi and A Santhakumaran. Statistical normalization and back propagation for
classification. International Journal of Computer Theory and Engineering, 3(1):1793–
8201, 2011.

[14] Sevvandi Kandanaarachchi, Mario A Muñoz, Rob J Hyndman, and Kate Smith-Miles. On
normalization and algorithm selection for unsupervised outlier detection. Data Mining
and Knowledge Discovery, 34(2):309–354, 2020.

[15] Will Koehrsen. Overfitting vs. underfitting: A complete example. Towards Data Science,
2018.

[16] Christoph Molnar. Permutation feature importance. https://christophm.
github.io/interpretable-ml-book/feature-importance.html, 03
2022. Accessed: 2022-06-28.

[17] Minh-Nghia Nguyen and Ngo Anh Vien. Scalable and interpretable one-class svms with
deep learning and random fourier features. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 157–172. Springer, 2018.

[18] D Nkashama, Arian Soltani, Jean-Charles Verdier, Marc Frappier, Pierre-Marting Tardif,
and Froduald Kabanza. Robustness evaluation of deep unsupervised learning algorithms
for intrusion detection systems. arXiv preprint arXiv:2207.03576, 2022.

[19] Cynthia Rudin, Caroline Wang, and Beau Coker. The age of secrecy and unfairness in
recidivism prediction. arXiv preprint arXiv:1811.00731, 2018.

[20] Yingjie Tian and Yuqi Zhang. A comprehensive survey on regularization strategies in
machine learning. Information Fusion, 80:146–166, 2022.

[21] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui
Hsieh, and Luca Daniel. Evaluating the robustness of neural networks: An extreme value
theory approach. arXiv preprint arXiv:1801.10578, 2018.

[22] Chathurika S. Wickramasinghe, Kasun Amarasinghe, Daniel L. Marino, Craig Rieger, and
Milos Manic. Explainable unsupervised machine learning for cyber-physical systems.
IEEE Access, 9:131824–131843, 2021. doi: 10.1109/ACCESS.2021.3112397.

[23] Shuhan Yuan and Xintao Wu. Trustworthy anomaly detection: A survey. arXiv preprint
arXiv:2202.07787, 2022.

[24] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gum-
madi. Fairness beyond disparate treatment & disparate impact: Learning classification
without disparate mistreatment. In Proceedings of the 26th international conference on
world wide web, pages 1171–1180, 2017.

[25] Hongjing Zhang and Ian Davidson. Towards fair deep anomaly detection. In Proceedings
of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages 138–
148, 2021.



List of Figures

3.1 Intuition behind CLEVER [21]. . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Trusted-AI [12]: Taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Trusted-AI: Final trust score computation . . . . . . . . . . . . . . . . . . . . 27

4.3 Webapp: Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Webapp: Original Navigation Bar. . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Webapp: Navigation Bar (in supervised mode). . . . . . . . . . . . . . . . . . 29

4.6 Webapp: Navigation Bar (in unsupervised mode). . . . . . . . . . . . . . . . . 29

4.7 Scenarios page: Supervised scenarios. . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Scenarios page: Unsupervised scenarios . . . . . . . . . . . . . . . . . . . . . 31

4.9 Scenarios page: Create new unsupervised scenario. . . . . . . . . . . . . . . . 31

4.10 Scenarios page: New unsupervised scenario. . . . . . . . . . . . . . . . . . . . 32

4.11 Upload page: Upload supervised solution. . . . . . . . . . . . . . . . . . . . . 33

4.12 Upload page: Upload unsupervised solution. . . . . . . . . . . . . . . . . . . . 34

4.13 Analyze page: Select unsupervised scenario and solution. . . . . . . . . . . . . 35

4.14 Analyze page: General information. . . . . . . . . . . . . . . . . . . . . . . . 35

4.15 Analyze page: Trustworthiness report. . . . . . . . . . . . . . . . . . . . . . . 36

4.16 Analyze page: Methodology metrics scores. . . . . . . . . . . . . . . . . . . . 37

4.17 Analyze page: Methodology metrics details. . . . . . . . . . . . . . . . . . . . 37

4.18 Compare page: Select and compare two solutions for a scenario. . . . . . . . . 38

4.19 Compare page: Comparison of two selected solutions. . . . . . . . . . . . . . . 39

57



58 LIST OF FIGURES

5.1 Analyze page: Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Analyze page: Methodology Score. . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Analyze page: Methodology metrics details. . . . . . . . . . . . . . . . . . . . 44

5.4 Analyze page: General information IF. . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Analyze page: Overall trust score IF. . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Analyze page: Explainability Score IF. . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Analyze page: General information LOF. . . . . . . . . . . . . . . . . . . . . 47

5.8 Analyze page: Overall Trust Score LOF. . . . . . . . . . . . . . . . . . . . . . 47

5.9 Analyze page: Explainability Score LOF. . . . . . . . . . . . . . . . . . . . . 48

5.10 Analyze page: General information OCSVM. . . . . . . . . . . . . . . . . . . 49

5.11 Analyze page: Overall trust score OCSVM. . . . . . . . . . . . . . . . . . . . 49

5.12 Analyze page: Explainability Score OCSVM. . . . . . . . . . . . . . . . . . . 50



List of Tables

3.1 Underfitting Score Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Overfitting Score Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Statistical Parity Difference (SPD) Score Map. . . . . . . . . . . . . . . . . . . 12

3.4 Disparate Impact (DI) Score Map. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Overview Fairness Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Feature Correlation Score Map. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Model Size Score Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 Permutation Feature Importance Score Map . . . . . . . . . . . . . . . . . . . 17

3.9 Overview Explainability Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.10 Overview Robustness Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.11 Overview Methodology Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.12 Score Map Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.13 Missing Data Score Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.14 Normalization Score Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Metrics for unsupervised solutions. . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Outlier Detection Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

59


