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Abstract

The past few decades have seen a huge rise in the amount of data being generated online and
a significant boom in the adoption of big data analytics and machine learning techniques with
the aim of solving complex problems and driving innovation further. However, this is easier said
than done as big data presents significant challenges. This thesis aims to explore this intersec-
tion of fields of big data and machine learning, examining the challenges and reviewing current
state-of-the-art techniques. We further design and develop our own cloud ready scalable archi-
tecture, enseMbLer, building on the principles of data parallelism and massively parallel ensemble
learning to tackle the big data problem.

We demonstrate the capability of our solution by preforming an empirical analysis. To this
end, we augment a popular public dataset using WGAN-GP, a generative adversarial network.
We then develop and train standard models, and run a bunch of different experiments over
Google Cloud Platform, comparing our results to those of others. We successfully demonstrate the
effectiveness of REST based HTTP infrastructure to handle distributed machine learning without
significant overheads and further provide evidence of the increased performance gains of ensem-
ble based techniques. Finally, we contribute a solution to tackle real-time stream processing and
machine learning by suggesting a lambda architecture using our solution.





Zusammenfassung

In den letzten Jahrzehnten hat die Menge der online generierten Daten enorm zugenommen und
die Einführung von Big-Data-Analysen und maschinellen Lerntechniken mit dem Ziel, komplexe
Probleme zu lösen und die Innovation voranzutreiben, hat einen erheblichen Aufschwung er-
lebt. Dies ist jedoch leichter gesagt als getan, da Big Data erhebliche Herausforderungen mit sich
bringt. Ziel dieser Arbeit ist es, diesen Schnittpunkt von Big Data und maschinellem Lernen zu
erforschen, die Herausforderungen zu untersuchen und den aktuellen Stand der Technik zu über-
prüfen. Darüber hinaus entwerfen und entwickeln wir unsere eigene Cloud-fähige, skalierbare
Architektur, enseMbLer, die auf den Prinzipien der Datenparallelität und des massiv-parallelen
Ensemble-Lernens aufbaut, um das Big-Data-Problem zu lösen.

Wir demonstrieren die Leistungsfähigkeit unserer Lösung, indem wir eine empirische Analyse
durchführen. Zu diesem Zweck erweitern wir einen beliebten öffentlichen Datensatz mit WGAN-
GP, einem generativen kontradiktorischen Netzwerk. Anschließend entwickeln und trainieren
wir Standardmodelle und führen eine Reihe verschiedener Experimente über die Google Cloud
Platform durch, wobei wir unsere Ergebnisse mit denen anderer vergleichen. Wir demonstrieren
erfolgreich die Effektivität einer REST-basierten HTTP-Infrastruktur, um verteiltes maschinelles
Lernen ohne signifikanten Overhead zu handhaben, und liefern weitere Beweise für die Leis-
tungssteigerung von Ensemble-basierten Techniken. Abschließend stellen wir eine Lösung für die
Echtzeit-Stream-Verarbeitung und das maschinelle Lernen vor, indem wir eine Lambda-Architektur
vorschlagen, die unsere Lösung nutzt.





Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Data Parallelism vs Task Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Review of the State of the Art 5
3.1 MapReduce and Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 GraphLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 FlexGP, FCUBE, AMQPGA and cCube . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Problem Statement 9
4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Approach 13
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Selection of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.2 Description of Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.3 Augmentation and Expansion of Dataset . . . . . . . . . . . . . . . . . . . . 14

5.2 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.1 Model Selection & Implementation . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Model Metrics & Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Model Performance with Varying Dataset Size . . . . . . . . . . . . . . . . . 17

6 Architecture Design & Implementation 19
6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 Stages of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.1 Infrastructure Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.3 Factorization and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



viii Contents

7 Results & Evaluation 29
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 PIMA Indians Diabetes Dataset Benchmark Results . . . . . . . . . . . . . . 30
7.1.2 RQ1. How do traditional machine learning models scale with big data? . . 30
7.1.3 RQ2. How do ensembles created through data parallel factorization tech-

niques compare against their standard models? . . . . . . . . . . . . . . . . 30
7.1.4 RQ3. How much overhead does a HTTP based RESTful infrastructure add

to distributed machine learning? . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.5 RQ4. How does degree of parallelization affect the performance of mas-

sively parallel ensembles? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Conclusion 37
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Relevant Script and Template Files 43
A.1 Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Docker Template Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B enseMbLer Graphical User Inerface 47



Contents ix

List of Figures
5.1 Correlation Matrix of PIMA Indians Diabetes Dataset . . . . . . . . . . . . . . . . . 14

6.1 enseMbLer Architecture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 enseMbLer Job in JSON format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 enseMbLer Ensemble configuration of 7 learners. . . . . . . . . . . . . . . . . . . . . 22
6.4 enseMbLer Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 enseMbLer Factorization Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.6 enseMbLer as batch processing infrastructure in lambda architecture . . . . . . . . . 28

7.1 Benchmark Model Binary Accuracy Metrics for PIMA Indians Diabetes Dataset . . 31
7.2 Benchmark Model Training Time Metrics for PIMA Indians Diabetes Dataset . . . 31
7.3 RQ1. Model Training Time against Varying Dataset Size . . . . . . . . . . . . . . . 32
7.4 RQ1. Comparison of Model Binary Accuracy Scores against Varying Dataset Size . 32
7.5 RQ2. Ensemble configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.6 RQ3. Comparison of Overhead against Varying Dataset Size . . . . . . . . . . . . . 34
7.7 RQ4. Ensemble Model Accuracy against Degree of Parallelization . . . . . . . . . . 34

B.1 GUI in dark mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2 GUI for loading JSON job configurations. . . . . . . . . . . . . . . . . . . . . . . . . 47
B.3 GUI highlighting further details on mouse hover. . . . . . . . . . . . . . . . . . . . 48
B.4 GUI for adjusting model hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . 48

List of Tables
5.1 Machine Learning Algorithms used in this Thesis. . . . . . . . . . . . . . . . . . . . 16
5.2 enseMbLer Machine Learning model specifications. . . . . . . . . . . . . . . . . . . . 16
5.3 Benchmark. Model Binary Accuracy Summary. . . . . . . . . . . . . . . . . . . . . 17

6.1 Meeting Design Goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.1 Abbreviations used to denote Machine Learning Models. . . . . . . . . . . . . . . . 29
7.2 Augmented Datasets based on the PIMA Indian Diabetes Dataset . . . . . . . . . . 30
7.3 RQ2. Binary Accuracy Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

List of Listings
5.1 WGAN-GP Python Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Deep Learning Java Worker Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.1 k8s executor Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 k8s enseMbLer Start Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.3 Dockerfile.template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.4 worker-install.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



x Contents



Chapter 1

Introduction

Recent years have seen an alarming rise in the amount of data being generated over the internet
due to the growing popularity of web & mobile technologies, social media and advancements
in the fields of IoT and cloud computing. It is quite evident that we are in the age of data, as
more industries across numerous domains have started investing in big data analytics. Big Data,
a term coined since the early 1990s, refers to data that is too large or complex to be processed
through traditional computing techniques. It provides huge potential in terms of business value
by providing the ability to make better decisions through knowledge discovery. It is estimated
that by the year 2027, the big data market will grow to 103 billion US dollars, more than doubling
its market size in the year 2018 [1].

The past decade has also seen a rapid adoption of machine learning techniques across multiple
data rich industries such as pharmaceutical, astronomy, aviation & finance. Machine learning
techniques aim to analyse data and provide meaningful insights, and further learn from data
to provide optimizations and predictions. And now, the intersection of the fields of machine
learning and big data seems to be very promising and has been drawing attention of the research
community and industry because of the potential gains it can bring to solving complex problems,
improve quality of life and drive innovation further. However, learning from big data using
traditional machine learning techniques is not so straightforward.

Managing and learning from big data is a growing challenge that many researchers and com-
panies face. These challenges can be best summarized by the 3 V’s models, referring to the vol-
ume, variety and velocity of big data [7]. The tremendous scale and volume of large datasets
make traditional algorithms very inefficient, as they were deisgned for smaller datasets and do
not scale well. For example, SVMs or Support Vector Machines, have a training time complex-
ity of O(dataSize3) [31]. Furthermore, large datasets may be distributed across multiple nodes,
and the entire dataset may not fit into memory, breaking some traditional algorithms. Similarly,
velocity of data in terms of real-time stream processing also proves to be challenging [11]. This
has caused research to focus on newer innovative techniques to handling big data for machine
learning.

This thesis aims to contribute towards research in this intersection of fields of machine learning
and big data. We first review the current state-of-the-art techniques to leverage machine learn-
ing for large datasets, from popular frameworks like Apache Hadoop’s MapReduce & Apache
Spark, to approaches utilizing massive data parallelism through ensemble learning on the cloud.
We then propose a cloud ready, scalable architecture design to address the limitations of these
approaches and later perform empirical analysis to demonstrate its effectiveness. To this end, we
use a popular public dataset and augment it using state-of-the-art generative adversarial network
and train multiple machine learning models developed by us to explore the following research
questions:
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1. RQ1. How do traditional machine learning models scale with big data?

2. RQ2. How do ensembles created through factorization techniques compare against their standard
models?

3. RQ3. How much overhead does a HTTP based RESTful infrastructure add to distributed machine
learning?

4. RQ4. How does degree of parallelization affect the performance of massively data parallel ensembles?

The main contributions of this thesis are:

1. We designed and developed a scalable architecture, enseMbLer, which leverages data paral-
lelism & cloud technologies to handle big datasets through ensemble learning and supports
machine learning collaboration.

2. We demonstrated the effectiveness of our solution and performed empirical analysis using
augmented datasets and various machine learning algorithms to derive more insights into
the proposed research questions.

3. We demonstrated that HTTP based REST infrastructures do not add significant communica-
tion overhead & further proposed how our solution could be used in a lambda architecture
to handle real-time stream data processing and machine learning.

4. We verified and contributed further evidence to support that ensembles can achieve higher
accuracy with more efficient performances.

The entire source code of enseMbLer is available on GitHub 1 and all docker images developed
are available on DockerHub 2.

The remainder of this thesis is organized as follows: Chapter 2 provides a brief introduction to
the theoretical background knowledge required for better a understanding of this thesis. Chapter
3 provides a review of the start-of-the-art techniques currently in use to leverage machine learning
for big data analytics. Chapter 4 presents the problem statement and describes in detail the main
motivation, goals and research potential of this thesis. Chapters 5 and 6 form the main body
of the thesis and discuss the approach that was taken to selecting and preparing the models &
dataset, as well as the implementation details and architecture of enseMbLer. Chapter 7 provides
a detailed summary of all the results and our evaluations. And finally, Chapter 8 provides the
summary, conclusion, and an outlook on future work.

1https://github.com/shobuxtreme/ensembler
2https://hub.docker.com/u/shobuxtreme



Chapter 2

Theoretical Background

This thesis assumes that the reader is familiar with baisc principles and concepts of machine learn-
ing. To provide a better understanding of the work described in the later Chapters of this thesis,
the theoretical framework on which this thesis builds, i.e. the concepts of parallel computing and
ensemble learning, is explained in this Chapter.

2.1 Data Parallelism vs Task Parallelism
Parallel computing involves breaking down large complex problems into smaller parts and pro-
cessing these smaller independent parts simultaneously. In the context of machine learning, algo-
rithms can attain significant gains if operations can be performed concurrently. This concurrency
can be realized through two major ways, data parallelism & task parallelism [6].

Data Parallelism. Data parallelism refers to performing the same computation on multiple dif-
ferent inputs simultaneously. Many machine learning algorithms process data in batches, and this
approach is a natural fit for such algorithms. Such algorithms are termed embarrassingly parallel as
there is no intercommunication in between the batch operations. Master-Slave models work on
this principle, where a master process distributes work across slave processes, which perform the
same operations. Later in this thesis in Chapter 3.3, we review state-of-the-art techniques which
build upon this principle to process huge datasets through a divide-and-conquer approach.

Task Parallelism. Task parallelism on the other hand refers to breaking up an overall algorithm
into different parts which can be executed simultaneously. This requires more in-depth knowl-
edge of the algorithms and frameworks, but significant efficiency gains can be achieved [6]. An
example is the use of GPUs. We review an approach in Chapter 3.2 that uses DAG, directed
acyclic graph, based computation framework to achieve task parallelism.

2.2 Ensemble Learning
Ensemble systems are multi-classifier systems which were originally developed to improve de-
cision making accuracy by reducing variance [24]. They are used in a wide variety of setting to
help solve problems related to feature selection, class-imbalanced data and confidence estimation
among others. The work by weighing and combining the output of multiple learners and there
exist many ways in which these ensemble members can be combined, including averaging the
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outputs, selecting the majority through weighted voting and many more. This process of combi-
nation is termed classifier fusion. Bagging, Random Forests, Boosting, AdaBoost are all state-of-the-
art classifier fusion techniques, and this thesis later describes implementation of many machine
learning and ensemble learning models using these techniques.

We make use of XGBoost stacking algorithm to create our ensembles by fusing multiple kinds
of learners. Stacked generalization algorithms are trainable i.e. they learn to combine and fuse the
models in the best way possible to achieve high performance. The architecture of such models
usually has multiple levels. Level 0 or l0 models are called base models which fit on training data.
Level 1 or l1 models are called meta models, which learn to fuse the base models in the best way
possible. We support this configurablity of ensemble architectures by designing level into our
framework’s job configurations, further described in Chapter 6.1.3.



Chapter 3

Review of the State of the Art

Prior work had been done in an attempt to use various frameworks and architecture patterns to
handle large datasets. In this chapter we provide an overview of the current research and major
ideas on ways of using machine learning with big data.

Section 3.1 discusses approaches using popular Apache frameworks which use distributed
computing across a cluster of nodes. Section 3.2 mentions an approach utilizing a framework
which relies on using graph-based data models to achieve task parallelism in a single node setting.
Finally, Section 3.3 highlights approaches using data parallel factorization techniques and cloud
technologies to scale machine learning across a cluster of nodes.

3.1 MapReduce and Spark
Apache MapReduce 1 is the processing engine of the Apache Hadoop framework, and allows for
scalability and computation of vast volumes of data. It consists of Map and Reduce operations
which aggregate and combine output in a distributed setting, and works well when algorithms
are embarrassingly parallel. The Map operation distributes sections of the dataset to mappers
which work in parallel and perform computational tasks. The Reduce operation then aggregates
and combines the output from all the mappers and provides the overall result.

Apache Spark 2 is a similar big data processing framework which extends the capabilities of
MapReduce, and is emerging to be the next generation replacement of Hadoop. It provides real
time stream processing features in addition to the batch processing feature supported by Hadoop.
Spark makes use of RDDs i.e. Resilient Distributed Datasets, which can be stored in memory in
between queries.

Numerous studies highlight the ability of both these frameworks for handling distributed ma-
chine learning workloads [18] [12] [4] [20]. Gillick et al. concluded that MapReduce proved to be
a great choice for parallelizing simple machine learning applications [12]. They benchmarked the
performance of searching and sorting algorithms across clusters of 9 and 80 machines and offered
improvements to make MapReduce work with more machine learning problems. Similarly, Liu et
al. experimented with Back Propagation Neural Networks (BPNNs) developed using MapReduce
framework to solve classification problems [18]. They were able to demonstrate the effectiveness
of MapReduce in parallelizing classification tasks. Nair et al. developed a real-time health status
prediction system using Decision Trees algorithms on streaming Big Data with the Apache Spark
framework [20]. Similarly, Assefi et al. demonstrated the ability of Apache Spark by analysing big

1https://hadoop.apache.org
2https://spark.apache.org
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datasets through SVM (Support Vector Machines), Decision Trees, Random Forests and K-Means
clustering algorithms [4].

Gopalni & Arora compared the two frameworks, highlighting their differences and providing
reasons to choosing one over the other [14]. They performed comparative analysis using the K-
Means clustering algorithm on a sensor dataset 1240 MB in size and concluded that MapReduce is
not efficient for multi-pass applications and that Spark will become the new de facto framework
for big data processing.

3.2 GraphLab
Low et al. at Carnegie Mellon University developed the GraphLab framework to achieve excellent
parallel machine learning performance with large-scale real world problems [19]. In their study,
they highlight the shift in computer architecture industry from frequency scaling to parallel scal-
ing and mention the drawbacks of approaches using existing frameworks such as MapReduce
abstractions, DAG abstractions and Systolic abstractions. They mention that such frameworks
fail when there are computational dependencies in the dataset, which makes it difficult to operate
them on structured data.

They then propose a framework in which the data model consists of a directed data graph. The
graph denotes all the data and computational dependencies and an update function performs all
the computations on the graph vertices and their neighbours. A sync mechanism then aggregates
data across all the graph vertices. The GraphLab framework makes use of both the synchronous
and round-robin scheduling algorithms, implemented using FIFO and Prioritized queues for task
scheduling. They were able to support structured data dependencies and iterative computations
and demonstrated the effectiveness of GraphLab and its parallel performance gains on real-world
problems using MRF Parameter Learning, Gibbs Sampling, CO-EM Named Entity Recognition
and Shooting Algorithms, in a single node multi-core setting.

3.3 FlexGP, FCUBE, AMQPGA and cCube
FlexGP. Proposed by Veeramachaneni et al. at Massachusetts Institute of Technology, FlexGP
was one of the first systems which performed symbolic regression on a large-scale dataset on the
cloud, using massively parallel ensemble learning with genetic programming algorithms [32]. It
uses a parallelization framework which decomposes a dataset into multiple smaller subsets and
trains a large quantity of independent learning models. Each model independently makes a pre-
diction and the results are fused together in the form of an ensemble. Thus the framework works
on the principal of data parallelism. They demonstrated the effectiveness of their solution with
the Million Song Dataset year prediction challenge. The goal of this challenge is to predict the re-
lease year of 515,000 songs and FlexGP outperformed a variety of other state-of-the-art regression
learners and obtained more accurate solutions in a shorter time frame.

FCUBE. Arnaldo et al. at Massachusetts Institute of Technology further extended FlexGP’s con-
cepts and proposed a cloud-based framework to let researchers contribute their own learners to
efficiently tackle large data problems [3]. With their "Bring Your Own Learner" model, researchers
could contribute their custom algorithms in a plug-n-play style. Similar to FlexGP, FCUBE also
exploited the principle of data parallelism to factor large datasets into random sub samples and
used them to train multiple models simultaneously, fusing their results in the end. They further
demonstrated the capabilities of FCUBE by integrating five different learners on the Higgs dataset
with 11 million exemplars and obtained competitive performance and fast learning times.
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AMQPGA & cCube. Building upon the concepts of work mentioned above, Salza et al. pro-
posed two similar cloud based solutions using software containers, AMQPGA and cCube [25]
[26]. AMQPGA uses a master-slave model to speed up genetic algorithms [25]. The master node
manages the communication with slave worker nodes which compute the fitness evaluations.
AMQP communication protocol is used and messages are dispatched in a round-robin fashion.
Once the workers evaluate the fitness functions, they publish the results in a response queue.
They used open source cloud orchestration techniques to allocate resources and deploy the work-
load and succeeded in accelerating the execution times of their algorithm, thereby demonstrating
the effectiveness of cloud based solutions in scaling genetic algorithms.

Furthermore, cCube builds upon FCUBE’s "Bring Your Own Learner" model to let users col-
laborate on the same machine learning problems [26]. It uses a microservices based architecture
to scale software containers on open cloud and manages communication using AMQP messaging
protocol to divide tasks among multiple learners. cCube uses DockerSwarm to provide a flexible
infrastructure thereby avoiding any "lock-in" with specific cloud service providers. The authors
demonstrated the workings of cCube by running GPFunction EML (Evolutionary Machine Learn-
ing) algorithm on a split of the Higgs dataset, with nodes deployed on a hybrid cloud comprising
OpenStack private cloud and AWS.





Chapter 4

Problem Statement

In the past few decades alone, enormous amounts of data has been generated and this trend is
only expected to grow exponentially. Big data presents huge potentials in terms of knowledge
discovery and better decision making ability across multiple domains and industries, and as a re-
sult more and more machine learning techniques are being adopted. Although machine learning
has been growing over the years to become a more mature field, there still exists uncertainty in
the relationship between training datasets and model performance.

This means that there may be situations when model performance improves as the size of the
dataset increases, but at the same time, there may also be other situations where a model does not
necessarily scale well enough to handle datasets that are large, resulting in a point of diminishing
returns. Model performance may even degrade beyond a certain dataset size as traditional ma-
chine learning algorithms were not designed to work with huge volumes of data. In Chapter 3
we looked at the current state-of-the-art techniques which attempt to provide solutions and more
insights into this problem. And although they seem promising and are able to demonstrate their
effectiveness, each has certain drawbacks and limitations to their use.

4.1 Limitations
1. The use of traditional machine learning algorithms with big data brings tremendous chal-

lenges as they work by loading the data completely into memory [10]. This approach fails in
the context of large datasets. Much research is still required to address the challenges posted
by big data, best expressed by the 3 V’s model. Volume, Variety and Velocity, respectively
refer to the large scale of data, different variety of data and the speed of streaming data [7].

2. While MapReduce and Hadoop framework can be used in machine learning workloads
with large datasets, they often lead to high overheads and communication bottlenecks. Liu
et al. discovered high computation overhead when using BPNNs over a cluster of machines,
which happened as a result of the mappers and reducers continually starting and stopping
[18].

3. Another drawback of Apache frameworks is that they are limited to certain programming
languages. Salza et al. highlighted the fact that Hadoop development is only limited to
the Java programming ecosystem and requires the developers to have specific skills and
knowledge of the framework [25]. Similarly, the Spark framework is currently limited to
Python, Scala, Java and R programming languages and limits the users who wish to use
other languages and frameworks, such as JavaScript.
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4. Massively data parallel ensemble learning techniques prove to be very promising, how-
ever more research needs to be done for evaluating ways to aggregate the results and fuse
the contributions from individual learners. Parallel execution of different models requires
communication between multiple components. Even though cCube serves as a proof-of-
concept, it is limited to fusing results from different models if and only if they are available
in the same containers [26].

5. Velocity or the speed of data in the context of big data proves to be another challenge for
machine learning. Real world time-sensitive scenarios such as stock market prediction or
natural calamities prediction, require the models to work with stream data and have quicker
prediction times. Additionally, as the data distribution changes with time, models need to
learn data as stream and be constantly updated [10].

4.2 Goals
The goal of this thesis is to build upon the state-of-the-art cloud based techniques and propose
a cloud-ready solution to address the limitations mentioned above. We define the following as
goals that need to be met by the proposed architecture design:

• G1 Scalability. To allow distributed computing and enable parallelization of machine learn-
ing.

• G2 Portability. To support cross platform execution from anywhere without requiring ac-
cess to any specialized hardware.

• G3 Plug-n-Play. To support on-the-go execution of models without requiring any recompi-
lation of source code and support "Bring Your Own Learner" model.

• G4 Polyglot Development. To support deployment of machine learning models developed
with any programming language and framework.

• G5 Robustness. To support high fault tolerance.

• G6 Black Box Execution. To support functionality without requiring special knowledge
about the workings of the model algorithms.

• G7 Open Source. To use open source technologies and avoid strict dependence on specific
software or cloud vendors.

• G8 Graphical User Interface. To aid human supervision and support all operations via a
modern graphical user interface, providing feedback and control to the users.

4.3 Research Questions
Through this thesis, we also aim to gain more insights into using massively parallel ensemble
learning to handle big data, and compare it to techniques using traditional machine learning. We
use this as an opportunity to demonstrate the validity of our proposed solution and contribute to
research towards collaborative machine learning techniques. We explore the following research
questions:
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• RQ1. How do traditional machine learning models scale with big data? As highlighted in
Section 4.1, traditional machine learning models should perform poorly and even fail when
scaled to big data. Through this research question, we want to verify this limitation by
computing the performance of such models against varying dataset sizes and further aim
to discover if there exists a point of diminishing returns for the respective models. We first
augment and expand a standard dataset using GANs (Generative Adversarial Networks)
and use our proposed solution to train models serially without using distributed comput-
ing. This also serves as a benchmark against which we compare further results.

• RQ2. How do ensembles created through data parallel factorization techniques compare
against their standard models? For the purposes of this thesis, we use the PIMA Indi-
ans Diabetes Dataset and provide more details and reasoning for our choice further on in
Chapter 5.1.1. This is a heavily studied dataset and there exist many studies which use dif-
ferent kinds of machine learning algorithms, including ensemble algorithms. Through this
research question we want to compare how ensembles created through factorization tech-
niques as mentioned in Section 3 compare against their standard models and other ensemble
algorithms. To this end, we first train our models using our proposed solution without any
parallelization and compare our results to those of others. We then use or solution to form
ensembles with various configurations and compare the results to derive more insights.

• RQ3. How much overhead does a HTTP based RESTful infrastructure add to distributed
machine learning? Some form of communication is required in a distributed cloud setup
involving multiple nodes & microservices to transfer and share data among components. In
a REST architecture style with communication via HTTP, the payload size of the HTTP mes-
sages will increase as the overall dataset size increases. Through this research question, we
aim to investigate and study the relationship between communication overhead and dataset
size to determine if this leads to performance bottlenecking. To this end, we schedule mul-
tiple machine learning training jobs on our proposed solution and vary the dataset size and
sampling size parameter. As we use our own developed algorithms, we can precisely calcu-
late the execution runtimes of the machine learning algorithm and the worker microservice,
and calculate the difference to pinpoint the overhead time due to communication over the
network.

• RQ4. How does degree of parallelization affect the performance of massively data paral-
lel ensembles? State-of-the-art techniques and their respective studies mentioned in Section
3 provide evidence that ensembles created through data-parallel distributed computing us-
ing cloud technologies can handle big data. Advancements in cloud technologies makes it
easy to horizontally scale resources and increase compute performance. Through this re-
search question we aim to find how such horizontal scaling and increase in the degree of
parallelization affect the performance of such techniques. We want to investigate if there
is a linear relationship between the two or if there exists a point of diminishing returns.
We address this research question by varying both the dataset sizes and number of model
replicas, and compare our results against results of RQ1.





Chapter 5

Approach

Before proposing an architecture design, it was important verify the limitations of standard ma-
chine learning algorithms with big data. Most of the prior studies and similar work done either
derived insights from smaller datasets, or we could not find multiple use cases with the same
large dataset for drawing meaningful comparisons. Moreover, access to the data and infrastruc-
ture used for these studies was limited. As we wanted to compare and benchmark the perfor-
mance of some of the standard & most widely used machine learning algorithms with varying
dataset sizes, we determined to implement our own models from scratch with a standard dataset.
By implementing similar machine learning models in different programming languages, we got
the opportunity to demonstrate the polyglot nature of our solution.

The following chapter describes in detail the approach that was taken to select, prepare and
augment a dataset, implement and train the machine learning models, and benchmark their per-
formance.

5.1 Dataset

5.1.1 Selection of dataset
The UCI Machine Learning Repository 1 is one of the largest and most widely referenced col-
lection of datasets used by researches for empirical analysis of machine learning algorithms.
Tanwani et al. performed experiments on more than 30 biomedical datasets available by using
and evaluating multiple machine learning algorithms [30]. The PIMA Indians Diabetes Dataset
seemed to be the most promising choice for selection [21], as several similar extensive studies
had been performed on the dataset by using Random Forest and Decision Trees algorithms [9],
Neural Networks & Support Vector Machines [27], and Genetic Algorithms [16]. Furthermore
Akyol et al. evaluated the performances of AdaBoost, Gradient Boosted Trees and Random Forest
ensemble learning algorithms, achieving a classification accuracy of 73.88%, 73.16% and 73.45%
respectively, thus setting a benchmark to compare our results against [2]. Hence, this dataset was
selected.

5.1.2 Description of Dataset
The dataset was originally developed in a study by Smith et al. at the National Institute of Di-
abetes and Digestive and Kidney Diseases [29]. It comprises 8 attributes as input variables, and

1https://archive.ics.uci.edu/ml/index.php



14 Chapter 5. Approach

one output variable with 2 class values depicting diabetic and non-diabetic instances among 768
patients. Figure 5.1 below shows the correlation matrix plot describing the dataset.

Figure 5.1: Correlation Matrix of PIMA Indians Diabetes Dataset

The dataset in its original form was used as a reference to compute model metrics and compare
different machine learning algorithms. These results are presented later in Chapter 7. However,
with only 768 rows and a size of 23 KB, the dataset wasn’t fit to be used as a "massive" or "big"
dataset for conducting our empirical analysis with big data. Hence, the dataset needed to be
augmented and expanded.

5.1.3 Augmentation and Expansion of Dataset
Data augmentation is a suite of techniques to increase the size or quality of a dataset by modifying
the original data or synthetically generating new data from existing data. Typically used in the
fields of image classification and speech recognition, data augmentation helps in reducing over-
fitting during model training [28]. Data augmentation is similar in nature to regularization and
oversampling techniques used in data analysis and deep learning, such as Batch Normalization,
Transfer Learning, Pretraining & Zero-shot Learning [17].

Since the proposal in 2014 by Goodfellow et al., Generative Adversarial Networks or GANs
have become popular in generating training data through unsupervised learning [13]. There have
been many extensions to GANs, such as CycleGANs & DCGANs, and numerous studies show
their effectiveness in data augmentation [23].

This thesis makes use of a more recent GAN variant called Wasserstein GAN with Gradient
Penatly or WGAN-GP. Proposed and demonstrated by Gulrajani et al., WGAN-GP was shown
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to have a stronger modelling performance in terms of training speed and stability in scaling
datasets [15]. We implemented our adversarial network using ydata-synthetic, an open source
python library which makes use of TensorFlow 2.0. The following code snippet depicts the train-
ing parameters and GAN model definition. The entire model training and data augmentation
process took 3 hours and 50 minutes to completion, and was performed on the Google Cloud
Platform.

1 from ydata_synthetic.synthesizers.regular import WGAN_GP

2 from ydata_synthetic.synthesizers import ModelParameters, TrainParameters

3

4 # Import Dataset

5 data = pd.read_csv(’./data.csv’)

6 num_cols = [’Pregnancies’, ’Glucose’, ’BloodPressure’, ’SkinThickness’, ’Insulin’,

7 ’BMI’, ’DiabetesPedigreeFunction’, ’Age’]

8 cat_cols = [’Outcome’]

9

10 # Define the GAN and training parameters

11 noise_dim = 128

12 dim = 128

13 batch_size = 10

14 log_step = 100

15 epochs = 50

16 learning_rate = [5e-4, 3e-3]

17 beta_1 = 0.5

18 beta_2 = 0.9

19 n_critic = 3

20

21 gan_args = ModelParameters(batch_size=batch_size,

22 lr=learning_rate,

23 betas=(beta_1, beta_2),

24 noise_dim=noise_dim,

25 layers_dim=dim)

26

27 train_args = TrainParameters(epochs=epochs,

28 sample_interval=log_step)

29

30 # Define augmentation sample size, 50 million rows

31 sample_size = 50000000

32

33 # Random noise for sampling both generators

34 noise = uniform([sample_size, noise_dim], dtype=float32)

35

36 # Training the GAN model

37 model = WGAN_GP

38 synthesizer = model(gan_args, n_critic)

39 synthesizer.train(data, train_args, num_cols, cat_cols)

40

41 # Generate samples

42 gs_samples = synthesizer.sample(sample_size)[:sample_size]

Listing 5.1: WGAN-GP Python Implementation

The outcome of this augmentation process was a synthetic dataset based on the original PIMA
Indians Diabetes Dataset, with 50 million exemplars & 2.84 GB in size.
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5.2 Machine Learning Models

5.2.1 Model Selection & Implementation

Once the dataset had been selected and augmented, the next step was to prepare multiple machine
learning models for our analysis study. As discussed in section 5.1.1, the PIMA Indians Diabetes
Dataset had already been heavily studied with numerous machine learning & ensemble learning
algorithms. Table 5.1 below depicts the machine learning algorithms we implemented for this
thesis.

Algorithm Type Implementation Language(s)

Random Split Sampling Python
Stratified Split Sampling Python, Java, JavaScript
Kennard Stone Sampling Python
AdaBoost Classification, Ensemble Python
Deep Learning Classification Python, Java, JavaScript
Extra Trees Classification, Ensemble Python
Gradient Boosted Trees Classification, Ensemble Python
Random Forest Classification, Ensemble Python
Stacking XGBoost Ensemble Python
Max Vote Ensemble Python, JavaScript

Table 5.1: Machine Learning Algorithms used in this Thesis.

Depending on the libraries and frameworks used by various developers and machine learn-
ing researchers, machine learning models may perform several operations, but almost always
certainly perform training & prediction. To enforce standardisation and ensure that all our models
behave entirely in the same manner, and can be executed externally via command line, we de-
fined the following specifications as depicted in Table 5.2 below. Thus, in future, if any researcher
wants to implement a model or modify an existing model to make it work with enseMbLer, they
can refer to these specifications.

Specification Value Description

Input Data Format csv Input data must be in .csv format.
Output Data Format csv Output data must be in .csv format.
Input Features cli Model input variables must be configurable via

command line arguments.
Model Hyperparameters cli Model hyperparameters must be configurable via

command line arguments.
Model binary Trained model must be saved in binary format.
Commands cli Model must support TRAIN, PREDICT & VAL-

IDATE commands, execuatble via command line.
Optionally, other commands such as FILTER may
be defined.

Table 5.2: enseMbLer Machine Learning model specifications.
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5.2.2 Model Metrics & Benchmark
After implementing the models, we trained them on a 30-70 test-train sample of the original PIMA
Indians Diabetes Dataset. Three different sampling algorithms were used, Kennard Stone, Strat-
ified & Random Sampling. The best accuracy scores were obtained using the Kennard Stone
sampling algorithm. Table 5.3 below summarizes the binary accuracy metrics of all the models
with Kennard Stone sampling algorithm. The results are presented later in Chapter 7.

Model Kennard Stone

AdaBoost 85.71%
Deep Learning (Python) 77.92%
Deep Learning (Java) 51.94%
Deep Learning (JavaScript) 71.42%
Extra Trees 81.16%
Gradient Boosted Trees 94.15%
Random Forest 83.11%

Table 5.3: Benchmark. Model Binary Accuracy Summary.

5.2.3 Model Performance with Varying Dataset Size
There have been some studies which investigated the effect of dataset size in certain machine
learning problems. In their study using NASA datasets from the PROMISE repositories, Catal &
Diri discovered that Random Forest ensembles & parallel AIRS2 algorithms provided best per-
formance for large datasets in terms of accuracy, however they did not mention compute or time
efficiency details [8]. It has also been concluded that some algorithms, such as Deep Learning
& Convolutional Neural Networks only work well when enough samples from the dataset are
available [5]. Furthermore, it has even been investigated that for smaller datasets, a size of 3179
samples serves as a threshold for supervised training performance estimation [22].

To our knowledge, there haven’t been extensive research done comparing model performances
with "big data" datasets i.e. datasets with millions of samples. Therefore, drawing inspiration
from some of the studies mentioned above, we used this thesis as an opportunity to also inves-
tigate how some of the most widely used machine learning algorithms perform against large
datasets, to address RQ1 in Chapter 4.3. We used our synthetically generated dataset with 50
million samples, and trained our models serially i.e without using any parallel or distributed
computing, on the cloud using our proposed solution. These results are discussed in Chapter 7.





Chapter 6

Architecture Design &
Implementation

Drawing inspiration from FlexGP, FCUBE & cCube as described in Chapter 3, we focused on
ways to improve the performance of machine learning algorithms with big data by using prin-
ciples of ensemble learning, data parallelism and cloud computing. We propose a microservices
based architecture design utilising containerization & orchestration technologies to achieve our
goals of scalablity, parallelization and supporting polyglot machine learning development.

The following chapter provides an overview of the architecture of our solution enseMbLer,
and the various technologies and components involved. First, Section 6.1 explains the micro-
services based architecture, describing how each service interacts with the other. A brief overview
of the graphical user interface is also presented. Section 6.2 explains the various stages of opera-
tions, from factorization and sampling of data to prediction using trained models. Finally, Section
6.3 describes the various use cases and scenarios in which the proposed solution can be used.

6.1 Architecture
Over the recent years in software engineering, microservices have become the standard archi-
tectural style when it comes to distributed computing. Microservices are lightweight processes
built around separate business capabilities, each independently deployable. This allows breaking
applications into smaller services which can be scaled and maintained separately. In traditional
monolith applications, which only run a single process, function calls and methods are used by
the different components to invoke each other. However, microservice-based applications run
many different services. These independent services require a communication standard and an
orchestration machinery to accomplish a common task. They typically interact using communica-
tion protocols such as HTTP, AMQP and standards such as REST or SOAP. Therefore, designing
a microservices based architecture also involves determining which protocols and orchestration
technologies to use.

6.1.1 Design Goals
Table 6.1 below provides a summary of the technologies used to meet the design goals defined in
Chapter 4.2.
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Design Goal Technologies

G1 Scalability Docker, Kubernetes
G2 Portability Docker
G3 Plug-n-Play Docker, Kubernetes
G4 Polyglot Development Docker
G5 Robustness Kubernetes, RabbitMQ
G6 Black Box Execution Docker, RabbitMQ
G7 Open Source. Docker, Kubernetes, MongoDB, RabbitMQ
G8 Graphical User Interface. React, Axios, ChakraUI

Table 6.1: Meeting Design Goals.

6.1.2 Architecture Overview
An overview of enseMbLer is depicted in Figure 6.1. The microservices based architecture follows
a client-server model based upon REST communication with HTTP protocol. The core services
of enseMbLer include data-service, executor, factorizer, worker and gui. The data-service, executor, fac-
torizer & worker services are developed using Java Spring framework and form the back-end,
providing key functionalities of job scheduling, data sampling & factorization and data persis-
tence. Whereas the gui service, a React SPA, forms the front-end, providing access and control
to all the functionalities through a graphical user interface. The worker service is a special wrap-
per service which encapsulates the user’s machine learning model, thereby enabling the model’s
communication with the rest of the enseMbLer infrastructure. Each service is fully autonomous
and provides a well defined REST API. In addition to the core services, MongoDB is used as the
database to provide persistence and RabbitMQ is used as the message broker for AMQP protocol.
AMQP enables asynchronous communication between the components and provides a means for
robust message transfer, which is used in enseMbLer for scheduling of jobs and synchronisation.

These services and components are made cloud-ready following principles of containerization
and industry proven Dev-Ops practices. Containerization is the process of packaging software
with all the necessary libraries and dependencies required for execution, into lightweight con-
tainers. Docker is used as the container management system to package these components into
docker containers which can run on any system using the docker engine. Finally, at the heart of
enseMbLer lies Kubernetes, which is used as the container orchestration system for automating
deployment and scaling of the services. Together, these technologies enable us to meet the design
goals.

6.1.3 Components
Job

A job is the primary unit of work in the enseMbLer infrastructure. It represents a set of machine
learning models, may or may not forming an ensemble, and the corresponding commands that
need to be executed. It also comprises additional configuration parameters such as the degree
of parallelization required, factorizer service URL and command, model hyperparameters, level,
number of replicas and commands, and auto generated ids and temporal information for manage-
ment. The executor microservice accepts the job in the JSON format. An example job configuration
in the JSON format is depicted in Figure 6.2 below, with its corresponding ensemble configuration
depicted in Figure 6.3.

In an ensemble of many machine learning models, there may be multiple levels i.e. output
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Figure 6.1: enseMbLer Architecture Overview.

from models may be fed into another model such as a stacking model or a max vote model, and
this may be repeated a number of times, forming hierarchical levels. In the Figure 6.3, we show
an ensemble of 7 learners, fused together using a stacking model, having two levels l0 and l1. To
allow such a configuration and flexibility for more in future, we assign each model with a level
configuration.

Executor

The executor microservice handles the orchestration and scheduling of various machine learning
jobs. It provides a REST API interface which is used by the gui to send job requests in the JSON
format, and can additionally be used by external tools and scripts. It implements an AMQP
message producer and communicates with RabbitMQ, the AMQP message broker.

Once a job request is received, the executor creates new AMQP topic exchange queues for each
set of machine learning models. The respective models are bound to their corresponding queues
via the binding key, defined by the worker.model.name meta property. Thus, if a job request com-
prises 3 distinct sets of models, 3 unique topic queues will be created, as depicted in Figure 6.1.
Based on the degree of parallelisation and number of replicas, new AMQP messages containing
details about which commands to execute are created , and published to the respective queues
through RabbitMQ. The executor also implements an AMQP message receiver bound to a results
exchange queue, common to all the models. Once the models execute their commands, the result
messages are published to this queue. This is used for synchronisation purposes, to ensure that
models at lower hierarchical levels in the configuration are scheduled first.
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Figure 6.2: enseMbLer Job in JSON format.

Figure 6.3: enseMbLer Ensemble configuration of 7 learners.
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Worker

The worker microservice encapsulates the machine learning model and provides the necessary
communication mechanism to fetch & store both data and models themselves. Essentially, it is
a web server developed using the Java Spring framework. The server provides a REST API in-
terface for management and implements an AMQP message receiver for machine learning job
scheduling. It executes the machine learning model commands through the Java Runtime Object,
by providing an interface with the environment in which the application is running, as depicted
in Figure 6.1. This means that both the machine learning model and worker service must reside in
the same runtime environment i.e. in the same docker container. This is achieved by using the
ensembler.worker.template Dockerfile, which automatically injects the machine learning model into
the worker service container. During configuration, an appropriate worker.model.name meta prop-
erty needs to be set, which tells the infrastructure which machine learning model is encapsulated.

Once a job request is sent to the executor service, it schedules the individual worker request
messages and sends them to topic exchange queues. Each worker is bound to an appropriate topic
exchange queue by means of the worker.model.name key. Hence, when a corresponding message
is published, the respective worker consumes it and executes the appropriate command for the
machine learning operation. When the command is executed successfully, a success message
containing all the relevant details is sent out to a common results queue.

The worker also interacts with the factorizer microservice to either fetch the training sample
data or data for inference. This is done via REST request-response messages over HTTP. As there
is no theoretical size limit to the HTTP payloads, even large datasets can be transferred this way,
but may lead to overheads. We discuss our findings later in Chapter 7.1.4. Similarly, the worker
also interacts with the data-service microservice using its REST API. This is done to either store
trained models, store the results or fetch trained models & output data from previous jobs.

In an ensemble configuration, worker at a higher level must wait for worker(s) at lower levels
to finish their executions before it can begin its task. It may also need to fetch the output of
the models from the corresponding lower-levels. This is ensured in the worker control logic, and
also taken care of partly by the executor service, which only proceeds to new higher levels once
worker(s) at previous lower levels have finished their tasks.

Factorizer

The factorizer microservice provides a REST API and interacts with a worker to provide data for
machine learning operations. It primarily fetches the training dataset and uses a sampling algo-
rithm to provide a sample subset for machine learning training. This sampling process allows
splitting of the large dataset into smaller chunks to be sent to the different workers, and we use
the term "factorization" to denote this entire splitting process. The sampling algorithm, splitting
size and the command is configurable in the job request. If the algorithm supports random seeds,
such as in the case of scikit-learn’s stratified or random sampling algorithms, same seed values
can be used to ensure consistency among different requests and jobs, which can be used for hyper-
parameter optimization or performing k-fold cross validation of the different machine learning
models. It also provides the datasets for validation and prediction in a similar manner, however
without using any further sampling processes.

Similar to creating a worker which encapsulates a machine learning model, factorizer models
can be created by injecting the desired sampling algorithm into the same runtime environment
using the ensembler.factorizer.template Dockerfile. The sampled dataset is transferred over HTTP
responses, with no theoretical payload size limits.
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Data-Service

The data-service microservice provides persistence of input and output data of the respective
worker(s), as well as the trained models. It implements database connectivity with MongoDB
and exposes a REST API to perform all basic CRUD (Create, Read, Update & Delete) operations.
It is used by both the gui and worker microservices.

MongoDB

MongoDB is a cross-platform, NoSQL, document oriented database, which works with collections
and documents instead of relations and tables. This allows for a dynamic schema and higher
level of flexibility. One of the reasons for choosing MongoDB over other traditional relational
databases was the distributed architecture of MongoDB, allowing for horizontal scaling. This
suits the microservices architecture paradigm, and is more suitable for cloud solutions.

RabbitMQ

RabbitMQ is an open source, lightweight message broker that supports AMQP protocol, among
other messaging protocols. We use AMQP to asynchronously distribute machine learning work-
load among the many workers. Specifically, we use it to establish topic exchanges, which lets the
executor send messages to queues based on the binding keys derived from the machine learn-
ing model names. Hence, the workers receive tasks only for the machine learning models they
encapsulate.

GUI

React is an open source JavaScript library for building graphical user interfaces. The gui microser-
vice is essentially a React SPA (Single Page Application), to aid human supervision and let users
monitor & control the machine learning training processes. It was developed using Chakra UI
component library, and internally uses the Axios promised-based HTTP client to exchange REST
requests & responses with the executor and data-service microservices. The Figure 6.4 depicts the
user interface. It comprises of a job configuration widget which lets the user enter all necessary
configuration commands and parameters to start a machine learning task. This includes config-
uring the factorizer url and commands, as well as configuring all the machine learning models in
an ensemble. Additionally, hyperparameters and training commands for the models can also be
configured. Instead of manually typing in and configuring a job, entire JSON configurations can
also be loaded. Finally, as the models finish their executions, the results are displayed in the table
widget. Additional details are visible when the cursor hovers over the table columns.

6.2 Stages of Operation
In this section, we describe the different stages of operation when a user interacts with enseMbLer.
By user, we mean an end user i.e. a person who wishes to use enseMbLer for one of the use cases
we mention in the following Section 6.3. This could be:

• Researchers in academia who wish to compare algorithms and collaborate solutions to ma-
chine learning problems.

• Engineers who wish to optimize hyperparameters and select best features for a dataset.

• Students who wish to create and study ensembles.
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Figure 6.4: enseMbLer Graphical User Interface

• Any other end user in the machine learning community.

6.2.1 Infrastructure Setup
First it is necessary to set up the infrastructure. This involves configuring local machines or virtual
machines in the cloud to handle the workload. Since enseMbLer uses open source technologies,
there is no restriction in choosing a cloud provider. It is also possible to use a combination of
multiple cloud providers and local machines, forming a hybrid cloud. For the purposes of this
thesis and conducting our empirical analysis, we chose the Google Cloud Platform and created a
Kubernetes cluster using the Google Kubernetes Engine (GKE). Once the Kuberenetes cluster is
ready, we use kubectl to launch our deployments. All the scripts and deployments are attached
in the Appendix. This setup process is only required once in the beginning, and doesn not need
to be repeated for running different jobs.

6.2.2 Preparation
To use a custom machine learning model developed by the user with enseMbLer, the user needs to
inject the model into the worker microservice. This can be done using the ensembler.worker.template
Dockerfile. The user needs to add all the relevant steps required to containerize their model code
and build a docker image. Furthermore, they need to upload the image to a public repository.
We followed these steps to prepare all of our models mentioned in Table 5.1 and uploaded the
respective images to Dockerhub. The Listing below depicts our Deep Learning (Java) model’s
Dockerfile. The image was tagged and uploaded as shobuxtreme/ensembler.worker:deeplj. The
template Dockerfile is listed in the Appendix.

1 # Ensembler ML-worker Deep Learning Java

2 FROM ubuntu

3

4 # 2. Inject ensembler base worker msvc

5 ADD worker-install.sh .

6 RUN chmod +x /worker-install.sh

7 RUN /worker-install.sh
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8 WORKDIR /usr/src/ensembler

9 COPY worker-0.0.1.jar .

10 ENTRYPOINT ["java","-jar","worker-0.0.1.jar"]

11

12 # 4. ----- BEGIN INSTRUCTIONS -----

13 # Your dockerfile instructions

14 ADD install.sh .

15 RUN chmod +x install.sh

16 RUN ./install.sh

17 COPY . .

18

19 # 4. ----- END OF INSTRUCTIONS -----

Listing 6.1: Deep Learning Java Worker Dockerfile

Similarly, the user can also use their own factorization and sampling algorithms for splitting
the training dataset. Once all the images are uploaded to a public repository, the user can start
configuring jobs using the enseMbLer user interface.

6.2.3 Factorization and Training
First, the user needs to train a model or multiple models in an entire ensemble. This is done by
setting the job kind to TRAIN. When the job is executed, the executor will start producing and
publishing the requests to model queues based on the level of the models in the ensemble. The
worker bound to the queue will consume the request, and make a corresponding REST request
to the factorizer to fetch the data. The factorizer will use the configured sampling algorithm to
produce a subset for training, and send it back to the worker. When multiple such requests are
received, the effect is similar to that of "splitting", as depicted in Figure 6.5 below. The big dataset
is broken into smaller splits, and these splits are sent to separate workers.

Figure 6.5: enseMbLer Factorization Process.

After receiving the training subset, the worker executes the training command which is con-
tained in the request message. This results in the execution of the machine learning algorithm’s
training. However, if the model has a higher level in an ensemble job configuration, the worker
will also fetch all the input datatsets from previous levels as required. This is needed ,for example,
in the case of max vote or stacking algorithms. Once the training is finished, the corresponding
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trained model, input training dataset and execution result are saved through a REST request to
the data-service. A final result message is published to the results queue, which is consumed by
the executor. The results are then updated on the gui.

6.2.4 Validation
Once models have been trained, their metrics can be computed using the VALIDATE job kind.
When such a job is executed, like in the previous training stage, the executor publishes requests to
model queues and the workers make a request to factorizer. However this time, the factorizer sends
a separate validation dataset, instead of using a sampling algorithm. A constant dataset for vali-
dation across all requests and job runs ensures that all models can be evaluated equally. This can
be configured while creating the factorizer docker image. The worker also fetches the latest trained
models by making the appropriate REST API call to the data-service. Once the model is loaded,
the validate command is executed and the results are saved. A result message is published to
the results queue. The choice of precise metrics to be calculated remains with the machine learn-
ing algorithm’s developer. In our case, we calculate the model’s binary classification accuracy,
confusion matrix, precision score, recall score & F1 score.

6.2.5 Prediction
Finally, trained models can be used to make predictions on new data. This process is known as
inference. Similar to the validation stage, when a job of kind PREDICT is executed, the executor
publishes requests to model queues and the workers make a request to factorizer. The predict
dataset is sent back to the workers. This dataset can be configured while creating the factorizer
docker image. Once the worker receives the dataset, it makes a REST API call to the data-service to
fetch the latest trained model. The worker then executes the prediction command and the result
message & output dataset are saved. A subsequent result message is published to the results
queue, and the results are updated on the gui.

If the machine learning model has a higher hierarchical level in the ensemble configuration,
the worker will also fetch the output predictions from models at the lower levels.

6.3 Use Cases
We designed enseMbLer with the main aim of helping users create ensemble models & train ma-
chine learning models on large datasets, as well as facilitating machine learning collaboration.
While there could be more use cases & potential users of such an infrastructure, we consider the
following to be of most significance:

1. Handle Big Data. To make use of large datasets for model training which may span over
multiple databases, resulting in hundreds of gigabytes in size. Using a suitable sampling
and factorization algorithm, the dataset can be split into smaller chunks and models can be
trained parallelly on these chunks. The models can then be fused to form an ensemble, com-
bining the training results from all individual models. This approach doesn’t require any
expertise or knowledge of special frameworks such as Apache Hadoop or Apache Spark,
and the entire training can be done through the graphical user interface.

2. Machine Learning Collaboration. To allow different machine learning algorithms, poten-
tially developed in different programming languages by different people, to collaborate and
solve the same problem. This requires the infrastructure to be open source, distributed,
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polyglot and user friendly. Machine learning collaboration enables a "bring your own model"
paradigm, where users have the flexibility to bring their own models and at the same time,
use models developed by others in a plug-n-play manner. This can especially be useful in
comparing models or optimising ensembles.

3. Hyperparameter Optimization. To tune the hyperparameters for a model. Hyperparam-
eters are parameters external to the model, whose value must be set manually. These are
used to control the learning process, and depending on the specific problem and dataset,
need to be tuned to solve the problem optimally. Same random seed values can be used to
control the sampling and factorization processes, and multiple replicas of the same machine
learning model can be used with different hyperparameter values. These models can then
be trained simultaneously on the same data, and hence models with best hyperparameters
can be selected, resulting in an efficient tuning process.

4. Feature optimization. To simplify and optimize machine learning process by removing
input features. Feature optimization is the process of reducing input variables to reduce
the computational costs of training and increase performance of the model. Given that
the model allows configuring features, i.e. input columns, via the command line and thus
respecting the specifications, replicas can be trained in parallel and the models with the best
results and metrics can be filtered.

5. Lambda Architectures. To deal with massive amounts of data efficiently. Lambda ar-
chitectures are special data processing architectures which provide low latency, increased
throughput and high fault tolerance by using a combination of batch processing and stream
processing methods. These architectures typically comprise 3 layers, namely the batch layer,
the serving layer and the speed layer. New data comes in continuously and is fed to both
the batch & speed layers. The speed layers process the data in real-time, however it doesn’t
prioritize completeness or accuracy. Batch layer aims to provide perfect accuracy and han-
dles all data in batches. In a machine learning scenario, enseMbLer can be used as a batch
processing infrastructure to train models on big data, and the updated models can then
be used in the speed layer, thus supporting lambda architectures for machine learning as
depicted in Figure 6.6.

Figure 6.6: enseMbLer as batch processing infrastructure in lambda architecture
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Results & Evaluation

Once the enseMbLer architecture was implemented and set up, we were ready to test its capa-
bilities & demonstrate its effectiveness in supporting the use cases mentioned in Chapter 6.3,
addressing the limitations of the state-of-the-art techniques mentioned in Chapter 4.1.

We first used enseMbLer to run our standard machine learning models with the original PIMA
Indians Diabetes Dataset to create a benchmark for further evaluations. The summary of these
results was already briefly expressed in Chapter 5.2.2, and we present the full results in Section
7.1.1 below. We then proceeded to conduct an empirical analysis by running experiments to
explore and gain insights into the research questions described in Chapter 4.3 and discuss our
findings in Sections 7.1.2 through 7.1.5. We further discuss the possible threats to validity of our
findings in Section 7.2

7.1 Results

The following Table 7.1 denotes the abbreviations we have used for our machine learning models
in the subsequent sections. Furthermore, Table 7.2 provides a summary of the datasets we used
for our empirical analysis.

Abbreviations Model Hyperparameters

AB AdaBoost (Py) nEstimators=400, learningRate=0.65
DL Deep Learning (Py) epochs=150, lossfn=binaryCrossentropy
DJ Deep Learning (Java) epochs=10, lossfn=binaryCrossentropy
DS Deep Learning (JS) epochs=150, lossfn=binaryCrossentropy
ET Extra Trees (Py) nEstimators=400, maxDepth=5, minSam-

plesLeaf=2 nJobs=1
GB Gradient Boosted Trees (Py) nEstimators=400, maxDepth=6
RF Random Forest (Py) nEstimators=400, maxDepth=5, nJobs=3,

maxFeatures=sqrt

Table 7.1: Abbreviations used to denote Machine Learning Models.
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No. of exemplars Dataset size

100K 4.4 MB
200K 8.8 MB
400K 22.5 MB
800K 35.2 MB
1600K 90 MB
3200K 180 MB
6400K 360 MB
12800K 720.1 MB
25600K 1.44 GB
50000K 2.84 GB

Table 7.2: Augmented Datasets based on the PIMA Indian Diabetes Dataset

7.1.1 PIMA Indians Diabetes Dataset Benchmark Results
Figure 7.1 depicts the binary accuracy scores of our machine learning models with a 30-70 test-
train split of the PIMA Indians Diabetes dataset. We notice that best results are achieved with the
Kennard Stone sampling algorithm, with Gradient Boosting algorithm achieving a high accuracy
of 94.15 %. We will use these results as a benchmark for further comparisons. Figure 7.2 depicts
the training time in seconds taken by the respective models. We notice that the Deep Learning
JavaScript (DS) algorithm takes significantly higher time. On further analysis we found that this
is due to no GPU support on our GKE nodes, which forces the TensorFlow JS library to rely on a
much slower CPU computations.

7.1.2 RQ1. How do traditional machine learning models scale
with big data?

Figure 7.3 depicts the training times (in seconds) of the standard machine learning models as a
function of the input dataset size. We used our synthetically generated dataset and trained the
models in a serial manner using enseMbLer. We notice that the training time is directly propor-
tional to the input dataset size, and grows with a rough factor of 1.8 - 2.2 times. We used Google
Cloud Platform’s C2 Series compute optimized nodes with 8 vCPUs and 32 GB memory. We were
unable to perform these machine learning training tasks with E2 micro instances. Therefor, we can
conclude that traditional machine learning models do not scale well to handle large datasets.
Furthermore, Figure 7.4 highlights that the binary accuracy of these models significantly reduces
as the dataset size increases.

7.1.3 RQ2. How do ensembles created through data parallel
factorization techniques compare against their standard
models?

To address the research question, we created ensembles of each model using enseMbLer with 8 as a
degree of parallelization and compared our results against those of Akyol et al. and our previously
derived benchmark from Section 7.1.1. The Figure 7.5 below shows the ensemble configuration,
which is similar for all the 7 models. The results from the individual learners are combined using
a Stacking XGBoost algorithm, and listed in Table 7.3. As we can see, ensembles created through
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Figure 7.1: Benchmark Model Binary Accuracy Metrics for PIMA Indians Diabetes Dataset
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Figure 7.2: Benchmark Model Training Time Metrics for PIMA Indians Diabetes Dataset
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Figure 7.3: RQ1. Model Training Time against Varying Dataset Size
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data parallel factorization techniques outperform all the other models, achieving highest accu-
racy.

Figure 7.5: RQ2. Ensemble configuration

Model Our Benchmark RQ2 Ensemble Akyol et al’s [2]

AdaBoost 85.71% 95.45% 73.88%
Gradient Boosted Trees 94.15% 96.10% 73.16%
Random Forest 83.11% 86.36% 73.45%
Extra Trees 81.16% 86.11% n/a
Deep Learning 77.92% 86.36% n/a

Table 7.3: RQ2. Binary Accuracy Comparison.

7.1.4 RQ3. How much overhead does a HTTP based RESTful
infrastructure add to distributed machine learning?

Figure 7.6 depicts the overhead as time in seconds due to factorization and transfer of dataset
over HTTP protocol. As expected, factorization time increases as the dataset size increases. How-
ever it is interesting to note that the time taken to transfer data between the microservices and
components does not increase. We ran our enseMbLer infrastructure over Google Cloud Platform,
with nodes in the same zone i.e europe-west-6a (Zurich). On further analysis, we found that our
network bandwith on GCP was 16Gbps and with paid plans this could be increased upto 100
Gbps. Hence, we conclude that there is no significant overhead due to data transfer between
components in a HTTP based RESTful infrastructure over public cloud providers. There is
however an overall overhead due to factorization of datasets. This can further be minimised
with pre-processing and batch pre-factorization techniques.
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Figure 7.6: RQ3. Comparison of Overhead against Varying Dataset Size

7.1.5 RQ4. How does degree of parallelization affect the per-
formance of massively parallel ensembles?

We used the DL Deep Learning Python machine learning model and trained multiple ensembles
by varying the degree of parallelization i.e. by varying the number of replica learners. Figure 7.7
depicts the binary accuracy of these models with the PIMA Indians Diabetes Dataset. We notice
a significant increase in the accuracy on using parallelization, however we conclude that in this
scenario there is no significant affect in the performance of ensembles on increasing the degree
of parallelization beyond 2.
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Figure 7.7: RQ4. Ensemble Model Accuracy against Degree of Parallelization
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7.2 Threats to Validity
Internal Validity. Internal validity when testing cause-effect relationships represents the con-
fidence and trustworthiness that the relationship being tested is not influenced by other fac-
tors. Due to the nature of our experiments in investigating compute times and overheads using
cloud technologies, multiple machine learning algorithms and synthetically generated datasets,
we faced the following the threats:

• Our synthetically generated dataset comprised of 50 million exemplars. Due to the ran-
domness in factorization, different runs could yield very different metrics and computa-
tional times. We mitigated these risks by taking an average of 10 runs for each experiment.
Moreover, using the same random seed values allowed us to maintain consistency across
multiple runs.

• We used both the original PIMA Indians Diabetes Dataset and a synthetically generated
large dataset based on the original to conduct our empirical analysis. However, we used
hyperparameters which provided optimum results with the original dataset in both scenar-
ios. This is clearly visible in the difference between accuracy metrics of models with the
two datasets. By focusing on just overhead and speedup calculations, we avoided drawing
conclusions for accuracy related model metrics for the larger dataset.

• We ran our infrastructure on the Google Cloud Platform’s Google Kubernetes Engine (GKE).
Although we had full control over configuring the hardware and software, Kubernetes au-
tomatically distributes and schedules pods across the cluster. This could result in some
nodes having more intensive workloads and affect the computational performance of some
algorithms. Unfortunately, there is not much that we could do to mitigate these risks, other
than taking an average of multiple results.

External Validity. External validity represents the extent to which discovered results and con-
clusions from a study can be generalized to other events and work. Machine learning is a complex
field of study comprising different types of techniques like supervised, unsupervised and rein-
forced learning. Due to the way in each each type of algorithm works, in general it is not possible
to generalise and apply findings from one study with a certain dataset to other studies involving
different datasets and algorithms. Therefor we only focus on comparing our model metric results
and findings to that of similar studies with the PIMA Indians Diabetes Dataset. We can however
generalise the findings and conclusions on overhead, speedup and computational times using
massively parallel factorization and ensemble learning, and apply it to other scenarios involving
distributed cloud computing.





Chapter 8

Conclusion

8.1 Conclusion
This thesis was devoted to research work in the intersection of the fields of machine learning and
big data. We aimed to discover more insights into the challenges of using traditional machine
learning techniques with large datasets, which were best represented by the 3V’s model. We re-
viewed some of the current state-of-the art techniques for using machine learning with big data
and further identified the limitations and drawbacks associated with each. We then proposed
enseMbLer an open source, scalable, cloud-ready architecture, building upon the principle of mas-
sively data parallel factorization to build ensembles and support machine learning collaboration.

To demonstrate its functionality, we first augmented a heavily researched dataset using a state-
of-the-art Generative Adversarial Network, WGAN-GP and later used this dataset to conduct multi-
ple experiments with 7 different machine learning models. Through these experiments:

1. We verified that traditional machine learning models do not scale well with big data.

2. We demonstrated that ensembles created through massively data parallel factorization tech-
niques outperform other standard models and ensemble models.

3. We determined that a RESTful infrastructure for distributed machine learning does not add
significant overheads due to communication and data transfer over HTTP protocol.

4. We discovered that there is no significant affect in the performance of ensembles on increas-
ing the degree of parallelization, in the case of PIMA Indians Diabetes Dataset.

8.2 Summary of Contributions
The main contributions of this thesis are:

1. We designed an developed a massively parallel cloud-ready architecture, enseMbLer 1 2,
which met our goals of being open-source, scalable, portable, plug-n-play friendly, robust, sup-
ported black-box execution and provided a graphical user interface.

2. We demonstrated the capabilities of enseMbLer and its effectiveness in addressing the limi-
tations of the present state-of-the-art cloud based techniques through an empirical analysis
by running multiple experiments against our synthetically generated big dataset.

1https://github.com/shobuxtreme/ensembler
2https://hub.docker.com/u/shobuxtreme
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3. We further demonstrated that a massively parallel HTTP-based REST infrastructure does
not lead to significant communication overhead. It can further be used in the batch pro-
cessing layer of a lambda architecture to train models in batches which can support stream
processing.

4. We also verified and contributed further evidence to support that ensembles can achieve
higher accuracy with more efficient performance than traditional machine learning algo-
rithms. Specifically, our ensemble based on data-parallel factorization technique achieved a
very high accuracy with the PIMA Indians Diabetes Dataset, beating other models.

8.3 Future Work
This thesis proposed enseMbLer, an open source cloud architecture for scaling massively parallel
ensemble learning and machine learning collaboration. While the proposed microservices based
design lets us meet our goals and addresses the limitation of other state-of-the-art techniques,
further enhancements can be made to improve the capabilities of the solution.

1. Kuberenetes is a very powerful, state-of-the-art, orchestration system for management of
containerized applications. The current implementation of enseMbLer uses kubectl, the
Kubernetes command-line tool, during infrastructure setup for deployment of all the con-
tainers and services. Scaling of all the components and workers, thus, requires interaction
through kubectl scripts. User experience can further be optimized if these tasks can be done
through the graphical user interface. This will involve extending the React front-end SPA to
make REST requests to Kubernetes’ kube-apiserver.

2. The current state-of-the-art massively parallel cloud based ensemble techniques use fac-
torization i.e splitting of larger dataset into smaller chunks by means of various sampling
algorithms. As presented in Chapter 7, factorization time increases as the overall dataset
size grows. Even if factorization operations can scale horizontally across multiple nodes,
the workers would still need to wait for the factorization process to be finished before they
receive the training datasets. This waiting time can be minimized and the overall factor-
ization process can be optimized through batch factorization. This involves factoring the
dataset into subsets in batches, before the workers request for training data.

3. The current implementation of enseMbLer uses MongoDB’s BinData BSON data type to
store binary files such as trained models or model output. This limits the file size to 16MB
i.e if the trained model & its weights need more than 16MB for storage in a binary format,
enseMbLer will not be able to persist the model. This can be addressed by extending the
data-service microservice to use MongoDB’s GridFS specification which divides larger files
into chunks.

4. The current implementation of enseMbLer requires the user to manually input all the hyper-
parameter values. Hyperparameter tuning can be performed by using scripts to compare
and select the values which provide best results. This capability can be further improved
by implementing auto tuning support into the infrastructure. This would require extend-
ing the executor microservice to tweak the hyperparameters using grid based and random
search algorithms. The entire infrastructure can then behave as a genetic algorithm, and can
be used to obtain optimum hyperparameter values for multiple models simultaneously.
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Appendix A

Relevant Script and Template
Files

A.1 Kubernetes

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: executor-dep

5 labels:

6 app: executor

7 spec:

8 replicas: 1

9 selector:

10 matchLabels:

11 app: executor

12 template:

13 metadata:

14 labels:

15 app: executor

16 spec:

17 containers:

18 - name: executor

19 image: shobuxtreme/ensembler.executor

20 ports:

21 - containerPort: 9000

22 env:

23 - name: RABBIT_HOST

24 value: "rabbitmq-svc"

25 args: ["--spring.rabbitmq.host=$(RABBIT_HOST)"]

26 ---

27 apiVersion: v1

28 kind: Service

29 metadata:

30 name: executor-svc

31 spec:

32 type: LoadBalancer

33 loadBalancerIP: "34.65.140.150"

34 selector:
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35 app: executor

36 ports:

37 - protocol: TCP

38 port: 9000

39 targetPort: 9000

40 nodePort: 30010

Listing A.1: k8s executor Deployment

1 #!/bin/sh

2 # Author : Shubhankar Joshi

3 # enseMbLer Master Thesis Project

4

5 # Deploy enseMbLer core services

6 kubectl apply -f mongo-secret.yaml

7 kubectl apply -f mongo.yaml

8 kubectl apply -f rabbit.yaml

9 kubectl apply -f datasvc.yaml

10 kubectl apply -f executor.yaml

11 kubectl apply -f gui.yaml

12

13 # Customize Factorizer

14 kubectl apply -f factorizer.benchmark.yaml

15

16 # Deploy worker

17 kubectl apply -f worker.adab.yaml

18 kubectl apply -f worker.deepl.yaml

19 kubectl apply -f worker.deeplj.yaml

20 kubectl apply -f worker.deepljs.yaml

21 kubectl apply -f worker.extratrees.yaml

22 kubectl apply -f worker.gboost.yaml

23 kubectl apply -f worker.rforest.yaml

24

25 # Deploy l1 workers

26 kubectl apply -f worker.l1stackxgb.yaml

27 kubectl apply -f worker.maxvote.yaml

Listing A.2: k8s enseMbLer Start Script

A.2 Docker Template Files

1 # Ensembler ML-worker template dockerfile

2 FROM ubuntu

3

4 # 2. Inject ensembler base worker msvc

5 ADD worker-install.sh .

6 RUN chmod +x /worker-install.sh

7 RUN /worker-install.sh

8 WORKDIR /usr/src/ensembler

9 COPY worker-0.0.1.jar .

10 ENTRYPOINT ["java","-jar","worker-0.0.1.jar"]

11

12 # 4. ----- BEGIN INSTRUCTIONS -----
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13 # Your dockerfile instructions

14 #

15 # 4. ----- END OF INSTRUCTIONS -----

Listing A.3: Dockerfile.template

1 #!/bin/sh

2

3 # Installs java JRE for worker msvc

4 apt-get update

5 apt-get install -y \

6 openjdk-18-jre

Listing A.4: worker-install.sh





Appendix B

enseMbLer Graphical User
Inerface

Figure B.1: GUI in dark mode.

Figure B.2: GUI for loading JSON job configurations.
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Figure B.3: GUI highlighting further details on mouse hover.

Figure B.4: GUI for adjusting model hyperparameters.


