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Abstract

Tactical Battlefield Networks are networks used by the military to establish communica-
tion between units on the field. These networks pose diverse environmental challenges
that need to be addressed. They are organized in so-called Mobile Ad Hoc Networks, that
mimic a civilian cellphone network infrastructure. Testing performance in these networks
proves more difficult than testing traditional fixed communication networks.

This thesis focuses on the development and implementation of an automated testing envi-
ronment. This testing environment provides the user with the ability to convert arbitrary
network topologies to a virtual environment. Further, traffic can be configured to auto-
matically run on these networks and results can easily be fetched without the user directly
having to interact with the virtual environment.

To assess the state of the implementation, first experiments with a small network topology
were conducted and the results of these experiments was shown and discussed.
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Zusammenfassung

Taktische Kampfnetzwerke sind Netzwerke, die das Militär für die Kommunikation zwis-
chen Einheiten im Feld einsetzt. Diese Netzwerke stehen vor verschiedenen umweltbed-
ingten Herausforderungen, die es zu bewältigen gilt. Sie sind in so genannten mobilen Ad-
hoc-Netzwerken organisiert, die die Infrastruktur eines zivilen Mobilfunknetzes nachah-
men. Die Prüfung der Leistung in diesen Netzen erweist sich als schwieriger als deren
Prüfung in herkömmlichen statischen Kommunikationsnetzwerken.

Diese Arbeit konzentriert sich auf die Entwicklung und Implementierung einer automa-
tisierten Testumgebung. Diese Testumgebung bietet dem Benutzer die Möglichkeit, be-
liebige Netztwerktopologien in eine virtuelle Umgebung zu konvertieren. Darüber hinaus
kann der Datenverkehr so konfiguriert werden, dass er automatisisch das Netwerk testet.
Die Ergebnisse können leicht abgerufen werden, ohne dass der Benutzer direkt mit der
virtuellen Umgebung interagieren muss.

Um den Stand der Implementierung zu beurteilen, wurden erste Experimente mit einer
kleinen Netzwerktopologie durchgeführt und die Ergebnisse dieser Experimente presän-
tiert und diskutiert.
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Chapter 1

Introduction

1.1 Motivation and Description of Work

Tactical Battlefield Networks (TBN) are networks that differ from traditional stationary
networks. They are characterized by dynamic environmental conditions that constantly
endangers nodes within them to suddenly and unexpectedly disconnect from the network.
Research regarding TBNs is also usefull for civilian Mobile ad Hoc Networks (MANET).
General insight into optimal usage of MANETs can further innovation in cellphone net-
works. A lot of network research focuses on stationary networks, that do not experience
such harsh conditions.

Recent research has introduced the concept of Software Defined Networking (SDN) to
MANETs. SDN redefines key networking principles and open new possibilities for future
improvement of MANETs. A routing technique suited for SDN is Segment Routing (SR).
SR is a stateless routing protocol and might improve performance in TBNs.

1.2 Problem Description

In order to successfully implement and test SDN and SR, an efficient test environment
has to be implemented. The test environment has to be reliable and stable. Physical test
environments are difficult and expensive to set up. Open-source tools exist to create and
test virtual environments. The problem is to build an adequate system that can automate
tedious processes, such as converting a network topology to the right format or getting
traffic data to realistically load test the network.

This work build upon the Harmonia framework developed by the University of Zurich
and aims to extend their emulated testing environment. This helps future researchers to
conduct efficient tests for their SR algorithms.
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2 CHAPTER 1. INTRODUCTION

1.3 Goals

The goal of this work is to implement and test an emulated testing environment. This
testing environment should be easy to use, reliable and ease future contributions to the
Harmonia project. Therefore, this thesis aims to reach the following goals:

• The implementation of an emulated test environment that is easily usable and reli-
able.

• The definition of useful metrics that can be used for tests.

• The conduction of first entry tests to ensure that the implemented test envrionment
works as expected.

1.4 Report Outline

This thesis is structured the following way: Chapter 2 provides insight to the underlying
technologies the test environment aims to support. Chaper 3 concerns itself with the
practical implementation of the emulated test environment and also describes the used
programming languages and frameworks. Chapter 4 provides insight into first experiments
that were conducted using the newly implemented test environment. Finally, Chapter 5
summarizes the contribution of this thesis and discusses possible future work.



Chapter 2

Background and Related Work

This chapter describes the necessary background, the underlying principles, and the tech-
nologies required to understand the main issues and questions targeted in this thesis.
Section 2.6 summarizes current approaches to test SDN, SR and TBNs. It leads over to
the next chapter describing the implementation of an emulated testing environment.

2.1 Software Defined Networking

SDN is an established networking paradigm. SDN redefines key networking principles.
A Network infrastructure that supports SDN decouples network control from forwarding
and enables direct programmability of the network. [1]

2.1.1 Concept

Traditional IP networks, though widespread, do not adequately meet new demands needed
for technologies such as cloud computing or Internet of Things. [2] Long-established IP
Networks proof to be complex, face difficulties in expansibility and are hard to manage.
[3]

SDN is a networking paradigm, proposed by Standford University, to change current
limitations of traditional IP network infrastructures. SDN aims to seperate the control
plane from the data plane. Thus network switches become simple forwarding devices and
control logic is implemented in the SDN-controller. [2]

SDN can be defined as a hierarchical architecture, in which applications and high-level
instructions reside in the top tier. The bottom tier consists of physical and virtual network
switches, which - as already mentioned - act as simple forwarding devices. The SDN
controller resides between the top and bottom tier of the architecture. Its purpose is to
direct data traffic inside network planes, but also across different network planes. in an
optimal way. The different network planes in hierarchical order from top to bottom are
typically called the Application Plane, the Control Panel and the Data Plane.

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

Communication between the different planes is typically handled by North- and South-
bound Interfaces. The Northbound Interface (NBI) is used for communication between
the Control and Application Plane, whereas the Southbound Interface (SBI) is used for
communication between the Control and Data Plane. [4]

Figure 2.1 visually shows the interaction between the different planes.

Figure 2.1: Hierarchical view of a SDN architecture

In Order to test SDN the Stanford University created OpenFlow 2.1.2. A communication
protocol developed for researches that enables access to the Data Plane of a SDN network.
[5]

Northbound Interface

The applications residing in the Application Plane communicate with the controller and
have the ability to program the underlying infrastructure. This ability is generally granted
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via an Interface. These so called NBIs have a variety of design goals to meet. Since these
interfaces are used by applications to program the network, security and flexibility of NBIs
are key aspects to be considered. [6]

Current research in this area is still occupied with finding approaches to construct intu-
itive and efficient NBIs. [7] Since NBIs aren’t the main focus of this thesis, this small
introduction to NBIs is needed and sufficient to understand the overall picture of SDN.

Southbound Interface

SBIs are the counterpart to NBIs. Whereas NBIs provide a communication interface
between the application and control plane, SBIs provide an interface for the controller to
communicate with the routers residing in the data plane. [8]

Different network protocols exist for this purpose. The most famous being OpenFlow.
However, other protocols such as NETCONF or RESTCONF serve a similar purpose[9].
This thesis discusses the popular OpenFlow protocol in more detail. More information on
OpenFlow can be found in the respective section OpenFlow 2.1.2.

Controller

SDN-controllers reside in the control plane and centralize the device administration and
configuration of the network [10]. Implementations for the control plane generally favor
multiple SDN-controllers spread across the network over one centralized controller. Dis-
tributed SDN-controllers preserve a logically centralized view of the network state while
also mitigating process load and ensuring stability by removing a single point of failure
from the network [11].

SDN-controllers play a vital role for measuring Quality of Service (QoS) metrics. Specif-
ically, the throughput of a network relies on the performance of the different controllers.
Thus, more often than not studies tend to test metrics such as latency [10] [12]. Further
details for important QoS metrics used in this thesis can be found in the respective section
2.2.3.

Currently no industry standard for SDN-controllers exists [12]. Thus, research in this
field is still needed and this theses provides a test environment to efficiently test new
controllers.

2.1.2 OpenFlow

OpenFlow was first introduced by the Stanford University in 2008 as a way for researchers
to run experimental protocols in networks. The committee also encouraged network ven-
dors to add OpenFlow to their commercially available switches [5]. Openflow has come a
long way since then. Nowadays OpenFlow is considered to be the most popular protocol
standard for SDNs [13].



6 CHAPTER 2. BACKGROUND AND RELATED WORK

OpenFlow can be used as a programmable network protocol to remotely control forwarding
tables in network routers and switches. OpenFlow enables access to state and statistics
from the data plane and can remote issue routing commands regarding routing. [14]

[14, Fig. 2.2] illustrates the working of the OpenFlow Protocol.

Figure 2.2: The OpenFlow protocol according to [14]

2.2 Tactical Battlefield Networks

TBN is a term to group networks who are primarily used by the military in field op-
erations [15]. TBNs provide the ability for units to exchange data on the field and are
thus a necessity in modern warfare. Furthermore, network requirements and capabilities
are dependent on a variety of factors, such as terrain, required mobility, which specific
communication sources are used and more [16].

2.2.1 Diverse Operational Environments

As already mentioned, TBNs operate under varying operational environments. This
causes a multitude of challenges that have to be considered when studying TBNs. Sanchez,
Evans and Minden [17] highlight the following challenges for TBNs:

• Topology Management is difficult in highly dynamic TBNs. There is a need for
self-configuring mechanisms.

• Mobile nodes might be difficult to track in a large network.

• Computing optimal routes through nodes in a TBN is challenging.
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Cheung and Yin [16] specify some of these aspects in a more concrete manner and intro-
duce the following notions:

• Limited Bandwidth and Latency in TBNs. This results from the fact that highly
mobile devices might be in use that can not generate much throughput for the
network.

• Intermittent Communication Links in the network. Due to topological difficulties,
networked notes might appear online and offline intermittently. Thus communica-
tion links are unstable and unreliable in TBNs.

• Hidden Nodes and absence of Line of Sight (LOS) can cause data collisions between
nodes. [16, Fig. 2.3] illustrates this with an example.

Figure 2.3: A Hidden Node scenario according to [16]

This thesis aims to provide new approaches to test solutions to these problems. The focus
lies especially on the Topological Management and the computing of optimal routes.

2.2.2 Scalability

In TBNs each network entity is considered to be a network iteself. To be scalable, TBNs
typically implement bidirectional data transfer between nodes[15]. In order to translate
these notions into the real world, TBNs use MANETs to realize the networking architec-
ture [16].

Figure 2.4 shows a high-level example of a TBN architecture. The green part highlights
the focus of this thesis. Communication between different MANETs is not the primary
goal of this thesis. Instead, communication within a MANET will be considered the
primary case for the thesis.
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Figure 2.4: High-level example of a TBN architecture

Mobile Ad Hoc Networks

A MANET is defined by granting individual nodes in the network the ability to commu-
nicate with each other without passing base stations in the network [18]. In the spirit
of bidirectional communication, nodes function both as transmitter and receiver of data.
Further, MANETs typically contain a self-organising mechanism. If direct node-to-node
communication is not possible, intermediate nodes are required to forward the data be-
tween the sender and the receiver [19].

2.2.3 Quality of Service

QoS refers to multiple characteristics of a network. QoS provides a framework to quantify
the assurance of a network for an end user. This is done by choosing a measurement (e.g
bandwidth) in the network and varying parameters. A requirement for the measurement
has to be defined as well. If the requirement is fulfilled then we say that a system provides
the measured assurance to an end user [20].

With the general term defined, the next step is to categorize important QoS measurements
regarding TBNs.

QoS Measurements

Networks generally seek to optimize overall performance. This is done by measuring the
overall robustness (connectivity), efficiency (throughput) and speed of service. However,
for TBNs this approach might not yield the best results. TBNs require prioritization of
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important messages, which in the traditional sense of QoS is often not given as a criteria
[21].

Nevertheless, this thesis focuses mostly on bandwidth and throughput. The reason for
this is that currently the implemented testing environment only supports static traffic.
This thesis presents a first step to more accurate QoS measurements.

2.3 IPv6

In 1981 the University of Southern California first specified the Internet Protocol Version
4 (IPv4) [22]. The Internet Protocol Version 6 (IPv6) was first specified in 1995 as a
successor to the IPv4 protocol [23].

This section concerns itself with the IPv6 addressing architecture and serves as a build-up
for section 3.3.4.

IPv6 addresses are not assigned to nodes, but exclusively to their interfaces. Different
types of IPv6 addresses exist, but for this thesis, the specific type of address does not
concern us. IPv6 addresses follow a common structure X:X:X:X:X:X:X:X, where each X
is a group that contains one to four hexadecimal digits. The length of an address is thus
fixed to 128 bits, and leading zeroes may be omitted from the representation. In the case
that one or multiple groups contain only zero values, they can be omitted by using the
”::” string. As an example, the following two representations are considered equal [24]:

• ff01:0:0:0:0:0:0:101

• ff01::101

2.4 OSPF

Open Shortest Path First (OSPF) was first specified in 1989 by the Internet Engineering
Task Force. The purpose of the Internet at that time was to serve as an academic and
research network. A major part of Internet routing consisted of static routing. Systems
that used dynamic routing used the Routing Information Protocol (RIP). With the rapid
growth of the internet, the overhead of using RIP became unmanageable. Thus, the
primary purpose of OSPF was to replace RIP with a more efficient routing protocol.

OSPF relies on link-state protocols, which are also called shortest-path first protocols.
For the routing calculations, link-state protocols commonly use Dijkstra’s shortest-path
algorithm [25].

This thesis uses OSPF over IPv6, also called OSPF version 3 as the base protocol. SR
functionality is tested against this protocol during experiments.
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2.5 Segment Routing

SR is the primary routing algorithm tested in this thesis. This section aims to explain
the underlying technology by explaining the overall concept and looking at two specific
SR implementations.

2.5.1 Concept

Nodes that implement SR functionality use a list of segments to route packages through
the network. The routing path of a packet is encoded in the segment list. Thus, routers in
a SR network do not maintain state. Packet sources are defined as ingress nodes, whereas
packet destinations are defined as egress nodes. For this to work, the encoding of segments
onto a packet must be defined. This is done in the data plane. Further, the control plane
specifies how and which segments are inserted into which header [26]. These two planes
are described in the following subsections.

Data Plane

Segments are identified by a segment ID (SID). A SID can either have global significance or
be significant to a local router depending on their type. Segments are typically categorized
in three types:

• Node SID : this is the SID associated with the destination node in the topology. The
goal of the router is to forward the packet towards this node on the shortest path.

• Adjacency SID : this is the SID associated with an interface. The goal of the router
is to forward this packet over the specified link in the SID.

• Service SID : this type of SID effectively stops the routing. The router consumes
the packet by delivering it to a predefined service.

Routers can perform different actions on segments. They can simply forward based on the
active segment (CONTINUE). They can insert a segment and set that segment to active
(PUSH). And Lastly, they can mark the next segment as an active segment (NEXT) [26].

Control Plane

The Control Plane defines how routers exchange informations about SIDs. The distribu-
tion of SIDs to different routers is currently supported by OSPF.

Routers have to be instructed to select a correct SR path. Different approaches exist to
this problem. This thesis follows the SDN controller based approach. In this approach
SDN controllers handle instructions regarding forwarding, inserting, and deleting segments
[26].



2.6. RELATED WORK 11

2.5.2 SR-MPLS

SR can be directly implemented in the Multiprotocol Label Switching (MPLS) archi-
tecture without changing the hardware components of the MPLS forwarding plane. SR
commands applying to SIDs can directly be mapped to MPLS commands [27].

2.5.3 SRv6

Segment Routing over IPv6 dataplane (SRv6) is the implementation used in the practical
part of this thesis.

SRv6 specifies an SR implementation that works with IPv6 addresses. For this, a new
IPv6 extension was proposed. This extension serves to encode the SR header in IPv6
packets [21].

2.6 Related Work

This section serves to provide an overview of different research papers that tested their
contributions towards TBNs. Specifically, this section highlights the different implemen-
tations of testing environments and aims to provide a purpose for automated testing envi-
ronments. It leads over to the next chapter, providing an implementation of an emulated
test environment.

2.6.1 Existing Approaches towards testing TBNs

A multitude of approaches exist to improve the performance and QoS of TBNs. This
thesis focuses on the current state regarding (i) the usage of SDNs to improve TBNs and
(ii) the usage of SR to improve TBNs. This subsection provides a quick summary over
existing approaches to test TBNs

First, Zhao et al. [28] provide a testbed for tactical scenario emulation in TBNs. Their
testing environment implements a distributed SDN controller model and supports multiple
traffic generators, including the Multi Generator Network Test Tool (MGEN). Their tests
were carried out on a single topology that was manually crafted for their experiments.

Further, Flathagen and Benstuen [29] show that emulated testing environments can be
used to approximate real-life conditions. They analyzed the control plane performance in
a SDN TBN. Yet again, for the evaluation a manually crafted network topology was used
and loaded with traffic.

Other studies implement small physical topologies running their SDN implementation,
such as Phemius et al. [30]



12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.6.2 Discussion

Test instances were mostly carried out on manually and specifically built network topolo-
gies. Emulated testing environments are used more frequently than physical testing en-
vironments. This makes sense, as emulated testing environments provide an easy alter-
native. It is feasible to omit physical testing environments, as Flathagen and Benstuen
showed that emulated environments can sufficiently approximate the behaviour of physical
environments.

In order to extend the current work, this thesis provides an automated testing environ-
ment. This environment can convert arbitrary topology data sets to a virtual environment.
Traffic tests can then be carried out automatically, with the goal to ease the testing of
TBNs, SDNs and SR algorithms.



Chapter 3

Emulated Test Environment
Implementation

This Chapter describes the tools and frameworks used to implement an extensible testing
environment. General approaches to convert topologies in the Graph Modelling Language
(GML) format to suitable Graphical Network Simulator (GNS3) topologies are described.
Furthermore, this chapter describes how traffic can be generated using MGEN. In this en-
vironment the already existing SR capabilities were tested against the traditional routing
method OSPF. Section 3.2 describes the used tools and frameworks. The implemented
Topology Converter is described in section 3.3. And finally, frameworks and considerations
for load testing and traffic generation are described in section 3.4.

3.1 Existing Implementation

This section briefly describes the existing SR implementation this work aims to extend.
3.1.1 describes the underlying framework that enables data transfer between different
entities in the network. Whereas section 3.1.2 describes the underlying implementation
of the SR capabilities.

3.1.1 Harmonia FRR

This thesis extends and builds upon the HARMONIA project, a routing project created by
the University of Zurich [31]. For traditional routing methods, the HARMONIA project
relies on the FRRouting (FRR) project. FRR is an open-source routing suite that supports
IPv6 and OSPF.

Furthermore, the HARMONIA project leverages its SR capabilities from ROSE. ROSE
provides SRv6, an SR protocol designed to work with IPv6 addresses [32].

13
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3.1.2 PCC and PCEC

The Path Computation Client (PCC) and Path Computation Element Controller (PCEC)
are the major components providing SR functionalities.

The PCC uses SRv6 to insert and remove segments on a given node. The SRv6 function-
ality is provided by the ROSE SRv6 Node Manager [33]. Furthermore, it collects traffic
statistics and reports them to the PCEC.

The PCEC receives traffic statistics from the nodes in the network. It provides SR policies
to improve network traffic. To do this, the PCEC computes the link usage and tries to
minimize congestion on the links.

3.2 Tools and Frameworks

This section aims to describe the relevant tools and frameworks that were used during
the development of this thesis. More specifically, the used programming languages and
third-party applications are discussed here.

3.2.1 Python

The Topology Converter was developed using Python. Python is a high-level general-
purpose programming language [34]. Python allows the user to use multiple programming
paradigms including object-oriented, functional-oriented, and aspect-oriented program-
ming. Data types in Python can be both strongly and dynamically typed [35].

Choosing Python as the primary language for the Topology Converter has multiple rea-
sons. Firstly, Python is an established tool in the scientific community that is used across
multiple domains [36]. Secondly, Python is extensible and allows for easy use of external
packages, that add programmable interfaces to existing applications [35]. Thirdly, the
existing Harmonia implementation was already using Python as the main programming
language. And lastly, Python possesses a worldwide open-source community that allows
easy access to different libraries.

The newest Python version, Python3, was chosen for the implementation. Not only
because it contains many useful built-in functions and many versatile open-source libraries,
but also because official support for Python2 has ended on January 1st 2020 [37].

3.2.2 GNS3

The GNU Public Licence (GPL) governs the use of GNS3, an open-source graphical net-
work simulator developed in Python that enables the emulation of complicated networks
[38] [39]. GNS3 is used to emulate real-life networks without having the disadvantage of



3.2. TOOLS AND FRAMEWORKS 15

implementing a testbed in hardware. Instead, GNS3 uses virtualization to its advantage
to emulate and isolate each component in a network topology [39]. It is also important to
mention a significant disadvantage this thesis faces with GNS3. A point-to-point Ethernet
interface state on a typical physical network is reliant on the state of the other end. In
such a physical network, both ends are in a down state if one end is disconnected or shut
off. Compared to GNS3, if one end of a point-to-point Ethernet link shuts down in GNS3,
the other end remains unaffected. Thus, fail-over scenarios on GNS3 are impossible to
test by the conventional method of shutting down an interface [40].

3.2.3 Docker

Routers and Hosts function as the main components for the network emulation. These
major components are virtualized and isolated using Docker [41].

Docker was initially launched as an open-source project in early 2013 [42]. Many ap-
proaches to virtualization exist, the most common among them being hypervisor-based
virtualization. Contrary to hypervisor-based virtualization, which directly manages phys-
ical resources and allocates isolated slices of resources to its virtual instances [43], Docker
instead uses a container-based virtualization approach. Containers work on the operat-
ing system level, creating protected portions of the operating system and making those
available to the container instances [42].

Since Docker containers officially only support Linux-based operating systems, hypervisor-
based and container-based approaches complement each other and allow development
workflows on different operating systems. In fact, the recommended way of running
Docker containers on a non-Linux machine is to install a hypervisor-based virtual instance
of Linux and run further virtualization of applications in the virtual machine [42].

To summarize, Docker is both used to isolate major components in the emulation and to
enable an easy development workflow for future extensions.

3.2.4 Multi-Generator Network Test Tool

MGEN is an open-source network test tool developed by the U.S Naval Research Lab-
oratory. The tool enables users to generate real-time traffic patterns and thus provides
multiple ways to load a network. Scripting MGEN allows for traffic to be sent dynamically
across a network. Since MGEN version 5.0, protocols building on IPv6 are supported [44].

Supported Traffic Protocols

MGEN supports both the User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP) over IPv6. Each node in a network can start one MGEN process to send
and receive packets. A MGEN process can perform multiple actions simultaneously. The
process can receive incoming traffic by specifying a port, multiple ports, or a port range
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to listen to. Simultaneously, a MGEN process can send traffic to destination ports on
other nodes in the network [45].

Traffic Patterns

Traffic patterns describe a series of sequence-numbered messages that make up the traffic
that MGEN generates. A controlled amount of network stress can be applied by varying
the size and frequency of the messaging created by MGEN. With traffic patterns, MGEN
may also emulate different network applications. Currently, MGEN version 5.0 supports
four different types of patterns:

• Periodic: This pattern generates messages of a fixed size at a constant rate in
seconds.

• Poisson: This pattern generates messages of a fixed size at statistically varying
intervals at an average rate.

• Burst : Generates bursts of other MGEN pattern types with fixed message size.
Bursts can occur uniformly distributed in time or exponentially distributed across
a timeframe.

• Jitter : Generates messages of a fixed size at a rate in seconds. The actual rate is
then randomly offset by a second jitter parameter. [45]

For this thesis, only the periodic pattern was used during testing, as explained in section
4.1

3.2.5 TRace Plot Realtime

The U.S Naval Research Laboratory also developed TRace Plot Realtime (TRPR). TRPR
analyzes MGEN log files and creates summary statistics. TRPR can also be used to
generate plots of the incoming traffic for a host [46].

TRPR is an open source software and its source code can be obtained on GitHub [47].
The plot files it generates can be displayed using Gnuplot [48].

Statistics gathered in the Evaluation chapter 4 were always gathered with the help of
TRPR unless otherwise noted.

3.3 Topology Converter

The main goal of the implementation is to extend the current test environment. For this
purpose, two distinct components that provide different functionalities were implemented.
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This section concerns itself with the Topology Converter, whereas section 3.4 concerns
itself with the traffic generator. Concerning the Topology Converter, the initial testing
environment only supported one predetermined topology to test. Figure 3.1 shows this
initial topology.

Figure 3.1: Initial topology available for testing

The Topology Converter enables users to convert arbitrary topologies provided in the GML
data format to suitable GNS3 topologies. The following subsections describe important
data formats, as well as the different components of the Topology Converter.

3.3.1 Graph Modelling Language (GML)

GML is a general-purpose file format used to model graphs. The University of Passau
first proposed it in 2010 to serve as a portable file format for graphs. The structure of a
GML file is hierarchical. The data structures used for defining graph attributes are lists
containing key-value pairs. The hierarchical structure of the file enables users to precisely
define nodes and edges of graphs. Users may define additional attributes, such as node
names, as GML doesn’t precisely define which key-value pairs can be used [49]. Figure
3.2 shows a simple GML file and a corresponding visualization of it.

There are multiple reasons why GML was chosen as the primary file format supported
by the Topology Converter. Firstly, graphs representing network topologies are easily
created and obtained in the GML file format. Secondly, many scientific network graph
repositories, such as Survivable fixed telecommunication Network Design library (SNDlib)
4.2.1, provide their problem instances in the GML format. Lastly, GML is supported in the
open-source python library NetworkX [50], which eases the task of writing an appropriate
conversion script for GML files.

3.3.2 .gns3 Files

GNS3 uses .gns3 files to store information about the topology of a GNS3 project. The
.gns3 file is a structured JavaScript Object Notation (JSON) file that follows a hierarchical
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graph [
node [

id A
]
node [

id B
]
node [

id C
]
edge [

source B
ta rg e t A

]
edge [

source C
t a r g e t A

]
]

(a) Code structure of a GML
file

(b) The GML file visualized

Figure 3.2: A simple GML graph

order. In addition to specific information about the topology, the file also contains general
properties related to the whole GNS3 project [51].

The following sections describe the structure of the different nodes and links needed for
the successful generation of the .gns3 file.

Nodes

Routers and Hosts are tagged with the nodes key in the .gns3 file. Nodes have to be
provided with a unique node id and a name. Furthermore, the number of available inter-
faces has to be specified. Since nodes are virtualized using Docker, the converter has to
provide them with a unique container id. The respective Docker image has to be specified
for both Routers and Hosts. The Docker image is also the main difference that arises
between Routers and Hosts. Figure 3.3 shows a sample entry for a Router in a .gns3 file.

Links

Links are tagged with the links key in the .gns3 file. Links connect two nodes and provide a
means of transport between them. A unique id has to be provided to each link. The nodes
are provided via a list of node references, where the unique node id uniquely identifies a
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{
”compute id ” : ” l o c a l ” ,
” c on s o l e au t o s t a r t ” : f a l s e ,
”custom adapters ” : [ ] ,
” f i r s t po r t name ” : nu l l ,
”he ight ” : 45 ,
” l a b e l ” : {

”r o t a t i on ” : 0 ,
” s t y l e ” : ”font−f ami ly : TypeWriter ;
font−s i z e : 1 0 . 0 ;
font−weight : bold ;
f i l l : #000000;
f i l l −opac i ty : 1 . 0 ; ” ,
”t ext ” : ”ROUTER−3” ,
”x ” : 0 ,
”y ” : −20
} ,

” locked ” : f a l s e ,
”name” : ”ROUTER−3” ,
”port name format ” : ”Ethernet {0} ” ,
”po r t s egment s i z e ” : 0 ,
”p r op e r t i e s ” : {

”adapters ” : 16 ,
”aux ” : 5007 ,
”conso l e h t tp path ” : ”/ ” ,
”c on so l e h t tp po r t ” : 80 ,
” c o n s o l e r e s o l u t i o n ” : ”1024 x768 ” ,
”extra volumes ” : [

”/ e t c / f r r ”
] ,

”start command ” : nu l l ,
”usage ” : ””
} ,

symbol ” : ” : / symbols / c l a s s i c / route r . svg ” ,
”template id ” : ”12 e1bc65−a14b−45f1−8d15−3c2b19066a9c ” ,
”width ” : 66 ,
”x ” : 656 ,
”y ” : −72,
”z ” : 1

}

Figure 3.3: A sample Router contained in a .gns3 file

node in the topology. Furthermore, the interface on which the link connects to the node
has to be specified. Figure 3.4 shows a sample link definition.
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{
” f i l t e r s ” : {} ,
” l i n k i d ” : ”eb229618−87bb−4590−ae24−2279390 feb95 ” ,
” l i n k s t y l e ” : {} ,
”nodes ” : [

{
”adapter number ” : 0 ,
” l a b e l ” : {

”r o t a t i on ” : 0 ,
” s t y l e ” : ”font−f ami ly : TypeWriter ;
font−s i z e : 1 0 . 0 ;
font−weight : bold ;
f i l l : #000000;
f i l l −opac i ty : 1 . 0 ; ” ,
”t ext ” : ”eth0 ” ,
”x ” : 0 ,
”y ” : −20

} ,
”node id ” : ”b725bcee−7bb5−45bc−89c0−27a06e954bc1 ” ,
”port number ” : 0

} ,
{

”adapter number ” : 0 ,
” l a b e l ” : {

”r o t a t i on ” : 0 ,
” s t y l e ” : ”font−f ami ly : TypeWriter ;
font−s i z e : 1 0 . 0 ;
font−weight : bold ;
f i l l : #000000;
f i l l −opac i ty : 1 . 0 ; ” ,
”t ext ” : ”eth0 ” ,
”x ” : 0 ,
”y ” : −20

} ,
”node id ” : ”4d1b284c−201c−4af5−80e2−56a88bfc6b9d ” ,
”port number ” : 0

}
] ,
”suspend ” : f a l s e

}

Figure 3.4: A sample link connecting two nodes
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3.3.3 Conversion from GML to GNS3

The conversion of a GML file to a GNS3 project takes place in two steps. First, the
structure of the initial file must be mapped to a suitable data structure in the code.
Then, the information contained within the GML file has to be translated to match the
specifications of a GNS3 project. During translation, missing information has to either
be provided beforehand by the user or generated by the script. The following sections
describe this process in detail.

Configurable Variables

The user must enter additional information for the conversion to work. Basic information
includes the path of a source GML file along with a destination path where the generated
GNS3 project should be saved. Other variables allow the user to configure the behavior
of the translator:

• The template-file: The file name of the GNS3 project template. It is contained
within the project and represents the smallest possible .gns3 file (i.e., an empty
topology). The generator copies information from this template that occurs in every
.gns3 file. Figure 3.5 shows an empty topology that could be used as a template.

• The number of transit interfaces : An integer representing the number of transit
interfaces generated per router. These interfaces are used during translation to
connect different routers, hence the name transit interfaces.

• The number of connected hosts : An integer representing the maximum number
of hosts that can potentially connect to a router. Increasing this number causes
the converter to generate additional interfaces for the routers. These additional
interfaces are exclusively used to attach hosts to the routers.

{
”name” : ”un t i t l e d ” ,
”p r o j e c t i d ” : nu l l ,
” r e v i s i o n ” : 9 ,
”topology ” : {} ,
”type ” : ”topology ” ,
”ve r s i on ” : ”2 . 2 . 3 1 ”

}

Figure 3.5: A minimmal GNS3 project template

Loading the GML file

As previously mentioned, the Topology Converter has to map information in the GML file
to a suitable data structure. For this purpose, the open-source python library NetworkX is
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used to internally represent the graph during conversion. NetworkX fully supports GML
files and provides basic operations such as reading and writing to GML files [50].

Once represented as a NetworkX graph, information within the GML file is easily acces-
sible. This enables visualization and manipulation of the GML file. A sample GML file
and its corresponding visualization with NetworkX are presented in Figure 3.2.

For the purpose of this thesis, each node in the graph functions as both receiver and sender
in the network to mimic the behavior one might encounter in a MANET. To achieve this
functionality within a GNS3 project, each node generates both a host and a router during
translation. Section 3.3.3 describes this process in more detail.

Tranlating the GML file

A node defined in a GML file typically contains enough information to generate both
a router and a host. The Topology Converter first translates information about the
coordinates in the GML file to a host and a router. It then assigns them a generated UUID
[52] to conform to GNS3 specifications. The translation also requires the converter to add
a UUID for the Docker container. Furthermore, different Docker images are assigned to
the router and host.

The Topology Converter then assigns interfaces to the router and host. The number of
interfaces for a host is always capped to four. The amount of interfaces on the router corre-
sponds to a user configured amount, where transit interfaces are dedicated for connections
to other routers, and additional interfaces connect to hosts.

The GML file also defines the links between the routers. This information is stored in the
NetworkX graph. The Topology Converter now loops over all the edges in the NetworkX
graph and generates links accordingly. Additional links between host-router pairs are
generated as well. All the links were provided with an upper throughput limit of 10
Megabits per second. The naming convention defines which interface will be assigned to
which link, which is described in the next section 3.3.3.

Naming Conventions

The topology conversion and the FRR config generation require a consistent naming
convention throughout the process. Specifically, router and host names must be consistent,
and links have to attach to specific interfaces. The naming conventions are the following:

• Routers are named incrementally. Their name follows the structure ROUTER-X,
where X is an integer. Routers are named in ascending order starting from one.

• Hosts are also named incrementally. Their name generally follows the structure
ALPINE-X-Y. X is an integer that matches the connected router. Y is an inte-
ger used to enumerate the hosts. Hosts are incrementally enumerated within their
respective router connection. Since hosts and routers always occur as pairs, the
hostnames follow the structure ALPINE-X-1.
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• Interfaces on routers and hosts follow the pattern eth-X, where X is an integer.
Interfaces on a device are enumerated in ascending order and start at zero.

• Links between routers choose the next free transit interface on the source and des-
tination.

• Links between routers and hosts follow a specific schema. The host always chooses
its first free interface for a connection. The router selects the next free additional
interface.

These conventions are later used to generate unique IPv6 addresses for the router and
host interfaces. The specific details are described in the next section 3.3.4.

3.3.4 FRR Config Generation at Runtime

FRR routers record information about other connected devices in a config file named
frr.conf. The file contains basic information, such as the hostname of the router. All
generated interfaces are defined in the frr.conf file. Since this file changes depending on
the specific device that is configured, it must be generated at runtime during the start of
the Docker container.

For connections between two routers, no IPv6 address may be specified. The IPv6 address
configured on the loopback interface of the router follows the pattern fcff:X::1/32, where
X corresponds to the integer occurring in the router name converted to hexadecimal.

However, the host address deviates from the default configured IPv6 address. Thus,
interfaces connected to a host have to define custom IPv6 addresses. The chosen format
of the address is the following: fd00:X:Y::1/96, where X and Y correspond to the pattern
ALPINE-X-Y. Hosts follow a similar pattern when assigning their address: fd00:X:Y::2/96
and define a default route through fd00:X:Y::1/96. X and Y are converted to hexadecimal
digits to conform IPv6 specifications.

3.4 Traffic Generator

The Traffic Generator is used to test different topologies. It does this by loading the
network with traffic. Flows are defined to be specific traffic patterns sent from a source
host to a destination host. This section describes the functionality of the Traffic Generator
in detail.

3.4.1 MGEN vs. iPerf3

Earlier renditions of the Harmonia project used iPerf3 [53] for load testing the network.
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Unfortunately, iPerf3 proved to be insufficient for the planned tests. The main flaw with
iPerf3 is that each flow needs two separate iPerf3 instances to run. One instance must
run on the source host to send the traffic, and one instance on the destination host to
receive the traffic. This is not sustainable, stresses the network, and would have distorted
test results due to the encountered performance bottleneck.

MGEN successfully reduces this bottleneck. MGEN can listen to multiple flows arriving
at different ports with just one instance running. One MGEN instance is also capable of
sending multiple flows at once. Furthermore, to both listen to and send flows MGEN only
needs one running process per host. Lastly, TRPR eases the task of analyzing MGEN log
files to gather data.

Thus, if we compare MGEN to iPerf3, it better suits the problem we want to test and
does not distort data as much as iPerf3 would.

3.4.2 MGEN Script Files

MGEN script files enable a user to automate MGEN operations on running hosts. The
most important commands are the following:

• LISTEN : orders MGEN to listen for flows on a specified port range. Received flows
are logged to the console by default or logged to a log file.

• ON : orders MGEN to start a flow to a destination address with a specified port. A
user can then specify the message size in bytes and a traffic pattern to use.

• OFF : orders MGEN to shut down a flow.

All these commands can be timed to execute after a defined number of seconds. This
enables traffic to be sequentally started in the network [45].

Figure 3.6 shows a simple MGEN Script file. This file starts listening for incoming TCP
traffic on port 5001. After 10 seconds, MGEN starts a TCP flow to a destination address
sending two 1024 byte sized messages per second to the destination. Eventually, after 100
seconds of execution the flow is shut down.

3.4.3 Approach to Generate Script Files

The Traffic Generator generates an MGEN script file for each host in the topology. The
traffic is either synthetically generated by a random distribution, or provided as a list
of flows in a dedicated variable. The following subsections 3.4.3 and describe both ap-
proaches. For specific details regarding the synthesized traffic model, please refer to
section 4.1.
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# Star t l i s t e n i n g to tcp t r a f f i c
0 . 0 LISTEN TCP 5001

# Star t sending a f low ;
# Two messages per second o f s i z e 1024 bytes
10 .0 ON 1 TCP DST 127 . 0 . 0 . 1/5000 PERIODIC [2 1024 ]

# Shut down the f low
100 .0 OFF 1

Figure 3.6: A simple MGEN script file

Synthesized Traffic

Synthesized Traffic in this context refers to generated traffic that is not based on real-life
data. It is an easy way to test different scenarios. The best approach is to choose a
generation method that has proven to mimic real-life traffic sufficiently.

Given no Custom Traffic is present, the generator will always generate Synthesized Traffic.
Each host will send a flow to each other host. Thus, if n hosts are present in the topology,
approximately n2 flows will be generated.

Custom Traffic

Custom Traffic describes traffic that was not generated, but rather gathered from empirical
data. This is the preferred option between the two. The difficulty here arises in finding
complete data sets for a topology.

3.4.4 Fetching Data from Hosts

A separate script is used to fetch statistics from the host. This script uses TRPR to
analyze the MGEN log files. TRPR reports the received flows and the corresponding
received rate over time in kilobits per second. Furthermore, TRPR generates a Gnuplot
file to visualize the data. See Figure 3.7 for a sample plot. This data is then compared
with the expected traffic rate to calculate the traffic loss that occurred in the network.

PCEC reports statistics about link utilization and the maximum link load in the network.
With this link congestion in the network can be measured.
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Figure 3.7: A sample Gnuplot that TRPR generated



Chapter 4

Evaluation

This Chapter describes the methodology and results of experiments that were conducted.
The experiments aim to show (i) that the emulated test environment works as expected
and (ii) that Harmonias SR algorithm is able to improve QoS in a network. The following
sections describe the traffic model used for synthesized traffic 4.1, the network instance
that was used for testing 4.2.2, and the experiment itself 4.3.

4.1 Traffic Model for synthesized traffic

The Traffic Model for the synthesized traffic follows the approach of the Random Gravity
Model. This Model proved to closely approximate real-life traffic. The goal is to generate
a traffic matrix T of size n x n where (i) n is the number of hosts in the topology and
(ii) each entry T(i,j) represents the throughput of a flow sent from host i to host j.

The Random Gravity Model uses a random exponential distribution to distribute through-
put between hosts. It depends on the total traffic t that passes through the network. Let
pi and po be equal to a probability obtained by a exponential distribution. More specifi-
cally, pi defines the probability that traffic enters a node in the network and po defines the
probability that traffic exits a node in the network. Now, mathematically the Random
Gravity Model can be written as follows [54]:

T (i, j) = t ∗ pi(i)po(j) (4.1)

Algorithm 1 shows the generation of the traffic matrix.

4.2 Problem Sets

Problem sets for TBNs are rare and the described characteristics are difficult to find in
more common network topologies. Since the main focus of this thesis is to take the first

27
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Algorithm 1: Synthetic Traffic Matrix Generation

input : The number of hosts in the topology n
The total traffic in the network t

output: A traffic matrix T
ti ← exp(n);
to ← exp(n);
pi ← ti/sum(ti);
po ← to/sum(to);
for i = 0; i ≤ n; i← i+ 1 do

for j = 0; j ≤ n; j ← j + 1 do
if i ̸= j then

T (i, j)← t ∗ pi(i) ∗ po(j)
end

end

end

step towards automated network topology tests, common topologies are still used. Simple
tests with common topologies pave the path for future tests with more sophisticated
topologies. This section aims to describe the topology used for testing and provides
sources for more test data.

4.2.1 SNDlib

SNDlib is a collection of test data used for fixed network design. Its primary goal is to
provide the research community with realistic network design test instances. Furthermore,
its test data acts as a common benchmark for testing, evaluating, and contrasting different
network design models and algorithms [55].

The ABILENE topology is available on SNDlib and was used for testing the emulated
test environment.

4.2.2 The ABILENE network topology

All of the experiments were carried out with the ABILENE network topology. This
topology is a fixed telecommunication network representing a real-life network contained
in the USA. [55, Fig. 4.1] shows the positions and links of the different nodes in the USA.

The ABILENE topology was chosen as a first test instance. Firstly, real traffic data is
freely provided by the TOTEM project [56]. Further, other related work such as Tian et
al. conducted similar tests to test a SR algorithm.
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Figure 4.1: The ABILENE network topology pictured by [55]

4.3 Experiment with the ABILENE network topology

The first step was to convert the ABILENE topology from its GML form to a suitable
GNS3 project. Once opened in GNS3, connectivity between the hosts was tested and
ensured. The tests were conducted on a Personal Computer. The operating system was
a virtualized instance of the Ubuntu operating system. the Ubuntu operating system had
16 Gigabyte of memory available and was assigned four CPU cores.

Figure 4.2 shows the converted ABILENE topology opened in GNS3.The following sec-
tions describe the two experiments that were conducted.

Figure 4.2: The ABILENE topology opened in GNS3



30 CHAPTER 4. EVALUATION

4.3.1 Custom Traffic

The first experiment was conducted with custom ABILENE traffic fetched from the
TOTEM project [56]. The methodology and results are described here.

Methodology

First, the topology was started. This starts all the Docker container and generates the
FRR configuration for each router and host. Then, the PCEC was started on Router-5,
its output was logged to a log file.

Next, the custom traffic was started using the Traffic Generator 3.4. To stress the network
and cause congestion, the values in the ABILENE traffic were interpreted as Bytes per
second rather than bits per second. This was done to sufficiently stress the network
for Harmonia to optimize the routing. Traffic was started sequentially, with each host
waiting five seconds before starting a new flow. The test ran for 45 minutes. After the
test duration the MGEN log files were analyzed and fetched by TRPR. Furthermore, the
average link utilization and the maximum link utilization were reported via the PCEC.

This process had to be conducted two times. Once, with the Harmonia SR optimization
disabled. A second time, with the Harmonia SR optimization enabled. The gathered data
was compared to evaluate whether Harmonia SR optimization provided a benefit to the
network.

Results

Figures 4.3, 4.4 and 4.5 show the gathered test results. The total traffic loss in both test
cases was reported to be under one percent of the total traffic sent.

Figure 4.3: The aggregated traffic loss encountered in the network
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Figure 4.4: The reported average link utilization

Figure 4.5: The reported maximum link utilization

Conclusion

The maximum link utilization never reached one, which lead to little congestion in the
network. Nevertheless, Harmonias SR optimization was able to successfully reduce the
average and maximum link utilization.

Since the measurements regarding traffic loss are so little, they are not significant and
have to be disregarded.

Overall, in this test instance Harmonia successfully improved the QoS in the network.
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4.3.2 Synthesized Traffic

The second experiment was conducted with synthesized traffic according to the Traffic
Model 4.1. Its methodology and results are described here.

Methodology

The set up for the experiment essentially followed the same process as in experiment one.
However, now synthesized traffic from the Traffic Model was used to stress the system.
Four tests were conducted with increasing overall traffic in the network to limit test how
much traffic the network can handle. The first test was conducted with an overall traffic
rate of 1.000 Kilobytes per second, the second test with an overall rate of 10.000 Kilobytes
per second, the third with an overall rate of 100.000 Kilobytes per second and the last
test with an overall rate of 1.000.000 Kilobytes per second. Test runs were kept shorter
for these tests, with the total test duration only being 15 minutes.

These test runs were also conducted two times. Once with Harmonia SR optimization
enabled, and once with disabled optimization.

Results

Tables 4.1 and 4.2 show the lost traffic compared to the overall send traffic in percent.
The numeric traffic loss can be found in figure 4.6.

The average and maximum link utilization can be found in figures 4.7 and 4.8 respectively.

Table 4.1: Traffic loss without Harmonia optimization enabled

Kilobytes per second Traffic loss in percent
1.000 0.098%

10.000 23.8%
100.000 81.96%

1.000.000 97.7%

Table 4.2: Traffic loss with Harmonia optimization enabled

Kilobytes per second Traffic loss in percent
1.000 0.076%

10.000 42.97%
100.000 48.14%

1.000.000 98.7%
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Figure 4.6: The reported traffic loss for synthesized traffic

Figure 4.7: The reported average link utilization with synthesized traffic

Conclusion

These test runs show that the limits of the Harmonia SR optimization. However, the runs
conducted with traffic over 100.000 Kilobytes per second should be disregarded. There is
a high risk that the underlying virtual machine was overloaded and thus test results may
have been distorted. There is also the problem that such high traffic volumes overload
the links, which are capped to only 10 Megabits per second.

For runs with lower frequencies, Harmonia successfully managed to reduce the average link
cost. Though, in this test instance no significant change of the maximum link utilization
can be seen.

Conclusively, the data provided by experiment one has a higher quality than the one pro-
vided here. Although, this test instance shows that further tests are needed to sufficiently
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Figure 4.8: The reported maximum link utilization with synthesized traffic

validate the test results.

4.3.3 Further Topologies suited for future Tests

For future tests, all of the topologies used by Tian et al. would be useful to test [57]. Their
test instances include topologies that contain more nodes than the ABILENE topology.
These topologies were too big to test during this thesis, as a personal computer does not
have enough ressources to successfully test them. Further, the smaller topologies could
be tested as well to validate the results from experiment one. This was not done here due
to time constraints.



Chapter 5

Summary and Conclusion

TBNs provide a diverse set of challenges to overcome. SDNs change major networking
paradigms and might provide improvements for MANETs. Furthermore, a SDN controller
can report the overall efficiency of a network. SR provides efficient routing algorithms
and might synergize with SDNs.

This thesis investigated possibilities to automate tests for these technologies. It did this by
investigating related work and summarizing their used test environments. This showed
that most papers conducting tests on TBNs use custom built topologies and manually
configure and test them. Further, this thesis produced two products. The first one being
a fully implemented Topology Converter that can convert arbitrary topologies in the GML
format to GNS3 topologies. The second one being a Traffic Generator that can be used
to stress test these networks.

To asses the state of the implementation, multiple tests with the ABILENE topology were
conducted. These tests mostly show that the testing environment works and provide some
insights into the efficiency of the Harmonia SR optimization algorithm.

5.1 Future Improvements

The current testing environment works well to test fixed telecommunication networks,
such as problem instances from SNDlib. The networks can be sufficiently loaded to ob-
serve improvements when enabling the Harmonia SR optimization algorithm. Specifically,
test results show that Harmonias SR optimization can successfully lower average link uti-
lization.

However, the current test environment does not yet successfully emulate the conditions
TBNs experience. Further, the generation of synthetic traffic only allows one traffic model
at the moment. The Traffic Generation itself only provides static traffic, which does not
mimic real-life scenarios encountered in TBNs. The testing environment will have to be
updated once Harmonia FRR can handle dynamic traffic. Also, since TBNs topology data
is rare, a dataset for testing might be created specifically for them.
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The experiments that were conducted show results, but these are ultimately not verifiable
on their own. Further tests would be needed to obtain sound results regarding the Harmo-
nia SR optimization. A further step would be to test topologies that contain more nodes
and edges. For this, more processing power would be needed as to not distort potential
results.
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JSON JavaScript Object Notation
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Appendix A

Emulated Testing Environment source
code

The source code for the emulated testing environment is not publicly available. It contains
confidential information that only members of the Communication Systems Group are able
to access. The source code was handed in with the thesis and contains documentation on
how to use the Topology Converter and the Traffic Generator.
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Appendix B

Additional Files

The following list of files is available under the following link.

1. Bachelor thesis as pdf (optimizing-routing-in-software-define-battlefield-networks.pdf)

2. The abilene dataset as a GML file (abilene.gml)

3. The abilene dataset as a GNS3 project (abilene.gns3)

4. The gathered test data and plots used in the evaluation section (Data-and-plots.zip)
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