
Master’s Thesis
September 14, 2022

CLI-Tutor
Can interactive learning make the command line

more approachable?

Qasim Warraich
of Lahore, Pakistan (18-787-796)

supervised by
Prof. Dr. Harald C. Gall

Dr. Carol V. Alexandru-Funakoshi

software evolution & architecture lab

Master’s Thesis

CLI-Tutor
Can interactive learning make the command line

more approachable?

Qasim Warraich

software evolution & architecture lab

Master’s Thesis

Author: Qasim Warraich, qasim.warraich@uzh.ch

URL: gitlab.com/qasimwarraich/cli-tutor

Project period: 2022-03-14 - 2022-09-14

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to acknowledge my thesis advisor Dr Carol V. Alexandru-Funakoshi for his continual
support, encouragement and effortless management of competing time zones throughout this
thesis work. Additionally, I would like to thank my dear friends Dominique and Jasmin for their
design advice, testing support and encouragement. Lastly, I would like to express my gratitude
to all the participants of the user study associated with this thesis work. Thank you for your time,
valuable feedback and kind words.

Abstract

Despite the arguably dated appearance, difficult learning curve and practical non-existence in
the modern personal computing space, Command Line Interfaces (CLIs) have more than stood
the test of time in the software development world. There are a multitude of extremely popular
tools and applications that primarily focus on the command line as an interaction medium. Some
examples include version control software like git, compilers and interpreters for programming
languages, package managers and various core utilities that are popular in areas such as software
development, scripting and system administration. Command line interfaces are also utilised
in areas outside of software development. For example, the infamous Bloomberg Terminal in the
financial sector and in general computing applications such as email e.g. mutt, neomutt and text
editing e.g. Vim, Neovim, Wordstar.

As mentioned before, the use of the command line as an interaction paradigm has effectively
disappeared from a mainstream personal computer usage perspective. This reality contributes
greatly to the intimidation factor and learning difficulty for those interested in getting into soft-
ware engineering or system administration. This unfamiliarity, paired with the inevitability of
usage of CLIs in the development space, highlights a need to make the command line more ac-
cessible to new users for whom text-based interaction with their computer is an alien concept. In
recent years, interactive learning tools utilising features such as sandboxed environments have
been gaining in popularity and have the potential to be a suitable medium for learning command
line basics through actual usage, examples and practise.

In this work, we have created just such an interactive tutoring tool tailored for the command
line. CLI-Tutor is a forgiving CLI application that aims to teach topics such as shell basics and
Unix-like core utility usage through the use of guided lessons with interactive examples and feed-
back.

Contents

1 Introduction 1
1.1 Problem Description . 1

1.1.1 Solving The Problem . 1
1.1.2 Research Questions . 2
1.1.3 Why CLIs? . 2

1.2 Introducing "CLI-Tutor" . 3
1.3 Thesis Outline . 5

2 The CLI-Tutor Tool 7
2.1 Overview . 8

2.1.1 Curriculum . 8
2.1.2 Lesson Design . 9
2.1.3 Usability Considerations . 10
2.1.4 Safety Considerations . 13

2.2 Web Application . 13

3 Design And Implementation 17
3.1 First Attempts . 17
3.2 Tools and Libraries . 18

3.2.1 CLI-Tutor . 18
3.2.2 Web Application . 18
3.2.3 Server Infrastructure . 19

3.3 Features and Considerations of CLI-Tutor . 19
3.3.1 Why Go? . 19
3.3.2 Shell Environment . 19
3.3.3 Lessons . 20
3.3.4 Lesson Parsing . 21
3.3.5 Embedded Files . 23
3.3.6 User Interface . 23
3.3.7 Validation . 25
3.3.8 Logging . 26

3.4 Web Application . 26
3.4.1 Frontend . 26
3.4.2 Backend . 27
3.4.3 Docker Daemon . 27
3.4.4 CLI Only . 27

vi Contents

3.4.5 Documentation Website . 27
3.4.6 Monitoring . 27

3.5 Extending CLI-Tutor . 28

4 User Study 31
4.1 Methodology . 31

4.1.1 Interactive versus Non-interactive . 31
4.1.2 Structure . 31

4.2 Participants . 32
4.2.1 Technical Experience . 32
4.2.2 Feelings about the CLIs . 34
4.2.3 CLI Usage . 36
4.2.4 Learning Preferences . 38

5 Results 41
5.1 Engineering Results . 41

5.1.1 Relevant Research Questions . 42
5.2 User Study Results . 43

5.2.1 Evaluation section . 43
5.2.2 Discussion . 43
5.2.3 Intimidation Factors . 45

6 Reflections and Related Work 49
6.1 Related Work . 49
6.2 Improvements . 49
6.3 Future Work . 50

7 Conclusion 53

8 Appendix A: User Study Survey Questions 59
8.1 Survey Questions . 59

8.1.1 User Familiarity Questions . 59
8.1.2 Evaluation . 61
8.1.3 Feedback . 62

8.2 Parser . 64

Contents vii

List of Figures
1.1 Screenshot of vimtutor . 3
1.2 Screenshot of CLI-Tutor . 4

2.1 Screenshot of CLI-Tutor menu screen. 11
2.2 Screenshot of the CLI-Tutor lesson view showing the task tracker, feedback mecha-

nism and an in-built helper command. 12
2.3 Screenshot of CLI-Tutor running in a browser. 14
2.4 Screenshot of CLI-Tutor showcasing the usage of colours. 14
2.5 Screenshot of the CLI-only version. 15
2.6 Screenshot of the welcome screen of the documentation website, linking to the CLI-

only version. 15
2.7 Screenshot of the documentation website showcasing the light mode. 16

3.1 Screenshot of the progress tracker and interactive task feature. 20
3.2 Screenshot of a CLI-Tutor lesson showing values interpolated into the lesson. . . . 22
3.3 Screenshot of a hidden file created by the CLI-Tutor as an interactive example. . . . 23

4.1 The distribution of programming experience amongst study participants. 33
4.2 University level Computer Science experience amongst study participants. 34
4.3 Chart depicting interest in integrating CLIs more into day-to-day computer use. . 35
4.4 Chart depicting the self-reported comfort level with CLIs in a Likert-style question. 36
4.5 Chart depicting the frequency of command line usage amongst participants. 37
4.6 Chart depicting the frequency of command line usage amongst participants for

personal tasks. 37
4.7 Chart depicting the preferences in learning mediums amongst participants. 38
4.8 Chart depicting the self-reported effectiveness perception of reading. 39
4.9 Chart depicting the amount of participants with previous interactive learning ex-

perience. 39

5.1 Chart depicting the evaluation section results of the interactive and non-interactive
participant groups. 45

5.2 Charts comparing the post lesson intimidation levels between the two study groups. 46
5.3 Charts comparing the post lesson future CLI usage impressions. 47

8.1 Custom Markdown Parser . 65

List of Tables
5.1 Summary of questions answered correctly by method during the evaluation phase. 44

List of Listings
2.1 Output of the help flag of CLI-Tutor running in a docker container. 7
3.1 Data structures for a Lesson and a Task within a Lesson. 20
3.2 Models used to build the user interface of CLI-Tutor. 24
3.3 Specification for Markdown lesson files. 29

viii Contents

Chapter 1

Introduction

1.1 Problem Description
Command line interfaces have been with us since the 1950s [1]. The rise of command line inter-
faces was closely coupled with the rise of time-sharing computer systems. Command line inter-
faces and time-sharing systems greatly shortened the feedback loop of earlier batch computing
systems and allowed programmers to be able to modify their programs in near real time. Time-
sharing systems also introduced the concept of a shell. A shell, a term coined by Louis Pouzin [2],
is a program that allows for interaction with the operating system via textual commands [3].
The Multics [4] operating system pioneered the concept of operating system shells. The concept
proved to be extremely influential and directly influenced the creation of the Thompson shell for the
UNIX [5] operating system. The UNIX shell has arguably had the greatest influence on command
line interfaces as we know them today, as most modern shells are descendants of the original
UNIX shell [1].

The command line is still a popular interaction medium for tooling in the areas of software
engineering and system administration [6,7]. However, the usage of the command line in the gen-
eral personal computing space has practically disappeared [8]. This is especially true for younger
individuals, whose very first exposure to computers has been working with Graphical User In-
terfaces (GUIs). This schism in interaction mediums causes issues when the same younger indi-
viduals strive to enter technical fields such as software development or system administration.
The issue is further propagated by the fact that the command line is its own distinct interaction
paradigm based entirely on writing and reading text. This can mean that the usage of traditional
learning resources such as documentation and manuals might prove difficult to translate into ef-
fective usage without active textual interaction practise on the part of the learner. On the other
hand, jumping straight into practising on the command line comes with its caveats. The shell
can be an unforgiving tool for a novice user as it is very sensitive to syntax and often provides
feedback that is difficult to understand for novice users. The shell also interacts directly with
the operating system and does not require confirmation for certain destructive tasks such as file
deletion.

1.1.1 Solving The Problem
The goal of this Master’s thesis is to develop an interactive learning tool that simultaneously aims
to address the previously introduced issues of lack of exposure to textual interaction, the novice
unfriendly environment of the shell and the difficulties of traditional learning methodologies. The
tool should provide a more forgiving experience than using the shell directly whilst still being a

2 Chapter 1. Introduction

faithful representation of a system shell. Concepts learned during the interactive tutorials should
be directly transferrable to a standard Unix-like shell. Furthermore, the tool should be easy to
use and encourage experimentation in order to augment the learning experience and in order to
better exploit the advantages offered by interactive learning systems.

1.1.2 Research Questions
In this work, we set out to address the following research questions:

RQ1 Are there identifiable patterns of difficulty when it comes to adopting CLIs? Can the "in-
timidation factor" be pinned down?

RQ2 How should an interactive learning tool be designed to mitigate the difficulty and intimi-
dation factor of learning CLIs?

RQ3 How can a "forgiving" shell be implemented on top of an existing shell to enable the transi-
tion from learning to real-world usage?

RQ4 Is the interactive tool more effective than text-based learning methods?

RQ5 Are novice CLI users more likely to continue using CLI interfaces after using such a tool?

1.1.3 Why CLIs?
Before introducing our solution to the stated problem, we would like to discuss the motivations
behind using command line interfaces and lowering the barrier of entry to their use.

Command line interfaces are still widely employed and being developed for a variety of uses.
Benefitting from their simplicity, Command line interfaces allow for comparatively rapid de-
velopment and the implementation of features when compared to their graphical counterparts,
which would require a much more detailed and complicated implementation and more challeng-
ing user interface considerations. Command line programs also further benefit from simplicity of
their textual nature when it comes to their ability to work with other programs. The simple notion
of textual input and output being the main forms of interaction allow for an extremely flexible in-
terface1 for chaining tools together. This composition of programs is referred to as piping and is a
hallmark element of what is considered to be the UNIX Philosophy [9]. Since most command line
applications share this philosophy of textual input and output there isn’t the need for bespoke
mediums of communication to be developed and features can be more effectively shared across
programs.

Since CLI programs are run within a shell, which has direct access to the underlying operating
system, a tight integration between program and system is formed. This tight coupling, paired
with the low system resource requirements, the ability to specify inputs and arguments via text
and modify program behaviour upon instantiation with flags opens the room for powerful batch
processing capabilities, easy automation and the ability to deal with large amounts of input and
output efficiently.

Beyond the ease of development and composition, there are user interface elements of com-
mand line interfaces that even influence widely used graphical tools. Command line interaction
features can commonly be found implemented into the text entry fields of search engines [10] and
chat applications. An example of this is the ability to use the up arrow to edit the previously sent
message or the ability to use special syntax, like exclamation points, to influence search results.

1In this case "interface" describes a medium through which programs can communicate, not a user interface.

1.2 Introducing "CLI-Tutor" 3

The learning curve of such command line interfaces is however a strong barrier to widespread
adoption and enjoyment of the benefits command line interfaces may bring. For new users, this
learning curve is made steeper by the paradigm shift in the personal computing space towards
graphical user interfaces. In following section, we will introduce the interactive learning tool, CLI-
Tutor, developed as a potential solution that addresses the steep learning curve of the command
line through interactive lessons and a sandboxed shell environment.

1.2 Introducing "CLI-Tutor"

Figure 1.1: Screenshot of vimtutor

The CLI-Tutor tool is an interactive shell-like tutorial program aimed at making the command
line more approachable. We draw inspiration from the vimtutor [11] (see: Figure 1.1) utility ship-
ping alongside the popular terminal-based text editor Vim. Vimtutor is an interactive tutorial for
the Vim text editor. It is one long guided lesson presented as a text file. The file itself contains the
basic instructions for editing and creating text within Vim and is intended to be modified while
proceeding through the lesson. This "learning by doing" approach presented itself as a very suit-
able approach for a command line tutorial application. Much like with Vim, where one must learn
a new paradigm of modal editing. When novices learn the command line they are not only taking
on new information about shell usage but also learning an entirely unfamiliar (textual) interac-
tion paradigm. Newer versions of vimtutor are even more interactive. In the version included in
the popular fork of Vim called Neovim [12], lines intended to be edited by the user also provide
feedback regarding correctness in the form of green arrows and red crosses.

The CLI-Tutor tool introduces users to topics such as shell basics and Unix-like core utility
usage through a series of interactive examples. The tool aims to relax the steep learning curve
associated with the command line by leveraging interactive examples and a feedback mechanism
to instruct and educate the user about the current stage of the lesson and provide some feedback
based on the inputs of the user. The core of CLI-Tutor is contained within a command line ap-

4 Chapter 1. Introduction

plication written in Go2 and serves as a standalone application. However, in order to make the
learning experience safer for the user and to encourage exploration, the CLI application has been
wrapped into a web application to form a sandboxed environment that exposes a terminal over
the web. This means the user can use the tutorial application without fear of causing their own
system any harm.

The CLI-Tutor application is fully open source and also comes with its own custom parser and
structure for specifying lessons based on Markdown3 files. This means that the material covered
by the lessons can be easily contributed to and distributed, making the tool easily extensible.

Figure 1.2: Screenshot of CLI-Tutor

2Go programming language: https://go.dev/
3A popular plain text markup language.

https://go.dev/

1.3 Thesis Outline 5

1.3 Thesis Outline
Over the next few chapters, we will discuss and show the design, implementation and overall
goals of this solution. In Chapter 2, the semantic aspects of the CLI-Tutor application and asso-
ciated web application will be discussed. We will discuss the design and implementation of the
solution in Chapter 3. Chapter 4, will discuss the methodology and introduce the participants
of the user study conducted during this Master’s thesis work. Our findings will be discussed in
Chapter 5. In Chapter 6, we will evaluate and reflect upon the solution. We will consider ex-
isting approaches and make suggestions regarding building upon and refining CLI-Tutor, before,
concluding in Chapter 7.

Chapter 2

The CLI-Tutor Tool

1 cli-student@3bc86f9090f9:~/tutor$ cli-tutor -h
2

3 _ _ __ __
4 _____/ (_) / /___ __/ /_____ _____
5 / ___/ / /_____/ __/ / / / __/ __ \/ ___/
6 / /__/ / /_____/ /_/ /_/ / /_/ /_/ / /
7 ___/_/_/ __/__,_/__/____/_/
8

9 A simple command line tutor application that aims to introduce users to the
10 basics of command line interaction.
11 Web version is available at https://clitutor.chistole.ch
12

13 Usage:
14 cli-tutor [flags]
15 cli-tutor [command]
16

17 Available Commands:
18 completion Generate the autocompletion script for the specified shell
19 help Help about any command
20 info Prints information about the tool and log collection
21 repo Prints a url to the git repository for this tool
22 version Print the version number of cli-tutor
23

24 Flags:
25 -h, --help help for cli-tutor
26 -n, --no-upload-log Do not send a copy of the log to the developer
27 -x, --no-welcome Do not show welcome message when entering tutor
28

29 Use "cli-tutor [command] --help" for more information about a command.

Listing 2.1: Output of the help flag of CLI-Tutor running in a docker container.

8 Chapter 2. The CLI-Tutor Tool

CLI-Tutor is a command line application written in the Go programming language. It is an
interactive tutorial application focused on introducing novices to the Linux command line en-
vironment. The application is intended to be a forgiving but faithful representation of a shell
running Bash1. In this chapter, we will discuss the semantic design considerations and choices
made during the development of CLI-Tutor.

2.1 Overview

2.1.1 Curriculum
CLI-Tutor is intended to be used with zero prerequisite knowledge of the command line. To
achieve this low barrier to entry, lessons are designed from the perspective of catering to a com-
plete novice user. The curriculum consists of lessons that introduce the very basics of textual
interaction and shell usage. As of writing, CLI-Tutor has 5 full lessons implemented as a proof of
concept and serve as the curriculum in the user study conducted in this thesis work. CLI-Tutor is
designed to be easily extensible with new lessons being easy to contribute. How this is achieved
will be discussed in Chapter 3.

Summary of implemented lessons

Basics of Textual Interaction. This lesson covers the very foundational concepts of textual
interaction. The user is introduced to the term CLI and explained what a shell is using an ASCII
text diagram. The user is then introduced to the concept of issuing a command. To sow interest,
the user is then asked to execute some commands to illustrate that the terminal is really interacting
with their operating system. The users are asked to use the curl command to pull down a weather
report from wttr.in2 as an example of what is possible with the command line. Furthermore,
the user is introduced to some important in-built commands of CLI-Tutor and taught how to
clear the screen. Another feature introduced to the user is zen-mode, a feature that prevents the
screen from being cluttered with output of previous commands to prevent the user from getting
overwhelmed. This feature is activated by default in lesson 1 but is then deactivated, unless
explicitly set, for the remainder of the curriculum.

Getting more familiar with the shell. This lesson jumps deeper into the concept of issuing
commands and the "grammar" behind a command. To make this more intuitive the metaphor of a
sentence is used, adapted from the documentation of the cobra command line tool library [13]. The
lesson introduces users to fundamental concepts such as sub-commands and flags. The user is
then asked to perform a series of tasks involving the wc word counting core utility. These actions
are performed on a sample file that CLI-Tutor creates when launched and serves as a running
example throughout the tutor.

Basics of the file system and practising commands. Lesson 3 is all about the file system and
file system operations. The user is first introduced to the prompt and explained all the different
sections of the prompt line. The prompt in CLI-Tutor is modelled after the default prompt of
many popular Linux distributions (see: Listing 2.1, line 1), consisting of a username, hostname
and current working directory path. The user is introduced to the idea of a hierarchical tree-like
file system and is taught how to navigate around it. The ls command is also discussed and used

1Bourne Again SHell: https://www.gnu.org/software/bash/
2An online weather service that offers a command line friendly output.

wttr.in
https://www.gnu.org/software/bash/

2.1 Overview 9

to illustrate the concept of hidden files. CLI-Tutor also includes a hidden file that it places in the
directory the tutor is launched from to help illustrate the concept of hidden files. All the example
files included in lessons are deleted upon exiting the tutor. This lesson concludes with a long
example for the user to try out that includes all the concepts discussed in the lesson.

Shell shortcuts and tricks. This lesson is aimed to be a bit more fun and introduces the user
to some tricks and shortcuts available in the shell and the readline [14] library used for input in a
bash shell environment. The user is introduced to the concept of a shell history file and also of the
reverse history search feature with Ctrl+r. The cancel Ctrl+c command is introduced as well as
the !! operator. As a final step, tab completion is introduced.

Helping yourself. This is the last lesson of the current version of CLI-Tutor and covers how
a user can go about seeking help at the command line and helping themselves. The concept
of pagers and some important keybindings of the less pager program are first explained before
introducing the man command to the user. Users are also taught about help flags and encouraged
to check out the help command of CLI-Tutor, shown at the very beginning of this chapter (see:
Listing 2.1).

2.1.2 Lesson Design
Lessons are designed to cover one topic per lesson and consist of a short introduction to the con-
cept before jumping into directly applying the subject in a series of interactive tasks. Each lesson,
typically, also starts with a very short refresher of the last lesson and ends with a recap of the
learnt commands. The lessons are designed to be guided but to leave some room for exploration
for the user. CLI-Tutor also has some running examples that are included in the form of files that
are created upon launching the program and deleted when the program exits. These files are in-
cluded for the purpose of augmenting the tasks and to allow the user to directly apply commands
rather than creating an environment to support their learning themselves.

A lesson consists of a series of tasks. Some of these tasks are purely educational and aim to
teach the concept being covered in the lesson and some tasks are interactive. Generally, each task
tries to build upon the previous. While writing the lessons, there was a deliberate emphasis on
keeping the text short and engaging. The goal was to focus on interactivity and not to provide
long text passages for the user to read. In order to achieve this succinctness, the use of examples,
metaphors and formatted text to convey ideas was crucial.

Lessons also contain two additional features:

Vocabulary. The vocabulary of a lesson is the set of permitted commands in that lesson. This
is primarily designed as a safety feature to prevent users from issuing commands incorrectly or
bringing damage to their systems. The vocabulary consists of commands that will be covered in
the current lesson and also commands previously covered in the tutor.

Expected values. Expected values are what drive the interactivity of CLI-Tutor. Expected val-
ues prompt the tutor to consider the current task as interactive and thus the tutor blocks ad-
vancing to the next task unless the interactive task is completed successfully. The expected value
pertains to the expected result of performing a certain command or action. This expected value
can be specified in three different ways (see: Listing 3.3). Expected values could be a constant val-
ues such as a string or number, they could be the result of some function call and even a runtime
system call.

10 Chapter 2. The CLI-Tutor Tool

2.1.3 Usability Considerations
As previously mentioned, lessons are designed with no prior knowledge assumption. In addition
to the curriculum, a number of considerations regarding the usability and design of the tool also
had to be taken to maintain a low barrier to entry.

User Interface

In general, the user interface of CLI-Tutor is designed to be very simple and uncluttered. Strictly
speaking, despite aiming to be an application that mimics a shell environment, CLI-Tutor is a
TUI or "Text User Interface" application. A TUI application is a command line application that
typically takes control of the entire terminal window and may contain some graphical elements.
In the case of CLI-Tutor, the menu view contains a graphical list that is "hoverable" and clickable.
The lesson view also takes control of the entire terminal window to render text to the screen.
Special consideration had to be given to the user interface to make it not only new user-friendly,
but also a fair representation of a terminal environment. Unlike tutorial software designed for
programming languages, which tend to not have their own distinct environment, the shell is very
much its own environment. Helping a user become familiar with the shell environment is crucial
if the intimidation factors surrounding command line interfaces are to be overcome.

Menu view. The menu view is what the user is greeted with upon launching the program. It
lists the lessons in a menu which the user can use to select and start a lesson (see: Figure 2.1). The
menu view also has a help bar at the base with the keyboard shortcuts illustrated. The menu view
allows for filtering the lessons by using the search functionality. Menu items display the title and
description of a lesson, which are parsed directly from the Markdown based lesson files.

Lesson view. The lesson view is where the shell environment is reproduced. It is designed to
look exactly like what interacting with the shell in a terminal looks like but with some added cues
from the lesson. These cues include the current task, its instructions and any feedback about the
last input of the user (see: Figure 2.2). The lesson view is also running a Go readline library to pro-
vide a user input mechanism essentially identical to that of a normal shell. The expected shortcuts
all work as they should, but certain controls such as Ctrl+d, Ctrl+z and the Ctrl+c interrupts are
purposely captured and ignored in order to not close the program unexpectedly.

Mouse support. To make the program more usable for individuals used to GUIs, basic mouse
support had to be implemented in CLI-Tutor. Mouse support is more powerful in the menu view
of CLI-Tutor than what would be common in most TUI applications. The user can hover to high-
light and click to select a lesson. The hitboxes for the menu items are also precisely calculated
based on the text rendered to offer a consistent and GUI-like mouse experience. In the lesson
view, mouse support is implemented to a degree but still retains the goal of providing an hon-
est shell-like experience. The user can access the scrollback buffer and use the mouse to select
and copy text using the keyboard shortcuts of their terminal emulator. In the web version, the
right-click menu that is native to the browser is also available.

Keyboard shortcuts. As shown in Figure 2.2, some inbuilt commands available to the user, are
not shell commands. For example, the commands command prints all the available commands,
also known as the lesson’s vocabulary, to the screen. There are other special commands in the
lesson view that allow the user to navigate forward and backwards through the lesson, quit the
lesson and toggle zen-mode.

2.1 Overview 11

Figure 2.1: Screenshot of CLI-Tutor menu screen.

12 Chapter 2. The CLI-Tutor Tool

Figure 2.2: Screenshot of the CLI-Tutor lesson view showing the task tracker, feedback mechanism and an
in-built helper command.

2.2 Web Application 13

Zen mode. This is a special output printing mode of the lesson view. While not something
available by default in a shell, this feature aims to prevent the user from being overwhelmed
by long textual output alongside the lesson instructions. When zen-mode is activated, the screen
clears itself before the output of every command. This has the effect of leaving only the latest
output and task on the screen. This feature is activated by default in the very first lesson but then
deactivated unless specifically set once the user has been taught about clearing the screen using
the clear command.

Feedback colouring. CLI-Tutor utilises colour to differentiate different elements of the lesson.
For example, a cyan colour is used to indicate commands, green is used for the task tracker, yellow
is used for notes or information about key bindings and finally success and failure feedback is also
coded in red and green respectively (see: Figure 2.2 and Figure 2.4). In addition to colour, text
formatting elements such as the use of bold and italic text is also utilised to form visual hierarchies
and to attract the user’s attention.

2.1.4 Safety Considerations
Fake jail warden. To minimise the disruptions caused by file permissions issues that may be
completely unfamiliar to the user, CLI-Tutor uses a fake jail to prevent the current working direc-
tory from being moved above the home folder of the user.

Sandbox. In addition to permissions issues which are merely an inconvenience, accidental file
deletion or other potential mistakes during a file system lesson can result in permanent data loss.
To mitigate this risk and to create a safe "sandbox" for users to use the application. The simplest
way is to run the application in a docker [15] container. However, this greatly increases the barrier
of entry to using CLI-Tutor. To make the tool accessible and easy to distribute a web application
to serve instances of docker containers running CLI-Tutor was created.

2.2 Web Application
While the core component of CLI-Tutor is a command line application it does have an accompa-
nying web application (see: Figure 2.3). The purpose of creating this web application was briefly
discussed in the preceding section. The web application was the medium through which the user
study was conducted. Two versions of the web application were created to support the two user
groups in the user study (see: Chapter 4). One version contains the CLI-Tutor program and the
second "CLI-only" version (see: Figure 2.6) serves to provide a sandboxed Linux shell to individu-
als participating in the user study. Additionally, also to support the User Study a documentation
static website (see: Figure 2.7) was also created alongside the web application. The technical
details of the web applications will be discussed in Chapter 3.

14 Chapter 2. The CLI-Tutor Tool

Figure 2.3: Screenshot of CLI-Tutor running in a browser.

Figure 2.4: Screenshot of CLI-Tutor showcasing the usage of colours.

2.2 Web Application 15

Figure 2.5: Screenshot of the CLI-only version.

Figure 2.6: Screenshot of the welcome screen of the documentation website, linking to the CLI-only version.

16 Chapter 2. The CLI-Tutor Tool

Figure 2.7: Screenshot of the documentation website showcasing the light mode.

Chapter 3

Design And Implementation

In this chapter, we will dive into the details surrounding the engineering of the CLI-Tutor tool, its
supporting web application and the online documentation tool. We will first start by sharing the
approaches of some of our early prototypes. We will discuss all the considerations and features
that shaped the architecture of CLI-Tutor. Additionally, the technical stack that CLI-Tutor is built
on will be introduced. This includes all technical aspects of this work ranging from the core com-
mand line application, CLI-Tutor, to the servers and tools required to build our web applications
and perform our user study. A detailed discussion of the technical aspects around some of the
most important features in the current version of CLI-Tutor will then follow.

3.1 First Attempts
In the early stages of this thesis work, while attempting to model the problem and develop the
requirements for a technical solution several prototypes were created. The early prototypes were
written in Python [16]. It was clear from an early stage that readline would be a mandatory element
of any approach we would take. Early attempts broadly focused on two different approaches:

• An Expect [17] like approach. Expect is an add-on to the Tcl scripting language and is a way
of writing scripted interactions with sub-processes. An Expect script can be used to launch
a sub-process and communicate with it, for each action expected results can be specified.
Expect scripts are popular for feigning user input and for testing or combining separate ser-
vices. It is designed entirely with command line applications in mind and thus seemed a
worthwhile approach for CLI-Tutor, especially because we wanted to design lessons which
had expected values and interactive exercises. Two prototypes were built using Python and
Go. The plan was to use Expect to interact with a spawned Bash sub-process. While ini-
tially promising, the Expect approach was abandoned due to limitations in the libraries and
concerns around being able to build an appropriate user interface to wrap Expect.

• Creating and managing PTYs1. Prototypes integrating readline implementations were built
using this approach with some success. However, this approach necessitated intricate low-
level programming and raw communication with the terminal. It was eventually deemed
too complicated and operating system specific to be appropriate for CLI-Tutor.

Other attempts included writing a GUI application to create a fake terminal environment.
However, it was decided that a compiled command line application would be most appropriate

1PTY refers to a Linux pseudoterminal, the low-level interface through which terminal data flow is implemented in
Linux.

18 Chapter 3. Design And Implementation

as it would allow us to capitalise on the existing interface of the user’s terminal and the wealth of
libraries and tools available to facilitate command line application development. Creating a mock
shell environment and using operating system native system calls was deemed the most suitable
approach for CLI-Tutor.

3.2 Tools and Libraries

3.2.1 CLI-Tutor
• readline is the Go port of the gnu readline [14] line editing software. It forms the backbone

of the lesson view in CLI-Tutor.

• bubbletea is Go framework for building stateful terminal applications using the Elm Archi-
tecture2. bubbletea is a part of the charm3 project, which is a host of frameworks and li-
braries aimed at modernising the command line interface. The project also includes a host
of smaller libraries and extensions designed to be used with bubbletea applications. bubbletea
is the TUI framework used to manage switching between the menu and lesson views in
CLI-Tutor.

– bubbles is a collection of UI components to be used alongside bubbletea.
– bubblezone is a community-contributed extension to bubbles components that allows for

zones and hitboxes to be established in the user interface.
– lipgloss is a styling and layout toolkit for bubbletea applications.

• glamour is a terminal Markdown rendering library also created by the charm team. It is used
to display lesson tasks during a lesson in CLI-Tutor.

• cobra is a very popular CLI framework that is used in CLI-Tutor for feature flags, the help
menu and for managing start-up and clean-up behaviours.

• goldmark is a Markdown parser written in Go. It is used in CLI-Tutor for parsing lesson files
into data structures that drive the lesson interface and also for populating the menu with a
list of available lessons.

• termenv is a Go library used for managing terminal colours and environments. It is used in
CLI-Tutor for maximising compatibility across terminals, producing colours and for certain
terminal controls such as screen clearing.

3.2.2 Web Application
• Svelte is a JavaScript/TypeScript frontend framework. It was chosen to be the frontend for

our web application due to its simplicity, low learning curve and bundled output approach.

• Vite is the JavaScript bundler used alongside Svelte to package the project for the web.

• XtermJs is a terminal component for frontend web applications. It is the default terminal in
the exceptionally popular text editor VSCode4. The terminal component is used alongside
it’s attach add-on to establish a connection over WebSockets to a docker container. This is
how sandboxed environments are provided over the web to users.

2More on the Elm Architecture here: https://guide.elm-lang.org/architecture/
3More on the charm project here: https://charm.sh
4More about VSCode here: https://code.visualstudio.com/

https://guide.elm-lang.org/architecture/
https://charm.sh
https://code.visualstudio.com/

3.3 Features and Considerations of CLI-Tutor 19

• Fiber is the HTTP framework used to create the backend for our web application. It is pri-
marily used as a proxy between the frontend and the docker daemon running on our backend
server.

• Docker SDK is a first party Go Software Development Kit (SDK) for interacting with the
docker daemon. It was chosen for interoperability with the backend HTTP framework which
also uses the Go programming language.

• MkDocs is an industry-standard static site generator for documentation websites. It was
used to create a documentation website for the user study conducted in this work.

– MkDocs-Material is an extension to MkDocs providing an attractive modern theme and
some additional visual elements to the static documentation website created for CLI-
Tutor.

3.2.3 Server Infrastructure
• Linode is a cloud service provider offering low-cost Virtual Private Servers. Two servers

were used to host the web application portion of CLI-Tutor.

• Nginx is a high performance web server. It was utilised on both our servers to serve as a
reverse proxy to allow communication with docker and our backend API.

• Gitlab CI/CD is a Continuous Integration and Continue Delivery service used for testing,
building and deploying our web application.

• Grafana Cloud is a monitoring service. It was used in CLI-Tutor to monitor uptime and for
log agglomeration from our servers to ensure everything was running well.

3.3 Features and Considerations of CLI-Tutor

3.3.1 Why Go?
The Go programming language was selected for CLI-Tutor for numerous reasons. Go is a popular
language for writing command line applications, with numerous modern CLI applications such
as the GitHub CLI [18] and docker CLI [15]. This popularity in CLI applications also has the side
effect of there being a wide selection of libraries available for implementing CLI interfaces (see:
section 3.2). In addition to good tooling, Go programs are compiled and thus easier to distribute
across operating systems than interpreted alternatives such as Python programs. Go also comes
with a well-featured standard library with diverse options for interacting with the operating sys-
tem, a core requirement of CLI-Tutor.

3.3.2 Shell Environment
Development of CLI-Tutor started with the implementation of a shell-like environment. A Go
specific readline5 package was used to create a simple REPL6 as a proof of concept. The readline
library supported a custom prompt and through the use of some system calls a functional prompt
with a working readline environment was created. The next challenge was how to structure, create
and interact with lessons.

5https://pkg.go.dev/github.com/chzyer/readline
6Read Evaluate Print Loop

https://pkg.go.dev/github.com/chzyer/readline

20 Chapter 3. Design And Implementation

1 type Lesson struct {
2 Name string
3 Vocabulary []string
4 Description string
5 Tasks []Task
6 }
7

8 type Task struct {
9 Title string
10 Description string
11 Expected string
12 }

Listing 3.1: Data structures for a Lesson and a Task within a Lesson.

3.3.3 Lessons
The first task was to model a lesson in the form of a data structure that could be used in the
working shell environment we had created at this point. It was decided that a lesson could be
modelled as a container that contains a series of tasks, which would be modelled as a separate
data structure (see: Listing 3.1).

Anatomy of a Lesson

A lesson has a title and description which are used to populate the menu screen of CLI-Tutor.
Every task contains a title and description as well. The title of a task is displayed in the task
tracker and the description is the actual textual content of a task. This content is either explaining
a concept to the user, displaying a diagram or prompting the user to input some commands. The
amount of tasks dictate the length of the lesson. The user can keep track of their progress inside
a lesson via the task tracker, which displays the title of the lesson, the current task as well as a
progression counter. A user is free to proceed back and forth through the lesson using the in-built
commands n/next or p/prev unless the task is marked as interactive. In this case, the user must
perform an interactive task such as running a specific command relevant to the task at hand. This
mechanism as well as the progress tracker are showcased in Figure 3.1.

Figure 3.1: Screenshot of the progress tracker and interactive task feature.

3.3 Features and Considerations of CLI-Tutor 21

Specifying Lessons

The first versions of a CLI-Tutor lesson were written directly in Go source code. Not only was
this tedious but also extremely specific to this implementation; rendering extensibility and the
potential of open-source contributions difficult. It was decided that some sort of data exchange
or markup language would be more appropriate for specifying lessons. Early considerations in-
cluded JSON7 and YAML8. These solutions proved to be difficult to work with in terms of format-
ting and did not make the process of contributing lessons any easier for an external contributor.

Ultimately, the decision to implement the lessons in CommonMark Markdown9 was taken. Mark-
down was a pragmatic decision due to its ubiquity in the software development space and abun-
dance of parsers. Furthermore, Markdown allowed us to specify our formatting directly in the
lesson document and made for a source code free template for specifying lessons.

3.3.4 Lesson Parsing
Once Markdown was decided to be the implementation language for our lessons the next step was
to populate our lesson-related data structures (see: Listing 3.1) in order to drive the tutorial pro-
gram. To achieve this, a structure for specifying a lesson had to be created. After the specification
was complete, a parser had to be written. The goldmark markdown parsing library for Go was
selected. This library allowed us to create a custom parser for our lesson files. The parser first
parses a selected lesson file into an AST (Abstract Syntax Tree). Once this tree is created, it is
traversed using a Depth First Search as a means to navigate to all the different syntax nodes in the
tree. In our lesson file specification, we make divisions using heading weights in our Markdown
files.

Level 1 headings and their subsequent nested text are used for Lesson10 level data, specifically
the lesson’s title and description.

Each subsequent level 2 heading refers to an individual Task. The text nested in between the
level 2 headings belongs to the Task above the text. Markdown elements such as code blocks and
inline code snippets are used to stylise text during the lesson. The expected value feature of
Tasks is implemented using the quotation element (>) of Markdown. As the traversal of the AST
continues Tasks are appended to the Tasks array in the Lesson data structure. This creates the series
of tasks in the lesson, which are eventually navigated through by iterating this Tasks array.

Level 3 headings are used to define the lesson’s vocabulary or set of permitted commands.
There are additional features such as the nature of how interactive task values are to be calculated
that can also be specified in the lesson file. For a full Markdown specification of a CLI-Tutor lesson,
see: Listing 3.3 and for the implementation of the custom parser see: Figure 8.1.

Template Expansion

There is actually one step that takes place just before the parsing of a lesson. This is where values
can be interpolated into the Markdown files using Go’s powerful in-built template11 library. This
allows for special system-specific or environment-specific values to be interpolated into a lesson at
the time of parsing, allowing for even more personalised explanations to be baked into the lessons.
An example of this is demonstrated in Figure 3.2 where user and system-specific information is
presented in the explanation of a shell command prompt. This allows for lessons to be less static

7JavaScript Object Notation. See: https://www.json.org/json-en.html
8Yet Another Markup Language. See https://yaml.org/
9A popular implementation of Markdown. See: https://commonmark.org/

10Lesson and Task in this capitalised and italicised form refer to our Lesson and Task data structures (see: Listing 3.1).
11Go standard library documentation: https://pkg.go.dev/text/template

https://www.json.org/json-en.html
https://yaml.org/
https://commonmark.org/
https://pkg.go.dev/text/template

22 Chapter 3. Design And Implementation

and further capitalises on the opportunities available in interactive programs compared to written
documentation.

Figure 3.2: Screenshot of a CLI-Tutor lesson showing values interpolated into the lesson.

Running Examples

Another feature of CLI-Tutor is the inclusion of certain files that are created on the user’s file
system for the duration the tutor program is running. These files serve as running examples and
allow for lessons that use real files and data to be crafted. This allows for more creativity and
opportunities for engaging the user’s when creating interactive tasks.

3.3 Features and Considerations of CLI-Tutor 23

Figure 3.3: Screenshot of a hidden file created by the CLI-Tutor as an interactive example.

3.3.5 Embedded Files
The two previous features in addition to the goal of being able to distribute CLI-Tutor as a single
executable binary necessitated the inclusion of both lesson files and files that serve as running
examples into the compiled binary. This was achieved using a compiler directive recognised by
the Go compiler named go:embed12. This allowed for the creation of a virtual file system for the
program to be able to read files as if it were a real file system. Embedding files directly into the
program also greatly contributes towards the ease of distribution and contribution of CLI-Tutor as
all the parts that make up the tutor reside in one codebase.

3.3.6 User Interface
The user interface of CLI-Tutor is divided into two main views, the lesson view and the menu
view. The default view and what the user is presented with upon launching CLI-Tutor is the
menu view. The menu is populated using a variation of the parser described in subsection 3.3.4.
As previously mentioned, CLI-Tutor is a TUI application. To manage the two distinct views and
provide interactive user interface elements the Bubbletea library was used. Bubbletea is a library
for making Textual User Interfaces and is inspired by the Elm architecture. The Elm architecture
is a pattern that consists of three-part structure where messages are sent between parts to alter
state, update the user interface and act upon messages.

The Elm Architecture applied to CLI-Tutor

The Elm architecture’s three main parts are:

• Model: The model controls the state of the application. The CLI-Tutor tool uses three models
to manage its state. The MainModel is, as the name suggests, the main controller and houses
the models for the menu view and the lesson view inside it. The job of the MainModel is
to present the correct view to the user and to process all the different messages that can be
sent back from the lesson and menu models. The selection of views is done by the state

12https://pkg.go.dev/embed

https://pkg.go.dev/embed

24 Chapter 3. Design And Implementation

1 const (
2 menuView sessionState = iota
3 lessonView
4)
5

6 type MainModel struct {
7 state sessionState
8 menu tea.Model
9 lesson tea.Model
10 quitting bool
11 windowsize tea.WindowSizeMsg
12 }
13

14 type MenuModel struct {
15 list list.Model
16 choice string
17 quitting bool
18 windowsize tea.WindowSizeMsg
19 }
20

21 type LessonModel struct {
22 currentLesson lesson.Lesson
23 rl *readline.Instance
24 r *glamour.TermRenderer
25 quitting bool
26 }

Listing 3.2: Models used to build the user interface of CLI-Tutor.

member of the MainModel. The definitions of the three models in CLI-Tutor can be found in
Listing 3.2.

• Update: This a method that is implemented for a Model. The Update method consumes the
messages sent around between the components of a system built on the Elm architecture.
The update function can then manipulate the state of its corresponding Model to create reac-
tivity. Messages are events generated through interaction with the application and actions
such as resizing a window. In CLI-Tutor, messages are used to communicate the size of the
terminal, manage key presses, enable selections in the menu and handle quitting the ap-
plication. A message-based architecture allows for a lot of flexibility in terms of defining
custom messages that can trigger other behaviours or make state changes. An example is
parsing a lesson after it is selected in the menu view and assigning it as the current lesson
in the lesson view.

• View: The View is the last part of the Elm architecture and is responsible for rendering the
visual environment based on the state of its related Model. In CLI-Tutor, the view is only
used for the menu view of the application. It cannot be used in the lesson view due to the
implementation of the readline library, which consists of a blocking for loop. To get around
this we block the Elm update loop for the duration of the lesson with the readline loop. When
a lesson is completed or the user elects to quit the lesson, the readline loop breaks and an exit
message is sent to the Update method MainModel signifying the change of state from lesson
to menu. This update then triggers a state change on the MainModel which results in the user

3.3 Features and Considerations of CLI-Tutor 25

being presented with the menu view. Because the state is kept throughout the run time of
the application the menu will still have the lesson the user selected highlighted, enhancing
the user experience.

Markdown Renderer

We mentioned how we parse the lesson Markdown files in subsection 3.3.4. As lines of Markdown
are parsed they are stored as raw byte arrays in the Lesson and Task data structures. This has the
desired side effect of maintaining the formatting inherently coded into a Markdown document.
When it comes time to display this information during a lesson, a terminal Markdown renderer
named glamour is used. Rendered text to the terminal is both styled and formatted by glamour
resulting in a near direct translation between the lesson file and what is displayed to the user
in the terminal. Using a Markdown renderer also gave us the flexibility of specifying custom
styling on all the different Markdown style elements and to fine-tune the look and feel of lessons
by tweaking the style sheet being used by the renderer.

3.3.7 Validation
In the interest of building interactivity into our lessons, we needed to have a way of validating
the inputs and actions of our users. Our input validation mechanism is incorporated into the
readline loop of the lesson view in CLI-Tutor. Every time the user issues a command by hitting
enter, the string the user entered at the command prompt is sent through a validation cycle. The
first step is checking whether the string matches one of the many in-built special commands.
These commands do things like proceed back and forth through the lesson, quit the lesson, print
out a list of available commands and toggle zen-mode. If the string is not one of these special
commands then it is assumed that the user is attempting to issue a system or shell command.
For convenience, input strings at this point are stripped of white space and split into an array to
examine the individual tokens that make up the whole command. The next steps are:

• Checking whether the specified command is in the current lesson’s vocabulary and thus
permitted to be run. This is done by checking the very first token of the string. Any tokens
following the special shell operators | and & are also validated. If the command passes this
stage it means the string contains commands valid and permitted in the current lesson.

• After passing initial validation, further checks are performed to prevent the user from run-
ning into permissions issues or working in a sensitive root or system directory. The com-
mand also checks for certain special conditions that need to be accounted for. Special con-
ditions such as:

– Several commands chained as pipes.

– The presence of shell operators such as || and &&.

– Whether the command has arguments or flags specified.

– Whether the command launches an external command like a pager, which would re-
quire a redirection of the spawned sub-process’s standard input and output streams to
those of CLI-Tutor.

Each of these cases requires special handling in the way the system call is placed. The correct
method is selected at this point and a system call is issued.

• At this stage the issued command is stored in a variable that tracks the last issued command.
This is necessary to support the repeat previous command or !! shell operation.

26 Chapter 3. Design And Implementation

• The next step is to return the combined output of the issued commands standard out and
error streams to the user interface. In the case that the command was an interactive sub-
process like a pager, the streams of the sub-process and redirected to the user interface at
this point.

• A final step is to check where the current Task has a defined expected value. If this is the
case the returned output of the issued command is compared to this expected value and
the appropriate success or failure feedback is provided to the user. If the user successfully
completed the task the tutor automatically increments the task tracker, resulting in the user
being automatically advanced to the next task in the lesson.

3.3.8 Logging
To assist with gathering usage data and user behaviour, CLI-Tutor maintains a log file which can
be optionally sent back to a server for examination. The log file is a mirror copy of the lesson
session with timestamps for every action that occurs during the lesson.

This feature is on by default during the user study phase of this work but can be opted out of
with a flag that can be supplied when launching CLI-Tutor. The purpose of this feature is entirely
in support of the user study conducted in this thesis work and the feature will likely be removed
from the tool upon the conclusion of this work.

3.4 Web Application
As previously mentioned, the core of CLI-Tutor is the command line application described in the
previous section. The accompanying web application was created with the goal of simplifying the
distribution of the tool and organising the user study. While not originally a design requirement,
the idea of sandboxing our application proved very attractive, especially given the nature of our
subject matter. While this kind of sandboxing would be easy to achieve with tools such as docker
or virtual machines. It is too much to expect a novice user to set up and diminishes the potential
user base of CLI-Tutor. Creating a web application also relaxes the cross-platform compatibility
concerns of building an application that interacts directly with the operating system, like a shell.

3.4.1 Frontend
The frontend is a simple JavaScript web application written in Svelte. Svelte proved to be a good
choice due to its simplicity, small bundle size and developer ergonomics. TypeScript was the
main language of development when it came to the frontend. The main role of the frontend ap-
plication is to provide some instructions and to present the user with a special frontend terminal
component. This terminal component is from the popular library Xterm.js. This terminal emula-
tion solution was chosen due to its proven robustness as the default terminal in the VSCode text
editor and due to a first-party add-on that makes it possible to attach the terminal component
over the WebSocket13 protocol to the interactive docker container(see: Figure 2.3). The process
of provisioning, connecting and cleaning up to docker containers is facilitated through the use of
API14 calls to a backend running on the same server.

13A full-duplex communication protocol native to modern web browsers.
14Application Programming Interface

3.4 Web Application 27

3.4.2 Backend
The backend is a REST15 API, written in Go using the Fiber library. The API allows the frontend
to communicate with the docker daemon also running on the same server. Container creation,
deletion and resizing of the containers PTY16 are handled by this backend API using the docker
SDK for Go; which interacts directly with the docker daemon running on the server. The attaching
over WebSockets of the frontend to the spawned docker container is achieved through an API call
directly to the docker daemon using the container’s id which is received in a response message from
the container creation API endpoint.

3.4.3 Docker Daemon
To facilitate the sandboxing via docker, the docker daemon is exposed over TCP17 with TLS18. This
allows for a direct connection over WebSockets to be negotiated between the frontend user interface
and the docker container running CLI-Tutor. For safety and consistency with how the backend API
is accessed, the docker daemon is accessed via reverse proxy using the Nginx web server which
manages all incoming HTTP(S)19 connections to the server.

3.4.4 CLI Only
As mentioned earlier, a CLI-only version (see: Figure 2.6) was also created using essentially the
same architecture as the version that includes CLI-Tutor. Slight visual differences were made to
differentiate the two however they are based on fundamentally the same docker image, with the
only difference being that the "CLI-only" version does not contain the CLI-Tutor tool and drops
the user directly into a Linux shell. The CLI-only version also contains an additional button for
navigating to the documentation website.

3.4.5 Documentation Website
Created using MkDocs, [19] a widely used tool for documentation in the software development
world. The documentation website (see: Figure 2.7) was built to support the User Study. It uses
the same lessons as in the CLI-Tutor application, albeit with some prompts for user interface ac-
tions removed. The fact that the lessons in CLI-Tutor are implemented in Markdown made creating
web pages out of the files straightforward.

3.4.6 Monitoring
A monitoring stack using Grafana was also set up on the web servers. This was done to monitor
performance, availability and to facilitate the debugging of any potential issues. Log agglomer-
ation was also performed with Loki20 and Promtail21, the latter of which was run in a separate
docker container. This information was forwarded to the Grafana Cloud web interface.

15Representational state transfer: An architectural style for creating interfaces to allow Client-Server communication.
16This is necessary to sync the size of the pty created in the frontend terminal with the interactive docker container’s

terminal running on the server.
17Transmission Control Protocol
18Transport Layer Security
19Hypertext Transfer Protocol (Secure)
20Log agglomeration tool in the Grafana monitoring stack
21The server side agent used by Loki to scrape system logs.

28 Chapter 3. Design And Implementation

3.5 Extending CLI-Tutor
The extensibility of CLI-Tutor has been a priority since the inception of the tool. This is a key factor
for the longevity and usefulness of the tool beyond this thesis work. CLI-Tutor is open source
and hosted in public repositories under a MIT [20] license. Contributing lessons to CLI-Tutor is
uncomplicated owing to the use of Markdown files to specify lessons. On the following page, we
provide a complete specification and readable example of all the features available during lesson
creation and supported by CLI-Tutor’s lesson parse, at the time of writing (see: Listing 3.3).

3.5 Extending CLI-Tutor 29

1 # Lesson Title
2

3 A line under a level 1 heading is the lesson description. This is also
4 displayed in the menu.
5

6 ## First Task Title
7

8 Task instructions are parsed as normal lines under a level 2 heading.
9

10 Even line breaks and nested elements will reflect in the lesson. This
11 greatly enhances readability.
12

13 `Commands` are highlighted with backticks.
14

15 Text can be injected into a lesson at the time of parsing with template
16 functions like this --> {{SomeFunc}}
17

18 ## Second Task Title
19

20 This is the first line following a second level 2 heading and thus the text
21 of task #2.
22

23 ```
24 Code blocks can also be used to represent larger blocks of instructions or
25 for ASCII diagrams.
26 ```
27 ## Interactive tasks with expected values
28

29 If the current task is expecting a certain output to a command the user
30 types, we can specify that using the `>` syntax.
31

32 > {{TestFunc}}
33

34 ## Runtime expected value calculation
35

36 Sometimes the correct value for a given task can only be computed at run
37 time, to achieve this we can specify the expected value of a task to
38 be the output of a system call by prepending a `!` and then the expected
39 command.
40

41 > !ls -la
42

43 ### Lesson Vocabulary (Provided as a comma-separated list of values under a
level 3 heading)↪→

44

45 vim, ls, cp, cat, echo <--- only these commands will be permitted in this
lesson.↪→

Listing 3.3: Specification for Markdown lesson files.

Chapter 4

User Study

In order to test and validate the effectiveness of our solution in reference to our research ques-
tions (see: subsection 1.1.2), a user study was conducted. The goal of this user study was two-
part. Firstly, we were interested in assessing the usability and response to CLI-Tutor. Secondly,
we wanted to ascertain if interactive learning would be a more effective medium to teach com-
mand line interaction than traditional alternatives such as online documentation or books. In this
chapter, we will describe our user study in detail.

4.1 Methodology
The user study for this thesis work was conducted remotely and asynchronously. We designed
an online survey using the LimeSurvey [21] tool made available to us by the University of Zurich.

The focus of the user study was primarily on the comparison between interactive learning
approaches such as that of CLI-Tutor and traditional ones, which are mostly reading-based. In the
modern software development space, online documentation is the status quo and the medium we
choose to compare our solution against. As discussed in Chapter 3, CLI-Tutor uses Markdown to
specify lessons. Many static documentation generation websites use Markdown files to generate
documentation. This is also true for our chosen generator. This enables us to objectively compare
the interaction medium rather than the lesson content, since the exact same lessons can be used
in both tools. Furthermore, due to the popularity of MkDocs, it is a very realistic representation of
documentation that individuals may encounter in the wild.

4.1.1 Interactive versus Non-interactive
We designed our user study intending to perform A/B style testing comparing learning mediums.
To support this we used the pseudorandom number generation feature of LimeSurvey to assign
our participants to one of two groups, interactive and non-interactive.

4.1.2 Structure
In this section, we provide a structural overview of our online survey. The entire survey, complete
with possible answers, is available the appendix.

Our online survey was divided into the following steps:

32 Chapter 4. User Study

1. User Familiarity: In this section, participants answered questions relating to their experi-
ence, interest and preferences to provide us with some insights on each individual partici-
pant.

2. Assignment: All participants where divided into one of two groups, interactive or non-
interactive. The assignment value is unknown to the participant at the time of starting the
survey. Our survey tool then conditionally rendered a URL for the participants to follow to
the next section of the survey.

3. Tutorial: At this stage, once the participants have been assigned to one of the two groups,
they will either be sent to our web application running CLI-Tutor or to our documentation
website. If assigned to the non-interactive group participants were also given the option of
navigating to the CLI-only version of our tool, in case they did not have access to a Unix-like
terminal (see: Figure 2.6).

4. Evaluation: The evaluation stage is where participants were asked a series of basic questions
relating to the lessons they took in the previous step. Questions were a mixture of multiple
choice and free text questions. This section was identical for both user groups as the lessons
were also identical.

5. Feedback: In this section, participants were able to provide feedback regarding their expe-
rience. All but one of the questions in this section were identical for both user groups. The
non-interactive group were asked one additional question regarding interactive learning:
Do you think an interactive command line tutorial application would improve the learning process?

6. Feedback Opposite (optional): This section was optional and included only one quick feed-
back question. At the end of the survey, participants were then given a chance to try out
the opposite tool to which they were assigned for the user study. No evaluation or tutorial
was mandated here and participants were given one free text field to report on their feelings
using the alternative tool.

4.2 Participants
In this section we will share insights we gathered from the first section of the survey, where we
asked experience, familiarity and more general questions.

In total, 34 participants took part in our user study. 19 of whom were assigned to the in-
teractive group and 15 to the non-interactive group. Recruitment was primarily done through
University channels though some participants were also sourced through work emails and word
of mouth. While not limited to individuals in software related fields, over 60% (see: Figure 4.2) of
the participants were from technical backgrounds or currently computer science students.

4.2.1 Technical Experience
Given the goals of CLI-Tutor, It comes as no surprise that most of the individuals who partici-
pated in our user study were not very highly experienced, though there were two outliers with
over twenty years of programming experience. Most of the participants were far less experienced
with a median experience of 3 years (see: Figure 4.1). While not very highly experienced in pro-
gramming, most of our participants did come from some sort of Computer Science or engineering
background (see: Figure 4.2).

4.2 Participants 33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Programming Experience in Years

0

2

4

6

8

N
um

be
ro

fP
ar

tic
ip

an
ts

M
ea

n:
4.

56

M
ed

ia
n:

3.
00

Figure 4.1: The distribution of programming experience amongst study participants.

In the above figure, the programming experience of all the participants is presented as a his-
togram. Programming experience is not a metric that can reliably predict command line pro-
ficiency but can indicate the levels of exposure to command line interfaces a participant may
have had. In general, most participants have been programming for 5 years or less and the most
common group was individuals who have been programming for 1 year. This makes sense as
a significant portion of participants were sourced through a recruiting email distributed in the
University of Zurich.

Participants were also asked about whether they had any university experience in computer
science or related fields. Most participants had some degree of experience at the Bachelor’s and
Master’s level but despite this 29.32% reported not having any university experience in Computer
Science. Two participants, came from a mechanical and electrical engineering backgrounds. The
complete distribution across all levels of university experience can be found on the following
page in Figure 4.2.

34 Chapter 4. User Study

Computer Science University

29.32%

41.36%

23.46%

0.00%
5.86%
0.00%

No CS Degree, 29.32 %
Bachelors’s Degree, 41.36 %
Master’s Degree, 23.46 %
Doctorate Degree, 0.00 %
Other Engineering Degree, 5.86 %
Yes but did not finish, 0.00 %

Figure 4.2: University level Computer Science experience amongst study participants.

4.2.2 Feelings about the CLIs
To gauge interest and feelings, questions regarding interest and comfort level with CLIs were also
asked. In general, the interest in integrating the command line more into day-to-day computer
use was high. With 79.41% (see: Figure 4.3) of respondents reporting that they were interested
in doing so. Participants were also asked to explain their motivations. Motivations were varied,
but there were some commonalities in the motivations to integrate CLIs more in daily computer
usage. For some, the motivation was a curiosity about getting to know their computers better:

"It is an additional tool, where one can learn and do a myriad of things with while also
improving one’s understanding of computer systems as a whole."

"to build up a better understanding of how things work behind the scenes."

For one respondent, this sentiment was even partially altruistic.

"For using to fix ppl’s and my computer if it breaks/bugs out"

Other sentiments expressed interest in integrating CLIs more in the work environment as a

4.2 Participants 35

productivity booster or as an important skill.

"Due to my field of work, more familiarity and proficiency with any CLI would be helpful"

"to optimize the workflow"

"It’t much easier to replicate/reproduce the results than using GUI"

Are you interested in integrating the command line more into your day-to-day computer use?

79.41%

20.59%

Yes, 79.41 %
No, 20.59 %

Figure 4.3: Chart depicting interest in integrating CLIs more into day-to-day computer use.

Another factor the participants were questioned about was their existing comfort level with
command line interfaces. This question was presented in a Likert-style fashion with answers
ranging from "Extremely Uncomfortable" to "Extremely Comfortable" (see: Figure 4.4).

36 Chapter 4. User Study

0%10%20%30%40%50%60% 10% 20% 30%
Percentage of Responses

What is your comfort level
with the command line?

11.76% 41.18% 23.53% 17.65% 5.88%

Extremely Uncomfortable
Uncomfortable

Neither Comfortable nor Uncomfortable
Comfortable

Extremely Comfortable

Figure 4.4: Chart depicting the self-reported comfort level with CLIs in a Likert-style question.

More than half of the participants responded that they were extremely or at least uncom-
fortable with using the command line. The percentage of individuals who identified as at least
comfortable was 23.53%. This large amount of discomfort aligns with the higher amount of low-
experience participants. Another potential contributing factor is the fact that most people were
university students who generally have only ever worked with GUIs in their personal computer
usage.

4.2.3 CLI Usage
Beyond comfort and interest, the amount of existing experience specifically with command line
interfaces is another interesting factor. Participants were questioned about their existing usage of
command line interfaces. These questions were presented in a multiple choice and single-answer
form. Two questions were asked of the participants, and they were intentionally divided in order
to highlight the differences between general usage (see: Figure 4.5) and individuals who also use
CLIs in their personal time (see: Figure 4.6). Furthermore, this intentional division was intended
to balance the fact that a lot of individuals participating in the user study were computer science
students and might have had some experience that does not reflect their personal affinity towards
CLIs.

The usage of command line interfaces amongst our participant groups with higher than an-
ticipated. Over half of respondents stated they use command line applications or tools at least
once a month, with 35.29% stating that they almost use them every day. This finding, strongly
highlights the continuing relevance of command line interfaces, especially in the software devel-
opment space. Fascinatingly, when asked about the usage of command line applications or tools
in day-to-day personal computing the statistics are almost mirrored between the previous ques-
tion. Almost 38.24% stated that they never use command line applications for personal tasks.
This indicates that CLIs are perceived and used mostly as work-related tools and their qualities
in personal computing are not considered or are not accessible. This point could be related to the
fact that since CLIs are no longer the default paradigm of interaction with the computer, and they
are usually presented to individuals in environments where the tool is considered the De Facto
tool for the job, such as with git [6].

4.2 Participants 37

0 2 4 6 8 10 12
Number of responses

Never

At least once a year

A few times a year

At least once a month

Almost every day

8.82%

5.88%

23.53%

26.47%

35.29%

On average how often do you use command line applications or terminal based tools?

Figure 4.5: Chart depicting the frequency of command line usage amongst participants.

0 2 4 6 8 10 12
Number of responses

Never

At least once a year

A few times a year

At least once a month

Almost every day

38.24%

5.88%

26.47%

17.65%

11.76%

On average, How often do you perform regular computing tasks
such as file management from the command line?

Figure 4.6: Chart depicting the frequency of command line usage amongst participants for personal tasks.

38 Chapter 4. User Study

4.2.4 Learning Preferences
The preferences regarding learning mediums are another important factor relevant to this study.
As also mentioned in our research questions (see: subsection 1.1.2), analysing the effectiveness of
interactive learning tools is part of the goals of this work.

To get an idea of the existing preferences of our study participants, they were asked to select
what mediums they preferred when learning technical topics. Encouragingly, over 50% of partic-
ipants indicated their preferred method of learning was at least partially interactive, with most
indicating that their preferred method was video tutorials. This is most likely due to the vast
amount of video content, especially technical content, available on the web. This large propor-
tion of individuals preferring video and interactive tutorials is a good indicator of the potential
utility of interactive learning tools such as CLI-Tutor. 26.37% of participants stated their preferred
method of learning was via books or online documentation.

0 2 4 6 8 10
Number of responses

Books/ Online Documentation

Interactive Tutorials

Video Tutorials

University Lectures

Forums/ Online Groups (e.g. Discord Servers)

Other

26.47%

23.53%

29.41%

2.94%

2.94%

14.71%

What is your preferred method of learning related to
technical topics?

Figure 4.7: Chart depicting the preferences in learning mediums amongst participants.

From the above question, the verbatim responses for Other were:

"All of the above"

"Work (good mix between pressure to get it right and being paid for it)"

"Starting projects and learning from tutorials/documentation as I go"

"testing curiosities"

"DIY"

4.2 Participants 39

0%10%20%30%40% 10% 20% 30% 40% 50%
Percentage of Responses

How effective would you rate
reading books and

documentation as a learning
medium for you?

2.94% 29.41% 17.65% 41.18% 8.82%

Extremely Ineffective
Ineffective

Neither Ineffective nor Effective
Effective

Extremely Effective

Figure 4.8: Chart depicting the self-reported effectiveness perception of reading.

Similar to the question regarding comfort with CLIs, the perceived effectiveness of written
documentation was also inquired about in a Likert-style, with options ranging from extremely
effective to extremely ineffective. Though a majority of individuals considered reading to be an
effective means of learning, a large proportion (29.4%) reported reading to be ineffective and a
significant 17.65% were ambivalent about the question.

Have you ever previously used an interactive learning resource?

73.53%

26.47%

Yes, 73.53 %
No, 26.47 %

Figure 4.9: Chart depicting the amount of participants with previous interactive learning experience.

Participants were also questioned about their existing experience with interactive learning re-
sources. The vast majority, (73.53%) indicated that they had previous experience with interactive
learning resources (see: Figure 4.9).

Chapter 5

Results

In this chapter, we will discuss the outcomes of this thesis work. We will look into our findings
in light of the research questions we defined in Chapter 1 in subsection 1.1.2. Furthermore, we
will divide our results into two distinct sections, focusing on the results of the engineering effort
in building CLI-Tutor and secondly, the findings from the user study discussed in the preceding
chapter.

5.1 Engineering Results

From an engineering perspective, we managed to achieve almost all the technical goals we set out
for CLI-Tutor. Design goals relating to ease of distribution and access were fulfilled as CLI-Tutor
is a single binary that is easy to distribute and containerise. CLI-Tutor also works natively on
GNU/Linux and Macintosh operating systems and thanks to the associated web application and
docker images for the tool, it is possible to use CLI-Tutor on almost any mainstream operating
system. The web application and ease of containerisation also helped achieve another goal of
creating a safe and forgiving sandboxed environment for users to experiment within.

This ease of experimentation and application of learnt skills is an important factor when it
comes to developing confidence with CLIs as they are a foreign interaction paradigm to most
novices. Ease of experimentation and ability to apply learnt skills is not purely achievable through
technical design alone. The curriculum of CLI-Tutor also reflects an emphasis on giving the user
space to try things out without worry or the tutorial software actually getting in the way. One
participant in the user study particularly admired this aspect of CLI-Tutor:

"I think the cli-tutor really provides the right amount of guidance, while leaving enough
freedom to experiment and test things. Thus it was trivial to examine small questions one asks
themselves like: what would happen if one calls "rmdir" on a directory that contains another
empty directory. All in all a great experience, and a drastic improvement compared to non-
interactive 2 hour lectures."

Based, on feedback received by participants in the user study we can conclude that the cur-
riculum was well received and appropriately designed as many respondents found this to be a
particularly strong aspect of CLI-Tutor.

42 Chapter 5. Results

"Very good tutorial, great work! It starts at the beginning and fills the gaps that are neces-
sary to make working with the command line more quicker and more useful."

"It was overall very well structured. I feelt like the tutorial was a very smooth process, taking
you from one topic to the most closely related next topic."

"Great work, short but precise! I would love to do more of your tutorials :)"

The level of difficulty was also appropriate as many participants found the course content ap-
propriate for newcomers. This is encouraging as tutorial tools are generally targeted at beginners
and CLI-Tutor is no exception.

"Was a pleasent and well thought out lesson. Would recommend this for newcomers to the
CLI, as it does have a friendly and fun tone to the entire teaching environment."

There were also multiple participants who particularly enjoyed the interactive aspect CLI-
Tutor. This was of particular interest to use given our a major intention of our research was to
assess the effectiveness of interactive learning tools for the command line.

"The cli-tutor made it really easy for me to learn how to use the command line in an uncom-
plicated way. The interactive part was the best part about the tool. It required me to directly put
my understanding into practice, making the learning process very convenient."

its very nice. i think there is a lot of learning when u actually have to type in stuff than just
passivly reading. i know from myself than i need to write stuff down to learn, so beeing forced
to type in stuff to get in another level helps me.

Even when interactive styled learning was not the preference of the participant, as is the case
with the participant below. They still were able to find some merits in the interactive approach.

"i personally prefer to acquire knowledge first and then put it into practice on my own.
but i think interactive learning is a very effective method for many people to learn new things.
especially when it comes to something that triggers fear of contact (for example the cli, or git).
the cli-tutor is a really cool tool, visually and in terms of content! the most important things are
repeated more than once, and repetitions are very important for the learning effect."

5.1.1 Relevant Research Questions

RQ2 and RQ3 are technically orientated research questions. Based on what we learnt in the
feedback provided by participants in the user study we will now provide some insights into
potential answers to these research questions.

5.2 User Study Results 43

RQ2. How should an interactive learning tool be designed to mitigate the difficulty and intimidation
factor of learning CLIs?

Based on the feedback received during the user study, it can be said that in order to build
effective interactive learning tools the structure and content of lessons are of high importance.
The correct sequencing, building up and repetition of examples are key to creating an effective
curriculum. Allowing room for exploration and experimentation are other important aspects of
an effective interactive learning tool. To some participants the ability to directly try out the lesson
content made for a stronger learning experience.

RQ3. How can a ‘forgiving’ shell be implemented on top of an existing shell to enable the transition from
learning to real-world usage?

The approach taken by CLI-Tutor based on its reception seems to be promising. Creating an
intermediary between the user and the shell allowed for tailoring the environment specifically
to beginners while still being able to be faithful to the shell interaction experience. Wrapping
the shell also enabled safety measures like not allowing the user into the sensitive root level di-
rectories, which contributes to the safety aspect and reduces the overall intimidation factor. The
sandboxing approach takes this point and pushes it even further as then the users have no fears
of any potential negative consequences to their systems.

5.2 User Study Results

5.2.1 Evaluation section
The following subsection, addresses research question RQ4: Is the interactive tool more effective than
text based learning methods?

As mentioned in Chapter 4, the evaluation section of our user study is what we used to evalu-
ate the effectiveness of the lessons our study participants took. Since the content of all the lessons
was exactly the same across both interaction mediums this offers a reasonable way to focus our
comparison on only the interaction mediums.

A question-by-question breakdown of the percentage of correct responses per question for
both user groups is shown in Table 5.1. When averaged across all questions in the evaluation sec-
tion, the interactive group performed 9.34% better than their non-interactive counterparts. When
looking deeper at the differences in performance there was an observable trend. Individuals who
took the interactive version of the tutor seemed to score significantly higher on questions that
related to topics that contained lots of interactive examples in CLI-Tutor. This is especially true for
questions relating to flags and the file system which consisted of many interactive examples.

For a visual representation of the differences between both participant groups in the evalua-
tion section (see: Figure 5.1).

5.2.2 Discussion
Despite the positive results, the higher level of performance cannot be conclusively attributed
to the interaction medium alone. There are factors such as existing experience, outliers and a
small study size that must be considered when analysing these results. However, given that the
performance of the interactive group was comparatively higher on more interactively practised
topics in the tutor, there appears to be a correlation between practise and success when it comes
to the command line.

44 Chapter 5. Results

Question Interactive
Correct %

Non Interactive
Correct %

What does CLI stand for? 100.00% 100.00%
Which one of the following best describes

the role of flags
when issuing a command?

63.16% 46.67%

In your own words can you describe
what the shell is? 94.28% 73.34%

How would you count the number of lines in
a given file with the word count utility? 100.00% 93.34%

Which one of the following flow diagrams
best describes textual interaction

with the operating system
63.16% 60.00%

Which of the following is an
incorrect usage of flags? 52.63% 20.00%

What is the role of the prompt? 52.63% 60.00%
What is the command to see where you are

on your file system and
what does the abbreviation stand for?

94.28% 66.67%

Which of the following structures
describes the file system best? 94.28% 80.00%

What command do you use to
list the contents of your current directory? 94.28% 100.00%

Can you explain in what situations
the rmdir command

will not delete a directory?
78.95% 86.67%

What shell keyboard shortcut
cancels a command or input? 89.47% 93.34%

What is the name of the command that brings up
documentation about a command?

What does this command stand for?
89.47% 80.47%

Overall Score 82.19% 72.85%

Table 5.1: Summary of questions answered correctly by method during the evaluation phase.

5.2 User Study Results 45

Figure 5.1: Chart depicting the evaluation section results of the interactive and non-interactive participant
groups.

5.2.3 Intimidation Factors
In the user study, participants were asked about intimidation factors regarding command line us-
age to better understand the difficulties faced by beginners in order to further improve CLI-Tutor
and any other future research in the area of making command line interfaces more approachable.

RQ1. Are there identifiable patterns of difficulty when it comes to adopting CLIs? Can the ‘intimidation
factor’ be pinned down?

Based on the results from the feedback sections of the user study, we can say based on the data
that individuals who used the interactive CLI-Tutor, on average, left less intimidated than their
non-interactive tutor counterparts. As shown in Figure 5.2, a mere 5.26% of respondents assigned
to the interactive group reported feeling more intimidated after their experience with CLI-Tutor.
On the non-interactive side this figure was considerably higher with 26.67% of respondents re-
porting being more intimidated by the command line after the user study.

In terms of identifiable patterns of difficulty and intimidation factors, participants were asked
to identify their personal intimidation factors. Responses included fears about lack of safety
mechanisms or unintentional errors.

"irreversible actions"

"something fatal happens that I didn’t want to to (something like rm without wanting it/ty-
pos/...)"

One of the most often cited intimidation factors was related to the mental overhead of remem-

46 Chapter 5. Results

bering all the commands.

"If you don’t use it that often, the overwhelming number of commands makes it difficult to
use."

remembering all the things to write in order to give the command correctly

difficult to memorise the command and flags, especially when I’m not using them frequently

One participant even feared that the memorisation requirements might even nullify any po-
tential productivity gains of using the command line.

not knowing the commands by heart and needing to look it up (taking more time in the
process)

Additionally, there was also mention of the unfamiliarity with command line interfaces as an
additional intimidation factor.

unfamiliar setting, no overview

5.26%

94.74%

CLI-Tutor

26.67%

73.33%

Non Interactive Tutor

Do you feel more or less intimidated by the command line after this
(interactive/non-interactive) tutor?

More
Less

Figure 5.2: Charts comparing the post lesson intimidation levels between the two study groups.

5.2 User Study Results 47

RQ5. Are novice CLI users more likely to continue using CLI interfaces after using such a tool?
Participants were questioned during the feedback section of the user study whether their ex-

perience in this user study had any effect on their anticipated usage of CLIs going forward. The
differences across interaction groups are more subtle compared to the previous comparison. In
the interactive group, 94.74% (see: Figure 5.3) of participants indicated that they would use CLIs
more in the future following their experience with CLI-Tutor. On the non-interactive side, this
group was slightly smaller, but at 87.50% it still represented the majority of participants. While
the differences across interaction paradigms are less pronounced in this result, it does indicate
that the curriculum designed in this work targeted intimidation factors well and generally in-
spired confidence in users.

94.74%

5.26%

CLI-Tutor

87.50%

12.50%

Non Interactive Tutor

Are you more or less likely to use the command line more than
you do currently after taking these lessons?

More
Less

Figure 5.3: Charts comparing the post lesson future CLI usage impressions.

Chapter 6

Reflections and Related Work

6.1 Related Work
Interactive learning tools are not a new area of research in the software development field. Tuto-
rial software for programming languages has existed and has been researched for decades [22–29].

Interactive tutorial tools in the software development space are primarily built for the purpose
of introducing specific programming languages [26, 28, 30, 31]. Pillay et al. laid out a framework
for how to develop programming language tutors in 2003 [32]. However, Due to the recent growth
of remote learning and remote working, asynchronous learning and computer-based learning is
seeing a fresh surge in research. Not only are intelligent tutoring systems being developed and
tested against traditional learning media but also against other asynchronous computer-based
systems such as video lectures [33, 34].

There are also a handful of interactive tutorial tools that are built primarily for the web. [26,
30, 35, 35, 36]. This category of tools often goes beyond the realm of programming languages and
often serves as interactive elements in the official documentation of certain web technologies, such
as with [35, 37]. Another interesting aspect of these web-based tools is that they try to implement
a sandboxed environment to make the tools more accessible and lower the barrier to use. This
sandboxing has long been identified as a pragmatic design choice with research dating as far back
as the 1985 work of Anderson et al. [22], LISP TUTOR, one of the earliest interactive programming
tutors. In fact, the work of Anderson et al. highlights how access to tutoring tools may have the
potential to greatly improve performance particularly for economically disadvantaged students,
who may not have access to the same resources as their counterparts. Another more recent work
looking into this sandboxing idea as a means of providing flexibility and safety to users is, [25].

6.2 Improvements
The user study and the associated feedback provided useful insights into how subsequent ver-
sions of CLI-Tutor could be improved. Some users suggested that adopting a more hybrid ap-
proach between the interactive and non-interactive tools could improve CLI-Tutor.

It’s a great tool, feels great to use. Personally i prefer guide books / video guides simply
because going back and forth to look for desired info is easier than a more linear interactive
approach but i can greatly appreciate such "learning games", and would love to see more of it

50 Chapter 6. Reflections and Related Work

Still i prefer to be able to quickly look up something in a textbook / scroll back in a video,
because it allows to connect information more intricately and more adjusted to my way of storing
/ recalling information.

These suggestions could improve the utility of CLI-Tutor as a reference tool and allow for con-
tinued use of the tool beyond taking the first lesson. This hybrid documentation and interactive
sandbox approach is a design style that is seeing an increase in popularity recently, especially
in the web development documentation world. A very popular JavaScript framework, React1

has recently released a beta version of their documentation that employs exactly this hybrid ap-
proach [37]. Another popular JavaScript framework, Svelte2, has also employed a similar hybrid
approach for their introductory tutorials [35].

Other areas for potential improvement to CLI-Tutor include:

• Dynamic feedback: Integrating some form of feedback that dynamically adjusts according to
the user’s input or offers some intelligent suggestions. Such an approach would have the
potential to offer more personalised and specific feedback than the approach in the cur-
rent version of CLI-Tutor. [38–40] are all works targeting this domain of intelligent feedback
generation.

• Mobile version: A mobile-friendly version of CLI-Tutor, particularly the web application,
would have the potential of widening the potential user group and simultaneously reduc-
ing the barrier to entry for CLI-Tutor. To implement this, some attention to the sizing of
elements in the web application would be necessary. Furthermore, a mobile-friendly ver-
sion would necessitate the integration of a modified on-screen keyboard to ease interaction
with the tool, as it is primarily keyboard driven.

• Progress tracking: The integration of some sort of progress tracking would improve the user
experience of CLI-Tutor. This could open the doors to elements such as gamificaton or per-
formance analytics and even more refined feedback to be integrated. Implementing state-
fulness in CLI-Tutor could potentially be achieved using lightweight client-side databases
such as SQLite3.

• Styling: A more robust and user-modifiable styling configuration has the potential to make
the interface of CLI-Tutor more inviting and cater better to the preferences of users. Finer
control over the appearance also has the potential to make CLI-Tutor more accessible as
colourblind-friendly modes, and other accessibility features such as font control could be
integrated into the application.

6.3 Future Work
Building upon this work can provide valuable insights into how to make the command line more
approachable and how to build better interactive learning software in general. The addition of
some suggested improvements in the preceding chapter can open the doors to a wide array of
future research in this domain. Furthermore, the user study in this work could benefit from
reproduction with a larger number of participants. Another potential modification for future
research is could be to perform a user study with absolute beginners, or individuals with no
programming or command line experience.

1https://reactjs.org/
2https://svelte.dev/
3https://sqlite.org/

https://reactjs.org/
https://svelte.dev/
https://sqlite.org/

6.3 Future Work 51

Another avenue of research could be to look into more advanced topics and see if the benefits
of an interactive learning environment still reflect when the subject matter is more complicated or
targeted at more advanced users.

Chapter 7

Conclusion

In this work, we presented CLI-Tutor, an interactive tutorial tool for introducing the command line
to beginners. We demonstrated that an interactive approach to teaching the concepts of command
line interaction has the potential to be more effective than the traditional documentation-based
approaches that exist. The CLI-Tutor succeeds in its intended goals of offering an interactive and
low-barrier to access tutorial tool for the command line.

As a result of a user study comparing CLI-Tutor to a state-of-the-art documentation tool, we
were able to produce encouraging results. Our findings indicate that tutorials that incorporate in-
teractive elements have the potential to not only produce better learning results but also provide
an engaging and safe environment for experimentation and exploration. The research performed
as part of this work also brings to light some difficulties related specifically to the command line
that could prove beneficial to future research in this area. Mitigation of these identified intimida-
tion factors offers a framework for understanding the difficulties and issues regarding command
line interfaces. This has the potential not only to produce better tutorials and tutorial software but
can also be used to improve the design of command line interfaces in general. Finally, this work
makes suggestions and outlines potential improvements for building future interactive learning
tools for the command line and beyond.

Bibliography

[1] E. S. Raymond and R. W. Landley, The art of unix usability. Pearson Education, Inc, 2004,
[Retrieved 02-Aug-2022]. [Online]. Available: http://www.catb.org/esr/writings/taouu/
taouu.html

[2] L. Pouzin, “The origin of the shell,” [Retrieved 02-Aug-2022]. [Online]. Available:
https://multicians.org/shell.html

[3] J. R. Mashey, “Using a command language as a high-level programming language,” in Pro-
ceedings of the 2nd international conference on Software engineering. Citeseer, 1976, pp. 169–176.

[4] F. J. Corbató and V. A. Vyssotsky, “Introduction and overview of the multics system,” in
Proceedings of the November 30–December 1, 1965, fall joint computer conference, part I, 1965, pp.
185–196.

[5] D. M. Ritchie and K. Thompson, “The unix time-sharing system,” Communications of the
ACM, vol. 17, no. 7, pp. 365–375, 1974.

[6] S. Hultstrand and R. Olofsson, “Git-cli or gui: Which is most widely used and why?” 2015.

[7] L. Takayama and E. Kandogan, “Trust as an underlying factor of system administrator in-
terface choice,” in CHI’06 extended abstracts on Human factors in computing systems, 2006, pp.
1391–1396.

[8] J. Reimer, “A history of the gui,” Ars Technica, vol. 5, pp. 1–17, 2005.

[9] M. McIlroy, E. Pinson, and B. Tague, “Unix time-sharing system,” The Bell system technical
journal, vol. 57, no. 6, pp. 1899–1904, 1978.

[10] D. Norman, “The next ui breakthrough: Command lines,” Interactions, vol. 14, no. 3, p.
44–45, may 2007. [Online]. Available: https://doi.org/10.1145/1242421.1242449

[11] M. C. Pierce, R. K. Ware, C. Smith, and B. Moolenaar, “vimtutor - the vim tutor,” Nov 2019,
[Retrieved 02-Aug-2022]. [Online]. Available: https://github.com/vim/vim/blob/master/
runtime/tutor/tutor

[12] Neovim Contributors, “Home - Neovim — neovim.io,” [Retrieved 02-Aug-2022]. [Online].
Available: https://neovim.io

[13] S. Francia, “Cobra.dev,” [Retrieved 02-Apr-2022]. [Online]. Available: https://cobra.dev/
#concepts

http://www.catb.org/esr/writings/taouu/taouu.html
http://www.catb.org/esr/writings/taouu/taouu.html
https://multicians.org/shell.html
https://doi.org/10.1145/1242421.1242449
https://github.com/vim/vim/blob/master/runtime/tutor/tutor
https://github.com/vim/vim/blob/master/runtime/tutor/tutor
https://neovim.io
https://cobra.dev/#concepts
https://cobra.dev/#concepts

56 BIBLIOGRAPHY

[14] C. Ramey, B. Fox, and Open Source Contributors, “The gnu readline library,” [Retrieved
02-Apr-2022]. [Online]. Available: https://tiswww.case.edu/php/chet/readline/rltop.html

[15] Docker Inc, “Docker homepage,” Aug 2022, [Retrieved 02-Aug-2022]. [Online]. Available:
https://www.docker.com/

[16] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009.

[17] D. Libes, Exploring Expect: a Tcl-based toolkit for automating interactive programs. " O’Reilly
Media, Inc.", 1995.

[18] GitHub Team and Open Source Contributors, “Github cli,” [Retrieved 02-Aug-2022].
[Online]. Available: https://cli.github.com/

[19] MkDocs Team and Open Source Contributors, “Mkdocs,” [Retrieved 02-Aug-2022].
[Online]. Available: https://www.mkdocs.org/

[20] Software Package Data Exchange (SPDX), “Mit license : Software package data exchange
(spdx),” [Retrieved 02-Aug-2022]. [Online]. Available: https://spdx.org/licenses/MIT.html

[21] C. Schmitz and LimeSurvey Team, “Limesurvey.” [Online]. Available: https://www.
limesurvey.org/

[22] J. R. Anderson and B. J. Reiser, “The lisp tutor,” Byte, vol. 10, no. 4, pp. 159–175, 1985.

[23] J. R. Anderson and E. Skwarecki, “The automated tutoring of introductory computer
programming,” Commun. ACM, vol. 29, no. 9, p. 842–849, sep 1986. [Online]. Available:
https://doi.org/10.1145/6592.6593

[24] A. Gerdes, J. Jeuring, and B. Heeren, “An interactive functional programming tutor,” in Pro-
ceedings of the 17th ACM annual conference on Innovation and technology in computer science edu-
cation, 2012, pp. 250–255.

[25] T. Permpool, S. Nalintippayawong, and K. Atchariyachanvanich, “Interactive sql learning
tool with automated grading using mysql sandbox,” in 2019 IEEE 6th International Conference
on Industrial Engineering and Applications (ICIEA). IEEE, 2019, pp. 928–932.

[26] C. Lee and M. S. Baba, “The intelligent web-based tutoring system using the c++ standard
template library,” Malaysian Online Journal of Instructional Technology, vol. 2, no. 3, pp. 34–42,
2005.

[27] J. Jeuring, A. Gerdes, and B. Heeren, “A programming tutor for haskell,” in Central European
Functional Programming School. Springer, 2011, pp. 1–45.

[28] J. Holland, A. Mitrovic, and B. Martin, “J-latte: a constraint-based tutor for java,” in Hong
Kong: 17th International on Conference Computers in Education (ICCE 2009). University of
Canterbury. Computer Science and Software Engineering, 2009, pp. 142–146.

[29] S. Schez-Sobrino, C. Gmez-Portes, D. Vallejo, C. Glez-Morcillo, and M. A. Redondo, “An
intelligent tutoring system to facilitate the learning of programming through the usage of
dynamic graphic visualizations,” Applied sciences, vol. 10, no. 4, p. 1518, 2020.

[30] C. Done, “Try haskell! an interactive tutorial in your browser,” [Retrieved 04-May-2022].
[Online]. Available: https://www.tryhaskell.org/

https://tiswww.case.edu/php/chet/readline/rltop.html
https://www.docker.com/
https://cli.github.com/
https://www.mkdocs.org/
https://spdx.org/licenses/MIT.html
https://www.limesurvey.org/
https://www.limesurvey.org/
https://doi.org/10.1145/6592.6593
https://www.tryhaskell.org/

BIBLIOGRAPHY 57

[31] A. Ajayi, E. Olajubu, D. Ninan, S. Akinboro, and H. Soriyan, “Development and testing of a
graphical fortran learning tool for novice programmers,” Interdisciplinary Journal of Informa-
tion, Knowledge, and Management, vol. 5, 2010.

[32] N. Pillay, “Developing intelligent programming tutors for novice programmers,” ACM
SIGCSE Bulletin, vol. 35, no. 2, pp. 78–82, 2003.

[33] B. A. Becker and K. Quille, “50 years of cs1 at sigcse: A review of the evolution of introduc-
tory programming education research,” in Proceedings of the 50th acm technical symposium on
computer science education, 2019, pp. 338–344.

[34] E. Ossovski and M. Brinkmeier, “Comparing video and interactive learning material styles
for programming,” in EDULEARN22 Proceedings. IATED, 2022, pp. 5381–5390.

[35] R. Harris and Svelte Contributors, “Svelte tutorial,” [Retrieved 04-May-2022]. [Online].
Available: https://svelte.dev/tutorial/basics

[36] I. Herweijer, “Got 30 minutes? give ruby a shot right now!” [Retrieved 04-May-2022].
[Online]. Available: https://try.ruby-lang.org/

[37] React Team Meta/Facebook, “Quick start,” [Retrieved 04-May-2022]. [Online]. Available:
https://beta.reactjs.org/learn

[38] H. Keuning, B. Heeren, and J. Jeuring, “Strategy-based feedback in a programming tutor,” in
Proceedings of the computer science education research conference, 2014, pp. 43–54.

[39] A. Gerdes, B. Heeren, J. Jeuring, and L. T. Van Binsbergen, “Ask-elle: an adaptable program-
ming tutor for haskell giving automated feedback,” International Journal of Artificial Intelli-
gence in Education, vol. 27, no. 1, pp. 65–100, 2017.

[40] K. Rivers and K. R. Koedinger, “Data-driven hint generation in vast solution spaces: a self-
improving python programming tutor,” International Journal of Artificial Intelligence in Educa-
tion, vol. 27, no. 1, pp. 37–64, 2017.

https://svelte.dev/tutorial/basics
https://try.ruby-lang.org/
https://beta.reactjs.org/learn

Chapter 8

Appendix A: User Study Survey
Questions

8.1 Survey Questions

8.1.1 User Familiarity Questions
• Please provide a name or identify yourself

– user textual input

• How many years of programming experience do you have (if any)?

– user numerical input

• Are you currently enrolled in or did you ever participate in a Computer Science degree
or a similar computation/information theory degree at a University level?

– No.

– Yes, at a Bachelor’s level.

– Yes, at a Master’s level.

– Yes, at a Doctorate level.

– Yes, but I did not complete my studies.

– Other

• What is your preferred method of learning related to technical topics?

– Books/ Online Documentation

– Interactive Tutorials

– Video Tutorials

– University Lectures

– Forums/ Online Groups
(e.g. Discord Servers)

– Other

60 Chapter 8. Appendix A: User Study Survey Questions

• How effective would you rate reading books and documentation as a learning medium
for you?
(1 is extremely ineffective and 5 is extremely effective. This includes online resources such
as documentation, blogs and tutorials.)

– 1

– 2

– 3

– 4

– 5

• Have you ever previously used an interactive learning resource?
(An interactive learning resource must allow some sort of input and verification from the
user during the learning process. Youtube or non interactive online video based courses do
not satisfy this requirement.)

– Yes

– No

• How comfortable would you describe yourself with command line applications?
(1 = Very uncomfortable 5 = Extremely comfortable)

– 1

– 2

– 3

– 4

– 5

• On average how often do you use command line applications or terminal based tools?

– Never

– A few times a year

– At least once a year

– At least once a month

– Almost every day

• On average, How often do you perform regular computing tasks such as file management
from the command line?

– Never

– A few times a year

– At least once a year

– At least once a month

– Almost every day

• Are you interested in integrating the command line more into your day-to-day computer
use? If so, why?

– Yes

– No

8.1 Survey Questions 61

8.1.2 Evaluation
• What does CLI stand for?

– Command Line Interface

– Command Line Interaction

– Command Line Instrument

– Cool Linux Interaction

• Which one of the following best describes the role of flags when issuing a command?

– They modify a program’s behaviour

– They modify the input given to a program

– They are the input to a program

– They add functionality to a program

– I don’t know

• In your own words can you describe what the shell is?

– user textual input

• How would you count the number of lines in a given file with the word count utility?
(Please choose all that apply)

– wc -l file.txt

– wc lines file.txt

– wc file.txt –lines

– wc file.txt

– lines file.txt

• Which one of the following flow diagrams best describes textual interaction with the
operating system using a shell?

– user <–> shell <–> os

– user <–> operating system

– user –> shell –> os –> user

– user <–> shell

– I don’t know

• Which of the following is an incorrect usage of flags?

– wc –lineswords file.txt

– wc -lw file.txt

– wc –lines –words file.txt

– wc file.txt –words -l

– I don’t know

• What is the role of the prompt?

62 Chapter 8. Appendix A: User Study Survey Questions

– user textual input

• What is the command to see where you are on your file system, and what does the abbre-
viation stand for?

– user textual input

• Which of the following structures describes the file system best?

– Tree

– Folder

– Database

– Chain

– I don’t know

• What command do you use to list the contents of your current directory?

– ls

– wc

– pwd

– list

– I don’t know

• Can you explain in what situations the rmdir command will not delete a directory?

– user textual input

• What shell keyboard shortcut cancels a command or input?

– Control + c

– Control + Alt + Delete

– Escape

– Alt + F4

– I don’t know

• What is the name of the command that brings up documentation about a command? What
does this command stand for?

– user textual input

8.1.3 Feedback
Feedback was provided by a combination of two choice (e.g. More or Less) questions with a
comment field where participants could expand on their answers.

8.1 Survey Questions 63

Interactive Group
• Do you feel more or less intimidated by the command line after this interactive tutor?

– More

– Less

– user textual input

• What intimidation factors or difficulties did you personally experience when it comes to
using the command line?

– user textual input

• Are you more or less likely to use the command line more than you do currently after
using this interactive tutor application?

– More

– Less

– user textual input

• What are your feelings regarding interactive learning tools after this experience?

– user textual input

• Did you learn anything new? If so, what was the most interesting or useful thing you
learnt

– user textual input

• We would love to hear some of your general feedback or reflections about the cli-tutor
and the interactive learning process?

– user textual input

Non-Interactive Group
• Do you feel more or less intimidated by the command line after taking these lessons?

– More

– Less

– user textual input

• What intimidation factors or difficulties did you personally experience when it comes to
using the command line?

– user textual input

• Are you more or less likely to use the command line more than you do currently after
taking these lessons?

– More

– Less

– user textual input

64 Chapter 8. Appendix A: User Study Survey Questions

• What are your feelings regarding learning technical topics by reading documentation
after this experience?

– user textual input

• Do you think an interactive command line tutorial application would improve the learn-
ing process?

– Yes

– No

– It would make no difference

– user textual input

• Did you learn anything new? If so, what was the most interesting or useful thing you
learnt

– user textual input

• We would love to hear some of your general feedback or reflections about the cli-tutor
and the interactive learning process?

– user textual input

Non-Interactive Group

Users were also encouraged to optionally try the alternative tool to which they were assigned and
asked to provide feedback.

• Please provide some thoughts or feedback about your experience trying out the alterna-
tive version of the tutorial tool.(e.g. Is there something you prefer or disfavour about one
approach or the other? Is there a difference in levels of intimidation or difficulty with one
approach or the other?)

– user textual input

8.2 Parser
Here is the custom parser used for parsing lesson files into the Lesson and Task datastructures:

1 package main
2
3 func ParseLesson(content []byte) Lesson {
4 Lesson := new(Lesson)
5 parsed := goldmark.DefaultParser().Parse(text.NewReader(content))
6
7 ast.Walk(parsed, func(n ast.Node, entering bool) (ast.WalkStatus, error) {
8 s := ast.WalkStatus(ast.WalkContinue)
9 if !entering || n.Type() == ast.TypeDocument {
10 return ast.WalkContinue, nil
11 }
12 var err error
13
14 if n.Kind() == ast.KindHeading {
15 currentHeading := n.(*ast.Heading)
16 if currentHeading.Level == 1 {

8.2 Parser 65

17 Lesson.Name = string(currentHeading.Text(content))
18 }
19 }
20
21 if n.Kind() == ast.KindParagraph {
22 if n.PreviousSibling() != nil && n.PreviousSibling().Kind() ==

ast.KindHeading {↪→

23 parentHeading := n.PreviousSibling().(*ast.Heading)
24 if parentHeading.Level == 1 {
25 lessonString := AssembleLines(n, content)
26 Lesson.Description = lessonString
27 }
28 if parentHeading.Level == 2 {
29 currentTask := new(Task)
30 currentTask.Title = string(parentHeading.Text(content))
31 taskString := AssembleLines(n, content)
32
33 // Handles nested paragraphs
34 if n.NextSibling() != nil && n.NextSibling().Kind() !=

ast.KindHeading {↪→

35 for p := n; p.NextSibling() != nil && p.NextSibling().Kind()
!= ast.KindHeading; p = p.NextSibling() {↪→

36 if p.NextSibling().Kind() == ast.KindCodeBlock {
37 currentTask.Expected = AssembleLines(p.NextSibling(),

content)↪→

38 continue
39 }
40 if p.NextSibling().Kind() == ast.KindBlockquote {
41 currentTask.Expected =

AssembleLines(p.NextSibling().FirstChild(), content)↪→

42 continue
43 }
44 if p.NextSibling().Kind() == ast.KindFencedCodeBlock {
45 taskString = taskString + "\n```txt\n" +

AssembleLines(p.NextSibling(), content) + "\n```"↪→

46 } else {
47 taskString = taskString + "\n\n" +

AssembleLines(p.NextSibling(), content)↪→

48 }
49 }
50 }
51 currentTask.Description = taskString
52 Lesson.Tasks = append(Lesson.Tasks, *currentTask)
53 }
54 if parentHeading.Level == 3 {
55 vocabularyString := n.Text(content)
56 vocabulary := strings.Split(string(vocabularyString), ", ")
57 Lesson.Vocabulary = vocabulary
58 }
59 }
60 }
61 return s, err
62 })
63 return *Lesson
64 }

Figure 8.1: Custom Markdown Parser

66 Chapter 8. Appendix A: User Study Survey Questions

	Introduction
	Problem Description
	Solving The Problem
	Research Questions
	Why CLIs?

	Introducing "CLI-Tutor"
	Thesis Outline

	The CLI-Tutor Tool
	Overview
	Curriculum
	Lesson Design
	Usability Considerations
	Safety Considerations

	Web Application

	Design And Implementation
	First Attempts
	Tools and Libraries
	CLI-Tutor
	Web Application
	Server Infrastructure

	Features and Considerations of CLI-Tutor
	Why Go?
	Shell Environment
	Lessons
	Lesson Parsing
	Embedded Files
	User Interface
	Validation
	Logging

	Web Application
	Frontend
	Backend
	Docker Daemon
	CLI Only
	Documentation Website
	Monitoring

	Extending CLI-Tutor

	User Study
	Methodology
	Interactive versus Non-interactive
	Structure

	Participants
	Technical Experience
	Feelings about the CLIs
	CLI Usage
	Learning Preferences

	Results
	Engineering Results
	Relevant Research Questions

	User Study Results
	Evaluation section
	Discussion
	Intimidation Factors

	Reflections and Related Work
	Related Work
	Improvements
	Future Work

	Conclusion
	Appendix A: User Study Survey Questions
	Survey Questions
	User Familiarity Questions
	Evaluation
	Feedback

	Parser

