
Implementation and Detection of
Spectrum Sensing Data

Falsification Attacks Affecting
Crowdsensing Platforms

Wassink Robin
Zürich, Schweiz

Student ID: 19-738-558

Supervisor: Dr. Alberto Huertas Celdran, Jan von der Assen
Date of Submission: July 24, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Die Nutzung von mobilen Daten hat drastisch zugenommen in den letzten Jahren und der
Trend ist steigend. Teil dieses Trendes ist dem Internet-of-Things (IoT) zuzuschreiben,
welches die digitale und physikalische Welten verbindet. IoT-Geräte sammeln und senden
unzählige Mengen an Bits über Funkfrequenzen was zu Diskontinuität oder Überbelastung
führt. IoT-Geräte werden aber auch vorteilhaft eingesetzt als Sensoren in Netzwerken die
der Überwachung und Analyse der Funkfrequenzen gelten, mit dem Ziel, die Nutzung zu
optimieren. Diese Geräte sind jedoch bekanntermassen ressourcenbeschränkt und folglich
ein wachsendes Cybersecurity Risiko. In Sensornetzwerken sind sie sogenannten Spec-
trum Sensing Data Falsification (SSDF) Angriffen ausgesetzt, welche versuchen, Daten
zu manipulieren. Jüngste Forschungsergebnisse haben maschinelles Lernen basierend auf
‘behavioral fingerprinting’ als vielversprechende Erkennungsmethode präsentiert.

Um der entsprechenden Forschung einen Beitrag zu leisten, wird in dieser Arbeit ei-
ne neue Implementation der SSDF Attacken präsentiert. Die Software, welche in Sen-
soren der crowdsourcing Platform ElectroSense verwendet wird, wurde modifiziert und
die sieben SSDF Attacken wurden implementiert. Die Attacken wurden in verschiedenen
Konfigurationen ausgeführt und das Verhalten des infizierten Gerätes überwacht anhand
von Systemaufrufen. Eine Machine Learning (ML) Pipeline hat darauffolgend die Daten
bereinigt, Merkmale extrahiert und mehrere unüberwachte maschinelle Lernalgorithmen
trainiert mit normalem Verhalten. Die infizierten Daten wurden anschliessend von den
Modellen klassifiziert, um die Anomalieerkennung zu bewerten in unterschiedlichen Situa-
tionen. Die Experimente haben erwiesen, das die neu implementierten Attacken, welche
Variabeln verwenden, nicht zuverlässig entdeckt werden im Gegensatz zu den Attacken
welche Dateien auf der Festplatte verwenden.

i

ii

Abstract

The usage of mobile data has increased massively over the past few years and the trend
is only rising. A part of this trend is due to the growth of the Internet-of-Things (IoT),
which is merging the digital and physical worlds. IoT devices are collecting and transmit-
ting countless of bits over the wireless spectrum and as a result, the radiofrequency (RF)
spectrum is getting bursty and overcrowded. Yet IoT devices are also beneficial for the RF
spectrum, as they are used as sensors in monitoring networks that analyze the spectrum
usage to optimize the use of the wireless spectrum. However, these devices are well-known
to be resource-constrained and therefore a growing cybersecurity concern. In a sensing
network, they are vulnerable to Spectrum Sensing Data Falsification (SSDF) attacks try-
ing to manipulate the data. Recent research has proposed behavioral fingerprinting and
Machine/Deep Learning (ML/DL) to detect those attacks.

To improve the limitations of the recent literature, another implementation of the latest
defined SSDF attacks is proposed in this thesis. The sensing software used in the crowd-
sensing monitoring platform ElectroSense has been modified to implement seven SSDF
attacks. The attacks have been executed in several different configurations whilest the
behavior of the infected device has been observed based on the system call trace. A Ma-
chine Learning (ML) framework thereafter has cleaned the gathered datasets, extracted
features and trained multiple unsupervised ML algorithms with normal behavior data.
The infected data has then been classified by the models to evaluate the anomaly de-
tection performance in different settings. The experiments have demonstrated that the
proposed implementation using variables is not reliably detectable compared to previous
implementations using files stored in disk.

iii

iv

Acknowledgments

I would like to express my deepest gratitude to my supervisor Dr. Alberto Huertas
Celdrán for his constant support and guidance during this bachelor thesis. The periodic
and spontaneous meetings have been very helpful and have resulted into many great
inputs.

Many thanks as well to Mr. Pedro Miguel Sánchez Sánchez for repeatedly meeting up
and giving helpful insights.

Additionaly, I would like to thank Chao Feng for giving me insights into his master project
which was the foundation of large parts of this thesis.

Many thanks should also go to my friends and family that have supported me throughout
this journey and have helped proof-reading.

Finally, I’m very grateful to Prof. Dr. Burkhard Stiller and the Communication Systems
Group of the University of Zürich for allowing me to carry out this challenging bachelor
thesis at their research group.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 5

2.1 Radiofrequency spectrum . 5

2.1.1 Electromagnetic waves . 5

2.1.2 Spectrum monitoring . 6

2.1.3 Spectrum sensing data falsification attack 6

2.2 Anomaly detection . 7

2.2.1 Behavioral fingerprinting . 7

2.2.2 System call . 7

2.2.3 System Call Feature extraction . 8

2.2.4 ML algorithms . 9

3 Related Work 11

3.1 SSDF detection . 11

3.2 Limitations and comparison . 14

vii

viii CONTENTS

4 Scenario & System Design 17

4.1 Scenario . 17

4.1.1 ElectroSense Setup . 17

4.1.2 ElectroSense Source Code . 18

4.2 System design . 20

4.2.1 SSDF Attacks . 20

4.2.2 Detection . 21

5 SSDF Attack Implementation 23

5.1 SSDF Attacks . 23

5.2 ElectroSense source code modifications . 30

6 Detection Implementation 33

6.1 System monitoring . 33

6.1.1 Implementation . 33

6.2 Detection . 35

6.2.1 Feature extraction . 35

6.2.2 ML algorithms . 37

6.2.3 Visualization scripts . 37

7 Evaluation 39

7.1 SSDF Attacks . 39

7.2 Detection . 41

7.2.1 Data exploration . 41

7.2.2 Feature comparison . 43

7.2.3 Model comparison . 45

7.2.4 Attack comparison . 47

7.3 Comparison with previous study . 49

CONTENTS ix

8 Summary, Conclusions and Future Work 51

8.1 Summary and Conclusions . 51

8.2 Future Work . 52

Abbreviations 57

List of Figures 57

List of Tables 59

A Installation Guidelines 63

B Contents of the zip file 65

x CONTENTS

Chapter 1

Introduction

Arguably, the Internet-of-Things (IoT) is becoming one of the most important technolo-
gies of our current century. Everyday items like the fridge, the car or the radiator are
getting connected to the internet to enhance our daily routine. Sensors, microcontrollers,
and other computing devices are creating, collecting, and sharing data to allow a seamless
connection between the physical and digital world. Thanks to this evolving hypercon-
nected motto, huge amounts of data are flooding the radiofrequency (RF) band. On top
of that, the mobile data usage overall is increasing tremendously. With all those trends,
the need for a reliable method to analyze, optimize and efficiently allocate the RF spec-
trum is getting more and more urgent. Solutions to solve the problem have been proposed,
but not with their fair share of challenges.

1.1 Motivation

One of the solutions proposed to optimize the usage of spectrum resources are cognitive
radio networks (CRN). Devices of the network can sense the environment and adapt ap-
propriately to use under-utilised bands or vacate overcrowded portions [1]. The cognitive
cycle of the CRN usually consists of three steps, the first of them being the spectrum
sensing, making it one of the most important components of a CRN [2]. ElectroSense is
an open-source platform that is dedicated to such spectrum sensing. Relying on crowd-
sourced IoT sensors consisting of an antenna attached to a Raspberry PI, the platform
collects, analyzes and presents spectrum data [3]. Low-cost sensing nodes are used as
they keep the entry barrier for volunteers as low as possible, which also has its drawbacks.
Resource constrained IoT devices generally have an increased vulnerability to various cy-
berattacks as a consequence of their decreased computational power, storage space and
battery [4]. Furthermore, CRNs not only face the regular malicious attacks as traditional
wireless networks, but are also threatened by attacks specifically to the cognitive setting
[5]. These include the so called Spectrum Sensing Data Falsification attack (SSDF) which
tries to disrupt the spectrum allocation by sending false sensing data. SSDF attacks occur
in various network settings with the main goal being the modification of spectrum data
with malicious intent. Thus, to protect the network from interference of hostile attackers,

1

2 CHAPTER 1. INTRODUCTION

it is necessary to implement a defense mechanism with the purpose of detecting SSDF
attacks. An appropriate way to detect anomalies in IoT sensors are Machine Learning
(ML) algorithms [6]. Combined with behavioral fingerprinting, it has been suggested to
be one of the most promising approaches to detect cyberattacks [7]. However, the exist-
ing works have some key constraints. On one hand, the existing SSDF attacks have been
implemented based on a specific approach (using files stored in disk) whilst other imple-
mentation techniques have not been considered. On the other hand, the existing machine
learning and deep learning (ML/DL) based solutions using behavioral fingerprinting cre-
ate their profile according to the usage of resources [8]. Other ways to create behavioral
fingerprints such as monitoring and analyzing system calls are on the rise [9] but need
further evaluation.

1.2 Description of Work

To improve the current studies, the main objective of this thesis is to implement SSDF
attacks in a new fashion and evaluate their detection with behavioral fingerprinting and
ML algorithms considering a different type of data source than resource usage. To reach
that goal, the main contributions of this work include:

• Implementing the functionality and behavior of seven malicious attacks called re-
peat, mimic, confusion, noise, spoof, freeze and delay which are classified as Spec-
trum Sensing Data Falsification attacks. The implementation is based on another
criterion than proposed in the previous literature, specifically using variables instead
of files stored in disk.

• Designing and implementing a monitoring component to observe the normal and in-
fected behavior of a sensory device connected to a crowdsourced spectrum monitor-
ing platform. The results are different datasets in order to create a device fingerprint
based on system calls.

• Setting up a ML framework that preprocesses, cleans and transforms the gathered
datasets into numerical features to train unsupervised ML algorithms in order to
detect anomalies.

The acquired results show the successful implementation of five out of seven SSDF at-
tacks utilizing variables. System calls prove not to be a robust approach for behavioral
fingerprinting considering the newly implemented attacks as the detection performance is
generally poor. Furthermore, the affected bandwidth and corresponding impact on the
software influences the detection performance significantly.

1.3 Thesis Outline

The remainder of this work is structured as follows. The second chapter introduces the
necessary terms used in this work and provides the theoretical knowledge to understand

1.3. THESIS OUTLINE 3

the work done. In Chapter 3, a review of different approaches to solving the problem of
SSDF attacks is provided. After that, in Chapter 4 the underlying scenario and the con-
sequently resulting system design are stated. Chapter 5 then explains the implementation
of the first requirement, the novel implementations of the SSDF attacks. Following that,
the implementation of the detection, which contains feature extraction and ML model
training is described in Chapter 6. Chapter 7 reviews the gathered data and evaluates the
performance of the trained algorithms. Finally, this thesis is concluded with a summary
and a short outlook for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter describes the theoretical background used in this thesis. First, basic un-
derlying technologies are presented, which lead to the introduction of the SSDF attack.
This is followed up by the introduction into system monitoring including behavioral fin-
gerprinting. Finally, different data preparation methods and ML/DL techniques to detect
anomalies are presented.

2.1 Radiofrequency spectrum

In the past few years, the general public has get used to flawless and rapid wireless com-
munication. It has become increasingly harder to ensure this high standard due to the
accumulation of different developments. The demand for mobile data has grown tremen-
dously, data rates are increasing and new technologies arise. This leads to the challenge
of efficient usage of the backbone of modern wireless communication - the radiofrequency
spectrum [3].

2.1.1 Electromagnetic waves

Modern communication highly relies on the electromagnetic spectrum, which contains
the complete range of wavelengths of the electromagnetic radiation. Electromagnetic
radiation travels in the form of waves and has electric and magnetic properties. These
waves can either be naturally emitted, for example by the sun, which is commonly known
as the visible light, or man-made as used in wireless communication, microwaves, radar or
x-rays. The whole electromagnetic spectrum can be divided in so called frequency bands,
depending on their wavelength, frequency or energy, which are all proportional to each
other. The segments this work is interested in, are part of the radiofrequency spectrum,
ranging from 3 kHz up to 300 GHz. This contains bands used for military communication,
radio, TV, Wi-Fi and many more [10].

5

6 CHAPTER 2. BACKGROUND

2.1.2 Spectrum monitoring

Next to legacy technologies using the radiofrequency spectrum, novel technologies like
the Internet-of-Things are on the rise. Ordinary things in daily life are getting smarter
and smarter, which leads to an enormous amount of data being sent over the Internet
[11]. Combined with a huge variety of different protocols, this leads to a very diverse and
fragmented use of the radiofrequency spectrum [3]. In the worst case, some frequency
bands are overcrowded which causes lower transmission quality due to re-transmissions
or decreased data rates [8].

The most promising approach to improve the spectrum utilization are CRNs [5]. The
secondary user can access a vacant spectrum without interfering with the primary user,
which is licensed to operate in that specific frequency band. With the help of this dynamic
spectrum allocation, the resource scarcity can be reduced. This involves spectrum sens-
ing, spectrum decision making and spectrum management [12]. On the first step is where
crowdsensing platforms come in handy. One of the goals of those monitoring platforms
is to provide knowledge about the actual radiofrequency utilization over time and space
to allow useful spectrum allocation of under-occupied bands. The crowdsensing platform
used in this work is called ElectroSense, ”a collaborative spectrum data monitoring net-
work [...] that monitors the spectrum at large scale with low-cost spectrum sensing nodes”
[3].

2.1.3 Spectrum sensing data falsification attack

There are different ways to disturb the efficient spectrum management and as in any net-
work, one of them is a cyberattack. There are a lot of different security threats on various
layers but this work is concerned with malicious attacks at the root of cognitive radio
networks, the spectrum sensing level. The integrity of spectrum sensing data is generally
manipulated by active attacks that modify the information, while passive attacks do not
interact with the network and solely intercept information [13]. Further classification of
the attacks is reasonably broad but in general, the attacks relevant for this thesis are the
primary user emulation attack (PUEAs) and SSDF attack. A malicious user that misdi-
rects other users by sending modified spectrum data is called a SSDF attack. The PUEA
is performed when a malicious user misleads other users by transmitting emulated signals
from the primary user [14]. Making other devices believe that a specific frequency band is
occupied by sending high sensing values, although that is not the case, can be considered
a SSDF attack for instance. In this context, this work has studied the recent research of
SSDF attacks. There are different categorizations, the one used in this work consists of
three families: Transmission hiding, Transmission simulation and a hybrid variant con-
taining both of the previous ones. The following table contains the seven proposed attacks
and their corresponding description.

2.2. ANOMALY DETECTION 7

Table 2.1: Table of the seven SSDF attacks based on [8]

Family Attack Description

Hybrid Repeat Replicates the Power Spectrum Data (PSD) of
Segment A (SA) in a specific moment of time
into the following segments over a longer period
of time

Mimic Replicates the PSD values of (SA) into Segment
B (SB) in every sensing cycle

Confusion Exchanges the values of SA with SB

Transmission simulation Noise Adds random noise to the PSD values of SA

Spoof Mimics SA into SB and adds random noise to
the PSD values

Transmission hiding Freeze The PSD values of SA are replicated over a cer-
tain amount of time

Delay The PSD values of SA are delayed with a sliding
time window

2.2 Anomaly detection

2.2.1 Behavioral fingerprinting

One of the most promising approaches to detecting cyberattacks is behavioral fingerprint-
ing, which is a special form of device fingerprinting [7]. The idea of device fingerprinting
is creating a robust profile to recognize a particular device and its legitimacy. This finger-
print is based on specific information related to that distinct device that then functions as
an immutable identifier. Behavioral fingerprinting specifically creates this ”digital biomet-
ric” based on the actions of the device such as resource usage or network traffic [15]. As
there has been a previous study utilizing resource usage [8] and system calls have proven
to be a suitable feature for anomaly detection [16], latter has been chosen in this work to
improve the current state of research.

2.2.2 System call

A system call is the way a computer program interacts with the kernel of the operating
system. An executing instance of a program is called a process. In general, processes are
run in so called user space that has limited privileges to ensure stability and security. To
execute tasks with higher privileges, the kernel space has to be accessed with a system
call [17]. By that, processes can perform operations as opening and manipulating files,
creating processes or much more by sending a task to the kernel.

8 CHAPTER 2. BACKGROUND

2.2.3 System Call Feature extraction

System calls can easily be monitored on a computer. They consist of a command, times-
tamp and the corresponding parameters. As they can be seen as a series of instructions,
they are comparable to a text sequence. Therefore, to transform the raw data into nu-
merical features, which are needed to train a machine learning algorithm, several feature
extraction methods from Natural Language Processing (NLP) can be applied [9].

The ones used in this paper are based on a bag-of-words, sequential encoding and a
simple hashing encoding. The bag-of-words approach creates a list that keeps track of
every occurrence of a system call. Thus, the original trace is converted into a bag of
system calls where only the frequency but not the ordering information is preserved [18].
Every system call is then represented as a variable in the final feature vector, depending
on the created dictionary that keeps track of the indices of the existing variables. In
general, these bags can be filled in different ways: with the actual frequency, the so called
Term Frequency-Inverse Document Frequency (TFIDF), which considers the significance
of a specific term compared to the whole corpus [19], or a hashing encoding. The TFIDF
can extract information from the whole dataset instead of just from one sample as with
the term frequency approach.

System calls can be viewed individually but can also be considered in pairs or more. This
is known as creating n-grams. An n-gram is a contiguous sequence of n items from a larger
sequence [20]. That means, in this work an n-gram is a sequence of n consecutive system
calls extracted from a monitoring cycle. The previously reviewed bag of words approach
can by that be extended and assign values corresponding to their cumulative frequency
or TFIDF to these newly created n-grams. The maximum n-gram used in this thesis is a
3-gram or trigram, which corresponds to a variable consisting of three consecutive system
calls.

The other way to create a feature for the machine learning algorithms is based on se-
quential encoding, which represents the system call sequence with a numerical value. The
numerical value can either be the dictionary index or the one-hot encoding [9]. The one-
hot encoding transforms each system call into a list as long as the total amount of system
calls of binary values that represents the actual system call with a 1 at the correspond-
ing index. An example can be found in Figure 2.1 representing all feature extraction
approaches used in this thesis.

2.2. ANOMALY DETECTION 9

Figure 2.1: Examples of the feature extraction techniques

2.2.4 ML algorithms

The previous section has explained how the captured data can be numerically represented
through different features. Finding outliers inside that numerical data that diverge from
the normal patterns is considered anomaly detection [21]. Widely used algorithms for
outlier detection are Isolation Forest (IF), Local Outlier Factor (LOF), One-class Support
Vector Machine (OC-SVM) and Robust Covariance [22, 23]. Each will be reviewed in the
following subsections.

Isolation Forest

Random Forest is an attractive way when working with high-dimensional datasets [9] and
has already been proposed as best machine learning algorithm for anomaly detection [24].
Hence, the IF is a promising algorithm for this thesis. The algorithm splits the data
recursively based on a feature to build a random IF containing a lot of tree-like models.
The basis to detect anomalies is the path length from the root to the leaf nodes [25].
It can suffer from long training time since it will generate many trees, is not known for
dealing with high dimensionality data but is robust to outliers and can handle them well
[24].

One Class Support Vector Machine

The Support Vector Machine (SVM) is a commonly used machine learning algorithm in
various forms for different domains [20]. Essentially, the OC-SVM algorithm maps the

10 CHAPTER 2. BACKGROUND

input data into a high dimensional feature space with the help of kernel functions and
then attempts to find an appropriate hyperplane that separates the training data points
from the origin [26].The algorithm considers outliers close to the origin and normal data
far away. The classification of normal or anomalous can then be made based on the
hyperplane [26]. OC-SVM is well suited for tasks with high data dimensionality, it can
handle large data volumes and makes no distribution of the data [9].

Robust Covariance

Another commonly used anomaly detection algorithm is Robust Covariance. In contrast
to OC-SVM, this algorithm assumes a Gaussian distribution of the normal data and
finds the boundaries of inlier and outlier data as elliptical or ellipsoidal [27]. From there,
the algorithm makes an estimate of the location and covariance of the normal data and
tries to find the optimal elliptic boundary. The Robust Covariance algorithm has high
robustness and effectiveness, but its data distribution assumptions and high computational
consumption limits its usage scenarios if working with high dimensionality data [9].

Local Outlier Factor

Local Outlier Factor calculates the lof value, which is used to describe the ”degree of
outlier” for each datapoint based on the relative density measure outlier factor relative
to its surrounding points [28]. LOF calculates the local deviation of every data point
and evaluates it as outlier or inlier based on the density between the data point and its
neighbors. A lower density means that the point is more likely to be identified as an outlier
[23]. Being independent of an underlying distribution assumption and other prerequisites
makes the LOF an appropriate choicee in anomaly detection.

Chapter 3

Related Work

In this chapter, a review of different related works about SSDF attack detection is pro-
vided. First, different SSDF attack types are discussed. Based on that, the different
detection techniques and the countermeasures are presented. To finalize this chapter, an
overview of the different related literature coupled with the therefore arising research gap
is provided.

3.1 SSDF detection

The concern of SSDF attacks has made an appearance with the rise of cognitive radio
networks. Detecting SSDF attacks has since then been a topic of interest for over a decade
now. Over this time span, people have amassed different approaches to define SSDF
attacks and proposed various detection methods. In the following section an overview of
the common approaches to tackle the SSDF attack problem is provided.

There are different definitions of the SSDF attack, but usually it is considered in a cogni-
tive network setting, where secondary users are collaborating to sense the radio frequency
spectrum and decide if a segment is vacant or occupied [29]. This can be done in a cen-
tralized way, where a fusion center reads in all information and makes a final decision or
decentralized, where secondary users communicate with each other and decide on their
own [30]. Over a long period of time, attackers and their behavior have only been sparsely
defined and vaguely categorized into the three groups [31]:

• Malicious users that send manipulated data in order to confuse other nodes or the
fusion center. The goal is to let other users make the wrong decision of using
or avoiding a segment to disrupt efficient spectrum allocation or cause harmful
interference with other devices.

• Greedy users that report all the time that a specific segment is used with the aim
to keep the specific band for themselves.

11

12 CHAPTER 3. RELATED WORK

• Unintentionally misbehaving users that send wrong observations because of a faulty
behavior due to a virus or internal mistake [31].

Furthermore, a secondary user can report their incoming signal in two ways, either con-
tinuous (e.g. power estimation from an energy detector) or binary, where the signal is
either absent or present [31]. There are also more ways to modify the attacks from the
adversary’s perspective. The question of when to attack can be changed: either with a
certain probability or not. The extreme cases of always or never attacking lead to the so
called always yes/no attacks. Probabilistic attacks are supposed to be stealthier but can
also be easier identified by statistical analysis as the attacker is consistent over time slots
[30].

Those underlying different definitions can lead to whole different proposed detection tech-
niques with various results. In [32], the authors make use of the probabilistic always yes
attack and propose a detection method based on the neighborhood distance approach.
With the help of spatial information and the energy detection, outliers are detected.
Based on simulated data, malicious users send false high energy values if the primary sig-
nal is absent, which is successfully detected for the case of a CRN spread over a wide area
with significant difference in path loss components of the channels between the sensors.

Another work that makes use of spatial information is [33]. The research has been done
with the sort of Denial of Service (DoS) attack, namely the PUEA, which is rather similar.
Reviewed are selfish and malicious attacks, which are equal to the ones of the SSDF. The
authors utilize both the location information of the primary user and the Received Signal
Strength (RSS), which means a continuous reporting of the signal is used. With their
transmitter verification scheme, called LocDef (localization based defense), multiple RSS
of various sensory nodes are compared and evaluated to localize the transmitter. Test in
different simulations have proven the localization scheme to be effective.

[34] makes use of continuous report as well, although the detection is based on another
technique. The authors of this work propose a so called trust based technique. The
trust based technique assigns an initial value to all users, which are updated for every
spectrum sensing cycle. Malicious behavior is rewarded by a decreased weight to exclude
the reported data at the fusion center [29]. [34] classifies three SSDF attacks: spectrum
spoofing (sending data from another node), spectrum inversion (flipping sensed spectrum),
and spectrum shifting (sending a shifted version of spectrum sensed). Malicious behavior
is detected based on spectrum matching using Euclidian distance and ignores incoming
results if the weighted trust does not pass a specific threshold [29].

Comparable to the trust based detection technique is the reputation based method, which
basically boils down to the same principle. The work proposed in [35] consists of two steps:
the reputation assignment step, where the reputation either increases if the sensing report
matches with the final decision or the opposite, and the hypothesis step. The hypothesis
step makes the decision based on Weighted Sequential Probability Ratio Test, which is
an evolution of SPRT, first proposed in the previous century [36]. In the simulations the
two probabilistic always-yes and always-free have been made use of. The hypothesis step
has since then been improved even further [37].

3.1. SSDF DETECTION 13

Another popular addition to reputation based techniques are Bayesian-statistics as first
used in [38], which proposed an onion-peeling defense scheme. It first computes the
suspicion level of the nodes according to their sensing report, and then removes malicious
nodes one by one based on their reputation until all remaining nodes are non-malicious.
Simulations have shown a significant reduction in false alarm rates when applying this
defense scheme.

A Bayesian-statistics approach has also been used in a recent paper by Fu et al. with
an impressive detection method for probabilistic attacks in [39]. Multiple small sliding
windows build a weighted trust scheme during the spectrum sensing process. Using a
sigmoid log function, secondary users are evaluated to be discarded if a threshold is
reached. This Bayesian-inference-based sliding window trust model has proven to be
successful in simulations with various attackers and attacking probabilities.

Another approach without assigning trust or reputation values to users is by detecting
abnormalities. In [40] the authors have proposed a multiple linear regression based on
Maximum-Match-filter algorithm to combat the SSDF attacks in CRNs. The Hamming
distance between the sensing data measures the similarity, which get plotted in a three
dimensional space. A regression plane then decides what sensing values are reasonable.
A threshold on the fitted plane selects the proper sensing reports for the collaborative
spectrum sensing decision. With relatively small datasets, the algorithm can produce
good results.

Clustering methods can also detect abnormalities as proposed in [41]. The k-medoids
method used in this work has been called PAM2 and consists of two stages: checking if an
attacker might exist and identifying attackers if any exist. In general, the intuition would
be, that if two clusters are created, one contains honest users and one the malicious users.
If the first stage therefore forms multiple clusters, a malicious user might be manipulating
the data. From the simulations, it turns out that the approach gives good performance
in terms of detection rate and false detection rate, without predefining a threshold or
knowing the attackers strategy.

A completely different approach is proposed by [42], which makes use of a fingerprinting
based method. PUEAs are detected through recognizing untampered data based on phase
noise which is random but unique for each transmitter. Legitimate primary users can
therefore be distinguished by emulated ones through the unique feature coupled with
the Local Oscillator. As this sort of detection deviates from the previously mentioned
approaches, the attack model is not really comparable, although it shows that transmitter
identification is a feasible detection method.

The last work proposing an improved fingerprinting detection technique is [8]. Instead of
the previous non-behavioral fingerprinting, the authors make use of behavioral fingerprint-
ing. Internal events are monitored inside the spectrum sensing device and evaluated with
machine learning and deep learning (ML/DL) algorithms. Furthermore, the authors pro-
pose the behavior of seven new SSDF attacks. Experiments with novel implementations
have shown almost perfect detection for five of the seven attacks.

14 CHAPTER 3. RELATED WORK

3.2 Limitations and comparison

The previous research in terms of SSDF attack detection has amassed various different
approaches to solving the problem. Conspicuous is the fact, that most of the authors
implement their proposal in simulations. Only fingerprinting based approaches have made
use of experiments. Furthermore noticeable is that some of the approaches are more
popular than others, for instance the reputation or trust based approaches seem to have
a predominance, although they are far from perfect. To be fair, all detection techniques
have their flaws, to name a few:

• Location based approach: The number one constraint of the location based approach
depends on other nodes to validate a signal, which is problematic as their integrity
can not be assured either. It relies on a high number of trusted collaborators [29]
which is hard to achieve outside of a simulation. There are furthermore environmen-
tal factors that might influence the RSS and influence the classification. Location
based approaches that communicate their position are also problematic because of
the so called location privacy leakage, as an attacker can overhear the transmission
and duplicate it itself [14].

• Statistical data based approach: The primary limitation of statistical data based
approaches is the confidence level. A lower confidence level increases the chance
of detecting an outlier and ensures the robustness of the model. However, this
also increases the possibility of misdetection. A high sensibility therefore can only
be guaranteed with an increased amount of misidentified data, which leads to an
inconvenient trade-off problem [14].

• Reputation based approach: The main restriction of reputation based mechanisms
is the dependency on historical data and other nodes. It takes time to be able
to get a valid reputation level to be sure a node is not infected. It is possible, the
sensing time is not long enough for finishing the process of assigning a valuable trust
factor. The second major practical research issue is relying on valid other sensory
nodes, with which the data from the original device can be compared with [14]. The
honesty of those other sensory nodes can not be guaranteed in every situation. The
detection quality also decreases for multiple attackers and might even break down
once the attackers prevail.

• Behavioral fingerprinting: Behavioral fingerprinting does not rely on other devices
but on a reliable fingerprint that guarantees the truthfulness of the data. This
either needs a robust unique identifier, otherwise the attacker might be able to
reproduce the fingerprint and deceive the defense mechanism. Furthermore, if the
anomaly detection of the fingerprint is based on ML/DL algorithms, the complexity
is significantly higher compared to other approaches. It also relies on reliable training
data that can not always be guaranteed.

The main limitations therefore are the dependency on given securities, for instance a wide
area coverage, other trusted devices or a robust fingerprint. The sensibility to detect every
attack can not always be guaranteed either. As multiple trusted collaborators can not

3.2. LIMITATIONS AND COMPARISON 15

be guaranteed in a real world application, the statistical and fingerprinting techniques
seem to be most applicable. The issue of the trade-off problem leaves therefore the behav-
ioral fingerprinting, which combined with ML/DL has been proposed to be a promising
detection method [7]. Once a reliable training data set of a robust fingerprint can be
guaranteed, small anomalies can be detected without the need of other devices. In recent
research, the authors have proposed CyberSpec [8], but the research is for a start rather
biased. As Celdrán et al. have stated, further investigations with behavioral fingerprint-
ing can lead to an improvement of the detection accuracy, which has been the main reason
for this thesis.

Table 3.1 provides an overview of all the previously mentioned works categorizing them
with their corresponding detection technique. Their main characteristics and the way
it has been implemented is documented as well. The attack probability (AP), either
probabilistic (P) or non-probabilistic (NP) and way of sensory reporting (SR), which can
be either continuous (C) or binary(B) is in the last two columns.

16 CHAPTER 3. RELATED WORK
T
ab

le
3.
1:

C
om

p
ar
is
on

of
d
iff
er
en
t
S
S
D
F
d
et
ec
ti
on

ap
p
ro
ac
h
es

W
or
k

D
et
ec
ti
on

te
ch
n
iq
u
e

C
h
ar
ac
te
ri
st
ic
s

Im
p
le
m
en
ta
ti
o
n

A
P

S
R

[3
2]

N
ei
gh

b
or
h
o
o
d
lo
ca
li
za
ti
on

•
C
om

p
ar
e
re
ce
iv
ed

si
gn

al
s
to

d
et
ec
t
ou

tl
ie
rs

•
N
o
p
re
v
io
u
s
k
n
ow

le
d
ge

re
q
u
ir
ed

S
im

u
la
ti
on

P
C

[3
3]

N
ei
gh

b
or
h
o
o
d
lo
ca
li
za
ti
on

•
A
n
al
az
y
in
g
P
U
E
A

•
C
om

p
ar
e
re
ce
iv
ed

si
gn

al
s
to

lo
ca
li
ze

tr
an

sm
it
te
r

•
S
ep

er
at
e
se
n
so
r
n
et
w
or
k
fo
r
at
ta
ck

d
et
ec
ti
on

S
im

u
la
ti
on

N
P

C

[3
4]

T
ru
st

b
as
ed

•
U
si
n
g
th
re
e
at
ta
ck
s:

sp
ec
tr
u
m

sp
o
ofi

n
g,

sp
ec
tr
u
m

in
ve
rs
io
n

an
d
sp
ec
tr
u
m

sh
if
ti
n
g

•
A
ss
ig
n
in
g
tr
u
st

b
as
ed

on
b
eh
av
io
r

•
B
eh
av
io
r
an

al
y
ze
d
w
it
h
sp
ec
tr
u
m

m
at
ch
in
g

S
im

u
la
ti
on

N
P

C

[3
5]

R
ep
u
ta
ti
on

b
as
ed

•
A
ss
ig
n
in
g
re
p
u
ta
ti
on

b
as
ed

on
b
eh
av
io
r

•
B
eh
av
io
r
an

al
y
ze
d
w
it
h
W

S
P
R
T

S
im

u
la
ti
on

P
B

[3
8]

R
ep
u
ta
ti
on

b
as
ed

•
A
ss
ig
n
in
g

su
sp
ic
io
n

le
ve
l
b
as
ed

on
on

io
n
-p
ee
li
n
g

d
ef
en
se

sc
h
em

e
S
im

u
la
ti
on

P
B

[3
9]

T
ru
st

b
as
ed

•
W
ei
gh

te
d
tr
u
st

sc
h
em

e
b
as
ed

on
m
u
lt
ip
le

sm
al
l
sl
id
in
g
w
in
-

d
ow

s
•
D
is
ca
rd
in
g
d
at
a
if
a
th
re
sh
ol
d
is

er
ac
h
ed

b
y
u
si
n
g
si
gm

oi
d

fu
n
ct
io
n

S
im

u
la
ti
on

P
B

[4
0]

A
b
n
or
m
al
it
y
d
et
ec
ti
on

•
S
im

il
ar
it
y
m
ea
su
re
m
en
t
u
si
n
g
H
am

m
in
g
d
is
ta
n
ce

b
et
w
ee
n

d
at
a

•
M
u
lt
ip
le

li
n
ea
r
re
gr
es
si
on

to
ev
al
u
at
e
ou

tl
ie
rs

S
im

u
la
ti
on

N
P

B

[4
1]

A
b
n
or
m
al
it
y
d
et
ec
ti
on

•
O
u
tl
ie
r
d
et
ec
ti
on

w
it
h
cl
u
st
er
in
g
te
ch
n
iq
u
e
k
-m

ed
oi
d
s

•
T
w
o
st
ep
s:

ch
ec
k
in
g
if
an

at
ta
ck
er

m
ig
h
t
ex
is
t
an

d
id
en
ti
-

fy
in
g
at
ta
ck
er
s
if
an

y
ex
is
t

S
im

u
la
ti
on

P
B

[4
2]

F
in
ge
rp
ri
n
ti
n
g

•
A
n
al
y
zi
n
g
P
U
E
A

•
R
ec
og
n
iz
in
g
d
at
a
b
as
ed

on
p
h
as
e
n
oi
se

E
x
p
er
im

en
t

-
-

[8
]

B
eh
av
io
ra
l
fi
n
ge
rp
ri
n
ti
n
g

•
U
si
n
g
se
ve
n
n
ov
el

at
ta
ck
s

•
B
eh
av
io
ra
l
fi
n
ge
rp
ri
n
ti
n
g
w
it
h
M
L
/D

L
al
go
ri
th
m
s

E
x
p
er
im

en
t

N
P

C

Chapter 4

Scenario & System Design

This chapter describes the underlying scenario and presents the system design that will
shape the rest of the thesis. First, the environment of the sensor is explained. In the second
part, the architecture with an introduction to the individual components is presented.

4.1 Scenario

Before describing the system design and its particular parts, the fundamental setup is
introduced. ElectroSense has been the chosen RF spectrum sensing platform making it
the central software to work with. In the next section, an overview of the ElectroSense
environment is given.

4.1.1 ElectroSense Setup

The main goal of ElectroSense is to provide a platform for spectrum analysis. To serve
the spectrum sensing data as intended, ElectroSense has setup a flexible and scalable
architecture. This archictecture consists of three major parts: sensors, a centralized
controller infrastructure and the backend. Although the other components are impressive
in their provided value, this work focuses only on the sensors [3].

In order to setup a large-scale sensing network which guarantees the best possible coverage,
there need to be as many sensors as possible. To achieve this goal, ElectroSense has chosen
the crowdsourcing approach. With that in mind, the deployment of a sensor needs to be
user friendly and cheap, aiming to keep the entry barrier as low as possible. This leads to
sensing nodes consisting mainly of two components: an antenna and a single circuit board
computer. The device used in this work is a Raspberry Pi 3 Model B with an armv7l
Linux kernel, 1GB of RAM and 1.2GHz CPU Frequency. The device is connected to the
Internet via Ethernet and sends the sensory data to the backend, where it is represented as
the sensor UZH CyberSpec 2. The Raspberry Pi is running headless and therefore has to
be modified through a ssh connection. This has been massively simplified With the help

17

18 CHAPTER 4. SCENARIO & SYSTEM DESIGN

of Visual studio code remote connection [43] and port sharing to enable easy development
from anywhere. ElectroSense furthermore provides a web front-end [44] which makes
visualization of the spectrum possible [3]. Figure 4.1 visualizes the explained setup.

Figure 4.1: Setup of this thesis inspired by [3]

4.1.2 ElectroSense Source Code

The software running on the sensors is maintained by the internal developers of Elec-
troSense and publicly available [45]. The fact that the software is open source makes the
sensing program easy to analyze and modify. The software is based on multiple source
and header files written in the programming language C++, which get compiled with the
help of the CMake compiling software. The executable which gets created this way works
rather straight forward in a cyclic way through the RF spectrum and is visualized in the
flow diagram in Figure 4.2.

Figure 4.2: Flow Diagram of the ElectroSense program es sensor

4.1. SCENARIO 19

The process starts with setting the configurations and starting its components. Once the
setup is done, it starts cycling through small segments of the RF spectrum. For every
segment, the IQ samples are sensed with the help of the RTL-SDR dongle, where SDR
stands for software defined radio. The IQ samples are quadrature signals detected by the
antenna, currently in time domain, that need to be transformed. This is done after the
windowing with the help of the Fast Fourier Transformation. The resulting samples in
the frequency domain are averaged and transmitted to the server. Then the whole process
starts again with another segment as long as the status of the sensory device is OK.

As the code has been modified before, the foundation of the source code used in this
work is the already altered code used in previous research [8, 9]. There, the previously
mentioned seven SSDF attacks have been implemented into two components that have
been marked in Figure 4.2:

• rtlsdrDriver.cpp: The module responsible for retrieving the sensory data in the time
domain.

• FFT.cpp: The module that performs the Fast Fourier Transformation, which con-
verts the data from the time domain into the frequency domain.

This time, the attacks were not performed with the help of external files but with variables
inside the code. The main code containing configurations has also been modified to
simplify future usage.

20 CHAPTER 4. SCENARIO & SYSTEM DESIGN

4.2 System design

With the final goal being a new implementation of SSDF attacks including a model to
evaluate the systems integrity, this work consists of two main parts. First the actual
creation of the SSDF attacks inside the sensor and second the construction of a detection
framework. This leads to the system design as shown in 4.3. The two main layers will be
evaluated in detail in the following subsections.

Figure 4.3: System design

4.2.1 SSDF Attacks

The first layer considers the aspects of the attack implementation. It is initiated with a
reliable setup of an ElectroSense sensor which has been explained in the previous section.
As a follow up, the source code needs to be altered to perform the correct behavior for
each of the seven SSDF attacks. The attacks can be executed in different ways, only
one of them being implemented currently, namely by writing sensing data to a file and
accessing that later on once again [8]. This creates some overhead that can be detected
through either monitoring the system calls or the resource usage. The robustness of this
system can be tested through implementing the SSDF attacks in another way and analyze
the performance again.

Another way to perform the attacks is by saving the temporary sensing data to a variable
inside the executable. Accessing and manipulating a variable inside the program does
not generate a system call as manipulating a file would, which implies that the new

4.2. SYSTEM DESIGN 21

implementation does not perform deviating instructions detectable by monitoring the
system call trace. However, it might have a completely different impact on the device
which still creates detectable anomalies like increased or decreased frequencies of specific
instructions.

4.2.2 Detection

The second part of the proposed system consists of the dataset creation, data preprocessing
& cleaning, feature extraction and finally training and evaluating the attack detection
model. The following sections introduce the monitoring and ML framework responsible
for those tasks. The procedure, features and algorithms are inspired by Chao Feng’s work
[9]. Furthermore, the scripts used in the detection part of this work are heavily based
on the github repository [46] to create a pricavy-preserving SSDF cyberattack intelligent
detection system, but adjusted where necessary.

Monitoring

Different monitoring techniques have been proposed to monitor the spectrum sensor. This
work makes use of the system call tracking to create a valuable fingerprint. Therefore,
the script needs to reliably supervise all instructions that are sent by the sensing process
and all its sub-processes to the kernel. This is done with the Linux system monitoring
tool perf trace [47]. All system calls with its associated parameters like the arguments
and return code are written to a .txt file. Only the instruction is of interest in a future
stage, which is the reason why a preprocessing script will be cleaning the data in a first
step. Only the actual system call and its corresponding timestamps will remain in the
subsequent .csv file, which is significantly less heavy.

The device has been monitored for two and a half hours for every behavior including
the normal one. This created 300 samples for 30 seconds of monitoring, inspired by the
configuration of [9], where 360x60sec was used. As the attacking bandwidth might have
an influence of the device behavior, different attacking ranges have been observed: 20kHz,
200kHz, 20MHz, 200MHz and 800MHz.The first two bandwidths trigger the attack in the
FFT.cpp section, the latter three in the rltsdrDriver.cpp module, which concludes all the
raw data gathered. This resulted in 2400 samples of 30 seconds of monitoring for each
bandwidth which meant an approximate total monitoring time of six days including the
preprocessing time.

ML framework

The second part of the detection layer considers all work done outside the sensor device.
The raw data has been transferred to a personal computer to create a ML pipeline.
The detection framework has been implemented with the programming language python
that supports numerous scientific libraries. The most important ones are scikit-learn for

22 CHAPTER 4. SCENARIO & SYSTEM DESIGN

preprocessing and machine learning, pickle for object serialization, numpy & pandas for
dataframe handling and matplotlib & seaborn for visualization.

The first step of the framework involves further data cleaning to remove any erroneous
or useless data. To prepare the data for training various algorithms, the textual data
needs to be transformed into numerical data. This is done with feature extraction to
convert the sequence of instructions into feature vectors. The frequency approaches have
been combined with n-grams up to n = 3. Result of the feature extraction step are
therefore nine datasets, two of them are sequence related, the other seven are different
configurations of bag-of-words encoded features which are listed in Table 4.1.

Table 4.1: Feature extraction approaches inspired by [9]

Feature Extraction Approach Feature Encoding Type

Bag-of-words Frequency 1-Gram
Frequency 2-Gram
Frequency 3-Gram
TFIDF 1-Gram
TFIDF 2-Gram
TFIDF 3-Gram
Hashing

Sequence One-hot encoding
Dictionary index encoding

Some ML algorithms might yield a better performance with scaled data due to their
sensitivity for the range of values. Therefore, the frequency and TFIDF features also
have been standardized to compare the performance. Standardization is another scaling
method where the values are centered around mean with a unit standard deviation.

Finally, the models needed to be trained and the performance evaluated. The datasets
gathered for the normal behavior serve as training data for the different algorithms. Then,
the data under infected circumstances had to be classified in order to evaluate the anomaly
detection performance. The final used ML algorithms are Robust covariance, One-Class
Support Vector Machine, Isolation Forest, Stochastic Gradient Descent One-Class Sup-
port Vector Machine and the Local Outlier Factor. The Robust Covariance had to be
omitted with sequence features due to unreasonably long training time (8 hours+) as the
dimensions of those features are significantly larger.

Furthermore, in this work, the performance of the ML models has been evaluated based on
two different scores, the True Positive Rate (TPR) and the True Negative Rate (TNR).
A True Positive (TP) stands for a correctly classified anomaly while a True Negative
(TN) represents a correctly detected normal behavior. The opposite stands for False
Positive (FP) and False Negative (FN). Thus, the TPR describes the ratio of actual
positives (anomalies) correctly predicted. It is calculated by TPR = TP

TP+FN
Finally, the

ratio of actual negatives correctly predicted (normal behavior) is the TNR, calculated by
TNR = TN

TN+FP
.

Chapter 5

SSDF Attack Implementation

The previous chapter has explained what underlying scenario this thesis is working with
and what approach therefore resulted. Under those circumstances, the new SSDF attacks
have been implemented. Previous implementation made use of files to keep data stored
over time. The detection of those attacks lead to a promising performance but might not
show the full picture as other versions interfere. The following implementations intend to
improve this field of research. The exact source code can be found on Github [48].

5.1 SSDF Attacks

Latest research has proposed seven different SSDF attacks, which have to be implemented
into the ElectroSense source code. They need to be implemented into two different classes
which are responsible for retrieving the sensing values and applying the Fast Fourier Trans-
formation. Depending on the affected bandwidth of the attack, the data manipulation
occures in either one of the files. For 2MHz and below, the attacks take place in the
FFT.cpp and above takes place in the rtlsdrDriver.cpp. Both of the implementations are
comparable, which leads to the following subsections only explaining the realization in the
rtlsdrDriver file. The attacks all build-upon the normal behavior. In a normal setting,
the code cycles trough the whole spectrum and senses the IQ samples for a small segment
around a given frequency center. Once the attacked segment is reached, the sensed data is
either saved and or overwritten according to the attack behavior. All attacks are therefore
an addition to the normal behavior. Table 5.1 lists the general variables and functions
used in the pseudo codes.

23

24 CHAPTER 5. SSDF ATTACK IMPLEMENTATION

Table 5.1: Variables and Functions used in the SSDF attack implementation pseudo code

Variable/Function Description

Att freq The frequency where the attack starts
Att freq2 The second attacked frequency if needed (only in mimic, confusion

and spoof)
cent freq The center frequency of the currently sensed segment
Att bw The bandwith the attack is affecting
Att impact The attack impact in the FFT.cpp segment, depending on Att bw
sdr.readSamples() Sample IQ signals with SDR
fft execute() Perform the Fast Fourier Transform

Normal

To show where the attacks are implemented in the cycle, the following pseudo code shows a
very simplified of the regular sensing progress in general with a focus on the two important
modules:

Algorithm 1 Normal behavior

1: setConfigurations()
2: InitQueue(Q)
3: while Running = True do
4: iq vector = sdr.readSamples() ▷ rtsldrDriver.cpp
5: if behavior is malicious & Att bw > 2MHz then
6: manipulate iq vector ▷ perform attack here
7: end if
8: segment = newSpectrumSegment(iq vector)
9: enqueue(Q, segment)
10: ...
11: segment = dequeue(Q) ▷ FFT.cpp
12: signal freq = fft execute(segment.iq vector)
13: if behavior is malicious & Att bw ≤ 2MHz then
14: manipulate signal freq[Att impact] ▷ perform attack here
15: end if
16: assign signal freq to segment
17: end while

5.1. SSDF ATTACKS 25

First, in the initialisation of the program, the configurations are set. Following this,
the main function initializes a queue that connects the different components like the
rtlsdr-driver, windowing, etc. and allows the data to flow between them. Once the
components are setup, the iterative sensing starts in the rtlsdr component by reading the
samples and filling the iq vector. SSDF attacks above 2MHz manipulate this variable.
A SpectrumSegment class gets created with the variable iq vector as a parameter. This
goes through the other components until it gets dequeued in the FFT module. Here,
the transformation is applied and the signal in frequency domain extracted. If there
was a malicious attack in this bandwidth, it would manipulate the obtained values. The
extracted signal is assigned back to the segment and the data flow can go on to different
steps like the transmission to the backend. Now that the positions of the SSDF attacks are
defined, each individual attack in the rtlsdr component is briefly introduced and visualized
with pseudo code.

Repeat

The repeat attack essentially senses the first part of a larger segment and replicates this
data across the specified range. Once the source segment is created, the data will be
copied over the whole range until the attack stops. This leads to the following pseudo
code:

Algorithm 2 SSDF Attack: Repeat

1: Repeat source segment ← empty vector
2: while Running = True do
3: iq vector = sdr.readSamples()
4: if Att freq < cent freq < Att freq + Att bw then
5: if Repeat source segment = empty then ▷ Only the case for first segment &

first iteration
6: Repeat source segment = iq vector
7: else
8: iq vector = Repeat source segment
9: end if
10: end if
11: end while

26 CHAPTER 5. SSDF ATTACK IMPLEMENTATION

Mimic

The mimic attack is basically a more sophisticated repeat attack, in the sense that a
specific second segment is stated and the PSD values are copied every cycle instead of
just being replaced by the PSD values at t = 0. This leads to the following pseudo code:

Algorithm 3 SSDF Attack: Mimic

1: Mimic source segment ← empty vector
2: SegmentCount ← 0
3: while Running = True do
4: iq vector = sdr.readSamples()
5: if Att freq < cent freq < Att freq + Att bw then
6: Mimic source segment push back iq vector
7: end if
8: if Att freq2 < cent freq < Att freq2 + Att bw then
9: iq vector = Mimic source segment[SegmentCount]
10: SegmentCount++
11: end if
12: if cent freq > Att freq2 + Att bw then
13: clear Mimic source segment
14: Reset SegmentCount ← 0
15: end if
16: end while

5.1. SSDF ATTACKS 27

Confusion

Disorder and exchange are other designations this SSDF variation can be named as, which
might be more descriptive to this behavior. The first segment is exchanged with the second
attacked segment. Algorithm 4 visualizes this through pseudo code.

Algorithm 4 SSDF Attack: Confusion

1: Confusion source segment1 ← empty vector
2: Confusion source segment2 ← empty vector
3: SegmentCount ← 0
4: while Running = True do
5: iq vector = sdr.readSamples()
6: if Att freq < cent freq < Att freq + Att bw then
7: Confusion source segment1 push back iq vector
8: if Confusion source segment2 is not empty then ▷ Do not exchange on the

first iteration as the second segment has not been sensed yet
9: iq vector = Confusion source segment2[SegmentCount]
10: SegmentCount++
11: end if
12: end if
13: if Att freq + Att bw < cent freq < Att freq2 then
14: clear Confusion source segment2
15: Reset SegmentCount ← 0
16: end if
17: if Att freq < cent freq < Att freq + Att bw then
18: Confusion source segment2 push back iq vector
19: iq vector = Confusion source segment1[SegmentCount]
20: SegmentCount++
21: end if
22: if cent freq > Att freq2 + Att bw then
23: clear Confusion source segment1
24: Reset SegmentCount ← 0
25: end if
26: end while

28 CHAPTER 5. SSDF ATTACK IMPLEMENTATION

Noise

The noise attack adds random noise to the attacked segment. The implementation of
the noise attack has a flaw as the generation of the number relies on a random device
object. This object makes use of a system-specific source of randomness, the filesystem
path ”/dev/urandom” in this case.

Algorithm 5 SSDF Attack: Noise

1: while Running = True do
2: iq vector = sdr.readSamples()
3: if Att freq < cent freq < Att freq + Att bw then
4: iq vector = iq vector + randomV alue
5: end if
6: end while

Spoof

Spoofing is like the mimic attack but adding noise to the copied values. Since the noise
once again relies on the ”/dev/urandom” filesystem path, the implementation does not
fulfil the requirement of independance of files.

Algorithm 6 SSDF Attack: Spoof

1: Spoof source segment ← empty vector
2: SegmentCount ← 0
3: while Running = True do
4: iq vector = sdr.readSamples()
5: if Att freq < cent freq < Att freq + Att bw then
6: Spoof source segment push back iq vector
7: end if
8: if Att freq2 < cent freq < Att freq2 + Att bw then
9: iq vector = Spoof source segment[SegmentCount] + randomV alue
10: SegmentCount++
11: end if
12: if cent freq > Att freq2 + Att bw then
13: clear Spoof source segment
14: Reset SegmentCount ← 0
15: end if
16: end while

5.1. SSDF ATTACKS 29

Freeze

The behavior of the freeze attack is defined as repeating the same values of a segment
over time. This can be achieved with the following code represented in pseudo code:

Algorithm 7 SSDF Attack: Freeze

1: Freeze source segment ← empty vector
2: Freeze ← False
3: SegmentCount ← 0
4: while Running = True do
5: iq vector = sdr.readSamples()
6: if Att freq < cent freq < Att freq + Att bw then
7: if Freeze == False then
8: Freeze source segment push back iq vector
9: else
10: iq vector = Freeze source segment[SegmentCount]
11: SegmentCount++
12: end if
13: end if
14: end while

30 CHAPTER 5. SSDF ATTACK IMPLEMENTATION

Delay

The delay is the most sophisticated attack from the implementation perspective. The
signal needs to be stored and being repeated after the delay has been reached. The delay
has been implemented as a count of segment cycles. It relies on a 3d array consisting of
nested vectors containing the iq vectors for multiple segments over time. Basically there
exist three modes: init, filling and full. Init is the first iteration, thereafter comes filling
and once the Delay source segment is full, the mode full is activated. The different
modes are explained in Algorithm 8 and kept rather simple to demonstrate the idea. The
full code can be found in the github repository.

Algorithm 8 SSDF Attack: Delay

1: Delay source segment ← empty 3d array
2: mode← init, filling or full
3: delay ← x
4: SegmentCount ← 0
5: CurrentIteration ← 0
6: while Running = True do
7: iq vector = sdr.readSamples()
8: if Att freq < cent freq < Att freq + Att bw then
9: if mode == init then
10: Delay source segment push back vector of size delay with iq vector at the

first position
11: end if
12: if mode == filling then
13: Delay source segment[SegmentCount][CurrentIteration] push back

iq vector
14: SegmentCount++
15: end if
16: if mode == full then
17: Exchange iq vector withDelay source segment[SegmentCount][CurrentIteration]
18: SegmentCount++
19: end if
20: end if
21: if cent freq > Att freq + Att bw then
22: Reset SegmentCount ← 0
23: when CurrentIteration == delay then Reset CurrentIteration else

CurrentIteration++
24: end if
25: end while

5.2 ElectroSense source code modifications

Instead of making an individual executable with all the different attacks replacing the
normal behavior, the whole program has been modified to read all needed arguments and

5.2. ELECTROSENSE SOURCE CODE MODIFICATIONS 31

run the desired behavior. This modification reduces the used space on the device as there
does not need to be an executable for every configuration and it furthermore increases
the convenience for future usage as the behavior or affected bandwidth can be modified
by just changing an argument to the program. This has been exploited in the monitoring
script to create an independent and automatic data collector.

The modifications have been made in different configuration segments of the code. The
function parse args() which is responsible for parsing the arguments to the program in
the main.cpp file has been altered to read in the additional arguments:

• mode: Telling the program if it is behaving normally or under one of the seven
attacks

• bandwidth: The affected bandwidth that is under attack (if it is attacked)

• First attacked segment: The attacked radiofrequency

• Second attacked segment: The second radiofrequency that is attacked (depending
on the attack)

The command to start the executable therefore changed from (... representing different
arguments):

es_sensor ... min_freq max_freq

to:

es_sensor ... -v {mode} -j {bandwidth} min_freq max_freq \

{First attacked segment} {second attacked segment}

The previous arguments and their corresponding setters and getters are added to the
configuration in the ElectrosenseContext.cpp and the corresponding header file. The
arguments are saved and can be accessed later. Depending on the bandwidth, the attacks
are executed in a different manner. The program therefore has the evaluate the affected
frequency range and act accordingly. If the bandwidth is above 2MHz, the attack is
performed in the rtlsdr driver component, otherwise in the FFT component. The impact
in the FFT module is proportional to the affected range, which is calculated by the FFT
size (default is 28) divided by the ratio of the attack bandwidth to the maximum range
of 2MHz. The FFT size describes the amount of bins used for dividing the segment, thus
the frequency resolution. The attack impact is therefore impact = 256

2′000′000/attack bandwidth
.

Finally, the configuration gets printed at startup to check for any errors. After setting
up, the actual sensing module will perform the behavior as configured.

As an alternative to the waterplots of the ElectroSense web front-end, different inter-
mediate print statements have been implemented to supervise the faultless functioning
of the program. As the attacks in the rtlsdrDriver component have proven to do what
they are supposed to do in the frontend, the only thing left to check when running the

32 CHAPTER 5. SSDF ATTACK IMPLEMENTATION

attacks was the flawless flow of the program. This is monitored by printing a statement
to the output after every successful cycle through the whole spectrum, executed by the
SequentialHopping.cpp file. It has not been possible to verify the implementation of the
attacks into the FFT.cpp visually with the waterplots, since the web front-end has not
been reliably working since their creation. The alternative ways of logging the desired
behavior have been positive.

Chapter 6

Detection Implementation

The previous chapter has explained the way the new SSDF attacks have been imple-
mented. Subsequently, the system has to be observed while it is running under the new
circumstances, which is reviewed in the first part. The second part presents the following
ML framework that consists of data cleaning, feature extraction and ML training to de-
tect anomalies in the newly generated data. The presentation of the code does not imply
the creation of the files, which are mainly done by Chao Feng in the master thesis [9]
created at the Communication Systems Group at the University of Zürich (UZH). Several
adjustments have been made, mainly in the monitoring due to different configurations and
in the feature extraction because of different procedures, but the main creator of large
parts of the code is Chao Feng. Nevertheless, the code used in this work for monitoring
([48]) and the ML framework ([49]) can be found in on github.

6.1 System monitoring

There exist different tools to keep track of the system calls, one of them being the bash
command perf trace, which is used in this configuration. The main goal of the system
monitoring is to create valuable datasets that can evaluate the implementation of the
SSDF attacks based on behavioral fingerprinting with system calls.

6.1.1 Implementation

The scripts which have been used in [9] were adapted to make it suitable for this con-
figuration and setup. Instead of restarting the service, the executable has to be rerun to
configure the desired format. The monitoring consists of three files:

• start monitor.sh: The main script to start the data acquisition.

• monitor.sh: The script that does the actual monitoring.

• preprocessing.py: The python script that turns the heavy txt file into a more suitable
csv file.

33

34 CHAPTER 6. DETECTION IMPLEMENTATION

start monitor.sh

This bash script is used to start the data acquisition. It is recommended to be run in a
window inside the shell (with the bash command screen [50]) so it does not abort when
the ssh connection to the Raspberry PI is lost. The output when run with screen can also
be redirected to a file, which ensures appropriate logging. The script essentially performs
a massive automated data collection with two nested for loops, which run through the
desired time windows and bandwidths. For every configuration, it creates an appropriate
folder and runs the sensing program with all behaviors. Once the service is running, the
monitor.sh script is executed to monitor the actual system calls.

Algorithm 9 start monitor.sh

1: for sample durations do
2: for bandwidths do
3: Create folder
4: for every behavior do
5: Rerun executable with behavior
6: execute monitor.sh
7: end for
8: end for
9: end for

monitor.sh

After the sensing executable is started appropriately, the monitor.sh script is run. Inside
the script, there is a loop that runs for a predetermined amount of times to get an
appropriate amount of samples for every behavior. Once the process ID is found, the
system is monitored with the most important line in the monitoring part:

timeout -s 1 ${time_window} perf trace -o /data/$2/raw/${path}.txt \

-e !nanosleep -T -p ${pid}

The timeout command regulates the time until the next command is run, in this occasion
the monitoring command perf trace. All system calls except nanosleep, as it occurs too
often and is therefore not valuable later on, made by the process and its sub-processes
are written to a text file. A line in the text file contains the timestamp, system call, the
arguments and de return value. Once the observing command finishes, the text file is
converted to a csv file with the following script.

Algorithm 10 monitor.sh(time)

1: while count < total samples do
2: PID = process ID of es sensor process
3: perf trace the process PID for time seconds except nanosleep
4: execute preprocessing.py
5: count++
6: end while

6.2. DETECTION 35

preprocessing.py

This python program reads all the lines from the text files and filters them. It loops over
all the data which looks like:

913236911.638 (0.013 ms): es_sensor/28227 timerfd_settime \

(arg0: 8, arg1: 1, arg2: 1978215436, arg3: 0, arg4: 1959791344, \

arg5: 8598792) = 0

and filters only the process id, timestamp, system call and time cost out, which leads to:

es_sensor/28227,913236911.638,timerfd_settime,0.013

These get written to a new file which is saved as a csv.

6.2 Detection

Every dataset has a folder named with the timestamp, the manipulated component, the
bandwidth and the monitoring time, with the data which has been gathered on the Rasp-
berry PI and is stored in the subfolder called ”raw”. The folder is moved with secure
copy to another computer for the next steps. Here the actual steps to train a ML al-
gorithm in an effort to detect the different behaviors are performed. This starts of with
further data cleaning and feature extraction. After that, the algorithms are trained and
the performance evaluated.

6.2.1 Feature extraction

The feature extraction is the first step after the data has been transferred and is performed
by the get features.py file. The raw data for the given folder is read in and is saved in a
pickle file for future reuse. While reading the raw data, the system calls are set side to
side with the official system calls (obtained by the bash command ‘man syscalls‘) to filter
out any erroneous data. With the help of the sklearn library, vectorizers are created and
saved into their corresponding folder. The dictionary encoding creates a copy of every
system call trace for each sample and replaces the instruction with the corresponding
unique index. The one-hot encoding function does the same but replaces the string with
a list containing only 0’s except a 1 at the corresponding index. The sequence features
only consider the first 2500 instructions which roughly correlates to a second of monitoring
due to the otherwise massive feature dimensions. The vectorizers then create the bag-of-
words features and append all to a dataframe containing all samples with the designated
features. Finally, the features are written to an individual csv file for later reuse. Figure
6.1 visualizes the procedure of the get features.py file.

36 CHAPTER 6. DETECTION IMPLEMENTATION

Figure 6.1: Feature extraction program flow

Scaling

Worth mentioning as well is the scaling.py script that reads the applicable bag-of-words
approaches, which are the frequency and TFIDF n-grams, and scales them. This is done
by reading in the regular features, creating a StandardScaler with the sklearn library and
scaling the data according to the normal behavior to test its performance later on.

6.2. DETECTION 37

6.2.2 ML algorithms

Creating the final ML models is done in the ml.py file. Running the script with the folder
name as an argument will read in the available features for the corresponding bandwidth.
The script runs through all the features, reshapes them if needed and creates the training
set based on the 300 normal behavior samples monitored. The script iterates through the
ML algorithms mentioned in Chapter 4.2.2 and splits the training set into a 70% training
data and 30% validation data. The TNR results from predicting the validation set. Once
trained, the different ML algorithms predict the malicious data and get the corresponding
TPR. Finally for each algorithm, a total TPR will be assigned. The pseudo code in
Algorithm 11 visualizes the described procedure.

Algorithm 11 ML training

1: for every feature do
2: Create train set containing all 300 normal samples
3: Create list of test sets containing 7x300 malicious samples
4: for every ML algorithm do
5: Create train/test split from train data
6: Get TNR by predicting test set from train data
7: for every malicious behavior do
8: Get individual TPR by predicting all 300 samples
9: end for
10: Get total TPR by predicting 2100 sets of malicious behaviors
11: end for
12: end for

6.2.3 Visualization scripts

The last files created in the detection part are the python files used for visualization.
Analyzing the raw data has been done by creating a dataframe filled with the frequency
of each system call in every cycle for every behavior. This dataframe has been used to
create the heatmap and system call evaluation in the next chapter. The performance
evaluation has been done by creating two 4d arrays with the dimensions bandwidths x
models x features x behaviors and have been filled with the corresponding TPR and TNR.
Iterating through the array and averaging resulted into the different evaluations that will
follow.

38 CHAPTER 6. DETECTION IMPLEMENTATION

Chapter 7

Evaluation

The previous chapters have shown the process of implementing the proposed system. The
final step of the framework is the evaluation and visualization of the data. To follow the
previous separation of attack implementation and detection, the following chapter is split
into the two sections again.

7.1 SSDF Attacks

Evaluating the newly implemented attacks can be done by reviewing the plots generated
from the sensory data sent to the backend. As the backend has not been running stable
since the final creation of the attacks, only provisional screenshots of six of the attacks
can be presented. The delay attack and the creation of the malicious behavior in the
FFT.cpp file have been verified by reviewing the data inside the program. Nevertheless,
the following six figures present the repeat(Figure 7.1), mimic (Figure 7.2), confusion
(Figure 7.3), noise (Figure 7.4), spoof (Figure 7.5) and freeze (Figure 7.6) attack. The
attacks were sequentially executed for ten minutes.

Figure 7.1: Waterplot of ElectroSense frontend: Repeat attack highlighted

39

40 CHAPTER 7. EVALUATION

Figure 7.2: Waterplot of ElectroSense frontend: Mimic attack highlighted

Figure 7.3: Waterplot of ElectroSense frontend: Confusion attack highlighted

Figure 7.4: Waterplot of ElectroSense frontend: Noise attack highlighted

Figure 7.5: Waterplot of ElectroSense frontend: Spoof attack highlighted

7.2. DETECTION 41

Figure 7.6: Waterplot of ElectroSense frontend: Freeze attack highlighted

7.2 Detection

The section evaluating the detection results presents multiple different aspects to review,
as every step of the framework generated data which was assessed.

7.2.1 Data exploration

First is the raw data resulting from the monitoring step. Large sets of files for various
configurations were generated. The files contain the preprocessed system calls row by
row which can be analyzed and compared. Figure 7.7 shows a heatmap for an attacked
bandwidth of 200kHz which has been monitored for 60 seconds. Having a look at the
heatmap for the different behaviors, the normal and infected data can not be distinguished
just by eye. In this case though, reviewing the actual numerical data in Table 7.1 instead
of the visualization provides value as there seems to be some differences which do not
show in the graphic. System calls which are called less than 30 times are omitted.

Figure 7.7: System call frequency heatmap for SSDF attacks implemented with variables

42 CHAPTER 7. EVALUATION

Table 7.1: Table of system calls for 60 seconds of monitoring

mode ioctl poll timerfd settime close futex getpid open read write
normal 77862 26482 49910 8 44 1086 6 30 1088
repeat 79649 27159 51053 8 51 1108 7 29 1185
mimic 80268 27316 51453 8 61 1118 6 29 1138
confusion 80440 27359 51566 8 49 1118 7 29 1122
noise 79345 27484 50863 516 25 1104 513 27 1115
spoof 78857 27315 50546 511 37 1094 510 29 1107
freeze 79992 27243 51277 8 67 1113 6 29 1124
delay 77073 26210 49403 8 41 1102 6 29 1116

Analyzing the data in Table 7.1, shows a few attackts seem to have almost identical
behavior as the normal mode, while noise and spoof clearly differ from the conventional
behavior as the instructions open and close occur more often. As this only shows the
first 60 seconds, it is useful to examine the system call evaluation over time for the most
important system calls ioctl, poll, timerf_settime, close, open and write.

7.2. DETECTION 43

Figure 7.8: Evaluation of the system calls ioctl, poll, timerfd settime, close, open and
write

The subplots in Figure 7.8 display the 300 sequential samples for six different system calls
of each behavior. The previously observed anomalies in the open and close system calls
are independent of time and stay somewhat constant. This is an indication that contin-
uously a file is opened and closed which had not been evaluated as an issue at the time.
The noise and spoof attack rely on files, although it is not by saving temporary sensing
data but to access a random number generator. Despite the fact of this not fulfilling the
implementation requirements, in hindsight, it even turned out to be beneficiary due to
the ability to compare the behaviors. The system calls ioctl, poll, timerf_settime
and write are constant over time as well with a noticeable amount of outliers.

7.2.2 Feature comparison

Creating different features and training the algorithms with the data explored above leads
to various results. As mentioned in Chapter 4.2.2, the performance is evaluated with the
TNR and TPR. In general, only models are taken into consideration if they reach a TNR
of 85% and above, unless it is stated otherwise. The TNR signifies that the model has
been able to learn and classify the normal data correctly. Given this condition, the TPR
represents the accuracy of the anomaly detection. The first variable to assess and find the
best detection variation is the best performing feature(s). Bag-of-words features can be
scaled to decrease the range of the feature values. Figure 7.9 shows the difference between
the average TPR for all models considered with an attack range of 200kHz with scaled
(blue bars) and not scaled (orange bars) bag-of-words features.

44 CHAPTER 7. EVALUATION

Figure 7.9: Feature comparison: Scaled and normal

Only the unigram variations perform better with scaling, possibly as it has the biggest
influence on those feature values. When using those features, scaling might therefore have
a positive influence on the detection, although in general, not scaling will be considered
more accurate from here on forward.

Figure 7.10 shows the comparison between the features for all bandwidths across all
ML algorithms. Noticeable are the weak performances by the sequence features with
dictionary index-encoding and one-hot-encoding. The best TPR are reached by the 3-
gram frequency feature and the TFIDF unigram. The trend for the frequency feature
seems to be increasing which might imply an even better performance for higher n-grams.

7.2. DETECTION 45

Figure 7.10: Feature comparison: Different features

The reason of the sequence features performing so bad is most likely due to the poor
dimensionality reduction. As the computing power has not been enough to train models
in a reasonable amount of time with the sequence features, the monitoring segments have
been shortened to approximately a second. It is quite likely the attack was not performed
during this second depending on the attacking bandwidth.

7.2.3 Model comparison

Once the best performing features were evaluated, the TPR and TNR of the different
models were compared. TNR can be seen as how good the model was able to train and
the TNR judges the anomaly detection performance. The comparison of the average of
training with all features over all bandwidths for the five different models is visualized in
Figure 7.11.

46 CHAPTER 7. EVALUATION

Figure 7.11: Model TPR & TNR comparison

Figure 7.11 shows some distinct takeaways. Firstly, the Isolation Forest model can classify
the normal data correctly above 90% of the time. This makes it a valid detection method,
although the actual anomalies can only be detected less then 20%. The One-Class SVM
and Robust covariance TNR can be assessed as rather mediocre, while the RC shows the
best anomaly detection rate. Admittedly, the TPR is still very underwhelming and is not
representative due to the low TNR. The SGD One-Class SVM does train extraordinaly
good but possibly because it classifies everything as normal behavior by evaluating the
TPR. The Local Outlier Factor performed very odd, as it classified exactly the opposite
and could not be improved by tuning the hyperparameters. In general, the TPR could be
enhanced by a larger amount of data samples to train the algorithms better and classify
normal data more accurate.

Reviewing the average TPR per bandwidth for each model trained with all features in
Figure 7.12 shows the best detection possibilities in the 200kHz area. Furthermore, a
slight trend from 20kHz to 200kHz and from 20MHz upwards can be detected. The Local
Outlier Factor proves to be not suited for the case as it does not show up on the plot.

7.2. DETECTION 47

Figure 7.12: Model TPR comparison

7.2.4 Attack comparison

The frequency 3-gram feature has shown to be the best detecting feature, which is why
the total detection performance for the different models will be evaluated with that spe-
cific approach. Assessing the TPR for all the malicious behaviors combined in Figure
7.13, the detection is bad with a maximal TPR of almost 50% for the 800MHz attack
bandwidth. It can therefore be concluded, that the implementation with variables was
successful and is not being reliably detected. Another recurring tendency is the incline
after 20kHz and 20MHz. This can be explained by the impact the SSDF attack has in the
corresponding file its executed in. The amount of data points that need to be modified
increases proportionally with the bandwidth. A small bandwidth like 20kHz performs
only a few value changes (1% of the values in FFT.cpp), while an attack ranging 200kHz
has a much larger impact (10%). This might lead to an increased detection rate. Once the
the point of inflection at 2MHz is reached, the attack is executed in the rtlsdrDriver file.
Only a small amount of values are manipulated again, which leads to a drop of detection
performance at the next bandwidth, but starts to increase again. The bandwidth and the
amount of data manipulated associated with it therefore seems to have a connection with
the detection performance.

48 CHAPTER 7. EVALUATION

Figure 7.13: Total TPR of malicious behaviors with frequency 3-gram

Finally, the different behaviors can be compared with eachother using the frequency 3-
gram feature encoding. The following group of graphics in Figure 7.14 show the TPR for
the malicious behaviors and TNR of the normal functioning for the different models across
the observed attacking bandwidths. The TNR all suggest a viable training of the models
except for the LOF. Assessing the differences between the behaviors, spoof and noise stand
out. As the data exploration has yielded, the system calls open and close, those attacks
generate deviating system calls due to their dependence on a file to generate random
noise. The RC algorithm detects those anomalies in the lower bandwidths perfectly with
a 100% TPR. Attacks that involve two segments, mimic, confusion and spoof furthermore
have an increased detection rate at the 800MHz bandwidth possibly due to the fact that
almost every datapoint needs to be manipulated.

7.3. COMPARISON WITH PREVIOUS STUDY 49

Figure 7.14: Comparison of the different behaviors

7.3 Comparison with previous study

Figure 7.15 shows the heatmap of the system calls for the SSDF attacks implemented with
files. The data is from monitoring 60 seconds running in the same device as in this thesis,

50 CHAPTER 7. EVALUATION

the Raspberry PI 3 Model B. The bandwidth of the attack is unknown, but it shows a
significant difference between normal and attack data. This data visualization suggests
that the attack and normal data are linearly separable, which has been proven to be valid
[9]. The SSDF attacks proposed in this thesis on the other hand generate a significantly
less colorful heatmap as seen in Figure 7.7.

Figure 7.15: System call frequency heatmap for SSDF attacks implemented with files

Chapter 8

Summary, Conclusions and Future Work

The final chapter summarizes the thesis and concludes the final takeaways including the
limitations. Following from that, a proposition for some possible future work is done.

8.1 Summary and Conclusions

The thesis had two main goals: First, a new implementation of SSDF attacks to check the
robustness of existing detection techniques. In order to achieve this objective, a sensory
device being susceptible to the given malicious behavior had to be setup. This was done
with the help of the open-source crowd-sourced platform ElectroSense. A sensory device
consisting of an antenna connected to a Raspberry PI was deployed connected to the
internet. Via ssh connection, the device was evaluated in a first step. The ElectroSense
source code and previous implementations of the attack provided a good base to start.
From there, the attacks were implemented not relying on writing the sensing data to a
temporary file but making use of variables inside the program. First implementations
could then be assessed with the help of waterplots in the ElectroSense web front-end,
which later on had to be replaced by print statements to the terminal due to unreliable
uptime. Nonetheless, the attacks were implemented in the intended program sections and
could be run user friendly thanks to some other source code manipulations. In hindsight,
two of the attacks seemed to have a little flaw, since the noise and spoof attack still relied
on accessing a file, although be it not to save temporary sensing data, but to generate a
random number from a distribution to add to the proper sensing data.

With the first goal partly accomplished, the next phase was to implement a ML framework
based on gathered data from system call monitoring. Based on previous work done at
the Communication Systems Group at UZH [9] a system monitoring module was created,
consisting of a main program, monitoring script and a preprocessing python file. Roughly
a week of data was collected for each SSDF attack and the normal behavior of the sensor
for different attacking bandwidths. This raw data then went through a ML pipeline
consisting of data cleaning and feature extraction. Different NLP techniques have been
applied to create numerical values from the system call traces. The final step was the

51

52 CHAPTER 8. SUMMARY, CONCLUSIONS AND FUTURE WORK

training of different ML algorithms to predict normal or malicious behavior with mixed
results. Considering the findings in Chapter 7, the main conclusions to be drawn are:

• Five of seven SSDF attacks have been implemented successfully with using variables
instead of files stored in disk into the ElectroSense sensor software.

• The novel implementations are successful in a sense that promising detection tech-
niques like behavioral fingerprinting based on system calls combined with ML al-
gorithms can not reliable detect the new SSDF attacks. This might be due to the
fact that the new implementation stays in user space from a memory point of view.
Accessing files is what requires higher privileges and therefore needs a system call to
access the kernel space. Anomalies like this are increasing the chance of detecting
the attack.

• The bandwidth of an attack and therefore the overall impact on the system has an
influence on the detection performance.

8.2 Future Work

The goal of this thesis generally speaking was to implement the SSDF attacks based on
another criterion and check its detection with a behavioral fingerprinting technique based
on system calls. It has been shown, that monitoring the system calls with the configu-
rations used in this thesis, has not been an accurate observing approach to detect and
prevent the newly implemented SSDF attacks. This thesis has been limited by compu-
tational power so it was not capable of implementing all proposed configurations in a
proper way. Although the direction of this approach did not look promising, increasing
the computational power and changing some variables might open new doors. This has
to be treated with caution though as the IoT sensors are resource limited anyway. Since
behavioral fingerprinting has been proposed as a promising method, another way of cre-
ating this fingerprint can be evaluated with the latest attacks. Instead of kernel space
traces like the system calls, another possibility would be to monitor user space traces like
function calls.

Bibliography

[1] N. Marchang and W. N. Singh, “A Review on Spectrum Allocation in Cognitive
Radio Network,” International Journal of Communication Networks and Distributed
Systems, vol. 23, no. 1, p. 1, 2019.

[2] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive
radio applications,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp.
116–130, 2009.

[3] S. Rajendran, R. Calvo-Palomino, M. Fuchs, B. Van den Bergh, H. Cordobes,
D. Giustiniano, S. Pollin, and V. Lenders, “Electrosense: Open and Big Spectrum
Data,” IEEE Communications Magazine, vol. 56, no. 1, pp. 210–217, Jan. 2018.

[4] J. Pan and Z. Yang, “Cybersecurity Challenges and Opportunities in the New ”Edge
Computing + IoT”World.” ACM, Mar. 2018, pp. 29–32.

[5] J. Li, Z. Feng, Z. Feng, and P. Zhang, “A survey of security issues in Cognitive Radio
Networks,”China Communications, vol. 12, no. 3, pp. 132–150, Mar. 2015, conference
Name: China Communications.

[6] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem,“Attack and anomaly detection
in IoT sensors in IoT sites using machine learning approaches,” Internet of Things,
vol. 7, p. 100059, Sep. 2019.

[7] P. M. S. Sánchez, J. M. J. Valero, A. H. Celdrán, G. Bovet, M. G. Pérez, and G. M.
Pérez, “A Survey on Device Behavior Fingerprinting: Data Sources, Techniques,
Application Scenarios, and Datasets,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 2, pp. 1048–1077, 2021.

[8] A. H. Celdrán, P. M. S. Sánchez, G. Bovet, G. M. Pérez, and B. Stiller, “CyberSpec:
Intelligent Behavioral Fingerprinting to Detect Attacks on Crowdsensing Spectrum
Sensors,” arXiv:2201.05410 [cs], Jan. 2022, arXiv: 2201.05410.

[9] C. Feng, “Intelligent Analysis of System Calls to Detect Cyber Attacks Affecting
Spectrum Data Integrity in IoT Sensors,” Master’s thesis, Universität Zürich, 2022.

[10] J. R. Hoehm, J. C. Gallagher, and K. M. Sayler, “Overview of Department of Defense
Use of the Electromagnetic Spectrum,” Defense Technical Information Center, Tech.
Rep., Aug. 2020.

53

54 BIBLIOGRAPHY

[11] K. Riad, T. Huang, and L. Ke, “A dynamic and hierarchical access control for IoT in
multi-authority cloud storage,” Journal of Network and Computer Applications, vol.
160, p. 102633, Jun. 2020.

[12] Pratibha, S. Thangjam, N. Kumar, and S. Kumar, “A Survey on Prevention of the
Falsification Attacks on Cognitive Radio Networks,” IOP Conference Series: Mate-
rials Science and Engineering, vol. 1033, no. 1, p. 012021, Jan. 2021.

[13] J. N. Soliman, T. A. Mageed, and H. M. El-Hennawy, “Taxonomy of security at-
tacks and threats in cognitive radio networks,” in 2017 Japan-Africa Conference on
Electronics, Communications and Computers (JAC-ECC), Dec. 2017, pp. 127–131.

[14] S. Shrivastava, A. Rajesh, P. K. Bora, B. Chen, M. Dai, X. Lin, and H. Wang,
“A survey on security issues in cognitive radio based cooperative sensing,” IET
Communications, vol. 15, no. 7, pp. 875–905, Apr. 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12131

[15] B. Bezawada, I. Ray, and I. Ray, “Behavioral fingerprinting of Internet-of-Things
devices,” WIREs Data Mining and Knowledge Discovery, vol. 11, no. 1, p. e1337,
2021.

[16] J. Zhang, K. Zhang, Z. Qin, H. Yin, and Q. Wu, “Sensitive system calls based packed
malware variants detection using principal component initialized MultiLayers neural
networks,”Cybersecurity, vol. 1, no. 1, p. 10, Dec. 2018.

[17] “Kernel Space Definition.” [Online]. Available: http://www.linfo.org/kernel space.
html

[18] D.-K. Kang, D. Fuller, and V. Honavar, “Learning classifiers for misuse and anomaly
detection using a bag of system calls representation,” in Proceedings from the Sixth
Annual IEEE SMC Information Assurance Workshop, Jun. 2005, pp. 118–125.

[19] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow: concepts,
tools, and techniques to build intelligent systems, first edition ed. O’Reilly Media,
2017.

[20] W. Khreich, B. Khosravifar, A. Hamou-Lhadj, and C. Talhi, “An anomaly detection
system based on variable N-gram features and one-class SVM,” Information and
Software Technology, vol. 91, pp. 186–197, Nov. 2017.

[21] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009.

[22] C. Aggarwal, Outlier analysis, 2nd ed. New York, NY: Springer Science+Business
Media, 2016.

[23] Z. Cheng, C. Zou, and J. Dong, “Outlier detection using isolation forest and local out-
lier factor,” in Proceedings of the Conference on Research in Adaptive and Convergent
Systems. Chongqing China: ACM, Sep. 2019, pp. 161–168.

BIBLIOGRAPHY 55

[24] N. Elmrabit, F. Zhou, F. Li, and H. Zhou, “Evaluation of Machine Learning Algo-
rithms for Anomaly Detection,” in 2020 International Conference on Cyber Security
and Protection of Digital Services (Cyber Security), Jun. 2020, pp. 1–8.

[25] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 Eighth IEEE
International Conference on Data Mining, Dec. 2008, pp. 413–422.

[26] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support
Vector Method for Novelty Detection,” in Advances in Neural Information Processing
Systems, vol. 12. MIT Press, 1999.

[27] P. J. Rousseeuw and K. V. Driessen, “A Fast Algorithm for the Minimum Covariance
Determinant Estimator,”Technometrics, vol. 41, no. 3, pp. 212–223, Aug. 1999.

[28] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,”ACM SIGMOD Record, vol. 29, no. 2, pp. 93–104, Jun.
2000. [Online]. Available: https://dl.acm.org/doi/10.1145/335191.335388

[29] F. Salahdine and N. Kaabouch, “Security threats, detection, and countermeasures
for physical layer in cognitive radio networks: A survey,” Physical Communication,
vol. 39, p. 101001, Apr. 2020.

[30] L. Zhang, G. Ding, Q. Wu, Y. Zou, Z. Han, and J. Wang, “Byzantine Attack and
Defense in Cognitive Radio Networks: A Survey,” IEEE Communications Surveys
Tutorials, vol. 17, no. 3, pp. 1342–1363, 2015.

[31] A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A Survey on Security
Threats and Detection Techniques in Cognitive Radio Networks,” IEEE Communi-
cations Surveys Tutorials, vol. 15, no. 1, pp. 428–445, 2013.

[32] P. Kaligineedi, M. Khabbazian, and V. K. Bhargava, “Malicious User Detection in
a Cognitive Radio Cooperative Sensing System,” IEEE Transactions on Wireless
Communications, vol. 9, no. 8, pp. 2488–2497, Aug. 2010.

[33] R. Chen, J.-M. Park, and J. H. Reed, “Defense against Primary User Emulation
Attacks in Cognitive Radio Networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 26, no. 1, pp. 25–37, Jan. 2008, conference Name: IEEE Journal on
Selected Areas in Communications.

[34] J. Kelly and J. Ashdown, “Spectrum Sensing Falsification Detection in Dense Cog-
nitive Radio Networks using a Greedy Method,” in NAECON 2018 - IEEE National
Aerospace and Electronics Conference, Jul. 2018, pp. 144–151.

[35] R. Chen, J.-M. Park, and K. Bian, “Robust Distributed Spectrum Sensing in Cogni-
tive Radio Networks,” in IEEE INFOCOM 2008 - The 27th Conference on Computer
Communications, Apr. 2008, pp. 1876–1884.

[36] P. K. Varshney, Distributed Detection and Data Fusion. Springer Science & Business
Media, 1997.

56 BIBLIOGRAPHY

[37] Z. Gao, X. Huang, and M. Wang, “An heuristic WSPRT fusion algorithm against
high proportion of malicious users,” in 2015 International Conference on Wireless
Communications & Signal Processing (WCSP), Oct. 2015, pp. 1–5.

[38] W. Wang, H. Li, Y. Sun, and Z. Han, “CatchIt: Detect Malicious Nodes in Collabo-
rative Spectrum Sensing,” in GLOBECOM 2009 - 2009 IEEE Global Telecommuni-
cations Conference, Nov. 2009, pp. 1–6, iSSN: 1930-529X.

[39] Y. Fu and Z. He, “Bayesian-Inference-Based Sliding Window Trust Model Against
Probabilistic SSDF Attack in Cognitive Radio Networks,” IEEE Systems Journal,
vol. 14, no. 2, pp. 1764–1775, Jun. 2020.

[40] P. S. Chatterjee and M. Roy, “Maximum match filtering algorithm to defend
spectrum-sensing data falsification attack in CWSN,” International Journal of Wire-
less and Mobile Computing, vol. 15, no. 2, p. 113, 2018.

[41] S. Nath, N. Marchang, and A. Taggu, “Mitigating SSDF attack using k-medoids
clustering in Cognitive Radio Networks,” in 2015 IEEE 11th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob), Oct.
2015, pp. 275–282.

[42] C. Zhao, W. Wang, L. Huang, and Y. Yao, “Anti-PUE Attack Base on the Trans-
mitter Fingerprint Identification in Cognitive Radio,” in 2009 5th International Con-
ference on Wireless Communications, Networking and Mobile Computing, Sep. 2009,
pp. 1–5.

[43] “Visual Studio Code: Developing on Remote Machines using SSH.” [Online].
Available: https://code.visualstudio.com/docs/remote/ssh

[44] “ElectroSense Frontend.” [Online]. Available: https://electrosense.org/

[45] “Software used in Electrosense nodes.” [Online]. Available: https://github.com/
electrosense/es-sensor

[46] C. Feng, “IoT sensors security analysis,” Jul. 2022. [Online]. Available: https:
//github.com/luke-feng/IoT Sensors Security Analysis

[47] “Perf.” [Online]. Available: https://perf.wiki.kernel.org/index.php/Main Page

[48] “SSDF Attacks github.” [Online]. Available: https://github.com/RobinWassink/
BT SSDF Attacks

[49] “Detection github.” [Online]. Available: https://github.com/RobinWassink/BT
Detection

[50] “Screen - GNU Project - Free Software Foundation.” [Online]. Available:
https://www.gnu.org/software/screen/

Abbreviations

IoT Internet-of-Things
RF Radiofrequency
SSDF Spectrum Sensing Data Falsification
ML/DL Machine Learning and Deep Learning
ML Machine Learning
CRN Cognitive Radio Network
PUEA Primary User Emulation Attack
NLP Natural Language Processing
PSD Power Spectrum Data
IF Isolation Forest
LOF Local Outlier Factor
OC-SVM One Class Support Vector Machine
SVM Support Vector Machine
DoS Denial of Service
RSS Received Signal Strength
TPR True Positive Rate
TNR True Negative Rate

57

58 ABBREVIATONS

List of Figures

2.1 Examples of the feature extraction techniques 9

4.1 Setup of this thesis inspired by [3] . 18

4.2 Flow Diagram of the ElectroSense program es sensor 18

4.3 System design . 20

6.1 Feature extraction program flow . 36

7.1 Waterplot of ElectroSense frontend: Repeat attack highlighted 39

7.2 Waterplot of ElectroSense frontend: Mimic attack highlighted 40

7.3 Waterplot of ElectroSense frontend: Confusion attack highlighted 40

7.4 Waterplot of ElectroSense frontend: Noise attack highlighted 40

7.5 Waterplot of ElectroSense frontend: Spoof attack highlighted 40

7.6 Waterplot of ElectroSense frontend: Freeze attack highlighted 41

7.7 System call frequency heatmap for SSDF attacks implemented with variables 41

7.8 Evaluation of the system calls ioctl, poll, timerfd settime, close, open and
write . 43

7.9 Feature comparison: Scaled and normal . 44

7.10 Feature comparison: Different features . 45

7.11 Model TPR & TNR comparison . 46

7.12 Model TPR comparison . 47

7.13 Total TPR of malicious behaviors with frequency 3-gram 48

7.14 Comparison of the different behaviors . 49

7.15 System call frequency heatmap for SSDF attacks implemented with files . . 50

59

60 LIST OF FIGURES

List of Tables

2.1 Table of the seven SSDF attacks based on [8] 7

3.1 Comparison of different SSDF detection approaches 16

4.1 Feature extraction approaches inspired by [9] 22

5.1 Variables and Functions used in the SSDF attack implementation pseudo
code . 24

7.1 Table of system calls for 60 seconds of monitoring 42

61

62 LIST OF TABLES

Appendix A

Installation Guidelines

SSDF Attacks

The code for the SSDF attacks can be found on github [48]. Clone the repository into a
Raspberry PI and follow the installation guide in the README.

Detection

The code for monitoring is in the github of the previous subsection as it happens inside
the sensory device. The ML framework is available at github as well [49]. The README
explains further steps.

63

64 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the zip file

The zip file accompanying this thesis contains:

• The final version of the bachelor thesis as a pdf

• The LaTeX source code of this bachelor thesis as a zip

• The slides of the midterm presentation from 05.05.2022

65

