
Master
March 29, 2022

Assisted interactive
programming

Generating context-aware single-line code from
Natural Language

Alex Wolf
of Luzern, Switzerland (12-526-216)

supervised by
Prof. Dr. Harald C. Gall

Dr. Pasquale Salza & Marco Palma

software evolution & architecture lab

Master

Assisted interactive
programming

Generating context-aware single-line code from
Natural Language

Alex Wolf

software evolution & architecture lab

Master

Author: Alex Wolf, alex.wolf@uzh.ch

Project period: July 30th, 2021 - March 30th, 2022

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich@citexnum

Acknowledgements

I would like to thank my supervisors Dr. Pasquale Salza and Marco Palma for all their insight
and guidance given throughout the work as well as Prof. Dr. Harald C. Gall for making the work
possible. I would also like to thank my family, my girlfriend, and friends for their support and
faith in my abilities.

Abstract

The growing significance of programming languages is manifested by the change in educational
curricula, which include programming lectures as early as in primary school. The growing sig-
nificance also demonstrates that the means to acquire programming skills need to improve. We
propose an interactive assistant to help novice programmers acquire knowledge through natural
language during their programming tasks. Thus, learning by doing with an assistant that supports
the user by providing source code in case of difficulties or missing know-how. Our approach is
targeting single-line code generation while considering the natural language intent and an ex-
tensive context to provide accurate and relevant recommendations in the form of a single-line of
source code. This approach is based on the idea that learning programming languages require
solving programming exercises in addition to a fast feedback loop. Our approach aims to pro-
vide the learner with more opportunities to learn and understand the programming language
by assisting them with minimal source code to help them continue with their task. Thus, only
generating single-lines of source code instead of providing full functions. We implemented two
models intending to contextualize single-line code generation using a custom context workflow.
Our evaluations show that our approach is able to learn strong context representations from our
custom context workflow as well as an option to improve context compression. In summary, we
contribute a trained context-sensible model that takes natural language input, context, and pre-
dicts the next line. Using a custom workflow to deal with contexts of variable size, a new Java-
based dataset, of over 200’000 samples tailored to our task of generating single-line Java code.
Each sample contains context information, natural language intent, and the target line. Allowing
us to contextualize our model, and we compare our work with other state-of-the-art approaches.

Zusammenfassung

Die wachsende Bedeutung der Informatik manifestiert sich schon in der Grundschule, hier wer-
den einfache Grundkenntnisse der Programmierung bereits ab Primarschule in den Lehrplan in-
tegriert. Daraus folgt, dass die Mittel zum Erwerb von Programmierkenntnissen erweitert und
altersgemäss adaptiert werden müssen. Wir schlagen einen interaktiven Assistenten vor, der
Programmieranfängern hilft, sich während ihrer Programmieraufgaben Wissen durch natürli-
che Sprache anzueignen. Unser Ansatz verbindet learning by doing mit einem Assistenten, der
die anwendende Person bei Schwierigkeiten oder fehlendem Fachwissen unterstützt, sich dieses
anzueignen. Unsere Herangehensweise zielt auf die Generierung von einem einzeiligen Code
ab und berücksichtigt dabei die mit natürlicher Sprache formulierte Absicht und einen umfang-
reichen Kontext für die Bereitstellung von akuraten und relevante Empfehlungen in Form einer
einzigen Quellcodezeile. Dieser Grundsatz basiert auf der Idee, dass das Erlernen von Program-
miersprachen neben einer schnellen Feedbackschleife auch das Lösen von Programmieraufgaben
erfordert. Unser Ansatz zielt darauf ab, der lernenden Person mehr Möglichkeiten zum Erlernen
und Verstehen der Programmiersprache zu bieten, um ihr bei der Fortsetzung der Aufgabe be-
hilflich zu sein, indem wir minimalen Quellcode bereitstellen. Es werden also nur einzelne Zeilen
Quellcode generiert, anstatt gänzliche Funktionen bereitzustellen. Wir haben zwei Modelle mit
dem Ziel der kontextualisierten Generierung von einzeiligem Code implementiert, mithilfe eines
benutzerdefinierten Kontext-Workflows. Unsere Auswertungen zeigen, dass unser Ansatz in der
Lage ist, starke Kontextdarstellungen aus unserem benutzerdefinierten Kontextworkflow zu ler-
nen, sowie eine Option zur Verbesserung der Kontextkomprimierung. Zusammenfassend liefern
wir ein trainiertes kontextsensitives Modell, das Kontext und Eingaben in natürlicher Sprache
verwendet und die nächste Zeile unter Verwendung eines benutzerdefinierten Workflows vorher-
sagt. Dieser individuelle Arbeitsablauf (Workflow) ermöglicht es aus Kontext variabler Grössen
Informationen zu extrahieren. Zusätzlich haben wir ein neues Java-basiertes dataset erstellt, das
auf unseren Ansatz massgeschneidert ist. Das Dataset enthält sowohl die Absicht, die Kontextin-
formationen als auch den einzeiligen Quellcode. Des Weiteren vergleichen wir unsere Arbeit mit
anderen aktuellen Forschungsansätzen.

Contents

1 Introduction 1

2 Related Work 5
2.1 Comment generating approaches . 5
2.2 Context-less approaches . 5
2.3 Context-aware approaches . 6

3 Approach 7
3.1 Model architectures . 7

3.1.1 Context-enhanced generation . 8
3.1.2 Context-enhanced generation BiLSTM . 10

3.2 Dataset . 11
3.2.1 Data mining process . 11

3.3 Exploratory data analysis . 14
3.4 Data mining statistics . 19

4 Experimental design 21
4.1 Experimental design . 21

4.1.1 Training dataset and metrics . 22
4.1.2 Model configurations . 23
4.1.3 Training . 23

4.2 Threats to validity . 26

5 Results 27
5.1 Comparative results using the metrics (RQ1 and RQ2) 27
5.2 Example exploration and analysis (RQ3 and RQ4) 28

6 Conclusion & Future work 33

Appendix 39
A NLGP training details . 39

viii Contents

List of Figures
1 High-level CEGBiLSTM architecture . 10
2 Data mining pipeline . 11
3 Method/comment distribution . 12
4 Context variable boxplots . 14
5 Context variable boxplots . 15
6 Comment & target variable boxplots . 15
7 N-gram analysis part 1 . 16
8 N-gram analysis part 2 . 17
9 N-gram analysis part 3 . 18

10 Training & validation loss . 24
11 BLEU & CodeBLEU scores . 25

12 NLGP training & validation loss . 39

List of Tables
1 Data statistics . 19

2 Dataset . 22
3 Pre-training hyperparameters vs. CodeT5 . 23

4 Model comparison . 27
5 Example 1 - Comparison . 29
6 Example 2 - Comparison . 30
7 Example 3 - Comparison . 30
8 Example 4 - Comparison . 32

9 Questions . 34

List of Listings
3.1 "Context extraction" . 13
3.2 "Example JSON" . 14
5.1 "Example 1 - Context" . 29
5.2 "Example 2 - Context" . 29
5.3 "Example 3 - Context" . 30
5.4 "Example 4 - Context" . 30

Chapter 1

Introduction

While traditional introductory programming courses teach algorithmic problem-solving, where
a program is just a sequence of consecutively executed steps, most applications in today’s in-
dustry rely heavily on concurrency, parallelism, and multiple interacting components. However,
learning to program is generally perceived as difficult as shown by several studies [10, 17, 30, 36].

The lack of personal instructions is one such challenge faced by novice programmers as stated
by Lahtinen et al., this lack is even more prominent when a program is to be implemented from
scratch without any hints, as stated by Terada and Watanobe, due to cognitive hurdles and miss-
ing know-how [17, 30]. Moreover, programming requires logical thinking and the ability to iden-
tify syntactical and conceptual errors, as stated by Watanobe, Yutaka et al. This impacts the time
required by instructors to create and evaluate the tasks as well as the waiting time of students
in this feedback loop. Additionally, even if a novice programmer may conceptually understand
what needs to be done, they are still faced with the challenge of a concrete implementation, as
stated by Xu et al. [41]. Therefore, learners are faced with an amalgamation of hurdles, namely
the lack of personalized instructions and the missing know-how. The challenges faced by novices
can be categorized according to the seven barriers identified by Wang et al.: (1) Decision Barrier:
Should I ask for an example? (2) Search Barrier: How do I explain the example I want? (3) In-
tegration Barrier: How do I integrate the example code into my own code? (4) Mapping Barrier:
How do I map a property of the example code to my own code? (5) Understanding Barrier: How
do I use an unfamiliar code block? (6) Modification Barrier: How to modify the example code to
fit my own needs? (7) Testing Barrier: How to test the example code? [34]. These categories allow
us to simplify and generalize the hurdles faced by novices. Hence, we attempt to categorize the
identified hurdles into the aforementioned categories. Consequently, we argue that the lack of
personal instructions is defined under the umbrella of the understanding barrier. Furthermore,
understanding a problem conceptually plays into the search and decision barriers. However, it is
difficult to attribute the missing know-how to just one of the categories. We do, however, argue
that the categories are comprehensive enough that the problems can be attributed to one of the
categories given enough context.

In spite of the many challenges faced by learners, who are in the process of acquiring pro-
gramming skills, it is also generally agreed that it is paramount that students learn programming
by exercising by themselves and doing practical exercises [17, 30]. Furthermore, this is supported
by the perception of the students themselves, as shown by Lahtinen et al. in their study consisting
of more than 500 students and teachers [17]. The increased need for programming skills is further
manifested by educational curricula that include programming lectures, as early as in primary
school [11, 36].

Thus, leading us to interactive programming, which allows a program to be adjusted while part
of the program is already working. A trial and error approach to programming is supported, and
a developer can get feedback on every new line produced. Several studies state that a fast feed-

2 Chapter 1. Introduction

back loop benefits the learning of programming languages (PLs) [5, 25]. Bai and Cui argue that
the main path to improving programming skills is to solve programming exercises in addition to
feedback. Thus, the combination of a fast feedback loop and actual programming leads to a bet-
ter learning experience. This allows us to characterize an interactive programming language as
follows: (1) the ability to respond on a line-level basis, (2) a fast feedback cycle, and (3) on-the-fly
adjustability of variables and statements. While there are programming languages and tools that
support this paradigm they usually provide feedback in the form of compiler errors, which need
to be understood and analyzed by the learner. This leaves the novice programmer with no other
option, but to search the web for examples or explanations. While there is no lack of examples
(e.g., on StackOverflow (SO)), these examples need to be understood, mapped, integrated, and
modified to actually provide the novice programmer with the help they need. Even though the
current interactive paradigm presents us with limitations, our intuition regarding the educational
aspects of the paradigm is that it can be improved with an integrated natural language (NL) based
generation option that provides the learner with contextualized examples. Therefore, empower-
ing the learners with the ability to compare their own code to the proposed solution, in addition
to reducing the initially required know-how. Thus, reducing the feedback loop and providing
contextualized examples that can be explored by conceptual NL input. However, we also believe
that fully functional examples lower the learning opportunities by taking away the need to think
about the next required step.

The following simple use case should illustrate the intentions of our idea and intuitions:
Suppose a novice developer or student that is unfamiliar with the codebase or the language itself
is stuck on a problem but knows how to formulate his intentions with NL. Instead of searching
for an example on the web, the user writes his intention as a comment and the model predicts the
next line, which is already adapted to his previously written statements. Thus, eliminating the
need to integrate, modify, and map an example to the current context. The learner is now able
to analyze, evaluate, and synthesize the new bite-sized information and proceed with his task by
contemplating the next necessary steps. This leads us to code generation, the task of generating
PL from NL, which provides the ability to formulate the conceptual need with NL in order to
create examples tailored to the learners’ task. Thus, enabling us to combine the need for more
in-depth problem-solving lectures with code generation.

We now present an excerpt of the currently available machine learning (ML) tools that provide
recommendations and generate code based on NL input. For instance, one such tool is GitHub
Copilot1 which aims to provide support to the development process and is currently providing a
technical preview. Furthermore, the current state-of-the-art (SOTA) approaches attend to some of
the issues and ideas we mentioned and can be classified into the following categories: (1) gen-
eration without context consideration, such as the approaches proposed by Xu et al. and Wang
et al. [35, 40], (2) special input approaches, such as the one presented by Phan et al. that requires
Javadoc styled method comments [24], (3) comment generation approaches, such as Wong et al.
and Wong et al. [38, 39], and (4) contextualized generation. However, generating full functions
is a common theme among the generating approaches. Which leads to a reduction in learning
opportunities and is not suited for educational purposes. On the other hand, we conjecture
that single-line recommendations provide a more educational approach, granting learners the
ability to improve their coding skills instead of providing full-fledged solutions for whole func-
tions. There is a clear need for better ecosystems centered around feedback and assistants to help
novices not be discouraged by gaps in their skill set [30, 31, 36]. Xu et al. performed an exten-
sive user study of integrated development environment (IDE) code generation and demonstrated
challenges and limitations in the current state. While their results were inconclusive they also
show that the developers subjectively enjoyed the experience of using in-IDE tools. This leads us
to the assumption that better tools would not just be accepted but could potentially be helpful.

1Github Copilot [1]

3

We propose an interactive approach that allows learners to formulate their intention/problem
with NL and predicts the next line of code while also considering the current context. Thus, re-
ducing the integration, mapping, and modification barriers by providing contextualized target
code, that is already adjusted according to the context. Therefore, removing the need to adjust
pre-existing examples to their own code context, while also providing learning opportunities by
only generating single-line target code instead of full functions. Due to the nature of single-line
code generation, this approach should also provide feedback and hints by allowing learners to
compare their own solution with the generated one. Hence, alleviating the lack of feedback and
hints. While full function generation may reduce the required time to write a solution it also
reduces the learning opportunities as the thinking process of the learner is reduced. We believe
that single-line code generation provides learning opportunities in addition to a time reduction.
Our approach is based on the pre-trained model from Wang et al. and leverages the PyTorch [23]
and HuggingFace’s transformers (transformers) [37] libraries. In order to validate our approach,
we compared our model to a SOTA approach [13] using two metrics, namely bilingual evalua-
tion understudy (BLEU) and Code BLEU (CodeBLEU). We achieved SOTA results of 8.726 using
the CodeBLEU score, improving the Natural Language-Guided Programming (NLGP) model by
3.643 points [13]. However, our model only achieves a BLEU score of 1.303, which is 0.767 points
lower than the NLGP model.

In summary, this work contributes:

• a trained context-sensible model that takes NL input, context, and predicts the next line.
Using a custom workflow to deal with contexts of variable size,

• a new Java-based dataset, of over 200’000 samples tailored to our task of generating single-
line Java code. Each sample contains context information, NL intent, and the target line.
Allowing us to contextualize our model,

• and we compare our work with other SOTA approaches.

The rest of this paper is structured as follows: Chapter 2 goes through different approaches
currently used for code generation. Chapter 3 details the architecture, data mining, and ex-
ploratory data analysis (EDA) process. Chapter 4 showcases how our model was trained and
what hardware was used. Chapter 5 compares the results of our work using two metrics. And
we conclude our work in Chapter 6.

Chapter 2

Related Work

In this chapter, we describe approaches that are related to our own, as well as SOTA approaches
that compete with ours.

2.1 Comment generating approaches
We consider comment generation and code generation as correlating tasks, which is why we
assume they could provide insight into our own task.

AutoComment is one such comment-generating approach, implemented by Wong et al. that
generates comments with SO data. The generated comments are grouped by code segments,
according to snippets from SO. AutoComment leverages code clone detection techniques, as well
as, natural language processing (NLP) techniques to generate comments in a two-component
process. These two major components consist of generating code-description mappings and a
second component for generating comments based on code clone detection techniques, where
similar code is associated with the comments [39].

More recently Wong et al. improved their previous work (viz., AutoComment) and show the
difficulties NLP encounters with project-specific comments, which are sometimes neither com-
plete sentences nor describing the code without project-specific jargon. They also show the need
for better code clone detection techniques, as the similarity of the code might be high but hidden
with context-specific code surrounding it or different ordering [38]. These difficulties could im-
pact our approach, however analogous to their previous work this approach generates comments
instead of code.

2.2 Context-less approaches
Context-less approaches are the basis of code generation and were studied extensively in recent
years using many different technologies [2, 8, 16, 35, 40]. They provide us with valuable informa-
tion regarding code generation and techniques. Thus, we consider them related to our work.

A recently proposed model-agnostic approach, by Xu et al., based on the idea of data augmen-
tation, retrieval, and data resampling to incorporate external resources combines code generation
with additional data to improve predictions. The approach implements the model in two steps,
where the model is pre-trained on automatically extracted external data (from resources such
as SO and API documentation) and then fine-tuned on small manually curated datasets. They
implemented their approach on top of a syntax-based method for code generation, TranX [43],
with additional hypothesis reranking and were able to improve the previous methods with the
incorporation of external resources [40].

6 Chapter 2. Related Work

Phan et al. presented a multi-task approach based on both NL and programming language
with an encoder-decoder model with attention using both bimodal (both NL and code) as well as
unimodal data (only code) called CoTexT. While CoTexT generates code from text, they generate
the code from Javadoc style method comments, which is one of the reasons why this approach
is not considered for comparison. Moreover, this approach does not consider the context. The
approach could be classified into the category of special input approaches, but for simplicity, we
added the approach to the context-less category.

The current SOTA approach (at the time of writing) proposed by Wang et al. uses a novel
unified encoder-decoder approach as well as a novel identifier-aware pre-training objective that
considers token type information from code. The novel pre-training objective enables the model
to distinguish between identifier code tokens and recover them when they are masked. While
many similar approaches produce source code, such as [2, 4, 8, 9, 26], CodeT5 produces SOTA
results (at the time of writing), which is why we decided to base our approach on the CodeT5
model. While we base our approach on the CodeT5 model we do not compare our results with
their approach, as the CodeT5 model generates full functions, which conflicts with our goal of
providing learning opportunities. Furthermore, all of these approaches do not consider the con-
text and thus do not alleviate the integration, mapping, and modification barriers.

2.3 Context-aware approaches
The third category of generative approaches is the most similar to what we intend to do. We
assume that this class of approaches is able to provide learners with code that is tailored to their
needs with respect to (w.r.t.) the barriers they face.

One such approach is presented by Iyer et al., which considers member variables and methods
to generate source code. They employed a multi-step decoder that starts by attending the NL
intent and only afterwards attends to the variables and methods [15]. Granted that this approach
considers both NL and context, they also produce full functions and use production rules as an
intermediary output that are then used to generate the source code. Hence, conflicting with our
goals.

Some emerging works in the recent literature also explore interactive approaches to gener-
ate contextualized code from NL intent. An interactive approach to generate code from a triplet
containing the code context, a NL intent, and a target, was introduced by Heyman et al. Their
approach uses language models (LMs) to generate text and is based on the GPT-2 model from
Radford et al. [26]. They demonstrated how natural language-guided programming could be im-
plemented and developed three language model variants to study the impact of natural language
intent on prediction quality. They also provided a research agenda for natural language-guided
programming, as well as open key research questions. The model was trained on data gathered
from Jupyter notebooks [13]. While the approach is similar to ours we opted to base our approach
on the CodeT5 model [35] while they decided to use GPT-2 [26]. Furthermore, our approach pro-
vides a more detailed code context extracted from multiple parts of the preceding context instead
of taking everything before the intent as context. This approach was published during our re-
search and is viewed as the SOTA approach in the field. We decided to use the NLGP approach
as a base comparison to our approach since they consider context and are based on an interactive
paradigm.

Chapter 3

Approach

In this section, we describe the model architectures, as well as the fine-tuning and the configura-
tions used.

3.1 Model architectures
We chose to base our approach on an already pre-trained model to bypass the need for large
amounts of training data, and base our approach on SOTA models that would increase the likeli-
hood of better results. We considered multiple models that were pre-trained on source code data
such as CodeT5 [35], CodeGPT-2 [26], PLBART [2], and CodeBERT [9]. While all of the mod-
els including CodeT5 are available on HuggingFace for further usage we chose CodeT5 with the
simple reasoning that they outperformed all of the aforementioned models.

We shall now proceed to briefly describe the architecture of the CodeT5 model as well as other
relevant information required to understand the architecture. Pre-trained language models such
as BERT, GPT, and T5 have greatly improved the performance for a wide range of NLP tasks. The
underlying architecture for all of these models is the Transformer architecture (Vaswani et al.). The
prominent rise in performance of these models can be attributed to the architecture that enables
significantly more parallelization and relies heavily on the attention mechanism to associate input
and output dependencies. The Transformer architecture leverages multiple attention mechanisms
referred to as ”Multi-head attention”, allowing the architecture to attend to different representa-
tion subspaces at different positions. Additionally, allowing the decoder in an encoder-decoder
model to reference the input sequence in full. Equally important, the parallelization allows for
a notable reduction of training time. Thus, permitting models to train on even larger datasets
[33]. The Transformer-styled models are typically pre-trained using a combination of the follow-
ing pre-training objectives: (1) denoising objectives, such as masked language modeling (MLM),
usually manipulate the input sequence and train the model to predict the correct sequence. In
the case of MLM, a percentage of the input sequence is masked with a special symbol and then
the model is trained to predict these masked tokens, and (2) next sentence prediction (NSP) that
provides the model with two sentences and the model is to determine whether or not the sentence
is the subsequent one [8].

The CodeT5 model extends the pre-training objectives by employing a novel identifier-aware
denoising pre-training objective called masked identifier prediction (MIP) and an identifier tag-
ging (IT) task. In detail the MIP objective masks all identifiers (e.g., method names) in such a
manner that each unique identifier is assigned a unique token for all occurrences. Whereas the
objective of the IT task is similar to sequence labeling, namely to determine whether or not part of
the sequence is an identifier. Thus, the pre-training objectives of the CodeT5 model are comprised

8 Chapter 3. Approach

of these two objectives in conjunction with MLM. Moreover, the loss of each of these pre-training
objectives is alternately optimized with an equal probability. Consequently, the CodeT5 model is
able to capture more of the code syntax and semantics [35].

The usage of the transformers library1[37] in combination with the PyTorch library2 [23] al-
lowed us to reuse the CodeT5 model. Moreover, easily extend the model with our own approach.
Due to our small dataset (see Section 3.2.1) we decided to adapt the training process to use a 3-
fold cross-validation (CV) approach. We implemented a training procedure that allows us to train,
test, and validate our models using the produced folds. Additionally, we persisted our folds; thus,
allowing us to consistently reproduce our results. Consequently, allowing us to verify that our
model is able to generalize. Besides, we also use a linear scheduler to decrease the learning rate of
our models in order to hopefully arrive at better weights (see also Section 4.1.2). We implemented
two models for our experiments: the first model is based on the CodeT5 model from Wang et al.
and the second is an extension of the first model that tries to improve the context information
with a bidirectional LSTM (BiLSTM) layer (Hochreiter and Schmidhuber [14]). Using BiLSTMs to
improve models is nothing new, but they have proven to be useful for long sequences since they
retain long-term information by propagating only the relevant information back [14, 15, 20, 28].
We will call the models’ context-enhanced generation (CEG) and CEGBiLSTM , respectively.

In the following, we characterize the specifics of the two models we implemented.

3.1.1 Context-enhanced generation

Our first model is based on the intuition that additional context information benefits the genera-
tion process since the model learns the representation of already existing methods, imports, and
member variables. Thus, enabling the model to reuse previous methods, imported application
programming interfaces (APIs), and member variables. We hold the assumption that the addi-
tional information helps the model to deal with the barriers faced by learners. Specifically, with
the integration, mapping, and modification barriers, as mentioned previously (see Chapter 1),
since the provided information could enable the model to directly adapt the prediction of the
intent to the context. Hence, producing integrated, mapped, and modified code.

In order to deal with contexts of variable sizes, we defined a custom context workflow that
only extracts the necessary information (see also Section 3.2.1). We considered what information
an actual programmer would have during the process of writing code and based our definitions
on that assumption; i.e., the method signatures, the member variables, the code preceding the
comment, and the name of the current method. Accordingly, our model takes the aforementioned
information in addition to the NL intent and the target line for training purposes. This results
in a tuple of string vectors (

−→
nli,

−−→
mth,

−→
cdb,

−→
sig,

−−→
imp,

−→
fld,

−→
trg) as an input. Thus, the model has the

same information as an actual programmer would. To deal with this information we added a new
module to prepare our data in such a way that the model is able to use our input in accordance
with the CodeT5 model (BERT-style concatenation [35]). Although the inputs are concatenated they
are separated by a [SEP] token. We assume that the model will learn to attend each of these parts
and is able to decide which of the inputs is more important. The equations eqs. (3.1) to (3.13)
formally define the inputs and output of our model.

We define the NL intent as
−→
nli = (nli0, nli1, . . . , nlii) (3.1)

1transformers version 4.12.5 – https://huggingface.co/
2PyTorch version 1.10.0+cu113 – https://pytorch.org/

https://huggingface.co/
https://pytorch.org/

3.1 Model architectures 9

The method signature of the current method is denoted by

−−→
mth = (mth0,mth1, . . . ,mthj) (3.2)

The code preceding the comment is denoted by

−→
cdb = (cdb0, cdb1, . . . , cdbk) (3.3)

The method signatures of all other methods are denoted by

−→
sig = (sig0, sig1, . . . , sigl) (3.4)

The imports defined in the java file are denoted by

−−→
imp = (imp0, imp1, . . . , impm) (3.5)

The global members/fields

−→
fld = (fld0, f ld1, . . . , f ldn) (3.6)

The next line of code after the comment

−→
trg = (trg0, trg1, . . . , trgo) (3.7)

In order to truncate the inputs to the maximum allowed length we define the following:
Let Z be the set of {i, j, k, l,m, n}, which denote the respective indexation of the input vectors and
all elements of Z are truncated to the respective maximum input length.

∀e ∈ Z : e ∈ N
0 ≤ Z ≤ maxinp

(3.8)

Whereas o is truncated to the maximum output length maxtrg (see Section 4.1.2 for more details
on the max length).

0 ≤ o ≤ maxtrg (3.9)

The input parts are concatenated by a pre-defined token ([SEP]):∑̂
is used to denote the aggregation of concatenations (3.10)

⊕ denotes a single concatenation (3.11)

These definitions allow us to define the input for our model as the concatenation of the NL intent
and all context vectors, truncated to the maximum input size allowed by the model, as shown in
Equation 3.12.

x =
∑̂6

i=1
Zi ⊕ [SEP]

z = tokenize(x,maxinp)
(3.12)

Similarly, our output is defined by

t = detokenize(trg,maxtrg) (3.13)

10 Chapter 3. Approach

3.1.2 Context-enhanced generation BiLSTM

While our initial approach does consider the context we assume that a better context representa-
tion would benefit the model. We initially implemented the standard approach of truncating the
input to the expected size (as demonstrated in Section 3.1.1). Granted that this approach is a com-
monplace method to deal with large inputs and does produce results, we decided to extend the
model with an additional compression layer. Hence, our second model tries to enhance the input
by compressing it with an additional BiLSTM layer before passing the input to the transformer
model as shown in Figure 1.

In order to add the BiLSTM layer, we defined a new PyTorch module that embeds the original
CodeT5 model after the newly added BiLSTM layer. This allows us to change the model effi-
ciently and we can gather the necessary information regarding the dimensions from the CodeT5
configuration. Thus, configuring the BiLSTM layer to produce output with the expected input
dimension of the model. In addition to the new PyTorch module, we also needed to adjust the
transformers library, as the current implementation of the ”generate” function only allows proper
generation with input ids instead of embeddings. This adjustment was necessary, as we generate
the embeddings from the BiLSTM layer and pass it to the original model. However, the ”gener-
ate” method requires input ids and the ”forward” method of the model throws an exception if
both ids and embeddings are passed. To circumvent this problem we added a simple check for
this case and remove the input ids within the forward call of the original t5 model. Thus, allowing
us to pass both input ids and embeddings to the ”generate” function while still complying with
the requirements of the ”forward” function.

Figure 1: High-level CEGBiLSTM architecture

3.2 Dataset 11

We suspect that the CEGBiLSTM is able to compress the large context information better since
the BiLSTM layer should learn more compact representations of the context. In other words,
achieve better results than the CEG model.

While our approach is model-agnostic we chose a pre-trained model, expecting better results
than training from scratch with randomly initialized weights. This decision is further supported
by recent surveys and papers [12, 13, 21].

3.2 Dataset
This section describes how we obtained and processed the data that we use for our approach.
Furthermore, it provides statistical information’s regarding the produced dataset.

3.2.1 Data mining process
While there are datasets containing NL-code pairs and some even containing context information
such as CONCODE [15], CoNaLa [42], WikiSQL [45], and CodeXGLUE [19], none of these were in
accordance with our goal of generating single-line code. Moreover, none of the aforementioned
datasets are tailored to single-line source code targets and provide the full context we require for
our custom context workflow. Therefore, we decided to produce our own dataset containing the
context information, the NL intent, and a single next-line of source code as our target.

We downloaded 19’397 repositories with 6’359’942 Java files from GitHub (GitHub). The data
mining process is split into (1) gathering Java repositories, (2) method extraction, (3) comment
extraction, (4) comment validation, and (5) target extraction and was executed over a course of 12
days and 15 hours. The data mining pipeline is illustrated in the following figure:

Figure 2: Data mining pipeline

The data mining pipeline yields a JSON file where each line correlates to a correct JSON object
(illustrated in Listing 3.2) created with the jsonlines3 library.

Repository mining

We downloaded the Java repositories using the GitHub-API. We decided to limit our approach to
one programming language, namely Java. Furthermore, we decided to limit our search to projects
with a minimum of 90 GitHub stars and sort the resulting repositories by the number of stars in
descending order. This decision is based on the paper from Borges and Valente, who state that
the number of stars is a key metric regarding the evolution of GitHub projects, however, they
also state that the number of stars may be concentrated in a short time period, due to marketing

3jsonlines version 3.0.0 – https://jsonlines.org/

https://jsonlines.org/

12 Chapter 3. Approach

and advertisement, and consequently may not follow solid software engineering principles and
practices [7]. In summary, we filter by

• the programming language Java, and

• projects that have more than 90 GitHub stars.

Method, comment, and target extraction

We parsed all of the downloaded Java files using ANother Tool for Language Recognition (ANTLR4)4

resulting in 1’185’549 extracted methods. Out of those we removed the methods that did not con-
tain any comments resulting in 321’486 methods that contain ”in-line comments”. Furthermore,
a total of 3’518 interfaces were omitted from the extraction, due to there being no method body.
However, this is only true for projects prior to Java 8 as it is since possible to add default im-
plementations of interface methods. The default methods in an interface are fully implemented
methods and not just signatures without a method body [22].

In a second step, we iterated through all of the ”in-line” comments in order to extract the next
line following the comment as the target code for the training. The extraction process yielded
216’280 viable comments, that are used to fine-tune the model. The distribution of methods with
(w/) and without (w/o) comments is illustrated in Figure 3.

Figure 3: Method/comment distribution

Context extraction

We implemented a custom workflow extraction process that extracts each of the following parts:
(1) the method signatures within the class, (2) the name of the current method, (3) the imports
used in the class, (4) member variables, (5) and the code preceding the current comment inside of
the current method, allowing us to handle each of the respective parts separately. This enables us

4ANTLR4 version 4.9.2 – https://www.antlr.org/

https://www.antlr.org/

3.2 Dataset 13

to extract the context information without boilerplate code. For example, if we are considering the
context of an inline comment, we can ignore the method body of other methods. As we only need
information pertaining to the internals of the current method. We hope that our model learns to
extract the relevant information from each part of the context. We then concatenate all of the parts
as described in Section 3.1 to get a BERT-style concatenated input [8] following the CodeT5 model
[35].

In order to give a detailed illustration of the context extraction process we will use the follow-
ing example: Let the current inline comment be line 24 in Listing 3.1. Using ANTLR4 we extract
the imports from the file, which yields lines 3-6. In a similar fashion also using ANTLR4 we extract
member variables as well as all method signatures excluding the current method, resulting in line
9 and lines 11 and 15, respectively. The current method signatures line 19 is handled separately, as
we assume that the method name could reveal information regarding the intent of the comment.
With the positional information provided by ANTLR4, we extract the code preceding the com-
ment by selecting the lines between the start of the method body and the comment omitting all
other comments contained within this section lines 21 through to 23, which we call code before.

Listing 3.1: "Context extraction"
1 package com.google.gson;
2

3 import com.google.gson.internal.GsonPreconditions;
4 import java.math.BigDecimal;
5 import java.math.BigInteger;
6 import com.google.gson.internal.LazilyParsedNumber;
7

8 public final class JsonPrimitive extends JsonElement {
9 private final Object value;

10 . . .

11 public JsonPrimitive(String string) {
12 value = GsonPreconditions.checkNotNull(string);
13 }
14 @Override
15 public char getAsCharacter() {
16 return getAsString().charAt(0);
17 }
18 @Override
19 public boolean getAsBoolean() {
20 // check type
21 if (isBoolean()) {
22 return ((Boolean) value).booleanValue();
23 }
24 // Check to see if the value as a String is "true" in any case.
25 return Boolean.parseBoolean(getAsString());
26 }
27 . . .

Imports

Fields

Signature

Signature

Method name

Code before

The extraction process yields the following example JSON object:

14 Chapter 3. Approach

Listing 3.2: "Example JSON"
{

"comment": "// Check to see if the value as a String is "true" in any case.",

"methodName": "public boolean getAsBoolean()",

"codeBefore": "if (isBoolean()) { return ((Boolean) value).booleanValue(); }",

"signatures": "public JsonPrimitive(String string) public char getAsCharacter()",

"imports": "import com.google.gson.internal.GsonPreconditions import java.math.

BigDecimal . . .",

"fields": "Object value",

"target": "return Boolean.parseBoolean(getAsString());",

"file": ". . ./JsonPrimitve.java"

}

This extraction process should simulate the behavior of writing code and provide all possible
information w.r.t. the current NL intent. At the time of writing a comment, the programmer
would not know any information following the comment. Therefore, omitting everything after
the comment. However, we include all other method signatures as it is possible to add a new
method anywhere within a class.

3.3 Exploratory data analysis

In order to better understand the mined data, we performed some simple EDA on the data. We
created boxplots for each of our input variables in order to analyze the length distribution of each
variable. This analysis showed us how much of our context data would be lost regarding the
models’ maximum input size (see Table 3). For the following figures, note that the box represents
the interquartile range (IQR), the line within the box represents the median, and all points outside
the whiskers are considered outlier. Also, note the logarithmic scale on the x-axis.

Figure 4: Context variable boxplots

3.3 Exploratory data analysis 15

Figure 5: Context variable boxplots

Figure 6: Comment & target variable boxplots

Looking at the distribution we can see that majority of the targets, comments, and method
names have lengths of less than 100 characters. However, the outliers reach up to a length of
1773, 7502, and 1164, respectively. Whereas the majority of the signatures, codeBefore, members,
and imports are larger than 100 characters with an average length of 474, 729, 533, and 1158,
respectively. This provides us with valuable information regarding the maximum length for our
model (w.r.t. our memory limitations see Section 4.1.2). However, as the pre-trained CodeT5
tokenizer uses byte pair encoding (BPE) [29] it is difficult to determine the effective number of
tokens the concatenated sentence represents. For example, when considering our toy example

16 Chapter 3. Approach

from Listing 3.2 we receive 93 tokens without padding for our concatenated input with a length
of 346 characters.

N-Gram analysis

In order to gain some insight into what kind of data examples are in our data, we ran an n-gram
analysis shown in Figure 7, Figure 8, and Figure 9. From the bi-grams, we can deduce that the
most common n-grams from the comment data are in English. The import bi-grams can be used
to see the most common libraries in our dataset. The target bi-grams reveal that they pertain
either to structural information (e.g., for, if, else), exceptions, or return values.

Figure 7: N-gram analysis part 1

3.3 Exploratory data analysis 17

Figure 8: N-gram analysis part 2

18 Chapter 3. Approach

Figure 9: N-gram analysis part 3

3.4 Data mining statistics 19

3.4 Data mining statistics
The following table provides an overview of the data yielded from the data mining process:

TABLE 1: Data statistics

Name Data
AVG Min/Max

Comment lengths 69.188 3/7’502
Target lengths 42.053 0/1’773
Signature lengths 473.702 1/8’092
Field lengths 532.982 0/90641
Method name lengths 54.983 7/1’164
Import lengths 1’157.938 0/28’062
Code before lengths 729.428 0/106’354
Imports per class 17.59 0/434
Fields per class 6.38 0/1’284
Methods per class 2.86 1/182
Comments per method 2.02 0/375

Chapter 4

Experimental design

This chapter aims to address how we intend to answer our research questions and is closely tied
to Chapter 5. Furthermore, this chapter describes how we trained our model, the training dataset,
and threats to the validity of our approach.

4.1 Experimental design
To examine the applicability and performance of our approach, we construct several experiments
while keeping the research questions in mind.

RQ1 Does our CEGBiLSTM model compress the context information more efficiently than
the CEG model?

In order to assess if our CEGBiLSTM model benefits from the BiLSTM layer and whether or not it
outperforms our initial CEG model, we intend to compare their respective BLEU and CodeBLEU
scores.

RQ2 How does our approach compare to the current SOTA approach?

While there are many ways to compare approaches (e.g., ROUGE, Recall) we chose to use our
defined metrics since these metrics are commonly used to measure the performance of code gen-
eration tasks. Therefore, we intend to use the metrics to compare our model to the current SOTA
approach. As stated previously we chose to compare our models to the NLGP model from Hey-
man et al., since their approach is the most similar to our approach. Furthermore, the technologies
they used in addition to the contextualization are comparable to ours, with the exception of the
underlying model used and our custom context workflow. Specifically, we chose the best per-
forming NLGPnatural model for a fair comparison [13]. Additionally, these metrics allow us to
verify if the models are overfitting or not.

RQ3 Do our models learn strong context representation from our custom context workflow?

While it is crucial to assess the learning capabilities of our model and see if our models converge,
it is equally important to further analyze the usage of the context. While that may be true, these
metrics do not allow us to analyze how the context is used. Therefore, we intend to use a sam-
ple of predictions to get a preliminary intuition regarding the applicability of our approach by
manually comparing the predictions. Hence, they should provide us with a definite answer re-
garding our single-line goal as well as an indication of whether or not we are able to learn strong
context representations. Even though such a comparison is time-consuming and not exhaustive

22 Chapter 4. Experimental design

we assume that the example comparison provides us with insight into the performance of our
models.

RQ4 Are we able to produce single-line source code from the given inputs?

The metrics are based on provided target sentences they also indicate if we are able to produce
single-line source code or not. While that may be true, we chose to verify the prediction of single-
line source code by analyzing the generated predictions. Thus, allowing us to review the output
in detail.

In summary, we intend to assess our questions as follows:

• Using the defined metrics we aim to answer RQ1 and RQ2 by comparing the respective
results of our models

• We try to answer RQ3 and RQ4 using an exploratory example analysis.

In the following, we describe the training method, briefly introduce training-specific details
regarding the dataset, metrics, and introduce possible threats to the validity of our work.

4.1.1 Training dataset and metrics
For all of our experiments and models, we chose to use our own dataset (see Section 3.2.1). The
dataset was prepared from more than 19 thousand repositories downloaded from GitHub that
were filtered by programming language and sorted by the number of stars. We parsed all the files
using ANTLR4 to extract comments contained within methods. Thus, only extracting ”in-line”
comments.

To evaluate our models, we apply three-fold cross-validation to our dataset by splitting the
dataset into three equal folds and using two for training and one for testing. After the initial split,
we further split the training data into a training and validation set, 90% and 10%, respectively.
Resulting in the following folds:

TABLE 2: Dataset

Fold Training samples Validation samples Test samples Total

1 129’767 14’419 72’094
2 129’768 14’419 72’093
3 129’768 14’419 72’093

}
216’280

We use BLEU as our main metric as it is used in most of the SOTA papers and allows for easier
comparison. However, Tran et al. and Ren et al. showed that BLEU does not reflect the semantic
accuracy of code, which is why in addition to BLEU we also use CodeBLEU as a more informative
metric to evaluate the models [27, 32].

4.1 Experimental design 23

CodeBLEU

We will briefly introduce the difference between BLEU and CodeBLEU: BLEU measures the per-
centage of n-gram overlaps between the reference and the candidate sentence. Whereas Code-
BLEU additionally considers syntactic abstract syntax tree (AST) matching, semantic dataflow
matching, and a weighted BLEU score [27].

4.1.2 Model configurations
We build two contextualized models based on the CodeT5 model [35]. However, due to memory
limitations, we adjusted the original hyperparameters that we took from the CodeT5 GitHub
repository 5 from their code generation task. We reduced the batch size and target length to 4 and
100, respectively.

We trained the model on a single NVIDIA Tesla T4 GPU with 16 GB of memory, with a three-
fold CV approach.

TABLE 3: Pre-training hyperparameters vs. CodeT5

Parameter CEG CEGBiLSTM CodeT5

Optimizer AdamW AdamW AdamW
Learning rate 0.0001 0.0001 0.0001
Learning rate
warm up steps

1’000 1’000 1’000

Early stopping True True True
Early stopping
patience

3 3 3

Beam size 10 10 10
Max input length 300 300 300
Batch size 4 4 16
Max target length 100 100 150
Epochs 3 3 30

The original hyperparameters were taken from the CodeT5 (Wang et al. [35]) GitHub repository5.
The changed hyperparameters compared to the original CodeT5 parameters are marked in bold.

4.1.3 Training
We trained the models with the following criteria (1) the BLEU score does not increase with a
patience of 3, and (2) the loss does not decrease with a patience of 3, or (3) the model converges.
This resulted in a total of three epochs per fold. The total training time per contextualized model
is approximately nine days each. During the training process, we collected information on the
loss, BLEU, and CodeBLEU scores. The respective results for the training and validation data are
illustrated in Figure 10 and Figure 11. Even though the model converges after a few epochs the
validation and training losses do not cross each other. Thus, we assume that no overfitting takes
place. In both models, the CodeBLEU scores are higher than the BLEU scores and both models
greatly improve through training in comparison with the initial scores (epoch zero) as seen in
Figure 11.

5CodeT5 GitHub repository: https://github.com/salesforce/CodeT5

https://github.com/salesforce/CodeT5

24 Chapter 4. Experimental design

Figure 10: Training & validation loss

(a) CEG

(b) CEGBiLSTM

4.1 Experimental design 25

Figure 11: BLEU & CodeBLEU scores

26 Chapter 4. Experimental design

4.2 Threats to validity
Internal validity. The most significant limitation to our design emerges from the dataset we cre-
ated. We assume that our data contains a considerable amount of noise and this crosses over into
the evaluation of our models as the targets, as well as, the input may contain noise. Thus, the
model may learn too much from the noise and this potentially impacts the performance of the
model. We also note that the size of our dataset is rather small (see Section 3.2.1), which could
impact the generalization of the model, however, we mitigated some of the potential impacts by
using a 3-fold CV approach. Furthermore, our data cleaning was kept to a minimum in order
to see how our model deals with noisy data. Consequently, it is not guaranteed that all of our
comments are written in English nor if the target line actually makes sense.

Equally important, is the fact that we manually evaluated the generated predictions for our
exploratory example analysis. Our selection and comparative criteria may not represent the actual
performance of the models. However, we tried our best to be objective and provide the reader
with the specific examples used in the evaluation.

External validity. The first external threat is the choice of the programming language used to train
our model. It is thus unclear if our approach can be generalized to other languages and whether
or not a similar performance can be achieved. The reason for choosing Java can be summarized
as follows. First, Java is and has been, consistently so, one of the most popular programming
languages. Secondly, the familiarity of the language allowed us to be more objective with regard
to our manual evaluation of the examples. In the future, we intend to verify the performance of
our model with other programming languages (such as JavaScript, Python, C++).

The second external threat is the limited comparison to other SOTA approaches. Due to the na-
ture of this emerging field, the comparable approaches were limited to a small number. However,
we hope that future works are able to use the current approaches as a basis of comparison.

Chapter 5

Results

This chapter presents our results from the experiments described in Chapter 4 and aims to answer
our questions proposed in the experimental design.

5.1 Comparative results using the metrics (RQ1 and
RQ2)

We now present the results of the experiments involving the comparison of the models using the
defined metrics (BLEU and CodeBLEU). To achieve a fair comparison of the model performance,
we trained all the models for an equal amount of time (185.62 hours) and ran the SOTA model
from Heyman et al. [13] on the same hardware as our models (converges after two epochs see
Appendix A). The result comparison for the test set using the metrics BLEU and CodeBLEU of the
models is shown in Table 4.

TABLE 4: Model comparison

Model Metrics
BLEU score CodeBLEU score

CEG 0.849 5.798
CEGBiLSTM 1.303 8.726
NLGPnatural 2.070 5.083

Looking at the results from Table 4 we can clearly see that the CEGBiLSTM achieved an
improvement over the CEG model of ± 0.454 and ± 2.928 points in both metrics BLEU and
CodeBLEU, respectively. Furthermore, the CodeBLEU metric considers AST matching and se-
mantic dataflow matching in addition to the BLEU score. Consequently, we can view the higher
relative difference between the two models as a further indication of better contextualization.
Therefore, confirming our initial assumption regarding the retention of context information of
the CEGBiLSTM model.

RQ1 - In summary: The CEGBiLSTM model is able to improve the CEG model
and retains more context information.

28 Chapter 5. Results

We now refer to the results pertaining to the SOTA model (viz., NLGPnatural) in comparison to
our best model. Comparing the results shown in Table 4 we see that our best model outperformed
the NLGPnatural model by 3.643 points in the CodeBLEU metric. Contrarily, the NLGPnatural

model achieved a higher BLEU score of 2.070 with an increase of 0.767 points. Still, we conjecture
that a more detailed context collection improves the contextualized code generation process with
respect to the CodeBLEU metric. However, looking at both metrics we have to concede that the
results are inconclusive regarding the performance of our model in comparison with the current
SOTA approach. Consequently, the inconclusive results do not provide us with a definite answer
for our research question, albeit we do argue that our approach is not inferior to other approaches
w.r.t. CodeBLEU and provides further research avenues regarding the use of context.

RQ2 – In summary: Our best model achieves a higher CodeBLEU score, while
the NLGPnatural model achieves a higher BLEU score. Thus, the results are
inconclusive.

Thus far, we have verified that our model benefits from the BiLSTM layer and achieved better
results than without the additional layer. But, there is no conclusive answer regarding the perfor-
mance comparison with the SOTA approach.

5.2 Example exploration and analysis (RQ3 and RQ4)
We now present the results from our exploratory example analysis with the aim of providing a
more elaborate comparison. Analyzing the example predictions produced by the three models
(viz., CEG, CEGBiLSTM , and NLGPnatural) shown in tables 5 to 8 we can see that the CEG
model produces the most accurate predictions. Considering the results of the CEGBiLSTM model
a pattern emerges, where the model often predicts for loops. This behavior could be attributed to
the BiLSTM layer, which assumably learns representations that favor loops. Another reason for
this pattern could be that the underlying pre-trained model is not able to discern the different
parts of the new embeddings created by the BiLSTM layer. In comparison, the NLGPnatural

models’ predictions worsen as the context size increases. Therefore, we can deduce that our
custom context extraction workflow results in a more compact context; thus, alleviating issues
regarding large contextual input. Even though we need to place special considerations w.r.t. to
the prediction of our CEG model in the case of example 4 (Table 8). We note that the reference
does not match the prediction, however, the model produces code that overlaps with the intent.
This mismatch could be linked to a noisy dataset and further consideration needs to be placed on
data cleaning.

RQ3 – In summary: Our custom context workflow allows the models to deal
with substantial context inputs and provide accurate predictions. Hence, the
models are able to learn strong context representations.

The examples provide us with a non-exhaustive overview of the predictions our models produce,
but they clearly show that both of the models consistently predict single-line output, which is in
alignment with our goals. Even though the examples are by no means exhaustive, we previously
mentioned that the metrics compare the prediction to single-line references that further support
our claim that our models are producing single-line source code.

5.2 Example exploration and analysis (RQ3 and RQ4) 29

RQ4 – In summary: Our models are able to produce single-line source code
from the given input as demonstrated by the exploratory example analysis.

Listing 5.1: "Example 1 - Context"
1 import java.util.HashMap;
2 import java.util.Map;
3 import com.alibaba.excel.metadata.data.ImageData.ImageType;
4 public class FileTypeUtils {
5 private static final char[] DIGITS = {’0’,’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’a’, ’b’, ’c’, ’d’, ’e’,’f’};
6 private static final int IMAGE_TYPE_MARK_LENGTH = 28;
7 private static final Map<String, ImageType> FILE_TYPE_MAP;
8 public static ImageType defaultImageType = ImageType.PICTURE_TYPE_PNG;
9 static {FILE_TYPE_MAP = new HashMap<>();

10 FILE_TYPE_MAP.put("ffd8ff", ImageType.PICTURE_TYPE_JPEG);
11 FILE_TYPE_MAP.put("89504e47", ImageType.PICTURE_TYPE_PNG);
12 }
13 public static int getImageTypeFormat(byte[] image) {
14 ImageType imageType = getImageType(image);
15 if (imageType != null) {
16 return imageType.getValue();
17 }
18 return defaultImageType.getValue();
19 }
20 public static ImageType getImageType(byte[] image) {
21 if (image == null || image.length <= IMAGE_TYPE_MARK_LENGTH) {
22 return null;
23 }
24 byte[] typeMarkByte = new byte[IMAGE_TYPE_MARK_LENGTH];
25 System.arraycopy(image, 0, typeMarkByte, 0, IMAGE_TYPE_MARK_LENGTH);
26 return FILE_TYPE_MAP.get(encodeHexStr(typeMarkByte));
27 }
28 private static String encodeHexStr(byte[] data) {
29 final int len = data.length;final char[] out = new char[len << 1];

TABLE 5: Example 1 - Comparison

Intent
// two characters from the hex value.

Predictions
CEG BiLSTM NLGP

for (int i = 0; i < len; i++) { for (int i = 0; i < data.length;
i++) {

\n

Reference
for (int i = 0, j = 0; i < len; i++) {

Listing 5.2: "Example 2 - Context"
1 package smoketest.websocket.undertow.snake;

30 Chapter 5. Results

2 import java.awt.Color;
3 import java.util.Random;
4 public final class SnakeUtils {
5 public static final int PLAYFIELD_WIDTH = 640;
6 public static final int PLAYFIELD_HEIGHT = 480;
7 public static final int GRID_SIZE = 10;
8 private static final Random random = new Random();
9 private SnakeUtils() {}

10 public static String getRandomHexColor() {
11 float hue = random.nextFloat();

TABLE 6: Example 2 - Comparison

Intent
// sat between 0.1 and 0.3

Predictions
CEG BiLSTM NLGP

float saturation =
(random.nextInt(2000) +

1000) / 10000f;

for (int i = 0; i < 4; i++) { \n

Reference
float saturation = (random.nextInt(2000) + 1000) / 10000f;

Listing 5.3: "Example 3 - Context"
1 package smoketest.bootstrapregistry.app;
2 import smoketest.bootstrapregistry.external.svn.SubversionBootstrap;
3 import org.springframework.boot.SpringApplication;
4 import org.springframework.boot.autoconfigure.SpringBootApplication;
5 @SpringBootApplicationpublic class SampleBootstrapRegistryApplication {
6 public static void main(String[] args) {

TABLE 7: Example 3 - Comparison

Intent
// This example shows how a Bootstrapper can be used to register a custom

SubversionClient that still has access to data provided in the application.properties file
Predictions

CEG BiLSTM NLGP
SpringApplication

application = new SpringAp-
plication(Application.class);

SpringApplication
.run(Application.class,args);

SpringApplication
.run(SampleBootstrapRegistry

Application.class, args);
Reference

SpringApplication application = new
SpringApplication(SampleBootstrapRegistryApplication.class);

5.2 Example exploration and analysis (RQ3 and RQ4) 31

Listing 5.4: "Example 4 - Context"
1 package com.google.gson;
2 import com.google.gson.internal.GsonPreconditions;
3 import java.math.BigDecimal;
4 import java.math.BigInteger;
5 import com.google.gson.internal.LazilyParsedNumber;
6 public final class JsonPrimitive extends JsonElement {
7 private final Object value;
8 public JsonPrimitive(Boolean bool) {
9 value = GsonPreconditions.checkNotNull(bool);

10 }
11 public JsonPrimitive(Number number) {
12 value = GsonPreconditions.checkNotNull(number);
13 }
14 public JsonPrimitive(String string) {
15 value = GsonPreconditions.checkNotNull(string);
16 }
17 public JsonPrimitive(Character c) {
18 value = GsonPreconditions.checkNotNull(c).toString();
19 }
20 @Override
21 public JsonPrimitive deepCopy() {
22 return this;
23 }
24 public boolean isBoolean() {
25 return value instanceof Boolean;
26 }
27 @Override
28 public boolean getAsBoolean() {
29 if (isBoolean()) {
30 return ((Boolean) value).booleanValue();
31 }
32 return Boolean.parseBoolean(getAsString());
33 }
34 public boolean isNumber() {
35 return value instanceof Number;
36 }
37 @Override
38 public Number getAsNumber() {
39 return value instanceof String ? new LazilyParsedNumber((String) value) : (Number) value;
40 }
41 public boolean isString() {
42 return value instanceof String;
43 }
44 @Override
45 public String getAsString() {
46 if (isNumber()) {
47 return getAsNumber().toString();
48 } else if (isBoolean()) {
49 return ((Boolean) value).toString();
50 } else {
51 return (String) value;
52 }
53 }
54 @Override

32 Chapter 5. Results

55 public double getAsDouble() {
56 return isNumber() ? getAsNumber().doubleValue() : Double.parseDouble(getAsString());
57 }
58 @Override
59 public BigDecimal getAsBigDecimal() {
60 return value instanceof BigDecimal ? (BigDecimal) value : new BigDecimal(value.toString());
61 }
62 @Override
63 public BigInteger getAsBigInteger() {
64 return value instanceof BigInteger ?
65 (BigInteger) value : new BigInteger(value.toString());
66 }
67 @Override
68 public float getAsFloat() {
69 return isNumber() ? getAsNumber().floatValue() : Float.parseFloat(getAsString());
70 }
71 @Override
72 public long getAsLong() {
73 return isNumber() ? getAsNumber().longValue() : Long.parseLong(getAsString());
74 }
75 @Override
76 public short getAsShort() {
77 return isNumber() ? getAsNumber().shortValue() : Short.parseShort(getAsString());
78 }
79 @Override
80 public int getAsInt() {
81 return isNumber() ? getAsNumber().intValue() : Integer.parseInt(getAsString());
82 }
83 @Override
84 public byte getAsByte() {
85 return isNumber() ? getAsNumber().byteValue() : Byte.parseByte(getAsString());
86 }
87 @Override
88 public char getAsCharacter() {
89 return getAsString().charAt(0);
90 }
91 @Override
92 public int hashCode() {
93 if (value == null) {
94 return 31;
95 }

TABLE 8: Example 4 - Comparison

Intent
// Using recommended hashing algorithm from Effective Java for longs and doubles

Predictions
CEG BiLSTM NLGP

int h = value.hashCode(); for (int i = 0; i <
values.length; i++) {

}

Reference
if (isIntegral(this)) {

Chapter 6

Conclusion & Future work

In this paper, we propose a contextualized deep learning architecture for code generation. We
incorporated a custom workflow to model contextual information, which encapsulates multiple
aspects of source code by extracting imports, signatures, preceding code, and member variables and is
used by both of the models that we implemented. While it is true that both models use the custom
workflow, our second model additionally compresses the input with an additional BiLSTM layer.

We also contribute a dataset with over 200’000 samples of NL intent, context, and Java code
tuples. In addition to our own work, we compare our results to the work of Heyman et al. [13]
by replicating their results with our own data. The replication was used in order to compare
their results (BLEU and CodeBLEU), as well as example predictions with our own models. Our
experimental results reveal that the proposed model achieves better results than the previous
SOTA model [13] using the CodeBLEU metric, however, the NLGP model achieved better results
using the BLEU metric. Our results show that: (1) our models learn strong context representation
from our custom context workflow, (2) our model benefits from the additional BiLSTM layer w.r.t.
context retention, and (3) that our approach is not inferior to the current SOTA with regard to the
CodeBLEU metric.

In the future, we plan to apply our contextualized approach to models designed for long input
sequences such as BigBird [44], Longformer [6], and ETC [3] to capture more context information.
We assume this would improve the model further.

We also plan to expand our dataset by adding multiple programming languages to show that
our approach applies to a wide variety of languages and is able to be generalized. Integrating the
proposed model into an IDE would provide us with the possibility of a study with user reviews
to see how well the model enhances the learning process.

We propose to set up a case study with the goal of qualitatively accessing the usefulness of
our model. To this end, we intend to integrate our model into an IDE in order for the study par-
ticipants to use the model in a familiar environment as stated previously. Each of the participants
will receive several randomized exercises from an example pool. Half of the exercises are to be
solved using the assistant and the other half without the assistant. This allows us to compare
the time spent per exercise as well as the correctness of the solution provided by the participants
in comparison with the predictions of the assistant. Another time measurement is to be imple-
mented between the query completion and the recommendation to analyze the time performance
of the model. We also intend to collect ratings regarding the correctness, usefulness, and contex-
tualization of the recommended code statements using a Likert scale [18] styled feedback option.
In order to measure the time of an exercise, the participants are to initiate a timer at the start and
end of each task. In order to analyze differences between query patterns w.r.t. gender, we intend
to collect gender data from the participants. This could provide useful information pertaining to
model biases, that should be addressed.

We intend to present the participants with a Likert-styled questionnaire, which is to be an-

34 Chapter 6. Conclusion & Future work

swered after they have completed the series of exercises. A preliminary selection of possible
questions is shown in Table 9.

TABLE 9: Questions

Question/Statements

You are likely to use the assistant again in the future
The assistant was helpful in solving the exercises
The recommendations were contextualized and could be used directly
The recommendation appeared in a sufficiently short time, after the completion of the query
Single-line recommendations increase the learning effect
I was able to learn new knowledge from the recommendations

Each question has the following options: 1) Strongly disagree; (2) Disagree; (3) Neither agree nor disagree;
(4) Agree; (5) Strongly agree.

The participants are to be selected according to the following criteria:

• they should have a basic understanding of programming akin to introductory programming
courses and

• be familiar with the IDE.

These criteria ensure that the participants (1) have the necessary knowledge to formulate their
requirements in a comment, (2) are able to create a simple piece of code without any assistance,
(3) do not waste time on IDE specific issues, and (4) are able to compare the proposed implemen-
tation to a correct solution.

Bibliography

[1] (2021). Github copilot · your ai pair programmer. https://copilot.github.com/.

[2] Ahmad, W., Chakraborty, S., Ray, B., and Chang, K.-W. (2021). Unified pre-training for pro-
gram understanding and generation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2655–
2668, Online. Association for Computational Linguistics.

[3] Ainslie, J., Ontañón, S., Alberti, C., Pham, P., Ravula, A., and Sanghai, S. (2020). ETC: encoding
long and structured data in transformers. CoRR, abs/2004.08483.

[4] Andonian, A., Biderman, S., Black, S., Gali, P., Gao, L., Hallahan, E., Levy-Kramer, J., Leahy,
C., Nestler, L., Parker, K., Pieler, M., Purohit, S., Songz, T., Wang, P., and Weinbach, S. (2021).
GPT-NeoX: Large scale autoregressive language modeling in pytorch.

[5] Bai, X. and Cui, Y. (2016). Enhancing the learning process in programming courses through
an automated feedback and assignment management system.

[6] Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document transformer.
CoRR, abs/2004.05150.

[7] Borges, H. and Valente, M. T. (2018). What’s in a github star? understanding repository
starring practices in a social coding platform. CoRR, abs/1811.07643.

[8] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In NAACL-HLT.

[9] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,
and Zhou, M. (2020). CodeBERT: A pre-trained model for programming and natural languages.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1536–1547, On-
line. Association for Computational Linguistics.

[10] Garcia, R. and Al-Safadi, L. (2013). Comprehensive assessment on factors affecting students’
performance in basic computer programming course towards the improvement of teaching
techniques. International Journal for Infonomics, 6:682–691.

[11] Gupta, N., Tejovanth, N., and Murthy, P. (2012). Learning by creating: Interactive program-
ming for indian high schools. In 2012 IEEE International Conference on Technology Enhanced
Education (ICTEE), pages 1–3.

[12] Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L.,
Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X., Song, R., Tang, J., Wen, J.-R.,
Yuan, J., Zhao, W. X., and Zhu, J. (2021). Pre-trained models: Past, present and future.

https://copilot.github.com/

36 BIBLIOGRAPHY

[13] Heyman, G., Huysegems, R., Justen, P., and Cutsem, T. V. (2021). Natural language-guided
programming. CoRR, abs/2108.05198.

[14] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9:1735–80.

[15] Iyer, S., Konstas, I., Cheung, A., and Zettlemoyer, L. (2018). Mapping language to code in
programmatic context. CoRR, abs/1808.09588.

[16] Kusupati, U., Ravi, V., and Ailavarapu, T. (2018). Natural language to code using transform-
ers.

[17] Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. (2005). A study of the difficulties of novice
programmers. volume 37, pages 14–18.

[18] Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology 140:
5-55.

[19] Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D.,
Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M., Gong, M., Zhou, M., Duan,
N., Sundaresan, N., Deng, S. K., Fu, S., and Liu, S. (2021). Codexglue: A machine learning
benchmark dataset for code understanding and generation. ArXiv, abs/2102.04664.

[20] Mangal, S., Joshi, P., and Modak, R. (2019). LSTM vs. GRU vs. bidirectional RNN for script
generation. CoRR, abs/1908.04332.

[21] Norouzi, S. and Cao, Y. (2021). Semantic parsing with less prior and more monolingual data.
CoRR, abs/2101.00259.

[22] Oracle Corporation (2014). Compatibility guide for jdk 8. Accessed: 2022-03-12.

[23] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. CoRR, abs/1912.01703.

[24] Phan, L., Tran, H., Le, D., Nguyen, H., Anibal, J., Peltekian, A., and Ye, Y. (2021). Cotext:
Multi-task learning with code-text transformer.

[25] Pinheiro, A., Barbosa, A., Carvalho, R., Freitas, F., Tsai, Y.-S., Gasevic, D., and Ferreira, R.
(2021). Automatic feedback in online learning environments: A systematic literature review.
Computers and Education: Artificial Intelligence, 2:100027.

[26] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners.

[27] Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N., Zhou, M., Blanco, A.,
and Ma, S. (2020). Codebleu: a method for automatic evaluation of code synthesis. CoRR,
abs/2009.10297.

[28] Santhanam, S. (2020). Context based text-generation using LSTM networks. CoRR,
abs/2005.00048.

[29] Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for
Computational Linguistics.

BIBLIOGRAPHY 37

[30] Terada, K. and Watanobe, Y. (2021). Code completion for programming education based on
deep learning. International Journal of Computational Intelligence Studies, 10:78.

[31] Teshima, Y. and Watanobe, Y. (2018). Bug detection based on lstm networks and solution
codes. pages 3541–3546.

[32] Tran, N. M., Tran, H., Nguyen, S., Nguyen, H., and Nguyen, T. N. (2019). Does BLEU score
work for code migration? CoRR, abs/1906.04903.

[33] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

[34] Wang, W., Kwatra, A., Skripchuk, J., Gomes, N., Milliken, A., Martens, C., Barnes, T., and
Price, T. (2021a). Novices’ Learning Barriers When Using Code Examples in Open-Ended Program-
ming, page 394–400. Association for Computing Machinery, New York, NY, USA.

[35] Wang, Y., Wang, W., Joty, S., and Hoi, S. C. (2021b). Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021.

[36] Watanobe, Yutaka, Intisar, Chowdhury, Cortez, Ruth, and Vazhenin, Alexander (2020). Next-
generation programming learning platform: Architecture and challenges. SHS Web Conf.,
77:01004.

[37] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., and Brew, J. (2019). Huggingface’s transformers: State-of-the-art natural
language processing. CoRR, abs/1910.03771.

[38] Wong, E., Liu, T., and Tan, L. (2015). Clocom: Mining existing source code for automatic
comment generation. 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 380–389.

[39] Wong, E., Yang, J., and Tan, L. (2013). Autocomment: Mining question and answer sites
for automatic comment generation. 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 562–567.

[40] Xu, F. F., Jiang, Z., Yin, P., Vasilescu, B., and Neubig, G. (2020). Incorporating external knowl-
edge through pre-training for natural language to code generation. In Jurafsky, D., Chai, J.,
Schluter, N., and Tetreault, J. R., editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 6045–6052. Association
for Computational Linguistics.

[41] Xu, F. F., Vasilescu, B., and Neubig, G. (2021). In-ide code generation from natural language:
Promise and challenges. CoRR, abs/2101.11149.

[42] Yin, P., Deng, B., Chen, E., Vasilescu, B., and Neubig, G. (2018). Learning to mine aligned
code and natural language pairs from stack overflow. CoRR, abs/1805.08949.

[43] Yin, P. and Neubig, G. (2018). TRANX: A transition-based neural abstract syntax parser
for semantic parsing and code generation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 7–12, Brussels, Belgium.
Association for Computational Linguistics.

[44] Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontañón, S., Pham, P., Ravula,
A., Wang, Q., Yang, L., and Ahmed, A. (2020). Big bird: Transformers for longer sequences.
CoRR, abs/2007.14062.

38 BIBLIOGRAPHY

[45] Zhong, V., Xiong, C., and Socher, R. (2017). Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103.

A NLGP training details 39

A NLGP training details

Figure 12: NLGP training & validation loss

