Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of

=' S 4 UZH
< Zurich

Intelligent and Behavioral-based
Detection of Cryptominers in
Resource-constrained Spectrum
Sensors

Konstantin Moser
Zlrich, Switzerland
Student ID: 17-706-169

Supervisor: Dr. Alberto Huertas Celdran, Jan von der Assen
Date of Submission: April 11, 2022

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Bachelor Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Kryptowidhrungen und IoT-Geréte haben in den letzten Jahren immer mehr an Beliebtheit
gewonnen. Zudem interessieren sich Cyberkriminelle zunehmend fiir Schadsoftware mit in-
tegrierten Kryptominern, da diese eine schnelle und anonyme Mdglichkeit bieten, Geld zu
verdienen. Dies fithrt dazu, dass auch die Kryptomining-Angriffe auf loT-Geréite immer
mehr zunehmen. Ein moderner Ansatz, um den zunehmenden Cyberangriffen entgegen-
zuwirken, besteht darin, dynamische Analysemethoden in Kombination mit maschinellem
Lernen einzusetzen. Wéhrend zahlreiche Ansétze fiir die Erkennung solcher Angriffe auf
normalen Computer vorgestellt werden, gibt es noch wenig Forschung in diesem Bereich
in Verbindung mit IoT-Geréten. Deshalb schlagt die zugrunde liegende Arbeit verschie-
dene iiberwachte und uniiberwachte Modelle vor, die darauf abzielen, Kryptojacking aus
der Perspektive der Gerite zu erkennen. Dafiir werden Datensétze bendétigt, die sowohl
normales, als auch infiziertes Geréteverhalten enthalten. Um die genannten Daten zu erhe-
ben, wird ein Uberwachungsskript verwendet, das in regelmifigen Abstinden die Anzahl
von Leistungsereignissen eines Raspberry Pis misst. Dieser ist als Sensor Teil einer IoT-
Crowdsensing Plattform namens ElectroSense und wird spéter mit einem Kryptojacker
infiziert. Um diese Modelle zu erstellen, werden erst Daten mit der genannten Methode
gesammelt und dann vorverarbeitet. Danach konnen verschiedene Algorithmen des ma-
schinellen Lernens damit trainiert werden. Anschliessend wird die Leistung der Modelle
mit verschiedenen statistischen Methoden bewertet. Das Modell, das auf dem uniiberwach-
ten Isolation Forest Algorithmus basiert, erreicht die beste gewichtete Gesamtgenauigkeit
von 93,9%. Wenn die Genauigkeit nicht gewichtet wird, schneidet das Local-Outlier-Factor
Modell mit 97,7% am besten ab. Bei den iiberwachten Modellen erreicht der Decision Tree
Classifier den besten F1-Score-Makro-Durchschnitt von 76%. Wenn die F1-Scores dagegen
per Klasse gewichtet werden, erhoht sich dieser auf 100%. Da iiberwachte und uniiber-
wachte Modelle grundlegend unterschiedlich funktionieren, sollten die Prozentwerte nicht
direkt verglichen werden. Dennoch wird es deutlich, dass alle trainierten Modelle in der
Lage sind, die iiberwiegende Mehrheit der Angriffsdaten zu erkennen. Dies beweist, dass
die Verwendung von maschinellem Lernen in Kombination mit dynamischer Analyse, eine
Option zur Erkennung von Kryptojackern in IoT-Geréten ist.

With the rising popularity of cryptocurrencies and IoT devices, the number of crypto-
mining attacks on such devices is intensifying as they are often poorly secured. The
reason cybercriminals are increasingly interested in cryptominers is that they offer a fast
and anonymous way of making money while taking low risks. A modern approach for
detecting cyber attacks is to combine behavioural fingerprinting analysis with machine
learning models. While recent works provide numerous state-of-the-art approaches for
general computers, literature shows little research on detecting malicious cryptomining

1

on IoT devices. Therefore, the underlying thesis proposes different supervised and un-
supervised models that aim at detecting cryptojacking on IoT devices from the devices’
perspective. One of the requirements to train machine learning models effectively are
data sets containing clean, as well as infected device behaviour. Therefore, behavioural
monitoring is predominantly performed on a Raspberry Pi using a monitoring script that
periodically measures the number of performance events. The test device is part of a real-
world IoT crowdsensing platform called ElectroSense, whose sensor will be infected with a
cryptojacker as part of this thesis. The framework creation process involves collecting and
preprocessing data and the training of different ML-based algorithms. The performance
of the models is evaluated using various statistical methods. The model based on the Iso-
lation Forest algorithm, which takes an unsupervised approach, achieves the best overall
weighted accuracy of 93.9%. The unsupervised Local Outlier Factor model performs best
with 97.7% if the accuracy is not weighted. Regarding the supervised models, the Deci-
sion Tree classifier achieves the best F1-Score macro average of 76%, which transforms to
100% if the F1-Scores are weighted per class. Because supervised and unsupervised ap-
proaches work fundamentally different, the percentages should not be compared directly
due to varying evaluation metrics and individual strengths and weaknesses. Nonetheless,
it becomes clear that all the trained detection modules are able to detect the vast majority
of attack samples during the evaluation. This proves, that using machine learning models
combined with behaviour fingerprinting is a viable option to detect cryptojackers in IoT
devices.

Acknowledgments

First and foremost, I would like to express my special thanks to my supervisors, Dr. Al-
berto Huertas Celdran and Jan von der Assen. Without their guidance and comprehensive
insight, this thesis would not have been possible. They were always patient and offered
continued support throughout the past six months. Also, I want to express my deepest
gratitude to Prof. Dr. Burkhard Stiller for this opportunity. Furthermore, I offer my ap-
preciation to all members of the Communication Systems Group and the Department of
Informatics at the University of Zurich. Finally, my heartfelt thanks go to my supportive
parents and my loving girlfriend, whose understanding and attention were unwavering.

iii

v

Contents

Abstract

Acknowledgments

1 Introduction

1.1 Motivation
1.2 Description of Work
1.3 Thesis Outline

2 Background

2.1 Cryptomining
2.2 Cryptojackers
2.3 Device Fingerprintingo oL

3 Related Work

3.1

3.2

Cryptojacker Detection
3.1.1 Browser-based Cryptomining
3.1.2 Imstallable Cryptomining

Device Fingerprinting for Malware Detection

iii

vi

4 Framework Design

4.1 Scenario: ElectroSense
4.2 Linux.MulDrop.14 oL
4.3 Framework
4.3.1 Data Collection
4.3.2 Data Preprocessing

4.3.3 MlL-based Detection

5 Evaluation

5.1 Results.

5.1.1 Unsupervised Machine Learning Models

5.1.2 Supervised Machine Learning Models

5.2 Discussion

6 Summary and Conclusions

Bibliography

Abbreviations

Glossary

List of Figures

List of Tables

A Installation Guidelines

A.1 Machine Learning Models

A.2 Cryptojacker

B Contents of the zip File

CONTENTS

39

41

49

51

51

53

57

.......... o7
.......... 57

59

Chapter 1

Introduction

The growth of Internet of Things (IoT) devices has been immense, and the market has
been evolving ever since. The IoT Market was estimated to be around $7.1 Trillion in the
year 2020 [6]. It is clear that the scope for IoT has expanded and will keep expanding.
The connection of everyday items obviously offers many great opportunities. However,
the number of attacks on IoT devices grows with it simultaneously. The problem with
many IoT devices is that most users do not care about security when connecting their
devices to their home network. At the same time, many developers of IoT devices do not
focus on security when developing these devices [6],[80]. For example, a well known cyber
attack affecting [oT devices is the infamous Mirai Botnet. It was designed to perform large
scale Distributed-Denial-of-Service (DDoS) attacks by exploiting vulnerabilities in poorly
secured devices. Because of the enormous bot count, the Mirai Botnet is to hold to account
for the most significant DDoS attack in recent history [7]. Thus, the security aspect of
IoT devices is critical to avoid further largescale attacks. Consequently, the number of
works that aim at protecting IoT devices against malware has grown substantially in
recent years [86]. Currently, there are numerous research areas and different approaches
to choose from.

One of the scenarios where IoT devices thrive are crowdsensing platforms [79]. Crowdsens-
ing is an approach in which a large, widely dispersed group of participants obtains reliable
data from the field using ToT devices [76]. This approach has already been used to col-
lect spectrum data worldwide by a platform called ElectroSense [13],[85]. Unfortunately,
cyberattacks on these types of IoT networks and platforms are becoming more common
[77]. Especially with the cryptocurrency boom in recent years, cryptojackers are gaining
popularity amongst cybercriminals [81],[82]. Cryptojacker is an upcoming type of mal-
ware that installs cryptominers on the infected device, in turn, it lets the hacker illicitly
mine cryptocurrency for himself. Therefore, further research in the field of cybersecurity
and cryptojackers, particularly in combination with IoT devices, is required. This thesis
combines the fields of Cryptojacking with Machine Learning (ML), Device Fingerprint-
ing, and IoT Devices, contributing to the protection against cryptomining attacks. The
combination of all the mentioned fields is unprecedented. The underlying thesis attempts
to fill this gap.

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Technology is moving fast and some serious security challenges come, especially with IoT
devices [6]. In regular home computers, anti-malware software is everyday use nowadays.
Nevertheless, the number of malware is increasing rapidly. There are a handful of differ-
ent methods to identify, analyze and classify different types of malware. Unfortunately,
attackers constantly optimize their methods to evade the detection methods. This is the
reason that the detection of malware continues to be a challenge [9].

Static and the Dynamic approaches are the two different techniques that exist to detect
and analyze malware. Static malware detection uses a signature-based approach for mal-
ware analysis. This means stepping into the code of malware to determine a signature.
Using static analysis methods, a signature is created by analysing the binary file, a unique
identifier for a binary file [9]. It can involve file fingerprinting, reverse engineering and de-
bugging. During a signature based process, the code is never actually run [10]. Signature
based detection is a common approach in today’s antivirus software. However, due to the
rapid increase in the number and variants of malicious software, this type of detection
has become inefficient for sophisticated malware. Dynamic analysis, on the other hand,
monitors the behaviour of malware while in execution. The system is therefore set up in a
sandbox environment. The effects of execution are monitored thoroughly in this isolated
virtual environment without taking the risk of damaging the system [6],[9],[10]. The focus
is set on what the malware does at run-time rather than how it does it.

To monitor the effects of malware, the creation of a dataset is an indispensable first step.
When looking at public datasets that model devices’ behaviour, it can be observed that
most datasets focus on network-related metrics. It is warranted to model the network flow
of devices infected with malware, such as Botnets, one of the most widespread. However,
these types of datasets miss capturing the internal behaviour of devices while solely fo-
cusing on communication [14]. Furthermore, one is dependent on other devices to capture
the network flow and therefore does not represent an autonomous approach. In case of
other malware types like cryptojackers, which maliciously try to mine cryptocurrencies on
an infected device, modelling the internal behaviour of the device is crucial for a better
understanding of its functionality. Moreover, even with a dynamic analysis approach, it
is almost impossible to keep up with the number of new attacks and variants. There are
millions of attack reports per day, which presents the opportunity for ML to make an
impact in the cybersecurity landscape [84]. ML models can help to detect new threats
without relying on signatures like antivirus software in the past. Furthermore, with the
use of different techniques, ML can learn from large datasets efficiently, which makes it
viable for malware detection. Even though a rule-based system might be able to han-
dle more data in terms of processing, ML allows better decisions using extensive data.
This makes some cybersecurity experts believe that Artificial Intelligence (AI) powered
anti-malware tools could help revolutionize scanning engines in the modern days [26]. As
mentioned beforehand, there is no comparable work yet that combines Cryptojacking,
ML, Device Fingerprinting and IoT Devices. To that end, this work is a contribution to
modern cybersecurity research.

1.2. DESCRIPTION OF WORK 3

1.2 Description of Work

To improve the outlined challenges, this thesis focuses on creating an intelligent and
behavioural framework, being able to detect cryptominers affecting Linux-based and
resource-constrained spectrum sensors. The test device is a Raspberry Pi, part of the
real-world IoT crowdsensing platform Electrosense. Upfront, required background infor-
mation and related works on the topic are reviewed in detail. To create such a framework,
the behaviour of an uncontaminated ElectroSense sensor is monitored firstly. For com-
parison, the Raspberry Pi is then infected with a cryptojacker and further monitored. In
order to choose a prevalent cryptojacker, recent versions that affect resource-constrained
devices using Linux on top of ARM architectures were analyzed. The last step focuses
on designing, implementing, and validating an ML-based detection module capable of
detecting anomalies produced by cryptominers.

1.3 Thesis Outline

The following section provides the required background information on malicious crypto-
mining and device fingerprinting. Afterwards, literature regarding cryptojacker detection,
ML, and device fingerprinting are reviewed to understand what has been proposed by re-
lated works already. Chapter four describes the process of designing and implementing the
framework, step by step. Subsequently, the collected results are evaluated and discussed.
The final chapter consists of a summary, conclusions, and possible future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter contains the background information that is relevant to this thesis. Behaviour-
based detection of cryptominers is based on concepts such as device fingerprinting and
cryptojacking, which are explained hereafter.

2.1 Cryptomining

Cryptocurrencies and their inherent technology offer massive potential for the future.
People from different sectors can explore the immense potential today’s cryptocurrencies
hold [4]. Bitcoin, for example, is well known because it is the first cryptocurrency ever.
It aims to be a peer-to-peer digital, decentralised currency. To understand the process
of mining cryptocurrencies, one needs to know that there are multiple ways to obtain
Bitcoin. Firstly, one can purchase Bitcoin on an exchange. Consequently, many different
exchanges offer to convert fiat money into Bitcoin or other cryptocurrencies and vice
versa. Secondly, one can get Bitcoin by selling goods from faucets, brokerages, or a
bitcoin ATM. The most relevant way for the underlying thesis is through mining. Miners
are compensated for securing and operating the Bitcoin network [4], as is the case for other
networks too. Cryptomining itself refers to solving cryptographic puzzles with the use of
computer power. These calculations are highly complex and require a lot of computing
power. It takes time to process complex data blocks, which results, among other things,
in high power consumption [2].

Cryptocurrencies are purely digital and are not managed or issued by governments or
banks. Because there is no central authority, cryptocurrencies use a decentralised dis-
tribution method. This is the reason that so-called "Miners” record, verify, and post all
transactions made [2]. During the process of crypto mining, so-called data blocks and
transaction records are added to the blockchain. In other words, blockchain is the pub-
lic record of all transactions [1]. Furthermore, successful operations are registered and
timestamped in a so-called proof-of-work protocol [3]. This is to ascertain that only one
transaction with a monetary unit is carried out at a time [2]. The proof-of-work protocol

>

6 CHAPTER 2. BACKGROUND

is crucial to avoid double transactions and guarantee secure payments. After a transac-
tion has successfully been processed, miners receive cryptocurrency pro-rata. Hence, it is
called crypto "mining” as it allows new coins into circulation [1].

This process of mining cryptocurrencies is entirely legal in most countries. As a result,
cybercriminals are increasingly hijacking other people’s or organisations’ devices for min-
ing purposes. This is called cryptojacking. Cryptojacking makes the hijacker liable to
prosecution. Cryptojackers are a type of malware which allow the hacker to illicitly mine
cryptocurrency for himself. Cryptojacking is a particular class of cyberattacks. It can
target individuals, institutions, [oT devices and even industrial control systems. Cryp-
tojacking could somehow be viewed as an anti-thesis to ransomware. Criminals’ loot is
cryptocurrency mined by abusing third party machines. The goal of ransomware, on the
other hand, is to put others’ machines out of operation [11].

Originally, cryptocurrency mining was performed on the Central Processing Unit (CPU).
Due to limited processing speed and high power consumption, output was reasonably lim-
ited. Since then, technology has evolved fiercely. A good example is the highly profitable
gaming industry, thanks to which the performance of Graphics Processing Units (GPU)
has skyrocketed during the last decade. Comparing a standard GPU with a CPU, the
GPU can execute about 800 times more 32-bit instructions per cycle. In addition, the
mining device has to decode different hashes with similar digits repeatedly. Therefore,
GPUs are naturally more efficient in performing similar kinds of repetitive calculations.
Meanwhile, CPUs thrive when it comes to performing diversified multi-tasking functions
[17]. However, there are still cryptocurrencies that rely on CPU mining. This makes min-
ing accessible even to low-end hardware users. Monero, for example, also called XMR,
is an open-source-cryptocurrency that was introduced in 2014. XMR mining happens on
CPUs. What makes monero unique is that its trades are highly anonymous [18].

A Raspberry Pi’s CPU performance is far superior to its GPU performance. While the
computing power is still far from modern Desktops, the built-in 1.2GHz quad-core CPU
can run many applications. It is not easy to successfully mine in the Bitcoin network. This
is because of the dominance of big miners. It is more likely to mine Monero than Bitcoin
with a standard CPU. Thus, the most widely mined cryptocurrency on a Raspberry Pi is
Monero [56].

2.2 Cryptojackers

Cybercriminals are increasingly interested in cryptominers. The reason is that it is rela-
tively easy to make money fully anonymously with coins like Monero, which even guar-
antees high liquidity [43]. Nowadays, if a new exploit is found, it does not take long until
there is malware that utilizes the new exploit. Chances are astoundingly high that one of
those will be a cryptojacker. EternalBlue is a leaked Windows exploit discovered by the
National Security Agency (NSA). It is the name of a software vulnerability in Microsoft’s
Windows operating system, and likewise, for the tool NSA developed to weaponize the
bug [44]. Since then, numerous eternal blue botnets have been exposed. Some of them
converted the infected devices into mining bots for Monero. As a result, botnets with

2.2. CRYPTOJACKERS 7

more than half a million bots were exposed, mainly consisting of Microsoft servers. With
such high numbers of Bots, their owners are able to produce large amounts of money [40].
In the meantime, the eternal blue exploit mainly was patched.

Compared with home computers and phones, most other IoT devices have weak security.
Security cameras, for example, are a prime target for cybercriminals because they are
often connected to public networks and are relatively generic [45]. The demand for IoT
devices is growing faster than device makers’ interest in cybersecurity. This is a problem,
because cybercriminals can easily hijack large numbers of inadequately protected IoT
devices and abuse them for cryptomining. Even though the processing power of such a
single device is limited, the sheer amount of poorly secured devices makes up for it [45].

The Raspberry Pi, one of the most widely used IoT devices, has a history of crypto-
jacker attacks. The most successful is called Linux.MulDrop.14. In this section, the
functionality of the cryptojacker will be explained step by step. It is the same type of
cryptojacker used for this thesis. The trojan Linux.MulDrop.14, sometimes also referred
to as UNIX_PIMINE.A, occurred for the first time in May 2017. It was engineered to
infect Raspberry Pis only [23]. The goal was to transform Raspberry systems into mining
slaves controlled by the attacker. Linux.MulDrop.14 scans the local network specifically
for Raspberry Pis and tries to establish a connection via an SSH server. If successful, the
trojan will remotely run a simple bash script which finally infects the newly connected
device. Raspbian, the former Raspberry Pi operating system, was highly vulnerable to
these attacks for a long time due to an overlooked security gap. Firstly, the SSH-Port 22
was always active on all Raspberry Pis by default. Secondly, all systems, if not changed
manually by the user, used the same login in the standard settings [22]. The combination
of attack surface via a Secure Shell (SSH) server and a uniform password was an easy tar-
get for cybercriminals back in the early days. In the first step, the program writes a copy
of itself in a randomly named sub-directory of /opt/. Then, it enters itself in /etc/rc.local
so that the system automatically executes the start routine when it boots. Then it deletes
the .bashrc files in the pi directory and the root so that local bash configurations do not
impede the trojan. Additionally, the script kills a list of competing malware and other
services that could get in the way of Linux.MulDrop.14. In the next step, the password is
changed, and its own SSH key is added to the authorized_keys file in the root’s SSH folder
[6]. This SSH backdoor turns the Raspberry Pi system into a remote-controlled zombie.
Moreover, the public Google resolver (8.8.8.8) is added to /resolv.conf. Via Internet Relay
Chat (IRC), the trojan connects to a control system and downloads further data, which
it then executes again as a bash script. This way, hackers can add any functionality they
want to the trojan at a later point in time. The infected device is now part of a bot-
net, which the attacker controls via IRC commands [6]. Accordingly, Linux.MulDrop.14
downloads the crypto miner via IRC. When started, the miner increases the processor
load massively [22]. Finally, the code ends with a routine for the viral spread of the mal-
ware. The script installs the stand-alone network scanner tool called Zmap. Following a
network scan of every available IPv4 address on port 22, the trojan attacks each detected
client in the network with default Raspberry Pi credentials [6]. Finally, the cycle starts
all over again.

8 CHAPTER 2. BACKGROUND

2.3 Device Fingerprinting

[oT devices have become a staple these days. The prevalence of IoT devices has been sub-
ject to exponential growth in recent years. While the network-based world offers countless
advantages, the number of malfunctions and cyber threats is increasing at even pace. Cy-
bercrime, in general, has soared lately. Detection of potential misbehaviour triggered by
cyberattacks, system faults, or misconfigurations is essential for today’s interconnected
society [19]. Tt is thus essential to identify the capabilities of such IoT devices before-
hand, to possibly expose misbehaviours. As a result, the device behaviour fingerprinting
field has recently raised promising interest in the research community. It focuses on the
creation and management of fingerprints that model the behaviour of the device, and
its components [19]. These so-called fingerprints are device behaviour patterns that can
detect potential issues or attacks in the early stages. Thanks to early detection, misbe-
haviours can be dealt with as they occur, thereby extending devices’ high-performance
run time.

There are two ways to detect attacks in which fingerprinting is relevant. The first one is to
model the normal behaviour and train unsupervised ML models. Unsupervised learning
analyzes and clusters unlabeled datasets with the use of ML [78]. Device fingerprinting
is beneficial here because the models do not rely on signatures. This way, they are able
to detect new malware. The models try to detect standard behaviour deviations during
evaluation from an anomaly detection standpoint. Tested data is then either flagged
as normal or anomalies. The other possibility is to collect both normal and abnormal
data, which then will be used to perform classification tasks [19]. This is also called the
supervised ML approach.

Chapter 3

Related Work

The thesis scope combines Cryptojacking with Device Fingerprinting and ML-based on
IoT Devices. As a first step, works focusing on the detection of cryptojackers, will be
discussed. Later, light is shed on how Device Fingerprinting is currently used for malware
detection.

3.1 Cryptojacker Detection

Since the emergence of Bitcoin, the cryptocurrency industry is exploded. Simultaneously,
malware that runs cryptominers, has spread quickly. Therefore, the research on optimis-
ing the detection of cryptominers has long begun. The state-of-the-art of cryptomining
attacks have been investigated by [27]. They examine the malware code but also the be-
haviour upon execution. Authors distinguish between two main attack approaches. They
are, installable cryptomining, and web browser-based cryptomining. Installable binary
cryptomining describes the conventional approach of using modified versions of publicly
available cryptomining software like XMRig [28]. Browser-based cryptomining instead
exploits the JavaScript technology of web pages. Furthermore, the paper analyses the
techniques cybercriminals establish to avoid detection permanently. There are plenty
more works that go in the direction of "cryptojacker analysis”. For example, in [29] where
Musch et al. propose a 3-phase analysis approach, trying to identify these mining scripts
and conduct a large-scale study on the prevalence of cryptojacking. They identify that
1 out of 500 websites host a mining script on average. However, the focus of this sec-
tion lies more on the different detection approaches of cryptojackers. All the featured
works of section 3.1 are displayed in Table 3.1 to compare fileless attacks and installable
cryptojackers with one another.

One of the earliest and most widespread approaches to detect malicious miners was the
analysis of static signatures [49]. This was common practice for other types of malware as
well [30]. Therefore several solutions emerged in 2018 like MinerBlock [31] and Dr.Mine
[32]. Both implement static methods. However, the dynamic approach has proven to
be more effective in detecting cryptojackers than the static approach, even though so-
phisticated cryptominers might not utilize all the device’s capabilities [83]. Firstly, many

9

10

CHAPTER 3. RELATED WORK

Work Year

Device

Cryptojacker Type

Source

Approach&Algorithm

Result

11 2021 GC Fileless CPU opcodes Dynamic Analysis: Random Forest up to 100% accuracy
35 2018 GC Fileless Runtime stacks Runtime behaviour-based profilers 260% more samples found
than last public report
36 2019 GC Fileless Hashing Functions & Calling Stacks Hash Based Profiler & Stack Structure Based Profiler high precision, 2770 malicous web
pages detected all true positive
37 2019 GC Fileless Web Workers, Parallel Tasks, WebAssembly, SVM based classifier 97.9% accuracy
Hash Algorithms, MessageLoop Event Load,
WebSockets, PostMessage Event Load and 1.1% false positive
38 2018 GC Fileless Total amount of processor ticks & SVM based classifier 99,90% accuracy
Javascript APIs
39 2018 GC Fileless Wasm Modules Semantic signature-matching 98% accuracy
40 2018 GC Fileless Hashing Code, Wasm Analysis, Static Analysis 93.78% accuracy and
Cryptographic Functions 11.36% false negative
41 2020 GC& Fileless Compute Signature, Memory Signature, Deep Learning (PoW algorithm) Cloud Device: 97.3% accuracy,
Cloud Network Signature Desktop Device: 96.4% accuracy
Devices
42 2019 GC Fileless HPCs monitoring Random Forest & SVM 95% accuracy
Hardware Events
48 2020 Virtual Fileless CPU Usage Metrics Two-Level Classification, Random Subspace Method, 99.2% accuracy
Machines Multiple-Instance SVM,
Sequential Minimal Optimization
25 2020 GC Tnstallable Opcodes Static Analysis: LSTM, Attention-based LSTM, CNN 95% accuracy and

low false positive r
99% accuracy ¢
0.6% false positive rate

25 2020 GC Installable System call events Dynamic Analysis: Adam algorithm

33 2019 Virtual Installable Network Flow, Transferred packet Size, Flowmon ADS 99.9% and 94.7% precision
Machines
46 2019 GC Installable Called Functions and Modules Random Forest, SVM, 92.46% accuracy

Endpoint Flow Consistency Multi-layer perceptron classifier

Table 3.1: Cryptojacker Detection Solutions

different variants make a static analysis approach inefficient. Secondly, many obfuscation
techniques let the malware evade detection with a static approach. Consequently, the
dynamic approach prevailed [49].

3.1.1 Browser-based Cryptomining

Regarding browser-based mining, several highly accurate detection systems have already
been proposed by researchers. In [11], authors focus on the detection of Browser-based
cryptomining, which occur directly through the browser. They happen on seemingly le-
gitimate websites or other typical applications. Because the attack is fileless, no signature
exists, and therefore the attack is practically invisible to endpoint security. The success of
these so-called fileless attacks has increased drastically in recent years [11]. Considering
that such types of attacks can easily evade static detection, dynamic analysis of data
sets has successfully been used to create a model which can prevent and mitigate such
attacks. First, they used debuggers to create data sets with the dynamic opcodes of each
runtime. Opcodes are Operational codes which are the assembly language instructions
directly performed by the CPU. Next, the ML algorithm Random Forest was utilized for
training a model . Results show that browser-based cryptomining can be detected by
dynamic opcode analysis with an accuracy of up to 100% [11].

Hong et al. [36] propose a behaviour-based detector that analyzes the cumulative time
spent on stack characteristics of threads and hashing operations. The papers of Kharraz
et al. [37] and Rodriguez & Posegga [38] both suggest building a Support Vector Machine
(SVM) based classifier. Kharraz et al. use runtime, network, mining, and browser events
as parameters, while in a similar approach, Rodriguez and Posegga use network traffic
features and memory events as criteria. Furthermore, Wang et al. [39] and Konoth et al.
[40] both propose a detection system that examines the WebAssembly (Wasm) modules,
and that counts the number of specific instructions. They then compare the analyzed

3.1. CRYPTOJACKER DETECTION 11

module with cryptojacking malware Wasms. Konoth et al. additionally monitor the cache
events during runtime. Kelton et al. [41] on the other hand, use Deep Learning combined
with computation, memory, and network features to build a cryptojacking classifier.

In [42] Conti et al. focus on the hardware aspect, similar to the approach applied in this
thesis. However, instead of using a monitoring script, Hardware Performance Counters
(HPC) are used to create signatures of the processors to grasp the execution pattern of the
mining algorithms. Even though this thesis does not focus on browser-based cryptomining
itself, the paper by Gomes and Correia [48] is fundamentally related. Their goal is to detect
cryptojackers by measuring CPU usage metrics. By using the mpstat command-line tool,
they are able to store all CPU related metrics in individual files. Each processor core is
monitored and stored independently. Additionally, the average activity is calculated. The
data are then processed by different supervised ML classifiers, which achieve accuracy
rates up to 99.2%. It becomes evident that there has been ample research in recent years
to counter the browser-based cryptojacking boom.

3.1.2 Installable Cryptomining

Besides, there are many works related to host-based installable cryptojacker detection, as
applied in this thesis. One of the more recent papers following a deep learning approach for
both static and dynamic analysis to detect cryptominer malware is [25] by Darabian et al.
They focus on the detection of installable cryptomining with the use of AI. An important
symptom of a cryptojacker infection is frequent callings of cryptographic libraries. To this
end, a sequence consisting of system calls of each cryptojacker was created. Regarding
the control data set needed for a comparison, a python tool was used. It attempts to
mimic human actions on benign apps. This is how a sequence of a computer in regular
use is simulated without the occurrence of any malware. Both data sets were later used
during the dynamic analysis. For the static analysis, opcode data were used again. This
is a typical approach in the case of malware. Different networks were used to build a deep
learning structure enabling the training of powerful models. Both the Recurrent Neural
Network (RNN) models LSTM and ATT-LSTM, and a Convolutional Neural Network
(CNN) was used to process sequential data. Google Tensor Flow was used as the backend
infrastructure to perform model evaluation tasks. With the use of deep learning, they
were able to achieve an accuracy rate to detect malicious cryptominers of 95% for static
and 99% for the dynamic analysis [25].

Instead of focusing on the opcodes and system calls in his bachelor thesis [33], Obuch
firstly monitored and studied the network flows of Cryptominers. Based on their network
characteristics, a method was implemented to detect installable cryptominers. The first
parameter of detecting mining activities through the network flow was selecting specified,
different port numbers that mining software frequently used. Secondly, the size of the
transferred packets was examined. The third parameter of the method was to find out
whether flows between two endpoints in question were consistent in time. The recognized
patterns were implemented in the Flowmon ADS, which is a Network anomaly detection
system [34]. Accuracy rates up to 99.9% with a precision of 94.7% were achieved using
this method [33].

12 CHAPTER 3. RELATED WORK

Another thesis focussing on cryptojackers with standalone executable files is "Hunting
Traits for Cryptojackers” by Berecz, and Czibula [46]. They seek to identify specific traits
by analyzing cryptojackers statically and dynamically. By using statistical methods, they
propose 20 specific features of cryptojackers. These are then used to train three super-
vised learning classification models to distinguish cryptojackers from regular applications.
While testing, they achieved an average accuracy of around 92%.

3.2 Device Fingerprinting for Malware Detection

In [19], Sdnchez et al. survey the device behaviour fingerprinting field. They study the
recent growth of the field regarding application scenarios and behavioural sources as well
as processing and evaluation techniques. The two major scenarios are device identification
and device misbehaviour detection. Regarding the most recent and representative research
for the two scenarios, a review of the device types, behavioural data, processing and
evaluation techniques used in these works are done in the first step. In the next step, the
works are then analyzed and compared.

Four different behaviour application scenarios are described in [19]. The first is device
type or model identification, which targets identifying device models or types. The second
is individual device identification, which focuses on identifying the individual device itself
compared to devices with the same hardware or software. Thirdly, malfunction and fault
detection uses device behaviour changes to detect malfunctioning components or faulty
devices. Finally, the present thesis will discuss the fourth behaviour application scenario
in detail. It is the attack detection employing device behaviour fingerprinting.

There are five different approaches to collecting relevant data used for the detection. These
approaches are all based on different measurable metrics. They are either Network-based,
Sensor-based, System calls/System logs/Software signature-based, hardware event-based
or Resource usage-based. The Resource usage-based attack detection is the most relevant
for this thesis[19].

The most frequently used source is monitoring the network flow. Most of the research
done in this direction focus on IoT devices. There are, however, also solutions for General
Computers (GC), software-defined networking and network functions virtualization. In
[50] for example, Hamad et al. use packet headers and payload data. They use it to extract
flow-based features and then create device type fingerprints. Comparably, classification
ML algorithms and white lists are utilized to detect unauthorized devices. Most of these
works focus on common attacks like flooding or port scans, but also on more sophisticated
ones like ransomware, botnets, or DDoS attacks [19].

Another approach of behaviour-based attack detection is sensor-based. To this end, sensor
measurements are analyzed and utilized to detect common attacks like Flooding, Imper-
sonation or Denial-of-Service (DoS). In [51] for example, the Euclidean distance from
normal sensor measurements is calculated to recognize already known as well as unknown
attacks. The majority of these works are based on IoT, and Industrial Control System
environments [19].

3.2. DEVICE FINGERPRINTING FOR MALWARE DETECTION 13

Furthermore, some solutions are based on system calls, execution logs, and software sig-
natures. Data sets are created that rely on some of these behaviours to model the device’s
activity. Creech and Hu [52], for instance, employed an intrusion detection system that
revolves around system call patterns. With this type of behaviour monitoring, attack
situations can be detected on a broad spectrum of different device types [19].

Another approach is to use HPCs for dataset creation. This falls under the category of
Hardware event-based attack detection. HPCs, the acronym for Hardware Performance
Counters, are special-purpose registers that count performance-related parameters like the
number of branches created or the number of interrupted instructions. They are embedded
directly into the processor of resource-constrained devices such as IoT devices or embedded
systems. By analyzing the hardware-related activities within these computer systems, the
authors of [53] were able to detect malicious modifications in the firmware. Moreover, in
[21] Basu et al. also use a hardware-based detection approach. They present an analytical
framework using HPCs on Linux and Android platforms to detect malware. In addition,
they develop a mathematical framework and thus display a theoretical analysis of the
security guarantees of HPC-based malware detection.

The last but most crucial approach for this thesis is resource usage-based attack detec-
tion. Resource usage metrics are monitored in this process [19]. This way, the system’s
behaviour can be studied, resulting in useful information on the malware’s behaviour on
the device.

A DoS detection solution in cluster-based systems was proposed in [54] by Shone et al. To
overcome the challenges of monitoring in system-of-systems environments, they propose
a novel monitoring framework. Similarly to this thesis, resource usage metrics are used
to model the system’s behaviour. Additionally, processes and file modifications were
monitored. The proposed solution and algorithms perform effectively, and their initial
results look promising. Furthermore, Barbhuiya et al. [20] propose RADS, which stands
for Real-time Anomaly Detection System. It is specialized in cryptomining and DDoS
attack detection in cloud data centres. Both CPU utilization and Network traffic metrics
are collected for anomaly detection. They utilize the Interquartile Range algorithm to
perform a spike detection analysis [19]. Then a one-class classification-based algorithm is
trained to flag anomalies. They achieved accuracy rates up to 95% with only 0-3% false
positive rates. Another solution, which follows a resource usage-based attack detection
approach, is described in [55] by Aloseel et al. It is based on an architectural framework
called anomalous resource consumption detection. Anomalous performance and resource
consumption patterns are distinguished from a pre-determinable reference model to detect
cyber-attacks against embedded systems. Different features like CPU temperature &
utilization, memory load, and many more were monitored and stored in data sets. In
MATLAB, 24 different algorithms based on six models were trained on the data sets.
In terms of classification, the SVM algorithms and algorithms like K-nearest Neighbor
(KNN) have performed best. They concluded that their solution is very effective against
multiple types of cyber-attacks as they achieved accuracy percentages of around 100%.
In [87] the authors use AutoRegressive (AR) statistical models on autoscaling systems
to perform a resource behavioural analysis on micro services. They present a mechanism
that identifies when a cloud system should be autoscaled. This helps the owners reduce
resource wastage and detect DoS and microservice stress attacks. Therefore, CPU usage

14 CHAPTER 3. RELATED WORK

statistics were used to train an AR model that could detect both test attacks performed
for testing purposes. In [24], Bridges et al. present an experimental design and algorithm
for power-based malware detection. They prove in a verifiable manner that the power
profile of a CPU is affected by rootkits. Several supervised kernel-based SVM classifiers
trained on both regular and infected profiles are used and compared with an unsupervised
one-class anomaly detection ensemble.

Looking at Table 3.1, it becomes recognizable that all of the listed devices are either
GCs, cloud devices or virtual machines. This clearly shows a lack of work dealing with
the detection of cryptominers in IoT devices. This one-sided device choice of the related
work does not go along with the growing importance of IoT devices in recent years.
Furthermore, usage-based attack detection is undoubtedly an underused approach for
IoT devices. Therefore, the underlying thesis provides the first approach to detecting
cryptojackers in infected IoT devices by monitoring their internal behaviour.

Chapter 4

Framework Design

In this chapter, the used hardware and the creation process of the framework are described
in detail. First, the scenario of the Raspberry Pi as part of the ElectroSense platform is
outlined. Afterwards, the necessary changes made to the Linux.MulDrop.14 code are il-
lustrated. Lastly, the framework creation process is explained in three steps, starting with
the data collection. Therefore, the monitoring script’s architecture is illustrated, and the
monitored events are listed. The second part explains how the data was preprocessed to
be viable for later steps. Those are data scaling and the actual model training, illustrated
in the last part.

4.1 Scenario: ElectroSense

Thanks to the flourishing loT-device market, crowdsensing has gained popularity in recent
years. The concept of crowdsensing is that many different individuals collect an extensive
data collection. One such platform is ElectroSense which analyzes the radio spectrum
efficiently and reliably. It aims at having large-scale deployments while using affordable
hardware to make the spectrum data accessible to the general public [12]. It is an open
initiative; in other words, everyone interested can participate and thus be granted access to
the collected data. The reason behind this initiative is that the knowledge about the actual
utilization of the radio spectrum is limited, even though the radio spectrum allocation is
well regulated, which is remarkable. With regards to hardware, radio sensors combined
with a radio front-end and a small computer are everything that is needed to set up a
device and contribute to spectrum measurements. The computer of choice is preferably a
Raspberry Pi [12]. The software running on the Raspberry Pi is an open-source software
which means that it is freely available on Github [13]. The Raspberry Pi is a small-scale
computer following the Advanced RISC Machines (ARM) architecture with standard ports
like HDMI, USB and Ethernet. Even though it is a low-cost item, it is a little capable
device that can do everything one expects from a desktop computer [8]. It has a wide
range of applications and is lately utilized for many different IoT projects [6]. Therefore,
it is suitable for researchers as a platform for observations in the direction of cybersecurity.
For this reason, the Raspberry Pi is the selected hardware by the crowdsensing initiative

15

16 CHAPTER 4. FRAMEWORK DESIGN

ElectroSense. The three components defining the ElectroSense platform are; the provided
web services, the back-end, and the hardware, as displayed in Figure 4.1. Upon login to
the ElectroSense website, users are able to see a list of all registered sensors. Information
like the status of sensing, name, deploy-date and whether the sensor is located indoors or
outdoors can be obtained directly from there. Furthermore, the back-end, which handles
the whole data flow of the sensors, lets users access the measured radio spectrum of every
single sensor [14]. By clicking on the "Spectrum” button, the user has access to the selected
sensor’s current radio spectrum and the database consisting of past measurements. In the
next paragraph, the hardware of the used ElectroSense sensor is described.

The antenna, which works as the sensor, can be mounted to a tripod or a suction cup
for flexibility and optimal measuring results. The radio front-end, a RTL-SDR Silver
V3, can process the collected radio signals with a frequency range between 20MHz and
1.8GHz. The collected data are then forwarded to the connected device running the
ElectroSense image. Throughout this thesis, the tripod was used to fixate the antenna.
The chosen device is a Raspberry Pi 3 Model B [14]. It is the earliest model of the
third generation. It carries a Quad-Core 1.2GHz Broadcom BCM2837 64bit CPU and
a 40-pin GPIO connector. Furthermore it has 1GB RAM with a VideoCore 4 GPU
[15]. The Raspberry Pi runs the ElectroSense Cyberspec image while being connected
to the internet through an Ethernet cable. Like this, the data can be committed to the
ElectroSense server through the device.

In the underlying thesis, the ElectroSense sensor is infected with a cryptojacker. There-
fore, a bash script containing a Trojan called Linux.MulDrop.14 is run on the Raspberry
Pi. Previously, a monitoring script is installed on the ElectroSense Cyberspec image,
which automatically boots upon turning on the device. The script periodically sends re-
source usage-based metrics to a private server. Simultaneously, the collected spectrum
measurements are forwarded to the ElectroSense servers. The described data flow is
illustrated in Figure 4.1.

((I))

Sensor Web Services
Device Spectrum
Behaviour Measurements
N o
20 T
— 0 —
e
=] - ——
Server Raspberry Pi Backend

Figure 4.1: Dataflow of the Raspberry Pi

4.2. LINUX.MULDROP.14 17

4.2 Linux.MulDrop.14

A detailed code analysis of the original Linux.MulDrop.14 is provided in the Background
Section. However, some parts of the bash script were altered for data collection purposes.
As a result, the infection process is separated into five phases, as shown in Table 4.1. The
performance of the device is gradually affected during those five phases.

Phase 1 | Copying itself into sub directories, Deletion of competing malware,
Set the cryptojacker as start routine, Set up the backdoor

Phase 2 | Download Dependencies

Phase 3 | Install Dependencies

Phase 4 | Spreading the Malware

Phase 5 | XMR Mining

Table 4.1: Phases during Cryptojacker Infection

In Phase 1, a new SSH key pair is created instead of implementing the backdoor of the
original malware. Thus, the malware developers do not gain access to the infected device.
Other than that, Phase 1 remains the same as in the original malware. It sets itself as
start routine and tries to eliminate all competing malware from the device, as shown in
Listing 4.1 and 4.2. This phase only takes a matter of seconds. This is why this data set
only consists of a single data point per measured metric.

if ["$SEUID” —me 0 |

then

NEWMYSELF="mktemp —u "XXXXXXXX’”

sudo cp $MYSELF /opt /SNEWMYSELF

sudo sh —c¢ ”echo ’#!/bin/sh —e’ > /etc/rc.local”
sudo sh —c¢ 7echo /opt/$NEWMYSELF >> /etc/rc.local”
sudo sh —c¢ 7echo ’exit 0’ >> /etc/rc.local”

Listing 4.1: Copy into /opt/ and set itself as start routine

killall bins.sh
killall node
killall ktx—armv4l
killall ktx—ib586
killall ktx—powerpc
killall armb
killall kaiten
killall perl

[...]

Listing 4.2: Kill competing malware

In Phase 2, the device would normally be connected to a control system via IRC. Via
chat, commands are given to install the required dependencies and start the download of
the miner. As a result, the trojan attempts to connect to five different server addresses.

18 CHAPTER 4. FRAMEWORK DESIGN

However, all of these addresses like iz1.undernet.org or Ashburn.Va.Us.UnderNet.org are
no longer accessible. Consequently, the commands normally given by the IRC channel are
now part of the altered bash script. In summary, it can be said that during Phase 2, the
required Git dependencies are installed, and the cryptominer is downloaded, as shown in
Listing 4.3. This takes the Raspberry Pi just over a minute.

apt—get install autoconf libcurl4d —openssl—dev libjansson—dev
openssl libssl—dev gcc gawk automake git —y
git clone https://github.com/lucasjones/cpuminer—multi. git

Listing 4.3: Install needed dependencies and downlaod the cryptominer

In Phase 3, the installation and building of the cryptominer takes place. It lasts ap-
proximately two and a half minutes. The miner is a multi-threaded CPU miner called
cpuminer-multi, or minerd [59]. As shown in Listing 4.4, the miner is installed by building
it from source, targeting the ARMvS8 architecture.

./ configure CFLAGS="-Ofast —mtune=cortex—ab3
—mcpu=cortex—ab3 —mfloat—abi=hard —mfpu=neon—fp—armv8
—mneon—for —64bits —ffast-—math” CXXFLAGS="-Ofast
—mtune=cortex—ab3 —mcpu=cortex—ab3 —mfloat—abi=hard
—mfpu=neon—fp—armv8 —mneon—for —64bits —ffast —math”

Listing 4.4: Build cryptominer

Phase 4 tries to measure the device’s behaviour while trying to spread the cryptojacker
across the network. Like the original malware, the bash script downloads Zmap, a single-
packet network scanner. The first line of code does this in Listing 4.5. Next, as mentioned
earlier, the malware tries to connect to all the detected clients with the default Raspberry
Pi username and password. Therefore, as shown in Listing 4.5, the malware loops through
a list of 100000 different IP-Adresses. This way, other poorly secured Raspberry Pi devices
are also infected with the cryptojacker.

apt—get install zmap sshpass —y —force—yes
FILE=‘mktemp *
zmap —p 22 —o $FILE —n 100000

Listing 4.5: Install Zmap and loop through IP-Adresses

Phase 5, which is the last phase, contains measurements of the execution of the miner
and the mining process. Cryptomining can either be done alone or by joining a mining
pool where a group of miners work together to improve the mining output [61]. However,
the odds of generating output with a Raspberry Pi through single mining are limited.
Therefore, it is decided to let the device join a mining pool for reliable output. To this
end, an account on the popular mining pool website Minergate [88] was created. As a
result, the Raspberry Pi enters the directory of the miner and starts mining Monero as
part of a mining pool with the code in Listing 4.6.

cd cpuminer—multi
./minerd —a cryptonight —o stratum-+tcp://xmr.pool. minergate.com:
45700 —u konsti.m@gmx. ch

Listing 4.6: Exectution of minerd as part of a mining pool

4.3. FRAMEWORK 19

After execution of Listing 4.6, the Raspberry Pi is mining Monero for the user stated
in the code. After going through the five phases, the infection of the Raspberry Pi is
complete.

4.3 Framework

This thesis aims to create an ML-based framework to detect anomalies affecting resource-
constrained and Linux-based spectrum sensors. The proposed framework is further ex-
plained and split up into three sections. The first section explains the monitoring process
and data set creation in detail. Thus, the monitoring script used for this thesis is analyzed
thoroughly. The second section focuses on the preprocessing of the data. At this stage,
unnecessary features are eliminated from the dataset. Before implementing the designed
framework, this is a crucial step because those features do not provide further relevant
information and consume memory and time during the model training phase. Three dif-
ferent unsupervised and four supervised ML models are trained to detect cryptomining
anomalies in the last step.

4.3.1 Data Collection

The basis of data collection forms a monitoring script called new_sampler_50_rest.sh. It
has been installed on the Electrosense image beforehand. The normal behaviour, as well as
the Raspberry Pi’s behaviour under attack, were monitored through the use of this script.
The script periodically saves the number of occurrences of 75 different performance events
onto a server. These data points represent the current state of the device. The different
events, together with the information they provide, are listed in Table 4.2.

20 CHAPTER 4. FRAMEWORK DESIGN

Events

‘ Information

alarmtimer_fired, alarmtimer_start

Alarmtimer

block_bio_backmerge, block_bio_remap, block_dirty_buffer,

lock_getrq, block_touch_buffer, block_unplug

I/O Block Devices

cachefiles_create, cachefiles_lookup,
cachefiles_mark_active

Cachefiles

clk_set_rate

Clock Framework

cpu-migrations

CPU Migrations

CS

Context Switches

dma_fence_init

DMA Fences

fib_table_lookup

Packet Forwarding

mm_filemap_add_to_page_cache

File System

gpio_value

GPIO Signals

ipi_raise

Inter-Processor Interrupts

irq_handler_entry, softirq_entry

Interruption Request
Handling

jbd2_handle_start, jbd2_start_commit

Journaling Block
Device Activity

kfree kmalloc, kmem_cache_alloc, kmem_cache_free,
mm_page_alloc, mm_page_alloc_zone_locked,
mm_page_free, mm_page_pcpu_drain

Kernel memory

mmc_request_start

Block Devices of
MMC (Multi Media Card)

net_dev_queue, net_dev_xmit, netif_rx

Networking

page-faults

Page Faults

mm_lru_insertion

Kernel Interfaces
of Page Tables

irg_enable

Interrupt Handling

qdisc_dequeue, qdisc_dequeue

Queuing Disciplines

et_random_bytes, mix_pool_bytes_nolock, urandom_read

Kernel Random
Number Generator

sys_enter, sys_exit

Quantity of System Calls

rpm_resume, rpm_suspend

Runtime Power Management

sched_process_exec, sched_process_free,
sched_process_wait, sched_switch, sched_wakeup

CPU Scheduler

signal_deliver, signal_generate

Signals between Processes

consume_skb, kfree_skb,
skb_copy_datagram_iovec

Socket Buffers

inet_sock_set_state

Sockets

task_newtask

Task Creation

tep_destroy_sock, tcp_probe

TCP Protocol

hrtimer_start, timer_start

Internal Timer

udp_fail_queue_rcv_skb

User datagram protocol

workqueue_activate_work

Work Queue

global_dirty_state, sb_clear_inode_writeback, whc_writepage,

writeback_dirty_inode, writeback_dirty_inode_enqueue,
writeback_dirty_page, writeback_mark_inode_dirty,
writeback_pages_written, writeback_single_inode,
writeback_write_inode, writeback_written

System Writeback

Table 4.2: Monitored Events

4.3. FRAMEWORK 21

The architecture of the bash script can be split into different parts. Every part serves a
specific purpose which is described in this paragraph. The first part is the configuration
of the script. All the events the user wants to capture have to be specified during the
setup. Also, the script’s arguments for the monitoring process are defined here. One of the
variables is called time WindowSeconds. 1t specifies the waiting time before the subsequent
measurement of events is performed. By default, the pause is set to 50 seconds. It is to
say that the aforementioned phases of infection only take a few minutes. Under normal
circumstances, this would result in a few samples per phase only. This is not enough data
to train ML models properly. Consequently, timeWindowSeconds is set to 5 seconds to
gather enough data. The user can also define the desired amount of monitored samples.
Next is the central monitoring loop, which performs the actual measuring. Therefore, it
loops through the same three code blocks. The first two are Data Collection and Data
Extraction & Calculation. Using different commands and calculations, the script is able
to gather all the different resource-usage-based metrics that were stated during the setup.
The last step of the loop and thus of the script itself is the code block in charge of the
output. Each sample is extended with an exact timestamp and is finally pushed to the
server.

Now that the architecture of the monitoring script is clear, the monitoring process is
described. There are two different types of behaviours that had to be measured.

e Normal Behaviour

This dataset represents the normal behaviour of a Raspberry Pi as part of the
ElectroSense platform. Thus, the device has to handle the spectrum measurements
by the antenna and propagate them to the ElectroSense back-end. The scenario of
the ElectroSense platform is further discussed in section 4.1. In order to create the
dataset, the device normally runs for a few days on multiple occasions. To extract
the relevant samples, the exact start and endpoint of the device were captured.
Later, the data of regular measurements are merged into a single data set. The
start- and endpoint recording is done utilizing Unix Timestamps. It indicates the
seconds elapsed since January 1, 1970, at 00:00:00 UTC [62]. This process is further
explained in the section that talks about data preprocessing.

o Attack Behaviour

This dataset represents the behaviour of the Raspberry Pi while it is being infected
with the cryptojacker. To be more specific, the attack data is split into five data
sets. Each data set represents one of the phases described in chapter 4.2. The
infection process was performed six times to gather enough data for each phase. To
split the attack behaviour into the different data sets, one must know each phase’s
start and end timestamps. Therefore, every time a phase ends, the Raspberry Pi
saves the Unix Timestamp together with the phase number into a text file called
timestamps.tzt. The code displayed in the Listing 4.7 is executed before each phase
of the cryptojacker.

echo ”"Phase X:” >> timestamps. txt
date +%s >> timestamps. txt

Listing 4.7: Save the Unix timestamps

22 CHAPTER 4. FRAMEWORK DESIGN

The first line reads "Phase” with the stated file’s corresponding phase number. The
second line consists of a command that converts the current date and time into a
Unix timestamp. The timestamp is then saved into the declared file. The Unix
timestamps of each start of the phases are saved and ready for use for data prepro-
cessing. After each infection is over and the Raspberry Pi has started the mining
process, the timestamps.txt file will look approximately like Listing 4.8.

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:
1647421030 1647421035 1647421170 1647421576 1647421626

Listing 4.8: Unix timestamps of each phase

4.3.2 Data Preprocessing

In Section 4.2, the five stages of the infection process are discussed. It is also explained that
data were collected during normal behaviour as well as under attack of the cryptojacker.
However, all the collected data are saved into a single data set with all measurements
packed together. The next step is to split the data into different data sets. Therefore, the
exact timestamps of the normal behaviour and the different phases were noted during data
collection. Then, the slicing is performed by using the Unix timestamps of the samples.
The code displayed in Listing 4.9 extracts the second phase of infection six times and
then concatenates them. This dataset represents the behaviour of the second phase. The
slicing of every phase is done identically, which is by using the Unix timestamps of the
start- and endpoints of each phase.

phase2_1 = raspi_db.loc[(raspi_db [’ timestamp '] >= 1644482990264)
& (raspi_db [’ timestamp '] <= 1644483146593)]

phase2_6 = raspi_db.loc[(raspi_db [’ timestamp’] >= 1647439557692)
& (raspi_db [’ timestamp '] <= 1647439677950)]

attack_phase2 = pd.concat ([phase2_1, phase2_2, phase2_3,
phase2_4 | phase2_5, phase2_6])

Listing 4.9: Slicing and concatenating the second phase

After the dataset is sliced, the data must be preprocessed. Afterwards, they are viable for
the model training. In a first step, the data are loaded onto a Jupyter Notebook. To this
end the fwget command is used. Jupyter Notebook is an open-source web-based interactive
computing platform that can contain live code, equations, visualizations, and text [57].
Therefore a Google Colab Notebook is created and installed. Google Colab allows writing
and executing python code in the form of Jupiter notebooks. Colab notebooks run code
on Google’s cloud servers, giving one the benefits of Google hardware, such as GPUs and
Tensor Processing Units (TPUs), irrespective of one’s computer power [58]. To sum up,
the data preprocessing and the ML detection are performed on a Google server, while
the monitoring process is performed on a Raspberry Pi. Next, the data is read with
the Python data analysis library Pandas. Because the data set is in CSV format, the

4.3. FRAMEWORK 23

command pandas.read_csv() is run to read the data. Methods like info() and describe()
are beneficial to get an overview of the data set.

In the next step, unnecessary features are removed from the data sets. For this purpose,
the drop function of the Pandas library provides the functionality of eliminating columns of
a given DataFrame. The monitoring script has the characteristic to save certain features
twice. In this case, the same information is saved in two identical columns with one
name ending with ”.17. The duplicated features do not provide further information and
are therefore eliminated from the data sets. The use of the drop function is displayed
in Listing 4.10. Furthermore, temporal features are removed to avoid training the ML
models from detecting the attacks from the execution date or hour instead of the malicious
behaviours. Accordingly, the features time, timestamp and seconds are dropped from all
datasets as well.

normal_db = normal_db.drop ([’ qdisc:qdisc_dequeue.1’,
"skb:consume_skb.1’, ’skb:kfree_skb.1’,
"time’, ’timestamp’, ’seconds’], axis=1)

Listing 4.10: Drop duplicated and temporal features

The normal database is examined for constant and highly correlated features in the next
step. They are not necessary to train models effectively as they do not provide relevant
information. Additionally, the lower the dimensional space of a data set, the less complex
is the problem for the ML model. Therefore, these features are removed from the datasets
to prevent wasting memory, space and time during the training phase. Nonetheless, it is
essential only to use the information provided by the data set stemming from normal be-
haviour. When training unsupervised ML models, information captured from monitoring
the device under attack, cannot be considered during the data preprocessing phase. This
is because the behaviour under attack is unknown during the training phase. Therefore,
all the data sets are processed, relying solely on information from the normal behaviour
data set.

To plot the correlation matrix of the different events under normal behaviour, the mat-
plotlib and seaborn libraries are imported. The correlation is calculated by executing the
lines of Listing 4.11 and the result is displayed as a heatmap in Figure 4.2.

corr = db.corr ()
f, ax = plt.subplots(figsize=(28, 20))
sn . heatmap (corr , vmin=-—1.0,vmax=1.0)

Listing 4.11: Calculate correlations and plot heatmap

24

connectivity -
alarmtimer alarmtimer fired -

alarmtimer alarmtimer_start -
block:Dlock_bio_backmerge -

block block_bio_remap -
blockblack_dirty_buffer -

block black_getrg -
Bockblack_touch_buffer -

block black_unplug -

cachefiles cachefiles_create -
cachefiles:cachefiles_lookup -
cachefiles cachefiles_mark_active -
dk:clk_set _rate -

pu-migrations -

=-

dma_fence.dma fence_init -
fib-fib_table_loakup -
filemap:mm_filemap_add_to_page_cache -
‘gpiogpio_value -

ipiipi_raise -

irqirg_handler_entry
irq-softira_entry -
Jod2jbd2_handle_start -

a2 jbd2 start_commit -

kmem:kmem _cache_alloc -
kmem-kmem cache_free -

kmem mm_page_alloc -

kmem:mm_page _alloc_zone_locked -
kmem:mm _page free -
kmem:mm_page_pcpu_drain -
mme-mme_request_start -

net net_dev_queus -

netnat_ dev_xmit -

netnehif_rx -

page-fauts -

pagemap:mm Iru_insertion -
preemptirg:irg_enadle -

adisc qdisc_dequeue -
random-get_random _bytes -
random:mix_pool_bytes_nolock -
random-urandom read -
raw_syscalls:sys_enter -
raw_syscalls-sys_exit -
pm:rpm_resume -

pm:rpm_suspend -
sched:sched_process_exec -

sched sched_pracess free -
sched:sched_process_wait -
sched:sched_switch -
sched-sched_wakeup -

signal signal_deliver -

signal signal_generate -
skb-consume_skb -

skbkfree_skb -
skb-skb_copy_datagram _iovec -
sockiinet_sock set_state -

task task_newtask -
tep-tep_destroy_sock -

Tep-tep_probe -

timerhrtimer_start -
mer.timer_start -

udp-udp_fail queue_rcv_skb -
werkqueue:werkqueue_activate_work -
writeback global dirty state -
writeback sb_clear_inode_writeback -
writeback wbe writepage -
writeback-writeback_dirty_inode -
writeback:uriteback dirty inode_enqueue -
writeback writeback_dirty_page -
writeback:writeback_mark_inode_dirty -
writeback-writeback_pages_written -
writeback writeback_singie_inode -
writebackwriteback_write_inode -
witeback writeback_written -

p_a

filemap:mm_filema;

kmem:mm _page_alloc_zor

Figure 4.2:

kmem:mm_page free

CHAPTER 4. FRAMEWORK DESIGN

Correlation Heatmap

-100

050

-0.25

-0.50

-0.75

-1.00

writeback-writeback_written -

In Figure 4.2, both the X and the Y-axis consist of all the metrics listed in the same order.
If a matrix intersection appears black, these features are entirely negatively correlated.
The brighter the colour, the more positively correlated the features are. If a column has
constant values, it also means that the feature is not affected by any other feature in the
data set. Thus, it will be displayed as an entirely white line in the matrix. Using the
information of the heatmap, the following features are dropped from the datasets:

alarmtimer:alarmtimer_fired, alarmtimer:alarmtimer_start, cachefiles:cachefiles_create,
cachefiles:cachefiles_lookup, cachefiles:cachefiles_mark_active, dma_fence:dma_fence_init,
and udp:udp_fail_queue_rcv_skb

The last feature that has to be eliminated is called connectivity. It shows if the Raspberry
Pi was connected to the internet during vector creation. However, before eliminating the
feature entirely from the datasets, they must be checked for vectors with connection values
of zero. It means that no internet connection was present, and therefore they should not
be considered. Hence, the vectors are eliminated together with all its other features by

4.3. FRAMEWORK 25

the first line of Listing 4.12. Lastly, the connectivity feature is deleted from all data sets
as it is a constant value now.

normal_db = normal_db.loc [(normal_db_8hrs[’connectivity '|=
normal_db.drop ([’ connectivity '], inplace = True, axis = 1)

—1)]

Listing 4.12: Drop offline vectors and delete the connectivity feature

To sum it up, the data were split into six different data sets. They are normal behaviour
and phases 1-5. Duplicated and temporal features are then deleted. Next, the data set
with normal behaviour is examined, and the constant features are removed from all data
sets. Also, offline vectors are removed before deleting the connectivity feature. All the
data sets must be preprocessed the same way. Otherwise, the subsequent steps where the
data are scaled and used for the training will not work.

4.3.3 ML-based Detection

Unsupervised Machine Learning Models

In this paragraph, several unsupervised ML models are trained. Afterwards, the models
should be able to detect anomalies produced by the cyrptojacker. The ML-based algo-
rithms of choice are: Isolation Forest (IF), Local Outlier Factor (LOF), and One-Class
Support Vector Machine (OCSVM). They are imported from the popular scikit-learn
library [63].

However, before training the models, a few steps still have to be finalized. It is essential
to keep the pending evaluation of the models in mind. To evaluate the efficiency of the
models effectively, the data used for evaluation cannot be utilized during training. For
obvious reasons, this would end up distorting the result. Therefore, the normal dataset
is split up into a training and a testing dataset. The train test split function included in
the sklearn library suits well for this purpose. The code of Listing 4.13 assigns 80% of the
data for training and 20% for testing.

normal_db_train , normal_db_test = train_test_split (normal_db,
test_size=0.20, random_state=42, shuffle=False)

Listing 4.13: Split normal dataset into a train and test dataset with ratio 4:1

Furthermore, outliers are removed from the training set by Listing 4.14. Outliers should
not be removed from the test dataset, though, as it represents unknown data. This is
done by using the Z-scores of the vectors. The Z-score expresses the number of standard
deviations a vector is apart from the mean of the dataset [64]. Thus, vectors with three
or more standard deviations away from the mean are filtered out, translating to a Z-score
of three or higher.

normal_db_train=normal_db_train [(np.abs(stats.zscore
normal_db_train)) < 3).all (axis=1)]

Listing 4.14: Remove vectors that have a Z-score of 3 or higher

26 CHAPTER 4. FRAMEWORK DESIGN

The last step before training the models is to normalise the values of all data frames.
Normalisation is required when features of a dataset have different ranges. Columns are
normalised to a common scale without distorting differences in the ranges of values. By
making sure that different features take on a similar range of value, gradient descents can
converge more quickly [65]. For the scaling, the standard scaler is fit to the training set
on the first line of Listing 4.15. Afterwards, all the datasets are transformed with the
previously trained scaler on the remaining lines of Listing 4.15.

scaler= StandardScaler (). fit (normal_db_train)

normal_db_train_scaled = scaler.transform (normal_db_train)
normal_db_test_scaled = scaler.transform (normal_db_test)
phasel_scaled = scaler.transform (phasel)

phaseb_scaled = scaler.transform (phaseb)

Listing 4.15: Fit StandardScaler with the training set and transform all datasets

Now it is time to create and train the IF algorithm—the IF algorithm ”isolates” obser-
vations by randomly selecting a feature. Next, a split value between the maximum and
minimum values of the selected feature is randomly selected. Therefore, an instance of
the [Forest class is created by passing a contamination factor and a random state. The
contamination factor indicates the proportion of outliers in the training set, and the ran-
dom state is a seed for the random generator to ensure the results can be reproduced [66].
The contamination factor is set to 5% and the random state to 2. Then the fit method of
the created [Forest entity is invoked with the training dataset as the parameter, as shown
on Listing 4.16. This trains the IF algorithm with the training dataset.

isolation_clf = IForest(random_state=2, contamination=0.05)
isolation_clf.fit (normal_db_train)

Listing 4.16: Creation of a [Forest entity and training

On Listing 4.17, the LOF algorithm is trained with the normal dataset to detect potential
outliers. In consequence, an instance of the LOF class is created. Again, the contami-
nation factor of 5% together with a parameter called n_neighbors are passed. The LOF
algorithm uses the local density around samples to detect anomalies. If a data point has
a significantly lower local density than its closest n neighbours, it will be flagged as an
outlier. In other words, there is a low concentration of other points in the immediate
surrounding [67]. The parameter n_neighbors defines the number of neighbours of a data
point that are considered during anomaly detection [68].

lof_clf = LOF(n_neighbors=>50, contamination=contamination_factor)
lof_clf.fit (normal_db_train)
Listing 4.17: Creation of a LOF entity and training

The third unsupervised ML model is an OCSVM. Therefore, an OCSVM is fit to data
belonging only to a single class. In this case, all the data comes from the normal behaviour
of the Raspberry Pi. SVMs produce a hyperplane in a vector space with the dataset and
then attempts to separate or categorize data points [69].

4.3. FRAMEWORK 27

Similarly, an instance of an OCSVM class is created, passing the same contamination
factor of 5%. Additionally, kernel, gamma and nu are three other parameters that are
passed during the creation of the entity. The kernel parameter specifies the kernel type
used in the algorithm. To avoid complex calculations, kernel functions can provide short-
cuts and help solve problems [69]. The Radial Basis Function (RBF) kernel is chosen for
this model. With the gamma parameter, the RBF Kernel can be tuned. Gamma defines
how much influence every training data sample has on the resulting model. It might result
in overfitting if it is too high, and normal behaviour could get misclassified as anomalies.
A “smoother” decision boundary can be achieved with smaller gamma values. However,
if it is set too low, the model might not be able to adequately capture the shape of the
dataset [67]. The third parameter is called the nu parameter and defines the acceptable
range of outlier-related errors generated by the model. By preventing the model from
overfitting, a correctly defined nu parameter can grant the model some flexibility [67]. A
nu parameter of (.1 seemed to work best by trying different values. Furthermore, both
the gamma and the nu parameter are set to 0.05, as displayed on Listing 4.18.

ocsvm_clf = OCSVM(kernel="rbf’, gamma=0.05, nu=0.1,
contamination=0.05)
ocvsm_clf. fit (normal_db_train)

Listing 4.18: Creation of a OCSVM entity and training

To evaluate the models, the predict() method of the trained entities are called with the
dataset of each phase and normal_db_test.

Supervised Machine Learning Models

In this paragraph, several supervised ML models are trained. Their goal is to classify
tested data to one of the six labels. The labels are 1-5 for each phase and 0 representing
normal behaviour. The goal is for the model to distinguish normal behaviour from attack
behaviour and tell the phases of infection apart. In other words, test data will be classified
either as normal behaviour or one of the five phases.

Firstly, all the datasets are labelled with numbers from 0 to 5. This is to make sure
the algorithm can differentiate the data during training. Then, by performing direct
assignments like in Listing 4.19, Pandas broadcasts the labels across all rows.

normal_db[’label '] = 0
phasel ['label 7] =1
phase5[’label 7] =5

Listing 4.19: Label datasets with numbers 0-5

Afterwards, the normal dataset and all five datasets representing the phases are split into
training and test sets. As shown on Listing 4.20, the train test split is used again to split
the datasets into parts of 80% and 20%.

28 CHAPTER 4. FRAMEWORK DESIGN

Listing 4.20: Split all datasets into training and testing data

To sum up, there are 12 datasets at the moment—six for training purposes and six for
testing purposes. The six training datasets are now concatenated together into a single
training dataset. The testing datasets are merged as well. Therefore, we end up with two
big datasets after the execution of Listing 4.21. One consists of training data, and the
other consists of testing data.

Listing 4.21: Concatenate the data

Next, the columns of the two datasets are divided into dependent (target variable) and
independent variables (feature variables) [70]. The only target variable is the label column,
while the feature variables consist of the remaining 68 columns. They are performance
events that were monitored during data collection. In the code of Listing 4.22, feature_cols
is a list containing the strings of all relevant event names from Table 4.2.

Listing 4.22: Division of dependent and independent variables

To start the training, all the supervised ML algorithms are once again imported from
the scikit-learn library [63]. The first two classifiers are: Decision Tree [71], and Random
Forest [72]. Similarly to the unsupervised models, entities of the model class are created
and then fit to the training data with Listing 4.23. However, both the features and target
datasets are passed to the fit() method instead of only passing a single training dataset,
like for unsupervised models.

Listing 4.23: Creation and training of Decision Tree and Random Forest classifiers

4.3. FRAMEWORK 29

The other two classifiers are: SVM [73] and KNN [74]. For better results when training
these two classifiers, it is recommended to normalize data on the same scale. Like pre-
viously, the StandardScaler is utilized for normalization. As shown on Listing 4.24, the
datasets containing feature columns are scaled. In contrast, the datasets containing the
labels are not scaled.

scaler= StandardScaler (). fit (X_train)
X_train_scaled = scaler.transform (X_train)
X_test_scaled = scaler.transform (X_test)

Listing 4.24: Fit StandardScaler with the training set and transform the feature datasets

After the scaling is done, the SVM and the KNN classifiers can be trained with the nor-
malized data. Once more, with Listing 4.25, the two entities are created and trained with
the fit method. For the SVM, a kernel type has to be specified. Just like for the OCSVM,
the the RBF kernel is chosen. For the KNN classifier the number of neighbours are set to
five with the n_neighbors parameter.

svm_clf = svm.SVC(kernel="rbf ")
svm_clf. fit (X_train_scaled , y_train)

knn_clf = KNeighborsClassifier (n_neighbors=5)
knn_clf. fit (X_train_scaled , y_train)

Listing 4.25: Creation and training of SVM and KNN classifiers

To evaluate, a confusion matrix and a classification report from sklearn.metrics are created
for every model. The confusion matrix shows how the model classified the samples of each
class. The classification report returns metrics like precision, recall and F1-Score.

30

CHAPTER 4. FRAMEWORK DESIGN

Chapter 5

Evaluation

5.1 Results

In this section, the results of the different models are presented and evaluated. This section
is split into two subsections. The first one presents the accuracy of the unsupervised ML
models. These models were trained with unlabeled data of the Raspberry Pi of normal
behaviour. Therefore, their goal is to distinguish if a given sample matches the normal
behaviour patterns or if it is an anomaly. Next, the models are tested with data from
each phase individually. The aim is to find out how well each phase is recognized as an
anomaly. The accuracy of this test is calculated by checking how many samples under
attack are flagged as anomalies and vice versa for the normal behaviour.

The supervised ML models, on the other hand, are all classifiers. Thus, they are trained
to classify tested data to one of the labels provided during training. In this case, there are
six different classes. They are phases from 1-5, as well as normal behaviour. Therefore,
the calculated accuracy directly relates to the number of correctly classified samples.

5.1.1 Unsupervised Machine Learning Models

In this subsection, the results of the IF, LOF and OCSVM Models are discussed. In Table
5.1, the results of the three models are displayed. The well-known metrics True Positive
Rate (TPR) and True Negative Rate (TNR) are used to evaluate the performance. The
column Normal Behaviour shows the TNR when testing the normal behaviour. Thus, the
column presents the percentage of samples rightfully labelled as normal by each model.
The TNR is calculated by dividing the number of true negative samples by all normal
test samples. The columns Phase 1-5 on the other hand, represent the TPR when the
attack behaviour is tested. The TPR is calculated by dividing the number of true positive
samples by the number of test samples used per phase. Therefore, all these cells show the
percentage of samples per class that each model has correctly classified. The second last
row shows the average percentage of every column. Lastly, the row Test Samples displays
the number of samples that were tested per column.

31

32 CHAPTER 5. EVALUATION

To evaluate the performance of the models, the column Accuracy Weighted Average shows
the overall accuracy across all samples. The column Accuracy Macro Average is the aver-
age percentage of all columns without taking the amount of samples into consideration.

Normal Accuracy | Accuracy
Model Behaviour | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 Macro | Weighted
TNR TPR TPR TPR TPR TPR Average | Average

Isolation Forest 92.8766% | 100% 100% 97% | 82.1429% | 98.9975% | 95.1695% | 93.8956%
Local Outlier Factor | 91.6742% | 100% 100% 100% | 94.6429% 100% 97.7195% | 93.3177%

OCSVM 91.1298% | 100% 100% 100% | 94.6429% 100% 97.6288% | 92.8842%
Average 91.8935% | 100% 100% 99% | 90.4762% | 99.6658% | 96.8393% ‘ 93.3658%
Test Samples 4408 6 69 200 56 798

Table 5.1: Anomaly Detection Accuracy of Unsupervised ML Models

In Table 5.1, one can see that IF achieves the best Accuracy Weighted Average. The reason
is that the IF' is superior in recognizing normal behaviour. Because normal behaviour has
by far the most test samples, this has a significant effect on the Accuracy Weighted Average
of the IF model. However, LOF and OCSVM are slightly better at detecting phases 3-
5, particularly during the fourth phase, where the malware tries to spread across the
network. That is the reason why the LOF and OCSVM models achieve a better Accuracy
Macro Average. This shows a trade-off between the TNR and the TPR when choosing an
algorithm. Overall, the accuracy of the three models is good, as the vast majority of the
samples are assigned correctly. However, if a high TPR is more important, one should
choose the LOF algorithm. On the other hand, if the focus lies on a high TNR, the IF is
the suitable algorithm to select.

Compared to the supervised models, the phases with fewer samples have performed sig-
nificantly better. Phase 1, for example, only has six samples. This is not enough data to
train a supervised classifier. On the other hand, the unsupervised models are only trained
with normal behaviour. Consequently, the number of samples per phase is irrelevant for
anomaly detection. That is why the three unsupervised models are able to detect the
samples of phase 1 with a 100% accuracy. At the same time, most of the supervised ML
models do not classify a single sample of phase 1 correctly, as shown in Table 5.2. Further-
more, especially when testing phase 4, but also phase 2 and 3, the unsupervised models
perform better. That said, one must keep in mind that the unsupervised models only
have to distinguish between normal behaviour and anomaly. In contrast, the supervised
models have six different classes to choose from.

5.1.2 Supervised Machine Learning Models

In this subsection, the results of the Decision Tree, Random Forest, SVM and KNN
classifiers are discussed. On table 5.2, the results of the four models are displayed. The
cells show the percentages of samples per label that have been classified correctly by the
different models. The last two rows display the average percentage and the number of
test samples used for every class. The last two columns once more try to evaluate the
overall performance of the models. Instead of using the accuracy like for the unsupervised

5.1. RESULTS 33

models, the Macro & Weighted Average of Table 5.2 are based on the F1-Score. The
F1-Score is more suitable for indicating the performance of supervised models compared
to the accuracy. It is a combination of precision and recall together. The precision of
an algorithm reflects the ratio of the correctly predicted malware samples relative to
the total number of predicted malware observations. The recall is the proportion of the
successful prediction of relevant malware patterns [25]. Thus, the F1-Score Macro Average
shows the average F1-Score without taking the amount of test samples per class into
consideration. The F1-Score Weighted Average on the other hand, weighs each F1-Score
per class depending on the number of test samples.

Normal F1-Score | F1-Score
Model Behaviour | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 Macro | Weighted
TNR TPR TPR TPR TPR TPR Average | Average
Decision Tree | 99.9995% 50% 85.7143% 85% 33.3333% | 100% 76% 100%
Random Forest | 99.9773% 0% 92.8571% | 100% | 33.3333% | 100% 72% 100%
SVM 100% 0% 100% 85% 16.6667% | 95.625% 66% 99%
KNN 100% 0% 92.8571% 90% 41.6667% | 96.875% 73% 100%
Average 99.9942% | 12.5% | 92.8571% 90% 31.2465% | 98.125% | 71.75% ‘ 99.75%
Test Samples 4408 2 14 40 12 160

Table 5.2: Classification Accuracy Supervised ML Models

The overall best performing model is based on the Decision Tree algorithm, as shown in
table 5.2. It has the highest F'1-Score Macro Average and the maximum Weighted Average
of a 100%. Table 5.2 also shows that the classifiers are most effective at classifying the
normal behaviour and phase 5. This was to be expected, as for those two classes, the
most data could be collected. Except for phase 2, the results show a high correlation
between the amount of training data and the classification accuracy. In other words, the
more data per label have been provided during training, the better the models performed
during classification. This correlation can be seen in the last two rows of table 5.2.
This is the reason why the F1-Score Weighted Average is significantly higher for all the
models, as they all achieve high accuracies for highly weighted classes. The only class
that performed well during the testing with few training samples was phase 2. This
finding will be discussed later. The described correlation is the result of an imbalanced
classification problem; in other words, there is a bias in the distribution of examples across
the known classes [75]. As mentioned earlier, especially phases 1 and 4 lack training data
and have been misclassified more often than the other classes. Most ML algorithms used
for classification have been developed, assuming an equal number of examples for each
class. Imbalanced classification thus poses a challenge for predictive modelling. This leads
to models that have poor predictive power, especially for the minority class [75], as seen
for phases 1 and 4.

Tables 5.3-5.8 show the classification report of the normal behaviour and phases 1-5. The
numbers in the column with the bold heading show the number of samples each model has
classified correctly. The other columns show the number of samples that were misclassified
to each label if there were any.

34 CHAPTER 5. EVALUATION
Model Normal | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5
Behaviour
Decision Tree 4406 0 0 1 1 0
Random Forest 4407 0 0 1 0 0
SVM 4408 0 0 0 0 0
KNN 4408 0 0 0 0 0

Table 5.3: Classification Report Normal Behaviour

All models classified normal behaviour correctly with almost 100% accuracy, as shown in
table 5.3. Only the models based on the Decision Tree and the Random Forest algorithm
misclassify a few samples to phases 3 and 4.

Model Normal | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5
Behaviour
Decision Tree 0 1 0 1 0 0
Random Forest 0 0 0 2 0 0
SVM 0 0 0 2 0 0
KNN 1 0 0 0 1 0

Table 5.4: Classification Report Phase 1

Table 5.4 illustrates that all the models struggle at classifying samples of phase 1 due
to imbalanced classification. The minority class is more difficult to predict because, by
definition, there are fewer examples of this class. This means, that it is more difficult
for a model to learn its characteristics. Therefore, it is more challenging to distinguish
examples from this class from the majority classes [75]. This is exactly what is happening
for phase 1.

Since phase 1 only consists of six samples, of which four are being used for training, only
two remain for testing. This is insufficient to make a statistically relevant statement.
On the other hand, it is interesting that five out of eight test samples are misclassified
as phase 3. Phase 3 consists of 200 samples in which the downloaded cryptominer is
configured. During configuration, components are arranged, and files are copied or moved
into other directories. Similarly, during phase 1, the cryptojacker copies itself into different
sub-directories. This similarity and the bias towards phase 3 -which is a majority class
compared to phase 1- could potentially be the reason for the misclassification.

Model Normal | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5
Behaviour
Decision Tree 0 0 12 2 0 0
Random Forest 0 0 13 1 0 0
SVM 0 0 14 0 0 0
KNN 0 0 13 1 0 0

Table 5.5: Classification Report Phase 2

5.1. RESULTS 35

Even though phase 2 is the class with the least data after phases 1 and 4, the four models
could classify almost all testing samples correctly. There are only three samples that are
misclassified as phase 3. The SVM classifier even achieves a 100% accuracy, as illustrated
in table 5.5.

Looking at table 4.1, it stands out that the second phase is the only phase where a
download from the internet takes place. This might trigger specific events that could be
why the models achieve such great results, despite the small training data set.

Model Normal | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5
Behaviour
Decision Tree 3 2 0 34 1 0
Random Forest 0 0 0 40 0 0
SVM 2 0 4 34 0 0
KNN 3 0 1 36 0 0

Table 5.6: Classification Report Phase 3

The majority of samples of phase 3 are classified correctly, as shown in table 5.6. All the
models, except the Random Forest, misclassify some samples as normal behaviour or as
phases 1 and 2. The misclassification of normal behaviour is most likely again caused by
imbalanced classification, as the normal behaviour is a majority class and makes up most
of the collected data. The difficulty in differentiating some samples of phases 1-3 becomes
apparent in tables 5.4 and 5.5. This means the events called during the three phases are
somewhat similar, which causes the models to misclassify some of the samples.

Model Normal | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5
Behaviour
Decision Tree 5 1 1 1 4 0
Random Forest 6 0 1 1 4 0
SVM 6 0 4 0 2 0
KNN 5 0 1 1 5 0

Table 5.7: Classification Report Phase 4

Phase 4 is the minority class with the second least data collected. Table 5.7 shows that all
the models have problems classifying samples of the fourth phase. The misclassification
of normal behaviour is again caused by the imbalance of the data sets during training.
Especially the SVM classifier struggles to differentiate between phases 4 and 2, even
though they possess similar data sizes. Therefore, the misclassification towards phase 2
might be caused by other variables like similar events being called.

36 CHAPTER 5. EVALUATION

Model Normal | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5
Behaviour
Decision Tree 0 0 0 0 0 160
Random Forest 0 0 0 0 0 160
SVM 7 0 0 0 0 153
KNN 5 0 0 0 0 155

Table 5.8: Classification Report Phase 5

As outlined earlier, the classification accuracy of phase 5 is excellent. This is probably
due to the fact that mining requires high computing power, which is becoming apparent
by the called events. Also, phase 5 has a more significant amount of training samples than
the other phase, which gives the models more examples to learn the characteristics of the
phase. Only the SVM and KNN classifier assign some samples to normal behaviour, while
the other two achieve a flawless result.

5.2 Discussion

This work focuses on creating an intelligent and behavioural framework, that is able to de-
tect cryptominers affecting Linux-based and resource-constrained spectrum sensors. Lit-
erature lack solutions based on data sets, modelling the behaviour of recent cryptominers.
This becomes particularly obvious with regards to the protection of loT-Devices against
cryptominers or zero-day attacks. Most data sets used to detect modern malware miss
capturing the devices’ internal behaviour. However, especially for malware types like
cryptojackers, which require a lot of resources, performance events could give a clear in-
dication of infection. By monitoring the internal behaviour of IoT devices and using the
collected data, an ML-based detection module can be created. This claim is supported by
the previous subsection, which presents the performance of the different models. All the
previously trained supervised and unsupervised detection modules detected most attack
samples during evaluation.

Upon choosing the best unsupervised ML Model, there is a tradeoff between the TNR
and the TPR. The IF achieves the best overall weighted accuracy with the highest TNR.
However, the LOF performs better regarding the macro average of the accuracies. This
is the result of a slightly better TPR when compared with the IF. The best performing
unsupervised ML model is the Decision Tree classifier. Upon comparison between the
supervised and unsupervised approach, it stands out that the unsupervised ML models
performed better at detecting anomalies reliably, especially phases 1-4. Nonetheless, this
also results in more false positive assigned samples. However, the most significant advan-
tage of the unsupervised models is their ability to detect zero-day attacks. The results
show that just by studying the normal behaviour of the device, these models were able
to notice most of the attack samples. This proves that the combination of behaviour
fingerprinting with ML models could be a promising approach to detect zero-day attacks
in the future. The supervised classifiers, on the other hand, have an advantage in clas-
sifying the normal behaviour and the fifth phase. This bias arises due to an imbalanced

5.2. DISCUSSION 37

classification problem, as there is a correlation between the amount of training data and
the classification accuracy per class.

The malware that installs the cryptominer on the Raspberry Pi, is an altered version of
the Linux.MulDrop.14 trojan. This malware already appeared mid 2017 and therefore
one might be inclined to argue, that more modern and sophisticated cryptojackers will
not be detected by the framework. However, particularly download, installation, and
mining of the cryptominer are inevitable steps during a cryptojacker infection. Even
if more sophisticated cryptojackers use different tools and therefore act differently, the
infection will most likely look similar when counting the performance events of the device.
Therefore, unsupervised and potentially even supervised ML models are the future of
modern malware detection.

38

CHAPTER 5. EVALUATION

Chapter 6

Summary and Conclusions

The scale of IoT devices has changed from connected domestic appliances to connected
cities in recent years [5]. In parallel with the growing importance of IoT devices, the
amount of IoT concepts, platforms and networks, like crowdsensing, is increasing [14].
The device used in the present work is a Raspberry Pi as part of the real-world IoT
crowdsensing platform ElectroSense [85]. Together, they aim at monitoring the radio
frequency on a large scale. One of the issues in connection with IoT devices is the aspect
of security [6]. These IoT platforms are often vulnerable to cyber attacks due to a lack
of security interest. While the IoT market is growing, the interest in cryptocurrencies is
growing at an equal pace. Additionally, malware that aims to jack third-party devices
for mining purposes is booming. Since regular computers are typically well secured,
cryptojackers’ new targets are also IoT devices nowadays. A counterstrategy could be to
combine the behaviour fingerprinting field with ML models. This has been proven to be
a promising approach at detecting cyber-attacks recently. While works are experimenting
with detection solutions for GCs, literature veritably lacks solutions targeting loT devices.
Therefore, the present thesis proposes multiple models that can detect cryptominers from
the device’s perspective. The monitoring is performed on a Raspberry Pi used as an
ElectroSense sensor. A monitoring script is used to monitor the behaviour, counting
the amount of 75 performance events every five seconds. Three unsupervised and four
supervised ML models are trained and evaluated with the collected data. The model based
on the IF algorithm, which is one of the unsupervised models, achieved the best weighted
average accuracy of 93.9%. While the LOF model performs better based on the macro
average accuracy with 97.7%. The Decision Tree classifier of the supervised models holds
the best F1-Score Macro Average of 76%, which arises due to an imbalanced classification
problem. As a result of the imbalance, the weighted average of the F1-Scores reaches
100%. To sum up, both types of models can be viable for detection using performance
events, while the unsupervised approach holds the great advantage of detecting zero-day
attacks.

39

40 CHAPTER 6. SUMMARY AND CONCLUSIONS

Future works most likely contain the creation of datasets with the behaviour of different
malware types. In this way, unsupervised models could be evaluated more diversely. By
testing the behaviour of other malware types, the capability of detecting zero-day attacks
could be further estimated. Moreover, supervised ML models could be trained to classify
different types of malware. An interesting approach would also be to combine the training
data sets of different sources. For example, it would be interesting to see if ML models
can be optimized by combining the data of performance events and network flow.

Bibliography

[1] Harsh ~ Kumar. An Introduction to Crypto Mining. 2021. URL:
https://www.outlookindia.com/outlookmoney/cryptocurrency/
an-introduction-to-crypto-mining-8446 (visited on 11/04/2021).

[2] IT-Service.network. Cryptomining - Definition. URL: https://it-service.
network/it-lexikon/cryptomining (visited on 11/04/2021).

[3] Calvao, Filipe. Crypto-miners: digital labor and the power of blockchain technology.
Economic Anthropology, Vol. 6, Issue 1, pp. 125-134, Online ISSN: 2350-4847, 2019.
DOL: https://doi.org/10.1002/sea2.12136.

[4] Ghimire, Suman. Analysis of Bitcoin Cryptocurrency and Its Mining Techniques.
UNLV Theses, Dissertations, Professional Papers, and Capstones. 3603, 2019. DOI:
https://doi.org/10.34917/15778438.

[5] Investopedia. Introduction to Cryptojacking. 2021. URL: https://www.
investopedia.com/terms/c/cryptojacking.asp (visited on 11/25/2021).

[6] Martin Erik, Joakim Kargaard, and lain Sutherland. Raspberry Pi Malware: An
Analysis of Cyberattacks Towards [oT Devices. The 10h IEEE International Confer-
ence on Dependable Systems, Services and Technologies, DESSERT’2019, 2019. DOL:
https://doi.org/10.1109/DESSERT.2019.8770027.

[7] Winward, Ron. A Field Guide to Understanding [oT Attacks from the Mirai Botnet
to Its Modern Variants. Radware, 2018.

[8] Raspberry Pi. What Is a Raspberry Pi?. URL: https://www.raspberrypi.org/
help/what-is-a-raspberry-pi/ (visited on 11/27/2021).

[9] P. V. Shijo, A. Salimb. Integrated static and dynamic analysis for malware detection.
International Conference on Information and Communication Technologies (ICICT
2014), 2014. DOIL: 10.1016/j.procs.2015.02.149.

[10] Sagar Khillar. Difference Between Static Malware Analysis and Dynamic Mal-
ware Analysis. 2018. URL: http://www.differencebetween.net/technology/
difference-between-static-malware-analysis-and-dynamic-malware-analysis/
(visited on 11/29/2021).

41

42

[11]

[12]

[13]

[14]

[15]

[20]

[21]

[22]

BIBLIOGRAPHY

Carlin, Domhnall, Philip OrKane, Sakir Sezer, and Jonah Burgess. Detecting Crypto-
mining Using Dynamic Analysis. 2018 16th Annual Conference on Privacy, Security
and Trust (PST), 1-6. Belfast: IEEFE, 2018. DOI: https://doi.org/10.1109/PST.
2018.8514167.

S. Rajendran, R. Calvo-Palomino, M. Fuchs, B. Van den Bergh, H. Cordobés, D.
Giustiniano, S. Pollin, V. Lenders. Electrosense: Open and Big Spectrum Data.
IEEE Communications Magazine, January 2018.

Electrosense. Es-sensor. 2020. URL: https://github.com/electrosense/es (visited
on 11/04/2021).

Fabio Sisi. Creation of a Dataset Modeling the Behavior of Malware Affecting the
Confidentiality of Data Managed by IoT Devices. Communication Systems Group,
July 2021.

JEGX, Geeks3D. Raspberry Pi 3: New Quad-Core Processor and Inte-
grated WiFi + DBluetooth. 2016. URL: https://www.geeks3d.com/20160229/

raspberry-pi-3-new-quad-core-processor-and-integrated-wifi-bluetooth/
(visited on 11/30/2021).

Carla Tardi, Erika Rasure. Genesis Block Definition. 2021. URL: https://www.
investopedia.com/terms/g/genesis-block.asp (visited on 12/01/2021).

Shobhit Seth, Erika Rasure. GPU Usage in Cryptocurrency Mining. 2021. URL:
https://www.investopedia.com/tech/gpu-cryptocurrency-mining/ (visited on
12/01/2021).

Alexandra Kons. Monero Mining: So klappt das XMR Mining. 2021. URL: https://
de.beincrypto.com/lernen/monero-mining-so-klappt-das-xmr-mining/ (vis-
ited on 12/01/2021).

Sanchez, Pedro Miguel Sanchez, Jose Maria Jorquera Valero, Alberto Huertas Cel-
dran, Gérome Bovet, Manuel Gil Pérez, and Gregorio Martinez Pérez. A Survey
on Device Behavior Fingerprinting: Data Sources, Techniques, Application Scenar-
ios, and Datasets. IEEE Communications Surveys & Tutorials 23, no. 2 (2021):
1048-77, 2021. DOL: https://doi.org/10.1109/COMST.2021.3064259.

Barbhuiya, Sakil, Zafeirios Papazachos, Peter Kilpatrick, and Dimitrios S. Nikolopou-
los. RADS: Real-Time Anomaly Detection System for Cloud Data Centres. 2018.
Available: arXiv:1811.04481.

Kanad Basu, Krishnamurthy Prashanth, Farshad Khorrami, and Ramesh Karri.
A Theoretical Study of Hardware Performance Counters-Based Malware Detec-
tion. IEFE Transactions on Information Forensics and Security 15, 2020. DOI:
https://doi.org/10.1109/TIFS.2019.2924549.

Christoph Langner. Der Raspberry Pi im Visier von Trojanern. 2017.
URL: https://www.raspberry-pi-geek.de/ausgaben/rpg/2017/10/
der-raspberry-pi-im-visier-von-trojanern/ (visited on 12/14/2021).

BIBLIOGRAPHY 43

[23]

[24]

[25]

[26]

28]

[30]

[31]

[32]

[33]

Doctor Web. Doctor Web analysiert zwei Linux-Trojaner. 2017. URL: https://news.
drweb-av.de/show?i=11320&1lng=de (visited on 12/14/2021).

Bridges, Robert, Jarilyn Hernandez Jimenez, Jeffrey Nichols, Katerina Goseva-
Popstojanova, and Stacy Prowell. Towards Malware Detection via CPU Power
Consumption: Data Collection Design and Analytics. 2018 17th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Commu-
nications/ 12th IEEE International Conference On Big Data Science And Engi-
neering (TrustCom/BigDataSE), 1680-84. New York, NY, USA: IEEE, 2018. DOIL
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00250.

Darabian, Hamid, Sajad Homayounoot, Ali Dehghantanha, Sattar Hashemi, Hadis
Karimipour, Reza M. Parizi, and Kim-Kwang Raymond Choo. Detecting Crypto-
mining Malware: A Deep Learning Approach for Static and Dynamic Analysis.
Journal of Grid Computing 18, no. 2 (June 2020): 293-303, 2020. DOI: https:
//doi.org/10.1007/s10723-020-09510-6.

Daniel Gibert , Carles Mateu, Jordi Planes. The rise of machine learning for detection
and classification of malware: Research developments, trends and challenges. Journal
of Network and Computer Applications Volume 153, 2020. DOIL: https://doi.org/
10.1016/j.jnca.2019.102526.

Zimba, Aaron, Zhaoshun Wang, Mwenge Mulenga, and Nickson Herbert Odongo.
Crypto Mining Attacks in Information Systems: An Emerging Threat to Cyber
Security. Journal of Computer Information Systems 60, no. 4, 2020. DOIL: https:
//doi.org/10.1080/08874417.2018.1477076.

L. Kessem. XMRig: Father zeus of cryptocurrency min-
ing malware?. 2018. URL: https://securityintelligence.com/
xmrig-father-zeus-of-cryptocurrency-mining-malware/ (visited on

01/21/2022).

Musch, Marius, Christian Wressnegger, Martin Johns, and Konrad Rieck. Thieves
in the Browser: Web-Based Cryptojacking in the Wild. In Proceedings of the 14th
International Conference on Availability, Reliability and Security, 1-10. ARES ’19.
New York, NY, USA: Association for Computing Machinery, 2019. DOL: https://
doi.org/10.1145/3339252.3339261.

M. Alaeiyan, S. Parsa, M. Conti. Analysis and classification of context-based malware
behavior. Comput. Commun. 136 (2019) 76-90, 2019. DOI: http://dx.doi.org/10.
1016/j.comcom.2019.01.003.

MinerBlock. 2018. URL: https://github.com/1lastBr3ath/drmine (visited on
01/25/2022).

Dr.Mine. 2018. URL: https://github.com/1lastBr3ath/drmine (visited on
01/25/2022).

Obuch Samuel. Detection of Cryptominers and Mining Botnets. Masaryk University
Faculty of Informatics, 2019.

44

[34]
[35]

[36]

[38]

[39]

[40]

[41]

[44]

BIBLIOGRAPHY

Flowmon. URL: https://www.flowmon.com/ (visited on 12/01/2022).

Zero-Day Attack. Jake Frankenfield. URL: https://www.investopedia.com/terms/
z/zero-day-attack.asp#: ~:text=A%20zero}%2Dday%20attack’%20(also, the)
20threat20to%20software),20users. (visited on 12/01,/2022).

Geng Hong, Zhemin Yang, Sen Yang, Lei Zhang, Yuhong Nan, Zhibo Zhang, Min
Yang, Yuan Zhang, Zhiyun Qian, and Haixin Duan. How you get shot in the back:
A systematical study about cryptojacking in the real world. Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
'18, page 1701-1713, New York, NY, USA, 2018. DOI: https://doi.org/10.1145/
3243734 .3243840.

Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew Miller,
Nikita Borisov, Manos Antonakakis, and Michael Bailey. Outguard: Detecting in-
browser covert cryptocurrency mining in the wild. The World Wide Web Conference,
WWW ’19, 2019. DOL: https://doi.org/10.1145/3308558.3313665.

Juan D Parra Rodriguez, Joachim Posegga. Rapid: Resource and api-based detec-
tion against in-browser miners. Proceedings of the 34th Annual Computer Security
Applications Conference, 2018. DOI: https://doi.org/10.1145/3274694.3274735.

Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W Hamlen, and Shuang Hao.
Seismic: Secure in-lined script monitors for interrupting cryptojacks. Furopean Sym-
posium on Research in Computer Security, 2018. DOIL: https://doi.org/10.1007/
978-3-319-98989-1_7.

Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy, Martina Lindor-
fer, Christopher Kruegel, Herbert Bos, and Giovanni Vigna. Minesweeper: An in-
depth look into drive-by cryptocurrency mining and its defense. Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
‘18, page 1714-1730, New York, NY, USA, 2018. DOI: https://doi.org/10.1145/
3243734 .3243858.

Conor Kelton, Aruna Balasubramanian, Ramya Raghavendra, and Mudhakar Sri-
vatsa. Browser-Based Deep Behavioral Detection of Web Cryptomining with Coin-
Spy. 27th Annual Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, 2020. DOI: https://dx.doi.org/10.14722/madweb.
2020.23002.

Mauro Conti, Ankit Gangwal, Gianluca Lain, and Samuele Giuliano Piazzetta. De-
tecting covert cryptomining using hpc. 2019. Available: arXiv:1909.00268.

Palmer Danny. A Giant Botnet Is Forcing Windows Servers to
Mine Cryptocurrency. 2018. URL: https://www.zdnet.com/article/
a-giant-botnet-is-forcing-windows-servers-to-mine-cryptocurrency/
(visited on 02/14/2022).

Newman Lily Hay. How Leaked NSA Spy Tool “EternalBlue” Be-
came a Hacker Favorite. 2018. URL: https://www.wired.com/story/
eternalblue-leaked-nsa-spy-tool-hacked-world/ (visited on 02/15/2022).

BIBLIOGRAPHY 45

[45]

[46]

[50]

[51]

[52]

Greenemeier Larry. How Cryptojacking Can Corrupt the Internet of
Things. 2018. URL: https://www.scientificamerican.com/article/
how-cryptojacking-can-corrupt-the-internet-of-things/ (visited on
02/16/2022).

Gabriel Jozsef Berecz. and Istvan-Gergely Czibula. Hunting traits for cryptojackers.
Proceedings of the 16th International Joint Conference on e-Business and Telecom-
munications - Volume 2: SECRYPT, pages 386-393. INSTICC, SciTePress, 2019.
DOL: https://doi.org/10.5220/0007837403860393.

Naseem Faraz Amjad. A Deep-Learning Based Robust Framework Against Adversar-
ial P.E. and Cryptojacking Malware. Computer Engineering, Florida International
University, 2020. DOI: https://doi.org/10.25148/etd.FIDC0O09174.

Fabio Gomes, Miguel Correia . Cryptojacking Detection with CPU Usage Metrics.
2020. DOL: https://doi.org/10.1109/NCA51143.2020.9306696.

Maurantonio Caprolu, Simone Raponi, Gabriele Oligeri, Roberto Di Pietro. Cryp-
tomining makes noise: Detecting cryptojacking via Machine Learning. Computer
Communications Volume 171, 1 April 2021, Pages 126-139, 2021. DOIL: https:
//doi.org/10.1016/j.comcom.2021.02.016.

S. A. Hamad, W. E. Zhang, Q. Z. Sheng, and S. Nepal. [oT device identification via
network-flow based fingerprinting and learning. 18th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/15th IEEE
International Conference On Big Data Science And Engineering, 2019. DOI: 10.1109/
TrustCom/BigDataSE.2019.00023.

J. Pacheco and S. Hariri. Anomaly behavior analysis for IoT sensors. Where, 2018.
DOL: https://doi.org/10.1002/ett .3188.

G. Creech and J. Hu. A semantic approach to host-based intrusion detection sys-
tems using contiguousand discontiguous system call patterns. IEEE Transactions on
Computers, 2013. DOI: 10.1109/TC.2013.13.

X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri. Confirm: Detecting
firmware modifications in embedded systems using hardware performance coun-
ters. IEEE/ACM International Conference on Computer-Aided Design, 2015. DOL
10.1109/ICCAD.2015.7372617.

N. Shone, Q. Shi, M. Merabti, and K. Kifayat. Misbehaviour monitoring on system-of-
systems components. 2013 International Conference on Risks and Security of Internet
and Systems, 2013. DOI: 10.1109/CRiSIS.2013.6766347.

Aloseel, Abdulmohsan, Saba Al-Rubaye, Argyrios Zolotas, and Carl Shaw. Attack-
Detection Architectural Framework Based on Anomalous Patterns of System Perfor-
mance and Resource Utilization—Part II. IEEE Access 9 (2021): 87611-29, 2021.
DOL: https://doi.org/10.1109/ACCESS.2021.3088411.

46 BIBLIOGRAPHY

[56] Fromaget Patrick. How to Mine Monero Crypto Currency on Your Raspberry
Pi. URL: https://raspberrytips.com/mine-monero-raspberry-pi/ (visited on
09/03/2022).

[57] Mike Driscoll. Jupyter Notebook: An Introduction — Real Python. URL: https://
realpython. com/jupyter-notebook-introduction/ (visited on 11/03/2022).

[58] Google. Willkommen bei Colab. URL: https://colab.research.google.com/?utm_
source=scs-index#scrollTo=5fCEDCU_qrCO (visited on 03/11/2022).

[59] lucasjones. cpuminer-multi. 2015. URL: https://github.com/lucasjones/
cpuminer-multi (visited on 12/3/2022).

[60] The ZMap Team. The ZMap Project. URL: https://zmap.io/ (visited on
03/12/2022).

[61] Shobhit Seth. How Do Cryptocurrency Mining Pools Work?. 2021. URL:
https://www.investopedia.com/tech/how-do-mining-pools-work/ (visited on
03/13/2022).

[62] Knowledge Base by phoenixNAP. Date Command in Linux: How to Set,
Change, Format and Display Date. 2020. URL: https://phoenixnap.com/kb/
linux-date-command (visited on 03/13/2022).

[63] Scikit-learn. Scikit-learn. 2021. URL: https://scikit-learn.org/stable/ (visited
on 03/21/2022).

[64] Adam Hayes. Z-Score. 2021. URL: https://www.investopedia.com/terms/
z/zscore.asp#:” :text=A%20Z%2Dscore’20is%20a, identical’20to0%20the,
20mean’,20score. (visited on 3/13/2022).

[65] Urvashi Jaitley. Why Data Normalization is necessary for Machine
Learning models. 2018. URL: https://medium.com/Qurvashilluniya/
why-data-normalization-is—necessary-for-machine-learning-models-681b65a05029#:
~:text=To%200vercome%20the’20model)20learning, descentsy20can
20converge’,20more’20quickly. (visited on 03/13/2022).

[66] Scikit-learn. sklearn.ensemble.IsolationForest. URL: https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.IsolationForest.html (visited
on 02/21/2022).

[67] Clarence Chio and David Freeman. Machine Learning and Security. Published by
O’Reilly Media, 2018. I1SBN: 978-1-491-97990-7.

[68] Scikit-learn. sklearn.neighbors.LocalOutlierFactor. URL: https://scikit-learn.
org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.
html (visited on 03/22/2022).

[69] TechVidvan. SVM Kernel Functions. 2020. URL: https://techvidvan.
com/tutorials/svm-kernel-functions/#: "~ :text=A%20kernel’,20is%20a%

20function, number’%200f%20dimensions’20using%20kernels. (visited on
03/22/2022).

BIBLIOGRAPHY 47

[70]

[71]

[73]

[74]

[75]

DataCamp Community. Python Decision Tree Classification Tutorial: Scikit-
Learn DecisionTreeClassifier. 2018. URL: https://www.datacamp.com/community/
tutorials/decision-tree-classification-python (visited on 03/23/2022).

Scikit-learn. sklearn.tree.DecisionTreeClassifier. URL: https://scikit-learn.org/
stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html (vis-
ited on 03/23/2022).

Scikit-learn. sklearn.ensemble.RandomForestClassifier URL: https://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html (visited on 03/23/2022).

Scikit-learn. sklearn.svm.SVC URL: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html (visited on 03/23/2022).

Scikit-learn. sklearn.neighbors.KNeighborsClassifier URL: https://scikit-learn.
org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.
html (visited on 03/23/2022).

Jason Brownlee. A Gentle Introduction to Imbalanced Classification. 2019. URL:
https://machinelearningmastery.com/what-is-imbalanced-classification/

(visited on 03,/30/2022).

CrowdSensing. CrowdSensing - IoT Solutions. URL: https://crowdsensing.mobi/
(visited on 04/04/2022).

J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai.
Lightweight classification of iot malware based on image recognition. 2018 IEFE
42nd Annual Computer Software and Applications Conference (COMPSAC), volume
02, pages 664—669, 2018. DOL: 10.1109/COMPSAC.2018.10315.

Julianna Delua. Supervised vs. Unsupervised Learning: What’s
the Difference?. 2021. URL: https://www.ibm.com/cloud/blog/
supervised-vs-unsupervised-learning#:~:text=Unsupervised’,20learningj
20uses’20machine’,20learning, they%20are’20%E2%80%9Cunsupervised’,E2%807
9D) . (visited on 04/04/2022).

X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao. Incentives for
Mobile Crowd Sensing: A Survey. IEEE Communications Surveys € Tutorials, vol.
18, March 2015.

L. Fernandez Maimo, A. Huertas Celdran, A. L. Perales Gomez, F. J. Garcia
Clemente, J. Weimer, and 1. Lee. Intelligent and Dynamic Ransomware Spread De-

tection and Mitiga- tion in Integrated Clinical Environments. Sensors, vol. 19, March
2019, pp. 1114.

K. Sigler. Crypto-jacking: how cyber-criminals are exploiting the crypto-currency
boom. Computer Fraud & Security, 2018., pp. 12-14.

X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng. Survey on
block- chain for Internet of Things. Computer Communications, 136, 2019., pp.
10-29.

48 BIBLIOGRAPHY

[83] P. H. Meland, B. H. Johansen, and G. Sindre. An Experimental Analysis of Crypto-
jacking Attacks. Nordic Conference on Secure IT Systems, 2019., pp. 155-170.

[84] S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song. Anomalous example
detec- tion in deep learning: A survey. IEEFE Access, 8, 132330-132547, 2020.

[85] Electrosense platform. TURL: https://electrosense.org/#!/ (visited on
04/10,/2022).

[86] M. V. Ngo, H. Chaouchi, T. Luo, and T. Q. Quek. Adaptive Anomaly Detection for
[oT Data in Hierarchical Edge Computing. arXiv preprint, January 2020.

[87] Anomaly Detection using Resource Behaviour Analysis for Autoscaling systems. 2018
4th IEEE Conference on Network Softwarization and Workshops (NetSoft), 2018.
DOI: 10.1109/NETSOFT.2018.8460025.

[88] Minergate. URL: https://minergate.com/ (visited on 03/12/2022).

Abbreviations

Al
AR
ARM
CNN
CpPU
CSV
DoS
DDoS
GC
GPU
HPC
IF
IoT
IRC
KNN
LOF
ML
NSA
RBF
RNN
SSH
SVM
TNR
TPR
TPU
Wasm
XMR

Artificial Intelligence
AutoRegressive

Advanced RISC Machines
Convolutional Neural Network
Central Processing Unit
Comma Separated Values
Denial-of-Service
Distributed-Denial-of-Service
General Computers
Graphics Processing Units
Hardware Performance Counters
Isolation Forest

Internet of Things

Internet Relay Chat
K-Nearest Neighbor

Local Outlier Factor
Machine Learning

National Security Agency
Radial Basis Function
Recurrent Neural Network
Secure Shell

Support Vector Machine
True Negative Rate

True Positive Rate

Tensor Processing Units
WebAssembly

Monero

49

90

ABBREVIATONS

Glossary

Behavior Fingerprinting Behavior Fingerprinting focuses on the creation and manage-
ment of fingerprints that model the behaviour of the device and its components
[19].

Blockchain The Blockchain is a public system that holds all the records of transactions
of a cryptocurrency [1].

Crowdsensing Crowdsensing is a concept in which a large, widely dispersed group of
participants obtains reliable data from the field using IoT devices [76].

Cryptojacker Cryptojackers are a type of malware that installs cryptominers on the in-
fected device, which lets the hacker illicitly mine cryptocurrency for himself [81].

Fileless Attacks Attacks without a signature, making the attack invisible to endpoint
security. [11].

Hardware Performance Counters Hardware Performance Counters are special-purpose
registers that count performance-related parameters [53].

Opcodes Opcodes are Operational codes which are the assembly language instructions
directly performed by the CPU [11].

Raspberry Pi The Raspberry Pi is a small-scale computer following the ARM architec-
ture [8].

Zero-Day Attacks Attacks that exploit a security weakness vendors and developers are
unaware of [35].

51

52

ABBREVIATONS

List of Figures

4.1 Dataflow of the Raspberry P1 0.

4.2 Correlation Heatmap

33

o4

LIST OF FIGURES

List of Tables

3.1

4.1

4.2

5.1
5.2
5.3
5.4
2.5
5.6
5.7
5.8

Cryptojacker Detection Solutions 10
Phases during Cryptojacker Infection 17
Monitored Events 20
Anomaly Detection Accuracy of Unsupervised ML Models 32
Classification Accuracy Supervised ML Models 33
Classification Report Normal Behaviour 34
Classification Report Phase 1 34
Classification Report Phase 2 34
Classification Report Phase 3 35
Classification Report Phase 4 35
Classification Report Phase 5 36

95

96

LIST OF TABLES

Appendix A

Installation Guidelines

The same installation instructions with the needed files can be found on the GitHub page:

https://github.com/KonstantinMoser/km_bachelor_thesis

A.1 Machine Learning Models

To create the models, all the code in ML_Model_Creation.ipynb has to be executed. There-
fore, the Jupyter Notebook has to be started as a Google Collab Notebook. Insert the file
into Google Drive, and Google Collab will automatically start upon executing the file.

A.2 Cryptojacker

To install the cryptojacker and monitor the behaviour of the Raspberry Pi during in-
fection, the ElectroSense Cyberspec image has to be installed beforehand. Then, con-
nect to the device with the SSH port 22. The variable TimeWindowSeconds of the
new_sampler_50_rest.sh script should be set to 5 seconds to measure the behaviour ef-
fectively.

Afterwards, a timestamps.tat file has to be created, where the Unix timestamps will be
saved with the following command:

$ cat > timestamps.txt

Next, a new bash script has to created and opened with the nano command:

$ cat <<EOF > cryptojacker.sh
$ EOF

57

o8 APPENDIX A. INSTALLATION GUIDELINES

$ chmod +x cryptojacker.sh
$ nano cryptojacker.sh

Copy the contents of cryptojacker.tzt into the cryptojacker.sh file and save it. Execute
the malware by simply calling its name in the terminal:

$./cryptojacker.sh

Like this, the the cryptojacker is executed and should automatically run through the
infection process.

Appendix B

Contents of the zip File

This section describes and names the content of the zip file.
BA _Konstantin_Moser.pdf A PDF version of the final report.

BA Konstantin Moser.zip The LaTeX source code of the final report. It also includes all
the used figures.

cryptojacker.txt Bash script of the altered version of the Linux.MulDrop.14 trojan.
Midterm Presentation.pptx The PowerPoint slides used in the midterm presentation.
ML_Model Creation.ipynb Jupyter Notebook to create the ML models.

Raspi_Dataset.zip A zip file containing the monitored behaviour of the Raspberry Pi.

39

