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Abstract

Poverty and hunger still prevails in many parts of the world. Sub-Saharan countries are particu-
larly affected by severe food insecurity due to heavy reliance on agriculture and lack of sufficient
farming equipment. Thus, finding a cost-effective method to introduce improved equipment to a
high percentage of farmers in reasonable time is crucial. For this reason, we develop a modular
agent-based model which simulates innovation diffusion among smallholder farmer households
in Tanzania. It is based on proven innovation research as well as recent findings in an ongoing
field study of the University of Zurich in Tanzania. Furthermore, we define different interven-
tion strategies to accelerate the diffusion rate of an innovation among farmers. We outline how
our model can be utilized to evaluate and compare such strategies in various ways. By applying
algorithms from machine-learning on our diffusion simulation results, we show how key factors
behind the performance of a strategy can be determined and demonstrate possibilities to predict
the success rate of a strategy. Our findings present researchers an inexpensive alternative to assess
intervention strategies effectiveness before launching them in the field.





Zusammenfassung

In vielen Teilen der Welt herrschen immer noch Armut und Hunger. Die Länder südlich der
Sahara sind besonders stark von Ernährungsunsicherheit betroffen, da sie fest von Agrikultur
abhängig sind und nicht über ausreichende landwirtschaftliche Ausrüstung verfügen. Daher
ist es von entscheidender Bedeutung, eine kosteneffiziente Methode zu finden, um einen ho-
hen Prozentsatz der Kleinbauern in angemessener Zeit mit verbesserter Ausrüstung auszustat-
ten. Aus diesem Grund entwickeln wir ein modulares agentenbasiertes Modell, dass die Inno-
vationsverbreitung unter Kleinbauernhaushalten in Tansania simuliert. Es basiert auf bewährten
Erkenntnissen der Innovationsforschung sowie auf aktuellen Ergebnissen einer laufenden Feld-
studie der Universität Zürich in Tansania. Darüber hinaus definieren wir verschiedene Inter-
ventionsstrategien, um die Verbreitungsgeschwindigkeit einer Innovation unter Kleinbauern zu
beschleunigen. Wir erläutern, wie unser Modell genutzt werden kann, um solche Strategien auf
verschiedene Weise zu bewerten und zu vergleichen. Durch die Anwendung von Algorithmen
aus dem Bereich des maschinellen Lernens auf unsere Diffusionssimulationsergebnisse zeigen
wir, wie die Schlüsselfaktoren für die Leistung einer Strategie bestimmt werden können, und
demonstrieren Möglichkeiten, die Erfolgsrate einer Strategie vorherzusagen. Unsere Ergebnisse
bieten Forschern eine kostengünstige Alternative, um die Wirksamkeit von Interventionsstrate-
gien zu bewerten, bevor sie in die Praxis umgesetzt werden.
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Chapter 1

Introduction

Poverty and hunger still prevails in many parts of the world. Even though ending it and provid-
ing secure access to food is a major objective of the 2030 Agenda for Sustainable Development,
the number of people suffering from hunger did not decrease since its publication despite various
measures worldwide [1,2]. Therefore, continuous efforts to reach the goals of the agenda must be
made.

One of the regions which is heavily affected by hunger and poverty is Sub-Saharan Africa
(SSA), where almost one third of the population suffer from it. There are various environmental,
political, and social reason that this region and the countries in it are situated at the bottom of
worldwide health and poverty rankings. One reason for this and the consequential food insecu-
rity, is the strong reliance on agriculture in SSA. In average, more than 60% of the population are
involved in smallholder farming which is their only source of income [3,4]. However, a lack of ad-
equate farming equipment and techniques leads to seasonal food insecurity. Especially in the time
directly before the harvest, called "lean" season, this condition becomes most severe [5, 6]. There
are multiple reasons which lead to seasonal food shortages. One string of research focuses on the
lack of adequate post-harvest storage possibilities, which results in price fluctuations throughout
seasons of a crop [5, 7, 8]. Right after the harvest, there is an oversupply of the respective crop,
which causes the market price to drop and forcing the farmers to sell their crops at a lower price.
Due to the lack of adequate on-farm storage, small scale farmers cannot store their crops to be self-
sufficient, or only at a risk of losing it to pests. As a consequence, market prices rise for the follow-
ing months, reaching their peak before the next harvest. Due to this, small scale farmer who were
not able to store enough of their harvest, must buy crops back at a much higher price point or,
in many cases, suffer from hunger. Preliminary studies have shown that there exist cost-effective
solutions which could prevent post-harvest losses and stabilize food insecurity as a result [5,7,9].
An example of such a solution are hermetic bags which allow for substantial longer on-farm crop
storage at a very low price point. However, to stabilize the whole regional market and decrease
the overall food insecurity of the population, these solutions must experience widespread adop-
tion. This poses the question of how to achieve the most effective and efficient distribution of
awareness about innovative products in SSA. Innovation diffusion has been studied for decades
and in numerous fields of study [10–12]. This research focuses on the processes happening when
an innovation is introduced into a system on a macro- and micro-level. Diffusion of innovation
can be analyzed and described in different ways but in the last years the appearance of modern
tools enable large-scale simulations on a micro-level [13,14]. This allows observing innovation dif-
fusion as a result of a multitude of decisions of independent individuals, rather than describing
the diffusion on a system level. Agent-based modelling is a type of modelling technique which is
based on the concept of individuals acting for themselves without outside guidance. Agent-based
models (ABM) have been used extensively in simulations and predictions [15–17]. An ABM con-
sists of autonomous agents which together from a complex system. From the interactions of these
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agents, an understanding of the system can be obtained which otherwise would not be possible.
As these agents move freely, the outcome of the model is not predictable and may lead to system
states which were not thought of beforehand. While the significance of results generated by such
models has been questioned, they provide a straight-forward way to create models and obtain
initial findings [14].

In the scope of this thesis, we combine agent-based modelling techniques with innovation re-
search all in the context of SSA regions. We present an agent-based model which depicts inno-
vation diffusion in rural areas of Tanzania among smallholder farmer households. Our model
will be based on findings from Tanzania, which is a country located in SSA and heavily reliant on
farming [3, 18]. Furthermore, a large part of its population, living in rural areas, have been more
or less frequently exposed to food insecurity [5]. This thesis is embedded in an ongoing field
study of the University of Zurich based on Brander et al. [5, 7] previous research which analyzes
the effectiveness of improved on-farm storage in reducing food insecurity. This leads to the first
research question of this thesis.

RQ1 How can innovation diffusion among smallholder farmer households be modelled in Sub-
Saharan regions?

We create an ABM which incorporates the social and geographical features of Tanzanian small-
holder farmers. It is based on a social network between farmers which autonomously interact
with each other and propagate awareness of the innovation through the system. In addition,
many processes and agent features are based on core findings from innovation diffusion research.
The conceptual model design is based on observations and interviews with Tanzanian farmers
participating in the current field study.

In order to reduce food insecurity, innovative products and techniques supporting sustainable
farming must be adopted by a large number of smallholder farmers. However, due to monetary
reasons, a widespread adoption should be achieved with an cost-effective approach. With our
implemented ABM, different intervention strategies can be evaluated and compared, which leads
to the second research question of this thesis.

RQ2 How can different intervention strategies be evaluated and compared?

Finding intervention strategies which are cost-effective and successful is crucial for achieving
widespread adoption of farming advancements and as a result, reduce food insecurity in a sus-
tainable manner. The major contribution of this master thesis is an ABM which, in a generic way,
models the knowledge and innovation diffusion in an SSA system. Because of the modular way,
in which it is built, this model can be easily adapted for other research purposes and extended
with further findings from field research. Moreover, we provide an inexpensive possibility to test
different intervention strategies before executing them in the real world. As stated by Rand and
Rust [14, 19], predictions obtained from agent-based models should be treated with caution, but
are proven to reveal certain trends in the system. Hence, our model can be utilized, for example,
to inexpensively narrow the potential range of strategies down. The remaining strategies than
may be tested in the real world.

Overview This thesis is structured into six chapters. After this introduction, we review rele-
vant literature related to the topic of this thesis in chapter two. The third chapter establishes the
necessary theoretical background for the implementation of our ABM. The fourth chapter intro-
duces the agent-based model developed in this thesis and the chosen design decisions. In the
fifth chapter, the results obtained by running simulations on the model are analyzed and inter-
preted. Lastly, with the findings of the previous chapters, the research questions are answered
and a critical review of the results is performed.



Chapter 2

Related Work

We present other research related to the topic of this thesis in this chapter. Firstly, literature on
the topic of innovation diffusion with focus on agriculture and developing countries is presented.
Afterwards, research regarding ABM related to agricultural innovations is discussed.

Innovation research, especially the topic of diffusion of innovation, is a very active field of
study. Most of nowadays research is based, at least partially, on Rogers famous publication "Dif-
fusion of Innovations" in 1962 [10]. Furthermore, extensive research is conducted on the diffusion
of agricultural innovations (e.g. farming techniques or sustainable land-use) in all regions of the
world.

Meijer et al. [11] propose an analytic framework to examine the adoption process of agricul-
tural innovations. They argue that besides extrinsic factors, like farmer characteristics and the
external environment, intrinsic factors also influence the adoption decision of farmers. Intrinsic
factors include knowledge, perception and attitude towards an innovation of potential adopters.
In essence, their framework states that extrinsic variables influence intrinsic variables of potential
adopters and hence both types of variables work in tandem.

Another interesting aspect of innovation diffusion and adoption in rural African areas is deter-
mined by Iiyama et al. [12]. Following interviews with smallholder farmers - potential adopters
- they noted that, even though preferred by farmers, some products do not have high adoption
rates. This is caused by the very limited resources of farmers in such regions and hence, removing
uncertainty about the innovation from farmers should be a key objective of successful launch of
new products.

Various research shows that decision of farmers to adopt a agriculture related innovation is
not solely based on economic considerations but on other psychological factors too [20–22]. It
is shown that the fundamental opinion of the farmer regarding the context of the innovation,
for example organic farming, has significant impact on the likelihood of adoption. In addition,
social pressure to adopt the innovation, from other farmers as well as the public, should not be
underrated concerning the adoption rate. In summary, their research reveals that, even though
being the predominant decision factor, other non-economic aspects should be considered as well.

Using ABM in the context of diffusion of innovation has been successfully achieved in various
field of studies. In the last years, different frameworks for ABMs simplified their utilisation [23–
25]. With more widespread adoption and larger models, design and implementation guidelines
become more important. Sun et al. [19] state the difference between model "complexity" and
"complicatedness". A system’s complexity describes how difficult it is to analyse the behavior of
an ABM system. A model becomes more complicated with an increasing number of agent types,
parameter and other entities. Hence, this describes the level of difficulty of the structure of the
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model. They conclude that with more empirically grounded models, the "complicatedness" of
model tends to increase and thus the generalizability of the results decreases if not careful. Hence
models, in order to make predictions or used as decision making support tools, should be kept as
simple as possible.

Rand and Rust [14] propose guidelines which should be used to rigorously create and use
agent-based models in the context of marketing. They note that without adequate rigour of the
model, it is not possible to compare results from different ABMs in order to obtain signification
findings. Thus, they present, and illustrate with an example, a set of standards which should be
used when implementing an ABM with a focus on verification and validation of the model.

Other research focuses on social interactions and agriculture and how to incorporate these top-
ics in ABM. The application of ABM in innovation research was reviewed multiple times [26, 27].
It shows that there is a major interest in modelling innovation diffusion based on micro-level
decision, as done in ABM, compared to more traditional mathematical or statistical approaches.

Manson et al. [15] present a novel approach to model the adoption of rotational grazing tech-
niques in farming with help of an ABM. Their model is based on strong and weak links between
different agents and the concept of creating a social network of all involved parties. Furthermore,
they classify what type of information can be obtained from different links and how this influ-
ences the final adoption decision. In a qualitative approach by interviewing farmer, they further
show how important a social network as well as communication is in innovation diffusion and
in the agriculture sector [28]. Similarly, Diemer et al. [29] determined that credibility of the infor-
mant is crucial and that agents tend to pay more attention to information about the innovation
gathered from reliable and known sources. In addition, they find that agents enter an "informa-
tion need" phase, in which they are actively searching information about an innovation and are
more prone to accept information from other sources which matches with Rogers research [10].

Deffuant et al. [16] proposed an agent-based model to investigate innovation diffusion of or-
ganic farming. The context of their model is the empirical data of organic farming techniques in
the French department of Allier. A central part of their model is the social interactions between
farmers and how opinions change accordingly. Furthermore, the agent network used in the model
is inspired by the concept of "small-world" networks [30]. In such networks, peers with close
spatial proximity are significantly more likely to know each other than ones which are far apart
from each other. Their selection and calibration of parameters followed thorough experimenting
in an attempt to correlate with real-world data. However, compared to the gathered reference
data, the adoption level predictions with their model were in average too high. They reasoned
that characteristics and overall initial attitude towards the innovation in discussion heavily in-
fluences the actual rate of adoption. Later on, Deffuant et al. [31] present an evolution of their
model [16] which is applicable to a more general process of innovation diffusion. In their model,
agents and their attitude towards an innovation follow a fixed state transition scheme. The states
of the agents are based on their individual interest and their changing level of uncertainty over
time. At its base, the model reflects the ideas of social opinion and individual advantage in the
decision making process as already introduced by earlier threshold models [10, 32]. Threshold
models introduce the concept that the decision outcome of an individual in a network is based
on the percentage of other peers in the network which already made their decision. Hence, every
peer in the network posses an individual threshold when it considers accepting a change already
performed by others. Under these assumption, their model indicates that innovation with low
social value and high individual benefit perform worse than innovations with high social value
and low individual benefit. In addition, they model communications between peers which have
a negative impact on the attitude towards the innovation. Many other models tend to focus only
on positive word-of-mouth (WoM) between peers. The high importance of WoM is undisputed in
innovation diffusion research and is recognized as a key driver of fast diffusion [33–35]. Hence,
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animate individuals to mention the innovation to others should be at the core of all marketing
strategies.

In a similar, more recent study, Ambrosius et al. [17] discuss the diffusion of organic farm-
ing in the case of Dutch pig farmers. The foundation of the model is a socio-spatial network of
pig farmers with different sized farms and farming styles. Moreover, there exists a measure of
similarity between farmers in terms of farming style, farm size and whether to sell to organic or
conventional food markets. In case two farmers in an interaction are similar, their attitude to-
wards the innovation converges and vice-versa. By modelling a realistic meat market, they show
that the most important factor to adopt organic farming is the actual demand of organic meat and
therefore increasing the profit margin. This decision process of the farmers in the model is out-
lined in detail in a previous work of Ambrosius et al. [22] and shows that, although being mostly
influenced by the consumer demand, the diffusion also can be guided by directly addressing the
heterogeneous groups of farmer with different farming styles.





Chapter 3

Theoretical Background

Designing a model concerning the innovation diffusion in smallholder agriculture requires de-
tailed background information about various related topics. This chapter provides an information
base and literature review on which the later design decisions of the model are based. Firstly, rel-
evant information on Tanzania, as an example for an SSA country, is presented which influences
the structure of the ABM. This follows a summary of the most relevant findings of innovation
research. Eventually, the base concepts of ABM as well as the most important frameworks to
implement an ABM are presented.

3.1 Tanzania
The United Republic of Tanzania (Tanzania) is a sovereign Sub-Saharan country which is situated
in East-Africa and borders the Indian-Ocean [36]. Tanzania has a population of about sixty million
people, which makes it the largest East-African country by population. Furthermore, as many
states in this region, the largest part of the population is young (below 25 years of age) caused by
the high fertility rates. The official languages are Swahili and English, however, many regional
dialects and languages exists, which may differ radically between different regions of the country.
Most of the residents follow a Christian religion followed by a Muslim belief [18].

Administration

Tanzania is governed by an elected president and a cabinet. An exception is Zanzibar, which is an
autonomous island state in the Indian ocean, which has its own parliament. The United Republic
of Tanzania, which includes mainland Tanzania as well as Zanzibar, is divided into 31 regions,
each with its own administration as shown in figure 3.1. Furthermore, regions are divided into
a total of 169 districts where each district contains its own district council. Large urban areas
and cities are considered as districts themselves. Therefore, there are different types of districts,
namely Cities, Municipalities, Towns and "plain" districts. These districts vary a lot in terms of
population count and area.

Districts are split further into wards. The term "ward" does mean something different in urban
and rural districts. While in urban districts a ward is normally a set of streets, in rural districts
a ward is composed of villages. Villages can than be further divided into Hamlets, which is
the smallest settlement group in Tanzania. Administratively, a village is the smallest considered
structure. There exist some exceptions to this structure, in which the administrative division does
not follow the above explained logic (e.g. the capital city Dar es Salaam) [4, 37]. The Tanzania
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Figure 3.1: Map of Tanzania with marked districts Kondoa and Kilosa, in which the ongoing field study of
the University of Zurich is located. Source: https://www.openstreetmap.org/

National Bureau of Statistics provides geographical data of administrative areas up to a ward
level [4].

Economy

Compared to other countries in this region, Tanzania achieved an over-average economic growth
in the last years of about 6% per year [18]. Only the recent pandemic stopped the growth rapidly,
but it is projected to return to its original value in the foreseeable future. The economy of the
Tanzania and its GDP is heavily reliant on the Agricultural Sector which makes up more than
a quarter of the annual GDP. The primary agricultural product is maize followed by variety of
other food crops. Coffee and cotton are the two most produced cash crops with are exported in
large quantities. Most agriculture activity is performed by smallholder farmers [38] which are
organized in farm groups. Furthermore, smallholder farmer household use a large portion of
their harvest as self-sufficiency. Besides agriculture, mining for rare metals and gemstones for
export make up a big proportion of the primary work sector. The secondary work sector is made
of mostly of processing goods from agricultural resources.

Additionally, tourism is a major source of income for some regions of Tanzania, especially
Zanzibar. Other regions which profit from tourism mostly are located in northern regions because
the Kilimanjaro mountain, which is the highest mountain on the African Continent and very
frequently visited by Tourists. Additionally, a number of National Parks are located in this region
which act as tourist attractions too.

Poverty

Although the country has a steady decline of people living in poverty, still around a quarter of
the population live below the poverty line [37]. However, the over-average economic growth did
not lead to an equal decrease of people living in poverty. All in all, around 26% of the population
are considered poor (people who are not able to reach their basic consumption need) of which 8%

https://www.openstreetmap.org/
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are considered as extremely poor (people who do not take at least 2’200 kcal in per day, which is
the daily minimum nutritional need of an adult).

These values differ heavily between rural and urban areas as well as different regions. While
the percentage of poor people in urban areas lies just below 16%, in rural areas more than 31%
of the populations is considered as poor. Urban and rural differences can be observed in vari-
ous factors, for example education level, easy access to water or electricity and level of available
sanitation. In all these categories, urban areas perform considerably better than rural areas. Dif-
ferences can also be observed between regions in Tanzania, where the poverty ranges from above
50% to as low as 8%. The poverty of a region correlates in many cases to the level of urbanization
of it, which causes different level of market access. Lower market access has several disadvan-
tages, for example higher transportation costs and less option to sell output to the market. This
can result in heavily fluctuating market prices for goods and rural farmers may be forced to sell
their goods at prices below the actual market price. Low market access in rural regions is mostly
caused by the poor infrastructure in Tanzania. Again, there are major differences between road
and public infrastructure in rural and urban regions [37]. While in urban areas different kinds of
transportation exist, in rural areas the road infrastructure is in a very poor conditions and public
transport is unreliable [39]. Therefore, the level of travel by inhabitants of these regions is rather
low [40]. For farmers, this lack of reliable transportation means is very problematic as they are
not able to sell their products in reasonable time or acceptable prices. As a result, either they
have to sell their harvest below market-price due to the dependency on transporter or the harvest
goes bad if no acceptable seller is found in time. Hence, the lack of transportation possibility and
overall bad road infrastructure lead to inefficient farming in those regions.

Even though many programs to reduce poverty exist, the decline of poor people in Tanzania
slowed down in the last years. The poverty percentages decrease overall, however, in absolute
numbers more people live in poverty than before [37]. This is caused by an high population
growth - especially in rural areas. Due to the lack of old-age insurances in these areas, it is com-
mon that children are considered as such an insurance and a bigger family is planned. This results
in a viscous circle, as these children than grow up and live in poverty.

Ongoing Field Study to Reduce Food Insecurity

This thesis is embedded in an ongoing field study of the University of Zurich in Tanzania analysing
the adoption of novel on-farm storage methods [5, 7]. The field study is situated in two districts
of Tanzania shown in figure 3.1. In the previous phase of the project, the advantages of improved
on-farm storage were analysed in a field study with over a thousand participating smallholder
farmers. They provided households with hermetic storage bags which is an inexpensive on-farm
storage technology. Hermetic storage bags allow harvested grains to be stored in a, from atmo-
spheric oxygen sealed, way which lead to the suffocation of vermin contained in the harvested
crops. Hence, the post-harvest loss is minimized in contrast to the conventionally used storage
techniques.

Without adequate storage option, farmers are forced to either sell their harvest shortly after
harvest or store crops but risk damage by rodents or other types of pests. This leads to an over-
supply of crops right after the harvest and a consequential market price drop. Consequentially,
crop prices rise steadily until the next harvest. Farmers, which could not store enough crop for
self-sufficiency, are forced to buy overpriced grains which leads to food insecurity.

In a randomized control trial, the research team found evidence that the seasonal food in-
security was significantly reduced in household using hermetic storage bags. With SMS-based
surveys, they found that especially during lean season, the proportion of household suffering
food insecurity could be reduced by 38% on average. However, even though the advantages of
hermetic storage bags are undisputed, adoption rates remained low which must change in order
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that food insecurity can be reduced on a large scale.

3.2 Innovation Research
Diffusion of innovations (DoI) has been researched for more than a century. Everett Rogers is
accounted for as the popularizing this theory in 1962 [10]. DoI describes the adoption process
of a social system of an new product over time. At its core, Rogers defines DoI to be universal
processes of social shift rather than be caused by peculiarities of the innovation itself. Hence, it
is possible to abstract the diffusion process from the innovation itself and define more generic
approaches.

There are certain key features Rogers and other researches have defined which are of value to
this thesis and explained in more detail in the following sections.

3.2.1 Key Components
Rogers defined four main components of DoI which cause the diffusion to happen in a particular
manner [10].

Innovation At the core of the process lies the innovation itself. An innovation is an object which
is perceived as new by potential adopters. It is important to note that the innovation itself must
not be entirely new, just perceived as new by intended consumers. The key characteristics of an
innovation, which influence its diffusion, are its relative advantage for the adopter, its complexity,
its compatibility with already existing objects in the same system as well as its testability by po-
tential adopters. The perceived sum of these characteristics decide whether an individual adapts
or rejects an innovation. The less uncertainty in each category is present, the likelier an adoption
may be. Hence, reducing uncertainty should be a priority when releasing an innovative product.

Communication Channels According to Rogers, the final adoption decision is not only based
on your own preference but largely influenced by interactions with other individuals in your
social system. Potential adopters share information about the innovation via various channel
in order to reach mutual understanding of it. Different types of communication exists which can
either be one-way channels, like mass media, or two-way channels, like known as word-to-mouth
communications.

Time Prior to Rogers, most behavioral research neglected the importance of time on the adop-
tion process. Adoption does not happen at an instant but is continuous over time. Most notably,
time is prevalent in the innovation to decision process which is the interval between first knowl-
edge of the innovation to the opinion-formation of the potential adopter.

Social System DoI does not happen in a vacuum but is embedded in a social system. A social
system is a set of interrelated units which try to accomplish a common goal [10]. As diffusion of
an innovation is located in a social system, it is influenced by the social structure of said system.
For an innovation to be successful and prevail, it must reach a certain level of adoption in a social
system which is called the "critical mass". Failing to reach this leads to a non-sustainable adoption
and the innovation is lost over time and not adopted by the majority. Additionally, the type of
social system, its "culture", influences to chance of widespread adoption heavily.
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3.2.2 Innovation-Decision Process
The innovation-decision process presented by Rogers consists of five different phases which fol-
low each other mostly chronologically. This process outlines through which stages an individual
undergoes when deciding over the adaption of an innovation. In figure 3.2, the different stages
of the decision process are shown and summarized. This process happens at the micro level of
potential adopters.

In the knowledge (or awareness) stage, an individual first hears about an innovation through
different communication channels. Rogers differentiates between three types of knowledge of
an individual. Awareness-knowledge is the simple knowledge about the existence of an inno-
vation and lies at the foundation of the further process. How-to-knowledge describes how to
use the innovation correctly and could influence the adaption decision in a later stages. Lastly,
principles-knowledge may not be important for the decision process but could cause the individ-
ual to discontinue using the innovation.

During the persuasion phase, an individual forms his own opinion of the innovation. The pos-
itive or negative attitude towards the innovation is based on the knowledge gained in the first
stage as well as the subject feeling of the individual regarding the innovation. In this step, is in-
formation obtained by "friends" or trusted peers is relevant as on average this type of information
is considered more trustworthy.

At this point, the individual makes a decision whether to adopt or reject an innovation. Both
decisions must not be final as they can be changed later on, based on newly obtained knowledge.
Rogers defines two types of rejection: active and passive rejection. While in passive rejection,
the individual simply does not consider adopting an innovation at all, in active rejection, the
innovation was tried or evaluated but could not convince the individual. An active rejection may
also happen in a later stage when already using the innovation but discontinued after a while.

In the implementation stage, an individual, who decided to adopt the innovation, actually starts
using the innovation as it is intended. During this stage, the effectiveness and usefulness of the
innovation is still actively evaluated by the individual. If the innovation cannot convince the
adopter, it may be still actively rejected and decided to discontinue to use it.

Eventually, in the confirmation stage, the adoption decision already happened. However, the
adopter now searches for information to support his decision. On average individual in this
stage are more receptive to information which justifies their decision than contradicting one. The
attitude of the social network of an individual concerning an innovation may also influence the
final continued usage decision of an potential adopter.

3.2.3 Diffusion Process on a Macro-Level
The previous section introduced the innovation decision process which outlines the adoption
process on a micro-level. Additionally, it is possible to analyze a typical innovation diffusion on a
macro-level. Two properties of this process are interesting to point out: the rate of adoption and
the different types of adopters.

Rate of Adoption

The rate of adoption indicates the speed of the innovation diffusion. Hence, it resembles the
percentage of the population which adopts an innovation over time. Figure 3.3 shows the typical
S-shaped curve for the adoption rate.

First, only few individuals adopt the innovation. However, by increasing communication via
various channels, the rate of adoption starts to grow exponentially after some time. The percent-
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Figure 3.2: Visualized Innovation-Decision Process According to Rogers.

age of adopters in the population where the curve becomes exponential is referred to as "critical
mass". After this point, the innovation diffuses on its own and does no longer need active market-
ing efforts. Reaching a higher percentage of adopters, the curve begins to flatten until the slowest
adopters in the population use the innovation. Hence, reaching the "critical mass" rapidly is a ma-
jor task in the process of introducing an innovation. Especially, in the beginning, a well defined
marketing strategy is needed to reach this threshold.

One possible approach is to convince opinion leaders in the society to spread favourable in-
formation about the innovation in the system. Opinion leaders are individuals which have more
influence on other participants than average. Furthermore, they tend to be more communicative
over different channels and reach more potential adopters in shorter time.

Adopter Types

In the last section, the concept of opinion leaders was introduced. However, the individuals can
be more generically grouped into five groups. The main difference between the groups is their
respective time of adoption. Opinion leaders are mostly included in the first two adopter types.
Figure 3.3 shows the frequency of each adopter type. Note that the distribution follows a normal
distribution and correlates with the market share over time curve. The critical mass is reached at
the conjunction between early adopters and the early majority.

Innovators Innovators are the first 2.5% of the population which adopt an innovation. They
have a high willingness to experience new ideas and overall low risk aversion. In contrast to
other types of adopters, they are willing to take the risk that the innovation is unsuccessful and
make a loss. On average, innovators are over average communicative about the innovation and
try to convince other groups to adopt the innovation. Mostly, innovators have a thorough (tech-
nical) understanding of the innovation. Innovators have a variety of contacts outside of the social
system in which an innovation is introduced.

Early Adopters Early adopters pose the second type of adopters. Still, they are opinion leaders
like innovators. Compared to innovators, they are more integrated in the targeted social system
of the innovation. Moreover, they have a good understanding of the innovation and pose as role
models for later types of adopters.
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Figure 3.3: Distribution of Adopter Types and s-Shaped Adoption Curve According to Rogers.

Early Majority When the critical mass for an innovation diffusion is reached, the early majority
begins deciding and adopting an innovation. They no longer are opinion leaders but are well
integrated in the system and further facilitate diffusion. Furthermore, their adoption decision is
based on lower risk tolerance than previous types and based on their personal advantage by it.

Late Majority The late majority is more sceptic of the innovation. They are also well integrated
in the system but they have fewer resources compared to previous groups. Therefore, the only
adopt innovations with low risk and low uncertainty. Often, their decision is based on social or
economic pressure to accept an innovation not to feel left out.

Laggards Lastly, laggards may adopt an innovation. However, at this point the adoption rate
already decreased significantly. They are often conservative and isolated in the social system.
Additionally, their resources are even more limited than the late majority’s and therefore they are
not willing to take any risks when deciding whether to adopt an innovation.

3.3 Agent-based Modelling
With agent-based models, complex systems are modelled as a result of interactions between au-
tonomous individuals [41]. In complex systems, many heterogeneous elements and their actions
cause macro-level dynamics of the whole system. Even though the ideas behind ABM were found
many years ago, only computational power from the last years made large-scale ABM simulations
possible [42].

While traditional modelling techniques, for example equation-based modelling, try to grasp
all system dynamics in a top-down approach by determining rules which are valid for the whole
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system, in ABM only the actions at a micro level are defined. Furthermore, equation-based mod-
elling expects change to be continuous and the individuals to be homogeneous. However, con-
sidering models based on individual entities, their actions mostly are discrete and the individuals
are heterogeneous.

In ABM, the modeler has to define decisions and interactions at an agent-level in contrast
to other modelling approaches where macro-level phenomena must be directly modelled. In
many cases, for example in early research, it is straightforward to deduct agent-level properties
and behaviour from the real-life data. However, deriving aggregate behaviour and actions of
a complex system as a whole is not as simple in most cases. Many trends or rules may not be
determinable at the beginning, which may lead to a model distortion when not taken account for.

Another concept in which ABM differs from other modelling methods, is that it does not
have to be deterministic but decisions can be based on randomness. In the real world, decisions
of individuals may be mostly deterministic, however, they are influenced by many contextual
factors which cannot all be incorporated in a feasible manner into the model. Especially, in early
stages of a model design, not all factors and parameters of a system, which lead to a final decision
of an agent, are known. This set of parameters can be taken account for in a best-effort approach
by making decision be based on randomness or probability to some extend.

3.3.1 Core Entities in Agent-Bases Models
Agents At the base of an ABM lies the agent entity. An agent is an autonomous individual in the
simulation with a specific behaviour [41]. It is possible to define different types of agents, which
take different roles in the simulation, like as an example buyers and sellers in a market simulation.
The agent’s behaviour and its properties are determined by the modeler. However, this behaviour
does not have to be deterministic but include different levels of randomness. Circling back to
the market simulation example, the modeler may define that buyers contact sellers regularly.
However, the agent "decides" on his own, which buyer to contact and at which time. This may
lead to system changes, which are unbeknownst by the modeler at design time.

Environment The second core component of ABM is the environment in which the simulation
happens [41]. Environments can take any form in a simulation, but most common are spatial
or network environments. Spatial environments define a simulation space which implements
some sort of coordinate system and introduce the concept of physical location in a model. On the
other hand, in network environments agents do not have a physical location, but are represented
as nodes in a network and their respective location is determined by the set of connections to
other agents. Environments may have their own properties and affect the agent’s interactions. If
implemented, environment may change over time caused by agents interacting with them.

Interactions An ABM consisting of only agents and environments without interactions be-
tween those entities would not provide any value. There are five general types of interactions
which are found in ABM [41]. Agent-self and agent-agent interactions, are actions of an agent
with itself or another agent respectively. Environment-self and environment-environment inter-
actions are the counterparts of the previous interaction types for environments. Even though,
not as intuitive as agent interaction, environment ones can happen in different models, for exam-
ple diffusion models, where the neighbouring environments influence each other. Lastly, agent-
environment interactions are very frequent and cover all action between those two entities. In
a sophisticated ABM, there are various interactions of all types found which complement each
other.
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3.3.2 Verification and Validation
For a model to be a useful abstraction of a real-world system, it is important that its outputs are
accurate and representative. This can be achieved in two steps by verifying and validating the
model [14, 41]. It is essential that a model passes both criteria as otherwise it is not accurate.

Verification Verifying a model is the process of checking it for its correctness. To test this cri-
teria, only little knowledge of the underlying system must be known as implementation errors
should be found. There exists different ways to check for correctness, but most common is test-
ing. After implementation, unit-tests are added which each test for a single part of the model to
work correctly. Later, user testing should ensure that the single parts work together as well. Fur-
thermore, the mapping of the conceptual model to the model implementation can be checked and
verified that the correct logic is executed. In summary, the verification process checks whether
the conceptual model is correctly implemented but not whether the conceptual model is accurate
itself.

Validation Although a model may be verified, it is not guaranteed that it actually corresponds
to the real-life system. Validation can be split into four parts [14]. Microvalidation is the check if
behaviour of individual agents and environments reflect their real-life analogs. In Macrovalda-
tion, it is tested whether the macro patterns in the model are congruent with the ones in the real
system. In ABM which need input data, an empirical input validation should be performed to
ensure that the input data corresponds to the real world and is not biased. Eventually, an empir-
ical output validation is needed to check the plausibility of the output of a model in relation to
the real world. Especially, if comparable data sets exist, the output can be checked with these for
its validity. In summary, the validation process checks whether the conceptual model is accurate
abstraction of the real world system and results from it can be considered as plausible.

3.3.3 Agent-based Modelling Frameworks
There are multiple ways to implement an agent-based model. While a proprietary solution cer-
tainly provides most flexibility, using a proven ABM framework allows for standardization and
profiting from the knowledge of various developers. Furthermore, frameworks have an opti-
mized performance tailor made for agent-based modelling. Considering that ABM’s main focus
lies on agent acting independently, it is apparent why performance is important for large-scale
simulations with a model.

This section introduces a selection of the most frequently used ABM frameworks when im-
plementing a model. They all provide similar functionality for a straightforward development of
ABM models. However, depending on the type of model and simulation context, certain frame-
works offer an advantage in some areas. Hence, after the initial design of an ABM, the selection
of a suitable framework is the foundation of a successful implementation.

Repast

Repast is a framework for ABM originally developed at the University of Chicago in 2001 [24].
Over time Repast evolved from a single modelling framework into a suite containing various
tools for ABM. At this point in time, the Repast Suite 1 consits of Repast Symphony, Repast for High
Performance Computing and the newest addition Repast for Python, which is still in its beta phase.
The source code of all Repast components is publicly available and actively maintained.

1https://repast.github.io/
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Repast Symphony is the further developed version of the original modelling framework. It is
based on Java 2 and at its core provides class library for implementing and visualizing ABM simu-
lations. Its flexibility, ease-of-use as well as its extendability led to a wide-spread adaption. Repast
for High Performance Computing is a C++ version of the framework which is optimized for ABM
simulation on large clusters of computers. The increased performance of this framework com-
pared to Repast Symphony is achieved by parallelisation. Lastly,the Repast for Python framework is
a port of the original Java based library to Python 3. Due to the widespread adaption of Python,
especially in research, this should lower the initial hurdle to use Repast.

NetLogo

NetLogo is programming language and modeling environment for agent-based simulation which
was first released in 1999 [13,23]. As Repast, NetLogo is a open-source software and based on Java.
As of now, NetLogo is the most prevalent ABM software and is actively developed since 1999 by
different contributors. NetLogo provides a wide range of tools and functions which allow for an
efficient model implementation.

The agent model of NetLogo is quiet straightforward. An agent is referred to as a "turtle"
and poses the main entity of the model. "Turtles" are able to actively move and interact with
other entities. "Patches" make up the environment of the model world. Each patch has a precise
location but in contract to "turtles" cannot change it. A "link" is the third type of modelable entity,
which are used to connect different "turtles". "Turtles" and "links" can be of different types, each
with their own set of attributes. Lastly, the "observer" acts as the controller of the simulation and
tunnels the instructions of the modeler to all entities.

The instructions for a simulation are defined by NetLogo primitives which either can be "com-
mands" or "reporters". The difference between these two types of procedures, is solely that
"reporter"-procedures return a value after its execution, while "commands" do not. Hence, in
the remainder of this thesis, both terms will be referred to as "procedures". The modeler defines
all instructions for the simulation in such procedures. In other terms, they form the business
logic of the simulation. The NetLogo environment introduces a sense of time into the model with
"ticks". Each "tick" poses as an abstract time interval and every tick NetLogo starts the predefined
procedures. Moreover, if the core functionality does not suffice, a set of extensions is available for
more complex instructions.

Additionally, NetLogo provides out-of-the-box interface UI elements which are directly acces-
sible from the source code of the model. This reliefs the modeler from implementing an UI. Figure
3.4 shows a basic NetLogo interface. Furthermore, a variety of tools can be used to individualize
the model and match.

AnyLogic

AnyLogic is a business-grade modelling solution for agent-based-modelling as well as discrete-
event and system dynamics simulations [43]. Originally developed at the St Petersburg Technical
University, the software is licensed and distributed by The AnyLogic Company since 2000.

AnyLogic offers an immense feature library which exceeds both NetLogo and Repast. Addi-
tionally, as it is not only applicable for ABM but two other types of simulations, it allows for more
complex models. These different modelling approaches are combinable to form large-scale model
in which sub-parts may follow different modelling paradigms. Furthermore, industry-specific ex-
tension libraries are available, like for modelling rail or road traffic.

2https://java.com
3https://www.python.org/
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Figure 3.4: Example of a User Interface of the NetLogo Modelling Application.

Even though the AnyLogic framework provides many means to design and implement so-
phisticated models, it is not open-source and not free-of-use. While there is a gratis educational
version, the functionality is limited. Therefore, the usage rate in research is smaller compared to
NetLogo or Repast.

SARL

SARL is a general-purpose agent-oriented programming language [25]. In contrast to Repast or
NetLogo, SARL is not a fully-fletched framework but a programming language which empowers
efficient agent-based model implementations. SARL presents fundamental abstraction for deal-
ing, among other things, with concurrency, distribution, interaction and decentralization. SARL
incorporates modern software engineering concepts, which are not found in NetLogo or Repast
but are essential for more complex applications.

SARL incorporates the agent-based programming paradigms by having the concepts of "Agent",
"Space", "Capacity" and "Skill". Each agent is an autonomous entity which has a set of skills to
implement its capacity. The capacity is the specification of the agents skills, which is public to
its context. A "space" is an abstraction for defining interaction environment for agents, in which
inter-agent interaction as well as interactions of agents with their environment can happen. These
concepts should allow for a straight-forward agent-based model implementation based on mod-
ern software design approaches.

While SARL provides the means to implement an agent-based model, it does not offer an
execution framework like Repast or NetLogo. However, SARL can be executed on Janus, which
is multi-agent platform, which implements the infrastructural needs of running simulations with
SARL [25].





Chapter 4

Modelling Innovation Diffusion

In this chapter, we introduce an agent-based model for simulating knowledge diffusion in rural
Tanzania. In the first part, the conceptual model is established from findings in the literature
review and in a current field study. Afterwards, the implementation of an agent-based model,
deduced from the requirements of the conceptual model, is described.

4.1 Conceptual Model Design
In this section, we establish the conceptual design for a model of knowledge diffusion in rural
Tanzania. The design decisions are based on findings from the ongoing field study of a research
team of the University of Zurich in Tanzania presented in section 3.1. On-site observations and
interviews revealed important characteristic of the social system in this region which should be
depicted in our model. Furthermore, they are complemented with theory of innovation research
summarized in section 3.2. A model is necessarily a simplification of its real world counterpart
and hence, assumptions have to be made to achieve a simplification. All assumptions concerning
a certain aspect of the model are stated in the corresponding subsections.

4.1.1 Goal of the Model
Eventually, the model will be used to compare the effectiveness of different roll-out strategies
of new products in rural Tanzania. As these new products are considered as novelties in the
environment of interest, they can be regarded as innovations [10]. Therefore, the goal is to design
a model which depicts the diffusion of innovations in rural Tanzania in order to simulate different
intervention strategies and measure their success.

The proposed conceptual model will depict the geographical and socio-economic character-
istics in rural Tanzania. The core of the model is the abstraction of the interaction between dif-
ferent modelled parties. This is central because diffusion of innovation happens mainly through
communication of individuals in their social system [33–35]. Furthermore, the demographic and
geographic properties of Tanzania with relevance for the diffusion of innovation are established
and applied to the model design. All design decisions, the reasoning behind them, as well as their
implementation, will be explained in the following subsections.

4.1.2 Model Components
As introduced in section 3.3, agent-based models are composed of agents, an environment and
interactions. Figure 4.1 shows our final conceptual model. The separate parts of the model are
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Figure 4.1: Conceptual model of the simplified social system of smallholder farmer households in Tanza-
nia together with an intervening research team introducing the innovation. It contains all entities and their
relations necessary for our agent-based model.

explained in detail in the following subsections.

4.1.3 Agents
Person A person is an abstract entity in the model which poses as the super-entity for all natural
person-like entities. Farmers and chiefs are two sub-classes of a person which are explained in
more detail later. A person is a central agent in the model because they form an opinion about
the innovation over time. Eventually, a person makes the decision whether to accept or reject an
innovation. In the classic diffusion of innovation process by Rogers, a person is referred to as an
individual adopter [10].

Each person has a specific location in the model which impacts its relation to other peers in
the system. In this case, the location of an individual is defined by the village it is living in.
Furthermore, depending on the type of agent, it has different types of relations with other peers.
As each agent is unique, they have some characteristics making them distinguishable from one
another.

Farmer A farmer is a sub-entity of the person entity. Farmers can be regarded as the central
type of agent in the model as the final goal of the model is to evaluate the effect of different
intervention strategies on them. The target of each strategy is to convince the farmer agent to
adopt the innovation and to do it as quickly as possible.

In this model, a farmer can be considered equal to a farming household as no differentiation
between different members of a household is made. Since there cannot be partial adoption of an
innovation in a single household of storage techniques, there would be no significant benefit from
modelling different members per household. Furthermore, introducing different members each
with individual behaviour, would lead the model to a complexity which would make it more
difficult to make generalizable observations. Lastly, it is common that Tanzanian household are
headed by a single persons which makes the final decision [4].

Nevertheless, a farmer represent a typical but simplified farmer in rural Tanzania. In this
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model, all farmer agents produce the same crop and hence potentially consider adopting an in-
novation impacting cultivation of this crop. Important to note is that the type of crop or product
which is produced by the farmers does not matter as long as the innovation provides an improve-
ment in the production of the specific crop. Hence, each farmers poses as a potential adopter of
the innovation and goes through the innovation-decision process from section 3.2.2. In addition,
every farmer interacts on a regular basis with other farmers and chiefs. There are three types of
interactions with other agents which are explained in detail in subsection 4.1.8.

From on-site observations, the individual integration into the social system differs signifi-
cantly between farmers. Whereas most farmers tend to have a similar amount of friends, single
farmers in each village are very well connected to many people across other villages. Hence, this
minority of farmers can be considered as opinion-leaders in the diffusion of innovation process.

Chief The chief-agent is the second sub-entity of the person-entity and quite similar to the
farmer-entity. It has the same attributes and behaviour as standard farmers. In contrast to stan-
dard farmers, it poses as the head of a farm group. Hence, a chief is also a potential adopter of
the innovation.

In terms of Rogers diffusion of innovation, a chief agent acts as an opinion leader. Firstly, due
to its position as farming group leader, it has more interactions with other individuals in average.
Furthermore, due to their position as farming group leaders, they tend to have more influence on
other individuals.

4.1.4 Farm Groups

A farm group is a group of farmers which regularly meet in order to talk about agriculture related
topics. All members of a group are involved in the same type of farming, for example wheat
or live-stock. During the regular group meetings, they exchange on the one hand news and
information about farming but on the other hand socialize in general. Each farm group has a
chief which is elected by the community in most cases.

In practice, in many cases farmers are members of different farm groups based on their type
of farming. Most farmers do not just perform one type of farming but multiple [4]. Furthermore,
it is possible that farmers from multiple villages belong to the same farm group. However, to
reduce the complexity of the model, it is assumed that all farmers of one farm group live in the
same village and that all farmers of a village are part of the according farm group.

4.1.5 Decision Process

Each agents undergoes a decision process whether to adopt or reject the innovation over time.
The process of an agent in our model is based on a simplified version of the decision process
proposed by Rogers [10]. First, we neglect the possibility that a farmer stops using the innovation
after he adopted it previously. The potential innovations of interest in this thesis are new storage
technologies, which are proven to bring substantial benefits [5, 7, 9]. Furthermore, as an adoption
does not bring further costs, a discontinuation of usage would be illogical for the farmer.

Hence, our decision process is composed of three stages. First, an agent is unaware of the
innovation, then it enters an consideration phase and finally, it may enter an adoption phase.
Whether or not an agent adopts the innovation is based on his personal attitude towards the
innovation as well as on interactions with fellow agents.
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4.1.6 Villages
As introduced in section 3.1, villages are considered the second smallest form of administrative
unit; only hamlets are smaller. Each farmer and chief in the model is living in exactly one village.
Moreover, farmers living in the same village are considered to be member of the same farm group.
For this model, we assume that all inhabitants of a single village know each other well enough to
potentially mention the topic of the innovation during an interaction.

Villages are very heterogeneous in terms of size and number of inhabitants. Due to the lack
of statistical data on villages, preliminary observations during the field study indicate that on av-
erage villages have between thirty and hundred inhabitants with some outliers exceeding these
limits. Considering the average reported household sizes by the national census - around 5 mem-
bers per household - on average villages contain between 6 and 20 households [4]. Furthermore,
it is stated that approximately 90% of households are engaged in agriculture in included regions
of the field study. Thus, we consider all household in a village to be engaged in the same type of
agriculture for simplicity reasons.

4.1.7 Research Team
The research team is the agent in the social system which wants to establish the new innovation.
By communicating with other agents in the system, the research team introduces knowledge into
the modelled social system from outside. The research team achieves the diffusion of their inno-
vation by executing intervention strategies targeting farmers of the model. Each strategy may be
composed of different intervention types which themselves are configurable.

Intervention Strategy

An intervention strategy is a predefined process defining how to address potential adopters in
the social system. A strategy is composed of various instructions. Some instructions specify the
timing of communications, defining intervals or specific time points at which an intervention
should happen. Other instructions consider the different types of potential adopters and state
which set of adopters should be targeted. In regards to be coherent with the running field study,
we define two types of adopter targeting.

Direct Advertisement In this approach, potential adopters, namely farmers and chiefs, are di-
rectly addressed by the research team. The type of interaction can be manifold, for example
visiting the addressee in person, contacting them via telephone or send information via an SMS.
This approach requires the research team to know potential adopters in person. However, not
all adopters in the social system must be known just a subset of them. Intuitively, a larger set of
known adopters leads to a broader spread of the knowledge of the innovation. Furthermore, the
type of direct advertisement affects the uncertainty reduction of the adopter. While a generic SMS
influences the adopter relatively less, a in-person communication potentially provide more value
to the adopter in reducing his uncertainty towards an innovation as question may be answered
bilaterally. An SMS based survey was used in previous field studies and in the currently ongoing
field study of the University of Zurich in Tanzania with success [5, 7].

Training of Trainers Training of trainers (ToT) is an intervention type frequently used to in-
troduce knowledge to a society in developing countries in a sustainable manner [44, 45]. In ToT,
experienced trainers educate selected individuals from the population to a level that they can
train others themselves and thus no more external involvement is needed. Especially in areas in
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which there is a shortage of professionals, this approach has been used with success [46]. Further-
more, it is shown that ToT has the potential to accelerate innovation diffusion [45,46]. The selected
individuals in our ToT are chiefs of farm groups which are trained how to use the innovation and
teach the members of their farm group themselves. This procedure is also currently used in the
ongoing field in which this thesis is embedded [5, 7].

4.1.8 Interactions
The concept of interactions in this model capsules all types of communication between different
agents. This can either be in-person, in written form or through any technical means. Important
to note is that, like in the real world, the topic of the innovation of interest is not addressed in
every interaction. Whether or not the innovation is discussed is determined by various factors
and the involved participants.

In order to collect all different types of interactions and communications, the participants of
the field-study in Tanzania were observed and questioned. The key findings are the following:

• Only a negligible percentage of the population in the areas of relevance have access to
internet-enabled devices.

• The usage of mass media or social media is therefore not of much significance in information
diffusion. Stated by the national census, with about half of the household owning a radio,
radio transmission could be used as a mass media tool [4]. However, radio transmission
cannot be initiated by average individuals in the system under normal circumstances.

• A bigger percentage of the population have access to simple mobile phones, which only
allow making calls and send/receive SMS. This finding is supported by the results of the
Tanzanian Census which stated that only around half of all households own a mobile phone
[4]. However, the percentage presented by this report is likely to be below the actual value
as the adoption of mobile phones increased in the last decade.

As a result, most communication inside the system happens one-to-one and not one-to-many.
Therefore, only one-to-one types of interactions are included in this model except the farm group
meetings, in which a chief addresses multiple farmers. Due to this, the knowledge diffusion in
the model can be reproduced more easily as there is no indirect communication where not both
parties are known.

Following are the selected three types of interactions which happen between agents in our
model. These interactions happen besides each other and are independent.

Inter-Village Interactions

The first type of interaction are communications between farmers which live in different villages.
This interaction happens between farmers who know each other like friends or relatives. In our
model, both participants of an interaction are either farmers or chiefs.

In the model, both participants are considered as equals. Therefore, each agent is equally
influenced by the opinion of the other one regardless whether the agent is a chief or a farmer.
How often this type of interaction happens, differs from agent to agent.

Intra-Village Interactions

This type of interaction includes all communications between farmers in the same village. In other
terms, the participants in this interactions can be viewed as neighbors which are both involved in
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the same type of farming. Similarly to inter-village interactions, in intra-village interactions both
parties are considered as equals and have the same influence on the opinion about the innovation
of the counterpart.

Farm Group Meetings

The third type of interaction, which happens in the modelled system, is a farm group meeting.
These are regular meetings in which farm groups gather to discuss agriculture related topics as
described in section 4.1.4. The discussion are lead by the chief of the respective farm group.

In contrast to inter- and intra-village interaction, in these meetings not all participants are
affected in a similar manner. According to Rogers, we define that chiefs can be considered as
opinion leaders which impact the opinion of other individual over-average [10]. Hence, when
a chief is interacting with other farmers and addressing the topic of the innovation, his opinion
influences the other ones substantially more. This can either be in a positive or negative direction.

4.2 Implemented Model
Based on the conceptual model, an agent-based model was implemented using the NetLogo
framework. In this section, we present how conceptual features are implemented in detail and
how a user can interact with our model.

We chose the agent-based modelling framework NetLogo for our model implementation. As
outlined in section 3.3.3, the NetLogo software contains all needed components for our model
out-of-the-box. In summary, the most important features needed for this model are multi-agent
modelling options, straight-forward agent linking possibilities and an intuitive user interface.
NetLogo matches all these criteria and due to its widespread usage, many third-party extensions
and auxiliary materials exist. Moreover, since NetLogo is an open-source software and based on
Java, our model is executable on all common operating systems.

NetLogo provides an out-of-the-box concept of time in a model with ticks. Hence, it runs in an
iterative manner repeating the same set of methods at each tick. Therefore, we use this concept
and define one tick to be equal to one day in real life as this is a more intuitive measure of time to
the user.

Furthermore, as this model is considered a proof of concept, it is documented thoroughly in
the following sections as well as the source code itself. Additionally, the implementation follows
the latest coding guidelines for it to be easily extendable and modifiable. All parts of the algorithm
were built in a modular manner in order that minimal changes are needed to exclude certain parts
of simulation logic if they are not needed. This is also intended to make the model effortlessly
more or less complex and complicated if it was necessary for certain predictions [19].

The behaviour of simulations is controlled by values of parameter as well as pseudo-random
decisions of agents. Whereas the randomness is determined by a random-seed of NetLogo, the
parameter are set by users of the model [23]. The most important parameter are introduced in the
following sections, but in total there are more parameter. The complete list of all parameter and
their description is located in the appendix in table A.1. There are parameter which are only used
during the setup of the model, for example the number of villages, and parameter which influence
the running simulation. In the latter case, the values of the parameter may be changed while the
simulation is running. Furthermore, we differ between semi-fixed and freely variable parameter.
A parameter is semi-fixed when it may be changed but it should not be done regularly. These
values are mostly determined early on and not changed afterwards as the behaviour of the model
may change to an extend which would make new results incomparable with previous ones. These
parameter define the core behaviour of the model and the environment. Freely variable parameter
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are intended to be changed between simulations or even during the run of a simulation. Two
examples for this type of parameter are the mentioning or adoption probability of farmers.

Our model includes three different decision actions which are executed by an agent: determine
whether to mention the innovation during a conversation, determine how much its own attitude
changes after an innovation and the final adoption decision. All these actions are implemented
according to the same principle. Each action has a configurable base value which determines the
outcome of the action. This value is influenced by various features of the agent, his counterpart
or the environment. How much each feature influences the action can be determined with pa-
rameter. This gives the user the possibility to adjust all actions with ease to his wishes, extend
them with more influencing features or even neglect all influences and only use the base values.
All three actions are explained in more detail in the following sections.

4.2.1 Agent Implementation
As determined in the conceptual model, a model should contain three types of agents: farmers,
chiefs and a research team. According to the NetLogo implementation guidelines, these agents are
all breeds of turtles [23]. Hence, they can have there own set of variables and their own behaviour.

In figure 4.2, the design of farmers and chiefs is visible. Farmer agents are displayed with a
matching farmer design . Chiefs are shown as distinctive red flags and thus are easily distinguish-
able from other agents. Lastly, the research team is not visible to the user as it would not provide
any additional value.

Farmers and chiefs have a set of variables which impact the innovation diffusion in the system.
These variables are:

attitude Defines the attitude of an agent towards the innovation. The higher the value, the more
likely is the adoption of the innovation.

attitude-decline-rate The rate in which the attitude of an agent declines over time if no interac-
tions mentioning the innovation are happening.

adopter-type Assigns the agent a set of characteristics which are relevant in the innovation adop-
tion process. Based on Rogers adopter types, there exist 5 types: innovators, early adopters,
early & late majority and laggards.

innovation-related-interactions-count Counts the number of interactions of an agent in which
the topic of the innovation was mentioned.

adoption-state Defines in which phase of the adoption process an agent resides. The phases are:
unaware, in consideration and adopted.

Each agent has an attitude towards the innovation, which either can be good, bad or indif-
ferent. This attitude is influenced by other agents during interactions in any direction. It reflects
the interest of an agent to adopt the innovation and is implemented as a numerical value in the
model. Furthermore, when the agent has no conversation related to the innovation with other
agents, his attitude slowly decreases over time until the next interaction happens.

Before the start of a simulation, each agent is assigned an adopter type. This variable is, in its
core, based on the different adopter types defined by Rogers [10]. Hence, each agent is assigned
one of the five adopter types with a likelihood based on their proportion of the total population as
visible in figure 3.2.3. Besides their time to adoption, Rogers identified each adopter type group
by their levels of talkativeness, risk aversion and economic wealth. Therefore, this variable of an
agent can be considered as the aggregated characteristic of these traits. The adopter type is used
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during the determination if the innovation is mentioned during a conversation, by how much the
attitude of an agent is changed during an interaction as well as the adoption decision itself.

Lastly, the innovation-related-interactions-count variable counts the number of interactions
of agent during which the innovation is mentioned. In contrast to the attitude, this value is strictly
increasing over time. Besides its usage for analytic purposes during a simulation, this variable
influences the mentioning probability of the innovation during an interaction.

4.2.2 Village Generation
In order to implement the concept of villages as described in section 4.1.6, we used the patch
component of NetLogo. All villages together form the environment of the model which is a
quadratic field composed of a large number of patches. Villages have a white background and
their limits are marked by a black border as shown in figure 4.2.

A process creates the villages based on a set of parameter in a random manner. The parameter
which affect the village are the following:

avg-nr-of-farmers-per-village Defines the average number of farmers inhabiting a village.

nr-of-villages Defines the number of villages which form the environment of the modelled sys-
tem.

As the process of the village generation is random, each setup leads to newly looking environ-
ments. The process works in two steps. First, each village is given a unique ID. Then, a random
patch is selected for each village and given the same ID. This identifies this patch as belonging to
the village. Afterwards, while there are still patches which do not belong to a village, a random
patch with an ID together with one of its neighboring patches without an ID are selected. The
ID is then passed on the neighboring patch and hence the village has grown by one patch. This
is repeated until all patches are allocated to a village. Afterwards, the borders of the villages are
marked in order to give the user a visual impression of the village distribution.

In a second step, the number of farmers per village are determined. As villages grow in a
random manner, there exist major differences in the size of the villages which reflects the hetero-
geneity of village sizes as stated in section 4.1.6. It is important to note that the size of a village
in the model does not reflect the geographical size of the village but rather relates to the number
of possible inhabiting farmers. The number of farmers therefore should correlate with the size of
the village. For this reason, the average number of patches making up a modelled village is deter-
mined. Then, the ratio between the value of the parameter avg-nr-of-farmers-per-village and the
mean number of patches per village is determined. Lastly, for each village the number of inhab-
itants is calculated by multiplying its number of patches with the ratio determined beforehand.
Thus, villages differ greatly in their size and number of inhabitants but on average are consis-
tent with the value specified in avg-nr-of-farmers-per-village and nr-of-villages. Eventually, the
algorithm adds one chief agent at the center of each village.

4.2.3 Construction of a Social Network
There are three types of social interactions any agent can have in this model: inter-village, intra-
village or farm group meeting interactions. Hence, each farmer must have a social network of
friends, neighbors and a farm group over which these interaction happens. This leads to the
problem of determining which agent knows which other agents. This, like the type of interactions,
can be divided into three parts. The complete modelled network can be subdivided into inter-
village friends networks, neighbor networks and farm group networks.
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Figure 4.3: Screenshot showing the same environment as in figure 4.2 but with visible network links.

At the base of all three network lies the link component of the NetLogo framework. A link
enables the model to connect agents either in a directed or undirected manner. In this model, all
networks are undirected as it is not possible that one farmer is befriended with another one but
not vice-versa. Furthermore, similarly to agents, different breeds of links may coexist. Hence,
every type of network has its own type of link breed which makes them easily distinguishable. In
order not to congest the user interface of the model, all links are hidden. To highlight the need for
hiding the links, a model with visible links is shown in figure 4.3. In addition, each link possesses
a timestamp when it was last used (an interaction happened between the two connected farmers)
in order to prevent accidentally interacting over the same link multiple times in the same interval.
Even though theoretically possible in the real world, the likelihood of it happening is negligible
and could lead to undesirable and unrealistic behaviour in the model.

The topology of the resulting complete network composed of all three types of sub networks
has heavy clustering between nodes which are from the same village and sparse links between
nodes from different villages. These clusters can be considered as farmers with near geographical
location in the real world. Hence, information is likely to spread reasonably faster in a cluster
than between clusters.

For the generation of the three-part complete network of the model, one parameter is available
to the user. This parameter can be adjusted before the model is loaded.

avg-nr-inter-village-friends Defines the average number of inter-village friends of a farmer.

Inter-Village Network

The first type of social network contained in the model is the inter-village network over which
interactions as specified in section 4.1.8 happen. Determined by the value of the parameter avg-
nr-inter-village-friends, each farmer and chief is given a number of friends from other villages
(friends score). As observed in the current field study, not all farmer have the same amount of
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Figure 4.4: A Poisson probability distribution with a mean of 3. This distribution is utilized in various
processes of our model.

friends. However, the majority of villagers share a similar number of friends which is represented
by the parameter avg-nr-inter-village-friends. Only a small number of farmers have significantly
more or less friends than the average number of friends.

Poisson Distribution Hence, we suggest using a Poisson distribution to determine the friend
scores of all farmers and chiefs. A Poisson distribution is a discrete probability distribution of
the number of independent events in a fixed interval [47]. Furthermore, with increasing number
of modelled events, a Poisson distribution resembles the typical bell-shaped curve of a normal
distribution. However, in regard to the friends score, two aspects suggest using the Poisson dis-
tribution over a normal distribution. Firstly, the friends score is a discrete variable as it is not
possible to have 2.5 friends. Secondly, the friends score cannot be negative which is another fea-
ture of the Poisson distribution. NetLogo provides the command random-poisson (µ) which returns
a random variable according to the probability of a Poisson distribution with mean µ [23].

The friends score of a single farmer is accordingly chosen by using the random-poisson com-
mand with Poisson distribution

X ∼ Pois(avg-nr-inter-village-friends) (4.1)

An example Poisson distribution with a mean of three is shown in figure 4.4. With a percent-
age of around 22.5%, the likelihood of choosing the number two and three are the highest and
together make up almost half of all chosen values. However, with a percentage of roughly 2%, it
is also possible to end up with a value of seven. This provides the demanded heterogeneity in the
number of inter-village friends of each farmer.

After each farmer is given a friend score, randomly chosen farmers from different villages are
linked. The process starts by selecting a random farmer which has a friend score above 0. Then,
a random set of other farmers from different villages are chosen with the size of the friend score
of the current farmer. Links of breed inter-village friend are added between the current farmer
and all his friends. Lastly, the friend score of all other selected farmers is reduced by one. This
procedure is repeated until no farmer remains with a friend score above 0 or in very rare cases,
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that no farmers from other villages can be found with a friend score higher than 0 themselves.
Eventually, a network of inter-village friends over the whole environment is established.

Intra-Village Network

Another option in which knowledge diffuses in the modelled system is via an intra-village net-
work which is formed by farmers and chiefs living in the same village. The generation of the
"neighborhood" network is straightforward. For each village in the system, all farmers and chiefs
are linked by intra-village links and thus each intra-village network has a full mesh topology. In
case, it is decided at a later stage that not all villagers know each other, the process is implemented
in such a way that this is easily modifiable.

Farm Group Network

The last type of network is the farm group network. In this case, this network is composed of
the same farmers and chiefs as the according intra-village network for a given village. However,
while an intra-village network has a full-mesh topology, the farm group network has a star topol-
ogy in which the central node is the chief. Furthermore, it is important to differentiate between
the intra-village network and the farm group network as the type of interactions as well as the
their frequency differ.

4.2.4 Implementation of Interactions
As outlined in the previous section, for each type of interaction, there is a certain type of network.
In this section, the implemented logic of interactions between agents is explained. An interac-
tion can be split into two parts. Firstly, an algorithm decides when and between whom the next
interaction will take place. Afterwards, another algorithm decides based on a set of parameter
and variables whether the innovation topic is mentioned and how the participants are affected
by it. For the latter one, there is no difference between different interaction types. However, the
determination of the next interaction varies between the intra-/inter-village interactions and the
farm group meetings.

Inter- and Intra-Village Interaction Frequency

This section explains the algorithm which handles the calculation when an agent will make his
next interaction. A rudimentary approach would be to define a parameter which states in which
intervals an agent interaction with another one and leave no space for decision by the agent him-
self. However, this does not reflect the real world as, at best, an average interaction frequency may
be determined. Still this does not mean that these interactions are uniformly distributed over time
and follow a strict interval. Hence, we let the agent himself decide when and with whom it wants
to interact next.

For this decision process, following parameter are provided to the user:

avg-intra-village-interaction-frequency Defines the average time span which elapses between
intra-village interactions started by an agent.

avg-inter-village-interaction-frequency Defines the average time span which elapses between
inter-village interactions started by an agent.
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As the process is equal for intra- and inter-village interactions, following definitions are valid
for both. Nevertheless, both interaction types have separate intervals defined by the respective
parameter.

After each interaction, an agent decides when he wants to make the next interaction in the
future. In order to introduce a certain amount of randomness, the time until the next interaction
is not fixed but decided by a probability distribution. As in the determination of the "friend
score" of an agent, the Poisson distribution is used for this reason [47]. However, as the time
until the next interaction cannot be zero, a special variant of the Poisson distributed is used: the
zero-truncated Poisson distribution. In this distribution all values are greater or equal to one.
Furthermore, as time is considered as a discrete variable in in this model, a normal distribution
could not be applied.

Hence, after each interaction, the time interval until the next interaction is determined by
choosing a random variable following a zero-truncated Poisson distribution

X ∼ Pois0(avg- ∗ -village-interaction-frequency) (4.2)

Important to note is that the calculated interval only defines when the agent is starting an
interaction. Thus, an agent may be contacted by another agent at any time. This leads to the
expected theoretical probability of an agent to interact with another one at any given time to be
higher than

1

freq
(4.3)

which is the actually the probability that an agent starts a conversation at any given time. In this
equation, freq is the fixed parameter value of avg-*-village-interaction-frequency.The actual expected
probability of an agent interacting with another agent at a random point in time, is

1

freq
+

|fra|∑
i=1

1

freq ∗ |fri|
(4.4)

The term |fra| is the number of friends of the agent under observation and |fri| is the number
of friends of friend i. Therefore, the probability that an agent interacts at any given time with
another agent is influenced by the behaviour of other agents too in this model. Considering the
real world, this reflect the probability of calling a friend or being called by a friend.

Selecting a Counterpart The previous process explains how an agent decides when he will
start the next interaction. However, it is not decided who is his vis-à-vis for the next interaction.
The agent makes this decision just before his next interaction. The potential counterparts are
determined by the linked peers of the agent over the according networks established beforehand.
It then randomly picks one of the linked agents on the correct network and starts a conversation
with it. Furthermore, this procedure is implemented in such a way that the same link cannot
be executed twice at the same point of time. Now, the next step is to determine whether the
innovation is mentioned during the interaction.

Farm Group Meeting Frequency

The frequency of farm group meetings is devised in an similar manner as the frequency of inter-
and intra-village interactions. After every meeting the chief selects the time until the next meeting
based on a zero-truncated Poisson distributed variable. The only difference is that the mean of
the distribution is determined by the value of the parameter avg-farmgroup-meeting-frequency.
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avg-farmgroup-meeting-frequency Defines the average time span which elapses between farm
group meetings.

farmgroup-meeting-attendance-percentage Defines the percentage of farm group members which
actually attend the meeting.

As in reality, we added some fluctuation to the percentage of farmers attending the meeting.
This is determined by the value of the parameter farmgroup-meeting-attendance-percentage.
Before the meeting starts, the farmers, which attend the meeting, are chosen according to the pa-
rameter at random. Besides not attending, farmers which are excluded, could also be considered
as farmers which indeed attend the meeting but do not pay enough attention to the chief due to
distractions. By the nature of the topology of the underlying network, only the chief interacts
with the participants and participant do not interact with each other.

Mention Probability

As in reality, having a conversation with another person does not guarantee that a certain topic is
mentioned. We incorporate this in the model by determining a probability, whether the innova-
tion is mentioned during an interaction based on characteristics of the two participating agents.
The probability is based on a base probability given by a parameter. This base probability is influ-
enced by the adopter types of the participants, the number of previous interactions mentioning
the innovation and whether the innovation is already adopted by the participant. A set of param-
eter is available to the user with which he can adjust the mentioning probability calculation.

avg-mention-percentage Defines the base probability of the innovation being mentioned in an
interaction. For example, if set to 10%, the innovation is mentioned on average in one out
of ten interactions.

avg-farmgroup-mention-percentage Defines the base probability of the innovation being men-
tioned during a farm group meeting.

max-influence-adopter-type Defines the maximum influence of the participants adopter types
on the mentioning probability in percent.

max-influence-prev-interactions Defines the maximum influence of participants previous, innovation-
related interactions on the mentioning probability in percent.

opt-number-previous-interactions Defines the optimal number of previous innovation related
interactions for an agent, which did not adopt yet, to mention the innovation again.

max-influence-adoption-state Defines the maximum influence of the participants adoption state
on the mentioning probability in percent.

The process which determines whether the innovation is mentioned is implemented in a mod-
ular way. This allows, if the simulation context requires it, to exclude or include certain influences
on the mentioning probability with minimal change. Furthermore, new influences may be added
effortlessly to the model.

Firstly, the process confirms that at least one of the participants of the interaction already is
aware of the innovation. Naturally otherwise, it would be impossible to mention the innovation.
Afterwards, the influences of the participating agents characteristics are evaluated.
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At the start of a simulation, each adopter type is given a numerical value from 1 to 5 (innovators
to laggards) and the average of the types of both participants is calculated in this step. Based
on the assumption that two innovators interacting are more likely to mention the innovation
compared to two laggards, the higher the average score is, the more improbable the mentioning
of the topic is. On the contrary, a lower score indicates that the innovation is more likely to be
discussed. The final mentioning probability is then adjusted by the influence of the adopter types
in relation to the value of max-influence-adopter-type. To illustrate this with an example: if max-
influence-adopter-type is set to 10%, avg-mention-percentage is 50% and two innovators interact
with each other (maximum mentioning likelihood), the final mentioning probability becomes 55%
(50% + 10% * 50%). Thus, the maximum influence is in relation to the base mentioning probability.

Another possible influence on the mentioning frequency is the number of previous points of
contact of the participants with the innovation. We implement the model in a way that an agent
who talked more about an innovation is more likely to mention it again. Nevertheless, if an agent
talked a lot about an innovation and has decided not to adopt it yet, he may become annoyed
and stop mentioning the innovation. Hence, we model the influence according to a bell-shaped
probability distribution which is centered around the parameterized value opt-number-previous-
interactions. Finally, the influence on the mentioning probability is determined by the obtained
value in relation to the max-influence-prev-interactions parameter.

Similarly, the adoption state of the participants influences the mentioning probability. We as-
sume that people who adopted an innovation tend to address it more in conversations. Regarding
the decision process proposed by Rogers, agents which adopted the innovation are either in the
implementation or confirmation stage [10]. In both stages, individuals try to actively reduce their
uncertainty or justify their adoption and thus tend to communicate more with others. Hence, if
both agents involved in an interaction are adopters, the final mentioning probability is adjusted
by the value of max-influence-adoption-state.

Based on the final mentioning probability including the various influences, it is decided whether
or not the innovation is mentioned in the current interaction. The probability whether the innova-
tion is mentioned during a farm group meeting is equally calculated. The only difference is that
the base probability is set by the parameter avg-farmgroup-mention-percentage.

If the innovation is mentioned, the impact of the conversation on the agents attitude towards
the innovation is calculated in the next step. Otherwise, the current interaction process ends and
the simulation continues.

Impact on Participants

After it is determined that the innovation will be brought up in the current interaction, the im-
pact on the attitude of both participating agents is calculated. Intuitively, two agents interacting
can be impacted differently. As an example considering the adopter types, an innovator may be
more heavily influenced by positive information about the innovation than a laggard who may
be more sceptical. We define four influences which affect the base attitude change of an agent.
Like the mentioning calculation process, this process is implemented in an modular manner so it
is adjustable or extendable with ease.

Not all conversation about an innovation are positive. Maybe someone has found unfavourable
information about the innovation, has had a bad experience trying it, or generally tends to be
very sceptical towards novel ideas. This is referred to negative word-of-mouth (WoM) [16, 31].
Hence, the model includes a parameter which determines a percentage whether a conversation is
unfavourable and during each interaction, a positive or negative change is chosen accordingly.
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Secondly, depending on the other participant, one’s attitude may change differently. This is
implemented during interactions with a chief. As chiefs are considered normally as more experi-
enced and trustworthy by other farmers, their opinion has an above average impact on the other
participant in the interaction. This goes both ways, a bad report about the innovation has a more
negative influence on the attitude as normal and vice-versa for positive information. The different
levels of influence of the agents are controlled by parameter adjustable by users.

The change in an agents attitude is influenced by assigned adopter type as well. The base
assumption behind the following process is that the attitude of an agent is positively impacted by
a favourable conversation about the innovation and negatively by unfavourable one no matter
which type of adopter it is. However, the magnitude of the attitude change in any of the two
directions is influenced by the adopter type. This is based on adopter characteristics which state
that in average laggards are more receptive of negative information while innovators tend to trust
positive information more as it supports their already existing attitude [10, 22]. Hence, during
negative WoM, the effect of the conversation on the attitude is increased for late adopter types
and decreased for early adopter types. The same calculation is done for positive WoM but the
other way around.

Lastly, the opinion of an adopter tends to have more weight in average as an adopter already
has hands-on experience with the innovation. This effect is incorporated into the model by check-
ing the adoption state of the other participant in an interaction and assign more weight to its
opinion if it adopted the innovation already. There is no negative impact if the counterpart has
not adopted the innovation yet. The absolute impact of this criteria is controlled by an adjustable
parameter.

4.2.5 Adoption Decision
Up until now, it was shown how agents interact, and their attitude towards the innovation changes
over time. However, the actual adoption decision making of an agent was not discussed. Research
shows that this decision is not very straightforward but based on a variety of social, economical
and personal factors, some of which are not graspable in theoretical models [10–12,20–22]. Hence,
we try to incorporate variables of different fields on which the decision is finally based.

Similar to the previous interaction related processes, this decision is based on a base adoption
probability which is influenced by various aspects of an agent. Another important aspect is the
timing of the decision. We implemented this decision as a repetitive action of an agent over
time. The average interval between the decision makings of an agent is defined by the parameter
avg-adoption-decision-interval. However, similar to the reasoning explained in the interaction
section, this decision is not made strictly after x days but follows a varying pattern. Hence, after
each (negative) decision of an agent, the time interval until his next decision is determined by a
zero-truncated Poisson distribution:

X ∼ Pois0(avg-adoption-decision-interval) (4.5)

When the point in time of the decision is reached, the agent decides whether or not to adopt
the innovation. Trivially, this decision is more likely to turn out positive the more an agent knows
about an innovation or as defined by Rogers, the smaller the uncertainty of an agent becomes [10].
We determine three types of influence on an agent’s adoption decision: its attitude towards the
innovation, its adopter type and the adoption rate in his direct social network. A set of parameter
is available with which the adoption decision of an agent may be influenced.
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avg-adoption-decision-interval Defines the average interval length between agent’s adoption
decision making.

base-adoption-percentage Defines the base probability of an agent adopting an innovation at a
given time.

max-influence-adopter-type Defines the maximal influence of the agents adopter type on the
adoption probability in percent.

max-influence-adoption-rate Defines the maximal influence of the adoption rate of the agent’s
social network on the adoption probability in percent.

max-influence-attitude Defines the maximal influence of the agent’s attitude on the adoption
probability in percent.

An agent decides according the the value of avg-adoption-decision-interval in a set interval
whether it wants to adopt or reject an innovation for the time being. The base probability of
adopting the innovation is determined by the value of base-adoption-percentage parameter. This
probability is relatively influenced by a set of variables.

The adopter type of a potential adopter influences the base adoption probability positively
for adopter types innovator, early adopter, early majority and negatively for the type late majority,
laggards. The relative impact is determined by the parameter max-influence-adopter-type.

Furthermore, as many studies showed, the social network of an individual has a significant im-
pact on the adoption likelihood [10, 12, 33–35]. Thus, during a decision, the proportion of friends
and neighbors who adopted the innovation is determined and impacts the adoption probability
to an extend specified in the max-influence-adoption-rate-friends parameter.

Lastly, the attitude of an agent influences the adoption decision. Attitude can either be positive,
negative or indifferent towards the innovation. In our model, we approximate the direction of the
attitude by comparing it with the number of previous innovation related interactions of an agent.
If there were no influences on the attitude change during an interaction as explained in section
4.2.4, these two variables would grow evenly except to negative WoM. However, the various
influences allow these two variables to diverge to a certain extend. Hence, these variables are
compared during the adoption decision. When the attitude is significantly lower than the number
of previous interactions (suggesting that in average interactions were not very convincing), the
base adoption probability is negatively impacted. Likewise, if the attitude is significantly higher,
the adoption probability is positively impacted. When both value are approximately equal, the
base probability is not affected.

During a simulation with our model, the user interface gives visual feedback on the adoption
rate in the modelled system. Agents who adopt the innovation are marked green. Villages in
which all inhabitants adopted the innovation, also are coloured green as shown in figure 4.2.
Lastly, there are UI elements which indicate to the user how the diffusion is progressing in the
model. This feature should be disabled for performance reasons during larger simulations.
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4.2.6 Intervention Strategies Implementation
According to the defined intervention strategies in the conceptual model in section 4.1.7, two
intervention types are initially needed. Figure 4.2 shows how interventions can be manually trig-
gered by a user on the user interface. At least one intervention must happen during a simulation
as otherwise no knowledge of the innovation is present in the modelled system. Both types of
interventions can be triggered at any point in time during a simulation.

For the direct advertisement of the innovation, a user can define the number of villages and the
percentage of the population in these villages which should be addressed in the advertisement.
The villages and its inhabitants are chosen at random by the model. Afterwards, their attitude is
changed positively by a fixed amount defined by a user-adjustable parameter.

Likewise, in the training of trainers, a user can define the number of chiefs which will be
addressed by the next intervention. These chiefs then are selected at random and their attitude is
positively modified by a fixed amount defined by user-adjustable parameter.

Naturally, triggering interventions manually is not feasible for large simulations or simula-
tions which are executed multiple times. The functionality provided on the user interface is
intended for demonstration and trial purposes. In order to run intervention strategies over an
interval of time, the source code can be easily extended with intervention plans which are au-
tomatically executed. However, this requires the user to have basic knowledge of the NetLogo
scripting language.
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Analysis

In the previous chapter, we introduced an ABM which simulates innovation diffusion among
smallholder farmer households in rural Tanzania. Now, we simulate and analyse the innovation
diffusion when different intervention strategies are applied. This should provide a guideline
for future applicants of this model on how intervention strategies could be compared in terms
of effectiveness and efficiency. First, in order to retrieve significant results from the model, we
perform a validation and verification. Then, we define five exemplary intervention strategies
and compare the adoption rates in the respective simulations. Furthermore, we investigate how
results from the model could be used in order to predict performance of intervention strategies.

5.1 Verification and Validation
As explained in section 3.3.2, verifying a model means to check its correct implementation. Vali-
dation, on the other hand, is the process of reassuring that the model actually corresponds to the
real-world.

Verification The model was tested extensively to check that its behaviour complies with the
conceptual model as well as the implementation decisions. The model’s source code contains
plausibility tests and further checks in all critical methods for the simulation. They check whether
variables and parameter become invalid due to wrong behaviour during a simulation or due to
implementation errors. In addition, the model was tested qualitatively in detail where variables
were monitored throughout simulations. Furthermore, as many parameter are based on averages
rather than absolute and unique values, variables were recorded over several runs in order to
test whether they approximate the desired average value. One of these checks is shown in figure
5.1. It shows the distribution of adopter types of farmers which should approximately follow the
adopter distribution proposed by Rogers [10]. By the frequency of the different types, we can
assume adopter types are set correctly at the start of a simulation.

Validation Validation was performed by continuously challenging the conceptual design choices
with feedback from the supervisor and with findings from the ongoing field study. However, the
field study must progress first to find more precise values for parameter and thus a second, more
detailed validation must be performed at a later stage. Figure 5.2 shows the averaged adoption
rate of multiple simulations. The s-shaped curve suggests that the adoption rate in the model
correlates with the theoretical adoption rate reviewed in section 3.2. Hence, the macro behaviour
of the model seems plausible.
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Figure 5.1: Distribution of assigned adopter types to 10’000 farmers with our model as an example of the
verification process.

Figure 5.2: S-Shaped curve of the adoption rate of farmers in a random simulation with our model.

5.2 Comparison of Intervention Strategies

The conceptual model defines two types of intervention types: direct interventions and training
of trainers. In this section, we define five possible intervention strategies which contain a combi-
nation of both intervention types which are executed repetitively.

These five intervention strategies are defined in table 5.1. Each intervention type is defined
by a set of variable parameter. Direct interventions have a frequency, which defines the interval
between interactions. During each interaction, the farmers of multiple villages are targeted. The
number of villages is defined by the parameter Nr. of Villages. During each interaction, these
villages are selected randomly. In addition, % of Inhabitants defines the percentage of the inhab-
itants which are addressed in the interaction. For the training of trainers intervention type, one
variable controls the interval between trainings and the other one controls the number of chiefs
which are trained during a single interval. Hence, strategy 2 is defined as followed: each week,
70% of the farmers of ten villages are targeted and one chief is trained.

Strategies 1-5 define possible intervention strategies each with a different specifications. These
strategies are now compared with the help of our model. Due to their differences, the strategies
should lead to varying rates of adoptions. Naturally, the model can be easily extended with other
types of intervention strategies which are based on different variables. However, the process of
their simulation and subsequent effectiveness analysis can be done in a similar manner.
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Direct Intervention Training of Trainers
Frequency Nr. of Villages % of Inhabitants Frequency Nr. of Trainings

Strategy 1 weekly 15 70% - -
Strategy 2 weekly 10 70% weekly 1
Strategy 3 weekly 5 70% weekly 3
Strategy 4 weekly 5 70% weekly 5
Strategy 5 - - - weekly 7

Table 5.1: Definition of five different intervention strategies composed of different combinations of direct
intervention and training of trainers.

5.2.1 Simulation Setup
As only preliminary results from the ongoing field study are available on the time of writing this
thesis, the parameter values for the following simulations must be approximated. The values of
all parameter are listed in table A.2 in the appendix. They were determined by a qualitative analy-
sis of simulation runs in which the plausibility of the results was considered. Furthermore, results
from previous field studies were used to compare these results and adjust parameter accordingly.
As a consequence, the obtained results from this simulations have to be interpreted with caution
and are rather intended as guidelines for later simulations with our model.

We use the tool BehaviourSpace of NetLogo, with which it is possible to automate simulations
and vary parameter between runs [23]. In addition, each simulation run uses a different random-
seed so that the independent decision of agents differs between runs. To minimize the total sim-
ulation duration, the execution is parallelized where each simulation is run on a different core of
the processor.

For all strategies and all separate simulations of each strategy, the same environment of farm-
ers and villages was used. Although the environment generation is implemented as a random
process, using different environments in each run would make a meaningful analysis of the re-
sults impossible as the number of changing variables would be too high. A feature of NetLogo
allows to export and import an environment which allows to run all simulations in the same one.
The generated environment for all upcoming experiments contains 100 villages with 1051 farmer
and chiefs in total.

5.2.2 Results
Each intervention strategy defined in table 5.1 is run 100 times with a different random-seed. Each
run simulated the innovation diffusion for one year.

In each simulation, the number of farmers with the states adopted, in consideration and unaware
as well as the number of distinct villages with at least one adopter are determined each day. The
runs are then grouped by the applied intervention strategy and an average rate of adoption is
determined. The results are shown in figure 5.3.

Figure 5.3 shows that there are significant differences between the selected intervention strate-
gies in terms of adopters after one year. In subplot (1), it is visible that strategy 2 outperforms the
other ones. In general, strategies with more direct interventions tend to perform better. However,
note that strategy 2 intersects with strategy 1 only after almost 300 days as the adoption curve
is steeper. While strategies with more direct intervention reach people faster at the beginning,
training of trainers interventions impacts are only perceptible after some time which is visible in
subplot (2) in figure 5.3. This is valid for the number of villages with adopters as well, as con-
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Figure 5.3: Plots comparing the performance of five intervention strategies based on different metrics. The
values are the averaged results of one hundred simulations per intervention strategy.
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Values Unit
Direct Intervention Interval 7 14 21 days
Number of Villages 5 10 15 20 villages
Percentage of Inhabitants 100 %
Training of Trainers Interval 7 14 21 days
Number of Trainings 1 3 5 trainings

Table 5.2: Different parameter values which lead to a total of 108 varying intervention strategies used for the
effectiveness prediction experiment.

tinuous direct interventions tend to spread knowledge about the innovation more. Moreover,
all curves in subplot (2), except for strategy 5, follow a zigzag pattern which reflects the repeti-
tive direct interventions targeting unaware farmers. Note that analyzing the absolute numbers
of adopters and other metrics would not be meaningful as the parameter of the model are not
fine-tuned according to the real world and such results would not provide any added value.

5.2.3 Effectiveness Prediction
In table 5.1, we define five intervention strategies which are defined by values of five variables.
Compared to testing such strategies in the real world during a field study, determining their ef-
fectiveness by running simulation on our model is economically inexpensive. However, finding
optimal values for all variables of a strategy requires non-negligible computational power as mul-
tiple runs for each variation must be made. Therefore, we have investigated whether the creation
of a predictive model is possible based on results obtained by simulations.

First, we created a sample data set by simulating innovation diffusion repetitively with our
model. For this reason, we defined for all parameter of an intervention strategy a set of values as
shown in table 5.2. The percentage of the inhabitants is fixed to 100% because to its correlation
to the number of villages parameter. On average 70% of 100 villages equals to 100% of 7 villages.
This leads to a total of 108 different strategies each differing by at least on parameter value.

The values of the parameter (listed in table A.2) as well as the environment are the same as
in the previous section. For each strategy, 50 runs were executed which resulted in 5400 separate
simulations. Additionally, the data was averaged by strategy which resulted in second data set
with 108 data points.

Linear Regression In a first step, we tested whether a linear regression model can be used to
predict the effectiveness of an intervention strategy based on the parameter determined in table
5.2. The resulting coefficients and the R2 from a linear regression based on the simulated data are
shown in table 5.3. The ordinary least squares method was used for the linear regression [48].
Furthermore, we introduced a constant to the regression as the number of adopters never was
zero. The dependent variable is the number of adopters while the parameter of the strategies are
independent variables.

The coefficients obtained by the linear regression seem plausible on the first glance and all co-
efficients are significant. Both coefficients of the frequencies are negative as longer intervals lead
to overall less interventions and thus less adopters. Moreover, the positive values of the remain-
ing two parameter suggest that an increase in addressed villagers and trainings result in more
adopters. Intuitively, the standard deviation is on average higher in the regression on averaged
data as less observations can be used for the regression. Furthermore, both R2 would suggest that
the model predicts values reasonably well. Nevertheless, further statistical tests on the data and
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All Averaged
R2 0.895 0.950

Coefficient SD Coefficient SD
Direct Intervention Interval -6.432 1.255 -6.432 0.231
Number of Villages 7.941 0.047 7.941 0.236
Number of Trainings 4.237 0.049 4.237 0.808
Training of Trainers Interval -0.888 0.166 -0.888 0.231
Constant 200.6 0.047 200.6 6.102

Table 5.3: Table showing coefficients of a linear regression fitted to the simulation results of our model.
Even though, the R2 values are indicating a good fit, the underlying data does not comply to necessary
requirements for a linear regression approach.

the results reveal that a linear regression may not be a suited modelling technique to represent this
data. The residual values of the linear regression model should be distributed randomly for all
independent variables [48]. However, this is not the case with this data suggesting that the vari-
ables are not linearly related. Mathematical transformations of dependant as well as independent
variables do not resolve this problem.

Linearity would suggest that, for example, each additional included village would lead to a
linear increase in the number of adopters. However, considering that after each intervention,
agents start interaction with each other and innovation diffusion is happening through WoM,
suspecting non-linear exponential relation is more reasonable. In this case, using a linear regres-
sion to predict effectiveness would over- or underestimate outcomes depending on the parameter
combination.

Non-linear Regression The variables in the linear regression do not comply with the underly-
ing assumptions in order that the predicted results are reliable. Hence, we applied two different
types of regression on the data set in order to obtain more reliable predictions and demonstrate
how machine-learning algorithms could be applied on simulation results.

Random Forest Regression is a supervised learning algorithm which consists of a set of uncor-
related decision trees [49,50]. When predicting a value, each decision tree proposes a result based
on its previous training on data. The output of the algorithm is the average of these preliminary
results. As it combines multiple decision trees, a random forest regression tends to outperform
single decision trees. Furthermore, the random forest algorithm is able to predict values based
on non-linear correlations. For our experiments, we use the RandomForestRegressor of the Python-
based machine-learning library scikit-learn [51]. We use a set of 50 estimators in our random forest
and train the RandomForestRegressor on the data set introduced at the beginning of this sections
with 5400 data points.

The second machine-learning algorithm used for the following predictions is gradient boost-
ing of decision trees [52, 53]. "Boosting" is the technique of continuously improving the used esti-
mators by adapting to errors of previous estimators. In contrast to the Random Forest algorithm,
in which all decision trees are built independently, the estimators are generated subsequently with
this approach. Furthermore, gradient boosting analyses the residuals of the estimated values for
possible patterns and applies these findings to the next estimator which should outperform the
previous one. For this experiment, we use the XGBoost library in Python which provides all
needed functionality and has good performance records [52]. The XGBRegressor is set to 300 esti-
mators, a maximal depth of 4, and a learning rate of 0.01. It is trained on the same data set as the
RandomForestRegressor.
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Mean Absolute Error Root Mean Squared Error
Linear Regression 15.096 20.12
Random Forest 15.504 20.988
XGBoost 13.577 18.667

Table 5.4: Measured error values of the linear, Random Forest and XGBoost regressions showing that
XGBoost has the best performance in predicting intervention strategy success.

Comparison In order to evaluate the performance of the linear, Random Forest and gradient
boosting regressions, we generated a second data set with our model which contains 4050 entries.
The parameter of the intervention strategies were altered in value to create new combinations
which should be predicted by the regressions. The errors of these predictions are shown in table
5.4.

The XGBoost predictions are more accurate compared to the ones of the Random Forest and
linear regression. The linear regression outperforms the Random Forest algorithm slightly. How-
ever, as the data does not follow a linear relation, the results of the linear regression are not
reliable. Considering the possibility that the relation is exponential due to network effects, we
assume that the linear regression underestimates results more heavily with larger values. The
average number of adopters for all simulations in the test data lies at 221 farmers. Hence, an ab-
solute error of 13.577 farmers suggests a relative error of about 6.1% for predictions when using
XGBoost. The root mean squared error of the regression is approximately 30% higher than the
mean absolute error for all regression suggesting that there is some variation in the magnitude of
errors.

Furthermore, all regression types state that the parameter Direct Intervention Interval and
Number of Villages are significantly more important for the predictions than Training of Train-
ers parameter. Both non-linear regressions rate the feature importance of the direct intervention
parameter at around 95% while the other parameter only are responsible for 5%. This suggests
that the predictions rely mostly on the direct intervention values.
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Discussion and Conclusion

After summarizing the necessary background information on innovation diffusion, agent-based
modelling and Tanzania, we developed a ABM simulating innovation diffusion among small-
holder farmer households. Afterwards, we used said model to analyse the effectiveness of differ-
ent intervention strategies and their effect on innovation diffusion. In this chapter, we combine
all these findings to answer the research questions of this thesis and challenge our findings. Even-
tually, we propose directions for future research on this topic.

6.1 Addressing the Research Questions
In the first chapter of this thesis, we proposed two research question which this thesis should
answer. In this section, we answer both with findings from the previous chapters.

Answer First Research Question The first research question to be answered is:

RQ1 How can innovation diffusion among smallholder farmer households be modelled in Sub-
Saharan regions?

To answer this question, we reviewed the latest research on related topics in section 2 and
summarized the most important aspects in section 3. Furthermore, the ongoing field study of
the University of Zurich in Tanzania, where they have direct contact with smallholder farm-
ers, allowed to get first-hand insights into the local social system which lies at the base of our
model. Based on these findings, we constructed a conceptual model for an agent-based mod-
elling approach explained in chapter 4. We defined that the core driving forces behind diffusion
of innovation are the farmers and especially the interactions between them [33–35]. Hence, we
determined three types of interactions over which WoM recommendations happen in Tanzania:
inter-village interactions, intra-village interactions and farm group meetings. All of them play
a role in the overall diffusion as all interactions between agents eventually reduces uncertainty
about the innovation [10]. This resulted in a conceptual model which captures all properties of
the smallholder farmer households system in Tanzania in order to implement an ABM of it.

We chose an agent-based approach due to various reasons. Even though innovation diffusion
being a macro-level process, each individual decides for itself whether or not to adopt an innova-
tion [10]. Furthermore, very limited information of system processes in rural Tanzania is available
and therefore, higher level simulations producing useful results are not possible to implement at
this time. ABMs tend to be very flexible for adjustments which is critical when modelling a system
of which many aspects are not known yet.
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As a result, we mapped the generic ideas of the conceptual model to an agent-based imple-
mentation. Besides the sophisticated generation of the environment replicating the characteristics
of rural Tanzania, the main focus of the model lies on the interaction logic between agents. All
aspects concerning the decision process of an agent are built in a modular manner which gives
users a wide range of possibilities to adjust the model to his demands. Furthermore, all decision
are based on a parametric base likelihood which is influenced by various aspects of the agents
involved. This design reflects the complexity and individuality of decisions of agents. In order to
introduce some variety to the actions of the agents, most actions are happening based on distri-
bution probabilities rather than on fixed, predefined values. We further critically validated and
verified our model to ensure that obtained results are significant [14].

In section 5, we analysed how intervention strategies can be tested with our model. Vari-
ous qualitative and quantitative experiments showed that simulations with our model produce
plausible results. Hence, the model seems to be suitable representation of the smallholder farmer
system in Tanzania. However, more data from the field study is needed in order to fine-tune the
parameter of the model and accurately evaluate its results with observations from the real world.
Due to the implementation of the model, such adjustments should not pose any issues and can be
completed with minimal effort.

In conclusion, we find that innovation diffusion among in smallholder farmer households
can be suitably modelled with an agent-based approach. This type of model allows for much
flexibility which is needed for modelling the dynamic process of innovation diffusion in an region,
which is not researched thoroughly. Furthermore, our tool provides researchers with a cost-effect
option to simulate intervention processes in these regions compared to on-field trials.

Answer Second Research Question The second research question of this thesis is:

RQ2 How can different intervention strategies be evaluated and compared?

Our agent-based model developed in section 4 provides the grounds to test different ap-
proaches on how to accelerate the diffusion of innovation in a system. To test such approaches
in the setting of Sub-Saharan smallholder farmer households, only field experiments or findings
from other research areas could be used. On the one hand, field experiments certainly generate
the most significant results but in return are also very costly and labour intensive. On the other
hand, using research from a different setting is inexpensive however it may not be possible to
map all findings reasonably well due to the discrepancies between the application areas. This gap
is filled with our model. It is representative of the Sub-Saharan smallholder farmer households
system, however, evaluating different intervention strategies is inexpensive. Hence, a user is able
to test the performance of a planned strategy beforehand and already optimize it before testing it
in the real world.

For this thesis, we analyzed two different intervention types which potentially can influence
the attitude of farmers towards an innovation. Direct intervention and training of trainers were
selected as they both are used in the ongoing field study of the University of Zurich. For both
types of intervention, we defined certain parameter which together describe the operation prin-
ciple of a strategy in detail in section 5. Moreover, we defined five exemplary intervention strate-
gies which are composed of both intervention types in various configurations. Even though these
strategies are potentially too rudimentary for real life deployment, they illustrate how potential
strategies may be defined for future users. Parametrization of potential intervention types is im-
portant as it allows further analysis of the results and the comparison between different types and
strategies.

A first qualitative comparison of these five intervention strategies revealed that the configura-
tion of the contained intervention types significantly impacts the outcome in terms of the number
of adopters. While direct intervention reaches a large number of farmers fast, training of trainers
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seems to increase the rate of adoption after some time. We found that the combination of both
intervention types in a strategy produces the best results and highest rates of adoption. Nonethe-
less, these first results must be interpreted with caution as the model must be fitted adequately to
the real world before drawing final conclusions.

In a larger experiment, we used three different approaches to compare the performance of
different intervention strategies. A multi-variant linear regression on the intervention parameter
and the number of adopters proofed not to be adequate as the correlation seems to be non-linear.
Hence, we applied two supervised learning algorithms to predict the performance of the inter-
vention strategies which both are used frequently in machine learning. While the Random Forest
approach performed similarly to the linear regression, the gradient boosting algorithm performed
reasonably well with an average relative error of 6.1%. However, not all parameter of the inter-
ventions were of the same importance. It showed that direct interventions were significantly
more important than the training of trainers approach. Note that this may also imply the pa-
rameter configuration of the model may need adjustments. Nevertheless, we showed that the
application of machine learning on such results is feasible and has potential to be researched in
more detail.

All things considered, intervention strategies can be efficiently compared with the help of our
model. Implementing our ABM in NetLogo allows users to run simulations and test different
strategies with minimal effort. Furthermore, we provide guidance how a potential evaluation of
strategies can be executed by applying different regression techniques as well as a more in-depth
qualitative analysis.

6.2 Future Work
The possibility for future research based on this thesis in manifold. We propose suggestions in two
directions: extension of our ABM and the evaluation of the effectiveness of intervention strate-
gies. In a first step, the model should be adjusted by parameter values obtained from the ongoing
field study to accurately represent the underlying social system. This is key for all future work
based on this model as it allows to draw representative conclusion from performed simulations.
Moreover, the model is built in a very modular manner in order that various features may be
dynamically added or removed. Therefore, new concepts may be easily added to the model with-
out effort. An interesting addition to the model would be to incorporate geographical data of the
underlying environment. The random generation of villages could then be replaced with precise
data which paves the way to model the social system more in detail. This data was not available
at the time of writing this thesis. Modelling the economy in rural Tanzania could be another inter-
esting addition to our model. This could particularly influence the adoption decision as economic
limitations of farmers could be simulated more accurately. Considering the seasonality of food
insecurity caused by the time of harvest, the adoption rate is certainly influenced by the time of
the year.

Furthermore, we implemented two intervention types to accelerate diffusion of innovation
and generated different intervention strategies based on them to demonstrate how their effec-
tiveness may be evaluated and compared. Especially using more sophisticated machine-learning
algorithms in order to analyse the performance of intervention strategies should be examined in
more detail. A common problem for machine learning is the limiting amount of data available
for training a model. However, as our model is able to produce unlimited data, various machine
learning approaches could be used. Moreover, new intervention types can be added to the model
to simulate more elaborate intervention strategies. For example, it could be tested whether fo-
cused targeting of opinion leaders in the social system leads to faster diffusion.





Appendix A

Parameter Definition
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Parameter Name Value
avg-nr-of-farmers-per-village 10
nr-of-villages 100
avg-nr-inter-village-friends 5
max-influence-adopter-type-mention 25%
max-influence-prev-interactions 20%
opt-number-previous-interactions 10
max-influence-adoption-state 10%
avg-adoption-decision-interval 5 days
max-influence-adopter-type-adoption 10%
max-influence-adoption-rate-friends 20%
max-influence-attitude 50%
attitude-decrease-per-tick 0.05
adopter-influence 120%
base-attitude-change 1
base-influence-counterpart 100%
chief-influence 175%
direct-ad-influence 150%
train-chiefs-influence 200%
avg-intra-village-interaction-frequency 4 days
avg-inter-village-interaction-frequency 5 days
avg-farmgroup-meeting-frequency 7 days
farmgroup-meeting-attendance-percentage 90%
avg-mention-percentage 1%
avg-farmgroup-mention-percentage 10%
percentage-negative-WoM 10%
base-adoption-probability 1%

Table A.2: Parameter Settings Used for all Experiments in this Thesis in Section 5.
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