Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

7

BluePIL 2.0: Toward Automated
Deployment and Operation

Alain Kiing
Zurich, Switzerland
Student ID: 18-717-017

Supervisor: Dr. Bruno Rodrigues, Eder Scheid, Simon Tuck
(LiveAlytics), Prof. Dr. Burkhard Stiller
Date of Submission: 27.03.2022

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Bachelor Thesis

Communication Systems Group (CSQ)

Department of Informatics (IFI)

University of Zurich

Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Jiingste Studien auf dem Gebiet der Lokalisierung und Identifizierung von Personen in
Innenrdumen haben gezeigt, dass es verschiedene Méglichkeiten gibt, Personen in Innen-
rdumen zu verfolgen. Solche Lokalisierungstechniken lassen sich in aktive oder passive
Innenraum-Lokalisierungssysteme unterteilen, die eine direkte bzw. keine direkte Verbin-
dung mit dem System benétigen. Die Corona-Pandemie hat gezeigt, wie wichtig und
niitzlich die Anwendung solcher Techniken ist, um mogliche Infektionen von Personen
aufzuspiiren und die Ausbreitung einzuddmmen. In anderen Bereichen ist sie auch fiir
Marketinganalysen von Nutzen. In einer kiirzlich an der UZH durchgefiihrten Masterar-
beit wurde in Zusammenarbeit mit Livealytics ein passives Lokalisierungs- und Identifizie-
rungstool zur Lokalisierung von Gerédten nur mit Hilfe von erkannten Bluetooth-Signalen
untersucht. Die Losung mit der Bezeichnung BluePIL hatte ein funktionsfahiges System
mit méssiger Genauigkeit geliefert. Die zeitaufwendige Bereitstellung, Kalibrierung und
Analyse forderte eine zweite Version, auf die sich diese Arbeit konzentriert. Unter Ver-
wendung neuer Hardware, zusétzlicher mobilen Ladegerdten und durch Hinzufiigen eines
Analysetools mit einstellbaren Parametern wird eine neue Version entwickelt, genannt
BluePIL 2.0. Die durchgefiihrten Experimente haben gezeigt, dass durch BluePIL 2.0
das System verbessert wird, indem es die manuellen Schritte zum Einsatz des Systems
reduziert und die Mobilitdt verbessert. Die Zeit bis zum Start des Systems betréigt im
Durchschnitt 7,32 Sekunden. Dariiber hinaus trigt das Analysetool zu einem besseren
Versténdnis der durchgefithrten Innenraumszenarien bei, indem es eine aktualisierende
Darstellung der verfolgten Gerdte anzeigt und die Moglichkeit bietet, den Pfadverlust-
koeffizienten des Lokalisierungsalgorithmus wéhrend der Datenerfassung zu kalibrieren.
Die echtzeitnahe Darstellung ist so eingestellt, dass sie sich innerhalb von 0,5 Sekunden
aktualisiert. Im Allgemeinen erfiillt BluePIL 2.0 die Ziele in einer anforderungsbezogenen
Bewertung.

1

Abstract

Recent studies in the field of localization and identification of persons indoors have shown
that there are various possibilities to track individuals indoors. Such localization tech-
niques can be divided into either active or passive indoor localization systems, needing
a direct or no direct connection with the system respectively. The corona pandemic un-
veiled the importance and benefit of applying such techniques to trail possible infections
of persons to contain the spread. In other fields, it has also been valuable for marketing
analysis. In a recent master’s thesis at UZH, a passive localization and identification tool
for tracking devices using only passive Bluetooth signals was explored in collaboration
with Livealytics. The solution called BluePIL provided moderate accuracy, which can
be considered to work despite the underlying naturally noisy data. The time consuming
deployment, calibration and analysis yield a second version of it, called BluePIL 2.0, on
which this thesis focuses on. Using new hardware, additional power-banks and by adding
a new analysis tool with adjustable parameters, a new version is developed. The experi-
ments have shown that BluePIL 2.0 improves the system by reducing the manual steps to
deploy the system and improving mobility. The time to launch the system is 7.32 seconds
on average. In addition, the analysis tool contributes to a better understanding of the
indoor scenarios by displaying an updating plot of the tracked devices and providing the
option to calibrate the path loss coefficient of the localization algorithm during data col-
lection. The near-real-time plot is set to update within 0.5 seconds. In general, BluePIL
2.0 met the goals in a requirements-based evaluation.

iii

v

Acknowledgments

I would like to thank Dr. Bruno Rodrigues, Eder Scheid and Prof. Dr. Burkhard Stiller at
the Communication Systems Group of the University of Zurich to give me the opportunity
to write this bachelor thesis. Especially, I want to express my gratitude towards Dr. Bruno
Rodrigues for his support by discussing complications, answering questions and provide
valuable feedback. I also want to thank Nora Fischer and Raffael Mogicato for giving me
their insightful advice and support that helped me accomplishing this task.

vi

Contents

[Zusammenfassung]

[Abstract]

[Acknowledgments|

vil

iii

viil

[System Design]

[3.1 Requirements|o

[3.2 Assumptions|.

3.5 Analysis|,

4.1 Softwarel
[4.1.1 Node Configuration|
[4.1.2 Sink Configuration|

[4.1.3 Data Analysis Tool for Device Location and Identification|

4.1.4 Path-loss Coethcient]

[5.2 Experiment 1: Evaluation of the Automationl.

[5.2.1 Experimental Setup/.

CONTENTS

..... 10
..... 11

..... 13

15
..... 15
..... 15
..... 17
..... 21

..... 24

27
..... 27
..... 29
..... 29

..... 29

[>.3 Experiment 2: Evaluation of the Path-Loss Coefficient Adjustment| 31

[>.3.1 Experimental Setup/.

CONTENTS

6 Final Considerations

[List of Figures|

[List of Tables|

[List of Listings|

[A" Contents of the Repository]

B Tnstallation Guidelines

[B.1 Installation of Dependencies|

Running the Application|

1X

37

37
38

38

43

43

45

47

51

53

CONTENTS

Chapter 1

Introduction

1.1 Motivation

Indoor people tracking is a controversial activity with positive and negative aspects: it
can be considered harmful concerning the aspect of loss of privacy of tracked people,
but it can also be considered positive in use cases that aim at an increased organization
and efficiency of public spaces. In this sense, different indoor tracking technologies can
offer a higher or lower level of privacy in the tracking activity. As such, several works
in literature have explored these different technologies that range from the perception of
wireless signals emitted by electronic devices (either IEEE 802.11 [1], or Bluetooth [2]),
to the use of cameras [3], as well as the reflection of emitted lights (such as LiDAR) [4],
among several others listed in literature surveys [5, (6].

One of the technologies that enable indoor tracking activity is Bluetooth, which is simi-
larly based on the emission and reception of wireless signals as IEEE 802.11 (i.e., WiF1i)
protocols, but has particular benefits in the sense of passive tracking of signals by not
having an address randomization feature. In other words, the identification of people is
based on the identification of the mobile devices it carries, and as standard communication
protocols, these devices are also identified by addresses. Therefore, the unique identifica-
tion of these addresses allows the unique identification of its bearer. In the case of the
WiFi protocol, such identification is made impossible due to the usage of using address
randomization protocols in specific cases. For example, when a mobile device performs
a lookup of which access points are available, request packets are issued containing the
address of the requesting device. The address scrambling strategy is used to prevent the
device from being uniquely identified when requesting the availability of access points.
However, such a strategy is explicitly used in 802.11 protocols and not in Bluetooth-based
ones.

This thesis extends existing work by proposing improvements to the deployment and oper-
ationalization of the tool BluePIL [2], which has been proposed as an academic alternative
to investigate the possibility of tracking mobile devices based solely on the emission of
passive Bluetooth Low-Energy (BLE) signals. BluePIL proposes a streaming data ar-
chitecture and location algorithm based on multilateration positioning data, which uses

2 CHAPTER 1. INTRODUCTION

information obtained from Ubertooth trackers [7]. Ubertooth allows access to lower layers
of Bluetooth protocols at low cost, which are typically hidden in off-the-shelf Bluetooth
modules..

1.2 Thesis Goals

Based on the existing BluePIL system, the goal is to deploy and expand the BluePIL sys-
tem to further enhance the systems deployment time, analysis and parameter adjustments.
The three main goals are:

e Automation: Automating the deployment and operation of BluePIL is a major goal
for this thesis to significantly reduce the deployment time for future data collection.

e Path-loss coefficient: The n path-loss coefficient is part of the Log-Distance Path
Loss Model [§] used to model radio signal decay over distance. Therefore, it is a
vital part for the calculations of the BluePIL systems device positioning [2]. It is set
before the data collection is running and can not be change during the procedure.
For time reduction and better scenario adjusting, it is necessary to be able to modify
the n coefficient on the fly during the data collection.

e Analysis: For better analysis during data collection, near-real-time plotting of the
collected data should enhance the understanding of the scenario, indicating how
many devices are sensed and positioned, providing visual representations of the
devices and therefore viable information to adjust the n coefficient.

1.3 Methodology

This thesis includes two parts. The first part involves the underlying fundamentals and
related works inspiring the BluePIL system. In addition, design considerations are made
on how to improve the system in order to achieve the goals. In the second part, the
considerations will be transitioned into practise by implementing the system with new
hardware and updated software. The final part involves evaluating the evolution of the
system and whether it is fulfilling the thesis goals.

1.4 Thesis Outline

The following Chapter [2| introduces background knowledge about the underlying BluePIL
system and its concepts. Chapter [3| describes the requirements to meet the goals and
shows the architecture behind the different components that should fulfill those. Chapter
[includes information about the hardware and software implementation of BluePIL 2.0.
Chapter |5 explains and discusses the different experiments taken to evaluate BluePIL
2.0. The last Chapter [6] sums up the thesis in a final consideration including a summary,
conclusions and future work.

Chapter 2

Fundamentals

2.1 Background

This chapter contains brief explanations of the underlying technologies used in BluePIL
2.0. In addition, [2], which introduced the first version of the system, and other related
work are described in short. Further reading of these specific papers is recommended to
deepen the knowledge if needed.

2.1.1 Bluetooth

BluePIL, the baseline work which this thesis is built upon, relies on Bluetooth signals for
device localization and identification [2]. Therefore, it is a vital part to understand the
underlying technology, the designed data streaming pipeline, in order to enhance it.

The core concept on which this work is based on is BLE. In principle, Bluetooth was devel-
oped with the intention of wirelessly connecting electronic devices over short distances [9]
and was composed by the Bluetooth Special Interest Group (SIG) |10]. The organisation
is composed of members who work together to develop new Bluetooth specifications for
worldwide Bluetooth technology standards. Bluetooth first version was published in Core
Specification Version 1.0 [9]. It is often titled as Classic Bluetooth, however, the official
name is Bluetooth Basic Rate / Enhanced Data Rate (BTBR/EDR). In later stages, BLE
was added to the Bluetooth Core specification version 4.0. It is a more energy-efficient
implementation in contrast to the previous versions at the expense of less data traffic and
complexity for modern Internet-of-Things (IoT) devices.

Both specifications are unique protocol stacks that are not compatible. The latest version
of the Bluetooth Core Specification is Version 5.2 from 2019. To put the usage of Bluetooth
into perspective, the total annual Bluetooth device shipments is estimated to grow over
6.4 Billion by 2025 [11]. 70% of it is approximated to be peripheral devices, such as various
wireless earbuds, sensors, and smart lights. The other 30% contain laptops, tablets and
smartphones.

4 CHAPTER 2. FUNDAMENTALS

In general, both protocol stacks are operating in 2.4 GHz unlicensed industrial, scien-
tific and medical (ISM) band and are utilizing the Frequency Hopping Spread Spectrum
(FHSS) scheme over 79 channels at a hopping rate of 1600 hops/s using a Gaussian
Frequency-Shift Keying (GFSK) modulation for binary message encoding [9]. Depending
on which class of device and protocol is used, the transmission range is between 0.1 and
100 metres.

2.1.2 Project Ubertooth

Concerning localization and identification of Bluetooth devices, BluePIL requires a specific
form of frequency capture, i.e., a sniffer. The solution proposed and implemented is a
fully open source project called Project Ubertooth, which provides a hardware and a
software package for wireless development [12]. Ubertooth is capable of accessing the lower
layers of the Bluetooth protocols, including parts of the Bluetooth address. Utilizing the
fact that Bluetooth connections use a hopping pattern, Ubertooth collects data using a
single transceiver, that mimics this behaviour, such that eavesdroping frequencies is made
possible. It offers experimentation with both BLE and BTBR/EDR though the hardware
can only receive at a maximum of 1 Mbit /s [13], which makes it not fully compatible with
BTEDR that can raise up to 2.1 Mbit/s [14].

It is relatively cheaply available for 125$ [15] (at the time of writing this thesis) considering
that alternatives, such as the Ellisys Bluetooth Explorer 400, can easily cost up to 20’0003,
making such a device unsuitable for research purposes [14]. The processed data can be
sent conveniently to the host via USB if you have a USB 2.0 port running [12].

2.1.3 Kalman Filter

Bayes filters are often used in location estimation of 2D or 3D objects, in which sensors
are used [16]. It aims to estimate if an object can be at location x if the past sensor
measurements have been zq, 29, , z; for all locations . A commonly use of Bayes filter is
the Kalman Filter, which is also used and implemented in BluePIL [2|. It helps to smooth
the collected data and eliminate outliers.

2.1.4 Multilateration

To geometrically estimate the position of a object in space, the process multilateration is
used by BluePIL [2]. The distance of a object can be determined by the distance measures
between at least three points. The measurements can be mathematically broken down
into a determined linear system of equations which provide solutions for any order of
multilateration problems [17].

2.2. RELATED WORK)

2.1.5 The Log-Distance Path Loss Model

A frequently used model for radio signal decay over distance is the Log-Distance Path
Loss Model [§]. With a logarithmic function it can estimate the decay of a signal over
distance. The model can be simplified such that it only consist of the parameters received
signal strength at 1m RSS¢, the path-loss coefficient n and the distance d.

RSS(d) = RSSc — 10nlog(d) (2.1)

The path-loss coefficient n depends on the environment setting. As example, for grocery
stores, it is often set to 1.8.

2.2 Related Work

This section will first describe existing work on both Bluetooth device localization and
identification and its applications followed by the work which this thesis is build upon.
Due to the SARS-CoV-2 outbreak, a mobile application has been developed for contact
tracing. The DP-3T application was deployed in Switzerland as the official contact tracing
application for the pandemic [18]. In [19], an airport can be estimated as crowded with
pedestrians by using Bluetooth and WiFi in combination. With repeated inquiry scans,
they give information on the number of Bluetooth devices available around the sensors. In
[20], they use Bluetooth to identify individual devices, given that they can be discovered.
Using a Bluetooth beacon system, [21] proposes a system for detecting the presence of
individuals in smart homes, enabling energy savings, assistance for elderly or impaired
people, and personalizing of the smart home experience. In [22], they develop a passive,
energy-efficient indoor tracking and pattern recognition system based on a managed BLE
network. More specifically, the system relies on passively monitoring the position of a
network of BLE tags. In order to reliably locate moving objects indoors, multiple protocols
were implemented, including broadcasting the unique identifiers and current timestamp
of moving objects.

BluePIL [2], the main work this thesis is build upon emerged out of a InnoSuisse-founded
cooperation between Communication Systems Group UZH (CSG) and Livealytics which
offer Live marketing analytics, IoT devices, and other services |23, [24]. The goal was
to find a completely passive localization and identification of Bluetooth devices, as most
approaches until then required cooperation between the system and the target devices.
Livealytics approach uses passively measure Wi-Fi signals to collect marketing statistics.
The problem, however, was that Wi-Fi Media Access Control (MAC) randomisation com-
plicates the device identification step [2]. Since randomization does not exist in Bluetooth,
the cooperation spawned the idea of BluePIL. BluePIL: Fully Passive Identification and
Localization of Bluetooth Devices in Near-Real-Time has been implemented by Cyrill Hal-
ter as a proof-of-concept in his master-thesis [25] in 2020. Four Ubertooth sensor nodes
placed in each corner of a room collect data of the incoming Bluetooth signals. During
the collection, the data is continuously sent to a sink where the installed BluePIL system

6 CHAPTER 2. FUNDAMENTALS

then calculates the location of a device using a quadlateration algorithm merged with a
Log-Distance Path Loss Model. Due to the signals having a unique identifier, different
devices can be sensed and localized within a room. After the system has run for several
minutes or hours, the collected data can then be analyzed in a second step, such that the
devices can be plotted into a graph to visualise their positions. For better accuracy of the
noisy observation, the Kalman Filter is applied. The experiments provided an accuracy
of around 1m in a 12m? area and 1.4m in a 25m? area.

Chapter 3

System Design

3.1 Requirements

The following main requirements for the second version can be obtained from the thesis
goals:

R1 Automating the deployment and operation of BluePIL to reduce the number of manual
steps required in its bootstrap.
R2 The system must be able to plot the data near-real-time.
R3 Parameters must be adjustable for better visualisation of the plot.
e The n path-loss coefficient should be adjustable during data collection.

R4 Prototype must enable mobility of experiments allowing to be easily deployable in
different scenarios.

3.2 Assumptions

As this thesis is based on the first BluePIL version, assumptions are similar but not quite
the same [25]. It is necessary to simplify the use within the requirements, therefore the
following assumptions are made or adopted:

e The number of sensors available for the system remains at four.

e The localization of the devices are within the predefined area of the sensors.

e The localization problem remains in two dimensions, i.e. in a planar space.

7

8 CHAPTER 3. SYSTEM DESIGN

3.3 BluePIL 2.0

1 r Node (Raspberry Pi)
2. Initialize Node Node Server Application \
A Y
Sensor Node
(Ubertooth) 4 BTJEEERStS Device identification Signal Strength Filter
I ¥

5. RSSI| & LAPy 1. Start BluePIL
Pipeline
I l Sink (Laptop)

3. Initialize Sinkl Sink Client Application

Data Analysis
8. Parameter adjustment Tool

Sink Wy itoad

Signalh _ | Localization Location 6. Store _
Strengt #| Algorithm Filter =
Merger /

Figure 3.1: BluePIL 2.0 high-level system architecture

This section describes the general architecture of BluePIL 2.0. The main system archi-
tecture of the first BluePIL version |2| is carried over into the second. Figure shows
the high-level system architecture of BluePIL 2.0.

As the previous BluePIL system is a streaming multi-component architecture, implement-
ing individual components can be done with sufficient flexibility, so the architecture itself
will not be compromised. Different configuration options are available for structuring
the deployed system for physical or virtual processing entities. The previous version was
based on a distributed node-sink setup, in which data is sent from many nodes to a single
physical sink via network.

In detail, it works as a streaming data pipeline starting in step 4 of the Figure The
sensors collect the passively captured Bluetooth packets and port them into the nodes.
The node then identifies and filters the signal strengths of the devices. In step 5, the
received signal strengths and the device lower address part (LAP) are forwarded to the
sink component. There, the different signals received from each sensor of the same device
are first merged in the Signal Strength Merger, then used to calculate the device location
in Localization Algorithm and filtered in Location Filter before they get stored into a file
in step 6.

In addition to the streaming pipeline, we designed a server-client architecture for BluePIL
2.0 to be able to operate both the sink and the node from the client side. Step 1 in
Figure [3.1] sends the starting command from the Sink Client Application, which both
trigger step 2 and step 3 to initialize and start the pipeline. This is further explained in
Section [3.4 Additionally, a data analysis tool was added to the BluePIL 2.0 system. The
tool is designed to fetch data directly from the storage in step 7 and plotting the data

3.4. AUTOMATION 9

in near-real-time described in Section 3.5 To calibrate the localization algorithm, the n
coefficient value is adjustable during data collection, represented in step 8. This addition
is embedded into the analysis tool, further explained in Section [3.5.1]

3.4 Automation

For the next section, it is assumed that the sink and the nodes already have a BluePIL
instance installed and the devices are connected to the same network. Also, a remote
Secure Shell (SSH) connection configuration has been established between the sink and
the nodes. Furthermore, the location configuration file bp.json is adapted to the scenario

25).

To reduce the amount of steps required in its bootstrap, the sequence of actions that
start the whole process of data collecting has to be analyzed. The sequence diagram in
Figure summarises the process for starting the BluePIL system, stopping before data
collection begins. The manual tag is referencing the actions taken by human to deploy
the application, further referenced as operator, to initialize the next step.

:Sink Device :Sink BluePIL Script :Node Device :Node BluePIL Script

T T T T
| |

Loop |

[for each node]

Y

|
manual ssh remote connect

\J

manual start

|
|
I -
|
|

Loop J
[for each node]

manual|start |
start
configuration msg R
|
|

Y

Figure 3.2: Sequence diagram presenting the starting process for the sink and the nodes
in the first BluePIL version

First, the sink (e.g., a laptop) must be manually connected to each node by the operator
via a SSH connection, as the nodes are small computers without a screen. These low-
power units were chosen for economic and physical reasons, as they improve margins
by being cheap, consume less power and are small in size. Secondly, the operator has
to start the node script on each node manually within the SSH connection. Via the
command line window the BluePIL python scripts get executed for each node, starting
their pipeline. The nodes are then designed to be waiting for the sink script to send a

10 CHAPTER 3. SYSTEM DESIGN

configuration message, which includes both the starting signal and connection parameters.
The advantage of this master-slave architecture is that many nodes can be deployed
simultaneously, while the sink retains control over the devices it connects to. Lastly, the
actor has to start the bootstrap script on the sink device. The sink sends the configuration
message to the nodes. Then the BluePIL system is ready for operation and already starts
collecting data from received Bluetooth signals automatically. The streaming pipeline
does not need any further instructions, except the stopping message. Considering that
BluePIL was implemented for four nodes, following nine manual steps are necessary to
get the system up and running.

1. Four times connecting to the nodes via a SSH connection.
2. Four times starting the node script on every node.

3. Start the sink script on the sink device.

To meet the first requirement, these nine manual steps must be significantly reduced, as
each step and each additional node requires more time to deploy the system. It would also
be practical to be able to restart the application without having to perform all the steps
again. There is a start-up function in the last step, to keep control of the system, while
the connection via SSH and the start of the individual scripts on the nodes have to be
automated. These also take the most time for deployment. The next section introduces
the new architecture design to address this issues.

3.4.1 Architecture

The location configuration of the nodes was done using a json file in which the location is
manually adjusted. This required the operator to open the source code. We have there-
fore proposed a graphical user interface (GUI) that reads the json file and, for practical
reasons, the variables can be adjusted within the GUI before the BluePIL system starts.
After this, the system is ready for the BluePIL system start. Since the BluePIL system
is encapsulated into the node and sink component, a server-client architecture can be in-
tegrated. In this case, nodes have an additional layer that acts as a listening mini-server,
while the sink receives a client layer. The listening mini-server on the nodes were designed
to be a socket implementation. The device is bound to a dedicated port, waiting for a
client, i.e., the sink, to make a connection request to the socket. On the client side, if
the connection was accepted by the node, a socket is successfully created and the client
can communicate through it. After the sink has prepared every socket connection to each
deployed node, the operator can then request the mini-servers to start their node script,
while the sink proceeds to the start the sink script, starting the BluePIL pipeline. Figure
[3.3] shows the new sequence diagram of the second version. In addition to the previous
components, two other entities, namely Sink Client and Node Server, are added to the
sequence. The Sink Client is started by the operator in a first step. Then, the sink
connects to each of the listening mini-servers in a loop. After each server has responded,
the operator can manually start the application. Each mini-servers launch their BluePIL
script on command, followed by the sink starting their BluePIL script automatically. In

3.5. ANALYSIS 11

[:Sink Device] I :Sink Client] I :Sink BluePIL Script] I :Node Server] [:Node Device] I :Node BluePIL Script]
T 1 i I

>

manual start

1
\ \
\ \
| |
T T

\
\
([oop) | — —
|
|

[for each ostart |

——client msg.
node]

server response

manual start \
= Loop
- [Loop)

> start

) wait
o -
figurati o
[for eaCh configuration msg j start
- - - ™ T -

Figure 3.3: Sequence diagram presenting the starting process for the sink and the nodes
in version 2.0

general, the underlying BluePIL system is untouched. The Node Servers would be de-
signed to start automatically upon the Node Device boot. Overall, the required manual
steps that the operator has to take in the second version of the BluePIL system are two,
again assuming the configuration has been done beforehand.

1. Initialize the sink to connect to each node.

2. Send the starting message to nodes.

3.5 Analysis

The stored data from the first BluePIL version was designed to be analysed by another
entity, either by uploading the data to a cloud environment or by writing a script that
retrospectively displays the data collection . This setup never allowed the observation
of the current situation during data collection, yet a near-real-time plot would have the
benefit of observing the data during acquisition. Furthermore, it would allow to calibrate
the localization algorithm for different scenarios where the nodes are deployed, as the
parameter is environment dependent.

First, we have a look at how the data is stored. The sink of the BluePIL system stores
the calculated locations and identifications of devices during the collection on the sink
device. In Table there is a sample of a data collection which constantly updates
during the procedure with x, y being the coordinates of the device in planar space with
a timestamp when the data was received and the devices LAP. The data format is a
comma-separated values (CSV) file and is saved in near-real-time, taking into account the
sending, calculating and storing of the data, each time all nodes acquire frequency of the
same device.

12 CHAPTER 3. SYSTEM DESIGN
X y timestamp LAP
0.6035623435939044 | 0.36680444883406643 | 2022-01-06 23:42:32.303156 | 8ddf78
0.6035623435939044 | 0.36680444883406643 | 2022-01-06 23:42:32.548230 | 8ddf78
0.26798773861436137 | 0.7739191039012463 | 2022-01-06 23:42:33.832163 | 8ddf78
0.3883890511365365 | 0.6116109488635245 | 2022-01-06 23:43:29.927560 | 8ddf78
0.38840517546606995 | 0.6115948244538033 | 2022-01-06 23:43:06.138758 | 8ddf78
0.3883794731077689 | 0.6116205267829772 | 2022-01-06 23:43:08.235642 | 8ddf78
0.3883833007018804 | 0.6116166991356671 | 2022-01-06 23:43:12.681228 | 8ddf78
0.38733908283768886 | 0.3844429934106364 | 2022-01-06 23:44:00.542858 | 8ddf78
0.3884104662037166 | 0.3884104662037166 | 2022-01-06 23:44:12.696629 | 8ddf78
0.3891682550061562 | 0.3891682522434169 | 2022-01-06 23:44:15.579850 | 8ddf78
0.38840122647199393 | 0.3884012264719939 | 2022-01-06 23:45:31.702248 | 8ddf78

Table 3.1: Sample of a data collection by BluePIL stored in positions.csv

Taking advantage of the fact that the data can be retrieved out of the CSV file during
the process without interrupting the BluePIL system, we propose a GUI that polls the
positions of the devices from the CSV file in near-real-time and displays them graphically
for visual analysis. The GUI is structured having a constantly updating plot while also
providing parameter fields to adjust the plot and its data. The application is a stand-alone
process to be started by the operator of the BluePIL system. Therefore, it can be started
or closed without affecting the BluePIL system and causing more workload to fall on the
process.

The plot for BluePIL 2.0 was designed to represent the two dimensional planar space
of a chosen scenario. An example scenario, which [25] chose for his experiment was a
room with a 4.2m x 2.9m area. In each corner of the room, one of the nodes of the
BluePIL system was installed. Since BluePIL calculates the location of the devices inside
the room as 2D coordinates, the plot of the BluePIL 2.0 data analysis tool therefore also
represents the space in 2D. The Uberteeth and the data points were designed to have
visual representation for better analysis.

Data polling is key for near-real-time plotting, as such the polling rate of the CSV file
has to be set to a valid interval. A polling rate that is too high affects the performance
of the GUI because it recalculates all the stored data for plotting, but is closer to near
real-time. A polling rate that is too low delays the real-time display so that it is no longer
considered near real-time. Since one of the purposes of the system is to analyse indoor
behaviour from a marketing perspective, e.g. how long the average person stands in front
of which shelf, the interval should be adopted to human walking indoors. For this reason,
we have set an estimated rate of 0.5 seconds, which is manageable for an ordinary device
used as a sink. Furthermore, considering the data collection can be run during longer
periods, the CSV file can overload the application. This can be tackled by reducing the
deployment time or splitting the data in different CSV file according to time slots.

Considering the fact that data is at a pre-defined upstreaming time interval and the devices
can be constantly in motion, we consider a field to set a number for the amount of the last
retrieved data points of a particular device we want to plot. Drastically speaking, more

T W N~

~N

10
11

3.5. ANALYSIS 13

than 100 data points of the last device location may not be suitable for a near-real-time
representation for the current location.

Following the retrospective data analysis procedure of |25, a Kalman Filter was applied
to the data set in order to eliminate outliers in both static and dynamic device behaviour.
Therefore, it was also added to the GUI in BluePIL 2.0 as an option for further exper-
imenting. It is applied to the whole set of data points. Furthermore, to calibrate the
localization algorithm for positioning the devices, we propose a True Point that repre-
sents the actual position of the device that simplifies the process of aligning the algorithm
with the device position, which is further discussed in Section In addition, the
prediction mean between the selected last points provides better accuracy in an inher-
ently noisy data set. In order to detect devices in the environment, it is advantageous to
have an additional overview of the sensed but not yet positioned devices, similar to the
third experiment in [25]. The last sections described are designed to not interact with the
BluePIL system itself, except the calibration of the localization algorithm. Therefore, n
path-loss coefficient, which is the key parameter to adjust, yields its own section.

3.5.1 Path-Loss Coefficient

The path-loss coefficient n is a variable in the localization algorithm of BluePIL [2]. For
the first version of BluePIL, it is set to a fixed value within the BpSink class in the
_init_quadlateration function when the BpSinkStream class is initialized. From there, it
gets passed into the position class, directly into the BpQuadlateration class as a class
variable where the algorithm computes and returns the (z y) position of the device. The
n variable corresponding to the path-loss coefficient is, therefore, not mutable once chosen
in the BpSink though the coefficient is known to be dependent on the environment. [26]
conducted experiments in a office environment in which n varied between 1.35 and 1.98.
To fully meet the third requirement, the n variable needs to be adjustable during the data
collection. The listing show a summarized code snippet of the n coefficient that gets
passed along. The highlighted parts reference the n coefficient.

In the BpQuadlateration class, which is initialized for each device, the function quadlater-
ate uses the n coefficient for calculating the position of a device each time all four sensors
send the respective signals.

class BpSink:
def _init_quadlateration(self):

self._sink_stream = BpSinkStream(streams_of_streams,
positions, 1.8, (0.5, 0, 0.5, 0))

class BpSinkStream:
def _init__(self, streams_of_streams_for_laps, positions, n,

initial_x):

self. n =n

12
13
14

15
16
17
18
19
20
21

22
23
24
25
26

27

14 CHAPTER 3. SYSTEM DESIGN

def _merge_rssi_streams(self, lap):

merged = sz.Stream.merge_rssi_streams (*self.
_streams_for_laps[lapl) \
.sliding_window (2, return_partial=False) \

.map (mergeOutputsToPositioningInput) \
.position(self._positions, self. n, self._initial_x)

class position(sz.Stream):

def __init__(self, upstream, positions, n, initial_x, *args , **
kwargs) :
self._quad = BpQuadlateration(*positions, n)

class BpQuadlateration:

def init__(self, p_Al, p_A2, p_A3, p_A4d, n):

self.n = n

Listing 3.1: Code summary of the n coefficient usage in the BluePIL system until
initalization of the BpQuadlateration

Since the coefficient n is only used in the class bp_quadlateration, we opt to remove the n
variable from the class BpSink, the class BpSinkStream and the class position to reduce the
variable initialisation to the class BpQuadlateration only. The proposed solution utilises
the common bp.json configuration file which also used to configure the location and the
ip addresses of the nodes. In this file, we add the parameter n value. This parameter is
then read each time the function quadlaterate is called so that the positioning always has
the latest adjustment of the n coefficient.

Chapter 4

Implementation

This chapter introduces the implementation of BluePIL 2.0, taking into account the design
decisions made in chapter [3]

4.1 Software

BluePIL was implemented as Python & application, which provides a wide range of li-
braries and utilities [25]. For BluePIL 2.0, the same framework was used to further
extend the source code. The enhanced code consists of additional layers to the master-
slave architecture of node and sink by encapsulating the BluePIL process on the node and
restructuring the nodes as listening mini-server. The sink acts as a client that calls the
nodes to start the BluePIL process, reducing the initialisation time. The data analysis ap-
plication is not part of the BluePIL system itself, but can be operated as an independent
sub-element of the system to analyze the current scenario, also implemented in Python 3.

4.1.1 Node Configuration

The mini-server socket described in Section was implemented using the Python 3 in-
built module socket. The benefit of the module was that it allowed quick implementation
of a bi-directional communication. It was implemented by opening a Transmission Control
Protocol (TCP) port on the node, listening for a client to request connection. It starts
by the client, i.e. the sink, requesting connection. After the connection is established,
the data is sent between the sink and the node as UTF-8 encoded data packets. These
packets are decoded into Python string objects for further processing once received by
either the node or the sink. Listing shows a code snippet out of the node mini-server.
This part is responsible for encoding and decoding client messages as well as for following
commands according to the message received. Following commands are implemented for

the client: START_NODE, EXIT, KILL.

15

O © 00O Ui Wi -

18
19
20
21
22
23
24
25
26
27
28

16 CHAPTER 4. IMPLEMENTATION

def dataTransfer (self,conn):
big loop to send/receive data
while True:

receive

data = conn.recv(1024)

data = data.decode(’utf-87)

split data to separate command from the rest of data

data_message = data.split(’ ’, 1)

command = data_message [0]

kills process if new client connects, ensures if something
goes wrong the process can still be restarted

if self.node_process.is_alive():
self .node_process.terminate ()

different commands

if command == ’START_NODE’:
reply = ’Starting node..’
conn.sendall(str.encode (reply))
self .node_process = multiprocessing.Process(target=

start_node)

self .node_process.start ()

break
elif command == ’EXIT’:
break
elif command == ’KILL’:
self .socket.close ()
break
else:
reply = ’Unknown Command’

conn.sendall(str.encode(reply))
conn.close ()

Listing 4.1: Data transfer loop of BluePIL 2.0

The commands EXIT and KILL terminate the communication between the sink and
the node. KILL additionally shuts down the socket on the node mini-server such that no
further connections can be established. The START_NODE command starts the BluePIL
node process of the streaming pipeline. Using the Python package multiprocessing, the
mini-server first connects the node starting function to a process entity in line 17 in Listing
and then starts the process in line 18. The connection to the client is then terminated,
but the server continues to wait for a new connection while the node process of the BluePIL
streaming pipeline starts to wait for the sink to connect. The underlying first version of
BluePIL, as explained in Section [3.3] is now in progress. If the data collection is done
and the system is stopped by the stop signal of the sink, the node process is terminated.
The sink client has the possibility to now reconnect to the listing mini-server and restart
the process once again. If something went wrong during communication, lines 11 and 12
ensure that the node process is safely terminated as soon as a new client has established
a connection. Then, the server is ready to start the node process again. Figure shows
the different states that the application goes through after it gets started.

4.1. SOFTWARE 17

EXIT
J Unknown command

Kill node process
[Node process alive] P

—
start o accept request - Awaiting
.—D listening : >
[Node process not alive] command
T

Start node L)
Node started process - START_NODE

-®

Figure 4.1: State diagram of the listening mini-server

4.1.2 Sink Configuration

The sink device is the counterpart for the node server in the server-client architecture
as described in Section [3.4] It is implemented as the main component to be run by the
operator to start the BluePIL process.

In the first BluePIL version, the node configuration message sent to the node had to be
manually adjusted by entering the values into the bp.json file. Listing contains the
updated json file used for BluePIL 2.0, where the node positions and system mode were
configured. The newly added parts were the n_value in line 3, number_of-nodes in line
32 and true_point in line 33. The importance of these new values are explained in the
Sections [4.1.3|and [4.1.4] Node 1-4 represent the ip and z y location of the deployed node
devices used in BluePIL. As proposed in Section [3.5] in BluePIL 2.0 the bp.json was
connected to a GUI explained next.

= BluePIL 2.0 Cenfiguration - O X

Configuration

True Point
N-Value
Ubertooth_1
Ubertooth_2

Ubertooth_3
Ubertooth_4

Save & Cuit

Figure 4.2: Configuration GUI

18 CHAPTER 4. IMPLEMENTATION

The GUI is shown in Figure It was implemented with tkinter [27]. tkinter is a
standard Python 3 package for GUI implementation and provides numerous options for
interacting with a user by providing buttons, labels, text, text boxes and more. The GUI
window, also known as the root window, is a 320 x 320 pixel sized window. Inside the
window is the so called frame. Here we implemented several widgets, i.e., the input fields,
labels and the button for the configuration. The Ubertooth_1-4 represent the nodes that
are going to be deployed in the scenario with their corresponding Internet Protocol (IP)
address and x, y positions in the 2D space. The n_value corresponds to setting the n
coefficient. In addition, the True Point corresponds to a device actual position to be
captured. When the application starts, the GUI reads the json configuration file and
displays the current settings. The operator of the BluePIL 2.0 system has the option to
change the configurations by writing into the input fields. The Save & Quit button was
implemented such that it saves the input field values into the json configuration file, such
that the changes for the systems are applied and passed on.

© 00 N O Ut s W N =

W W W W W W NN NN DN N NNNN R == e e
TG W N = O © 0 9 O Ok W N R O © NSO e W Ny = O

36

4.1. SOFTWARE 19

~

"mode": "POSITIONING",
"n_value": 1.8,
"nodel": {
"ip": "192.168.1.101",
"1OC": I:
1.0,
1.0

t,
"node2": {
"ip": "192.168.1.102",
"loc": [
1.0,
0.0

I
"node3": {
"ip": "192.168.1.103",
"lOC"Z [
0.0,
0.0

+,
"noded": {
"ip": "192.168.1.104",
Illocll: [
0.0,
1.0

¥,

"true_point": [
0.0,
0.0

Listing 4.2: bp.json configuration message

Listing shows the function that gets called upon pressing the Safe & Quit button. It
first reads the file into the conf variable. Using the json package from Python 3, we convert
the contents of the file into a Python dictionary. The contents of the dictionary are edited
in lines 4-11. Each input field value is called and converted to a float representation as
returned in string. Then they are stored in the dictionary. In lines 13 to 15, the dictionary
is converted and written to the file bp.json.

1
2
3
4
)
6

10

11
12
13
14
15
16

O~ O UL W N+

20 CHAPTER 4. IMPLEMENTATION

def update_json(self):

conf_file = open("bp.json", "r")

conf = json.load(conf_file)

conf_file.close()

conf[’nodel’][’loc’] = [float(self.dl_cord_one.get()), float(

self.dl_cord_two.get ())]
conf[’node2’][’loc’] = [float(self.d2_cord_one.get()), float(
self.d2_cord_two.get())]

conf[’node3’][’loc’] = [float(self.d3_cord_one.get()), float(
self.d3_cord_two.get ())]

conf[’node4’][’loc’] = [float(self.d4_cord_one.get()), float(
self.d4_cord_two.get ())]

conf [’true_point’] = [float(self.true_point.get()), float(self.
true_point_two.get ())]

conf[’n_value’] = float(self.n_value.get())

conf_file = open("bp.json", "w"

json.dump (conf, conf_file, indent=4)
conf_file.close()
app.destroy ()

Listing 4.3: Save values to bp.json

After the configuration stage is done, the client application of the client-server implemen-
tation gets started. The implementation is similar to the sink in Subsection [f.1.1] using
the socket module from Python 3 to communicate with the sink. The client iterates over
every IP stored in the bp.json file, connecting to every node server deployed with a dedi-
cated port. Upon successfully connecting, the application awaits a command line input.
The commands are implemented analogously to the sink that receives the commands:
START_NODE, EXIT, KILL.

Listings [4.4] shows the implementation of the node logic within the connection. This func-
tion is called after each connection between the nodes and the sink have been established.
When EXIT and KILL are sent, the connection is terminated. The START_NODE com-
mand initializes the BluePIL sink process. First, the command is sent to the sink which
starts the node process on the node server. Secondly, a timer guarantees that the nodes
start before the sink, since according to [25], the nodes must be started first. Finally, the
process BluePIL sink is initialised, which starts the streaming pipeline.

def run(self):
while True:
command = input(’Enter your command: ’)
if command == ’EXIT’:
Send EXIT request
self.send (command)

break

elif command == ’KILL’:
self.send (command)
break

elif command == ’START_NODE’:

self .send (command)

13
14
15
16
17
18
19
20

O © 00O Uk W

—_

12
13
14
15
16
17
18

4.1. SOFTWARE 21

time.sleep (2)
print (’starting process’)
start_run_sink ()
print (’Ending process, please restart Application’)
break
else:

self.send (command)

self.close ()

Listing 4.4: Sink logic for the client application

4.1.3 Data Analysis Tool for Device Location and Identification

For the data analysis tool described in Section [3.5] we implemented the GUI with tkinter
[27], the in-build Python 3 package that provide sufficient tools for visualisation. The tool
is a 1350 pixel to 720 pixel sized window application. It contains six input sections within
the application which represent the plotting parameters and the constantly updating plot
of the received data of the BluePIL pipeline. Furthermore, it contains a dynamically
updating overview of the sensed device in the area and two fields displaying the current
amount of sensed and positioned devices respectively.

The plot was implemented with the Matplotlib [28] library. It has been embedded in
the tkinter GUI as it has a suitable interface built in called matplotlib.figure. For the
visualisation, we retrieve the data from memory, i.e. from the positions.csv file, by us-
ing the pandas [29] data analysis library to do the reading. The library itself was also
used to plot the graph which is then added to the matplotlib.figure. Listing shows
for demonstration purposes a simplified and shortened version of the implemented parts
dealing with the initialisation of the plot, which would otherwise require several pages to
properly visualize them.

from matplotlib.figure import Figure
import pandas as pd

with open("bp.json") as f:
conf = json.load(f)

x_room_length = 0

y_room_length = 0

for i in range(l, 5):

sensor = conf [f’node{il}’]
x_room_length = sensor["loc"][0] if sensor["loc"][0] >
x_room_length else x_room_length
y_room_length = sensor["loc"][1] if sensor["loc"][1] >
y_room_length else y_room_length
col_x = "x"
col_y = "y"
room length
room_lim_x = (0, x_room_length)

room_lim_y = (0, y_room_length)
plot padding
plot_padding = 0.5

19

20

21
22
23
24
25

26
27

22 CHAPTER 4. IMPLEMENTATION

plot_lim_x = (room_lim_x[0] - plot_padding, room_lim_x[1] +
plot_padding)

plot_lim_y = (room_lim_y[0] - plot_padding, room_lim_y[1] +
plot_padding)

df = pd.read_csv(’positions.csv’)

fig = Figure ()

ax = fig.add_subplot ()

df .plot (kind="scatter", legend=None, x=col_x, y=col_y, xlim=

plot_lim_x, ylim=plot_lim_y, alpha=0.3, color="#e6194b", grid=
True, marker=".", label="Predictions", ax=ax)

plot figure into GUI

canvas = FigureCanvasTkAgg(fig, self)

Listing 4.5: Plot initialization into the GUI

Line 4-12 in Listing refers to the configuration file bp.json sensor coordinates and
finds the highest x y values to store them into the z_room_length and y_room_length
respectively. Along with a set 0.5 plot_padding, they determine the x and y axes lengths
for proper plot visualization. The data to plot is visible at line 22. The matplotlib. figure
and the subplot interface for the pandas plot is initialized in line 23 and 24. Based on the
tag ar=ax, the plot of the positions is added to the figure axes in line 25. Finally, the
figure itself is added to the GUI in line 27 with the parameter self referring to the tkinter
class frame holding the widgets.

The matplotlib.animation. FuncAnimation was used to implement the data polling dis-
cussed in This class creates an animation by repeatedly calling a function. Passed
parameter for this class are the figure to be animated and the function to be repeatedly
called. Furthermore, the parameter interval is set to 500 which equals 500 milliseconds
until the function is repeated again. The function to be called in embedded into the
GUI class. The main goal is to update the plot with the newly retrieved data by call-
ing pandas to re-read the file positions.csv and re-render the plot. The number of last
retrieved points is programmed to be set in an input field and updated accordingly after
500 milliseconds. In addition, the update function is also responsible for the re-rendering
of the following widgets explained in the next sections. The widgets can be seen in Figure
[4.3] starting from Kalman Filter to Sensed Devices. The n coefficient implementation is
further described in Section [A.1.4

For less outliers, a Kalman Filter was implemented to be optionally applied upon ticking
the check box as shown in Figure [£.3] As soon as the box is checked, the animation
function will call the Kalman Filter class with the retrieved data as input. The output
is then used as the new data set. The Kalman Filter class was implemented in the first
version of BluePIL to smooth outliers in the data after the experiments. It was reused
and integrated into the data analysis tool.

To plot all monitored devices at once, we implemented a Plot All LAPs check box that
will, if triggered, prompt the animate function to plot not only the selected device but
all of positioned devices collected in the positions.csv file. First, the animate function
parses the different LAPs found in the data file. Then, for every device found, data points
will be filtered into a dictionary, with each LAP as the key and the points as its value.

4.1. SOFTWARE 23

Last Points
n Coefficient

Apply Kalman Filter [~

Plot all LAPs [
True Point

Devices 9efb33 —l|

Positioned Devices: 1

Sensed Devices: 1

Figure 4.3: Parameter section of the data analysis tool

Furthermore, the selected data range to be displayed and the average, i.e. the Prediction
Mean, will also be calculated before plotting. Finally, each device together with their
Prediction Mean will be displayed on the graph each with one of the 22 distinctive colors
implemented. The labels are updated accordingly.

The True Point is referring to the actual position of the device in a scenario. By reading
the bp.json configuration file, the position of the point is added to the plot. There we
implemented also the option to change the true point position if needed by writing into
the input fields provided with the label True Point. The left input field referring to the x
value and the right input field to the y value. The input is automatically adjusted with
the next updating cycle.

For selective plotting of devices, we have implemented a drop-down menu where the user
can select a LAP to be observed of the positioned devices. By using the pandas unique()
function, the GUI determines the unique LAPs in a given data frame and updates the
drop-down menu accordingly. Additionally, by filtering the positions.csv file by the LAP
chosen, the animate function display the graph with the LAP data points. Furthermore,
the sum of all positioned devices is shown to provide an overview.

Within the first version of the BluePIL pipeline, we implemented a small adaptation such
that each time a data stream is registered by a sensor, the sink stores the corresponding
LAP into a separate file called laps.csv. Listing [4.6] provides insight to the respective
function. This function is called within the pipeline after a data packet is received from a
deployed node. It is responsible for registering a potential newly sensed LAP and merges
the streams once all nodes have started a respective stream. Line 3 of Listing [4.6| checks
if a stream for this device already exists, else it is added to the self._stream_for_laps
dictionary. Any additional stream for the same LAP not fall under this condition, as such
it is called only once for each LAP. Therefore, we implemented in line 5 to 7 a file read
and write section, where the newly found LAP gets appended into the laps.csv file. In

O © 0O Ui W+~

—_

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15

24 CHAPTER 4. IMPLEMENTATION

the GUI application, this file is read in the animation function so that the number and
names of the individual LAPs captured but possibly not yet positioned are displayed as
shown in Figure [1.2]

def _register_rssi_stream(self, lap, idx, stream):

print ("Registering stream {0} for LAP {1}".format (idx, lap))

if lap not in self._streams_for_laps:
self._streams_for_laps[lap] = [None] * _NUM_UBERTEETH
csvfile = open(f’laps.csv’, ’a’)
csvfile.write(lap +’\n’)
csvfile.close ()

self . _streams_for_laps[lap][idx] = stream

if None not in self._streams_for_laps[lap]:
self . _merge_rssi_streams (lap)

Listing 4.6: Function of the BluePIL pipeline to register a data stream

4.1.4 Path-Loss Coeflicient

The path-loss coefficient n needs to be adjustable as described in Section [3.5.1l The first
version of BluePIL passed the n value through several classes though its only used in the
BpQuadlateration class. Therefore, we erased the n value from the other classes and set
the coefficient value within the main location calculation class. Additionally, we removed
n as a parameter to be passed to initialize the class. Figure [£.7 shows the two functions
of the BpQuadlateration class that use the n path-loss coefficient. In the initialization
function, the class reads the value from the bp.json file, the common configuration file that
was configured before by the operator. As the initialization and the calculation are not
concurrent, the path-loss coefficient is read once again in line 14-16 for every function call
to calculate the location of the device to maintain the latest adaptations. The adaptations
can be done in the GUI, as shown in Figure [£.7] by writing the input into the input field
of the n Coefficient. The animation function reads this input every interval and writes it
into the common bp.json file.

class BpQuadlateration:
def __init__(self, p_Al, p_A2, p_A3, p_A4):
self .pos_Al = p_A1l
self .pos_A2 = p_A2
self .pos_A3 p_A3
self .pos_A4 p_A4
with open("bp.json", ’r’) as f:
conf = json.load(f)
self.n = conf[’n_value’]

def get_func(self, p, rssi):

p-x = plo]
p-y = pli]
with open("bp.json", ’r’) as f:

conf = json.load(f)

16
17
18
19
20

21
22
23

24
25

4.1. SOFTWARE 25

self.n = conf[’n_value’]

def f(x):
return (x[0] - p_x)**2 + (x[1] - p_y)**2 - 10x*x((x[2] -
rssi) / (5 * self.n))

def df (x):
return [2*(x[0] - p_x), 2*x(x[1] - p_y), (-log(10) / (5 =
self.n)) * 10*x*x((x[2] - rssi) / (5 * self.n))]

return f, df

Listing 4.7: Section of the BpQuadlateration class for calculating the device location

26

CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

5.1 Hardware

The following section contains overview of the hardware used by [25] and the updated
components for BluePIL 2.0.

In Table there is a summary of the new hardware choices for BluePIL 2.0 to meet
the requirements in contrast to previous version. The Ubertooth One devices acting as
the sensors of the BluePIL system allow to identify the devices LAP, which are normally
hidden in the lower layer of the Bluetooth protocols. They still suit our requirements at a
comparably low cost. They are capable of sniffing the 79 BTBR/EDR channels and can
send the captured packet via USB to the host systems with the RSS values for positioning.
Firmware, and libraries are also provided by Project Ubertooth to enable the host system
to use Ubertooth.

Category BluePIL BluePIL 2.0

Sensor Four Ubertooth One Devices Four Ubertooth One Devices

Node Device | Four Asus Tinkerboards (Debian Linux) Four Raspberry Pi Zero W’s (Raspberry OS)
Sink Device | MacBook Pro Microsoft Surface Book 2

Network Gl-iNet Mifi Smart Router Netgear AirCard 790 Mobile Hotspot
Powerbank | Four Fresh n Rebels Powerbanks 3000 mAh

Table 5.1: Hardware for BluePIL and BluePIL 2.0 in comparison

Instead of using Asus Tinkerboards [30] we opt for the less energy consuming Raspberry
Pi Zero W’s [31] that are still capable of processing BluePIL. The reason is due to re-
quirement four to provide a more mobile and simple deployable system. Originally, the
nodes were powered by longer cables, limiting mobility and deployability. The benefit of
having a less power absorbing device is that they can be supplied by powerbanks more
efficient. The Raspberry Pi Zero W’s are best suited because they are inexpensive, have
a small size and do not consume much power. With a cost of 12.90 CHF [32] (at the time
of writing this thesis) it contains a single ARM1176JZF-S 1 GHz core, 512 MB RAM, 11
b/g/n WLAN to connect to the network and Bluetooth 4.1 as well as BLE. The process-
ing power in sufficient for the consumption of BluePIL. The only drawback is that the

27

28 CHAPTER 5. EVALUATION

Raspberry Pi Zero W have a micro-USB port instead of a USB 2.0 port to connect the
Ubertooth sensor. To overcome this factor, we used a micro USB to USB 2.0 adapter.
The nodes had a Raspberry Pi OS installed on them, the official supported operating
system for Raspberry Pi’s.

The powerbanks enable the system to be more mobile and deployable due to the nodes
devices no longer requiring cables. The Fresh n Rebel powerbank with 3000 mAh
offer a cheap variant with whom the nodes can be power supplied for longer periods of
time. Figure [5.1] shows one of the node devices that were deployed for experimentation.

Figure 5.1: Node Device

As far it goes for the sink, it was convenient to use a Microsoft Surface Book 2 with
16GB of LPDDR3 memory and a Intel i7-8650U 4.2 GHz quad-core processor. This is
sufficient for its usage as the sink as it has better hardware than the 2017 Macbook Pro

136 of [25]

Instead of using a GL-iNet Mifi Smart Router [37], a Netgear Mobile Hotspot was
used, which also creates a wireless network for the application and is portable to any
place. To ensure time synchronisation between the nodes and the sink, a SIM Card with
internet access was integrated into the portable router.

Since the Raspberry Pi OS is a Debian-based[39] system, many fundamental processes are
shared. Therefore, the system provides Crontab, a utility application to effectively sched-
ule a routine background job. To further improve deployment, the nodes are implemented

5.2. EXPERIMENT 1: EVALUATION OF THE AUTOMATION 29

to start the mini-server after the system boots. This eliminates the step of establishing a
SSH connection and starting the mini-server application on the nodes.

Each of the nodes 1 to 4 is programmed to always request the same IP addresses 192.168.1.101
to 192.168.1.104 respectively. They have been given a static IP address to simplify de-
ployment. Instead of determining the IP addresses each time they are connected to a
network, they receive the requested IP addresses unless the network prohibits it.

5.1.1 Scenario

The three experiments were conducted in a warehouse using a 4m by 4m measured
square field as shown in figure In each corner one of the Raspberry nodes were
deployed. A warehouse offers few environmental influences, i.e. a constant temperature,
little ultraviolet light (UV) and less signal propagation as there are no walls near the
experiment, which is important when working with Bluetooth signals and in line with
suggestions for future experiments.

¥

R TS
Figure 5.2: Experiment setup

After the nodes have been deployed and the scenario parameters, i.e., the position of the
nodes, the n coefficient and the True Point of the device has been set. following three
experiments have been conducted.

5.2 Experiment 1: Evaluation of the Automation

5.2.1 Experimental Setup

In a first experiment, we evaluated the effectiveness of the automation of BluePIL 2.0. We,
therefore, measured the time it takes for the operator to start the data collection pipeline.

30 CHAPTER 5. EVALUATION

We started the time measurements after physically setting up the devices and configuring
them, i.e., setting IP, position and n coefficient as well as the True Point in the bp.json file.
This was chosen because the physical setup are different in each scenario and therefore
not meaningful. Additionally, the part to enhance the system focuses on the software
implementation mainly. Since configuration is part of the BluePIL 2.0 initialization steps,
we set three different timers.

1. Measured the time once the client application is started.
2. Measured the time after the configuration GUI is terminated.

3. Set after the connection between the sink and the nodes is established and the
START_NODE command is sent to the nodes just before the sink is started, ini-
tialising the pipeline stream for data collection.

The timers one to three thus indicate the time that the implemented server-node archi-
tecture needs to fulfil its purpose. To setup was repeated for 30 times.

5.2.2 Results

Figures and show the results of the first experiment in boz-plots. Overall, we
have achieved an average of 7.37 seconds to launch the whole BluePIL 2.0 application with
a median of 7.09 seconds. In addition, the time required for server-client communication
was 5.17 seconds on average and 4.89 seconds on median. The outliers in Figure show
that the network problems between the nodes and the sink can sometimes cause delays
in communication. Nevertheless, they remain within reasonable limits as the process
never exceeded 8 seconds. The configuration time was a simple Safe Quit procedure, as
the configuration was already done beforehand, causing an average of 2.2 seconds and a
median of 2.16 seconds additional time for the setup, as it was embedded in the start-up
process.

Configuration duration

2.6 4

2.5 4

2.4 4

2.3 A

2.2 4 &

Seconds

2.1+4

2.0 A

1.9 1

1.8

T
Time 1-2

Figure 5.3: Time between first and second timer

5.3. EXPERIMENT 2: EVALUATION OF THE PATH-LOSS COEFFICIENT ADJUSTMENT31

Duration of server-client communication
(o]

= ~ ~ @
w o w [=]
L L

© o

Seconds
o
o

<|

A

o
o

-

T
Time 2-3

-
w

Figure 5.4: Time between second and third timer

Total duration of setup

0]

10.0 4

9.5 1 (0]

9.0

8.5 1

Seconds

8.0 1
7.5 1
[Y

7.0

L

T
Time 1-3

6.5 1

Figure 5.5: Time between first and third timer

5.3 Experiment 2: Evaluation of the Path-Loss Coefficient
Adjustment

5.3.1 Experimental Setup

For the second experiment, we ran the data analysis tool during data collection of BluePIL
2.0. The goal of the experiment was to evaluate the GUI section that is responsible to
change the n coefficient during the process. The data analysis tool was therefore ran for
two minutes, changing the n coefficient every 20 seconds manually within the GUI. The
time was set short because the implementation does not allow for other results within the
update cycles, although two minutes is still a considerable amount to show its effectiveness.

32 CHAPTER 5. EVALUATION

To ensure that the coefficient was changed, the function bpquadlaterate, which calculates
the location, has been modified to output the current timestamp and the coefficient used
for the calculation if a positioning has happened. The timestamps are then compared to
determine if the correct coefficient value was used for the respective 20-second interval.

5.3.2 Results

The results in Table[5.2|show the parameter adjustment during the positioning in different
time-intervals and how many times it was applied coordinately.

Time Coefficient | Total calculations | Correctly used coefficient
0-20 seconds 3.0
20-40 seconds 2.0
40-60 seconds 1.8
60-80 seconds 2.2
80-100 seconds | 2.7
100-120 seconds | 1.5

QO | U | O ©
O | Ol x| U1 ©

Table 5.2: Coefficient analysis ran for two minutes

5.4 Experiment 3: Evaluation of the Data Analysis Tool

5.4.1 Experimental Setup

A third experiment was done to evaluate the BluePIL data analysis tool, i.e. the GUI
implemented to visualize the data collected. Two phones were placed into the square field
in the warehouse connected to two headsets via Bluetooth. One was set to the coordinates
[2,2], the other to [1,3]. In addition, the True Point was set to first device. The experiment
ran for 5 minutes without interruption with a n coefficient of 1.8. The time was set to
5 minutes to collect sufficient data to display in the GUI and the n coefficient was set
to 1.8 as this was suggested by [§] for a grocery store which has similar conditions to
our scenario. We have to take into account that the n value setting does not play an
important role for this experiment as it is for evaluating the GUIL. For the data analysis,
we apply the Kalman Filter upon the data for each device to eliminate outliers. Firstly,
we plot all the devices positioned and secondly the first device at coordinates [2,2]. The
aim is to show how the system benefits from a data analysis tool by analysing the user
interface, but not to improve the data collection itself.

5.4.2 Results

Figure[5.6)shows the GUI after 5 minutes of deployment. The system has detected the two
devices in the room as expected, as the underlying system has not been changed. Each

5.4. EXPERIMENT 3: EVALUATION OF THE DATA ANALYSIS TOOL 33

device is plotted with the 10 last points received of the data set. The first positioned
device represented in red and the second device in green. Without having to manually
analyse the data, the predictions are displayed on the plot, so we know where the device is
located. It detecting over 29 different devices near the scenario. In Figure[5.7, we decided
to only plot the device ae7bbb that should be near the True Point. The prediction mean
reached an overall mean error of 0.8041 meters as calculated and displayed by the tool on
the button left of the graph for the mean of the last 10 points.

= BluePIL 2.0 - [a] X
Menu
Graph Page
Last Points 10
n Coefficient 1.8
Apply Kalman ¥ @ ae7bbb Prediction Mean
@ 35483b Prediction Mean
Plot All LAPs ¥ 4 T T A Uberteeth
% True Point
True Point 2.0 2.0 « @ae7bbb Predictions
35483b Predictions
Devices aeTbbb —
[=] N
Positioned Devices: 2
Sensed Devices: 29 ® .
> 24
.
®
.
.
1
0 & &
i T
0 1 2 3 4
X
Figure 5.6: GUI after 5 minutes, plotting all devices
= BluePIL 20 - [u} x
Menu
Graph Page
Last Points 10
n Coefficient 1.8
Apply Kalman A Uberteeth
X True Point
4 A A .
Plot All LAPs [@ Prediction Mean
True Point 2.0 2.0
Devices ae7bbb —!
e .
Positioned Devices: 2
Sensed Devices: 29
>2
<
14
04 & &
ME: 0.8041
T T
0 1 2 3 4

Figure 5.7: GUI after 5 minutes, plotting ae7bbb

34 CHAPTER 5. EVALUATION

5.5 Discussion

The three experiments conducted show a broad overview over the enhanced BluePIL sys-
tem. The aim of this thesis was firstly to reduce the deployment time and increase mobility
for future data collection. Secondly, making the path-loss coefficient n adjustable during
data collection and thirdly to plot the data near-real-time to enhance the understanding
of the scenario and adjust the n coefficient accordingly.

In the first experiment BluePIL 2.0 performed with a full deployment time of less than
8 seconds on average. If we consider that the configuration is already done before, it is
capable to connect the devices in around 5 seconds on average, which is successfully faster
than deploying the application via a SSH connection. It should be taken into account
that the author who carried out the experiments knows the manual steps and commands
in detail, so the execution could be faster than that of an average person, although we
must consider that they only consist of two easy-to-learn commands. The client-server
architecture made the deployment flexible and facilitated stopping and restarting the ap-
plication in contrast to the previous version. The use of the new hardware in BluePIL 2.0
improved the mobility of the system and the connected powerbanks made them available
for scenarios where no electricity is available. In addition, cabling is no longer required,
which reduce the overall workload. The Raspberry Pi Zero W’s proved themselves as
viable alternatives to the Asus Tinkerboards.

The second experiment showed that the n coefficient is now adjustable to any value given
by the operator. It opens up the possibility of running several scenarios in different en-
vironments to determine the best possible coefficient. By visually analysing the data
analysis tool, the accuracy can be improved by testing with different coefficient or set-
ting them to a known one. Interestingly, the amount of calculations within the scenario
changed drastically between 1 to 9 calculation per 20 seconds. This can be attributed to
the fact that perhaps one of the nodes was not able to collect data properly and therefore
there were less calculations.

The third experiment showed the benefit of having a GUI plotting the current data. It
was capable of representing the last points received of the two devices deployed in the
scenario. The time that would have been required to post-analyze the data is gone.
Additionally, malicious behaviour of the system can be detected during collection and
maybe prevented. Although the sample size shown was relatively small, the accuracy was
better than the experiments performed by [25], suggesting that environmental conditions
with fewer factors, i.e. temperatures around 18°C and no walls, strongly favour the
localization, although the aim was not to test or improve the accuracy. Despite the fact
that the experiments took place in a warehouse, the system was very efficient and detected
over 29 different devices in the vicinity of the scenario in the third experiment, even though
the nearest offices and personas were several metres away behind walls.

In the following the requirements described in Section[3.1|are compared to the performance
of BluePIL 2.0:

5.5. DISCUSSION 35

R1 Automating the deployment and operation of BluePIL to reduce the number of
manual steps required in its bootstrap: The requirement is satisfied. The overall
manual steps required were reduced significantly.

R2 The system must be able to plot the data near-real-time: The requirement is satis-
fied. The GUI fetches the data real-near-time with an updating function interval of
0.5 seconds and represents the data accordingly.

R3 Parameters must be adjustable for better visualisation of the plot: This requirement
is satisfied. Last points, True Point, Kalman Filter as well as plotting different
devices at once are possible parameters to adjust the plotting.

e The n path-loss coefficient should be adjustable during data collection: This
requirement is satisfied. The n coefficient is updated within a 0.5 second inter-
val during data collection when adjusted.

R4 Prototype must enable mobility of experiments allowing to be easily deployable in
different scenarios: This requirement is satisfied. The new smaller nodes with the
connected powerbanks increase mobility for different scenarios.

In regards to the goals of this work, on which the requirements are based, we can derive
the following:

e Automation: The automation was successfully reduced the deployment time for
many future scenarios. The nodes scripts starting on bootstrap and the server-client
architecture provide much utility for the deployment.

e Path-loss coefficient: The path loss coefficient n can now be changed to any value
during data collection by the operator in the implemented GUI or in the bp.json file
responsible for configuration.

e Analysis: The analysis GUI provides a near-real-time plotting of the collected data
and help understand the scenario given, visualizing each device that got positioned
and sensed. Furthermore, it can be used as a viable information to modify the n
coefficient.

36

CHAPTER 5. EVALUATION

Chapter 6

Final Considerations

6.1 Summary and Conclusion

This thesis extends the system called BluePIL, which passively locates and identifies Blue-
tooth devices. The aim was to address the problem of the system’s lengthy deployment
time, limited mobility and lack of utility within the data collection. The objectives of the
goals were achieved. The new version called BluePIL 2.0, enables faster deployment of
the system with a server-client architecture that automates the start-up of the BluePIL
pipeline. In addition, the new software and hardware configuration makes it easier to
deploy by using a WiFi LAN to synchronize with a sink and mobile nodes based on
powerbanks instead of connecting cables. During the data collection, the plot of the col-
lected data helps to analyze the scenario on screen. The tool offers the possibility to
set the n coefficient to a value suitable for the scenario and also allows the operator to
choose a true point for the setting. The data is plotted within a updating interval to be
considered near-real-time.

Overall, the updated version developed in this thesis offered a significant improvement
in deployment and operation while maintaining low-performance hardware and near real-
time credibility. Nonetheless, the specific aspects concerning the localization algorithm
still needs to be optimised as the tracking is not precise, although setting better environ-
mental conditions helped to improve the localization in the scenario carried out. Interest-
ingly, the system proves to be good at detecting devices without positioning them, which
could be useful for other applications. The data analysis tool is a useful first step for
real-time analytics in the context of this work, although in a real-world scenario a mar-
keting analytics company would likely end up implementing a much larger cloud-based
analysis application that receives data from several different pipelines of BluePIL deploy-
ments simultaneously, calculates various behaviours and creates running records. Though
this scale would have gone beyond the scope of this thesis. However, the implemented
client-server architecture would support this type of setup well.

Some difficulties encountered in the implementation of BluePIL 2.0 were the lack of
commented code in the underlying source code, which had to be figured out manually by
trial and error to get a better understanding of how the system works. In addition, the

37

38 CHAPTER 6. FINAL CONSIDERATIONS

node devices with their operating systems required the acquisition of in-depth knowledge
about remote connection and setup, as well as learning new operating system calls. The
n coefficient also difficult to be observed, as the tests carried out during implementation
did not show success for better localization. However, it must be said that the aim of the
work was not to achieve better accuracy, but to provide the tools to do so. There were also
several approaches to solve the problem of internet connectivity for time synchronisation
between the nodes so that the system no longer needs it, but after some discussion, the
system would probably be used in a real world scenario where internet access is not an
issue, as it is certainly provided. In this sense, the focus was put on more important aspects
for BluePIL. Initially, the aim of this thesis was rather to experiment with BluePIL in
different scenarios to find better calibration parameters for each. As it turned out, the
calibration was about the n coefficient, but since it is difficult to measure the impact, and
public spaces with many people often require consent, the goal was changed.

6.2 Future Work

The system implemented opens new possibilities for future work. Extensive testing in
different scenarios are more feasible to do and allow possibly improving the accuracy.
BluePIL runs with a definitive localization algorithm. By exploring new localization
algorithms, the predictive calculator could be evaluated to see if a new algorithm might
prove to be better. Concerning the internet connectivity issue to synchronize the clock,
most certainly there would be a way to synchronize the time between the sink and the
nodes within a network without internet connectivity, though it is still questionable if this
is applicable for real-world scenario as most networks deployed provide internet access. In
Experiment 3, the last points retrieved from a device are a useful source of information,
even though they may not represent the current live prediction, as the device may move
away from the scenario or simply stop sending Bluetooth signals. The last 10 points
remain on the plot as no more data is received. Therefore, a more complex design could
be implemented where the data is plotted according to its last timestamp within a certain
range, e.g. the last 5 seconds. Through the time synchronization issues at first, this thesis
has not treated this subject as the time has not allowed it. Furthermore, a repetition of
Experiment 3 in a more crowd dense area might indicate other utilities, as the system
has already indicated at being good at sensing Bluetooth devices. Future work may
move in the direction of identifying and sensing Bluetooth devices by using proximity to
determine which node the devices are closest to in a much larger area. This could already
give clues as to which people regularly walk past or spend time at certain nodes, e.g. a
shelf in a market. This would be interesting as it works with less precise localization as
environmental factors often prevent this anyway.

Bibliography

Rafael Hengen Ribeiro et al. “ASIMOV: a Fully Passive WiFi Device Tracking”. In:
2021 IFIP Networking Conference (IFIP Networking). IEEE. 2021, pp. 1-3.
Bruno Rodrigues et al. “BluePIL: a Bluetooth-based Passlve Localization Method”.
In: 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM). 2021, pp. 28-36.

Bruno Rodrigues et al. “CCount: Correlating RFID and Camera Data for High
Precision Indoor Tracking”. In: University of Zurich, Department of Informatics,
Tech. Rep 1 (2022).

Bruno Rodrigues et al. “LaFlector: a Privacy-preserving LiDAR-based Approach
for Accurate Indoor Tracking”. In: 2021 IEEE J6th Conference on Local Computer
Networks (LCN). IEEE. 2021, pp. 367-370.

Faheem Zafari, Athanasios Gkelias, and Kin K. Leung. “A Survey of Indoor Lo-
calization Systems and Technologies”. In: IEEE Communications Surveys Tutorials
21.3 (2019), pp. 2568-2599.

Luca Mainetti, Luigi Patrono, and Ilaria Sergi. “A Survey on Indoor Positioning
Systems”. In: 2014 22nd international conference on software, telecommunications
and computer networks (SoftCOM). IEEE. 2014, pp. 111-120.

Great Scott Gadgets. Ubertooth. https : / / github . com/ greatscottgadgets /
ubertooth. 2020. (Visited on Jan. 20, 2022).

J.B. Andersen, T.S. Rappaport, and S. Yoshida. “Propagation measurements and
models for wireless communications channels”. In: IEEFE Communications Magazine
33.1 (1995), pp. 42-49.

Bluetooth core specification v5.2. v5.2. Bluetooth SIG. Dec. 2019.

Bluetooth SIG. Vision and Mission. https://www.bluetooth . com/about-us/
vision/. 2022. (Visited on Jan. 20, 2022).

Bluetooth SIG. Market Update 2021. https://www.bluetooth.com/bluetooth-
resources/2021-bmu/. 2021. (Visited on Feb. 17, 2022).

Great Scott Gadgets. Ubertooth. https : / / github . com/ greatscottgadgets /
ubertooth. 2022. (Visited on Mar. 24, 2022).

Texas Instruments. CC2400 Datasheet. https://www.ti.com/1it/ds/symlink/
cc2400.pdf. 2008. (Visited on Mar. 22, 2022).

Georg Carle and Corinna Schmitt, eds. Proceedings of the Seminars Future Internet
(FI) and Innovative Internet Technologies and Mobile Communications (IITM),
Winter Semester 12/13. Vol. NET-2013-02-1. Network Architectures and Services
(NET). Feb. 2013.

39

https://github.com/greatscottgadgets/ubertooth
https://github.com/greatscottgadgets/ubertooth
https://www.bluetooth.com/about-us/vision/
https://www.bluetooth.com/about-us/vision/
https://www.bluetooth.com/bluetooth-resources/2021-bmu/
https://www.bluetooth.com/bluetooth-resources/2021-bmu/
https://github.com/greatscottgadgets/ubertooth
https://github.com/greatscottgadgets/ubertooth
https://www.ti.com/lit/ds/symlink/cc2400.pdf
https://www.ti.com/lit/ds/symlink/cc2400.pdf

40

[15]
[16]
[17]
[18]

[19]

BIBLIOGRAPHY

Hacker Warehouse. Ubertooth One. https ://hackerwarehouse . com/product /
ubertooth-one/. 2022. (Visited on Mar. 24, 2022).

V Fox et al. “Bayesian filtering for location estimation”. In: IEEFE pervasive comput-
ing 2.3 (2003), pp. 24-33.

Guoquan Li et al. “Indoor positioning algorithm based on the improved RSSI dis-
tance model”. In: Sensors 18.9 (2018), p. 2820.

DP-3T. DP3T - Decentralized Privacy-Preserving Proximity Tracing. https://
github.com/DP-3T/documents. 2020. (Visited on Mar. 18, 2022).

Lorenz Schauer, Martin Werner, and Philipp Marcus. “Estimating Crowd Densities
and Pedestrian Flows Using Wi-Fi and Bluetooth”. In: MOBIQUITOUS ’14. 2014,
171a177.

Mathias Versichele et al. “Pattern mining in tourist attraction visits through asso-
ciation rule learning on Bluetooth tracking data: A case study of Ghent, Belgium”.
In: Tourism Management 44 (2014), pp. 67-81.

Alaa Alhamoud et al. “Presence detection, identification and tracking in smart
homes utilizing bluetooth enabled smartphones”. In: 89th Annual IEEE Conference
on Local Computer Networks Workshops. 2014, pp. 784-789.

Imad Afyouni et al. “Passive BLE Sensing for Indoor Pattern Recognition and Track-
ing”. In: Procedia Computer Science 191 (2021), pp. 223-229.

Livealytics. Livealytics - We make Live FExperience measurable. https : / / wuw .
livealytics.com. 2022. (Visited on Mar. 18, 2022).

Bruno Bastos Rodrigues. Inosuisse Funds Cooperation between the University of
Zurich and Livealytics. https ://www . csg.uzh.ch/csg/en/news/PasWITS -
Research-Project0.html. Mar. 2020. (Visited on Mar. 17, 2022).

Cyrill Halter. “BluePIL: Fully Passive Identification and Localization of Bluetooth
Devices in Near-Real-Time”. MA thesis. University of Zurich, Aug. 2020.

Xiaojie Zhao et al. “Does BTLE measure up against WiFi? A comparison of in-
door location performance”. In: European Wireless 2014; 20th European Wireless
Conference. 2014, pp. 1-6.

Python Software Foundation. tkinter - Python interface to Tcl/Tk. https://docs.
python.org/3/library/tkinter.html. 2022. (Visited on Feb. 20, 2022).

The Matplotlib Development team. Matplotlib: Visualization with Python. https:
//matplotlib.org/. 2022. (Visited on Feb. 20, 2022).

The pandas development team. pandas. https : //pandas . pydata . org/. 2022.
(Visited on Feb. 22, 2022).

ASUSTeK Computer Inc. Tinker Board. https ://tinker - board . asus . com/
product/tinker-board.html. 2022. (Visited on Feb. 23, 2022).

Raspberry Pi. Raspberry Pi Zero W. https://www.raspberrypi.com/products/
raspberry-pi-zero-w/. 2022. (Visited on Mar. 1, 2022).

Pi-Shop.ch - Totonic GmbH. Raspberry Pi Zero W - EDU. https://www . pi-
shop.ch/raspberry-pi-zero-w. 2022. (Visited on Mar. 2, 2022).

Raspberry Pi. Raspberry Pi OS. https://www.raspberrypi.com/software/. 2022.
(Visited on Mar. 2, 2022).

Fresh 'n Rebel. POWERBANK 3000 MAH. https : //freshnrebel . com/uk/
powerbank-3000-mah/2pb3000ig/. 2022. (Visited on Mar. 3, 2022).

https://hackerwarehouse.com/product/ubertooth-one/
https://hackerwarehouse.com/product/ubertooth-one/
https://github.com/DP-3T/documents
https://github.com/DP-3T/documents
https://www.livealytics.com
https://www.livealytics.com
https://www.csg.uzh.ch/csg/en/news/PasWITS-Research-Project0.html
https://www.csg.uzh.ch/csg/en/news/PasWITS-Research-Project0.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://matplotlib.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://tinker-board.asus.com/product/tinker-board.html
https://tinker-board.asus.com/product/tinker-board.html
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.pi-shop.ch/raspberry-pi-zero-w
https://www.pi-shop.ch/raspberry-pi-zero-w
https://www.raspberrypi.com/software/
https://freshnrebel.com/uk/powerbank-3000-mah/2pb3000ig/
https://freshnrebel.com/uk/powerbank-3000-mah/2pb3000ig/

BIBLIOGRAPHY 41

[35]

Microsoft. Surface Book 2 features. https : / / support . microsoft . com/ en -
us / surface / surface - book - 2 - features - d7562c78d - d1fc - c483 - ¢80d -
8343e68ad96b. 2022. (Visited on Feb. 21, 2022).

Apple. MacBook Pro (13-inch, 2017, Four Thunderbolt 3 ports) — Technical Speci-
fications. https://support.apple.com/kb/sp75571locale=en_US. 2022. (Visited
on Mar. 20, 2022).

GL Technologies Microuter Technologies. MEET GL-MiFi. https://www.gl-
inet.com/products/gl-mifi/. 2022. (Visited on Mar. 21, 2022).

NETGEAR. NETGEAR 4G LTE Mobile Hotspot. https://www.netgear.com/uk/
home/mobile-wifi/hotspots/ac810/. 2022. (Visited on Mar. 21, 2022).

Debian. Debian. https://www.debian.org/index.en.html. 2022. (Visited on
Mar. 19, 2022).

https://support.microsoft.com/en-us/surface/surface-book-2-features-d752c78d-d1fc-c483-c80d-8343e68ad96b
https://support.microsoft.com/en-us/surface/surface-book-2-features-d752c78d-d1fc-c483-c80d-8343e68ad96b
https://support.microsoft.com/en-us/surface/surface-book-2-features-d752c78d-d1fc-c483-c80d-8343e68ad96b
https://support.apple.com/kb/sp755?locale=en_US
https://www.gl-inet.com/products/gl-mifi/
https://www.gl-inet.com/products/gl-mifi/
https://www.netgear.com/uk/home/mobile-wifi/hotspots/ac810/
https://www.netgear.com/uk/home/mobile-wifi/hotspots/ac810/
https://www.debian.org/index.en.html

42

BIBLIOGRAPHY

Abbreviations

BLE
BTBR
BTEDR
CSV
FHSS
GFSK
ISM
IoT

IP
SSH
SIG
TCP

Bluetooth Low-Energy
Bluetooth Basic Rate

Bluetooth Enhanced Data Rate
Comma-Separated Values
Frequency Hopping Spread Spectrum
Gaussian Frequency-Shift Keying
Industrial, Scientific and Medical
Internet-of-Things

Internet Protocol

Secure Shell

Special Interest Group
Transmission Control Protocol

43

44

ABBREVIATONS

List of Figures

[3.1 BluePIL 2.0 high-level system architecture| 8

[3.2 Sequence diagram presenting the starting process for the sink and the nodes |
in the first BluePIL versionl o v v o 9

[3.3 Sequence diagram presenting the starting process for the sink and the nodes |

[n version 2.00 L e 11
[4.1 State diagram of the listening mini-server|. 17
4.2 Configuration GUI| 17
[4.3 Parameter section of the data analysistool] 23
b.1 Node Devicel 28
[>.2 Experiment setup| 29
b.3 Time between first and second timerlo 30
6.4 Time between second and third timero 31
.o Time between first and third timerlo 00000 31
[>.6 GUI atter 5 minutes, plotting all devices| 33
[5.7 GUI atter 5 minutes, plotting ae70bb] 33

45

46

LIST OF FIGURES

List of Tables

[3.1 Sample of a data collection by GluePIL stored in positions.csv|

[>.1 Hardware for BluePIL and BluePIL 2.0

In comparison|

[5.2 Coefhicient analysis ran for two minutes|

47

48

LIST OF TABLES

Listings

[3.1 Code summary of the n coefhicient usage in the BluePIL system until ini-
talization of the BpQuadlateration| 13
4.1 Data transter loop of BluePIL 2.0|. 16
[4.2 bp.json configuration message| 19
[4.3 Save values to bp.json| 20
[4.4 Sink logic for the client application| 20
1.5 Plot mitialization mto the GUIl 0. 21
[4.6 Function of the BluePI[L pipeline to register a data stream| 24
[4.7 Section of the bpQuadlateration class tor calculating the device location|. . 24

49

90

LISTINGS

Appendix A

Contents of the Repository

The repository contains the following content:

e Root Directory: Contains both the start application for the node server and the
sink client application, the data analysis tool, the configuration file, a demo video
and the requirements file for the sink

e node Directory: Contains the node code of the BluePIL system
e sink Directory: Contains the sink data stream logic of the pipeline

e node_setup Directory: Contains the updated requirement file for the Raspberry Pi
Zero W

e data Directory: Contains the data of the experiments

51

52

APPENDIX A. CONTENTS OF THE REPOSITORY

Appendix B

Installation Guidelines

B.1 Installation of Dependencies

BluePIL 2.0 requires Python v3.8 to be installed as well as the dependencies. Dependen-
cies for the sink are located in the Root Directory in requirements.txt and for the nodes
in the node_setup/install.sh. The Ubertooth One sensors must be connected to each
of the Raspberry Pi Zero W’s via USB.

B.2 Running the Application

Before running the node application, each device’s IP address, if not already configured,
has to be adjusted in the bp.json file accordingly. The BluePIL 2.0 node mini-server can
be started by running python raspberry_server.py. The sink application is started by
running python run_sink.py. After starting the sink application, the configuration of
the scenario has to be set:

e True Point: z, y coordinates of the to be sensed device

e N-Value: the n coefficient value

e Ubertooth_1-4: z, y coordinates of the Uberteeth within the scenario

After the configuration the streaming pipeline can be started by typing START_NODE.
Demo.mp4 in the Root Directory shows a short demonstration of the setup.

33

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamentals
	Background
	Bluetooth
	Project Ubertooth
	Kalman Filter
	Multilateration
	The Log-Distance Path Loss Model

	Related Work

	System Design
	Requirements
	Assumptions
	BluePIL 2.0
	Automation
	Architecture

	Analysis
	Path-Loss Coefficient

	Implementation
	Software
	Node Configuration
	Sink Configuration
	Data Analysis Tool for Device Location and Identification
	Path-Loss Coefficient

	Evaluation
	Hardware
	Scenario

	Experiment 1: Evaluation of the Automation
	Experimental Setup
	Results

	Experiment 2: Evaluation of the Path-Loss Coefficient Adjustment
	Experimental Setup
	Results

	Experiment 3: Evaluation of the Data Analysis Tool
	Experimental Setup
	Results

	Discussion

	Final Considerations
	Summary and Conclusion
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the Repository
	Installation Guidelines
	Installation of Dependencies
	Running the Application

