
Machine-learning based Detection
of Malicious DNS-over-HTTPS (DoH)

Traffic Based on Packet Captures

David Stalder
Zurich, Switzerland

Student ID: 13-929-872

Supervisor: Jan von der Assen
Date of Submission: April 18, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Das Ziel dieser Bachelorarbeit ist die Implementation eines funktionierenden Prototyps zur
Erkennung von bösartigem DNS-over-HTTPS (DoH) Datenverkehr in das bereits bestehende
System SecGrid, einer Plattform zur Extraktion von Netzwerkdaten, deren Analyse und der
Erkennung von Cyber-Attacken, welche an der Universität Zürich entwickelt wurde. Die Im-
plementation enthält eine Feature Extraction Komponente, welche speziell für die Extraktion
von DoH Datenverkehr basierend auf TCP Datenfluss entwickelt wurde und einer zweilagigen
Machine Learning Pipeline für die Erkennung von bösartigem DoH Datenverkehr. Die Aus-
wertung beweist, dass der Prototyp für einzelne Datensätze sehr genau ist, jedoch sinkt die
Genauigkeit drastisch, sobald die Machine Learning Modelle mit verschiedenen Daten trainiert
und anschliessend getestet werden. Das Fazit ist, dass eine Diversifizierung der Datensätze
nötig ist, damit sie besser abgestimmt sind auf verschiedene Browsereinstellungen und alle
verfügbaren DoH Server, zusätzlich sollten die bereits vorhandenen Datensätze qualitativ und
quantitativ verbessert und erweitert werden.

The goal of this thesis is to implement a working prototype for the detection of malicious
DNS-over-HTTPS (DoH) traffic into the already existing System SecGrid, a platform for the
extraction of internet traffic, its analysis, and the detection of cyber-attacks developed by
the CSG-Group at the University of Zurich. The implementation contains a special feature
extraction for DoH traffic based on TCP-flows and a two Layered Machine Learning pipeline for
the detection of malicious DoH traffic. The evaluation proves that the prototype is extremely
precise for single data-sets, but as soon as the models are trained and tested with different
data the accuracy of the prototype deteriorates drastically. The conclusion is the diversification
of the training data-sets into data-sets that are aligned with real-world browser settings and
all available DoH resolvers and especially the quantitative and qualitative extension of the
state-of-the-art data.

i

ii

Acknowledgments

I would like to thank everyone involved in this project, especially to my primary supervisor
Jan von der Assen for his support during this thesis. His permanent advice and constructive
feedback had a direct impact onto the outcome of my thesis. Further I wan to thank everyone
who did the proofreading of my documentation and helped me to improve it. Last but not
least I want to thank my family and friends for their support during this time.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 5

2.1 Domain Name System . 5

2.2 Hypertext Transfer Protocol Secure . 6

2.3 Transmission Control Protocol . 6

2.4 DNS-over-HTTPS . 7

2.4.1 Strengths . 8

2.4.2 Vulnerabilities . 8

2.4.3 Malware . 9

2.5 SecGrid . 9

2.6 PCAP-Files . 10

v

vi CONTENTS

3 Related Work 13

3.1 Downgrading Attacks on DoH . 13

3.2 Capturing and Analyzing DoH Traffic . 14

3.3 Machine Learning Based Approaches . 14

3.3.1 Separation of DoH Traffic . 14

3.3.2 Feature Extraction . 15

3.3.3 Detecting Malicous DoH Traffic . 18

3.3.4 Two-Layered Approach . 19

3.3.5 Feature Analysis . 19

3.3.6 Three-Layered Approach . 21

3.4 Deep Learning Based Approach . 21

4 Design 25

4.1 Data-Set . 26

4.2 Clumping . 27

4.3 Feature Extraction . 28

4.3.1 Statistical Metrics . 28

4.3.2 Header Features . 30

4.3.3 Packet Length Features . 31

4.3.4 Packet Time Features . 31

4.3.5 Packet Request/ Response Time Features 32

4.3.6 Novel Features . 32

4.4 Training Data-Sets . 33

4.5 Light Gradient Boosting Machine . 34

4.6 Architecture . 34

CONTENTS vii

5 Implementation 37

5.1 Pipeline . 37

5.2 Clumping . 38

5.3 Feature Extraction . 39

5.3.1 Header Features . 40

5.3.2 Statistical Metrics . 41

5.3.3 Packet Information Features . 41

5.3.4 Novel Features . 42

5.3.5 Saving Process . 42

5.4 Training Data Sets . 43

5.4.1 Preprocessing . 43

5.4.2 Training Data Set of Layer 1 . 45

5.4.3 Training Data Set of Layer 2 . 46

5.5 ML Model . 47

5.5.1 Layer 1 . 47

5.5.2 Layer 2 . 48

5.5.3 Hyperparameter Tuning . 50

6 Evaluation 53

6.1 Feature Extraction Accuracy . 53

6.1.1 Comparison to Wireshark . 54

6.1.2 Comparison to Related Work . 56

6.2 Feature Importance . 58

6.2.1 Layer 1 . 58

6.2.2 Layer 2 . 59

6.2.3 Discussion . 59

6.3 ML Model . 60

6.3.1 Metrics . 61

viii CONTENTS

6.3.2 Layer 1 using Data-Set CIRA-CIC-DoHBrw-2020 63

6.3.3 Layer 2 using Data-Set CIRA-CIC-DoHBrw-2020 65

6.3.4 Performance using Random Forest Algorithm 66

6.4 Layer 1 using a Different Data-set . 67

6.4.1 Preprocessing . 68

6.4.2 Jěrábek et. al Data-set as Test-Dataset 68

6.4.3 Relying Exclusively on Jěrábek et. al Data-set 69

6.4.4 Jěrábek et. al Data-set as Training Data-Set 71

7 Summary, Conclusions, Limitations, and Future Work 73

Abbreviations 83

Glossary 85

List of Figures 85

List of Tables 88

List of Algorithms 90

A Installation Guidelines 93

A.1 Feature Extraction . 93

A.2 ML Pipeline . 93

B Contents of the Repository 95

Chapter 1

Introduction

1.1 Motivation

Conventional DNS queries entail the problem that not only the user and the resolver, but also
nearly everyone, can see the content of those queries. Therefore, DNS over HTTPS (DoH)
was introduced in October 2018 with the goal to improve the internet security and user privacy
by sending encrypted DNS queries using the HTTPS protocol. In September 2019, Firefox
announced to adopt DoH into their browser [1] (see Figure 1.1) and since then the usage of
this protocol experienced a steep increase [2], although other security approaches still form
the vast majority.

Figure 1.1: Tweet [1] in which the Implementation of DoH was introduced

A huge benefit of DoH is that it protects the content of the traffic from the insight of third
parties. But exactly because of this point, experts have expressed concerns [3], since it is
also not possible for DNS monitoring systems to have a direct insight into the traffic. This
complicates the inspection, the detection, and the blocking of DoH traffic and makes it a
difficult task. Therefore, DoH brings along not only desired properties, but also many undesired
properties, like bypassing of DNS monitoring Systems or exploitation of upstream DNS traffic
[4]. One example for this type of misusage is the Godlua Backdoor Malware [5] which uses
DoH to obtain the address of the C2. A more recent example for the misuse of DoH is
the Iranian hacker group Oilrig (APT34) [6], which used DoH in combination with the tool
DNSExfiltrator [7] to receive data without being noticed from a hacked network.

The encryption of DoH traffic makes direct deep inspection for malware detection a nearly
impossible task. Nevertheless, there exists another way to get an insight in the data traffic

1

2 CHAPTER 1. INTRODUCTION

of DoH: leveraging the unique traffic shape. There exist approaches where the traffic is
successfully analyzed using machine learning models. The SecGrid [8] system developed at the
University of Zurich by the CSG Group provides a platform for granular feature extraction. The
aim of this thesis is to implement a prototypical malicious DoH traffic detection component
into SecGrid.

1.2 Description of Work

This thesis is separated into three different stages: the first stage is the introduction into
the problem, in the second stage a literature research is conducted and the findings of it are
presented, and into the final stage a working prototype is created, evaluated, and finally the
whole work is documented.

The first stage initially comprises the fundamental understanding of DoH. Therefore, a deep
insight into DNS, its encryption, and the detection of encrypted DNS queries is to be achieved
to understand the underlying problem of this thesis to fulfil the objectives of the thesis. Further,
the insight into the baseline system with its background will be the predominant part of this
stage. The platform will be analyzed to get an overview of the existing system, the feature
extraction and the current machine learning based clients that are already implemented into
the system. The final step of this stage will be the decomposition of the thesis into tasks,
such that a timeline can be established where the systematic implementation of the work can
be planned.

In the second stage, the current state of the literature is surveyed. The first step is research
on the background of DoH to get a detailed insight into the objective. This includes a survey
about the specific characteristics of malware that misuse the security properties of DoH for
cyberattacks. The main part of this stage will be a survey about the current approaches in the
detection of malicious DoH traffic, with special focus on machine learning based approaches. In
the subsequent part of this stage, the findings achieved in the literature research are presented,
followed by the main design decisions for the thesis. Finally, the findings are adopted into the
current system architecture. Therefore, the current platform architecture is redesigned, and
the findings are implemented to show the technical feasibility and the usefulness of the work.

The third and last stage contains the implementation of a working prototype, where the
findings and the design decisions of the second stage are implemented into the platform. The
prototype contains a working DoH traffic detection component. The final part of this stage is
the evaluation and the documentation of the work.

1.3 Thesis Outline

This report is structured as follows. Based on the formulation of the thesis goal in this Chapter
1, Chapter 2 delivers the background knowledge on which this thesis is built. The focus there
is laid to the DNS-over-HTTPS protocol, on its basics, strengths, vulnerabilities, and malware

1.3. THESIS OUTLINE 3

which is already abusing it. Furthermore, SecGrid is presented in more detail, including the file-
format of the Packet-Capture. Chapter 3 is dedicated to the findings of the literature research.
Thus, the focus there is laid on current solutions for the detection of malicious DNS-over-
HTTPS traffic, with special interest on Machine Learning based approaches. In Chapter 4, the
design of the architecture of the prototype for malicious DNS-over-HTTPS traffic detection,
which is implemented into SecGrid is presented. Chapter 5 treats the implementation of the
prototype into SecGrid step by step. Foremost, the Feature Extraction is described, followed
by the extraction of the data-set which was used for the training data of the Machine Learning
model and ultimately the Machine Learning model implementation is described. In Chapter
6 the evaluation of the prototype is conducted, whereas the Feature Extraction and the ML
Model are focused. Finally, Chapter 7 recapitulates the work and the findings of this thesis,
the conclusions and limitations are presented, and future work is stated.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The purpose of this chapter is to establish the background knowledge for this thesis. First,
an introduction into the Domain Name System and the Hyptertext Transfer Protocol Secure
including their vulnerabilities which are found up to date builds the basis of the chapter. Then,
the functionality of the Transmission Control Protocol is introduced. The core of this chapter
is the Section DNS-over-HTTPS, where the functionality, the strengths, and the vulnerabilities
including a survey of the malware abusing the protocol are presented. In the end of the chapter,
the platform SecGrid including a definition of PCAP-Files is shown.

2.1 Domain Name System

The Domain Name System (DNS) is a protocol that is used to process naming resources in
such a way that different users, networks etc. are all able to understand and identify the
respective naming resource in their own language. An example for it is a user who types a
URL into a web-browser. Since this URL is only understandable by human beings, it has to be
translated into a numerical IP-address and made understandable for the internet. This part is
taken by the DNS, which is a directory that administers the namespace of the whole internet.
DNS has been introduced in 1993 and has since then become a crucial part of the internet [9].

However, in this early time of the internet nearly no one thought about internet security and
therefore lone DNS-queries are highly endangered to suffer cyberattacks. [10] found three
different ways to view the vulnerabilities of DNS: the conceptual view, the structural view
and the communication view. In the conceptual view, they applied a model for testing the
information security called CIA Triad, which is structured into three parts: the confidentiality,
the integrity and the availability. In all three parts, this model showed that DNS is not secure
and prone to attacks or failures of the servers due to the fact that DNS is not encrypted
and has a hierarchical structure, such that anyone can tamper it. In the structural view,
they found that the hierarchical tree structure of DNS servers makes it easier for attackers to
attack several services used by a lot of users at the time. Another finding in this view was the
exposure of DNS server information, which is caused by insufficient security configurations of
the DNS servers. This allows an attacker to send malicious data to the user and the user still

5

6 CHAPTER 2. BACKGROUND

believes that this data is secure. In the third view, the communication view, they found that
the packets are not secured through the usage of UDP, caching problems caused by Cache
Poisoning can occur and there is insufficient protection against Distributed Denial of Service
attacks. In summary, those three views show clearly that DNS is vulnerable in many aspects,
which is the reason that in the evolution of the internet security many more security protocols
have been developed [10].

2.2 Hypertext Transfer Protocol Secure

The Hypertext Transfer Protocol (HTTP) [11] was introduced in the early 1990s and has since
then become a crucial part of the internet. It defines the communication of the web-server
and the web-browser, communicates by using the Transmission Control Protocol (TCP) [12]
and works on the Application Layer of the OSI-Model [13]. The Hypertext Transfer Protocol
Secure (HTTPS) [14] extends the HTTP, whereas the major difference between HTTPS and
HTTP is that HTTPS additionally is encrypted by using Secure Sockets Layer (SSL) [15] or
its successor, the Transport Layer Security (TLS) protocol [16]. HTTPS uses port 443 by
default, and its URLs start with ”https://”. The common start of a TLS connection [17] is a
handshake between the resolver and the client, where the Public Key Infrastructure (PKI) is
used to first authenticate the resolver, afterwards a symmetric key for the session is generated
by asymmetric encryption [18].

[19] listed a compilation of possible attacks on HTTPS. Protocol Version Downgrade happens
when a Man-In-The-Middle attacker sends ClientHello messages until the client’s protocol
version is reduced to an older one, which is more prone to attacks. RSA Decryption oracles
happen in HTTPS since the padding scheme of TLS is assailable to padding oracle attacks,
which means that the attacker is able to decrypt a cryptographic message. Heartbleed means
that an attack could uncover the long-ranging private keys of the resolver by exploiting memory
management problems in resolver implementations. They organized insecure channels into
three different categories: leaky, tainted, and partially leaky channels. Leaky channels arise
when a connection to a vulnerable channel is classified as confidential. The attacker can here
try to get the Premaster Secret and with it the possibility to decrypt and read all the recorded
network traffic. Tainted channels are prone to Man-In-The-Middle-Attacks which enable the
attacker to decrypt, read and modify the communication between the client and the server.
Partially leaky channels enable the attacker to find out sporadic small secrets in the long run.
By abusing the secret repetition assumption, the attacker can find out those small secrets
by capturing the exchange of repeated messages. Summarizing they found that although
HTTPS nowadays is necessary, it is not entirely safe due to weaknesses of the underlying TCP
implementation, but with the advancing improvement of TLS the internet security also rises
[19].

2.3 Transmission Control Protocol

The Transmission Control Protocol (TCP) [12] defines how data is exchanged between the
different network components. It was first introduced in 1981 and its last extension was

2.4. DNS-OVER-HTTPS 7

published in RFC7323 in 2014 and works on the transport layer of the OSI-Model. A TCP
connection between two endpoints [18] can be clearly identified by the IP-address and the
port of the client, and the IP-address and the port of the server and work by exchanging
so-called packets. When a client wants to establish a connection to the server, it has to send
a synchronization (SYN) packet to the server. If the server cannot establish this connection,
it answers with a reset (RST) packet to show the client that it is (currently) unavailable.
But if the server is available, it answers with a synchronization acknowledgement (SYN/ACK)
packet. The client on the other hand sends an acknowledgement (ACK) answer to say that it
received the SYN/ACK packet. After this sequence, which is illustrated in Figure 2.1 on the
left, the connection is established and the server and the client are able to exchange data.

Figure 2.1: Start (left) and End (right) of a TCP connection

If one side (the server or the client) wants to finish the connection [20] and sends no more
data, it sends a finish packet (FIN) to the opposite. The opposite confirms that it received the
FIN packet by sending an ACK packet. Now the opposite sends a FIN packet back to the side
which sent the first FIN packet, and this side confirms the receipt of this FIN packet with an
ACK packet as well. After this closing process, which is illustrated in Figure 2.1 on the right,
the opposite can close the connection. Another possibility to close a TCP connection is simply
by sending an RST package to the opposite side and then the connection is closed. [20] stated
that during this process, many things can go wrong, which he called abnormal terminations.
Those abnormal terminations could be either an interrupted setup or a disconnection, and they
could occur due to the following reasons: There could be an insufficient amount of resources
or a network disrupt could occur, the session could crash due to a bug in the implementation,
one side has already closed the connection and the other side continues sending data, or the
resolver declines to establish a connection with the client [20].

2.4 DNS-over-HTTPS

DNS-over-HTTPS (DoH) is a protocol used for the traffic of DNS queries using the HTTPS
protocol, which was first introduced in 2018. There are two different approaches of DoH, the

8 CHAPTER 2. BACKGROUND

first one uses DNS in wire-format enclosed in HTTPS [21], the other one uses DNS represented
in JSON format [22]. Both approaches are supported by the majority of all implementations,
but the more commonly used approach is DNS in wire-format [23], therefore the main focus
of this Bachelor Thesis will be laid on the DNS in wire format approach. There are several
public DoH servers [24] available, inter alia Cloudflare, Google, Quad9, and AdGuard.

2.4.1 Strengths

[25] conducted a large-scale measurement of DNS-over-Encryption, inter alia, of DoH. They
stated that the mixture of DoH queries with other HTTPS traffic effectively resists traffic
analysis that only targets DNS queries. This improves the protection of the content of DNS
queries and with it the privacy of the traffic significantly, in other words it becomes difficult for
an attacker to get an insight of the DNS queries. Another point is that DoH demands both
encryption and authentication of servers. If a server is unable to provide these two security
measures, the DoH query will fail and no data exchange will take place between the respective
server and the client. Due to this fact, already the detection of DoH servers becomes very
challenging [25]. [4] stated further that the authenticated and encrypted responses from the
servers are immune from unauthorized modification by attackers.

2.4.2 Vulnerabilities

DoH entails the benefit that the DNS traffic between client and resolver is protected from
unauthorized access, but this fact also leads to issues. [4] presented the following issues: DoH
conveys a false sense of security, DNS monitoring can be bypassed, the DNS upstream can be
exploited, and there are concerns for internal network configurations and information. DoH has
a lot of properties that promise being absolutely protected against cyberattacks. But in return,
there are possibilities for an attacker to gain information about the connection the client made
to the server. This leads to a false sense of security. DNS monitoring has the function to
filter and stop traffic from known malicious domains. Using DoH makes it impossible for these
monitoring services to have a direct insight into the plaintext DNS traffic. If now external DoH
servers are used, attackers get the possibility to get insight into the encyrpted DNS traffic.
If an organization uses a device or an application that is configured to use an external DoH
server, it ignores internal security measures and connects directly to that external resolver.
This fact is a huge concern for internal network configurations and information because if now
the client wants to connect to an internal domain, the device or the application sends the query
first to the preferred and external resolver before at worst failing the internal resolver. Thus, it
becomes possible that internal network information is revealed to unauthorized persons. DoH
takes place only on the ”last mile”between the client who starts the DNS request and the DoH
server which is addressed by the client. If the DoH server transmits the traffic to top-level
root DNS servers, it could occur that the traffic from this point is not encrypted anymore.
Thus, an attacker who can exploit the upstream DNS traffic, can here have an insight on the
plaintext DNS traffic, and can try to divert the traffic to a malicious server [4].

2.5. SECGRID 9

2.4.3 Malware

As seen in the previous Section, DoH is not fully secure. On this account, there have recently
already been cyberattacks that abuse the security properties of DoH, in particular the fact that
there is no possibility for insight into DoH traffic [26]. This Section creates an overview over
the most common malware that abused the properties of DoH in the recent past, namely the
Godlua Backdoor, PsiXBot, and Oilrig’s APT34.

In April 2019, [5] found a Lua-based Backdoor-file. Lua [27] is a programming language which
is according to [28] a pretty popular and upcoming choice for web applications. A Lua-based
Backdoor-file is a Lua Code Injection, which leaves a ”backdoor” for an attacker to inject
malicious queries into the affected web-application. For C2 connections, Godlua Backdoor
employs a redundant communication technique, where attackers use a combination of several
ways to store a C2 address, and at the same time they use HTTPS and DoH to ensure the
secure communications for their bots [5].

In early 2019, PsiXBot [29], which uses Google’s DoH service to get the domain name of
Google’s C2, was observed for the first time. With the knowledge of the domain name of the
C2, PsiXBot can encrypt its DNS traffic and insert it masked into the normal HTTPS traffic
and therefore circumvent the DNS firewalls. It also uses the method Fast Flux [30], which is a
method to rapidly change the DNS entries by the usage of a Botnet to avoid being detected.

Oilrig, also known as APT34, is an Iranian hacker group which became in 2020 the first of their
kind to incorporate the DoH protocol into its attacks [6], using their until then newest tool,
the DNSExfiltrator [7]. This tool is capable of transferring data between two points using the
DoH protocol. Oilrig used these abilities to laterally shift data across an internal network to
exfiltrate the channel, where they could take data undetected from monitoring systems, using
exactly the security property of DoH that does not allow having an insight into the traffic.

2.5 SecGrid

SecGrid [8] is a platform that facilitates Machine Learning for the Analysis, Classification
and Visualization of cyber-attacks. It is written in JavaScript (JS) and implements a set
of miners, which are able to analyze network traffic files (i.e. PCAP-files [31]) and gain an
insight into possible attacking patterns and classify them. Furthermore, the suggested miners
are extensible.

Figure 2.3 shows the current architecture of SecGrid. In the User Layer, the user can choose
already available data-sets or upload new ones to detect in the web-based interface. There,
the data is forwarded to the RESTFUl-API, which takes the part of the data manager in the
Data Layer. If a new data-set is uploaded, the data-manager forwards it to the data extraction
pipeline, where it gets analyzed and forwarded back to the User Layer. In the User Layer, the
data is visualized in the Vizualization Module, such that they deliver meaningful information
to the user.

10 CHAPTER 2. BACKGROUND

2.6 PCAP-Files

Packet Capture (PCAP) [31] files are used to capture live packet traffic data. The files can
be generated with network analyzers like Wireshark [32]. The packets in turn can be used to
analyze the traffic which is done by the client. The features that are recorded in PCAP files
are listed in Table 2.1. Most of the features are self-explanatory, like No. (Number of the
packet), Time, Source, Destination, Protocol, and Length. The feature Info contains the most
important information about the packet, since here the user can see which type of message
this packet is, e.g. in terms of the TPC protocol the PCAP file can capture if it was a SYN
packet, or an ACK packet, etc. Figure 2.2 shows the summary of the features of an example
PCAP file parsed in Wireshark. Other PCAP-parsers may extract slightly different features.

Feature Explanation
No. Number of the packet
Time Time the packet was captured
Source Source IP of the packet
Destination Destination IP of the packet
Protocol Protocol that was used for sending this packet
Length Length of the packet (in bytes)
Info Info about the packet

Table 2.1: Features of a PCAP File in Wireshark

Figure 2.2: Example PCAP File in Wireshark

2.6. PCAP-FILES 11

Figure 2.3: Current Architecture of SecGrid [8]

12 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

Although DoH is relatively new compared to other security protocols, there is already a con-
templative amount of work done in relation to it. The main focus of this chapter is to create an
overview of the work which was already conducted concerning DoH. The first reference shows
a study where downgrading attacks on DoH connections were conducted in four different ways,
followed by the second reference which presents ways to detect and analyze DoH traffic using
existing tools.

All the following references show how Machine Learning (ML) or Deep Learning (DL) models
can be used to detect malicious DoH traffic. The third reference shows that it is possible to
separate DoH traffic from other traffic by using Machine Learning models by first conducting
a detailed feature analysis of DoH traffic and later testing different Machine Learning models.
The fourth reference sets the cornerstone for all the upcoming references by creating a data-
set containing malicious and benign DoH traffic and non-DoH traffic, including a feature
extraction module. The next reference tried to separate malicious DoH traffic from benign
traffic by using Machine Learning models. The sixth reference did essentially the same task
but this time by using a layer-approach where he separated DoH traffic from non-DoH traffic
in the first Layer and then in the second Layer separated benign DoH traffic from malicious
traffic. He also tested several Machine Learning models. The seventh reference took the
work of the sixth reference and improved it by conducting statistical tests for a more efficient
feature extraction and Machine Learning model performance. The eighth reference and the
last one in the Machine Learning Section designed a three-layered approach, where they took
the idea with the two-layers of the sixth reference and tried to find out which DoH tunnel tool
was causing the malicious traffic in the third Layer. The last reference in this chapter used
Deep Learning approaches for the detection of malicious DoH traffic. In Table 3.7, the key
dimensions of every reference are summarized.

3.1 Downgrading Attacks on DoH

[33] conducted a study where they carried out DoH downgrade attacks on six different browsers
(Chrome, Firefox, Edge, Brave, Opera, and Vivaldi). A DoH downgrade attack translates DoH

13

14 CHAPTER 3. RELATED WORK

traffic into plain text DNS or in other words, the encrypted DoH connection is turned into
an unencrypted DNS connection. DoH communication has two phases: in the first phase the
client connects for the first time with the resolver using an unencrypted DNS request and in the
second phase the reliable connection to the DoH server is established and from this moment
client and server only communicate with encrypted HTTPS GET and POST methods. In both
phases, attackers who are able to intervene can keep the communication on the lower security
level. [33] proposed four different attack vectors during the two mentioned phases: DNS Cache
Poisoning, DNS Traffic Interception, TCP Reset Injection, and TCP Traffic Interception. They
tested every combination of browser and attack vector and found that every single test lead
to a successful attack. As countermeasures, they proposed revisions of DoH implementations
or DoH protocols [33].

3.2 Capturing and Analyzing DoH Traffic

[34] presented a study where he first conducted several tests to detect encrypted DNS traffic,
especially DoH traffic. His goal was to show how attackers can use DoH to bypass the existing
monitoring of organizations. Furthermore, he proposed a system that is able to detect and
restrain unintentional DoH traffic. He also presented Zeek, which can be used to observe the
DNS traffic and record the traffic in Zeek logs, which can be passed to another tool called
RITA. RITA can be used to interpret the Zeek logs statistically to identify malicious traffic such
as beaconing. His findings are that companies can protect themselves by using an adequate
analysis and monitoring setup [34].

3.3 Machine Learning Based Approaches

The references in this Section used ML based approaches. The first reference did an expanded
feature analysis of DoH traffic, followed by the trial of several ML models to detect DoH
traffic. In the second reference, the basis was built for all the upcoming references by creating
a data-set and an associated feature extraction. The further references evaluated different
ways to detect malicious DoH traffic using ML approaches.

3.3.1 Separation of DoH Traffic

[35] executed a detailed feature analysis and evaluated the five popular Machine Learning
classifiers K-Nearest Neighbours (5-NN), C4.5 Decision Tree, Random Forest, Näıve Bayes,
and Ada-Boosted Decision Tree to differentiate DoH traffic from classic DNS traffic. Due to
a lack of sources, they created their own data set using on the one hand Google Chrome and
Mozilla Firefox in two separate Virtual Machines and controlled them both with the Selenium
Framework to create browser DoH traffic and on the other hand they collected the traffic by
using a DoH proxy, i.e. Cloudflare. They wrapped up all the gathered data in PCAP-files.
The feature analysis (listed in Table 3.1) revealed that there is an essential difference between

3.3. MACHINE LEARNING BASED APPROACHES 15

the duration of a DoH connection and the connection of a single HTTPS connection, since
the DoH connection is in the most cases established once and then lasts until the end of the
secure connection, whereas the single HTTPS connection lasts for a shorter time (Feature 1).
If the HTTPS connection lasts longer there might be file downloading or video streaming etc.
involved, but then this kind of HTTPS connection tends to exchange a much higher amount
of data in shorter time than a DoH connection, thus the amount of data transmitted can also
be a distinctive feature (Feature 2). The size of the transmitted packets (Feature 3) is another
indication for a DoH connection: while the size of transmitted packets in normal HTTP packets
is very big, the size of DoH packets is much smaller. But this feature is considered as less
significant, since HTTP packets can also have same sizes like DoH packets, depending on the
purpose of the connection. A further feature (Feature 4) is the symmetry of the amount of
incoming and outgoing data of a DNS query compared to HTTPS traffic. While in common
DNS the amount and size of requests and responses is nearly identical, it is also similar in the
beginning of an HTTPS connection, but the longer the HTTPS connection lasts, the more
asymmetric the ratio becomes.

Considering the results, the authors found that in the two cases DoH Client evaluation and
DoH recognition Näıve Bayes delivered the worst results, whereas the Ada-Boosted Decision
Tree delivered the best results in both cases, namely 99.6% accuracy and 0.996 F1 score in the
DoH recognition and 99.9% accuracy and 0.999 F1-score in DoH client classification. Although
Näıve Bayes delivered the worst results in this study, it was nevertheless comparatively good
with a high precision, which points out that the feature vector they chose is very stable.
However, they limited their work by saying that the DoH detection and the client recognition
are only possible when multiple DNS queries are connected, single connections are not possible
to detect with their approach [35].

No. Feature
1 Duration of the Flow
2 Amount of Data sent in the Flow
3 Size of the transmitted Packets
4 Symmetry of the amount of incoming and outgoing data

Table 3.1: Most Important Features found by [35]

3.3.2 Feature Extraction

[36] created a framework called DoHlyzer [37] that is able to extract necessary features for the
classification and characterization out of DoH traffic. The framework uses the scapy [38] library
written in Python to detect PCAP files which contain the network traffic and which are created
with tools such as Wireshark or tcpdump. The module DoHMeter which he implemented into
DoHlyzer is capable to extract a set of statistical features. Additionally, he added the header
information Source IP, Destination IP, Source Port and Destination Port to be able to identify
the flow which are listed in Table 3.2.

16 CHAPTER 3. RELATED WORK

He introduced a clumping process in which he clumped the flows to reduce the size of the
flows, whereas each of the features is extracted from a clump. To avoid that different flows
are aggregated in the same clump, he used the header information and a timeout value.
He separated the statistical features into information about the amount of bytes sent and
received listed in Table 3.3, statistical information about the packet length in one flow listed
in Table 3.4, statistical information about the packet time in one flow listed in Table 3.5, and
statistical information about the packet response time between an outgoing query and the
following response in one flow listed in Table 3.6.

Feature Explanation
Source IP The IP from which the query was sent
Destination IP The IP which received the query
Source Port The Port from which the query was sent
Destination Port The Port which received the query

Table 3.2: Header Information [36]

Another part of his work was the creation of a data-set named CIRA-CIC-DoHBrw-2020. This
data-set contains HTTPS traffic flows which are in one level separated into non-DoH traffic and
DoH traffic, in the second level the DoH traffic is separated into benign and malicious traffic,
and in the third level the malicious DoH traffic is separated into the traffic of three different
tunneling tools (iodine. DNS2TCP, and DNScat2). He used four public DoH providers in his
work, namely AdGuard, Cloudflare, Google DNS, and Quad9. Finally, he made his data-set
publicly available under [39] in PCAP-format as well as in CSV-format.

Parameter Feature Explanation

F1 Number of flow bytes sent
The amount of bytes sent in the current
flow in bytes

F2 Rate of flow bytes sent
The rate of bytes sent in the current
flow in bytes/second

F3 Number of flow bytes received
The amount of bytes received in the
current flow in bytes

F4 Rate of flow bytes received
The rate of bytes received in the
current flow in bytes/second

Table 3.3: Information about the Amount of Bytes sent and received [36]

Parameter Feature Explanation

F5 Mean Packet Length
The mean of all packet lenghts in one flow
in bytes

3.3. MACHINE LEARNING BASED APPROACHES 17

F6 Median Packet Length
The median of all packet lenghts in one flow
in bytes

F7 Mode Packet Length
The mode of all packet lenghts in one flow
in bytes

F8
Variance of
Packet Length

The variance of all packet lenghts in one flow
in bytes

F9
Standard Deviation of
Packet Length

The standard deviation of all packet lenghts
in one flow in bytes

F10
Coefficient of Variation
of Packet Length

The coefficient of variation of of all packet
lenghts in one flow in bytes

F11
Skew from Median
Packet Length

The skew of each packet compared to the
median packet length of the flow in bytes

F12
Skew from Mode
Packet Length

The skew of each packet compared to the
mode packet length of the flow in bytes

Table 3.4: Statistical Information about the Packet Length [36]

Parameter Feature Explanation

F13 Mean Packet Time
The mean of all packet durations in one flow
in seconds

F14 Median Packet Time
The median of all packet durations in one
flow in seconds

F15 Mode Packet Time
The mode of all packet durations in one flow
in seconds

F16 Variance of Packet Time
The variance of all packet durations
in one flow in seconds

F17
Standard Deviation
of Packet Time

The standard deviation of all packet durations
in one flow in seconds

F18
Coefficient of Variation
Packet Time

The mean of all packet durations in one flow
in seconds

F19
Skew from Median
Packet Time

The skew of each packet compared to the
median packet duration of the flow
in seconds

F20
Skew from Mode
Packet Time

The skew of each packet compared to the
median packet duration of the flow
in seconds

Table 3.5: Statistical Information about the Packet Time [36]

18 CHAPTER 3. RELATED WORK

Parameter Feature Explanation

F21
Mean Request/
response time difference

The mean of the duration difference of an
outgoing packet and the following
response of all packet durations in one flow
in seconds

F22
Median Request/
response time difference

The median of the duration difference of an
outgoing packet and the following response
of all packet durations in one flow in seconds

F23
Mode Request/
response time difference

The mode of the duration difference of all an
outgoing packet and the following response of
all packet durations in one flow in seconds

F24
Variance of Request/
response time difference

The variance of the duration difference of
an outgoing packet and the following response
of all packet durations in one flow in seconds

F25
Standard Deviation
of Request/
response time difference

The standard deviation of the duration
difference of an outgoing packet and the
following response of all packet durations
in one flow in seconds

F26
Coefficient of
Variation of Request/
response time difference

The coefficient of variation of of the duration
difference of an outgoing packet and the
following response of all packet durations
in one flow in seconds

F27
Skew from
Median Request/
response time difference

The skew of each packet compared to the
median of an outgoing packet and the
following response of all packet durations
in one flow in seconds

F28
Skew from
Mode Request/
response time difference

The skew of each packet compared to the
mode of an outgoing packet and the
following response of all packet
durations in one flow in seconds

Table 3.6: Statistical Information about the Packet Response time between an outgoing Query
and the following Response in one Flow [36]

3.3.3 Detecting Malicous DoH Traffic

[40] used five different Machine Learning classifiers (Näıve Bayes, Logistic Regression, Ran-
dom Forest, K-Nearest Neighbour, and Gradient Boosting) to detect malicious DoH traffic.
They used the data-set of [36], which they combined in a new CSV file. After revising the
file and removing all the rows containing null values, they ended up with a file with about
250’000 samples. In the next step they selected 31 features from the combined data set, but
unfortunately due to page limitation they did not discuss them any further. Finally, the best
result was delivered by the Random Forest classifier with an accuracy of 99.99% and an F1
score of 1.0 and the Gradient Boosting classifier with an accuracy of 99.97% and an F1 score
of 1.0, all the other classifiers delivered non-satisfying results.

3.3. MACHINE LEARNING BASED APPROACHES 19

3.3.4 Two-Layered Approach

[41] used six different Machine Learning classifiers (Decision Tree, Extra Tree, Gradient Boost-
ing, Light Gradient Boosting Machine, XGBoost, and Random Forest) in a two Layer approach
to detect DoH traffic and separate it from DNS traffic in Layer 1 and separate the data into
benign and malicious DoH traffic in Layer 2 (see Layer 1 and Layer 2 in Figure 3.2). He
used the data of [36] as PCAP files and filtered 20’000 samples of each kind (benign and
malicious), of which he used 90% as training set and 10% as testing set. He extracted 34
features which are contained in the data set and compared them finally statistically. His
findings are that the most important features per Layer are DestinationIP and ScourceIP for
Layer 1, for Layer 2 the most important feature is tan(PacketLengthMode). In sum, the most
important features across the two Layers are PacketLengthMedian, PacketLengthMode, and
PacketLengthSkewFromMode. Concerning the Machine Learning classifiers, he found that in
both Layers Light Gradient Boosting Machine and XGBoost delivered the best results with a
maximum accuracy of 100%.

3.3.5 Feature Analysis

[42] rebuilt and tried to improve [41]’s work. They tested 10 different Machine Learning classi-
fiers (Decision Tree, Random Forest, Light Gradient Boost Machine, XGBost, Linear Discrim-
inant Analysis, K-Nearest Neighbours, Gaussian Näıve Bayes, AdaBoost, Gradient Boosting,
and Extra Trees) and determined the most effective and efficient amongst them for the usage
of a two layered approach like in [41]. Additionally they introduced feature selection methods
to improve the performance of the Machine Learning classifiers and the usability in commercial
usage. They used the data-set of [36] and like [41] they extracted 34 features.

The problem of such an enormous amount of features is that the Machine Learning model can
easily be overfit which leads to poor results. Within [41]’s work, they found that the most
important features (DestinationIP andSourceIP) had only about 30 different IP addresses in a
data-set of 40’000 data points, which could have led to an overfitting problem of [41]’s model.
They found similar problems with the features DestinationPort, SourcePort, and Timestamp.
Therefore, they removed those five features from the data-set and ended up with a list of 29
features.

For the remaining features, they introduced and performed two different statistical tests for
an improved feature selection: the Chi-Squared Test and Pearson Correlation Coefficient Test.
With those two methods, they were able to detect features with statistical significance and
ended up with a list of decreasing importance of the features for each Layer. The appli-
cation of Feature Distribution Graphs finally revealed that the Duration and ResponseTime-
TimeSkewFromMedian were the most important features for Layer 1, PacketLengthStandard-
Deviation and PacketLengthCoefficientofVariation were the most important features for Layer
2. In Figure 3.1 the features are sorted by importance and Layer (Layer 1 on the left and Layer
2 on the right) including their p-values. The features marked red were the features that were
classified as negligible after the two statistical tests.

After they found out the statistical significance of the different features, they tested the ten
different Machine Learning models with the remaining 29 features to find out which model

20 CHAPTER 3. RELATED WORK

performs the best. They chose the three best performing models: Random Forest, LGBM, and
Decision Tree for Layer 1 and Random Forest, LGBM and XGBoost for Layer 2). With those
three models for each Layer, they executed a Sequential Forward Selection (SFS), where they
ran tests with an increasing number of features starting at one feature and ending up with 29
features. For both Layers, Random Forest performed the best due to its high accuracy, in both
Layers followed by Light Gradient Boost Machine due to its high accuracy and low training
time.

They unveiled that the Random Forest model is the preferred model for both Layers if it is
trained only once, but if the task requires continuous training of the model, Light Gradient
Boost Machine can be the preferred model due to very low training times. Besides that, they
also found that with 21 features (according to the sequence of the feature-importance for
the respective Layer in Figure 3.1) the models reached the optimal precision and accuracy,
such that it is not necessary to have more features in the data-set. They limited their work
with the statement that they used the default models of scikit-learn with no further use of
hyperparameter tuning.

Figure 3.1: Features listed by Importance, Layer 1 on the Left, Layer 2 on the Right [42]

3.4. DEEP LEARNING BASED APPROACH 21

3.3.6 Three-Layered Approach

[43] developed a system that is able to identify the DNS tunnel tool that is causing the
malicious DNS traffic. The basis of this system is shown in the previous works [40], [41],
and [42], where the first step is the separation of DoH traffic and normal DNS traffic, and
the second step is to detect malicious DoH traffic. [43] added a third step to that system
which is the identification of the malicious DNS tunnel tool, i.e. dns2tcp, dnscat2, and iodine
(see Figure 3.2). They used the data-set of [36] for their evaluation where they extracted 28
statistical traffic features and chose the Machine Learning models XGBoost, Light Gradient
Boost Machine, and CatBoost to test for the best performing model in each step. The
comparison of the models in each of the three phases resulted in the selection of XGBoost for
the first phase, Light Gradient Boost for the second Layer and CatBoost for the third Layer
due to their performance and accuracy in the respective phase. Moreover, they found that
Mode Packet Length and Mean Packet Time were the most important features for Layer one,
Mode Packet Length and Median Packet Length were the most important features for Layer
two. In the third Layer, the most important features followed the pattern Request/response
time difference, and according to that pattern the most important features were Median
Request/response time difference, Skew from median Request/response time difference, Skew
from median Request/response time difference, and Skew from mode Request/response time
difference. XGBoost in the first Layer had the accuracy of 99.81%, the precision of 99.81%,
and the F-score of 99.87%, CatBoost in the second Layer had the accuracy of 99.99%, the
precision of 100%, and the F-score of 99.99%, and Light Gradient Boost Machine in the third
Layer had the accuracy of 97.22%, the precision of 94.97%, and the F-score of 95.19%.

3.4 Deep Learning Based Approach

[44] used the Deep Learning algorithm Bi-Directional Recurrent Neural Network (BRNN) to
detect malicious DNS queries that are sent using encrypted tunnels. They used the data-set
of [36] for their evaluation, which they pre-processed by deleting redundant or zero rows, then
they normalized all the values between a specific range, labelled the values into malicious and
benign, and split them into a training and a testing set with the ratio of 80% to 20%. From
the data set they extracted 34 features, but they used only statistical features, therefore they
deleted the 6 non-statistical features. In the training phase, they trained their model to identify
benign and malicious DoH query patterns, and in the following testing phase they tested if the
model was able to identify the trained patterns. They achieved an accuracy of 100% with no
false positives and false negatives rates and concluded that their model is an effective way for
organizations to monitor and protect their environment.

22 CHAPTER 3. RELATED WORK

Reference Key Dimensions
[33] Downgrading Attacks on DoH connections
[34] Caption of DoH traffic

[35]
Separation of DoH traffic from DNS traffic using Machine Learning Models
Feature analysis

[36]
Feature extraction
Creation of a DoH data-set

[40] Tests of MLmodels to detect malicious traffic

[41]
Two layered approach for detection of malicious DoH traffic
Tests of ML models

[42]
Improvement of [41]’s work
Statistical tests for feature analysis
Sequential Forward Selection for amount of feature Optimization

[43] Three layered approach to find tunnel tool causing malicious DoH traffic
[44] Use Deep Learning models to detect malicious DoH traffic

Table 3.7: Summary of the References presented in this Chapter

3.4. DEEP LEARNING BASED APPROACH 23

Figure 3.2: Illustration of the Three-Layered Approach

24 CHAPTER 3. RELATED WORK

Chapter 4

Design

In the following Section, the design decisions for this thesis are presented. The literature
research revealed different interesting and promising approaches, but the most convincing and
matured approach in the survey findings was the one by [41] and [42]. The layer approach,
where in the first Layer the DoH traffic is detected and in the second Layer the malicious traffic
is detected, is a very convincing and inspiring work. Additionally, the feature analysis and the
proposal of the best performing ML model of [42] is highly accurate. In terms of the feature
selection, [42]’s work suited very well to the work of all the references found in the previous
chapter. Therefore, this work is strongly based on their work.

For the detection of malicious DoH traffic, the two layered approach that [41] found will be
approached, where the first Layer separates DoH traffic from classic DNS traffic and the second
Layer detects malicious traffic and separates it from benign traffic. According to the findings
of [42], the Machine Learning model that will do the detection will be the Light Gradient
Boosting Machine, and for each Layer, the important features according to the results of the
statistical tests will be involved. Finally, the data for the default data-sets will be taken from
[36], whereas it will be built according to the work of [41] with two data-sets for each Layer
and with 40’000 data points for each data-set.

The mentioned works will not be adopted exactly, since all those works were written in Python.
SecGrid is mainly written in JavaScript, therefore the feature extraction will be implemented
also in JavaScript to assure the compatibility. For the PCAP-file analysis, node-pcap imple-
mented in JavaScript will be used instead of Scapy (Python), which possibly needs to be
adjusted to be able to extract all the desired features.

The outline of this Chapter is as follows: first the data-set [39], which provides the training
data for this thesis, is presented. The next two Sections describe how the traffic is filtered
for HTTPS and how the TCP-flows are formed into clumps. The Section Feature Extraction
presents all the features that are extracted from the TCP-clumps including their computations.
In the next Section it is shown how the training data-sets are composed. The Section Light
Gradient Boosting Machine presents the ML model that is used in this thesis and finally, the
Section Architecture shows how all the presented parts are composed such that they result in
a working prototype.

25

26 CHAPTER 4. DESIGN

4.1 Data-Set

For this thesis, the data-set created by [36] and found at [39] is used. The data-set was created
by using HTTPS traffic flows with two levels of distinct labels. The first level is assembled by
normal HTTPS traffic and tunneled DoH traffic, the second level consists of benign DoH traffic
and malicious DoH traffic. Figure 4.1 shows the illustration of how the data was collected.
The traffic was collected by capturing HTTPS traffic from the web browsers Google Chrome
and Mozilla Firefox. Using the browsers, he visited a set of the top 10’000 websites of Alexa
to collect non-DoH-traffic data. Benign DoH-traffic data was collected by configuring both
browsers to only use DoH connections instead of DNS traffic. To collect malicious DoH-traffic
data, [36] deployed a network that simulates malicious DoH tunneling scenarios.

Figure 4.1: Illustration of the Collection of the Data by [36]

After analyzing some PCAP-files contained in this data-set in Wireshark, a surprising obser-
vation is made. Wireshark provides the function to filter one single TCP-flow. With this
function, it becomes visible that many TCP-flows are not ended correctly with the double
FIN-ACK packet sequence like it was shown in Chapter 2.3 and were just interrupted. Also,
checking the successor PCAP-file does not show any end of TCP-flows of the predecessor file.
But as [20] stated, it can be totally normal in the real world that TCP connections can be
interrupted abruptly. This finding makes the approach of malicious DoH traffic detection of
this thesis even more reliable and accurate and appropriate for a real world problem. As a
consequence, each TCP-flow in the data-set that is not ending will be ended manually at the
end of each PCAP file and a flag will be handed over to the feature collection. Since this

4.2. CLUMPING 27

problem is not handled in any of the references, it can be a limitation of all these works that
is tried to be solved in this thesis.

4.2 Clumping

Before starting a complete analysis, some data can already be filtered. As mentioned in Section
2.4, DoH works only on the HTTPS protocol, which only operates on port 443. Therefore,
only flows whose either source port or destination port is port 433 will be considered further,
every other flow which has nothing to do with the HTTPS port will be dropped.

[36] had the idea of a clumping process in which he merged packets of a same flow. To ensure
that only packets of one flow are in this clump, he uses a timeout which limits the time interval
of the packets, i.e. each packet whose timestamp exceeds the timeout is automatically put
into the next clump. In this thesis, another clumping approach is followed (Figure 4.2). A
DoH connection is always one single TCP flow, therefore one clump will be built with one
entire TCP flow. The advantage of such a clumping process is that not every single packet
data sequence has to be forwarded, but only a summary of the whole TCP flow, which saves
a lot of memory capacity. Another advantage of this clumping process is that it allows to
extract statistical features, e.g. the median of the packet times in the clump etc. This process
will be declared in the next Section.

In the Section 4.1, the problem of the non-ending flows is discussed. It is also pointed out
that those flows are considered, too. The pragmatic solution for this is that if the PCAP-file is
over and the flow is still open, the flow is closed manually, and the flag Status will be passed
as Open. For the flows which are closed correctly, the flag Status will be passed as Closed.

Figure 4.2: Illustration of the Clumping Process

28 CHAPTER 4. DESIGN

4.3 Feature Extraction

The feature extraction is done using the data-set [39], whereas the extracted features rely on
strongly on the features [36] computed and as already mentioned in Section 4.2, except that
one clump consists of one TCP flow, from which all the features are extracted and computed.
Statistical features are all computed with the same eight metrics, presented in Section 4.3.1.
Header features of every flow are extracted according to the features presented in Section
4.3.2. The core features, which need to be computed, are presented in Sections 4.3.3, 4.3.4,
and 4.3.5. Finally, the new-found features in this thesis are presented in Section 4.3.6. Totally,
41 features are presented in this Section.

4.3.1 Statistical Metrics

The statistical metrics used for the features in this work repeat for every property of a TCP-flow
(packet length, packet time, and packet request/ response time), therefore they are presented
in this separate Section. All the metrics are summarized in Table 4.1. The following metrics
all consider the data-set x1, x2, · · · , xn, where x1 is the first entry of the data-set and xn is the
last entry of the data-set. n is considered the highest index in the data-set. If the equation
requires modifications on the data-set, they are mentioned separately in the respective Section.

Mean

The mean [45] x̄ (Equation 4.1) or also the sample mean indicates the center of a data-set,
or in other words the arithmetic average of a sample.

x̄ =

∑N
i=1

xi
=

x1 + x2 + · · ·+ xn
n

(4.1)

Median

The median [45] m (Equations 4.2 and 4.3) indicates the middle of data-set, but unlike the
mean it is not affected by extreme values. It is defined as follows:

Consider the ordered data-set x1+ x2+ · · ·+ xn starting from the smallest x1 value and ending
at the biggest value xn.

If n is odd, then the median is the middle value of the ordered data-set.

m = x n
2
+0.5 (4.2)

If n is even, then the median is the average of the two middle values of the ordered data-set:

m =
x n

2
+ x n

2
+1

2
(4.3)

4.3. FEATURE EXTRACTION 29

Mode

The mode [45] is indicating the value that occurs the most in the data-set and is therefore
another indicator for the central tendencies of the data-set. If there is no unique value that
occurs the most, then the sequence of all values that occur the most indicate the modal values.

Variance

The variance s2 [45] (Equation 4.4) is the ”average”of the summed squared differences between
each value of the data-set and the mean of the data-set. It is not quiet the average, since the
sum is not divided by n but rather by n − 1. The variance considers the spread tendencies of
the data-set.

s2 =

N∑
i=1

(xi − x̄)2

n − 1
(4.4)

Standard Deviation

The standard deviation s [45] (Equation 4.5) is an indicator for the spread of the data-set. It
is the positive square root of the variance.

s =

√√√√√ N∑
i=1

(xi − x̄)2

n − 1
(4.5)

Coefficient of Variation

The coefficient CV [46] (equation 4.6) of variation is used to compare the two different metrics,
standard deviation and mean. It is computed by dividing the standard deviation by the mean
and multiplying it by 100.

CV = s/x̄ ∗ 100 (4.6)

Skew from Mode

The Skew from Mode or also Pearson’s first coefficient of skewness Skp1 [47] (equation 4.7)
is used to compare the symmetry of two or more distributions of data-sets. It is computed by
subtracting the mode from the mean m and dividing the difference by the standard deviation
s.

30 CHAPTER 4. DESIGN

Skp1 =
x̄ −mode

s
(4.7)

Skew from Median

The Skew fromMedian or also Pearson’s second coefficient of skewness Skp2 [47] (Equation 4.8)
is used to compare the symmetry of two or more distributions of data-sets. It is computed by
three times the difference between the mean and the median divided by the standard deviation.

Skp2 =
3 ∗ (x̄ −m)

s
(4.8)

No. Metric Format of Feature
1 Mean float
2 Median float
3 Mode int
4 Variance float
5 Standard Deviation float
6 Coefficient of Variation float
7 Skew from Mode float
8 Skew from Median float

Table 4.1: Statistical Metrics

4.3.2 Header Features

The identifying header features are the features Source IP, which is the IP of the client,
Destination IP, which is the IP of the server, Source Port, which is the port of the client, and
Destination Port, which is the port of the server. All the four features have the format string.
Since these features are only passed to the set of extracted features for informational purposes
and are not further used, the format string is appropriate. The feature Duration indicates
the total period the connection lasted and has the format float. The two features Flow Bytes
Sent and Flow Bytes Received sum up the total number of Bytes sent from the client to the
server, or received from the client and sent by the server, respectively. Both the features have
format int. The Flow Sent Rate (Equation 4.9) is computed by dividing the total number of
sent Bytes by the client by the duration it lasted until the next packet was sent. Accordingly,
the Flow Received Rate (Equation 4.10) is computed by dividing the total number of received
Bytes by the client by the duration it lasted until the next packet was received. Both the
features have the format float. Table 4.2 sums up all the features presented in this Section.

Flow Sent Rate =
Total Number of sent Bytes

Time last sent Packet − Time first sent Packet
(4.9)

4.3. FEATURE EXTRACTION 31

Flow Received Rate =
Total Number of received Bytes

Time last received Packet − Time first received Packet
(4.10)

No. Feature Format
1 Source IP string
2 Destination IP string
3 Source Port string
4 Destination Port string
5 Duration float
6 Flow Bytes Sent int
7 Flow Bytes Received int
8 Flow Sent Rate float
9 Flow Received Rate float

Table 4.2: Header Features

4.3.3 Packet Length Features

Packet length features are computed from the set of all extracted sizes (in Bytes) of every
packet in one clump and by using the metrics presented in Section 4.3.1. Table 4.3 summarizes
all eight packet length features.

No. Feature
1 Packet Length Mean
2 Packet Length Median
3 Packet Length Mode
4 Packet Length Variance
5 Packet Length Standard Deviation
6 Packet Length Coefficient of Variance
7 Packet Length Skew from Median
8 Packet Length Skew from Mode

Table 4.3: Packet Length Features

4.3.4 Packet Time Features

Packet time features are computed from the set of all extracted durations (in seconds) between
the first packet was sent until the actual packet is sent in one clump and by using the metrics
presented in Section 4.3.1. Table 4.4 summarizes all eight packet time features.

32 CHAPTER 4. DESIGN

No. Feature
1 Packet Time Mean
2 Packet Time Median
3 Packet Time Mode
4 Packet Time Variance
5 Packet Time Standard Deviation
6 Packet Time Coefficient of Variance
7 Packet Time Skew from Median
8 Packet Time Skew from Mode

Table 4.4: Packet Time Features

4.3.5 Packet Request/ Response Time Features

For packet request/ response features, first the difference of sending a packet from the client
until the answer of the server was received (in seconds) is computed. From this difference,
the metrics presented in Section 4.3.1 are computed. Table 4.5 summarizes all eight packet
request/ response features.

No. Feature
1 Packet Request/ Response Time Mean
2 Packet Request/ Response Time Median
3 Packet Request/ Response Time Mode
4 Packet Request/ Response Time Variance
5 Packet Request/ Response Time Standard Deviation
6 Packet Request/ Response Time Coefficient of Variance
7 Packet Request/ Response Time Skew from Median
8 Packet Request/ Response Time Skew from Mode

Table 4.5: Packet Request/ Response Time Features

4.3.6 Novel Features

In this thesis, new additional features to the features [36] developed are introduced. The State
is a flag that indicates if a TCP session was closed or not. As seen in chapter 2.3, the initiator
of the closure of a TCP session could either be the client or the server. If it is closed it means
that the TCP session was closed and so the flag receives the value 1. If it is open it means
that the TCP session was not closed correctly and so the flag receives the value 0. The values
0 and 1 in format int are chosen to be numerically, since the ML model is not able to process
string-values. The feature Number of Application Packets Sent indicates the total number
of packets sent by the client in the TCP flow, the feature Number of Application Packers
Received correspondingly indicates the number of packets received by the client in the TCP
flow. Both the features have the format int.

4.4. TRAINING DATA-SETS 33

The feature Number of ACKs Sent sums up the total number of ACK packets sent by the client
in the TCP flow, the feature Number of ACKs Received accordingly is the summed up total
number of ACK packets received by the client in this flow. Both the features have the format
int. The feature Number of Retransmits Sent sums up the total number of retransmission-
packets sent by the client in the TCP flow, the feature Number of Retransmits Received sums
up the total number of retransmission-packets received by the client in the TCP flow. Finally,
the feature Total Packet length indicates the summed up length of all packets sent and received
by the client in one flow. Table 4.6 sums up all the features introduced in this Section.

No. Feature Format
1 State int
2 Number of Application Packets Sent int
3 Number of Application Packets Received int
4 Number of ACKs Sent int
5 Number of ACKs Received int
6 Number of Retransmits Sent int
7 Number of Retransmits Received int
8 Total Packet Length int

Table 4.6: New Features compared to the Work of [36]

4.4 Training Data-Sets

Since the ML model is trained two times (Layer 1 and Layer 2), it is also necessary to have two
different training data-sets. Layer 1 conducts the classification into non-DoH and DoH traffic,
therefore the data contained in the training set for Layer 1 (TSL1) contains an equal amount
of DoH traffic and non-DoH traffic, whereas the DoH traffic is split equal into benign and
malicious traffic. [41] composed his training data-sets with 40’000 data points, thus the total
amount of data contained in TSL1 is also 40’000 data points. The traffic data is marked with
a flag called doh for indicating the ML model if the data is DoH traffic or non-DoH traffic.
If the flag has the value 0, this means that the traffic is non-DoH traffic. If the flag has the
value 1, this means that the traffic is DoH traffic. TSL1 has its features ordered according to
[42] in Figure 3.1 on the left side, without the red marked features, but with additionally the
new features introduced in this thesis appended at the end.

Layer 2 conducts the classification into benign traffic and malicious traffic, therefore the train-
ing set for Layer 2 (TSL2) contains equally split traffic into benign and malicious traffic. The
malicious traffic is equally split into three different parts: malicious traffic from the tunnel
tools iodine, DNS2TCP, and DNScat2. The total amount of data points in TSL2 is again
40’000 data points. The traffic is marked with a flag called malicious. If the flag has the
value 0, this means that the traffic is benign. If the flag has the value 1, this means that the
traffic is malicious. TSL2 has its features ordered according to [42] in Figure 3.1 on the right
side, without the red marked features, but with additionally the new features introduced in
this thesis appended at the end.

34 CHAPTER 4. DESIGN

4.5 Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM) [48] is a subtype of Gradient Boosting Decision
Tree (GBDT). It is fast, efficient and has an excellent scalability when the number of features
is high and the amount of data is large. To this end, it uses Gradient-based One-Side-
Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS introduces a native gradient
weight handling, which means that instances which were not trained as successful as other
instances contribute more to the information gain than the well-trained instances during the
training process. EFB clusters mutually exclusive features into one single feature to reduce
the amount of features. Mutually exclusive features are two or more features that never take
non-zero values when at the same time another feature takes a non-zero value [48]. In this
thesis, LGBM is used for both Layers of the malicious DoH traffic detection process due to its
promising characteristics.

4.6 Architecture

After all design decisions are completed, it is now time to show how all the previously introduced
parts work together in the SecGrid prototype for malicious DoH traffic detection. Figure 4.3
shows the architecture of SecGrid. The two parts which have to be adjusted are the Protocol
Parser and the Feature Extractors, which are marked green in the Figure. The whole pipeline
will be implemented there, all the other parts will not be affected. The Protocol Parser needs
to be adjusted, since currently it only parses entire PCAP-files, but the approach of this
thesis demands it to parse TCP-flows. Therefore, a whole new TCP-flow handling will be
implemented.

The Feature Extractors will be adjusted according to Figure 4.4, which shows the whole
pipeline of the new process. The PCAP-file to be analyzed is given as an input to SecGrid,
which first will parse the file into the individual TCP-flows. The Feature Extraction extracts
all the demanded features (see Section 4.3) and assigns them into the respective clump. The
clumps in turn will then be written into a CSV-file. As soon as every flow/ clump is extracted
from the input file, the finished CSV-file with all the feature information is then handed over
to the Classification. The Classification is split into two parts (Layers): the first part Separates
DoH traffic from non-DoH traffic and hands over only the DoH traffic clumps to the second
part. In the second part, the DoH traffic is analyzed and malicious DoH traffic is identified.
The output of SecGrid is then a file with classified DoH traffic, whereas the user will be noticed
if there is malicious traffic recorded in the input PCAP-file.

4.6. ARCHITECTURE 35

Figure 4.3: Components to be adapted

36 CHAPTER 4. DESIGN

Figure 4.4: Illustration of the whole Classification Process of an Input PCAP File

Chapter 5

Implementation

This Chapter describes step by step how the prototype for malicious DoH traffic detection
is implemented into SecGrid. First, Section 5.1 shows an overview where the whole pipeline
of the newly implemented prototype is depicted. Section 5.2 describes the clumping process.
In Section 5.3, the feature extraction is depicted, whereas the computation of the statistical
metrics and every feature type (header features, packet information features, and the new
features) is exemplified in the respective Subsection, inclusively how they are saved. Section
5.4 presents the training data-sets that are later used by the ML models. First the preprocessing
procedure is described, followed by the compilation of the training data-sets. Finally, in section
5.5 the centerpiece of this thesis is presented: two LGBM algorithms which are trained to detect
malicious DoH traffic within a two layered system. After this Section, the hyperparameter
tuning of the two ML models is presented.

5.1 Pipeline

The implementation of every component results in a fully working prototype for the detection
of malicious DoH traffic. Figure 5.1 shows the illustrated pipeline of this prototype. It takes
a PCAP-file as input, which is handled like every other file in SecGrid according to Figure
4.6, i.e. it is forwarded by the RESTful-API, runs through the ddos dissector, the converters,
and the Packet Decoder until it arrives in the Protocol Parser. The Protocol Parser hands
over every single flow to the TCP Tracker, which extracts the packet information and collects
the flow information and gives it back to the Protocol Parser. The protocol parser hands
over every single flow to the Feature Extraction, which computes all the feature values of the
clumped flow, which is then saved into a CSV-file. This procedure is repeated until every
flow contained in the input PCAP-file is analyzed, clumped and saved in the CSV-file. The
CSV-file that contains all the clumps with the respective feature-values is then forwarded to
the two-layered malicious DoH detection component. In Layer 1, the clumps are separated
into DoH traffic and non-DoH traffic, whereas only the DoH traffic is forwarded to the second
Layer. The second Layer checks if the DoH traffic is malicious or benign. If malicious traffic
is found, it is saved into a CSV-file and forwarded to the File Storage of SecGrid.

37

38 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Pipeline of the Data-Flow

5.2 Clumping

For the clumping process, as introduced in Section 4.2, the TCP-flows of the input files are
separated and each flow builds one clump. Therefore, the parser of SecGrid in the file Pcap-
Parser.js and the tcp tracker of node-pcap need to be adjusted, since the PcapParser.js does
not handle TCP flows so far and the tcp tracker does not handle the packet size information
in a useful way for this work, and it does also not handle non-closing TCP flows. Node-pcap is
forked locally into the project as a folder such that it can be modified, before it was included
as a dependency.

So far, SecGrid used only the function of inspecting PCAP packets. node-pcap is able to
inspect complete TCP flows. Therefore, the parser is modified such that it collects every
single TCP flow and as soon as the flow has ended, the parser emits the flow to the feature
extraction, thus the ending flows are analyzed. Each flow has a property called state, which is
set to CLOSED after the flow was closed by the tcp tracker of node-pcap. However, in a next
step the non-ending flows have to be handled, since node-pcap is able to handle packets with
non ending flows, but they are not terminated and emitted to the feature extraction. Therefore,
the parser collects every flow in a JS object and every time a flow is returned closed, this flow is
removed from the object. When the last packet is inspected by the tcp tracker, the remaining
flows in this object are all the flows which are non-ending.

The parser goes through this list and calls the function forceClose in the tcp tracker. The
tcp tracker has to be adjusted such that it has this function forceClose, which closes each
open flow as soon as the last packet has passed through the parser and the flow is still open.
The state is set to OPEN and the flow is emitted to the parser. After the parser called
the forceClose function and emitted the respective flow to the feature extraction, the flow is
removed from the object. This process is repeated until the object is empty, meaning that all

5.3. FEATURE EXTRACTION 39

the flows of the PCAP file are handled and emitted to the feature extraction.

The handling of non-ending flows is important since also non-ending flows can be affected by
malicious influence. Since the tcp tracker did not have a handling of such flows, it is crucial to
implement it in this work because otherwise they would not have been further analyzed. Adding
a new state (OPEN) aims to make the analysis even more precise compared to the related
work, since there the aim of the flow-handling is mainly laid to the extraction of statistical
properties.

5.3 Feature Extraction

In this Section the Feature Extraction is presented in detail. It is included in the file Machine-
LearningFeatureExtractionDoH.js as a subclass of the superclass AbstractPCAPAnalyser.js.
The flows handed over by the parser are analyzed here, whereas the flow is an object called
”session”, which contains the information of a single flow extracted by node-pcap. The features
of the ”session”object used for the feature extraction of SecGrid are shown in Table 5.1.

It is critical to know about the tcp tracker of node-pcap that it does not deliver all the
information of a TCP packet. It delivers the information of the IPv4 layer and the TCP layer
of every packet in the flow, but it ignores the frame information of the packet, i.e. in the
case of the data-set [39] the Linux cooked-mode capture (SLL), which is a pseudo-protocol
for capturing traffic with several devices at the same time [49]. Every packet contains this
information, which has the size of 16 Bytes in most cases, in some very rare cases it can
also be more. But this fact does not affect the quality of the data used negatively, since the
data is a cleaner representation of TCP data without the SLL information. In that sense, the
exclusion of such data improves the accuracy of the data.

Before extracting the features, a simple and short process is used to verify that only HTTPS
traffic is analyzed, namely by checking if the source port or the destination port of the flow is
port 433. With this procedure, redundant traffic is filtered and not used for further analysis,
which saves a lot of time for the actual analysis of HTTPS traffic, since this process can be
time-consuming enough depending on the size of the input PCAP-file to be analyzed.

Feature Format
connect time float (Time since 1970)
close time float (Time since 1970)
src string, ”IP:Port”, e.g. ”192.168.20.111:44310”
dst string, ”IP:Port”, e.g. ”1.1.1.1:433”
send bytes ip int
send bytes payload int
send bytes tcp int
recv bytes ip int
recv bytes payload int
revc bytes tcp int
send acks Object, Object{”ACK No.”:”sending time”}

40 CHAPTER 5. IMPLEMENTATION

recv acks Object, Object{”ACK No.”:”receiving time”}
send packets Object, Object{[”Seq. No. + Data Length”]:”sending time”}
recv packets Object, Object{[”Seq. No. + Data Length”]:”receiving time”}
send retrans Object, Object{[”Seq. No. + Data Length”]:”sending time”}
recv retrans Object, Object{[”Seq. No. + Packet Length”]:”sending time”}
state String
total packet length array, [”Packet Length”]

Table 5.1: Features of the Session Object forwarded by the tcp tacker and used for the Feature
Extraction

5.3.1 Header Features

The header features are extracted according to Section 4.3.2. To extract the Source IP and
the Source Port, the feature src of the ”session” object are used. For those two types, the
functions getIP and getPort are implemented. getIP returns the characters before the colon in
session.src or session.dst to get the Source IP or the Destination IP, respectively. The function
getPort returns the numbers following the colon in session.src or session.dst to get the Source
Port or the Destination Port, respectively. The extraction of the features Destination IP and
Destination Port is identical to the extraction of Source IP and the Source Port, except that
instead of src, dst is used. The feature Duration is extracted by computing the delta of
close time and connect time of the object ”session”.

To extract the feature Flow Bytes Sent, the features send bytes ip, send bytes payload, and
send bytes tcp are summed. send bytes ip is the sum of IP information (the size of the payload
and the header) of the IPv4 layer of every packet in the flow. send bytes payload is the sum
of the payload of the TCP layer of every packet in the flow and send bytes tcp is the header
information (the size of the header) of the TCP layer in every packet in the flow. The feature
Flow Bytes Received is computed similar to the feature Flow Bytes Sent, except that the
features recv bytes ip, recv bytes payload, and recv bytes tcp are summed.

The extraction of the features Flow Sent Rate and Flow Received Rate is more complex.
They require to first extract all the times of outgoing and incoming packets. Therefore, all
the values in the objects send acks and send packets are extracted and pushed into an array
whenever a packet was sent. From this array, the maximum value and the minimum value
are taken and the delta of those two values is computed and returned as Duration Sent. For
this process, the function getDurationSending was implemented. In a second step, the actual
rate is computed by dividing the feature Flow Bytes Sent which was beforehand computed by
the Duration Sent. This process was implemented in the function computeRate. The feature
Flow Sent Rate is computed similarly, except that the function getDurationReceiving uses the
objects recv acks and recv packets and the function computeRate divides Flow Received Rate
by Duration Received.

5.3. FEATURE EXTRACTION 41

5.3.2 Statistical Metrics

The statistical features are computed according to the Section 4.3.1. Every metric (see Table
5.2) has its own function, and the functions are designed to compute the metric of an array
(here called ”packets”). Thus, the function for every metric has only to be implemented once
and still the metrics for the Packet Length, the Packet Time, and the Packet Response and
Request Time can be computed by using the metric functions. To avoid errors caused by empty
arrays, each function checks first that the input array is not empty, and then it computes
the metric. If the input array is empty, it returns 0 instead. The metrics Mean, Median,
Mode, Variance, and Standard Deviation are all computed by using the respective function of
the mathjs API [50]. The functions Coefficient of Variation, computeSkewFromMode, and
computeSkewFromMedian are computed according to the Section 4.3.1 and are also using
functions of mathjs where needed.

Metric Function Name(Input Array) Output Format
Mean computeMean(packets) float
Median computeMedian(packets) float
Mode computeMode(packets) int
Variance computeVariance(packets) float
Standard Deviation computeStandardDeviation(packets) float
Coefficient of Variation computeCoefficientOfVariation(packets) float
Skew from Mode computeSkewFromMode(packets) float
Skew from Median computeSkewFromMode(packets) float

Table 5.2: Function Names of the Statistical Metrics

5.3.3 Packet Information Features

The packet information features, which include the information of the packet size, packet time
and the response- and request time, are computed using the metric computation functions
presented in the previous Section 5.3.2. The Input Array for the packet length features is the
feature total packet length of the object ”session”. This feature is the output of a retroac-
tively implemented process into node-pcap. This process is implemented in this thesis, since
node-pcap does not offer a feature which contains the packet length of every packet. The
output is an array that contains the summed features send bytes ip, send bytes payload, and
send bytes tcp of every packet that was inspected by node-pcap. The input array of the packet
time features is extracted by the function getTotalTimes, which pushes every timestamp con-
tained in the objects send packets, recv packets, send acks, and recv acks into one array, sorts
the array, subtracts the smallest timestamp from every timestamp in this array and returns the
array.

The input array of the packet response- and request time features is computed with multiple
functions. The functions getTimesSent(session) and getTimesReceived(session) both receive
the session object as the input. getTimesSent(session) extracts the values of the features
send packets and send acks of the ”session” object, pushes them into an array and returns a
sorted array with all the timestamps when packets or TCP segments that have an ACK flag

42 CHAPTER 5. IMPLEMENTATION

(ACKs) were sent. getTimesReceived(session) is similar, but it returns a sorted array with
the timestamps when packets or ACKs were received by extracting them from the features
recv packets and recv acks of the object ”session”. Finally, the differences are computed by the
function getRequRespDifference which takes the two sorted arrays of timestamps of sent and
received packets as input and computes the time differences between outgoing and incoming
packet timestamps at the client’s side according to Algorithm 1.

Algorithm 1 Compute the Difference between outgoing and incoming Timestamps
Require: timesSentSorted , timesReceivedSorted
Ensure: timesSentSorted .length ̸= 0, timesReceivedSorted .length ̸= 0
n← timesSentSorted .length
m← timesSentReceived .length
requestResponseDifference ← []
for i = 0..n do

for j = 1..m do
if timesReceivedSorted [j] > timesSentSorted [i]∧
timesReceivedSorted [j] < timesSentSorted [i + 1] then
difference = timesReceivedSorted [j]− timesSentSorted [i]
requestResponseDifference.next ← difference

5.3.4 Novel Features

The novel features proposed in this thesis are extracted according to Section 4.3.6. The state
is computed with the function getState(session.state), which takes the session state as input
and returns 1 if it is CLOSED, if it is OPEN it returns 0. The values 1 and 0 are chosen
since the LGBM algorithm is not able to handle the string values OPEN and CLOSED. The
Number of Application Packets Sent is the length of the object send packets and the Number
of Application Packets Received is the length of the object recv packets. The extraction of
the Number of ACKs Sent and Number of ACKs Received is similar, since those two values
are computed by measuring the length of the object send acks and recv acks. Again, the
extraction of nr retrans sent and nr retrans reveived is similar to the two latter pairs, it is the
length of the objects send retrans and recv retrans, respectively. The Total Packet Length
is computed with the function getTotalPacketLength(session), which takes ”session” as the
input and sums up the values send bytes ip, send bytes payload, send bytes tcp, recv bytes ip,
recv bytes payload, and recv bytes tcp.

5.3.5 Saving Process

The extracted features have to be persisted for the model training phase. This assignment
is performed by the function createNewFlowData(session), which takes the ”session”object as
an input. Inside this function, all the needed values of the features are computed and stored
into an object newPacketMiningData, which is basically a list of all the features. This list is
then returned by the function. The output of the function is then pushed into a global array

5.4. TRAINING DATA SETS 43

called result. After the analysis input PCAP file is finished, the result array is written into a
CSV file, which is then stored in the project for further usage.

5.4 Training Data Sets

With the feature extraction phase implemented as described in 5.3, training data needs to be
preprocessed as shown in this section. The two layered approach for detecting malicious traffic
requires two data-sets with different content, which are presented here. Thus, the data must
first be extracted from the data-set [39] and bad data-points have to be removed. This step is
described in the Section 5.4.1. After the preprocessing process, the training data-sets (TSL1
and TSL2) can finally be generated, these processes are described in the Sections 5.4.2 and
5.4.3.

5.4.1 Preprocessing

In a first step, the data has to be extracted from the data-set. The data-set is separated
into two different directories, one for benign DoH and non-DoH traffic files and another one
for malicious DoH traffic files. The directory with benign DoH and non-DoH traffic files is
split into the two directories Chrome and Firefox which are the browser with whom the traffic
data has been generated by [36]. Both of these directories are again split into four different
directories called AdGuard, Cloudflare, Google, and Quad9 which are the DoH servers which
have been addressed to generate the traffic data. The IP addresses of the DoH resolvers which
were used are listed in Table 5.3.

DoH Resolver IP-Address
1.1.1.1 8.8.4.4
8.8.8.8 9.9.9.9
9.9.9.10 9.9.9.11

176.103.130.131 176.103.130.130
149.112.112.10 149.112.112.112
104.16.248.249 104.16.249.249

Table 5.3: IP-Addresses of the DoH Servers used for the Data-Set [39]

With this list, it is possible to distinguish between DoH data and non-DoH data in the data-set.
In a further step, every folder is analyzed separately, and the data is saved in a separate CSV
file. The features are ordered according to the order which was presented in Section 4.3. In
addition to those features, two further features are added, one called doh which is set to 1 if
the data is DoH traffic or 0 if it is non-DoH traffic, the other is called malicious and receives
the value 1 if it is malicious traffic or 0 if it is benign traffic. Since every folder contains many
files and not every file can be analyzed by handing them separately, the script analyze.sh is

44 CHAPTER 5. IMPLEMENTATION

written. This is a Unix-Shell script that basically steps through every file of the folder and
executes the Feature Extraction process of SecGrid. Table 5.4 and Figure 5.2 show how many
flows of each kind have been extracted from the respective directories after deleting the lines
whose feature values are zero. These zero-lines are unusable and would only distort the ML
model.

AdGuard Cloudflare Google Quad9
Chrome (DoH) 51 90 196 1968
Firefox (DoH) 13’513 1670 2678 10’089
Chrome (non-DoH) 27’729 50’152 50’512 104’044
Firefox (non-DoH) 66’864 112’376 70’272 123’107

Table 5.4: Number of total extracted benign DoH and Non-Doh Flows

Figure 5.2: Totally Extracted Flows (DoH and non-DoH)

AdGuard Cloudflare Google Quad9
100

101

102

103

104

105

5
1 9

0 1
9
6

1
,9
6
8

2
7
,7
2
9

5
0
,1
5
2

5
0
,5
1
2

1
0
4
,0
4
4

1
3
,5
1
3

1
,6
7
0

2
,6
7
8 1
0
,0
8
9

6
6
,8
6
4

1
1
2
,3
7
6

7
0
,2
7
2

1
2
3
,1
0
7

N
um

b
er

of
F
lo
w
s

Chrome - DoH Chrome - Non-DoH Firefox - DoH Firefox Non-DoH

The directory with malicious DoH traffic files is split into three different folders, DNS2TCP,
DNScat2, and iodine, which are the tunnel tools which are used to generate the malicious
traffic data. Since TSL1 will contain also some flows of malicious DoH data, the data in these
directories must also be analyzed, the doh feature is set to 1. Table 5.5 indicates how many
flows per tunnel tool were extracted, again after removing the lines with blank cells to avoid
a distortion of the ML model.

For the second Layer, the benign and the malicious traffic data must be analyzed again. This
time, the features will be ordered according to the order for the second layer in Section 5.4.
The additional feature which is an indicator for benign or malicious traffic is this time called
malicious and set to 1 if the traffic is malicious, if t is benign it is set to 0.

5.4. TRAINING DATA SETS 45

DNS2TCP DNScat2 iodine
No. of Flows 121’508 10’289 12’352

Table 5.5: Number of total extracted malicious DoH Flows

Since the analysis of the PCAP-files in the data-set in each case was exported to a CSV-
file, the deletion of zero-values was feasible. Excel has the function to split text in columns,
the splits are always made when a comma (”,”) was set. Then the columns flow sent rate,
packet length median, packet time median, and response request median are filtered with
the respective function in Excel. The column flow sent rate is chosen, since there it is an
indicator for empty packet length arrays, the columns flow sent rate, packet length median,
packet time median, and response request median are chosen since they are also indicators
for empty arrays that were parsed. With this filter, it is possible to look for cells that contained
zero values. The respective rows are deleted such that the finished table contains as few zero
values as possible. The file is reset onto the format it had before by adding the columns
together, separated with commas, such that it is possible to further process them.

5.4.2 Training Data Set of Layer 1

The composition of the Training Data Set of Layer 1 (TSL1) must be chosen in a way such
that the ML model of Layer 1 is able to distinguish between DoH traffic and non-DoH traffic.
In Section 5.4 the total amount of 40’00 data-points is determined. Therefore, the ratio of
DoH traffic and non-DoH traffic in the training data-set is set to have an equal distribution of
both types. Important here is that all the features that were computed are pushed and saved
into TSL1.

Non-DoH
(Chrome)

Non-DoH
(Firefox)

DoH
(Chrome)

DoH
(Forefox)

Benign

AdGuard 2500 2500 25 3500
Cloudflare 2500 2500 45 800
Google 2500 2500 90 1300
Quad9 2500 2500 1000 3240

Malicious
DNS2TCP 0 4000
DNScat2 0 3000
iodine 0 3000

Total 20’000 20’000

Table 5.6: Distribution of the Data-Points in TSL1

For the non-DoH data, the equal amount of 2500 data-points from every file listed in Table
5.4 is taken. This makes a total amount of 20’000 data-points of non-DoH traffic. To make
sure that the data-points are as various as possible, the data-points are chosen randomly with

46 CHAPTER 5. IMPLEMENTATION

the function sample() that can be used for dataframes and which is taken from the Pandas
library [51] in Python. The data-points are then written into a CSV-file called TSL1.csv.

The composition of the DoH data part of TSL1 is more complex, since especially the DoH
traffic that was collected with Chrome is very sparse. Therefore, the distribution of the DoH
traffic is chosen to be one half (10’000 data-points) benign and the other half malicious DoH
traffic. From each of then benign DoH traffic data-sets which were gathered using Chrome,
half of the available data was used for TSL1, which results in 1160 data-points. The remaining
8840 data-points are taken from the benign DoH traffic data-sets which were gathered using
Firefox. The part with the malicious DoH traffic is easier to compose, since there are enough
data-points available. From the data-set that was generated using the DNS2TCP tunnel tool,
the amount of chosen data-points is 4000, since it is the largest data-set. The amount chosen
from the DNScat2 and iodine data-sets was 3000 each. For both parts of the DoH traffic data,
the data-points are chosen randomly, again using the function sample() of Pandas. Table 5.6
shows the distribution of the data-points that were chosen for TSL1.csv.

5.4.3 Training Data Set of Layer 2

The composition of the Training Data Set of Layer 2 (TSL2) must be chosen in a way such
that the ML model of Layer 2 is able to distinguish between benign and malicious DoH traffic.
The total amount of data is set to 40’000 data-points according to Section 5.4. The ratio of
the two types of traffic is set to have an equal distribution between the two types. Since TSL1
also contains benign and malicious traffic data, it is made sure that different data-points are
used. Important here is also that all the features that were computed are given into TSL2.
TSL2 is saved into a CSV file called TSL2.csv.

The composition of the benign traffic data is complex, as already stated in Section 5.4.2, since
the data is sparse, especially the traffic that was gathered using the Google Chrome browser.
Therefore, the other half of the available data is chosen from each of the files, which results
in 1060 data-points. The remaining 18’840 data-points are taken from the benign DoH traffic
data-sets, which were gathered using Firefox. The composition of the malicious traffic is again
easier due to the huge amount of available data. The amount of data gathered using the
tunnel tool DNS2TCP is chosen to be 8000 data-points, since it contains the most data, the
amounts of data gathered using the tunnel tools DNScat2 and iodine are chosen to be 6000
data-points each. Again, it was made sure that the data is chosen randomly by using the
function sample() of Pandas. Table 5.7 shows the distribution of the data-points that are
chosen for TSL2.csv.

5.5. ML MODEL 47

Benign
(Chrome)

Benign
(Firefox)

Malicious

AdGuard 25 10’000 0
Cloudflare 45 800 0
Google 90 1300 0
Quad9 900 6840 0
DNS2TCP 0 8000
DNScat2 0 6000
iodine 0 6000
Total 20’000 20’000

Table 5.7: Distribution of the Data-Points in TSL2

5.5 ML Model

As introduced in Section 4.5, Light Gradient Boosting Machine is chosen as the ML algorithm
for both Layers. The whole pipeline is written in Python, since scikit-learn [52] is easy to
apply, and it is an easily accessible API for ML algorithms. The LGBM-model is imported
from ligthgbm [53]. To handle the data-sets, the Pandas library [51] is used, the training
data-set for Layer 1 is saved into a file called TSL1.csv, the training data-set for Layer 2 is
saved into a file called TSL2.csv.

5.5.1 Layer 1

The model of the first layer is trained with TSL1. To have the correct order of the features
(according to [42]), an array with the ordered feature names called featureSequenceLayer1
is defined, since TSL1.csv does not have the correct feature-order yet. The first feature is
doh, which indicates whether the data-point is DoH traffic or not, as defined in Section 5.4.1.
The file TSL1.csv is read by using the function read csv of Pandas and its content is saved
in the dataframe trainingDataset1. Subsequently, featureSequenceLayer1 is used to compose
the data-set for Layer 1, i.e. every column of the feature that is contained in the sequence is
added to the training dataframe called tsl1.

Next, the matrix X1 which contains the values of all the features used to train the model, and
the y1 vector which contains the labels to train the model are extracted and saved into the
respective variable. Since LGBM is not able to handle float values, the next step is to convert
the floats into integers, which is done using the LabelEncoder of the sklearn API. To make
sure that LGBM is able to process every value, the flow values of X1 and y1 are transformed
with the LabelEncoder. Then the LGBM Classifier is initiated and trained with X1 and y1.
The hyperparameters which are used are acquired in a Grid Search in Section 5.5.3.

After the model is trained, it is now able to predict the input data from the PCAP file to
be tested. The file which contains the extracted features of the PCAP-file to be analyzed is
loaded into a new dataframe called testingDataset1. Again, the features need to be ordered

48 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Illustration of the Data Flow of Layer 1

using featureSequenceLayer1 to create the new dataframe toPredict1. After iterating over
testingDataset1 and extracting every feature-column needed, it is saved into the dataframe
toPredict1. Now the matrix toPredictX1, containing all the feature values to be predicted,
is extracted from the dataframe toPredict1. Again, the LabelEncoder ensures that the ML
model is able to handle all the values contained in toPredictX1. Then the matrix toPredictX1
is handed over to the LGBM model with the function classifierLayer1.predict(toPredictX1),
which predicts the input data and gives back the vector toPredicty1.

The resulting vector toPredicty1 contains the predictions of every clump extracted from the
input PCAP file. The value on each line is either 0 or 1, with 0 meaning that the clump is
non-DoH traffic data and 1 meaning that the clump is DoH traffic data. The vector toPre-
dicty1 is then added to the dataframe testingDataset1 by creating a new column called DoH.
Subsequently, the data-points which have DoH equal to 1 are extracted from testingDataset1
and saved into a new dataframe called testingDataset2, which is the clumps classified as DoH
traffic data. Finally, testingDataset2 is handed over to Layer 2, where it is further analyzed.
Figure 5.3 illustrates the whole pipeline of Layer 1.

5.5.2 Layer 2

The model of the second Layer is trained with TSL2, with the features ordered according to
[42] and the new features introduced in Section 4.3.6 appended directly afterwards. Before
being able to start the training, the training data-set needs to be composed, since the input
file TSL2.csv does not have the correct feature order yet. The feature sequence is defined

5.5. ML MODEL 49

in the array featureSequenceLayer2 with the first feature malicious, which indicates if the
respective clump is malicious or benign traffic as defined in Section 5.4.1. The file is read by
the function read csv() of Pandas and saved into a pandas dataframe called trainingDataset2.
Subsequently, an iteration through the array featureSequenceLayer2 is conducted and every
feature-name that is contained in this array is searched in the dataframe trainingDataset2 and
the respective column is saved into a new dataframe called tsl2.

Figure 5.4: Illustration of the Data Flow of Layer 2

The next step is to extract the X2 matrix and the y2 vector. X2 is the matrix which contains
the training values for the ML algorithm, and y2 is the vector which contains the labels which
are needed to classify the data. After these two Objects are extracted, the values have to
be transformed into integer values, since LGBM is not able to handle float values. This is
done by using the LabelEncoder, according to the same procedure as in Layer 1. Finally,
the data is prepared, and the ML model can be initiated and trained with X2 and y2. The
hyperparameters which are used are acquired in a Grid Search in Section 5.5.3.

After the model is trained, it is ready to predict the input data, which was handed over to
testingDataset2 after the process of Layer 1. This data has already been separated from non-
DoH traffic, thus the ML model of Layer 2 can now predict if the data is malicious or benign.
Again, the data needs to be prepared by iterating over the array featureSequenceLayer2, looking
up the feature in the dataframe testingDataset2 and saving the respective column into the
dataframe toPredict, but this time the feature malicious is left away. These values also need
to be transformed into integer values by using the LabelEncoder, since the data-set contains
many features which have the format float. Now the feature values are extracted from the
dataframe toPredict2 to construct the matrix toPredictX2 which contains the feature values
for the prediction. Then, the matrix toPredictX2 is handed over to the LGBM model with the
function classifierLayer2.predict(toPredictX2), which predicts the input data and gives back
the vector toPredicty2 as the output.

50 CHAPTER 5. IMPLEMENTATION

This output vector toPredicty2 contains the predictions of every data-point that was contained
in the matrix toPredictX2. The value on each line is either 0 or 1, whereas 0 means that
the TCP-flow is benign DoH traffic and 1 means that the TCP-flow is malicious traffic.
toPredicty2 is then added to the dataframe testingDataset2 with the feature name Malicious
Traffic. As a final step, the data-points that were predicted to be malicious are filtered from
the testingDataset2 checking if there is a data-point which has the value 1 in the feature-
column Malicious Traffic. If there is a data-point that is malicious, it is extracted and stored
in a CSV-file called maliciousTraffic.csv. Figure 5.4 illustrates the whole pipeline of Layer 2.

5.5.3 Hyperparameter Tuning

According to the documentation of LGBM [53], the algorithm has three hyperparameters that
are the most important to obtain good results and to avoid over-fitting of the model. Those
three hyperparameters are num leaves, min child samples, and max depth. Since the LGBM
uses leaf-wise tree growth (see Figure 5.5) max depth is the parameter to limit the tree depth
and is set to -1 by default. num leaves is the parameter that indicates how many leaves the
model shall have and which controls how complex the model shall be. The number of leaves
can be set to num leaves = 2max depth to have a symmetric tree model, but this should not be
done because there is the risk of overfitting the model. Therefore, the parameter num leaves
is chosen deliberately smaller than 2max depth. By default, it is set to 31 by scikit-learn. Finally,
the parameter min child samples indicates the number of data that is contained in a tree
and depends on num leaves. Small numbers can cause overfitting, large numbers can cause
under-fitting. [53] states that setting this value to hundreds or thousands is enough, by default
it is set to 20.

Furthermore, they mention the parameter max bin, which indicates the maximum number of
bins where the features will be bucketed, this means that LGBM packs continuous feature
values into discrete bins. max bin can be set between 0 < max bin < 255. They recommend
trying the boosting type, which is the way the model is boosted, set to dart, by default it is
set to gbdt. Ultimately, the learning rate which controls the number of trees that are grown
in the training phase of the model. It is set to 0.1 b default.

Figure 5.5: Leaf-Wise Tree Growth [53]

The setup for the Grid Search is as follows. The data is prepared like described in the Sections
5.5.1 and 5.5.2 and each time saved in the training matrix X containing the feature values
and the training vector y containing the label values. Then, an array named tunedParameters
containing the hyperparameters to be tuned is implemented. Finally, the LGBM Classifier
Algorithm is initiated together with the Grid Search, where the ML model and the array

5.5. ML MODEL 51

tunedParameters are handed in as input. After the Grid Search, the model is trained with each
combination of hyperparameters to look for the best tuned parameters. The hyperparameters
are tuned in small batches to avoid long training times. The Following sections present
the values that are used for the hyperparameter optimization. After they are found, the
hyperparameters are adopted to the respective ML model.

Layer 1

The following snippet shows all the values that are tested with the Grid Search. Since totally
20 Grid Search are conducted using at most three values per parameter and also using at most
three parameters at once, it is disclaimed to show all the experiments separately. Instead, the
list containing all the values that are used is shown.

1 tunedParameters = [

2 {"max_depth": [6, 7, 8, 9],

3 "num_leaves": [5, 8, 9, 10, 11, 12, 15, 20, 30, 40, 50, 100],

4 "min_child_samples": [10, 30, 50, 70, 100, 130, 140, 145, 147,

149, 150, 151, 152, 153, 155, 160, 170, 200, 250],↪→

5 "boosting_type": ["gbdt", "dart"],

6 "max_bin": [200, 230, 240, 245, 250, 251, 252, 253, 254, 255],

7 "learning rate": [0.05, 0.1, 0.15, 0.18, 0.19, 0.2, 0.21, 0.22,

0.25]↪→

8 }

9]

After all those values are tested, the maximum score of 96.81% is reached with the hyperpa-
rameters tuned seen in Table 5.8:

Hyperparameter Value
max depth 8
num leaves 10
min child samples 151
boosting type ”gbdt”
max bin 255
learning rate 0.2

Table 5.8: Tuned Hyperparameters of Layer 1

Layer 2

The following snippet shows all the values that are tested with the Grid Search: Since totally
18 Grid Search are conducted using at most three values per parameter and also using at most

52 CHAPTER 5. IMPLEMENTATION

three parameters at once, it is disclaimed to show all the experiments separately. Instead, the
list containing all the values that are used is shown.

1 tunedParameters = [

2 {"max_depth": [7, 8, 9, 10],

3 "num_leaves": [10, 30, 40, 43, 44, 45, 46, 47, 48, 50, 55, 60, 70,

80, 100],↪→

4 "min_child_samples": [100, 120, 130, 136, 137, 138, 140, 141, 142,

143, 144, 145, 149, 150, 155, 160, 170, 200, 250],↪→

5 "boosting_type": ["gbdt", "dart"],

6 "max_bin": [200, 230, 240, 245, 247, 250, 252, 254, 255],

7 "learning rate": [0.05, 0.08, 0.09, 0.1, 0.11, 0.12, 0.15, 0.2, 0.25]

8 }

9]

After all those values are tested, the maximum score of 99.85% is reached with the hyperpa-
rameters tuned as listed in Table 5.9:

Hyperparameter Value
max depth 9
num leaves 45
min child samples 142
boosting type ”gbdt”
max bin 255
learning rate 0.1

Table 5.9: Tuned Hyperparameters of Layer 2

Chapter 6

Evaluation

This Chapter presents the evaluation of the newly implemented prototype for malicious DoH
traffic detection. First, the accuracy of the feature extraction component is tested. To this
end, the features that are extracted from a test file are compared with the features that
Wireshark can extract. A second comparison is made between the features that are extracted
from a test file by SecGrid and by [37]. Then the feature importance of Layer 1 and Layer 2
is tested by comparing the findings of this thesis to [42] and by discussing the novel features
implemented in this thesis. Next, the Machine Learning models of Layer 1 and Layer 2 are
evaluated with the conventional metrics that are used for the evaluation of Machine Learning
models. Finally, a new data-set is used to test the accuracy of Layer 1 using other data
than the data contained in the data-set [39]. Three experiments are conducted: in the first
experiment the data from the new data-set is used to build a test data-set and then the model
of Layer 1 which is tested with the original data predicts the new test data-set. In the second
experiment, the new data-set is used to build a training and a testing data-set with which the
model of Layer 1 is trained and tested. In the final experiment, the data from the new data-set
is used to build a training data-set, with which the model of Layer 1 is trained, subsequently
the model predicts data from the original data-set.

6.1 Feature Extraction Accuracy

In this Section the accuracy of the Feature Extraction module implemented to SecGrid is
evaluated. To this end, on the one hand, the extracted features of a test PCAP-file by Sec-
Grid are compared to the features that Wireshark can extract. Wireshark is used since it
is an established software for the analysis of internet data protocols which enjoys the con-
fidence of scientists. On the other hand, they are compared with the features that [36]
extracted from the same file. As a reference, the file ”doh brw mal iodine.pcap”which holds
the requirements provided by [36] is used because it is a part of the data-set [39] which he
created. It was created using the tunnel tool iodine. Furthermore, it contains ending and
non-ending TCP flows, which is a part of the approach of this thesis. The first comparison is
conducted between the reference PCAP-file and the result CSV-file ”doh brw mal iodine.pcap-
ML-features-DoH.xlsx”of SecGrid in Section 6.1.1 to show the accurate depiction of the TCP

53

54 CHAPTER 6. EVALUATION

flows in this file. The second comparison in Section 6.1.2 is conducted between the result
CSV-file ”doh brw mal iodine.pcap-ML-features-DoH.xlsx”of SecGrid and the result CSV-file
”doh brw mal iodine dohlyzer.xlsx”of [37] to show and discuss the accordance and the differ-
ences between the two different approaches of feature extraction.

6.1.1 Comparison to Wireshark

In this Section, the extracted features of a reference PCAP-file analyzed with the SecGrid
(Figure 6.1) prototype are compared to the features which Wireshark is able to extract. In
Wireshark, the function which shows the statistic of every connection is used and shown in
Figure 6.2. Only the most important features (Number of Flows, Source & Destination, State,
Total Number of Packets Total Packet Length, and Duration) are examined, since there are
totally 41 features and all of them are computed using those most important features.

Starting with the Number of Flows, SecGrid and Wireshark both extract 14 flows, and Source
& Destination is the same on both sides. According to both, SecGrid and Wireshark, the file
has 6 ending flows and 8 open flows. In Figure 6.2, this becomes visible in the Gantt Chart
between the two columns Rel Start and Duration, where the first six flows are ending, and
the last eight flows are cut off at the end of the column Duration. The row with the feature
Duration shows that every number extracted by SecGrid is identical to the numbers extracted
by Wireshark. In Table 6.1 the comparison of these three Features is listed.

Feature SecGrid Wireshark
Flows 14 14

Source & Destination

47688→ 433
47690→ 433
...
47714→ 433

47688→ 433
47690→ 433
...
47714→ 433

State
6 ending
8 open

6 ending
8 open

Duration (Seconds, rounded)

462.4
462.9
...
14.5

462.4
462.9
...
14.5

Table 6.1: Comparison of the extracted Features Flows, Source & Destination, State, and
Duration

The Total Number of Packets is more complex. In the column of SecGrid in Table 6.2, there are
two numbers listed, the left number is the extracted number of TCP segments that carry the
ACK flag and Packets which were sent and received, and the right number is the total number
of flow packets extracted from the packet length metrics. The column has more entries, since

6.1. FEATURE EXTRACTION ACCURACY 55

the features of the flow metrics and the packet length metrics are extracted differently (see
Section 5.3). The Total Number of Packets extracted from the packet length metrics (right)
match exactly with the number of packets which Wireshark extracted. However, the number
of packets which is extracted from the flow metrics is in every flow smaller than the number of
packets extracted by Wireshark. This is caused by the fact that node pcap handles the packets
according to their Sequence Number, if e.g. two ACKs have the same Sequence Number, this
means that their packet length is summed. But this special handling has no impact on the
next feature Total Packet Length, there the two numbers are identical.

Feature SecGrid Wireshark

Total Number of Packets

249; 306
314; 370
378; 432
362; 422
317; 373
304; 362
322; 379
315; 353
286; 321
297; 320
312; 327
332; 342
309; 310
72; 73

306
370
432
422
373
362
379
353
321
320
327
342
310
73

Table 6.2: Comparison of the extracted Feature Total Number of Packets

The Total Packet Length of Wireshark is different to the one that was computed with SecGrid.
This is caused by the rounding of the numbers in Wireshark, therefore also the numbers of
Sent Bytes and Received Bytes is shown. Already in the first row, it becomes visible that
in Wireshark a rounding error happens, since 13′000 + 26′000 ̸= 40′000. As mentioned in
Section 5.3, node pcap only delivers the size of the IPv4 packet and the TCP packet, the
additional frame information (16 Bytes or more per packet) is neglected, and additionally this
link is not observed in this ML approach. E.g. for the first flow, this means if the flow has
306 packets and 16 Bytes for each packet are neglected, then there are totally at least 4896
Bytes neglected. According to Wireshark, the packet size is between 39’000 and 40’000 Bytes
and when the neglected 4886 Bytes are subtracted, then there are between 34’104 and 35’104
Bytes remaining, and the extracted 34’665 Bytes of SecGrid fit into this interval. Table 6.3
shows the comparison of the Total Packet Length extracted by SecGrid and Wireshark.

The comparison between these two files shows the fundamental correctness of depiction of
TCP flows by the Feature Extraction module implemented in SecGrid. It is able to extract
every single TCP flow in a PCAP-file (feature Flows) and to identify the source and the
destination port of every single TCP flow (feature Source & Destination). An important point
for the approach of this thesis is the recognition of ending and non-ending flows, which is done

56 CHAPTER 6. EVALUATION

correctly regarding the feature State. Furthermore, it correctly extracts every single packet of
the flow correctly, which becomes visible by the comparison of the features Total Number of
Packets, Total Packet Length, and Duration.

Feature SecGrid Wireshark

Total Packet Length (Bytes)

34665
37809
39997
40089
38086
36888
36714
37253
34575
35249
36171
37245
35463
10665

40’000 (13’000 + 26000)
44’000 (15’000 + 28’000)
47’000 (19’000 + 28’000)
47’000 (19’000 + 28’000)
44’000 (16’000 + 28’000)
43’000 (15’000 + 27’000)
43’000 (16’000 + 26’000)
43’000 (15’000 + 27’000)
40’000 (14’000 + 25’000)
40’000 (14’000 + 26’000)
41’000 (14’000 + 27’000)
43’000 (16’000 + 27’000)
40’000 (14’000 + 26’000)
11’000 (4’000 + 8’000)

Table 6.3: Comparison of the extracted Feature Total Packet Length

Figure 6.1: Summarized Evaluation of SecGrid

6.1.2 Comparison to Related Work

In this Section the result CSV-file ”doh brw mal iodine.pcap-ML-features-DoH.xlsx”of SecGrid
(see Figure 6.1) and the result CSV-file ”doh brw mal iodine dohlyzer.xlsx”computed with [37]
by [36] (Figure 6.3) are compared. Considering the file computed with [37], the number of rows
directly attracts the attention. There are totally 44 rows, i.e. 30 rows more than SecGrid.
The rows contain the computed feature values of the different flows, whereas each flow is
separated into small clumps limited by the timeout constant of probably 120 seconds. The
timeout can be observed in the column duration. Additionally, the clumps are separated into
the direction of the flow, i.e., into requests from the client and responses from the server.

6.1. FEATURE EXTRACTION ACCURACY 57

Figure 6.2: Summarized Evaluation of Wireshark

Since the clumps vary widely from the result file of SecGrid also the computed values of the
clumps are very different, and therefore they cannot be compared. But an interesting point is
the number of rows in the file computed with [37], which is more than four times bigger than
the number of rows in the file computed by SecGrid. This shows that the clumping process
in SecGrid is more effective and memory saving than the one in [37]. Also that the Feature
Extraction module of SecGrid does not distinguish the flow direction can be seen as a clear
strength, since [42] removed the information about the IP addresses and the port information.
It is possible that without this information, the ML model has a deranging side noise, since
it does not know from which side the data flow is coming. The Feature Extraction model of
SecGrid bypasses this problem by summarizing the whole flow into one row and extracting the
measures from it. Thus, the ML model cannot be disturbed by the flow direction anymore.

Figure 6.3: Cutout from the summarized Evaluation of the DoHlyzer [37] computed by [36]

58 CHAPTER 6. EVALUATION

6.2 Feature Importance

In this Section, the relevance of the features that are adopted from [36] and the novel features
that are newly introduced in this thesis is discussed. The feature importance of tree based
ML algorithms can be retrieved pretty simple in scikit-learn [54]. As an output, a bar plot
is received where all the features are listed hierarchically according to their importance. The
importance of a feature in a tree based ML algorithm means how many times the feature is
needed for each tree that was built.

6.2.1 Layer 1

First the feature importance of Layer 1, which can be seen in Figure 6.4 is discussed. [42] found
a feature sequence with descending order using statistical tests. This sequence is also used in
this thesis. What attracts the attention at first is that compared to the feature importance in
Figure 3.1, the feature importance found by SecGrid (Figure 6.4) is not the same. There
are definitely correlations, like the feature duration or the feature response request mode
which are in the top segment of both figures, but there is also the feature flow bytes sent
which is situated in the middle of the hierarchy in Figure 3.1 but is in the second place in
Figure 6.4. Also in the bottom section of both figures there are accordances and discor-
dances. Regarding for example the feature packet length variation, which is situated in the
bottom segment of both figures, accordances can definitely be found, but regarding the feature
packet time standard deviation disaccordance can be observed.

Figure 6.4: Feature Importance of Layer 1 found in this Thesis

According to [35], the duration of a flow is one of the most important indicators to differentiate
between DoH and non-DoH traffic. The evaluation in Figure 6.4 confirms this statement, since
the feature duration is found in the top features of the most important ones of the model.
Finding the novel features amongst the top of the most important features is also an indicator

6.2. FEATURE IMPORTANCE 59

for the fundamental correctness of the feature extraction component. Another very important
indicator is the amount of data that is sent and received in a flow. This statement is validated
as well, since the two features flow bytes sent and flow bytes received and also other features
that indicated the amount of data sent in a flow can be found amongst the most important
features of the model. Finally, the feature packet length mean is found as the absolute most
important feature. This finding is not surprising at all, since the size of the packet is also an
important indicator for DoH and non-DoH traffic.

Some of the novel features that are introduced in this thesis have an impact on the model
as well. At the top of the hierarchy is the feature nr application packets sent. This finding
correlates with the statement of [35], who said that the amount of data sent in the flow is one
of the most important differences between a normal HTTPS and a DoH connection. Thus, it
is not surprising to find this feature as one of the most important ones. Another feature that
can be found amongst the top of the most important features is the nr acks received. This is
not further surprising since if the number of packets sent is important, the number of ACKs
also must have an impact on the model since received ACKs are the answer of the resolver
that the packet was received. The feature total packet length can be found in the middle of
the hierarchy. It again correlates with the statement of [35] that the amount of data sent in
a flow is an important indicator for DoH or non-DoH traffic. The other features seem not to
have a big impact to the model of Layer 1.

6.2.2 Layer 2

In a next assessment, the feature importance of Layer 2, which is visualized in Figure 6.5
is discussed. Compared to the feature sequence that [42] found, the order is slightly differ-
ent. On the one hand, features like the duration and the packet time skew from median
are found on top of the hierarchy in both sequences. On the other hand, features like
packet length coefficient of variation or flow received rate are found on top of the sequence
that [42] found, but in the feature importance figure of Layer 2 they are found in the middle
or in the lower part of the sequence. In reverse, features like response request median or
flow bytes received that are amongst the top of the most important features of the model of
Layer 2 are situated in the middle or even in the bottom part of the sequence that [42] found.

Figure 6.5 shows additionally that some novel features have an impact on the model. The
first feature found in the list is nr application packets sent. Another feature that is found in
the top of the hierarchy is the state. It seems like either of the two traffic types is interrupted
more than the other one. The feature total packet length can be found in the middle of the
hierarchy. The other features seem not to have a big impact to the model of Layer 2.

6.2.3 Discussion

The correctness of the sequences [42] seem to be only partially true, compared to the findings
in this thesis. While there are in both Layers some correlations, there are also differences. The
cognition is that the feature importance is slightly different for ML models which are trained

60 CHAPTER 6. EVALUATION

Figure 6.5: Feature Importance of Layer 2 found in this Thesis

with different training data-sets. Thus, it is important to keep all the features to train and
test the ML model to not lose accuracy in the predictions of the ML model.

An interesting finding of this thesis is that some of the novel features seem to have an impact on
the ML model and the consequential predictions. Especially, the nr application packets sent
and the state have to be highlighted. The nr application packets sent can be found surpris-
ingly on top of both of the evaluation figures of the two Layers. There seems to be a huge
difference in the number of application packets sent between HTTPS connections and DoH
connections, as well as between benign and malicious DoH traffic. For malicious traffic, this
makes sense since the aim of malware is to exfiltrate data from the system of its victim in small
slices to stay under the radar of warning systems. The other feature that needs to be high-
lighted is the state. Especially in the hierarchy of Layer 2 it is found on the top. There seems
to be a context between either benign or more likely malicious DoH traffic and non-ending
TCP flows.

6.3 ML Model

In this Section, the ML models are evaluated in therms of performance and accuracy. Before
this can be done, all the metrics and figures that are used for this evaluation are presented. In
a further step, the models of Layer 1 and Layer 2 are tested using all the presented metrics.
Finally, to have a comparison with different data, the model of Layer 1 is tested using another
data-set [55]. Unfortunately, no other data-set that satisfy the requirements for Layer 2 is
available at the time of writing, therefore a cross-validation for Layer 2 is not possible.

6.3. ML MODEL 61

6.3.1 Metrics

The evaluation of the ML models requires tautological metrics and figures, i.e. the perfor-
mance, the accuracy, the recall, the precision, the F1-score, the specificity, the precision recall,
and Receiver Operating Characteristics Curve (ROC). Therefore, they are explained in this
separate section and subsequently used for all further ML evaluations.

Performance

On the basis of the findings of [42], the LGBM algorithm was implemented in this work as well
due to its alleged outstanding performance. In the evaluation of this thesis, the performance
is the time which is needed to train the model and the time needed to classify one clump.
During the implementation phase, the observation was made that the measured duration of
the whole process is never exactly the same, they always deviate slightly from each other.
Therefore, the whole pipeline is run ten times and then the mean time is computed to ensure
that an average performance time can be evaluated. Furthermore, the Random Forest (RF)
model which was already implemented into SecGrid was used to compare if the performance
of the LGBM algorithm is indeed much better than the performance of RF, like [42] stated.

Confusion Matrix

The confusion Matrix is a plot type that illustrates for the two classes 0 and 1 how many
predictions for per class were successful and how many predictions were unsuccessful. It serves
mainly to show the classification of the two classes, since it is possible that they are not equally
successful or unsuccessful classified. Figure 6.6 shows the theoretic composition of a confusion
matrix. If a data-point was labeled as positive and predicted as positive, it is called a true
positive (TP). When a data-point is labeled as a positive but was predicted as a negative, it is
called a false positive (FP). Equally, when a data-point was labeled negative and was predicted
negative, it is called a true negative (TP), and when a data-point was labeled as negative but
predicted as positive, it is called a false negative (FN) [56].

Figure 6.6: Theoretical Composition of a Confusion Matrix [56]

Accuracy

The accuracy of an ML Classifier indicates how often the model made the correct predictions
compared to the total number of data to be predicted. Equation 6.1 shows how the accuracy
is computed [56].

62 CHAPTER 6. EVALUATION

accuracy =
of correct Predictions

of total Data Points
=

TP + TN

TP + TN + FP + FN
(6.1)

Recall

The recall of an ML Classifier indicates the percentage of the relevant elements found by the
classifier out of the total amount of elements that are truly relevant. Therefore, the amount
of TP is divided by the sum of the TP and the FN, which can be seen in Equation 6.2 [56].

recall =
TP

TP + FN
(6.2)

Precision

The precision of an ML Classifier indicates the percentage of the truly relevant elements out of
the total amount of element predicted to be relevant. Therefore, the amount to TP is divided
by the sum of TP and FP, which can be seen in Equation 6.3 [56].

precision =
TP

TP + FP
(6.3)

F1-Score

The F1-score or also the harmonic mean indicates the balance between the recall and the
precision. It is twice the product of the recall and the precision divided by the sum of the
precision and the recall, which can be seen in Equation 6.4 [56].

F1− Score = 2 ∗ TP

2TP + FN + FP
(6.4)

Receiver Operating Characteristics Curve

The Receiver Operating Characteristics Curve (ROC curve) shows the rate of the amount of
TP compared to the amount of TN classified by the model. In other words, it shows how
many correct TPs and TNs are classified while the classification of FPs and FNs happens [56].

6.3. ML MODEL 63

6.3.2 Layer 1 using Data-Set CIRA-CIC-DoHBrw-2020

For the evaluation of Layer 1 a special testing data-set was created. It contains 4000 equally
distributed clumps, i.e. 2000 non-DoH traffic data and 2000 DoH traffic data. Since there is
not enough benign DoH data available in the data-set [39], benign DoH data from TSL2 is
taken to ensure that not the same data from TSL1 is tested and to complement 1000 clumps.
The exact distribution can be seen in Table 6.4.

Non-DoH
(Chrome)

Non-DoH
(Firefox)

DoH
(Chrome)

DoH
(Firefox)

Benign

AdGuard 250 250 25 125
Cloudflare 250 250 45 125
Google 250 250 90 125

250 250 340 125

Malicious
DNS2TCP 0 4000
DNScat2 0 3000
iodine 0 3000

Total 2000 2000

Table 6.4: Distribution of the Data-Points in TSL1

Performance

The mean duration of the training of Layer 1 is 3.57 seconds, the prediction duration of Layer
1 is 0.04 Seconds, using 35 features. [42] stated that with the default hyperparameters, their
model needed 87 seconds for the whole process of Layer 1, using 21 features.

Accuracy & Confusion Matrix

The accuracy of Layer 1 is 98.55%. Compared to [42], who received an accuracy of 99.78%
it is slightly inferior, but it is still a good result. The confusion matrix of Layer 1 can be seen
in Figure 6.7 on the left. It shows that out of 2000 clumps only seven non DoH traffic clumps
are not classified correctly, whereas 51 DoH traffic clumps are not classified correctly.

Recall, Precision, F1-Score & ROC Curve

The recall for the non DoH traffic part is 100%, the recall for the DoH traffic part is 97.0%,
which results in an average recall of 98.5%. The precision for the non DoH traffic part is
98.0%, the recall for the DoH traffic part is 100%, which results in an average recall of 99.0%.
The F1-score for the non DoH traffic part is 99.0%, the recall for the DoH traffic part is 99.0%,

64 CHAPTER 6. EVALUATION

Figure 6.7: Confusion Matrix (left) and ROC Curve of (right) of Layer 1

which results in an average recall of 99.0%. Table 6.5 shows an overview of the computed
values. Since the amount of non-DoH clumps and the amount of DoH clumps is equal, also
the macro average and the weighted average are equal, therefore only the superficial term
”average” is used here. The ROC Curve of Layer 1 can be seen in Figure 6.7 on the right.
Again, it shows the accuracy of the model and makes certain that nearly every data-point is
classified correctly, with an insignificant part of FPs and FNs.

Recall Precision F1-Score
non-Doh 1.00 0.98 0.99
DoH 0.97 1.00 0.99
Average 0.985 0.99 0.99

Table 6.5: Recall, Prescison and F1-Score of Layer 1

Discussion

As already mentioned before, the accuracy of [42] is not quite reached, but the results are
still excellent. Also the precision, the recall and the F1-score are exceptional. Concerning
the performance, the model which was implemented into SecGrid is massively faster than the
model of [42], although they used only 21 features unlike the model in SecGrid which uses 35
features. The prediction time, which lasted 0.04 seconds, is sensational and suits excellently
for a system like SecGrid that promises fast detection times. It is not quite clear why the
model of this thesis is faster to such an extent. A reason for this could be the different clump
handling, but this is rather unlikely since the data structure is similar. Another reason for this
difference could be the setup [42] used, but this also does not justify such a huge difference.
The only way to find out the reason for this performance difference is to rebuild the work of
[42] for a deeper insight.

6.3. ML MODEL 65

6.3.3 Layer 2 using Data-Set CIRA-CIC-DoHBrw-2020

Similar to the evaluation of Layer 1 a special test data-set is compiled. It contains 4000 data-
points which are equally distributed to 2000 benign DoH clumps and 2000 malicious DoH
clumps. Again, since not enough benign DoH clumps are available, benign DoH clumps from
TSL1 are taken to ensure that the test data-set contains 2000 benign DoH clumps and that
no data from TSL2 is taken. The exact distribution of this test data-set is presented in Table
6.6.

Benign
(Chrome)

Benign
(Firefox)

Malicious

AdGuard 25 250 0
Cloudflare 45 250 0
Google 90 250 0
Quad9 840 250 0
DNS2TCP 0 800
DNScat2 0 600
iodine 0 600
Total 2000 2000

Table 6.6: Distribution of the Data-Points in TSL2

Performance

The mean duration of the training Layer 2 is 4.18 seconds, the mean predicting duration is
0.084 seconds using 38 features. [42]’s approach had a total duration of 40 seconds for the
training and the prediction phase of Layer 2 using 27 features.

Accuracy & Confusion Matrix

The accuracy of Layer 2 is 99.975%. Compared to [42] who received an accuracy of 99.996% it
is again slightly inferior, but it is still a good result. Figure 6.8 on the left shows the confusion
matrix of Layer 2. It depicts that only one benign DoH traffic clump is wrong classified, the
malicious DoH traffic clumps were all correctly predicted.

Recall, Precision, F1-Score & ROC Curve

The averages of recall, the precision and the F1-score are all 100%. This means that for each
of the three metrics, the benign DoH traffic as well as the malicious DoH traffic was computed
to 100%. They are all listed in Table 6.7. The ROC Curve of Layer 2 can be seen in Figure
6.8 on the right. It reinforces again how precise the model is, since the angle in the top left
corner is nearly 90°, which means that there is only one FN and no FPs.

66 CHAPTER 6. EVALUATION

Figure 6.8: Confusion Matrix (left) and ROC Curve of (right) of Layer 2

Recall Precision F1-Score
non-Doh 1.00 1.0 1.0
DoH 1.0 1.00 1.0
Average 1.0 1.0 1.0

Table 6.7: Recall, Precising and F1-Score of Layer 1

Discussion

As already mentioned before, the accuracy of [42] is not quite reached, but like already in the
first Layer, the results are still excellent. The computed values for the precision, the recall
and the F1-score is outstanding and cannot be better. It means that the model is able to
predict nearly every malicious clump extracted from the data-set [39] correctly. Concerning
the performance of the model implemented into SecGrid, it is massively faster than the model
of [42]. With a prediction time of 0.084 seconds, the model is extremely fast, which is perfect
for a system like SecGrid that relies on fast results. As such, the performance achieved here
could motivate the usage of such a model for real-world use cases like intrusion detection
and mitigation. To summarize, the whole pipeline delivers astonishing results while using the
data-set [39].

6.3.4 Performance using Random Forest Algorithm

[42] found that the LGBM algorithm is much faster than the Random Forest (RF) algorithm.
The intention of this section is to verify this statement. Therefore, instead of LGBM, the RF
algorithm is implemented. To do so, there are only three lines to be changed in the code: the
import of LGBM has to be changed to the import of RF and the two lines where LGBM is
initiated have to be changed to the initiation of RF. Since [42] used the default modulations
of RF with no further hyperparameter tuning, they are also used for the verification in this
work.

As done in Sections 6.3.2 and 6.3.3, the whole pipeline is run ten times, while the durations of
the training and the durations of the predictions phases of both Layers are measured. Then,

6.4. LAYER 1 USING A DIFFERENT DATA-SET 67

the mean duration of all the four different durations is computed. The training phase of Layer
1 lasted 17.74 seconds, the prediction phase of Layer 1 lasted 0.036 seconds. Thus, RF needs
more than four times as much time than LGBM needs for the training of Layer 1, whereas
the duration of prediction phase is slightly smaller. The training phase of Layer 2 lasted 14.94
seconds and the prediction phase of Layer 1 lasted 0.060 seconds. Thus, RF needs more than
twice as much time as LGBM for the training phase, whereas the prediction time of RF is
slightly smaller.

The finding of this Section is that the LGBM algorithm is a good choice concerning the
performance. Although the RF algorithm is slightly faster in predicting, it is in return extremely
slower in predicting. However, it cannot be negligible that no hyperparameter optimization is
conducted for the RF algorithm. Comparing the results with [42], it is noticeable that their
model of Layer 1 needed 4991 seconds and the model of Layer 2 needed 890 seconds for
the whole process. Again, only rebuilding their approach will show how this huge duration
differences arose.

6.4 Layer 1 using a Different Data-set

Since the results of Layer 1 and 2 are truly impressive, the aim of this Section is to validate
these good results, when transferring the model to a different data-set. The original plan
was to take a data-set that contains traffic for both Layers, but unfortunately [39] is the only
available data-set that contains malicious DoH traffic. Therefore, only Layer 1 can be tested
with other traffic data. To this end, a second data-set taken from the IEEE Dataport [55]
is introduced. This data-set contains DoH and non-DoH traffic collected by using the two
Browsers Chrome and Firefox. In addition, the two data-sets were generated by using different
modulations and addressing multiple DoH resolvers. The list of the IP-addresses of the DoH
resolvers can be found in Table 6.8. It is conspicuous that they used partially the same DoH
resolvers, but also other DoH resolvers that [39] did not use. Furthermore, the amount of DoH
resolvers used is bigger in [55] than in [39]. All these differences are good for the validation
with other data than the original data-set because it is an ultimate test to see if the system can
also handle data from non-lab-generated data [39]. Furthermore, none of the references used
for this work did such an examination of their approaches using another data-set, therefore
this examination is also a validation of the data-set[39].

DoH Resolver IP-Address
88.198.91.187 88.198.91.187 104.22.72.65
104.16.249.249 104.16.248.249 104.22.73.65
104.16.249.249 104.16.248.249 176.9.1.117
146.112.41.2 146.112.41.3 176.9.93.198
185.43.135.1 185.235.81.1 5.1.66.255

104.236.178.232 195.30.94.28 159.69.198.101

Table 6.8: IP-Addresses of the DoH Resolvers used for the Data-Set [55]

68 CHAPTER 6. EVALUATION

6.4.1 Preprocessing

The data-set has to be preprocessed like the former data-set. Therefore, the two folders with
one containing the traffic data that was collected using Chrome and the other one containing
the data that was collected using Firefox is analyzed with the Feature Extraction component
of SecGrid. To differentiate between non-DoH and DoH traffic, the IP addresses introduced in
Table 6.8 are used. The analysis ended up in four different CSV-files, i.e. clumps of Chrome
non-DoH traffic, Chrome DoH traffic, Firefox non-DoH traffic and Firefox DoH traffic.

6.4.2 Jěrábek et. al Data-set as Test-Dataset

For the execution of this examination a test data-set has to be created. This test data-set
contains 4000 equally distributed clumps from all the four referred CSV-files in Section 6.4.1.
This means that from each of the CSV-files, 1000 random data-points are collected and saved
into a new file called IEEETestDataset. This test data-set is then saved as IEEETestDataset.csv
and used as the prediction data-set of Layer 1. In the following sections, the results of this
test are presented.

Accuracy & Confusion Matrix

The accuracy of Layer 1 using the data-set [55] as testing data is 62.55%. The confusion
Matrix in Figure 6.9 on the left shows that the non-DoH clumps are predicted mostly correct,
with a negligible amount of 70 clumps which were predicted incorrect. But looking at the DoH
clumps, the confusion matrix unveils that only about 30% are predicted correctly. This is a
poor result, since the primary task of this layer is to classify the clumps correctly into DoH
and non-DoH clumps for the further processing in Layer 2.

Figure 6.9: Confusion Matrix (left) and ROC Curve of (right) of Layer 1 using Data from [55]
as Testing Data-Set

6.4. LAYER 1 USING A DIFFERENT DATA-SET 69

Recall, Precision, F1-Score & ROC Curve

The average recall of Layer 1 using data of the data-set [55] as prediction data is 63.0%, the
average precision is 73.0% and the average F1-score is 58.0%. All the values can be seen in
Table 6.9. Figure 6.9 on the right shows the ROC-curve, which reinforces the inaccuracy of
Layer 1.

Recall Precision F1-Score
non-Doh 0.96 0.57 0.72
DoH 0.29 0.89 0.43
Average 0.63 0.73 0.58

Table 6.9: Recall, Precision and F1-Score of Layer 1 using Data of [55] for the Test Data-Set

Discussion

This examination showed that the newly implemented model has difficulties to handle other
data than data from the data-set [39]. On the one hand, the model is highly accurate in
predicting non-DoH data, but on the other hand, only about 30% of the DoH data was
predicted correctly. This contradicts the findings of Sections 6.3.2 and 6.3.3, where it is
proven that the model is very accurate. It seems that Layer 1 is able to separate data from the
original data-set, but as soon as other data is involved it is not accurate anymore. This may
indicate that the dimensions used for the model may vary between settings in the user-agent
or the resolver. Thus, more research in this direction would be needed, which would reproduce
and test earlier results and suggest optimizations.

6.4.3 Relying Exclusively on Jěrábek et. al Data-set

The findings of Section 6.4.2 are humbling. Thus, in this Section the data-set [55] is tested if it
is generally suited for the separation of non-DoH and DoH traffic. Therefore, a training data-
set of the same size as the original training data-set is created, i.e. it contains 40’000 clumps.
These 40’000 are divided in half, whereas the first half contains 10’000 clumps non-DoH traffic
collected using Chrome and 10’000 non-DoH clumps collected using Firefox. The other half
contains 10’000 clumps of DoH traffic collected with Chrome and 10’000 clumps of DoH traffic
collected using Firefox. This data-set is the saved in the CSV-file called TSL1IEEE.csv. This
training data-set is now used to train Layer 1 and after the training it is tested with the testing
set IEEETestDataset.csv.

Accuracy & Confusion Matrix

The accuracy of Layer 1 using the data-set [55] as training and testing set is 98.85%. The
confusion matrix in Figure 6.10 on the left reveals that the non-DoH traffic clumps as well as
the DoH traffic clumps are predicted predominantly correct. Only 32 non-DoH traffic clumps

70 CHAPTER 6. EVALUATION

and 14 DoH traffic clumps are predicted incorrectly, thus those numbers are negligible. This is
an excellent result which already indicates that the data-set is in principle eligible as training
data-set for Layer 1.

Figure 6.10: Confusion Matrix (left) and ROC Curve of (right) of Layer 1 using Data from
[55] Training- and Testing Data-Set

Recall, Precision, F1-Score & ROC Curve

The average recall of Layer 1 using data from [55] as training and testing data-set is 99.0%,
the average precision is 99% and the average F1-score is 99.0%. Table 6.10 shows that only
the recall of the prediction of non-DoH traffic clumps and the precision of the prediction of
DoH traffic clumps is 98.0%, all the residual values are 99.0%. The ROC curve in Figure 6.10
reinforces that the model is exact and that there are nearly no miss-predictions in the model.

Recall Precision F1-Score
non-Doh 0.98 0.99 0.99
DoH 0.99 0.98 0.99
Average 0.99 0.99 0.99

Table 6.10: Recall, Precision and F1-Score of Layer 1 using Data of [55] for the Training and
the Test Data-Set

Discussion

This experiment shows that if the DoH detection component of SecGrid is applied to data
that comes from the same data-set is highly accurate with an accuracy of 98.85%. Only a
negligible part of both, non-DoH traffic clumps and DoH traffic clumps, is predicted wrong.
Additionally, the viability of the data-set [55] is proven when the training and the testing
data-set come from it. This means that the DoH detection component of Layer 1 is basically
exact, but it cannot be applied to detect DoH traffic from the dataset [55] while it is trained

6.4. LAYER 1 USING A DIFFERENT DATA-SET 71

with data from the data-set [39]. This could further highlight that in a realistic setting, one
might have to train a model for each device or resolver. However, more research is needed in
this direction.

6.4.4 Jěrábek et. al Data-set as Training Data-Set

The last experiment of this Chapter is to test if the data of [39] is better predictable using
data from [55] as training data. To do so, the same training data-set is used as in Section
6.4.3. As the testing data-set, the same data-set is used as in Section 6.3.2.

Accuracy & Confusion Matrix

The accuracy of Layer 1 using data from the data-set [55] as training data-set and the test data
from the data-set [39] is 72.35%. The confusion matrix in Figure 6.11 reveals that the non-
DoH traffic clumps are predicted nearly perfectly. But as already experienced in Section 6.4.2,
the prediction of the DoH traffic clumps is not good. With nearly 50% correct predictions, it
was at least not as poor as the experiment result in Section 6.4.2, but this result is still not
good.

Figure 6.11: Confusion Matrix (left) and ROC Curve of (right) of Layer 1 using Data from
[55] as Training Data-Set

Recall, Precision, F1-Score & ROC Curve

The average recall of Layer 1 using data from [55] as the training data-set and the test data
from the data-set [39] is 72.0%, the average precision is 0.79, and the average F1-score is
71.0%. Table 6.11 shows that especially the recall of the prediction of the DoH traffic clumps
is poor, since it is under 50%. Figure 6.11 clarifies that the performance of this model is also
not sufficient.

72 CHAPTER 6. EVALUATION

Discussion

This experiment shows again that the two different data-sets are not compatible to each other.
Although the accuracy with 72.35% was about 10% higher than the result of the experiment
in Section 6.4.2, this is still not the desired performance. The awareness that can be gained
from this experiment is that the different browser settings and the different DoH-servers that
were used to generate the data-set [55] disturb in some manner the model when it is trained
with data from the data-set [39].

Recall Precision F1-Score
non-Doh 0.97 0.65 0.78
DoH 0.48 0.94 0.63
Average 0.72 0.79 0.71

Table 6.11: Recall, Precision and F1-Score of Layer 1 using Data of [55] for the Training
Data-Set

Chapter 7

Summary, Conclusions, Limitations, and
Future Work

In this thesis, a malicious DNS-over-HTTPS detection prototype was implemented into Sec-
Grid. Its components are a feature extraction and a Machine Learning pipeline. The feature
extraction component is able to extract informational as well as statistical features out of TCP
flows that are contained in an input PCAP-file, whereas the ML pipeline is able to detect
malicious DoH traffic within two steps using the values that were extracted in the feature
extraction. The first step is to separate DoH traffic from normal HTTPS traffic, the second
step is to detect malicious DoH traffic.

The modular architecture of SecGrid facilitated the implementation of the two components,
therefore no drastic changes of the architecture of SecGrid had to be done. The feature
extraction could be implemented as a subclass of the already available Abstract PCAP Analyser
class. The PcapParser had to be adjusted such that it parses TCP-flows. node-pcap, which
was previously integrated in the project as a node module, had to be forked and changes
concerning the handling of non-ending and packet information extraction had to be done. The
feature extraction uses the information that is parsed by the PcapParser to compute all the
needed features.

Further, the two layered Machine Learning detection component was implemented, whereas
both Layers use the same algorithm, namely the Light Gradient Boosting Machine Classifier.
Both of these models have to be trained with already available data, therefore the data-
set CIRA-CIC-DoHBrw-2020 [39] was used. This data-set was analyzed with the feature
extraction component and two different training data-sets were composed, one for each layer
and containing the data that is important for the respective Layer. The ML models of Layer 1
and 2 are trained with the respective data-set and are then ready to predict the input PCAP
file. Joining the two components, feature extraction and ML model results in the complete
prototype for the detection of malicious DoH traffic.

During the implementation, the TCP Tracker of node-pcap had to be adjusted such that it can
handle non-ending TCP flows. It was noticed that there are other parts of the TCP Tracker
that are not completely or not at all implemented, such as the handling of TCP packets different
from ACK or FIN packets. Further, the handling of half-closed TCP flows is not handled,

73

74 CHAPTER 7. SUMMARY, CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

i.e. flows that are ended using only one FIN/ACK sequence. As seen in the evaluation of
the feature importance, the state is an important feature for both, the separation of non-
DoH and DoH traffic and the detection of malicious DoH traffic, therefore, by following up
the completion of the handling of non-ending TCP flows it is possible to get an even more
important feature that helps for the two detection processes. Generally, the features seem to
be computed correctly, whereas the novel features must be highlighted, since some of them
have a huge impact on the prediction of the ML models. A further interesting finding in the
evaluation is the rounding error that happens in Wireshark. The producers could in the future
take in account to show the absolute values of the total extracted packet sizes instead of
rounded values to avoid this error.

Another point of the feature extraction module is that when huge amounts of data are analyzed,
it can claim some time. Although it is clear that files that contain some Gigabytes of traffic
just need time to be fully analyzed, this process could still be accelerated. This could be
accomplished by adapting the TCP Tracker such that it extracts the data from the PCAP-
file in such a way that there is no need for feature extraction to iterate over the same data
again. An example therefore is that the TCP Tracker could compute the time between the
first and the current packet or the request- and response time at the point when it retrieves
the packets. Currently, this is done in the feature extraction, which means that in the whole
process it is required to iterate several times over the data and this implicates that feature
extraction process is slowed substantially.

To conclude, the two layered detection of malicious DoH traffic is extremely accurate while
the training and testing data originates from the same data-set. However, as soon as the
testing data comes from another data-set than the training data, already the accuracy of
the first Layer gets extremely poor. This is probably due to different browser settings and
different DoH resolvers that were used to gather data of the two data-sets. Furthermore, both
of the used data-sets are lab-generated data-sets, which do not precisely reflect real world
data. Another limitation is that only one existing data-set was found that contains non-DoH
traffic, benign and malicious DoH traffic, whereas benign DoH traffic flows are limited to
about 30’000 which was just enough to cover the needed flows for the two data-sets. This
quantitative lack of data limits the power of the prototype, since the data cannot reflect real-
world data enough. Since only the first Layer of the prototype could have been tested with
other data, it is uncertain that the second Layer is precise in detecting malicious DoH traffic or
not. The ML models performed very good with the available data, but there is no evidence for
the usefulness of the prototype using real-world data. Additionally, the malicious DoH traffic
was gathered using DoH tunnel tools, but it is also possible to use the DoH protocol without
tunnel tools. Thus, this is a further limitation of the prototype and the assumption can be
made that the second Layer could also be imprecise when using other data than the data from
the data-set [39].

The evaluation of the ML models showed that the prototype basically performs good while
the data-sets were analyzed separately, the major problem of the project is the lack of data.
In the future, the data-sets could be further enhanced. This means that the data should
not only be lab-generated, but also generated in the real world. Another point is that the
detection of malicious DoH traffic could become more precise if the data is gathered only from
the communication with one resolver and one browser setting at once, since the evaluation
using two different data-sets for training and testing revealed predicting constraints although

75

both the data-sets contain DoH data. Further, to make especially the malicious traffic more
reliable, either the data should be generated by readjusting real cyber-attacks or even using
data of officially verified cyber-attacks using DoH should be used to bring the data as near to
real-world scenarios as possible.

76 CHAPTER 7. SUMMARY, CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Bibliography

[1] Ghacksnews,“Mozilla plans to roll out dns over https to us users in late september 2019
#firefox #doh #dns #httpshttps://t.co/yoo2xkf1th pic.twitter.com/deyouvedov,” Sep
2019, accessed on January 17, 2022. [Online]. Available: https://twitter.com/ghacks/
status/1170365128874897410

[2] S. Garćıa, K. Hynek, D. Vekshin, T. Čejka, and A. Wasicek, “Large scale measurement
on the adoption of encrypted dns,”arXiv preprint arXiv:2107.04436, 2021.

[3] K. Hynek, “The prevalence of dns over https,” Sep 2021, accessed
on January 17, 2022. [Online]. Available: https://blog.apnic.net/2021/09/13/
the-prevalence-of-dns-over-https/

[4] “Adopting encrypted dns in enterprise environments,”Jan 2021, accessed on January 17,
2022. [Online]. Available: https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/
0/CSI ADOPTING ENCRYPTED DNS U OO 102904 21.PDF

[5] A. Turing and G. Ye, “An analysis of godlua backdoor,” July 2019, ac-
cessed on January 17, 2022. [Online]. Available: https://blog.netlab.360.com/
an-analysis-of-godlua-backdoor-en/

[6] C. Cimpanu, “Iranian hacker group becomes first known apt to
weaponize dns-over-https (doh),” August 2020, accessed on Jan-
uary 17, 2022. [Online]. Available: https://www.zdnet.com/article/
iranian-hacker-group-becomes-first-known-apt-to-weaponize-dns-over-https-doh/

[7] Arno0x, “Dnsexfiltrator,” Dec 2017, accessed on January 17, 2022. [Online]. Available:
https://github.com/Arno0x/DNSExfiltrator

[8] M. Franco, J. Von der Assen, L. Boillat, C. Killer, B. Rodrigues, E. J. Scheid, L. Granville,
and B. Stiller, “Secgrid: a visual system for the analysis and ml-based classification of
cyberattack traffic,” in 2021 IEEE 46th Conference on Local Computer Networks (LCN).
IEEE, 2021, pp. 140–147.

[9] P. V. Mockapetris, “Rfc1035: Domain names-implementation and specification,”1987.

[10] T. H. Kim and D. Reeves,“A survey of domain name system vulnerabilities and attacks,”
Journal of Surveillance, Security and Safety, vol. 1, no. 1, pp. 34–60, 2020.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Rfc2616: Hypertext transfer protocol – http/1.1,”1999.

77

78 BIBLIOGRAPHY

[12] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “Tcp extensions for high
performance,”RFC7323, 2014.

[13] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 9th ed. Hobo-
ken, NJ, USA: John Wiley and Sons Inc, 2013.

[14] E. Rescorla, “Rfc2818: Http over tls,”2000.

[15] A. Freier, P. Karlton, and P. Kocher,“The secure sockets layer (ssl) protocol version 3.0,”
RFC 6101, Tech. Rep., 2011.

[16] T. Dierks and C. Allen,“Rfc2246: The tls protocol version 1.0,”1999.

[17] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafò,
K. Papagiannaki, and P. Steenkiste, “The cost of the ”s” in https,” ser. CoNEXT ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p. 133–140. [Online].
Available: https://doi.org/10.1145/2674005.2674991

[18] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems, 5th ed.
Boston, MA, USA: Addison-Wesley, 2012.

[19] S. Calzavara, R. Focardi, M. Nemec, A. Rabitti, and M. Squarcina, “Postcards from the
post-http world: Amplification of https vulnerabilities in the web ecosystem,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019, pp. 281–298.

[20] G. Savary, “Tcp series #2: How to close tcp sessions and diagnose disconnections?”
April 2017, accessed on February 23, 2022. [Online]. Available: https://accedian.com/
blog/close-tcp-sessions-diagnose-disconnections/

[21] P. Hoffman and P. McManus,“Rfc 8484: Dns queries over https (doh),”2018.

[22] P. Hoffman,“Representing dns messages in json,”2018.

[23] T. Böttger, F. Cuadrado, G. Antichi, E. L. Fernandes, G. Tyson, I. Castro, and S. Uh-
lig, “An empirical study of the cost of dns-over-https,” in Proceedings of the Internet
Measurement Conference, 2019, pp. 15–21.

[24] N. Z, “Dns security and privacy — choosing the right provider,” April 2018,
accessed on February 23, 2022. [Online]. Available: https://medium.com/@nykolas.z/
dns-security-and-privacy-choosing-the-right-provider-61fc6d54b986

[25] C. Lu, B. Liu, Z. Li, S. Hao, H. Duan, M. Zhang, C. Leng, Y. Liu, Z. Zhang,
and J. Wu, “An end-to-end, large-scale measurement of dns-over-encryption: How far
have we come?” in Proceedings of the Internet Measurement Conference, ser. IMC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p. 22–35. [Online].
Available: https://doi.org/10.1145/3355369.3355580

[26] K. Bumanglag and H. Kettani, “On the impact of dns over https paradigm on cyber
systems,”in 2020 3rd International Conference on Information and Computer Technologies
(ICICT), 2020, pp. 494–499.

[27] “Lua,”accessed on February 24, 2022. [Online]. Available: https://www.lua.org/

BIBLIOGRAPHY 79

[28] F. Daragon, “Lua web application security vulnerabilities,” May 2014, accessed on
February 24, 2022. [Online]. Available: https://www.syhunt.com/en/index.php?n=
Articles.LuaVulnerabilities

[29] J. Armer, “Psixbot infostealer uses dns over https,” December 2019, accessed on
February 26, 2022. [Online]. Available: https://www.infoblox.com/wp-content/uploads/
threat-intelligence-report-psixbot-infostealer-uses-dns-over-https.pdf

[30] P. T. I. TEAM, “Psixbot now using google dns over https and pos-
sible new sexploitation module,” Sepember 2019, accessed on February
26, 2022. [Online]. Available: https://www.proofpoint.com/us/threat-insight/post/
psixbot-now-using-google-dns-over-https-and-possible-new-sexploitation-module

[31] T. Keary, “Pcap: Packet capture, what it is & what you need
to know,” May 2021, accessed on February 24, 2022. [Online]. Avail-
able: https://www.comparitech.com/net-admin/pcap-guide/#:˜:text=pcap%20files%
20to%20record%20packet,you%20can%20view%20through%20Wireshark.

[32] “Wireshark,”accessed on February 26, 2022. [Online]. Available: https://www.wireshark.
org/

[33] Q. Huang, D. Chang, and Z. Li, “A comprehensive study of {DNS-over-HTTPS} down-
grade attack,” in 10th USENIX Workshop on Free and Open Communications on the
Internet (FOCI 20), 2020.

[34] D. Hjelm,“A new needle and haystack: Detecting dns over https usage,”SANS Institute,
Information Security Reading Room, 2019.

[35] D. Vekshin, K. Hynek, and T. Cejka,“Doh insight: Detecting dns over https by machine
learning,” in Proceedings of the 15th International Conference on Availability, Reliability
and Security, 2020, pp. 1–8.

[36] M. MontazeriShatoori,“An anomaly detection framework for dns-over-https (doh) tunnel
using time-series analysis,”Ph.D. dissertation, University of New Brunswick., 2020.

[37] ahlashkari, “Dohlyzer,” Nov 2019, accessed on February 10, 2022. [Online]. Available:
https://github.com/ahlashkari/DoHlyzer

[38] P. Biondi, “Scapy project,” 2021, accessed on February 10, 2022. [Online]. Available:
https://scapy.net/

[39] “Cira-cic-dohbrw-2020,” accessed on February 10, 2022. [Online]. Available: https:
//www.unb.ca/cic/datasets/dohbrw-2020.html

[40] S. K. Singh and P. K. Roy, “Detecting malicious dns over https traffic using machine
learning,”in 2020 International Conference on Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT). IEEE, 2020, pp. 1–6.

[41] Y. M. Banadaki,“Detecting malicious dns over https traffic in domain name system using
machine learning classifiers,”Journal of Computer Sciences and Applications, vol. 8, no. 2,
pp. 46–55, 2020.

80 BIBLIOGRAPHY

[42] M. Behnke, N. Briner, D. Cullen, K. Schwerdtfeger, J. Warren, R. Basnet, and T. Doleck,
“Feature engineering and machine learning model comparison for malicious activity de-
tection in the dns-over-https protocol,” IEEE Access, vol. 9, pp. 129 902–129 916, 2021.

[43] R. Mitsuhashi, A. Satoh, Y. Jin, K. Iida, T. Shinagawa, and Y. Takai, “Identifying mali-
cious dns tunnel tools from doh traffic using hierarchical machine learning classification,”
in International Conference on Information Security. Springer, 2021, pp. 238–256.

[44] M. Al-Fawa’reh, Z. Ashi, and M. T. Jafar,“Detecting malicious dns queries over encrypted
tunnels using statistical analysis and bi-directional recurrent neural networks,” Karbala
International Journal of Modern Science, vol. 7, no. 4, p. 4, 2021.

[45] S. M. Ross, Introdutory Statistics, 4th ed. Cambridge, MA, USA: Academic Press, 2010.

[46] T. Jain and V. Ohri, Introdutory Statistics. Dehli, India: Global Publications Pvt. Ltd.,
2021.

[47] A. K. Awasthi, Statistics, 1st ed. India: Darbose Inc., 2013.

[48] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Light-
gbm: A highly efficient gradient boosting decision tree,”Advances in neural information
processing systems, vol. 30, 2017.

[49] Wireshark, “Sll wireshark,” 2020, accessed on March 18, 2022. [Online]. Avail-
able: https://wiki.wireshark.org/SLL#:˜:text=Linux%20cooked%2Dmode%20capture%
20(SLL,or%20can’t%20be%20used.

[50] Mathjs, “Mathjs api,” accessed on March 18, 2022. [Online]. Available: https:
//api.mathjs.org/

[51] Pandas, “Pandas library,” 2022, accessed on March 29, 2022. [Online]. Available:
https://pandas.pydata.org/

[52] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and
G. Varoquaux, “API design for machine learning software: experiences from the scikit-
learn project,” in ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 2013, pp. 108–122.

[53] LGBM, “Lgbm,” 2022, accessed on March 29, 2022. [Online]. Available: https:
//lightgbm.readthedocs.io/en/latest/

[54] scikit-learn developers, “Feature importance,” 2021, accessed on April 8, 2022. [On-
line]. Available: https://inria.github.io/scikit-learn-mooc/python scripts/dev features
importance.html

[55] K. Jěrábek and S. Stuchlý, “Dns over https network traffic,” 2021, accessed on March
29, 2022. [Online]. Available: https://dx.doi.org/10.21227/96ea-2055

[56] A. Zheng, Evaluating Machine Learning Models, first ed. ed. Sebastopol, CA, USA:
O’Reilly Media, Inc, 2015.

BIBLIOGRAPHY 81

[57] avcontentteam, “Tcp series #3: network packet loss, retransmis-
sions, and duplicate acknowledgements,” 2016, accessed on April
12, 2022. [Online]. Available: https://www.analyticsvidhya.com/blog/2016/04/
tree-based-algorithms-complete-tutorial-scratch-in-python/

[58] C. Greer, “Tree based algorithms: A complete tutorial from scratch (in r python),”
2017, accessed on April 12, 2022. [Online]. Available: https://accedian.com/blog/
network-packet-loss-retransmissions-and-duplicate-acknowledgements/

[59] J. Von der Assen and L. Bolliat, “Ddosgrid (v2),” 2022, accessed on April 13, 2022.
[Online]. Available: https://github.com/ddosgrid/ddosgrid-v2

82 BIBLIOGRAPHY

Abbreviations

ACK Acknowledgement packet of a TCP connection
BRNN Bi-Directional Recurrent Neural Network
DL Deep Learning
DNS Domain Name System
DoH DNS over HTTPS
EFB Exclusive Feature Bundling
FIN Finish packet of a TCP connection
FN False Negative
FP False Positive
GBDT Gradient Boosting Decision Tree
GOSS Gradient-based One-Side-Sampling
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IP Internet Protocol
IPv4 Internet Protocol version 4
JS JavaScript
LGBM Light Gradient Boosting Machine
ML Machine Learning
PCAP Packet Capture
PKI Public Key Infrastructure
RF Random Forest
ROC Receiver Operating Characteristics
RST Reset packet of a TCP connection
SSL Secure Sockets Layer
SYN Synchronization packet of a TCP connection
TCP Transmission Control Protocol
TLS Transport Layer Security
TN True Negative
TP True Positive
TSL1 Traing Set for Layer 1
TSL2 Traing Set for Layer 2
UDP User Datagram Protocol

83

84 ABBREVIATONS

Glossary

Random Forest A tree based Machine Learning algorithm.

Retransmission Packet This packet type is to prevent packet loss. If a packet is not ac-
knowledged in a certain time frame, the sender retransmits the packet because it assumes
that the packet has been lost [57].

Tree Based Machine Learning Algorithms This is a type of supervised learning algorithm,
mostly used for classification, where the population is split into two or more homogeneous
sets [58].

85

86 GLOSSARY

List of Figures

1.1 Tweet [1] in which the Implementation of DoH was introduced 1

2.1 Start (left) and End (right) of a TCP connection 7

2.2 Example PCAP File in Wireshark . 10

2.3 Current Architecture of SecGrid [8] . 11

3.1 Features listed by Importance, Layer 1 on the Left, Layer 2 on the Right [42] . 20

3.2 Illustration of the Three-Layered Approach 23

4.1 Illustration of the Collection of the Data by [36] 26

4.2 Illustration of the Clumping Process . 27

4.3 Components to be adapted . 35

4.4 Illustration of the whole Classification Process of an Input PCAP File 36

5.1 Pipeline of the Data-Flow . 38

5.2 Totally Extracted Flows (DoH and non-DoH) 44

5.3 Illustration of the Data Flow of Layer 1 . 48

5.4 Illustration of the Data Flow of Layer 2 . 49

5.5 Leaf-Wise Tree Growth [53] . 50

6.1 Summarized Evaluation of SecGrid . 56

6.2 Summarized Evaluation of Wireshark . 57

6.3 Cutout from the summarized Evaluation of the DoHlyzer [37] computed by [36] 57

6.4 Feature Importance of Layer 1 found in this Thesis 58

87

88 LIST OF FIGURES

6.5 Feature Importance of Layer 2 found in this Thesis 60

6.6 Theoretical Composition of a Confusion Matrix [56] 61

6.7 Confusion Matrix (left) and ROC Curve of (right) of Layer 1 64

6.8 Confusion Matrix (left) and ROC Curve of (right) of Layer 2 66

6.9 Confusion Matrix (left) and ROC Curve of (right) of Layer 1 using Data from
[55] as Testing Data-Set . 68

6.10 Confusion Matrix (left) and ROC Curve of (right) of Layer 1 using Data from
[55] Training- and Testing Data-Set . 70

6.11 Confusion Matrix (left) and ROC Curve of (right) of Layer 1 using Data from
[55] as Training Data-Set . 71

List of Tables

2.1 Features of a PCAP File in Wireshark . 10

3.1 Most Important Features found by [35] . 15

3.2 Header Information [36] . 16

3.3 Information about the Amount of Bytes sent and received [36] 16

3.4 Statistical Information about the Packet Length [36] 17

3.5 Statistical Information about the Packet Time [36] 17

3.6 Statistical Information about the Packet Response time between an outgoing
Query and the following Response in one Flow [36] 18

3.7 Summary of the References presented in this Chapter 22

4.1 Statistical Metrics . 30

4.2 Header Features . 31

4.3 Packet Length Features . 31

4.4 Packet Time Features . 32

4.5 Packet Request/ Response Time Features . 32

4.6 New Features compared to the Work of [36] 33

5.1 Features of the Session Object forwarded by the tcp tacker and used for the
Feature Extraction . 40

5.2 Function Names of the Statistical Metrics . 41

5.3 IP-Addresses of the DoH Servers used for the Data-Set [39] 43

5.4 Number of total extracted benign DoH and Non-Doh Flows 44

5.5 Number of total extracted malicious DoH Flows 45

89

90 LIST OF TABLES

5.6 Distribution of the Data-Points in TSL1 . 45

5.7 Distribution of the Data-Points in TSL2 . 47

5.8 Tuned Hyperparameters of Layer 1 . 51

5.9 Tuned Hyperparameters of Layer 2 . 52

6.1 Comparison of the extracted Features Flows, Source & Destination, State, and
Duration . 54

6.2 Comparison of the extracted Feature Total Number of Packets 55

6.3 Comparison of the extracted Feature Total Packet Length 56

6.4 Distribution of the Data-Points in TSL1 . 63

6.5 Recall, Prescison and F1-Score of Layer 1 . 64

6.6 Distribution of the Data-Points in TSL2 . 65

6.7 Recall, Precising and F1-Score of Layer 1 . 66

6.8 IP-Addresses of the DoH Resolvers used for the Data-Set [55] 67

6.9 Recall, Precision and F1-Score of Layer 1 using Data of [55] for the Test Data-Set 69

6.10 Recall, Precision and F1-Score of Layer 1 using Data of [55] for the Training
and the Test Data-Set . 70

6.11 Recall, Precision and F1-Score of Layer 1 using Data of [55] for the Training
Data-Set . 72

List of Algorithms

1 Compute the Difference between outgoing and incoming Timestamps 42

91

92 LIST OF ALGORITHMS

Appendix A

Installation Guidelines

A.1 Feature Extraction

The Feature Extraction component is located in the Folder ”Scource Code/ddosgrid-v2”. It
can be installed and run using the installation and setup guidelines of the repository on Github
[59].

The project is located on the branch ”doh”.

A.2 ML Pipeline

The Machine Learning Pipline component is located in the Folder ”Source Code/LGBM”. Do
the following steps:

• Make sure you use an IDE which is compatible for Python, e.g. PyCharm.

• Make sure that every import of the respective document is installed.

The complete pipeline is located in the folder ”ml”. The required files (training- and testing-
data-sets) are already prepared, just run the file lgbmClassfier.py.

The evaluations are located in the folder ”evaluation”. Make sure that the imports are installed.
The required files are already prepared, just run the respective file.

The GridSearch is located in the folder ”gridSearch”. Make sure that the imports are installed.
The required files are already prepared, just run the respective file.

93

94 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the Repository

The repository contains the following directories:

• Data-Set: Contains a file with the URLs where the complete data-sets (CIRA-CIC-
DoHBrw-2020 and IEEE-Data-set) can be found.

• Documentation: Contains a directory with all the images used for the documentation,
a directory with a reference that could not have been accessed with the UZH-VPN, a di-
rectory with the thest files used for the evaluation in Section 6.1, and the documentation
as PDF-file.

• Presentations: Contains a directory with all the images used for the final presentation,
the Intermediate Presentation and the Final Presentation as PDF-files.

• Source Code: Contains the two directories ddosgrid-v2 and ml-pipline. ddosgrid-v2
contains the source code of SecGrid with the newly implemented Feature Extraction
component. ml-pipeline contains the separate ML pipeline.

• Train Test Files: Contains all the training and tesing data-set used for the ml-pipeline
and the evaluation of it.

95

