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Abstract

In this thesis, we conduct an empirical analysis of the history of object-oriented complex cyber-

physical systems to discover contextual metrics computed on top of software changes, based on

call graph analysis and evolution of software entities (e.g., call graph changes of a given calling

functions at a specific commit, release, or time frame). These metrics serve as proxies to measure

how high (or low) the change coupling of subsequent software changes will be. Additionally,

they should reveal if the coupled changes happened within the call graph or outside of it.

Specifically, we conjecture that such metrics are valuable indicators of complex types of changes

that directly impact the maintainability of the system code.

For the support of our investigation and future research, we developed an automatic approach

to compute the designed metrics. To validate our research questions we carry on a case study

involving four open-source projects in the domains of house automation, health devices, small

robots controlling, and robot real-time visual processing.

The results of this study highlight how these metrics, accompanied by a user-friendly tool,

provide to practitioners quantitative views of dependencies and evolution, based on call graph

analysis.

As future work, we plan to quantitatively and qualitatively assess the change-proneness ex-

posed by our metrics in further projects and organizations from different industrial domains.

As motivation for this thesis, we inquire three fundamental research questions:

• RQ1: To what extent is it possible to build evolutionary call-graphs based on software version man-

agement information?

• RQ2: What is the relation between structural coupling (on a function level) and the call-graphs

software evolution?

• RQ3: Is there a relation between conceptual (non-structural) coupling and the call-graphs software

evolution?





Zusammenfassung

In dieser Arbeit führen wir eine empirische Analyse der Geschichte objektorientierter komplexer

cyber-physikalischer Systeme durch. Durch Analyse von Aufrufdiagrammen und durch Betrach-

tung der Evolution von Software-Entitäten (z. B. Änderungen des Aufrufdiagramms einer bes-

timmten aufrufenden Funktion bei einem bestimmten Commit, Release oder Zeitrahmen) hoffen

wir kontextuelle Metriken zu entwickeln.

Diese Metriken dienen als Proxys, um zu messen, wie hoch (oder niedrig) die Änderungskop-

plung nachfolgender Softwareänderungen sein wird. Außerdem sollen sie zeigen, ob die gekop-

pelten Änderungen innerhalb oder außerhalb des Aufrufdiagramms stattfanden.

Insbesondere vermuten wir, dass solche Metriken für komplexe Arten von Änderungen wertvolle

Hilfestellung bei der Bewertung der Wartbarkeit des Systemcodes bieten können. Um unsere Un-

tersuchung und zukünftige Forschung zu unterstützen, haben wir einen automatischen Ansatz

zur Berechnung der entworfenen Metriken entwickelt. Dann haben wir unsere Forschungsfragen

anhand einer Fallstudie validiert, die vier Open-Source-Projekte in den Bereichen Hausautoma-

tisierung, Gesundheitsgeräte, Steuerung kleiner Roboter und visuelle Echtzeitverarbeitung von

Robotern umfasst. Die Ergebnisse dieser Studie zeigen, wie diese Metriken Anwendern(??) quan-

titative und auf Aufrufdiagrammen basierende Sichten von Abhängigkeiten und Evolution zur

Verfügung stellen können, die aufbereitet durch ein anwenderfreundliches Tool eine Bewertung

der Codequalität zulassen und so zu einer Verbesserung der Effizienz führen können. Als zukün-

ftige Arbeit planen wir die quantitative und qualitative Bewertung der Änderungsanfälligkeit,

die durch unsere Metriken in weiteren Projekten und Organisationen aus verschiedenen indus-

triellen Bereichen aufgedeckt wird. Als Motivation für diese Arbeit stellen wir uns drei grundle-

gende Forschungsfragen:

• RQ1: Inwieweit ist es möglich, evolutionäre Aufrufdiagramme auf Basis von Software-Versionsmanagement-

Informationen zu erstellen?

• -RQ2: Welcher Zusammenhang besteht zwischen struktureller Kopplung (auf der Ebene von Funk-



vi

tionen) und der Software-Evolution der Aufrufdiagramme?

• -RQ3: Gibt es einen Zusammenhang zwischen konzeptioneller (nicht-struktureller) Kopplung und

der Evolution von Aufrufdiagramm-Software?
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Chapter 1

Introduction

Complex systems investigated in the context of this thesis are systems composed of many, het-
erogeneous components that interact with each other and the system environment. In the case
of software systems, such components and its related resources can have a different nature, such
as microservices, compiled code, databases, external libraries called via APIs, etc. In this con-
text, Cyber-physical Systems (CPSs) represent a more complex set of systems, which present both
hardware and software components and make physical tasks/decisions on the basis of data from
sensors, event-camera from the surrounding environment. CPSs characterize a large set of criti-
cal domains from space exploration, smart home, autonomous driving systems (e.g., drones and
self-driving cars), e-health systems and devices [3].

The interaction of a CPS with hardware devices, as well as with humans [4–6] as well as
other systems, makes the nature and effect of faults in CPS environments very specific and non-
predictable [7, 8]. For example, a broken sensor [9] or a security attack [10] can lead to (un-
expected) inputs that mislead autonomous systems’ behavior. Hence, CPSs behaviour is intrin-
sically more difficult to monitor, due to the dependencies and interactions of their components
with the environment. For example, a large range of inputs from the real world and that affect or
impact CPSs’ components might include noise duo to the seamless connectivity for IoT devices
and the hardware heterogeneity [11]. This complexity hampers the reproduction of test scenarios
because the environment constantly changes, making it hard to recreate the relevant or original
conditions [12].

Similar to any other software system, CPSs evolve through frequent changes. Due to their
complexity, a single change can alter many parts of the system and, as consequence, its behaviour.
If one of the modules presents a defect and is not tested correctly, this defect might be executed in
the production environment, causing a failure in the system’s behaviour and potentially gener-
ating damages to the environments or the humans involved in such environmental context. This
is indeed and important aspect of such systems: CPSs interact with humans and the environ-
ment in the real world, and defects can lead to fatal damages sometimes causing also humans
fatalities [13–15].

Software maintainability is essential to deliver dependable systems. Chen et al. [1] showed
in an empirical study, based on the ontology of Software Qualities (SQ) defined by Boehm, et al.
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Figure 1.1: Maintainability Hierarchy (Chen et al. [1])

[16, 17] that high-severity bugs contain more maintainability issues, as compared to low-severity
ones. In Figure 1.1 we show the relationships of the Software Qualities subgroups. Chen et al.
found that some subgroups present larger failure incidences. For example, modularity issues
presented the highest number of source bugs and were mostly dependent on bugs from differ-
ent modules. Accessibility and understandability [18, 19] provoke the largest number of reopened
bugs [1]. Regarding the causes, these issues are predominantly caused by failures in the imple-
mentation of data design, usage and functionality.

Dependability in the software development process is a crucial quality to reduce the risk of
failures and damages. Developers need to understand the source code they are working with,
and this code comprehension tasks on average takes up to 58% of their time [18, 20, 21]. Further-
more, developers and other stakeholders are required to understand the impact of the introduced
changes in the system. Managers typically allocate resources in areas where more defects or se-
vere ones are foreseen [22]. Often this resource allocation is based on the manager or the team’s
experience.

Chen et al. [1] showed that accessibility, understandability and modularity are key Software
Qualities highly related to maintainability issues and bugs, and many studies have proven that
complexity increases defect-proneness [23–26]. Like explained in the section of Related Work,
researchers have searched for indicators and created prediction models to detect quality deficien-
cies, but did not found a universal metric, and one shortcoming is that most of the complexity
metrics focus on analyzing single elements. In addition, several studies have shown that process
metrics can accurately predict defects in source code [27, 28].

Since the 1970’s there has been applications using call graphs on compiled code mainly to
analyze data flows and analyzing the behaviour of the variables and calls [29] and research effort
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have been focused on improving the precision of the algorithms that generate the call graphs
[30, 31].

Based on the works of Watts and Strogatz (1998) and Albert & Barabási (2002) [32] in the
field of complex networks, network science and social networks researchers started applying this
concepts to exhibit properties of software systems [33, 34].

In recent years the study of graph, or network, analysis has been applied to software engi-
neering to address different challenges. Some challenges are descriptive, like measuring software
complexity, detecting communities [35]; and some others address a specific problematic in the
software code, such as malware detection [36], clone and similarity detection [37] and unreach-
able code detection [38].

1.1 Motivation
In Chapter 2 we discuss the current work on software evolution and analysis of software as net-
works. We highlight the gap between the subjects of analyzing code changes and studying the
graph structures of the software. Specifically, the changing of one line of code might have a
very different impact in the software behaviour, depending on where in the system this change
happens. We believe that analyzing the incremental changes of the underlying call graphs of the
system, helps to yield an overview of the system as it evolves and shows how its different compo-
nents are impacted by changes. We believe that this complementary view of software evolution
might support the understanding testers’ and developers’ maintainability and risk assessment
tasks.

Much of the research and tools on software evolution are based on a meticulous analysis of the
code, either static or dynamic analysis, and the usual main goal is to supports the program un-
derstanding by focusing on the information’s need of the developer. But in industrial scenarios,
specially in complex systems, there are other stakeholders that need different levels of granular-
ity, summarizing and abstraction [39]. Furthermore, many studies have focus their attention in
analyzing and predicting failures [40]. For this objective an accurate and representative database
of bug reports is necessary, but from our experience in the software development process, as re-
ported by Ambros et al. [40], defect corrections might be reported in the code change as new or
updated features and not always written in the form of bug reports [41]. Additionally, inadequate
management of requirements at the moment of programming are often not transparent, and they
repeatedly might represent non-crashing bugs; so, their behavioural flaws are often not tracked
as software failures. Because of these reasons we focus on change evolution and not in defect
prediction.

1.2 Goal
The goal of this thesis is to design and implement a tool for the analysis of software systems,
which complements existing change analysis tools, and integrates the ongoing research on net-
work structure of the code, this via the understand of the system evolution through analyzing the
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history of changes. The tool we implemented in this thesis, called callgraphCA, is designed to be
easily adaptable to different programming languages and repository sources. This is an impor-
tant requirement since we aim to provide information to different stakeholders, that might not
have a matching code compiler or, researchers that might be interested in comparing different
systems written in different languages. The callgraphCA tool does not require the compilation of
code, since it is based on openly available information. Specifically, we validated our tool in CPS
relevant domains, involving four CPS open source projects, that fulfills our requirements of data
quality, size and availability. The callgraphCA specifically models methods and function calls, in a
deeper granularity level than most of the literature studies, and analyze their relations to change
coupling. The focus on this research direction, since we aim to identify change behaviours, with
an emphasis in change coupling. This is because requirements and design errors or omissions
are often not documented in socio-technical repositories (e.g., in a bug reports of issue tracking
systems), and might only be discovered until late testing phases or post-release [26, 40, 42].

We aim to define complexity metrics that allow to monitor software changes based on call
graph analysis of the changed functions and detects the level of change coupling of subsequent
software changes. The metric will also show if the changes happened within the call graph and
outside of it, representing respectively structural and conceptual or logical changes. We conjecture
that this complexity impacts the maintainability of the code and we will evaluate this by assessing
the change-proneness exposed by the changed call graphs. The usefulness of this metric lays in
supporting people assessing the risks of software changes, and who posses a certain amount
of experience. We aim to analyze how transferable our approach is, when applied to different
projects [23].

1.3 Research questions
In this thesis, we conjecture that the proposed contextual complexity metrics are valuable indica-
tors of complex types of changes that directly impact the maintainability of the system code. To
investigate this assumption, we empirically investigated three fundamental research questions.

The research questions that guide this thesis are:

• RQ1: To what extent is it possible to build evolutionary call-graphs based on software version man-
agement information? For bench-marking the reliability of our solution we propose to use
SourceTrail as an oracle to detect the graph structure of the code and to compare our out-
puts.

• RQ2: What is the relationship between structural coupling (on a function level) and the call-graphs
software evolution? We propose to investigate how many times commit changes on a function
A impact the functions that are connected in the form of method calls to it (i.e., the functions
that are calling function A as well as the ones that function A calls)..

• RQ3: Is there a relationship between conceptual (non-structural) coupling and the call-graphs soft-
ware evolution? Change-coupling consists in co-changes of functions in the same time win-
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dow. In this context we propose to investigate the relations between change-coupling and
call-graph changes (e.g., How many times co-changes of functions impact a call graph?).

1.4 Contribution
In this thesis we propose a prototype tool, callgraphCA, for the empirical analysis of changes in
the context of complex (e.g., -physical) systems, with the focus of providing overview metrics that
have the following characteristics:

• they combine graph analysis with code change analysis

• they analyze the system’s call graph of the changed functions

• they can be used as proxy to measure how high the change coupling of subsequent software
changes is within the call graph and outside of it

• they can be computed at commit or release (e.g., Github tags) level

• they can be applied to different programming languages

1.5 Outline
This thesis is structured in eight parts. We are motivated to discover the relationships between
change proneness and the underlying network structure of the software based in call-graph analy-
sis. In Chapter Section 2 we discuss related work in the areas of analysing software evolution, and
applying network analytics to the understanding of software. In Chapter Section 3 we present the
methodology of this thesis, the main concepts for this research, the challenges when implement-
ing some algorithms and presenting the selection of systems under study 3.3. Our motivation is
to automatize and facilitate the access to our analytics approach, we present our tool callgraphCA
In Chapter Section 4. In Chapter Section 5 we present the results of the study, and discuss the
shortcomings of developing complex systems for the study of software evolution. In Chapter
Section 6 we list threats to validity and in Chapter Section 7 we present the limitations of our
approach and future work. Chapter Section 8 closes this part of our work.

In this work, we use the word function as an umbrella term to refer to actual functions as well
as methods from classes.





Chapter 2

Related Work

In 1999 Kemer and Slaughter [43] explained that the discipline of analyzing software evolution
dates back to the 70’s, which has the main goal of understanding software evolution dynamics,
provide measurable metrics of software evolution [44], to predict or avoid future failures in the
code [45–49], and to improve users satisfaction on software systems [5, 50]. Many different fault
(or defect) prediction techniques have been proposed such as analyzing software evolution, using
change logs, versioning history, code metrics from static analysis, cyclomatic complexity, object-
oriented metrics, process metrics, differences between binaries and past bugs history [23, 25].

As explained in the Chapter 1, we propose an empirical analysis of software evolution based
on repository commit changes, and call graph analysis. Therefore this section discusses the lit-
erature concerning (i) previous work on software metrics in the context of defect prediction; (ii)
recent studies on graph analysis of software systems, as well as (iii) change coupling analysis.

Software Metrics for Defect Prediction

A number of metrics, including object-oriented metrics suggested by Chidamber and Kemerer
(CK) [51, 52], process metrics [53] and complexity of change metrics [54] have been proposed to
predict bugs. A comparative study of several machine learning approaches (e.g., Logistic Re-
gression [55], Naive Bayes , Regression Trees, K-nearest neighbours Decision trees such as J48)
proposed to predict bugs on top of such metrics have been presented by D’Ambros et al. [47].
Khoshgoftaar et al. [56] has used Neural networks as alternative algorithm for bug prediction.

Complementary to such previous studies, more recent work investigated the use of different
metrics or different strategies to improve applicability of proposed metrics in different context.
Gyimothy et al. [52] presented a comprehensive study on the use of code metrics for defect pre-
diction, while Menzies et al. [48] revealed that a high precision of prediction models cannot be
achieved using just a single project. Hence, Zimmermann et al. [57] performed a large scale exper-
iment to determine the best way to improve accuracy of cross-project defect prediction strategies.

Ball et al. [58] experimented with the usage of code-churn as a strong indicator of errors, while
Pinzger et al. [59] provided a retrospective comparison of fine-grained source code changes and
code churn metrics for bug prediction. Khoshgoftaar et al. [56] proposed a code churn based ap-
proach that counts the lines of code inserted or removed for fixing a bug in a program file. Recent
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works proposed approaches where defect prediction as modeled as a multi-objective optimiza-
tion algorithms [60, 61], conducted in-depth assessments of using traditional metrics (e.g, class
size) in software defect prediction [62], discussed agile methods for defect prediction [63], and
proposed bug prediction approaches leveraging source code embedding based on Doc2Vec [64].

Software evolution Metrics for Change coupling

Zimmermann et al. [55] and Nachiappan et al. [65] experimented with evolution (or historical
based) approaches mining software archives to compute code related metrics as well as process
and historical metrics, with the goal of predicting fault-prone modules. Since then, several tools
[66] for computing software change metrics [67,68] have been proposed and studies investigating
software changes have been conducted [68–70].

In this context, the term change coupling was introduced by Fluri et al.and Gall [69] [71] and
reflects an evolutionary dependency of two artifacts that frequently change together and might
not be structurally linked. Furthermore, this couplings might reflect logical dependencies that
should be drafted at the moment of designing the changes and testing strategies. Hassan and
Holt [72] demonstrated that change coupling analysis delivers high performance in predicting
change propagation. Hence, Zhou et al. [73] proposed a bayesian network based approach for
change coupling prediction. Oliva and Gerosa [74] explained several advantages of analyzing
change coupling when studying a software system. Change coupling analysis reveals evolu-
tionary relationships that might not be discovered by structural coupling analysis and might be
better suited for certain applications. As consequence, Poshyvanyk and Marcus [75], and other re-
searchers [76–80], investigated and proposed conceptual and logical couplings metrics for object-
oriented systems and other types of software systems.

Network and Graph Analysis for Software Engineering

Network science is defined as “the study of network representations of physical, biological, and social
phenomena leading to predictive models of these phenomena" [81]. In this context, a call graph is a
representation of calling relationships between the methods in a software system [82]. The graph
is composed by nodes, that represent the functions or methods, and the directed edges represent
which function calls another. Function Call Graphs (FCG) provide syntactic, topological and
symbolic information of the system [37].

Researchers, in recent years, have used the approach of analyzing software systems as graphs
or networks. Alexandru et. al. developed an approach for analyzing the fine-grained history
of software projects by merging graph representations of thousands of program revisions and
computing metrics on the merged graph representation [83]. In a sample of 80 software systems
written in Java and C++, Valverde and Sole [34] analyzed the class membership of methods and
subclasses and found that dependencies in such systems present the same small world behaviour
discovered in many natural and human-made systems, such as the internet hubs and social net-
works. Another important characteristic, discovered by Potanin et al. [33] when studying object-
oriented programs, is that graphs of objects show also the scale-free network properties. Here,
they evaluated the objects created by the program at run time, representing the nodes. Such
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graphs change constantly through the execution of the program, but the behaviour is that the
vast majority of the objects have low connectivity, and there is a relatively small number of high-
connectivity nodes, or “hubs". In such hubs the vast majority of nodes are poorly connected to the
rest of the graph [84–86]. As consequence, deleting some of them can have negligible effect on the
connectivity of those remaining, while deleting some others (e.g., the one very highly connected)
can be far more destructive. Such behaviours can be relevant for approaching software engineer-
ing and development budgets, because they imply that concentrating debugging approaches on
more relevant well-connected objects could be more effective, for instance when eliminating bugs
from the most important hubs [84, 87].

Researchers have quickly adopted the approach to study software systems under the concept
of small-world properties, for example, when analyzing the interactions and dependencies be-
tween classes, methods, packages and libraries [85–87]. However, most tools developed based on
such concepts consists mainly in visual exploration of dependency graph in source code [88, 89]
(e.g., via embedding-based similarity [90]), with very few approaches proposing tools for a graph
dependency analysis of software systems [91], and, to our best knowledge, focusing on the cur-
rent state of the software and having no link to the evolution of the system.





Chapter 3

Methodology

This chapter discusses the study methodologies of this thesis. In Section 3.1 we provide an
overview of the change coupling definitions available from the literature, then we discuss which
definition we used in the context of our work. In Section 3.2 we explain the pillar concepts and
challenges of analyzing software for call graph evolution that will need to be implemented for
answering our research questions. Finally, in Section 3.3 we describe the targeted systems, the
data collection process applied, including the the methodology followed to select them.

3.1 Change coupling
In this section we describe the concepts behind the definition of traditional coupling metrics,
possibly describing how they complement each other, then, we discuss which metrics we used in
the context of our work.

Oliva et al. [74] defined that a dependency between two elements is a directional semantic
relation where changes performed in an element may affect the other element in the relation. In
previous work, this dependency relations have been separated in four main categories:

• structural coupling: two code elements are structurally coupled if code/structural depen-
dencies exist among them [92]. Higher is the number of dependencies among these code
elements, higher is the level of coupling. A low structural coupling is important to allow
changes in an individual code entity without propagating them in other part of the system.

• semantical coupling is based on interpretation of "meaning" of unstructured text in the source
code. Ajienka2018 et al. [93] points out that for some authors this relations are reduced to the
similarity of identifiers, for some others the similarity is extended to comments and even
to domain concepts and features that can be extracted from the artefact. More formally,
a software module (or artifact) A is semantically coupled with another module B, if their
code are semantically similar [93], i.e., they talk about the same concepts (i.e., report similar
terms). This semantic similarity is measured by means of information retrieval techniques,
such as Vector Space Model (VSM), or Latent Semantic Indexing (LSI) [94–96], that generates
similarity values between 0 (min. similarity) and 1 (max. similarity). Thus, higher is the
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number of similar artifacts (e.g., similarity measure > 0.75, where 0 is the min. value and
1 is the max value possible) among these modules, higher is the level of coupling among
them. The rationale behind the concept of semantic coupling is that if two artifacts are
similar (e.g., there are textual code clones among them), then, they tend to experience similar
changes. Thus, in this case, in the corresponding collaboration graph, the nodes correspond
to the system modules and the weighted edges represent the number of semantically similar
artifacts among these nodes. Also in this case, a low semantic coupling is important to
allow changes in an individual module without propagating them in other modules (high
maintainability). Vice versa, a high semantic coupling led to bugs and changes propagation
among modules of a system (low maintainability).

• logical coupling: Co-evolution of classes can be represented with their change, logical or evo-
lutionary coupling [97] therefore, the logical coupling of any two classes is based on their
change history, and is a measure of the observation that the two classes always co-evolve or
change together [97, 98]. More formally, a software module (or artifact) A is conceptually or
logically coupled with another module B, if their code tends to change in the same commit
or temporary closed commits [75], i.e., tend to co-change together or in close time inter-
vals. This conceptual coupling is measured by means of historical information from commit
repositories. Thus, higher is the number of times artifacts co-change together among two
modules, higher is the level of coupling among them. The rationale behind the concept of
conceptual coupling is that if two artifacts are conceptually related (e.g., they tend to co-
change often together), then they tend to experience conceptually related changes. Thus, in
this case, in the corresponding collaboration graph.

For our research, we will focus on the structural and logical coupling of software artifacts.
Previous approaches to discover change coupling in software engineering have presented differ-
ent algorithms, granularity level and a wide palette of information presenting, that matches the
diverse purposes of the research and targeted stakeholders. The basic idea to detect coupling
is to discover association rules between items happening in a large set of events, or transactions.
The usual metaphor to explain this relationships is the supermarket basket, where the aim is to
discover which set of objects that are bought implies the buying of a third one: people who bough
milk and bread also bought eggs. In the original definition by Agrawal et al. [99] there are two sets:
I containing n items, and a set D of transactions called database. Each transaction has a unique
identification and contains a subset of items, called an itemset. In data mining, the number of
items in a transaction is expected to be small in comparison to the number of existing items. A
set of items or items set is frequent if it is contained in many transactions. The support of the
itemset I indicates the number of transactions in which is contained. Association rules are created
to understand the relationships of itemsets in the universe of transactions. An association rule
I J, states that when I is present in a transaction, J will likely be present. Association rules are
directed, the left-hand-side of the rule (LHS) is the antecedent and the right-hand-side (RHS) is
the consequent. In a rule {A, B}→ {C} the antecedent A and B denote that if a transaction contains
A and B, it is likely that it will also contain C. The number of transactions containing both A and
B is the support (A→B) = support(A∪B). A useful concept is confidence, which is basically the
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percentage of all transactions satisfying X that also satisfy Y. In our field of research of software
systems evolution, items represent changes in the source code and the transactions can be defined
as process events or time windows. The coupling is stronger when the set of artifacts are changed
together and not independently from each other. Support and confidence and other metrics can
be applied to discover coupling between items, but in practical applications the focus is on the
discovery of many sets of items that appear frequently in the given database and are relevant
to make decisions or reflect behaviours of the system, this is called association rule learning. In
1994 Agrawal et al. [100] presented an implementation for a fast algorithm for mining association
rules. The Apriori algorithm is frequently used because it reduces processing by preemptively
pruning of non-frequent (irrelevant) items that do not satisfy a required support threshold. The
apriori algorithm requires a parameter for threshold. In the field of software engineering, finding
a relevant threshold for the association rules mining has proven to be a complex topic. Depending
on the systems under study and the purpose of the research, different opinions have been docu-
mented. Zimmermann et al. [97] studied coupling between files in the C language and included
both the main source files and header files. Having this constellation of files greatly increases
the confidence of the association rules, hence he and his team set the, comparatively, high sup-
port threshold of 1 and a confidence of 0.5. On the other hand, after studying the perception of
coupling by the software developers, Bavota et al. [101] set much lower thresholds, where they
included elements that co changed with minimum support of 0.02 and confidence larger than
0.8. For mining for association rules, in our research, we will use the apriori algorithm. The main
reasons for this decision are its efficiency, the hability to process transactions containing irregular
numbers of items, and because it searches for both LHS and RHS rules. We will also provide a
practical solution for finding adequate support thresholds for the different systems under study.

3.2 Call graph evolution
The concept of call graph evolution can be understood as the adding and deleting of function
and function calls within the system. Because specific ranges of the repository history can be
analyzed, we traverse the commit history in inverse time order. In this section, we use the terms

• start_hash: referring to the commit hash and commit date where the function call was added,
meaning, the first time that Function A called Function B,

• and end_hash: referring to both the commit hash and commit date where Function A stopped
calling Function B.

all of this fields are saved on the database tables.
In Figure 3.1 we have a simple example of File1, in which the function Function FX is calling

functions Function {A,B,C D, E} at some point in time. Function A is always present during the
whole history under analysis, from commit ’h-4’ to commit ’h2’ . Function B was added at commit
’h-3’ and remains until commit ’h2’. When stopping, at a given commit in the history, the values
in the database are the ones matching the commit color. When analyzing each previous commit,
the start_hash are updated to the oldest commit in which the function call was existing in the
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file, respectively, being called by function Function FX. We can observe that, when the function
is no longer existing in the current commit, the end_hash will be set to show the date on which
the function call was removed. Because of the inverse order, each processing cycle updates the
start_hash of the, at this time, existing function calls. So we can see that the initial insert of the
function Function A is done at the time of analyzing h2 and because it is still existing, the end_hash
is set empty (()). When analyzing the previous state, at commit ’h1’ the start_hash is set to h1 and
so consecutively until reaching the oldest commit h-4. An important case is when functions are
deleted in previous commits but reinserted later. We cover this case by making sure that current
commits only update the end_hash on entries that do not already possess an end_hash, meaning,
that they were deleted by more recent commits. In this thesis, we refer to added and deleted
software elements, like files, functions, methods and function calls referring to added or deleted
with respect to the previously stored version, generally the previous commit.

Figure 3.1: Evolution of function calls within a file, respectively function. Next to the called function name is
the starting commit hash or start_hash and the ending commit hash or end_hash.

3.2.1 Light-weighted graph creation

Defining call graphs

We define a call graph as a directed graph D = (N,C). Where N is a set of methods or functions
(nodes), and E is the set of relationships (edges). For our study, we defined the relationship as a
method call C = (ni, nj) that reads as ”ni calls nj”. For this research we approach the retrieval of
identifiers by two methods, the first time is by matching of artifact identifiers and the second is
by parsing of Abstract Syntax Trees (AST).



3.2 Call graph evolution 15

Artifact identifiers. Ajienka et al. stated that when analysing the corpora of the software classes
the identifier could be retrieved for classes with strong semantic coupling. We proposed an ap-
proach of matching identifiers according to their package tree locations and matching over pa-
rameters and arguments. Additionally, an initial parsing of the source code to generate the rela-
tionships between file, package and method should support the matching accuracy.

AST parsing. Abstract syntax trees (AST) are tree representations of the syntactic structure of
code. They represent the code structure in a higher level than the compilator trees and don’t
include every element of the code, for example, punctuation elements like parenthesis, etc. AST
parsing is the action of visiting the nodes of the tree to retrieve relevant information, and it is
usually employed for semantic analysis. We employ parsing libraries like srcML for parsing the
tree and transform it into other readable representations like xml. Based on heuristic rules we
extract xml nodes that we use to build our model representation of the system. The model we
propose for our research is similar to the metamodel FAMIX of Moose et al. [102] Figure 3.2. The
part of our research that deals with call-graph analysis implements a model that contain methods,
invocations or calls, packages and the package hierarchy and import relationships between the
files.

Figure 3.2: Famix Model (Lanza. [2])
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3.2.2 Challenges

Stability. As previously explained in the Call Graph evolution section 3.2, the start_hash and
end_hash are updated inverse time order, starting from the newest commit in the range. Because
software systems are in constant evolution, it might be necessary to analyze the project consec-
utively with callgraphCA to keep the information updated. In Figure 3.3 we can observe that the
first processing was done at ’h-1’, and a consecutively processed at commit ’h2’. The methodology
and the tool must ensure that independently of the range of changes being analyzed, even if over-
lapping, the most accurate and complete information will be stored. This leads to the challenge
to only update the start_hash at the, at this point, oldest known occurrence of the function call. In
our example, when processing from ’h-1’ we can see that functions Function B, C, D and Function
E were all inserted during the analyzed time period; however, because the commit range starts at
h-4, we cannot know if function Function A existed previously or not, hence we set the start_hash
to h-4. When processing the system at h2 we need to make sure not to overwrite the known oldest
insert times of the function calls. So for functions Function A, B and Function E we take the old-
est existing start_hash, based on the commit date, and keep it for the currently existing function
call, in the example, at commit h2 the functions Function A, B and Function E become the oldest
known start_hash.

When analyzing h1 we find that function Function C was added, in relation to h2, however,
this function was already existing previously and hence there is a record of it. The algorithm must
make sure that it only updates function calls that have not been previously closed, meaning that
the function was both added and deleted in the past. When this case arises, the algorithm must
insert a new record for this function, like for Function C at hash h1.

Figure 3.3: Secondary processing of the same project at commit hash ’h2’.
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3.3 Systems selection
In the following section, we detail the methodology adopted to select the projects to answer our
research questions. Specifically, for this master thesis we used data from Git repositories. For
this purpose we chose projects in Github1, whose characteristics are summarized in Table 3.1.
We searched for relevant projects, as detailed later in this section, considering a specific selection
criteria, tailored to the domains of cyber-physical systems. Using the GitHub query search feature,
we applied the following selection criteria based on a “criterion sampling" [103], ending up with
a sample of four projects.

• Domain selection: We focus on software that supports cyber-physical systems (CPSs). Since
our goal is to identify projects belonging to different CPS domains, we experimented with
specific GitHub queries: “IoT", robot, and health. In addition, we also considered home-
automation to explicitly target projects aimed to design and manufacture hardware and soft-
ware for smart homes.

• Project Popularity: We sort the results by stars to focus on popular repositories. Note that,
while selecting projects solely based on stars has been considered inaccurate [104], this se-
lection criterion is enhanced with other criteria.

• Language selection: We selected projects having as object oriented languages main program-
ming languages, mainly Java and C++, since, while querying GitHub for projects belonging
to different domains, we realized that most of them use those languages. While the choice
of Java can be considered obvious, the selection of C++ projects is pretty consistent with the
finding from previous work that shows that most CPS development is performed in C++
program language [105], however, for the results presentation of this thesis, we concentrate
on Java systems, and in the tool limitation section 7.0.1 we explain our decision.

• Projects size: Due to the scope of the project, we searched for systems that were not larger
than 1.5 million LOC.

Below is a description of the selected projects, detailed in Table 3.1:

• Glucosio for Android - An open source diabetes tracker app for controlling blood glucose,
HB1AC, Cholesterol, Blood Pressure, Ketones, Body Weight and more for diabetes type 1
and type 2. It can connect to Bluetooth devices for enabling the built of closed loop insulin
management. 2

• OpenBot - A software stack for an Android smartphones to be connected to robots, that
might be self made, and serve as the robot body for the smartphone. It allows complex
workloads like following a person and autonomous navigation. 3

• Eclipse Concierge - Concierge is a small-footprint implementation of the OSGi Core Speci-
fication R5 standard optimized for mobile and embedded devices. 4

1https://github.com/
2https://github.com/Glucosio/glucosio-android
3https://github.com/isl-org/OpenBot
4https://github.com/eclipse/concierge



18 Chapter 3. Methodology

• GRIP Computer Vision Engine - GRIP (the Graphically Represented Image Processing en-
gine) is an application for rapidly prototyping and deploying computer vision algorithms,
primarily for robotics applications. 5

Table 3.1: Systems under study
Project Name Main programming LOC6 Nr. of commits 7 Stars Nr. Tags Topic

language

Glucosio/glucosio-android java 59K 1’166 332 31 health automation
isl-org/OpenBot java 191K 730 2K 7 robots
eclipse/concierge java 62K 502 32 2 iot
WPIRoboticsProjects/GRIP java 54K 1’170 334 26 robotic vision

5https://github.com/WPIRoboticsProjects/GRIP
6According to github data at 06.10.2021
7Ibid.
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callgraphCA - call graph
evolution and code change

analytics

The motivation for developing callgraphCA is to support the analysis of software systems evolu-
tion to different stakeholders; for example, researchers that conduct studies on multiple software
systems, or development teams that require a "big picture" of the system network structure and
want to study its evolution. callgraphCA aims to bridge the gap between the subjects of analysis
of code evolution and network analytics applied to software engineering that complements other
analysis tools. It provides data for a high level of abstraction, to gain perspectives of structural
and conceptual changing, considering changes in the call graph. For this thesis, we focused on
the evaluation of complex cyber-physical systems.

callgraphCA is a source code analysis and data management tool, that discovers the incremen-
tal changes of the underlying call graphs of the system and its relation to change coupling, and
it´s solely based on data from the software’s version controlling repositories.

In this section we describe the callgraphCA’s software architecture, the requirements it serves,
and discuss the components and technologies behind it.

4.1 Requirements
callgraphCA is aimed to support the research of multiple software systems in scenarios where
the user does not posses the compiled code and might not have the purpose of compiling the
systems. The literature presented in Chapter 2 describes two approaches that have been used
to study software systems, change coupling, and network analysis. callgraphCA should deliver
information linking the software evolution and the relationship to the network structure based
on call-graphs.

Specifically, it is required that the data can be imported from various repositories, pre-processed
consistently, exported into a persistent database for further analysis. The current pilot study in-
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tends to cover cases of cyber-physical systems based on Java, however the tool should be easily
extensible to process other programming languages.

Functional requirements. We can sort the functional requirements in six core sections: data im-
port, data management, data processing, data export and storage, analytics, and user parametriza-
tion.

The data import requirements consist in the ability to import the data into callgraphCA from
diverse repositories. Because of our future work with industry partners, it should be easily exten-
sible to manage other repository types like Microsoft Team Foundation Version Control (TFVC),
CSV and SVN, which are still being used for current projects and would provide the capacity to
evaluate legacy systems that might still be in production.

For the purpose of manual validation, one data management requirement is that the tool must
enable to save the source code and source code differences as well as parsing results on a cache
folder in the processing machine. Because it is intended to be used for the study of different
projects at the time, the creation of a database for each project, as well as the storage of cache
source data, must proceed in an automatic way.

The data processing requirements include stability and completeness of processing within the
limits described in the chapter 7.0.1. The user should be able to run the analysis of specific data
ranges, like explained in section 3.2.2 and obtain the same results if the ranges have not changed,
most importantly, the tool should only update records that are relevant, for example, to change
a newly deleted function or function call. Due to the link to AST parsing, a complete language
agnosticism might not be granted, but the tool should provide easily extensible support for the
analysis of systems in different programming languages. The processing and saving of data is
able to run as background-tasks, enabling the constant access to the data for visualization.

The data export and storage requirements include the ability to change the location where the
cache source and parse files are stored, and the possibility of not storing cache data. Additionally,
to be able to write in diverse databases for the project under study, the tool must be easily extend-
able to change the type of database systems where the data results from processing are stored,
like Sqlite, PostgreSQL, Azure DB, MySQL or Oracle.

In the requirements for the support to analytics, the users might have different information
needs, so, the tool must provide different levels of granularity at the level of code and network
analytics. The information should be subject to slicing and dicing, for example, to set different
time windows and other process or time related parameters, like commits, tags and releases.

Non-functional requirements. The Non-functional requirements are regarding the extensibil-
ity and therefor modularity, for different data import and export requirements. Additionally,
because the users might use diverse systems for their work, there is a portability requirement, so
the tool can run in diverse platforms.
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4.2 Features
callgraphCA is a portable tool that can be used to analyze diverse systems. It currently offers the
following features:

User Parametrizing. In the following paragraphs, we will explain the parameters that the user
can give when launching the tool, so that it can: configure the sources of information, program
the language of the system, select data or tag ranges, define whether the source code and AST
parsing files will be saved in cache directories and the paths for saving the outputs in a database.
callgraphCA provides a CLI interface for launching the execution, but when downloading the
source code, it can also be triggered within the development environment (IDE). In the section 7
we explain planed interface features.

Data import. Because of the parametrizability of callgraphCA the users can set different Git
repositories as sources for their study. The modular architecture of the repository import adapters
currently allows connections to Git repositories, through the given repository path parameter.
The import adapters are designed for easy future adaptation of the tool to new repository type
requirements. Additionally, the tool allows date and tag range restrictions, targeted commits and
it filters out merge commits and branches.

Data processing. Like explained in the section of 3.2.2, the users are able to process the same
system with different time frame parameters and the results remain consistent. It means that
callgraphCA will only overwrite data that extends the previous knowledge of the system, but
will not change data that was known to be closed. The data transformation component allows
different programming languages to be parsed into AST and afterward, these trees are examined
to extract the function and method calls for each declared function in the file, respectively, class.

Data management, export and storage. The current default data storage is a local Sqlite1

database. This feature can be extended to include connections to PostgreSQL2, and others, de-
pending on the needs of our future research industrial partners. On the command line, the user
can reset the database an determine if cache files should be kept or deleted. Furthermore, the
paths to where the database and cached files are stored can be easily changed. In the architecture
section we will explain how the export adapter can be extended to accommodate other database
types.

Data Analysis and Visualizations For the ease of use, callgraphCA has separated analytics ta-
bles that might be seen as a data warehouse. This ensures decoupling and the ability to dis-
tribute this information to other channels that are not necessarily the ones who created the data.

1https://sqlite.org/
2https://www.postgresql.org/
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Currently, the tool provides data for assessing change proneness, coupling and call-graph anal-
ysis. Additionally, the visualization library provides, to our understanding, common visualiza-
tions where related parameters can be given, e.g. start and end date for displaying the function
changes.

Portability. The current state of the software can be executed in Windows, Linux (Ubuntu) and
iOS platforms.

Extensibility. The processing of new programming languages should be accomplished with
minimum changes in the software, for this intention, artifacts might be employed and their inter-
face should be adaptable through a change of parameters.

4.3 Architecture and system design
In this section, we present a short description of how our tool matches the requirements above
mentioned and implements a flexible framework for extending its functionalities.

Figure 4.1: Current callgraphCA Architecture

4.3.1 Overview
Our architecture resembles reasonably the explained model by Alexandru et al. [83] of an archetyp-
ical software analysis framework. One innovation from our approach is that for our tool it is not
required that source code data is saved in the local machine, this improves the performance by
avoiding i/o processing. In Figure 4.1 we draw the features that are not required with intermittent
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arrows, and features that are under construction are signaled with light gray intermittent arrows
and lines. Through the implementation of abstract data models, callgraphCA provides ease by
expanding functionality to adapt to different environments.

Launching. Through a command line interface (CLI) the user can start the analysis of a project.
It is possible to send the parameters directly in the starting command, or when launching the
application, it can read the parameters from configuration files laid for the selected projects.

Data Collection. The first mission for analyzing software is to extract and transform the raw
data into a robust model. callgraphCA collects the repository information through a repository
mining adapter. We provide a default adapter for Git repositories, but the functionality can be
adapted for different repository types, in our case TFVC will be required for the analysis with an
industrial partner.

Data Processing. On launching the app, you may download, analyze and capture both the
relevant static software structure as well as the accompanying versioning process information. We
traverse through the repository commit history and parse the change sets, as well as the related
source code, both of the current as the previous state of the file. For the scope of our thesis, we
only process commits that were done to the relevant file types, in this case .java files. The package
hierarchy can be either built incrementally as the commits are being processed, but the tool also
offers the possibility of building it from downloaded sources. Because each language has its
own syntax callgraphCA implements an interface where different self-contained, executable Java
applications can be plugged in to execute the parsing of the code files and return a standard syntax
to the tool. The path to the .jar file for the parsing of the specific language can be set through the
configuration file or the CLI. The structural information of the code is processed by the parser
and injected back for further processing. This information is enriched by data generated from the
mining of the repository.

4.3.2 astChangeAnalyzer

We searched for a multi-purposed tool to analyze the source code differences between two files.
Because we aimed to search for function calls within the changed functions, we needed a fine
grained tool, so for this task we built a wrapper tool based on gumtreediff 3 [106]. Our wrapper,
astChangeAnalyzer, applies the visitor pattern when an AST node change is detected, for finding
the parent function, or finding the calling function and called function. It returns an array of records
containing these relationships. Additionally, the astChangeAnalyzer offers the option to save the
parsed code in the local storage, with the parameters that activate this function and give the
destination path.

3https://github.com/GumTreeDiff/gumtree
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4.3.3 Data model
Our data model is split into transactional and analytic models. The transactional model contains
fourteen tables that are divided in commit data, structural data, like the package hierarchy, and
the graph data containing call relations between the functions and file imports. The analytics
model contains tables on the level of file, package and function related to change proneness, change
coupling, mainly the association rules, and the evolution of function calls, which offer the basis to
build the network models. Our data model is directed to object oriented program languages, but
we expect that it is flexible and abstract enough to seek for comparability of unpaired systems.

4.3.4 Technology
callgraphCA is written in Python 3.9. A list containing the employed libraries can be seen in the
Appendix section ??.

4.4 Outputs
An important part of our system design are the provided outputs for the users or researchers.
There are two different types of outputs: the data and the services, in this case, the libraries.
Figure 4.1 exhibits how these components interact with the external systems. The main output,
is the analytics database that can be accessed from diverse systems. Visualization and analytics
libraries provide straightforward execution commands for the support of standard analysis. Two
examples of such standard functionalities are:

Threshold finding. As explained previously in the methodology section, the topic of finding
relevant thresholds is a basic start up point for the analysis and might not be a trivial tasks, espe-
cially when applying the algorithms to different projects. A simple command from a library from
callgraphCA supports the practitioner to explore thresholds by observing the possible aggregated
results. This functionality will allow the researchers to decide the range of thresholds that best
fits each different situation.

Change proneness visualization In the section of Section 5, in Figure 5.2 we show an extract
of the visualisation of change proneness. The flexible input of data allows the users to slice the
desired time frames and ranges of files, functions or calls, to be analyzed.
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Results and Discussion

In this section, we discuss the results obtained from the analysis of our systems under study. As
explained in Section 3.3, these are Java projects in the field of cyber-physical systems. We define
a relevant commit one that contains source code files, in our case .java files. The projects have a
larger number of commits than the reported here, the divergence is given by the commits that
were excluded because there were no source code file changes in them.

One of the motivations for our research, and tool development, is to bridge the gap between
the detection and understanding of logical and structural coupling. D’Ambros et al. [40] found
certain metrics that correlate with software defects in OO open source systems, we will present
two of them in this chapter.

5.1 Change proneness
Before the introduction of the term change coupling by Fluri et al., in 2003, Bieman et al. [107]
pointed out that frequent changes in clusters of classes might reflect functional coupling or chronic
problems in the architecture of the system; both Nagappan et al. [108] and D’Ambros et al. [40]
found that change proneness correlates stronger that coupling in the projects they studied back
then. In this sense, and following Bieman’s et al. proposal, in callgraphCA we provide functionali-
ties to identify change-prone clusters that may promote the better steering of the the development
process.

The summary of results analyzing the change proneness trough out the life of the systems
under study is shown in Table 5.1. For a visual aid, in Figure 5.1 we present the distribution of
number of commits per file for the projects glucosio-android and GRIP. The skewed distribution
comes from the many files changing rarely, and very few files who are often updated, this dis-
tribution is similarly present in all of our projects. These results align with previous research,
like discussed in Section 2, that has found that many social artifacts, like social and economical
networks, present long tailed behaviours with scarce matrices. The identification of co-change
patterns in complex systems with such exponential behaviours is not a task for intuitive pattern
detection and needs support from appropriate tools.
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Table 5.1: Number of commits aggregated on file and function level.

Nr commits per file Nr commits per function
glucosio-android openBot eclipse-concierge GRIP glucosio-android openBot eclipse-concierge GRIP

1779 1002 997 3620 4786 3078 4998 9461
11,33 9,54 3,88 5,4 2.62 2.53 2.48 2.23

5 5 2 3 2 2 1 2
1 1 1 1 1 1 1 1

172 76 140 90 64 29 40 47
20 12,38 11,08 7,58 3.55 2.49 2.59 1.93

4,66 2,57 9,53 4,76 8.84 04.05 4.83 6.36

(a) glucosio-android (b) GRIP

Figure 5.1: Distribution of file commits

5.2 Change coupling

When adopting association rule learning to discover co-changing patterns, it is important to find
a balance between highly restrictive thresholds that eliminate loose couplings but reduce the num-
ber of discovered rules to small sets that might be not actionable, and on the other side, where so
much association rules are found, with low support, the user finds them irrelevant. In Table 5.2
we display the amount of generated rules when applying the Apriori algorithm with the given
support threshold. We can observe that, the lower the threshold, the more rules will be found,
respectively more itemsets. Referring again to the study by Bavota et al. [101] on developers per-
ception, and taking into account the results from the table, we opted for using a support threshold
of 0.02.

In Table 5.3 we compare the logical and structural coupling at the level of file commit for the
association rules found for the projects. The first column is the number of rules found with a
threshold of 0.02. The second column displays the number of rules with itemsets that present a
structural dependency. For each project there are two rows. The first row shows rules generated
with the threshold and no limit of items, the second row shows the numbers having itemsets
larger than two. In 2018 Ajienka et al. [93] found that when two objects had a dependency, 70%
of the time they were also semantically linked. Despite our small sample and risking to leave the
project eclipse-concierge aside as an outlier, we are inclined to say that our values of the association
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Figure 5.2: Visualization of change proneness at file level.

Table 5.2: Association rule learning on file commit level. Number of rules from thresholds.
glucosio-android openBot eclipse-concierge GRIP
[0.5, 0] [0.5, 0] [0.5, 0] [0.5, 0]
[0.451, 0] [0.451, 0] [0.451, 0] [0.451, 0]
[0.304, 0] [0.304, 0] [0.304, 1] [0.304, 0]
[0.255, 1] [0.255, 0] [0.255, 2] [0.255, 0]
[0.156, 3] [0.156, 1] [0.156, 2] [0.156, 0]
[0.059, 13] [0.059, 15] [0.059, 9] [0.059, 6]
[0.01, 824] [0.01, 340] [0.01, 234] [0.01, 189714]

rules that are found to have a structural coupling seem in a range of the expected. At this point,
we need to mention the limitations and threats to validity of not slicing over time windows. For
the current implementation we compare just the existence of a structural dependency without
filtering for time periods.

With the output of the association rules, the user can easily know the number of occurrences of
each of the rule’s item’s within the set of transactions. For such purpose our analytics library offers
support functions. Figure 5.3 show_transactions_containing_items( ) displays the number of times
that items 1,2 and 1,2,3,4 existed in the transactions set, furthermore, it explains the directional
number of occurrences where the first item is the predecesor and so forward until the last item.

Figure 5.3: Transaction support values
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Table 5.3: Association rules and their positive structure rate.

Nr. Rules Nr. Rules with positive
structural dependency P

glucosio-android
140 83 0.59

39 38 0.97
openBot

55 7 0.13
20 7 0.35

eclipse-concierge
57 35 0.61
36 35 0.97

GRIP
185 90 0.49
105 90 0.86

5.3 Call graph evolution
In the methodology section Section 3 we presented the abstract concept of call graph evolution
and explained the functional requirements for the processing algorithm. Figure 5.4 shows an
example from the project glucosio-android that would result in an addition of a new function_call
record being AboutActivity::onPreferenceClick(param) the calling function, and External LinkActiv-
ity.launch(arg, arg, arg) the called function. Accompanying, the hash value of this commit will
be set as the end_hash to the function_call that was previously existing in the method AboutActiv-
ity::onPreferenceClick(param).

When running the whole history of commits we register the function_call changes (additions
or deletions) that are reported in the Table 5.4. With this data we can build an answer the to the
RQ1.

Figure 5.4: Addition and deletion of function calls.

5.3.1 Building the call-graph
"The empirical results show that:(1) identifier based methods have more computational efficiency
but cannot always be used interchangeably with corpora-based methods of computing semantic
coupling of classes" (Ajienka et al. [109])
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Table 5.4: Number of changes aggregated on call graph level.
glucosio-android openBot eclipse-concierge GRIP

sum 113316 19390 164326 39535
mean 94.04 32.75 130.73 23.99
median 18 12.5 12 9
min 1 1 1 1
max 6129 854 5867 319
std 308.96 65.45 421.32 40.05
skewness 11.36 6.89 07.01 3.82
count 1205 592 1257 1648

For the scope of the thesis, we initially used the gumtreediff tool to implement the visitor
patternfor the nodes that reported source changes, unfortunately they are already isolated AST’s
the root method could not be always found, additionally, getting the inner calls proved to be
challenging. Our newest attempt was a methodology mixing structured information retrieval by
parsing the source files and transforming them in the xml and enriching this information with the
import dependencies of the file where the calls reside.

We needed an efficient tool to benchmark the graphs we generated. For this purposes we
found sourceTrail1, it is a portable tool that generates references from the source and supports the
navigating between files. A convenient functionality is that the underlying information is saved
in a Sqlite database.

The concept for building the graph is first to build the relationships between files, packages,
classes and its methods. A limitation is the detection of nested classes, for example. Then we
visit the function and search for the nodes that are calls and retrieve the name of the functions
including its parameters. When building the call relations we search in the class imports and join
the functions that this imports have to make a sub set of the candidate functions in the imported
file. Functions like ’toString’, ’instanceOf’, ’init’ are pruned from the set.

The initial attempts without pruning resulted in magnitudes of distance in the network met-
rics compared to the benchmark database. The base measure we use is the node and edge count
differences and distance between the degree distributions. We applied the Jenson-Shannon Dis-
tance and the Kolmogorov–Smirnov test to reject the hypotesis that the degree distributions of
the graphs are the same. We can appreciate that they both present a long tailed behaviour, as in
Figure 5.5 but the statistical similarity was never achieved. The nodes in the SourceTrail database
are saved with a serialized name, a reliable parsing of their qualified names was challenging and
to the date not completed. When comparing the nodes one to one we notice that our algorithm
did not found many function calls, mainly due to the complexity of the implementation, on the
other hand, we obtained to many nonexistent calls because our similarity pattern based on a class
and package level.

1https://www.sourcetrail.com/
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(a) glucosio-android (b) GRIP

Figure 5.5: Graph degree distributions, benchmark vs callgraphCA generated.
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Threats to Validity and
Limitations

6.1 Construct and Internal validity

Threats to construct validity are about the relationship between theory and observation. In this
study, threats can be mainly due to the imprecision of dependencies extraction from software
artifacts. We mitigated both threats by leveraging standard and well-known tools for code change
analysis and graph dependencies extraction, as detailed in Section 3 and Section 4.

Threats to internal validity are about the cause-effect relationships between the investigated
dependencies and their root causes (e.g., fine-grained changes). We looked at the fine-grained
changes as well as changes in the call-graph evolution, to ensure that our analysis and root causes
are valid for the investigated projects.

The study is focused on implementing a tool that performs a top-down analysis: the tool ana-
lyzes different levels of granularity of changes of CPSs, from higher level (e.g., commit) to lower
levels (e.g., function or method calls). Another strategy that could be investigated in future work,
which is typical in change analysis tools, is a bottom up approach, to compare the stability of the
results. Moreover, our tool is based on AST parsing and retrieval of static information from the
source code, which can be less accurate than dynamic information or does not have the advan-
tages provided by some compilers. We use AST parsing to retrieve the function calls and then, we
match them based on the imports from the given file. For this study, we limit ourselves to direct
imports, and not relationships that might be attained due to inheritance or interface implemen-
tations, this impacts the rate for finding the matching graph relations. For bench-marking our
generated graphs we use the tool SourceTrail. SourceTrail can analyze the code with or without
compilation libraries. We comparison building the code graphs on compiled code that there is a
large improvement in the information retrieval. However, this information retrieval was a specific
design decision, explained in our motivation, to support multiple comparison of systems written
in different languages, where the stakeholders do not posses compilation skills or resources. To
ensure a reliable evaluation when assessing change coupling, we used the Apriori algorithm.
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However, it is possible that the other algorithms briefly introduced in Section 3 might provide
other results. Within the future steps of the conducted research, we plan to perform further pro-
cedures for addressing the internal validity threats, which deal sampling biases, methodology for
measuring and comparing results and variation of algorithms and thresholds.

6.2 External validity
Finally, threats to external validity concern the generalization of our findings. Although the num-
ber of analyzed projects belonging to different domains is relatively large, by no means they can
be generalized to the universe of open-source CPSs. Therefore, further replications are desirable,
in both open-source but also in industrial contexts, to assess the generalizability of the proposed
approach.

In this thesis we propose a prototype tool, callgraphCA to make a empirical analysis of open
source projects, but our selected projects were in the scope of cyber-physical systems, and were
constraint in size and language, these are reasons that largely affect the generalizability of the
results. It might also be the case, that the selected systems might not be a representative sample
for CPS systems. Specifically, the study conducted in this thesis is limited to open source projects
from GitHub, in the topic of Cyber-Physical Systems, with all projects primarily written in Java.
To limit any bias on the results discussed in this thesis, we applied a strict selection criteria for
selecting the project to analyze, as detailed in Section 3. We expect to extend our research to other
programming languages and other kind of systems.

It is unclear if our approach would be equally suited for industrial software or other types of
systems, having languages and organization structures as well as different evolutionary patterns.
However, the concepts of analyzing change coupling and the structure of the code should be
broadly applicable. Because we retrieve information by parsing the code and forming ASTś, one
important root-cause and potential threat to the precision and coverage of our tool is the constant
evolution of the programming languages. We can observe in the history of java versions 1, that
there are constantly new features and syntax being added, as well as others become deprecated.
This impacts the stability of the systems under study and comparability of the projects.

1https://www.java.com/releases/
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Limitations and Future Work

We have built a light-weighted tool that aims to support the understanding of software evolution,
especially focused in tackling the difficulties of identifying, simplifying and understanding the
change-coupling patterns or rules underlying in complex systems. callgraphCA is currently able
to analyze Java projects from git repositories and it provides partial functionalities for C++ and
C systems. In the course of this masters thesis we discover several approaches that have faced
the same challenges as us, like for example the limitations of depending from language specific
parsers. In our case, our AST visiting approach is dependent in heuristic rules to explain which
parts of the code are relevant for translating into the abstract data model.

Many tools collect the software symbols and their relations, function calls, by accessing com-
pilation databases, in the case of Java the pre-compiled header and flag files, and for C++ the
compilation database.

7.0.1 Limitations
Soundness . Our approach was to provide a "big picture" perspective that would allow rough
estimations when evaluating the risk of changes, it was not our aim to be absolutely precise in
all of the cases, but to develop a useful to the end user and responsive tool that was not aiming
at program understanding at a source code level but in focusing on the dynamics of the function
calls evolution that might present patterns that are coupled to changes in the functionality of the
software or reflect architecture or implementation instabilities.

Additionally to internal challenges while developing algorithms to get more precision, there
are also external factors that influence the precision of the results. For example, we found out
that callgraphCA was constantly adding and removing functions and function calls despite the
real code not changing, in Figure 7.1 we can see an example of this situation. The precision of the
language parsing tools for popular object oriented languages is adequate for our purposes but
there is a limitation when the languages evolve, that the parser don’t catch the new syntactical
structures. This risk exists as well when analyzing legacy systems.

Git sensitivity .
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Figure 7.1: Git reports change in unchanged function declaration

7.1 Future work
During the course of this thesis, specially when researching previous work, I acquired new per-
spectives regarding the research of software engineering, how tools in the past have tackled cer-
tain needs and how the systems have evolved in the last years, as well as noticing that certain
topics are still providing challenges for this area.

Our main concern in the following months will be to improve the functionality of callgraphCA
so that it builds reliable call-graphs from the repository mining information, for this goal we will
extend our work in the parsing of either ASTs or improve the heuristic rules for node extraction
of xml representations.

We are aware that the scope of the thesis and the intensive effort in development did not
allowed us to reach best practices in research methodology. After callgraphCA is stable we will
extend our bench-marking to C++ systems like the ones listed in the Table Table 7.1. Additionally
we propose to generate synthetic benchmarks of automatically generated projects diverse number
of methods. We believe that this can be a great contribution for the community.

The previous endeavours have a vertical component, that is, we compare diverse systems but
under the scope of change proneness and call-graph analyitics, We want to extend the comparison
by measuring up our approach to other existing metrics, like process and semantic ones.

We plan to use callgraphCA in a project with an industrial research partner that is in the field of
medical devices. For this we will need to expand the parsing capabilities to C and generate other
source access adapters for Microsoft Team Foundation Versions Controller (TFVC) and container-
ize our system.

Last, we would like to replicate the study of Bavota et al. [101] that researches the developers
ability to find the different types of change. We would add a group that will be assisted by our
tool.

• OpenHAB Core might delete too large- A framework to build smart home products solu-
tions via OSGi bundles. 1

• JKQtPlotter - An extensive Qt5 Plotter framework without external dependencies. 2

• Blynk library - Blynk library for embedded hardware. Blynk offers a fully integrated suite
of IoT software. 3

1https://github.com/openhab/openhab-core
2https://github.com/jkriege2/JKQtPlotter
3https://github.com/blynkkk/blynk-library
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• RF24 - An optimized high speed driver for wireless transceiver provides the OSI Layer 2
driver for nRF24L01 on Arduino Raspberry Pi/Linux Devices. 4

• Free Gait - A software framework for the control of legged robots. Defines a whole-body
abstraction layer and tracks the motion tasks with a feedback controller to ensure accuracy.
5

• Syropod High-level Controller - A controller for quasi-static multilegged robots. This
Robot Operating System (ROS) can be deployed on robots with different sensor, leg and
joint configurations; it can generates trajectories, step clearance, etc. It handles input sensors
feedback that can be used to control the robot in, for example, inclined or uneven terrains. 6

• tzapu WiFiManager - A WiFi Connection manager for esp8266 devises with web manage-
ment portal. 7

• CHAMP might delete no Tags :( - An open source development framework for building
new quadrupedal robots and developing new control algorithms. 8

Table 7.1: Future systems under study
Project Name Main programming LOC9 Nr. of commits 10 Stars Nr. Tags Topic

language
openhab/openhab-core might remove java 284K 1’539 590 54 home-automation
jkriege2/JKQtPlotter c++ 1.2M 476 311 6 iot
blynkkk/blynk-library c++,c 36K 1’831 3.3K 35 iot
nRF24/RF24 c++ 31K 870 1.8K 26 iot
leggedrobotics/free_gait c++ 24.5K 907 292 7 legged robots
csiro-robotics/syropod_highlevel_controller c++ 11.6K 638 86 18 legged robots
tzapu/WiFiManager c++ 8.1K 1’095 4.9K 19 iot
chvmp/champ might remove c++ 13.5K 708 800 0 legged robots

TODO

4https://github.com/nRF24/RF24
5https://github.com/leggedrobotics/free_gait
6https://github.com/csiro-robotics/syropod_highlevel_controller
7https://github.com/tzapu/WiFiManager
8https://github.com/chvmp/champ





Chapter 8

Conclusion

We have built a light-weighted tool that support the understanding of software evolution, es-
pecially focused on tackling the difficulties of identifying, simplifying, and understanding the
change-coupling patterns or rules underlying complex systems. callgraphCA is currently able to
analyze the complete revision history from Java projects in Git repositories, and it provides par-
tial functionalities for C++ and C systems. The current functionality provides support for process
metrics that already catch much of the change coupling patterns of the projects we studied. In
the course of this master thesis, we discovered several previous research projects that have faced
similar challenges. For example, the dependence from language-specific parsers. In our case,
our parsing approach depends on heuristic rules to obtain the relevant parts of the code to build
our abstract data model. We constructed a model to follow the evolution of the call graph, un-
fortunately, the reconstruction of structure dependencies on the level of package and file import
and inheritance, blurred our efforts to build a reliable graph, additionally, the unqualified name
matching turned has strong risks even if the package dependency is solved, because many classes
within the package override the same method. We conclude that to build a reliable call graph it
is necessary to increase the language syntax dependency to build a more solid source to model
matches. Despite the current state of the tool regarding the call graph evolution functionality, we
keep confident that in the next months a stable and sound tool can be developed for the intended
purposes.
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