
Master Thesis
December 15, 2021

Understanding User
Reviews

Identifying Clusters of Similar Issues from User
Reviews using BERT

Olajoke Oladipo
of Ibadan, Nigeria (17-722-414)

supervised by
Prof. Dr. Harald C. Gall

Assistant

software evolution & architecture lab

Master Thesis

Understanding User
Reviews

Identifying Clusters of Similar Issues from User
Reviews using BERT

Olajoke Oladipo

software evolution & architecture lab

Master Thesis

Author: Olajoke Oladipo, olajoke.oladipo@uzh.ch

URL: <https://github.com/olajoke

Project period: 15.06.2020 - 15.12.2020

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First and foremost, I would like to thank God almighty for his countless blessing towards my life
and for giving me the required knowledge, and opportunity to be able to accomplish my thesis.
I would also like to express my sincere gratitude to my thesis supervisor Prof. Dr. Harald C.
Gall, Dr. Pasquale Salza, and Marco Edoardo Palma of the Department of Business, Economics
and Informatics for their guidance and encouragement. Thanks a lot. Many thanks to all the Pro-
fessors, Doctors, Tutors for their support during my time studying at this prestigious University.
I extend my thanks to all my colleagues at the university for their encouragement and support,
as well as my friends outside the university for their time, advice, and moral support. Finally, a
sense of respect goes to my parent Mr. and Mrs. Oladipo and my family for their strong support
economically as well as regular encouragement in every step to make me accomplish these great
feet.

Ein Produktentwicklungsteam muss seine Anwendungen fortlaufend verbessern, indem es
sich mit Fehlerberichten befasst und neue Funktionalitäten einführt, wobei es die Erfahrungen
und Bewertungen der Nutzer verstehen muss. Forscher haben zahlreiche Methoden entwick-
elt, um Entwickler dabei zu unterstützen, relevante Informationen aus Nutzerbewertungen zu
gewinnen. Zu diesen Methoden gehören die automatische Extraktion, die Kategorisierung und
der Einsatz von Crowd-Sourcing. In einigen Studien wurde versucht, Nutzerbewertungen zu
clustern, indem jede Bewertung als Fehlerbericht, Funktionswunsch, Verbesserung und dergle-
ichen kategorisiert wurde. Bei diesen Strategien kommen Methoden des maschinellen Lernens
(ML) in Verbindung mit der Verarbeitung natürlicher Sprache (NLP) zum Einsatz, um bedeu-
tungsvolle Informationen aus den Rezensionen zu extrahieren. Die Benutzerrezensionen und
deren Absichten effizient zu verstehen, stellt nach wie vor eine wesentliche Herausforderung dar.

Transformationsbasierte Modelle verstehen Nutzerbewertungen auf effiziente Weise und helfen
dabei, wertvolle Erkenntnisse zu gewinnen (wie z. B. BERT, ein von Google entwickeltes vor-
trainiertes bidirektionales transformationsbasiertes Modell). In dieser Masterarbeit werden drei
unüberwachte Clustermodelle in Kombination mit BERT verwendet, um die eingehenden Bedürfnisse
der Nutzer zu erfassen. In dieser Arbeit soll untersucht werden, ob ein Transformator-basiertes
Modell, insbesondere BERT, die Clusterung von Nutzerbewertungen verbessern kann, wenn a
priori keine Informationen über die Anzahl von Clustern vorhanden sind. Zusätzlich wurde
die Latent Dirichlet Allocation (LDA) und ein Modell zur Textzusammenfassung eingesetzt, um
weitere Erkenntnisse aus diesen Clustern zu gewinnen.

Abstract

A product development team must continually upgrade their applications by understanding their
users’ experience and reviews through addressing bug reports and introducing new functional-
ities. Researchers have devised numerous methods to assist developers in retrieving relevant
information from user reviews. These methods include automatic extraction, categorization and
the use of crowd-sourcing. Some studies have attempted to cluster user reviews by categorizing
each review as a bug report, feature request, enhancement, and more. These strategies use Ma-
chine learning (ML) techniques in conjunction with Natural Language Processing (NLP) to extract
meaningful information from the reviews. A significant leap remains in effectively understanding
the user reviews and their intentions.

Transform-based models effectively understand user reviews and aid in the extraction of valu-
able insights (such as BERT is a pre-trained bidirectional transformer-based model developed by
Google). This thesis proposes three unsupervised clustering models combined with BERT to cap-
ture in-depth user demands. The thesis aims to determine whether a transformer-based model,
particularly BERT, can improve the clustering of user reviews in the absence of a priori informa-
tion on the number of clusters. Additionally, we leveraged Latent Dirichlet Allocation (LDA) and
a text summarization model to derive FURTHER? insights from these clusters.

Zusammenfassung

What is Zusammenfassung?

Contents

1 Introduction 1

2 State of art Approach 5
2.1 Clustering Reviews with Supervised Models . 5
2.2 Clustering Reviews with Unsupervised Models . 6
2.3 Fine-tuning BERT for Text Clustering tasks . 7

3 Background 11
3.1 Bidirectional Encoder Representations from Transformers (BERT) 11
3.2 Clustering Algorithm . 14

3.2.1 K-Means . 14
3.2.2 Hierarchical Clustering . 15
3.2.3 Density-based Spatial Clustering (DBSCAN) 15

3.3 Determining Number of Clusters . 16
3.3.1 Elbow . 16
3.3.2 Silhouette . 17
3.3.3 Cosine Similarity . 17

3.4 Topic Modelling . 18
3.5 Text Summarization . 18

3.5.1 Extractive summarization . 18
3.5.2 Abstractive summarization . 19

3.6 Dimensionality Reduction . 19

4 Approach to Evaluating Reviews 21
4.1 Overview of Approach . 21
4.2 Text Clustering with BERT . 21

4.2.1 Text Preprocessing . 21
4.2.2 Encoding text with BERT . 22
4.2.3 K-Means with Elbow Method - M1 . 22
4.2.4 K-Means with Silhouette - M2 . 22
4.2.5 Cosine Similarity - M3 . 23

4.3 Topic Modeling - Topic Tags . 23
4.4 Text Summarization - Description . 23
4.5 Visualization with PCA . 23
4.6 Validation . 24

4.6.1 Manually Analysis . 24
4.6.2 Validation Methods . 25

viii Contents

5 Discussion and future work 27
5.1 Preliminary Result . 27
5.2 Experiment Results . 27

6 Conclusion 33

Contents ix

List of Figures
3.1 Learning steps of BERT (L) Pre-training step: performing self-supervised training

on large text (R) Fine-tuning step: performing supervised training with a labelled
dataset . 11

3.2 BERT-encoderArchitecture of Transformers Encoder Model [1] 12
3.3 Overview diagram of BERT architecture and its two versions [1] 13
3.4 Diagram of a BERT’s input representation for each token in an input sequence [2] . 14
3.5 A dendrogram illustrating the hierarchical clustering algorithm’s clustering approach 16

5.1 A scatter plot representing the clusters generated for “FB Reader” reviews using
M1 with the topic tags as the legend. 29

5.2 A scatter plot representing the clusters generated for “FB Reader” reviews using
M2 with the topic tags as the legend. 30

5.3 A scatter plot representing the clusters generated for “FB Reader” using M3 with
the topic tags as the legend. 31

List of Tables
2.1 Clustering purity on three datasets experimented by Huang et al. [3] 8

5.1 Number of clusters generated by M1, M2 and M2 for each app reviews 28
5.2 M1 results on the LDA topics, the frequency, the summary, and a subset of the

corresponding clustered sentences (i.e reviews) of “FB Reader”. 28
5.3 M2 results on the LDA topics, the frequency, the summary, and a subset of the

corresponding clustered sentences (i.e reviews) of “FB Reader”. 29
5.4 M3 results on the LDA topics, the frequency, the summary, and a subset of the

corresponding clustered sentences (i.e reviews) of “FB Reader”. 30

List of Listings

x Contents

Chapter 1

Introduction

Maintaining mobile applications (apps) is just as crucial as the initial development of the ap-
plication. Hence, a product development team must continually upgrade their applications by
understanding their users’ experience and reviews through addressing bug reports and intro-
ducing new functionalities to ensure their solutions remain viable as technology and the market
climate evolve [4–6]. A practical method of data gathering for developers to effectively manage
their applications is the user feedback system. User feedback is typically composed of user rating
system, a quantitative input defined mainly via the use of stars ranging from 1 (lowest) to 5 (high-
est), and user reviews. These reviews are textual feedback that may convey information relevant
to a product development team to manage their apps [7]. For instance, bug reports or defects in
an app [8], user experience checks [9], request to implement new features [10] , or overall users
satisfaction (i.e., to measure how good or bad the application performs) [11]. Moreover, several
studies have established that user reviews collected from online app stores such as Google Play
Store or Apple App Store are densely packed with information relevant for developers to enhance
their application constantly [4, 12–14].

However, manually extracting meaningful information (e.g., a request for a new feature) from
user reviews is quite an arduous task. It can be a time-consuming, labour-intensive and inaccu-
rate task, especially for popular applications (such as Twitter) that receive thousands of feedback
in a day. Researchers have devised numerous methods to assist developers in retrieving rele-
vant information from the reviews. These methods include automatic extraction, categorising the
reviews into groups to help the developers maintain their program functionality through the im-
plementation of new features, and timely resolution of problems [5, 12, 14–16]. Specifically, some
of these studies solved the associated drawbacks using supervised models by preparing the feed-
back data under ideal situations and categorising each review as a bug report, feature request,
enhancement, and more. For Instance, ARDOC tagged reviews using a taxonomy based on the
information relevant to developers [12, 17]. URR categorises reviews accordingly into high-level
and low-level their taxonomy [18]. CLAP [5] clusters only user reviews defined as bug reports or
feature requests. SURF group users reviews based on designed keywords associated with con-
cepts describing a user’s intents relevant to a software maintenance task [14]. These methods
are inefficient to work with due to the following limitations: (i) Inability to integrate fine-grained
details, (ii) challenges extracting only valuable information from a large number of user reviews,
(iii) and undermining the wealth of information that other members of a product team can ac-
cess and benefit during a product release planning. Moreover, all of the above strategies use
Machine learning (ML) techniques in conjunction with Natural Language Processing (NLP) to
extract meaningful information from the reviews. Asides from this, the studies mentioned above
neglect the fickle nature of user reviews. User reviews are submitted by individuals with a variety
of backgrounds and regions. Multiple users may have different opinions on bug in a variety of
ways and formats. Consequently, we need to understand the context of reviews in order to clus-

2 Chapter 1. Introduction

ter and efficiently gather insights from these reviews. This approach of understanding context of
reviews that focuses on the information or issue discussed in a particular review, regardless of
how it is presented. Recently, the unprecedented advancement in Machine Learning (ML), Deep
Learning (DL) techniques especially in solving an ample number of tasks (including Natural Lan-
guage - text comprehension) and generate better performances [19, 20].

In many NLP sequence processing tasks, Recurrent neural networks (RNNs) have been the
state-of-the-art model [21]. RNNs, on the other hand, are incapable of long-distance modelling
associations between sequence tokens. Transformer architectures have recently overcome this
constraint and outperformed RNNs in a variety of natural language processing tasks [22]. We
believe a transformer-based model is effective at understanding user reviews and aid in the ex-
traction of valuable insights. Transformers models specialise in understanding and recognising
the core context of the text [22] as it holds the potential to understand the relationship between
sequential elements that are far from each other. This allows the models to understand the text
as a whole and its context as well [22]. For this study, we will focus on BERT [2], a popular
component of a transformer architecture. BERT is a pre-trained bidirectional transformer-based
model developed by Google, trained on Wikipedia data and book corpus, allowing it to under-
stand the diverse nature of text in different language [2]. According to a 2020 survey by Anna
et al., BERT is currently the state-of-the-art model in NLP experiments with numerous research
studies continually evaluating and developing the it [23].

As a result, this thesis proposes three unsupervised clustering models combined with BERT to
capture in-depth user demands and simplify the massive quantity of data app owners get daily
from their users.

Below are the three proposed two-stage models:

• M1: BERT + Kmeans using Elbow Methods. This model encodes reviews with BERT. Pass
the encoded reviews to Kmeans, then choose the optimal K with the elbow method.

• M2: BERT + Kmeans using Silhouette Method. This model encodes reviews with BERT.
Pass the encoded reviews to Kmeans, then choose the optimal K with the Silhouette method.

• M3: BERT + Cosine Similarity. This model encodes reviews with BERT and cluster en-
coded reviews using the cosine similarity function.

Further, we investigate these three models to determine which model will best capture sim-
ilarities in user reviews and produce quality solutions concerning the goal of this thesis.

The primary goal of this thesis is to determine whether a transformer-based model, particularly,
BERT can improve the clustering of user reviews in the absence of a priori information on the
number of clusters. Further, we also aim to derive in-depth insights from the clusters. We tend to
leverage LDA and a text summarising model to derive insights from these clusters.

Research Questions

This thesis is designed according to the following research questions:

• RQ1: To what extent do BERT implementation and cluster algorithms coherently identify
similar reviews that describe similar concerns and improve productivity?

• RQ2: To what extent do the tagging (topic modelling) and description (summary) features
generated from clusters provide quick and meaningful insights to developers?

The following are the significant contributions of the thesis: (1) The design and implementa-
tion of three two-stage unsupervised clustering techniques using the current state-of-the-art deep

3

learning model to identify and cluster reviews describing similar issues. (2) The inclusion of top-
ics tags through using an unsupervised approach (LDA) on the cluster results, and (3) Generating
summaries description to simplify the cluster reviews using an extractive deep learning summa-
rization model The source code and dataset for the model are accessible at .

The rest of the thesis is structured as follows: Chapter 2 describes the state-of-the-art cate-
gorising user reviews in supervised and unsupervised settings and text clustering tasks using
BERT. Chapter 3 describes the theoretical background of the BERT model and the terminologies
associated with our approach. While Chapter 4 describes our approach and specifies the planned
methodology to answer the research questions, Chapter 5 discusses the lack of analytical tech-
niques, the preliminary results, and the results from implementing CHANGEADVISOR’s data
on our algorithm. Finally, chapter 6 concludes with a summary of our approach. It also high-
lights the contributions of this thesis and an outlook on future research in this area.

Chapter 2

State of art Approach

This chapter presents an overview of the major relevant researches in information extraction from
the reviews of mobile app users. It is divided as follows: Section 2.1 states studies to categoriz-
ing user reviews using supervised models, whereas Section 2.2 states research categorising user
reviews using unsupervised models, and Section 2.3 describes a study that fine-tunes BERT for a
text clustering task. Finally, concludes this chapter with a summary highlighting the similarities,
dissimilarities, and measures adopted in our approach as well as how we selected the articles for
this chapter.

2.1 Clustering Reviews with Supervised Models
• ARDOC

App Reviews Development Oriented Classifier (ARDOC) [17] is a review classifier tool devised
by Pancichella et al. a tool that incorporates three different approaches for the automated detec-
tion of meaningful feedback included in apps reviews: Natural Language Parsing (NLP), Text
Analysis (TA), and Sentiment Analysis (SA). ARDOC categorized reviews using a taxonomy
developed to simulate the information requirements of developers proposed from its prior re-
search [12]. The developed taxonomy is represented as Information Giving, Information Seeking,
Feature Request and Problem Discovery and others (reviews that do not provide developers with
any relevant input). The underlying approach of ARDOC is Parser, which constructs a pipeline
with annotations for tokenization and sentence splitting. After separating the texts into sentences,
ARDOC extracts 3 distinct types of information from each sentence, that is the lexicon (via TA),
the structure (via NLP), and the emotion (via SA). Then, train and classify the extracted features
app reviews using a pre-trained machine learning model with the WEKA API (citation) using a
collection of 852 manually labelled sentences randomly picked from user reviews of 7 popular
applications. ARDOC conducted two experiments involving external validators with expertise
in software development and the original developer of 3 real-life applications. ARDOC achieved
high precision, F-measure, and recall scores ranging from 84% to 89%, and thus the developers of
the tools also validated ARDOC’s effectiveness in extracting and classifying meaningful informa-
tion present in their application particular in maintenance tasks.

• SURF

Summarizer of User Reviews and Feedback (SURF) [14] is a pioneering technique for summa-
rizing the huge amounts of data that developers need to handle. SURF works by summarizing

6 Chapter 2. State of art Approach

several hundreds of reviews and generates an interactive, organized, and concise agenda of rec-
ommended software using enhanced summarization algorithms. SURF works by first categoriz-
ing user reviews based on the defined intention classes motivated by ARDOC [12]. Cluster the
result of classification using a predefined set of procedures, to cluster sentences that pertain to
the same review topic, and eliminate duplicates in the summary. Then use a scoring technique to
extract sentence importance sentences.

Di Sorbo et al. implemented two different experiments (one of which is a controlled experi-
ment) which included 17 real-world applications and 23 participants with varying backgrounds
in the area of software development. The first aim focused on assessing the quality of extracted
feedback and its usefulness for developers; the second aim is to prove the practical use of SURF’s
summaries in a work setting. The SURF participant established SURF as a tool for generating rela-
tively accurate, adequate, concise, and assertive summaries. Additionally, SURF is recommended
for real-world use [14].

• URR

The User Request Referencer (URR) [18] prototype uses Machine Learning and Information Re-
trieval techniques to automatically identify reviews according to their taxonomy and indicate
which source code files need to be updated. Specifically, URR classified reviews into six high-level
(Compatibility, Usage, Resources, Pricing, Protection Complaint) and 12 low-level taxonomy (Device,
Android Version, Hardware, App Usability, UI, Performance, Battery, Memory, Licensing, Price, Security,
Privacy), so that each review is labelled with a list of categories it belongs to from the high and
low-level taxonomy [18]. In the first stage, URR uses a preprocessed text that is pre-processed
and pre-populated with words that are characteristic of a certain taxonomy category. After that,
in addition to the TF-IDF1, the study applies N-grams based features, which are retrieved from
keywords in each review to capture clusters of words that belong to a particular category. URR
then trains the Gradient Boosted Regression Trees (GBRT) ML classifier on the features extracted
from user reviews (i.e., the N-grams and TF-IDF features). URR evaluated its system to deter-
mine how accurately it categories user reviews according to the taxonomy on the reviews and
code of 39 mobile applications. With the assistance of two external evaluators with experience in
mobile development (from academia and industry), at both the high and low levels of taxonomy,
URR established promising results for the majority of categories. The overall precision, recall, and
F-measure scores were 83%, 94%, and 87%, respectively, across the high-level categories, and 80%,
94%, and 87% for the overall precision, recall, and f-measure across the low-level categories [18].

2.2 Clustering Reviews with Unsupervised Models
• CLAP

Crowd Listener for releAse Planning (CLAP) [5] is a framework initiated by Villarroel et al to
categorize and group relevant user reviews, then automatically prioritize clusters of reviews for
developers to easily examine when preparing an app release. CLAP clusters reviews are restricted
in two specific categories (i.e., bug report or suggestion for new feature) with DBSCAN [24].
DBSCAN is a clustering algorithm identifying clusters as areas of high element density, assigning
the elements in low-density regions to singleton clusters (i.e., clusters only composed by a single
element). According to Villarroel et al, to assist with release preparation procedures, clusters of
bug report assessments and recommendations for new feature categories are prioritized. Clusters
with a high priority are those that CLAP recommends being included in the next app release while
a review cluster with a low priority rating indicates features that need to be developed soon [5].

1“Term Frequency — Inverse Document Frequency”

2.3 Fine-tuning BERT for Text Clustering tasks 7

Villarroel et al. assessed the effectiveness of CLAP clusters by evaluating it against a manually
clustered set of user reviews. They extracted the reviews from android applications: Facebook,
Twitter, Yahoo Mobile Client, Viber, and Whatsapp. A total of 40 reviews, 20 bug reports, and 20
feature requests were randomly chosen from each of these applications, all related to the same
app’s release. Then, they engaged three industrial developers with combined expertise of more
than two decades in manually clustering the reviews. Following that, analyzed the separate clus-
tering findings collaboratively and presented a single "oracle" [5]. By comparing the results of the
oracle to CLAP’s result, an average MoJoFM of 73% on bug reports and 87% on feature requests,
indicating a close agreement between clusters constructed manually and that of CLAP [5].

• CHANGEADVISOR

Palomba et al. [15] devised a novel approach, namely CHANGEADVISOR. CHANGEADVISOR
aims to automatically extract users’ reviews from a maintenance standpoint, identify, and cluster
reviews conveying similar user needs, then link the clustering results to the part of the applica-
tion’s source code responsible for changes. Before CHANGEADVISOR cluster users’ reviews, it
extracts and classifies the reviews using ARDOC [17]. CHANGEADVISOR only examines cate-
gorized requests to fix bugs and feature enhancements, which correspond to ARDOC’s problem
discovery and feature request categories, accordingly. Palomba et al. believed that reviews clas-
sified as Information Giving and Information Seeking do not pertain to recommendations for
source code modifications or give detailed information on how to fix bugs and feature enhance-
ments. CHANGEADVISOR adopted three topic modelling strategies for the clustering tasks: La-
tent Dirichlet Allocation (LDA) proposed by Asuncion et al [25], LDA using Generic Algorithm
LDA-GA by Panichalle et al [26], and Hierarchical Dirichlet Process (HDP) by Teh et al [27]). They
finalized on HDP based on its trade-off between quality solution and execution time [15].

Palomba et al. conducted two human experiments to validate the cohesiveness of its clustering
technique on a total of 44683 users reviews of 10 open-source mobile apps extracted from the
Google Play Store [15]. The first experiment involved two external validators to express their
opinion using a Likert intensity scale (ranging between 1: very low and 5: very high). The result
from this experiment established a high accuracy of CHANGEADVISOR’s clustering approach
given an overall median distribution of 4, while the values are mainly placed between 4 (high)
and 5 (very high). The results from the second experiment strengthen the clustering approach of
CHANGEADVISDOR as the experiment generated a high level of cohesiveness by the original
developer of the applications.

2.3 Fine-tuning BERT for Text Clustering tasks
• Unsupervised Fine-tuning for Text Clustering

According to Huang et al. [3], multiple research have shown impressive results in a variety of
language comprehension tasks in a supervised environment; however, only a few studies have
examined BERT citedevlin2018bert implementation in an unsupervised environment, notably in
text clustering tasks. As a result of this, Huang et al. developed a novel technique for fine-
tuning BERT in an unsupervised scenario on a text clustering task. The proposed technique uses
a clustering-based loss function to simultaneously learn text representations and cluster assign-
ments. The study experimented on three text clustering datasets (TREC-6, Yelp, and DBpedia) and
outperforms the baseline techniques worked with and claimed their approach achieved state-of-
art results. The paper does this by fine-tuning the BERT [2] model on a lower task. A masked-
language model in which portions of the input tokens are randomly masked and subsequently
predicted. The final hidden representations matching to the mask tokens are placed in a soft-
max layer over the vocabulary. The masked language model loss Lm is optimized by lowering

8 Chapter 2. State of art Approach

the negative log-likelihood. They use average pooling to construct the text representation as
zi =

∑N
j hi,j/N , where hi is the hidden vector of the jth word in sample xi [3]. Along with the

language mask loss, they use a clustering loss with the representation zi, which is aimed to train
representation distributions using an auxiliary target distribution [28]. The clustering loss is de-
fined as the KullbackLeibler KL (see formula ??) divergence between the distributions P and Q,
where Q is the distribution of soft assignment as defined by the Student’s t-distribution and P is
the target distribution derived from Q [3].

Lc = KL(P‖Q) =
∑
i

∑
j

pij log
pij

qij
(2.1)

Although the text clustering work conducted in this study is unrelated to our objective, which
entails categorizing user reviews in to extract valuable information. We adapted our algorithm’s
technique from this study since Huang et al. also examined two "two-stage clustering algorithms
- one that utilizes the k-means algorithm on the pre-trained autoencoder’s features (AE+Kmeans)
and another that uses the method on the original BERT’s average hidden vectors (BERT+Kmeans)" [3].
As shown in Table 2.1 “BERT+k-means” exhibits relatively high performance, showing a huge dif-
ference in purity compared to other baseline models and importantly, a close difference to Huang
et al’s method. This demonstrates that a more accurate text representation can be learned from a
pre-trained model as BERT for text clustering tasks [3].

Table 2.1: Clustering purity on three datasets experimented by Huang et al. [3]

Chapter summary In the previous subsections, we discussed important studies that in the con-
text of categorizing user reviews in supervised and unsupervised settings, as well as a study
on fine-tuning BERT for clustering tasks. We picked these articles for their relevance to our
methodology. Apart from Huang et al study’s which strongly influenced the algorithm we de-
veloped for our approach, we share common objectives as earlier described in chapter1 with
these reasearches [5, 14, 15, 17, 18]. As opposed to our method, ARDOC, SURF, CLAP, URR, and
CHANGEADVISOR categorize reviews specifically from a maintenance perspective, restricting
the information collected to the application’s core developers. Our technique also aim to uncover
information that is beneficial to other members of a product team as well. Such as a quality assur-
ance manager who monitors whether products adhere to a company’s defined standards. With
the exception of ARDOC, CLAP, and SURF, which classify reviews into broad categories such as
bug reports, URR offered a fine-grained classification that addressed extensive categorizations
such as price and licensing. While the majority of these studies generate clusters of reviews and
leave interpretations to the developer, SURF additionally summarizes cluster findings, allowing
the developer to quickly comprehend the problem addressed by a cluster. In this thesis, we added
both the summary technique and topic attachments as additional features in our approach to aid

2.3 Fine-tuning BERT for Text Clustering tasks 9

quick understanding of user’s needs. Finally, compared to the traditional ML model employed
by most studies, our strategy included deep learning techniques with the aim of maximizing per-
formance with a DL language model such as BERT.

Chapter 3

Background

3.1 Bidirectional Encoder Representations from Trans-
formers (BERT)

RNNs, the state-of-the-art model for several NLP sequence processing tasks replaced by the
Transformer-based models [21]. Due to its inability to model long-distance relationships between
sequence tokens as vanishing or exploding gradients begin to occur when RNNs model on long
textual data. This means the signal from the initial token becomes weak by the time the RNN
reaches the final token [29]. Even though approaches such as attention mechanisms augmented
RNNs and addressed this limitation. Yet other limitations remain. Such as handling data sequen-
tially and it being computationally slow to train [29].

Figure 3.1: Learning steps of BERT (L) Pre-training step: performing self-supervised training on large text
(R) Fine-tuning step: performing supervised training with a labelled dataset

12 Chapter 3. Background

On the other hand, Bidirectional Encoder Representation from Transformer (BERT), a com-
ponent of Transformer-based architecture, is faster to train and deeply bidirectional as it learns
contexts at all levels of the representation from both left and right directions simultaneously [2].
BERT is pre-trained on Wikipedia (2,500M English words) and Bookcorpus (800M words). Nu-
merous NLP tasks, such as text classification, benefit significantly by simply fine-tuning the un-
derlying model with a single additional output layer [2]. Figure 3.1 illustrates BERT’s pre-training
step using the self-supervised training method on a large corpus of wiki data and the fine-tuning
step using the supervised learning method on a labelled dataset for a specific task. The archi-
tecture of BERT is based on a multi-layer bidirectional transformer encoder [2, 29]. According
to Devlin et al (Devlin et al., 2018), BERT contains L-identical transformer encoder layers that
are interconnected. A layer of an encoder can be divided into two sublayers. The Multi-head
self-attention mechanisms, which keep track of encoded-words as it encodes another word. The
feed-forward network (FFN), a basic and fully linked feed-forward network (FFN) applied indi-
vidually and identically to each location, is also, composed of two linear transformations. The
output of each sublayer is normalized using a residual connection in an encoder layer, followed
by a layer normalization. While BERT employs the same linear transformations over numerous
locations inside a single sublayer, each layer has its own set of parameters. In the feed-forward
network, a GELU activation is also employed . Figure 3.2 depicts a 3-Dimensional representation
of BERT (Left) and the architecture of a single encoder (Right). Despite the fact that BERT utilizes
the same linear transformations across multiple points in the same sublayer, each layer has its
own set of parameters.

Figure 3.2: BERT-encoderArchitecture of Transformers Encoder Model [1]

BERT-base and BERT-large are the two versions of BERT, with the aim of BERT-large (L=12,
H=768, A=12, Total parameter = 110M) enhancing the performance of BERT-base (L=24, H=1024,
A=16, Total parameter = 340M) [29]. Where (L) denotes encoder layers, (H) hidden units, (A)
attention heads, and the total parameters respectively. Figure 3.3 shows the high level of BERT’s
architecture and its two versions. Each layer’s input and output are represented by the dimen-
sionality of the models, the number of attention heads per layer (A), and the number of hidden
units per layer (H) [29].

3.1 Bidirectional Encoder Representations from Transformers (BERT) 13

Figure 3.3: Overview diagram of BERT architecture and its two versions [1]

Input Representations

BERT performs a preliminary transformation on a collection of input words (limited to 512 tokens)
to create numerical input representations for the model. it is customary to mix three distinct
types: a token, segment, and positional embedding as depicted in Figure 3.4 to get an Input
representation.

The token embedding function as BERT tokenizes words in the input sequence using the Word
Piece embedding (Wu et al., 2016) approach. This vocabulary-building technique employs a pre-
defined set of characters, subwords, and words to construct a vocabulary of a fixed size to fit
within a language’s corpus. BERT’s vocabulary, for example, contains approximately 30,000 of
the most commonly used words and subwords (e.g., “es”,”ed”,”ly”), along with all English char-
acters and three special tokens: [CLS], [SEP], and [MASK]. The segment embeddings are similar
to token embeddings when the vocabulary is size two. When working with sentence pairs, each
token has a segment embedding that identifies which sentence it corresponds with. BERT, as the
original Transformers, leverages positional embeddings to infuse information about the location
of the tokens in the input sequence. To summarize, these embeddings are identical to the to-
ken and segment embeddings in terms of dimension. It is computed using the sine and cosine
functions with different frequencies as represented in formulas (1) and (2) respectively.

These formulae make use of position and dimension. As a result, the positional embedding’s
wavelengths form a geometric progression from 2π to 10000·2π [29], with each dimension rep-
resenting a sinusoid. Vaswani et al. claim that by utilizing this function, the model can simply

14 Chapter 3. Background

Figure 3.4: Diagram of a BERT’s input representation for each token in an input sequence [2]

learn the relative positions of each word since every fixed position can be represented as a linear
function of PEpos.

3.2 Clustering Algorithm
Clustering is the process of grouping data points based on their similarity, such that the data
points in each group are more similar to one another. Cluster algorithms are unsupervised ma-
chine learning techniques that require merely a dataset with data points not labelled. In contrast
to supervised machine learning tasks such as classification and regression, which requires a la-
belled dataset.

Clustering techniques are broadly classified into three categories depending on their corre-
sponding function: density-based, hierarchical, and centroid-based techniques. Density-based
algorithms construct clusters by searching for the dense regions in the data while using the low-
density regions to determine the clusters’ boundaries. centroid-based divides a dataset into a
predefined number of groups based on the similarity or distance between data samples. The
hierarchical technique generates a tree of clusters via hierarchical methods. The following sub-
sections describe the typical examples (i.e., spectral, agglomerative, and k-means respectively) of
the clustering techniques mentioned above

3.2.1 K-Means
K-means clustering is a popular, simple yet efficient unsupervised learning technique. it cate-
gorises data points according to the number of clusters k, provided k is known ahead of time.
K-means produces an iteratively revised final grouping depending on the number of clusters k
chosen by the user and the dataset involved. Initially, k-means picks k as the mean value of k
clusters, referred to as the centroids, then seeks the closest data points to the chosen centroids to
create k clusters. This procedure is repeated for each cluster until the algorithm finds a single
optimal value for each centrifugal point. As a result of using numerical data to determine the
means, K-means clustering works best with low-dimensional numerical datasets. The algorithm
is implemented as follows:

3.2 Clustering Algorithm 15

1. Initialize random points based on the given value of k

2. Create k clusters by calculating the distance between each data point and the nearest cen-
troid. Then get each data point’s distance from the initialised centroids using the Euclidean
distance

3. Re-calculate centroids by averaging all of the data points allocated to each cluster reduces
the overall intra-cluster variation

4. Repeat steps 2 and 3 until the desired outcome is achieved

When the values of the centroids stay unchanged, the sum of the distances between the data
points and the centroid of each cluster and the data points assigned to the clusters remain con-
stant. The advantage of K-means is due to its simplicity as it does nothing more complicated
than calculating and comparing distances between data points and organising clusters based on
those distances. As a result, it has a time complexity of O(n), making it faster to compute than
hierarchical clustering [30]. Asides from this, K-mean is quite flexible and applicable to clusters
of all forms and sizes, including elliptical clusters [30]. On the other, to operate K-means, one
must manually specify the number of clusters k. Similarly, K-means randomly selects the initial
centroids of the k clusters. Due to this, outcomes are likely to differ between executions, even
when no inconsistent behaviour exists. Finally, K-means are sensitive to outliers or noise in the
data, as the outliers may form a cluster [31].

3.2.2 Hierarchical Clustering
Hierarchical clustering methods are used to create a hierarchy of clusters. The process begins
with a few small clusters and works its way up to the final output. The algorithm treats each
data point as a cluster and uses a specialised proximity-matrix to compute the distance between
clusters. There are two types of hierarchical clustering. (1) agglomerative, a bottom-up approach
in which initially treats each data point as a distinct cluster, then iteratively merges the clusters
until the final cluster has all the data points in the cluster that was generated from the initial
cluster. As an alternative to agglomerative clustering, (2) divisive uses a top-down approach that
begins with a single cluster containing all of the data points and gradually divides the cluster into
smaller ones until each cluster has a single data point. Similar to k-means, an advantage of the hi-
erarchical clustering algorithm, is simple to implement. In some instances, the number of clusters
is not required since a cluster tree (dendrogram) can be produced. Figure 3.5 is a graph showing
an example of a dendrogram representing the clustering approach of the hierarchical clustering
algorithm. The primary disadvantage of hierarchical clustering is its time requirement. In com-
parison to other algorithms, it is O(log N) in time complexity, where n is the number of input data
points. Managing clusters of various sizes and convex forms can also provide difficulties [32].
Finally, depending on the distance matrix chosen, it may also be susceptible to noise and outliers.

3.2.3 Density-based Spatial Clustering (DBSCAN)
DBSCAN is a clustering algorithm that does not require a predefined number of clusters. How-
ever, there are only two parameters that DBSCAN needs: eps and minimum samples [33]. The
maximum distance between two data samples is specified by eps. This term refers to the bare
minimum number of samples that must be within a certain distance of one another to be termed
a neighbourhood. It is assumed that a cluster is a dense region with more data points than the
minimum sample size within the eps range of the core point. Advantages of DBSCAN include
operating effectively on a dataset that emphasises high-density clusters over low-density clusters.

16 Chapter 3. Background

Figure 3.5: A dendrogram illustrating the hierarchical clustering algorithm’s clustering approach

It is noise-resistant and capable of dealing with outliers in the dataset. As with k-means, It is not
necessary to specify the number of clusters in advance. Despite the fact that DBSCAN does not
require a specified number of clusters, it is challenging to estimate the distance between eps when
clusters have a variety of densities [33].

3.3 Determining Number of Clusters

3.3.1 Elbow
The elbow method is a technique for determining the best number of clusters. It works by cal-
culating the percentage of the difference between the number of clusters that form an elbow at a
given point. This method generates ideas or concepts for selecting cluster values by combining
it to form a data model for identifying the optimal clusters. Sum of Squared Error (SSE) is how
the elbow approach is expressed. The SSE is calculated as the sum of each point’s average Eu-
clidean Distance from the centroid. When the value decreases significantly and the angle becomes
smaller, the value of k is obtained. Starting with k= 2, and increasing the SSE value incrementally,
where kn = k + 1, the point with the highest SSE, kn - SSE Kn - 1 is the ideal k value [34]. Computed
in formular 3.1:

SSE =

k∑
i=1

∑
XiεSk

‖Xi − Ck‖22 (3.1)

Where Ci is i-th cluster, k is the number of clusters formed and x is the data in each cluster.

3.3 Determining Number of Clusters 17

SSE is only applicable as a cluster assessment metric for approaches in which the cluster may
be represented by the centroid. Using this metric in conjunction with clusters obtained using
other approaches (such as DBSCAN) might result in misleading results [34].

3.3.2 Silhouette
The silhouette approach calculates the degree to which the data is similar to a given cluster. This
is calculated by computing the silhouette value for each data point and then averaging the result
across the overall dataset. The silhouette measure is effective as it takes into account both the
distance between clusters and the distance within the cluster. Kaufman et al. (citation here) estab-
lished the notion of silhouette coefficient, which encompasses individual and cluster silhouette
coefficients. The average distance between a data point and all other data points inside a cluster
is a(i) while the minimal average distance between the data point and other clusters is b(i). An
individual silhouette coefficient for a cluster is determined using the formular 3.2.

Si =
b(i)− (a(i)

max[b(i).(a(i)]
(3.2)

The silhouette score Si is bound to a range between -1 and 1. As -1 indicates that no data-point
fits to its allocated clusters and 1 indicates that all data-points fit perfectly to its assigned clusters.
Similar to the elbow method, the silhouette metric is most effective when used in conjunction
with centroid-based clustering algorithms as such Kmeans. For instance, rule-based or hierarchi-
cal clustering approaches do not prioritize performing distance minimization as centroid-based
methods do. Consequently, silhouette scores cannot adequately represent approaches other than
centroid-based methods. Besides that, the silhouette measure takes longer to compute compared
to the elbow method [35].

3.3.3 Cosine Similarity
The cosine similarity technique is used to estimate the degree of similarity between two vec-
tors. Formular 3.3 mathematically expresses how the cosine value between two vectors is deter-
mined [?].

(3.3)

Where Q is the Query, Di is the document i, and WQ, j is the weight of j term in Q query,
and the weight of j term in ith document. Significant similarity exists between two vectors if
the estimated value provided by the cosine similarity technique is greater than or equal to 1. If

18 Chapter 3. Background

the calculated value is less than or equal to 0, the two vectors are said to have a low degree of
similarity. The calculation ranges from 0 to 1. If none of the two vectors used in the computation
is identical, the value is 0. The value is 1 if the vectors are identical. [36]

3.4 Topic Modelling
Topic modelling, one of the most effective means of text mining for NLP tasks such as latent data
identification and information extraction. It is an unsupervised machine learning approach for
identifying and detecting word patterns in text datasets. An ideal topic model technique gener-
ates clusters of words (topics) that best describe a collection of related documents in a corpus.
According to [37]., the Latent Dirichlet Allocation (LDA) technique is the most commonly used
method for topic modelling [37]. LDA is a generative statistical theory that states each word in a
document is linked to one of its topics [38]. Each document may be seen as a collection of distinct
topics, with each topic typically allocated to a set of words with LDA. LDA is developed on the
assumption that both the distribution of topics within a document and the distribution of words
within topics are Dirichlet1 distribution [38]. There are three main hyperparameters that regulate
the model, Alpha (α is the parameter of the Dirichlet prior on the per-document topic distribu-
tions) and Beta (β is the parameter of the Dirichlet prior on the per-topic word distribution), and
the number of topics k. A low αvalue will result in fewer topics and vice versa, and a low β
value model suggests a topic with fewer words and vice versa. Thereby making the topics more
comparable. The third hyperparameter is the number of topics k, which requires one to manually
specify before initialising LDA [38].

3.5 Text Summarization
The widespread availability of data on the Internet has piqued researchers’ interest in developing
ways for condensing large amounts of data into a relevant summary. Text summarization is a
technique for compressing long documents into compact texts (typically less than half the length
of the original text), however, preserves the critical information and overall meaning from the
original text [39]. Given the massive volume of resources available online, human summariza-
tion becomes inconceivable, tedious, and time-consuming. Automatic text summarization can
improve the readability of a document by drastically reducing the time to read and understand
it. For example, individuals seeking a certain document in a sea of thousands could considerably
benefit from a system that automatically exemplifies source texts and collates all necessary details.
Thus, a text summary is a vital tool for individuals who require continuous and quick access to es-
sential information such as news headlines, product reviews, and snippet results [40]. In general,
there are two methods of text summarization i.e., extractive and abstractive text summarization.

3.5.1 Extractive summarization
In extractive summarizing, significant and exact text snippets from the source material, such as
sentences or phrases, are extracted and concatenated together to construct the summary [41].
Extractive summarising aims to determine each text sentence’, create a condensed version of the
original text that accurately portrays it. There are several ways available to achieve an extractive
summarization task, some based on linguistic qualities and others on statistical traits [42]. In the
following paragraph, we will examine a few of these strategies in further detail.

1Dirichlet distribution is the conjugate prior that encodes the notion that documents contain a limited number of topics
and that those topics typically use a limited number of words

3.6 Dimensionality Reduction 19

The statistical approach. This approach of text summarizing is built on the basis of sentence
extraction. Each phrase in a text is given a weight based on the document’s word frequency [43].
“Sentences with high frequent occurrence are deemed more suggestive of the subject and should
be included in the summary” [43]

The graph-theoretic. This technique represents the structure of a document as an undirected
graph. The edges linking the texts indicate their relationships after the preprocessing processes.
Additionally, it is regarded to be evocative of the document’s multiple topics due to the sub-
graphs generated by displaying relationships between words. Similarity scores are utilized to
determine the common words between phrases in order to create an edge (connection) between
nodes (sentences) [41, 43].

Neutral Network. The implementation of deep learning models in text summarization tasks has
increasingly become popular since neural networks have proven to be successful [44]. Before a
model is set for a summarization task, it must be trained on large datasets to understand the pat-
terns and features of individual words. Ultimately, the model will learn which sentences should
be included in the final summary by studying the features of the sentences [42, 43].

3.5.2 Abstractive summarization
The abstractive summarization method mimics human-written summaries in a manner that nat-
urally conveys the content and meaning of the source material. This has acquired popularity as
a result of its capacity to generate new phrases to that holds critical information from the text
sources [45]. Abstractive summaries can be created in two ways: (1) by paraphrasing (rephrasing
original idea into shorter and more coherent text)2 or, (2) by reformulating (rephrasing the original
idea to have slightly different meaning)3 [39]. In general, abstractive summarising is more effi-
cient, however, its implementation requires substantial knowledge of deep learning techniques;
hence, the majority of researchers prefer to use or dig deeper into extractive summarising [39,45].

3.6 Dimensionality Reduction
PCA is a common technique for reducing the dimensionality of a dataset with numerous features
while retaining the maximum amount of variation possible. The primary aim of this technique
is to easily visualize and analyze data with more than three dimensions. The initial collection of
characteristics is linearly reduced to a more manageable set of attributes identified as the prin-
cipal components [46]. The following are four mathematical steps involved in the PCA process:
(1) Determine the data’s origin and re-position the data and its origin by averaging the columns
and deducting the original data from the average. (2) Create a matrix of correlations (3) Calcu-
late eigenvalues and eigenvectors from the above-generated correlation matrix (4) Calculate the
transform values by interpreting the eigenvalues and eigenvectors. PCA is a least-squares ap-
proach that allocates large loadings to characteristics with high variation in the PCA output. In
this study, PCA is used to reduce the dimensionality of embeddings generated from the deep
learning model. Superimposing the two types of plots allows both objects and attributes to be
displayed at the same time.

2https://dictionary.cambridge.org/dictionary/english/paraphrase
3https://dictionary.cambridge.org/dictionary/english/reformulate

Chapter 4

Approach to Evaluating
Reviews

4.1 Overview of Approach
The thesis aims to provide meaningful insights and improve performance by clustering user re-
views with similar issues, topic tagging, and including a summary. To establish that, we designed
a novel approach using BERT as a text representation of user reviews on the first stage, passing
the output for clustering using K-means with Elbow (M1), K-means with Silhouette (M2), and
Cosine Similarity (M3) on the second stage. We then extracted features from these clusters, by
generating topic tags (via topic modelling) and the description (via text summarization) to give
a high-level overview of what is going on in a cluster. Finally, we employed a dimensionality
reduction approach to creating an interactive visualization of the data. The following involves
the steps in our approach:

1. Cluster user reviews with BERT

(a) Text preprocessing

(b) Encode Reviews with BERT

(c) Cluster encoded data using M1 (i.e., BERT + K-Means with Elbow Method)

(d) Cluster encoded data using M2 (i.e.,BERT +K-Means with Silhouette Method)

(e) Cluster encoded data using M3 (i.e.,BERT + Cosine Similarity)

2. Add topic tags feature to output cluster data of M1, M2, and M3

3. Add description feature to output cluster data of M1, M2, and M3

4. Perform PCA function on output cluster data of M1, M2, and M3

5. Visualize M1, M2, and M3 on an interactive plot

4.2 Text Clustering with BERT

4.2.1 Text Preprocessing
The review dataset is directly scraped from google play store, having emojis, characters,signs and
other irrelevant things in them. We preprocess the data to only extract words, numbers, spaces,

22 Chapter 4. Approach to Evaluating Reviews

commas and dots from the reviews and exclude rest(puntuation, emoji,). This helps us remove
unwanted characters and emojis from the dataset that can cause the model and lda to malfunction.
Specifically for LDA we added another layer of preprocessing to remove stop words from it as
LDA is proun to stop words occurring frequently.

4.2.2 Encoding text with BERT
As previously indicated, user reviews are textual feedback often provided informally by a variety
of people with varying backgrounds and experiences. To help a system better grasp the context
of these reviews, we employed BERT, a deep learning and state-of-art language model that has
shown impressive results at understanding human language as established by various studies
[47]. We used BERT, specifically, the bert-base-uncased1 [48] to construct a 768-dimension em-
bedding from the huggingface2. An AI and NLP community for hosting open-source libraries
and state-of-art models. Our technique further processed these embeddings. Essentially, we em-
ployed the pre-trained BERT without fine-tuning due to a lack of considerable data and resources
that may have resulted in more accurate findings. The technique necessitates a substantial volume
of reviews data in a compatible format for fine-tuning BERT, which was not accessible. Further-
more, to get a text representation of the data, we pass the raw data (unprocessed user reviews)
into the BERT using its default hyperparameter (see the model’s paper for detailed information
on the hypeparameter [48]) to create a N x 768 embedded data, where N represents the length of
the data.

4.2.3 K-Means with Elbow Method - M1
Encoding user reviews in a (N x 768) dimensional matrix enables efficient clustering. Our algo-
rithm begins by implementing M1 on the embeddings BERT generated in the initial stage. In
this approach, we did not manually choose a k since there is no way to predict the number of
clusters to expect from each app review data. As a result, we implement the elbow method of
automatically determining the cluster size, i.e., k for the K-means. We initiated K-means with
sklearn library with a maximum iteration of 300. We assigned k values between 1 and 50 and
saved the corresponding inertia values accordingly. There is no concrete reason for choosing 50
as the maximum value for k. We, however, based on the type of data (mobile reviews) and our
domain knowledge, decided on this value. Finally, we locate the elbow in the list of inertias by
using the KneeLocater library, a python library that selects a knee point at the point of maximum
curvature [49]. Then, using the selected k as the final value of k to train the K-means model and
label the reviews according to their relevant cluster.

4.2.4 K-Means with Silhouette - M2
For the second method, M2, we used the same embedded output from the aforementioned BERT-
encoder step, which generated the N x 768 matrix. Here, we used the embeddings to implement
K-means using silhouette. Similar to the elbow method, Silhouette is another technique for choos-
ing an optimal value of k in centroid-based clustering techniques such as k-means. We utilized
the same range between 1 and 50 for the silhouette and maintained the hyperparameter values to
synchronize and precisely compare this approach to the elbow. Our approach also uses sklearn
to initialize the silhouette to calculate the corresponding scores for k-means across the specified
range. Moreover, we also adopted the Kneelocater library to determine the knee-point based on

1This model is uncased, which means the distinction between English and English is irrelevant
2https://huggingface.co/bert-base-uncased

4.3 Topic Modeling - Topic Tags 23

the silhouette scores generated. After that, we train the model on the selected k value and label
the reviews according to the relevant cluster.

4.2.5 Cosine Similarity - M3
For this, we use the cosine similarity method, i.e., M3 of our approach. To define the clusters,
we constructed a cosine similarity matrix using the originally obtained vector embeddings from
BERT. In contrast to M1 and M2, the models do not require specifying a range of values for the
cluster size. Based on the embeddings, this method determines the optimal number of clusters.
The method processes all vector embeddings generated from the sentences. It begins by gen-
erating a matrix of size pxp, where p is the number of embeddings. The matrix duplicates the
similarity of each embedding to other embeddings. Following that, embeddings with a simi-
larity higher than 70% are clustered together and presented as distinct clusters, also known as
local communities (sets of highly similar sentences). Embeddings that do not share a threshold of
similarity with any other embeddings are coerced into a cluster of single points.

4.3 Topic Modeling - Topic Tags
From the cluster results of the methods mentioned in the preceding subsections, that is, M1, M2,
and M3, we have successfully generated a cluster of similar reviews. In this step, we briefly de-
scribe one of the added features, topic tags. Therefore, this step aims at extracting insights from
user reviews with topic tags to understand the major topics discussed in a cluster. To achieve this,
first, we initialised the LDA model, a topic modelling technique (described in section-name), on
each cluster to extract the top 5 keywords based on their frequency rate from the cluster. We im-
plemented LDA using the Python Genism library3, preprocessed the data by removing stopwords
and lemmatizing the words, created a bag of word models such as bigrams from the sentence, and
trained the LDA model. In the end, for each cluster, the top five topics are generated.

4.4 Text Summarization - Description
Text summarisation, as defined in section-name (), is the practise of compressing a large text into
a short, and cohesive text for easy consumption. Leveraging on the importance of text summaris-
ing, we incorporated a summary feature to the cluster review generated by our models to facili-
tate a quicker comprehension of the issue a cluster depicts. We utilised a deep learning extractive
summarization model in this stage to extract the key sentences and words that best summarise
each cluster. The extractive summarization model we adopted is also a Hugginface model [48].
Precisely, "paraphase-MiniLM-L6-v2". It works by transforming the phrases and paragraphs to a
384-dimensional vector space before passing them to the output to construct the summary. The
length of sentence created is determined by factors that are predefined. In our method, we chose
3 sentences to display.

4.5 Visualization with PCA
To graphically display the results of cluster analysis, we created a visual representation of the
reviews along with the topic tags to conceptually aid understanding. As mentioned earlier, PCA

3https://radimrehurek.com/gensim/

24 Chapter 4. Approach to Evaluating Reviews

is an approach for reducing high-dimension data into a low-level dimension, primarily for easy
visualization. Hence, in this step, we reduced the N x 768 to a N x 2 vector space data using the
sklearn PCA library (note, we specified number components = 2). We then use an interactive plotly 4

scatter graph to show the clusters and topics.

4.6 Validation
To understand the approach’s effectiveness in (a) grouping reviews according to the aforemen-
tioned technique, (b) topic modelling and text summarization per cluster. This section describes
the planned manual analysis, a human experiment that unfortunately could not happen due to
limited time resources and other means of evaluation metrics we explored.

4.6.1 Manually Analysis
This subsection describes how to manually develop a collection of reviews into groups represent-
ing similar issues that more closely reflect the unique and actionable problems associated with
mobile applications.

To create these groups, on a subset of the dataset’s reviews, we use an iterative content analysis
strategy similar to that suggested in [50]. We set up a validation dataset by manually grouping
the reviews into a fine-grained granularity suitable for our algorithm. First, we aim to collect
the reviews from the latest versions of the apps as we believe such reviews will address the most
current issues in the mobile app. Thus, we excluded apps with less than 500 reviews, as some apps
may have fewer reviews to guarantee that a small number of users did not skew the categorised
reviews we evaluated. We tend to collect reviews by randomly selecting a considerable number
of open-source apps from the Google Play Store and Apple Store, spanning multiple categories
such as games, news, and finance. We developed a web scraper tool to extract corresponding
reviews of the apps; however, for iOS apps, reviews are obtained from AppComments 5. The web
scraper will collect.review data such as the app name, the review title, and the textual feedback
[50].

Second, we planned to study the statistical representation of the whole dataset. Hence, we will
generate the statistical sample and randomly choose and select reviews for the task using a con-
fidence level and interval of 95% and 5%, respectively. For instance, if 1000 reviews were pulled
for an app, the statistical sample size would be 278 at a 95% confidence level and an interval of
5%. This signifies that the app’s result has a ±5% margin of error6.

Finally, the main task, which involves grouping the reviews using an iterative method. It
starts with an empty list of categories and, as one reads each review, extra categories are included
if the review is worthy of a new group. Each time a new class is created, relevant keywords and a
brief description are included. When there are no more reviews left, the overlapping groups will
be combined. The reviews will be subjected to another iteration to assign the most appropriate
groups to each review from the final list [50]. It is important to note that a review can only
belong to a unique group . This is especially important since our solution is concerned with
clustering reviews that point to similar issues. In the dataset of reviews, there are some reviews
with no meaningful or not beneficial comment from a developer’s perspective, for example, “this
is a bad app” or “It’s an awesome app!” such reviews are labelled “Less Informative” and put
together these reviews in separate clusters. Even though such reviews are less informative to
the developer, other members of the product team, such as the quality assurance manager, get

4https://plotly.com/python/
5http:// appcomments.com, a web service that gathers user reviews for all iOS applications.
6https://surveysystem.com/sscalc.htm, a Sample Size Calculator website

4.6 Validation 25

beneficial information from these clusters [51]. Moreover, we did not build our algorithm to filter
out these reviews like other studies [5, 15] since we have no target classes available in our data.
Therefore, we expect our algorithm to have these set of reviews included in the clusters.

4.6.2 Validation Methods
We planned to conduct a human experiment using at least two external inspectors with a com-
bined experience of at least five years to validate our results. We tend to ask the participants to
rate (1) the cohesion of our cluster algorithm for each app in our study, and (2) how relevant are
the keywords and summary generated for each cluster. Then validators will express their opinion
using a Likert scale intensity scale with values ranging from 1 to 5, with 1 denoting very low and 5
denoting extremely high [52]. However, as stated previously, this evaluation phase did not occur
due to a lack of sufficient time resources. In the following paragraphs, we describe other ways to
justify our cluster’s performance.

In general, there are two viable methods for evaluating cluster analysis’s performance: in-
ternal and external measures. The internal measure checks cohesion and the distance between
the resulting clusters. The typical types of this are the elbow and silhouette methods that we al-
ready described and implemented in the section above (I will mention the exact section later) to
select the best K Value for the K-means cluster. These two internal measures are relevant metrics
because they are also used to optimise clustering methods such as K-means.

The eternal measure compares the result of the cluster to the ground-truth labels. One pop-
ular type of this measure we explored is the cluster purity. "Purity is a statistic for evaluating
the quality of groups constructed from labelled samples. If the purity value is one, it is termed
pure" [53].This suggests that the whole labeled set is appropriately categorised. Similarly, when a
cluster’s value is close to or equal to zero, it is said to be impure as it indicates that each item with
a label is a member of a different class [53]. To determine a clustering’s purity, one requires a
target variable that was not used throughout the clustering process, and unfortunately, no target
variable is available in our dataset. Therefore, we cannot also cannot perform external valida-
tion. However, we investigated further the techniques previous studies employed to label their
dataset. We tend to consider the strategies and then complete the cluster purity thereof. In the
discussion section, we critically analysed the techniques described in the previous studies and
stated why we could not employ those techniques as well.

Chapter 5

Discussion and future work

5.1 Preliminary Result
The initial aim of this research is to cluster the user reviews using different techniques to generate
meaningful insights from the clustered user reviews. As a part of the methodology section of
our research, we used three clustering techniques: BERT + Kmeans using Elbow Methods (M1),
BERT + Kmeans using Silhouette Methods (M2), and BERT + Cosine Similarity (M3). All these
three techniques are expected to generate clustering results with high efficiency and precision.
By using these deep learning clustering techniques, we also expect that our implemented algo-
rithm generates better results and gives better performance when compared to previous literature
studies and their implemented techniques.

5.2 Experiment Results
We experimented with the technique proposed in our approach using Changeadvisor’s dataset.
That is the 10 open-source mobile applications which were retrieved from the Google Play Store
[15]. We applied our compiled Python script to analyze the text dataset, which is accessible on
https://github.com/olajoke. In the following we present and analyze the findings of our experi-
ment in the form of tables and graphs.

After implementing the three models (M1, M2, and M3) on the data from CHANGEADVISOR,
Table 5.1 displays all the Apps included in the data and the matching number of clusters created
for each of the three clustering methods. As we can see, M1 detected a minimum of 13 clusters
and a maximum of 17, M2 identified a minimum of 15 clusters and a maximum of 10, while M3
created a minimum of 8 clusters and a maximum of 28 clusters. Indeed, the three approaches
create widely differing numbers of clusters.

Figures 5.1 - 5.3 and tables 5.2 - 5.4 are representation of each of our cluster techniques result
upon successful completion of a modeling process on for each app reviews. Each plot displays
all reviews from a particular dataset, where the data points represent the user reviews and the
colors represent the unique cluster class with the LDA keywords corresponding to each cluster is
shown on the right side of the graph. For the tables, LDA topics, the frequency, and the summary
of a unique cluster class (a subset of the clustered review represented as cluster sentences) upon
successful completion of a modeling process given an app’s review data

The table 5.2 above shows the results of clustering using K-means with elbow algorithm tech-
nique. We have selected four cluster topics randomly from all the generated clusters. The first
cluster listed in the table 5.2 signifies suggestive reviews from users about the apps. As shown

28 Chapter 5. Discussion and future work

Table 5.1: Number of clusters generated by M1, M2 and M2 for each app reviews

Table 5.2: M1 results on the LDA topics, the frequency, the summary, and a subset of the corresponding
clustered sentences (i.e reviews) of “FB Reader”.

from the listed reviews in the most right column of the table, the topics of this cluster are persis-
tent with the reviews.

5.2 Experiment Results 29

Figure 5.1: A scatter plot representing the clusters generated for “FB Reader” reviews using M1 with the
topic tags as the legend.

Table 5.3: M2 results on the LDA topics, the frequency, the summary, and a subset of the corresponding
clustered sentences (i.e reviews) of “FB Reader”.

The table 5.3 shows the clusters generated from the dataset using K-means with the Silhouette
clustering technique. The first and fourth cluster listed in the table shows a positive trend gen-
erated using the positive reviews. As we can see, the topics generated from the clusters are not
precise as there is a mix of "good" and "bad".

The clustering technique with Cosine Similarity Algorithm generated 25 unique clusters. Out

30 Chapter 5. Discussion and future work

Figure 5.2: A scatter plot representing the clusters generated for “FB Reader” reviews using M2 with the
topic tags as the legend.

Table 5.4: M3 results on the LDA topics, the frequency, the summary, and a subset of the corresponding
clustered sentences (i.e reviews) of “FB Reader”.

of these 25 clusters, we randomly selected four clusters as shown in table 5.4 above. The first
cluster is not defined as one unique topic; instead, it is a mix of two, not a refined one. Another
major flaw in this technique is that it gives an empty summary for some clusters.

5.2 Experiment Results 31

Figure 5.3: A scatter plot representing the clusters generated for “FB Reader” using M3 with the topic tags
as the legend.

Chapter Summary We experimented with three clustering techniques to generate valuable in-
sights from user reviews on the dataset used in CHANGEADVISOR’s study. During this process,
we did not use any analytical technique to either qualitatively or quantitatively analyse the result
of our clustering techniques. One main reason behind not using any analytical technique is the
deficiency of data experts and resources. We need data experts who can generate the clusters
manually for an analytical process. Moreover, generating manual clusters is time-consuming and
requires adequate time and planning. Hence, shortage of time is another reason why this research
implied no analytical techniques.

Chapter 6

Conclusion

We primarily carried out this research to generate valuable insights from a dataset of user re-
views. We implemented three clustering techniques; Clustering with Cosine Similarity, K-means
with elbow and K-Means with Silhouette. The clusters generated using this technique were re-
fined, somewhat accurate, directly persistent topic tags and simplified summary with the user’s
reviews. With this, there is a likelihood of generating clusters from user reviews that can be help-
ful for future code recommendation and release planning thereof. The major limitation in our
study is the lack of time resources as this remarkably caused manual and Human experiments
to occur. Hence, no concrete evidence and analytical techniques to support the goodness of our
model. Another limitation is no availability of a huge dataset that can help us fine-tune the BERT
model on user reviews.

As mentioned earlier, the primary limitation in our study is due to lack of time resources.
Due to this, a future recommendation is to carry out manual analysis techniques and human-
evaluation methods to analyze the performance of the generated results. This includes generating
clusters manually and comparing the results generated with the deep learning techniques used in
this research to analyze the performance of these techniques. We used the base version of BERT
in the current methodology, which was trained on a general dataset not specific to our use case.
In essence, generating a review dataset and fine-tuning BERT on user reviews can increase the
model understanding of reviews and improve the overall performance.

34 Chapter 6. Conclusion

Bibliography

[1] Jay Alammar. The illustrated bert, elmo, and co. How NLP Cracked Transfer Learning, page 38,
2018.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. 2018.

[3] Shaohan Huang, Furu Wei, Lei Cui, Xingxing Zhang, and Ming Zhou. Unsupervised fine-
tuning for text clustering. In Proceedings of the 28th International Conference on Computational
Linguistics, pages 5530–5534, 2020.

[4] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Denys Poshyvanyk, and Andrea De Lucia. Crowdsourcing user reviews to support
the evolution of mobile apps, volume 137. Elsevier, 2018.

[5] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimiliano
Di Penta. Release planning of mobile apps based on user reviews. 2016.

[6] Anthony Finkelstein, Mark Harman, Yue Jia, William Martin, Federica Sarro, and Yuanyuan
Zhang. App store analysis: Mining app stores for relationships between customer, business
and technical characteristics. RN, 14(10):24, 2014.

[7] Venkata N Inukollu, Divya D Keshamoni, Taeghyun Kang, and Manikanta Inukollu. Factors
influencing quality of mobile apps: Role of mobile app development life cycle. arXiv preprint
arXiv:1410.4537, 2014.

[8] Dennis Pagano and Walid Maalej. User feedback in the appstore: An empirical study. In 2013
21st IEEE international requirements engineering conference (RE), pages 125–134. IEEE, 2013.

[9] Emitza Guzman and Walid Maalej. How do users like this feature? a fine grained sentiment
analysis of app reviews. In 2014 IEEE 22nd international requirements engineering conference
(RE), pages 153–162. IEEE, 2014.

[10] Laura V Galvis Carreno and Kristina Winbladh. Analysis of user comments: an approach for
software requirements evolution. In 2013 35th international conference on software engineering
(ICSE), pages 582–591. IEEE, 2013.

[11] Xiaozhou Li, Boyang Zhang, Zheying Zhang, and Kostas Stefanidis. A sentiment-statistical
approach for identifying problematic mobile app updates based on user reviews. Information,
11(3):152, 2020.

36 BIBLIOGRAPHY

[12] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio, Gerardo Can-
fora, and Harald C Gall. How can i improve my app? classifying user reviews for software
maintenance and evolution. In 2015 IEEE international conference on software maintenance and
evolution (ICSME), pages 281–290. IEEE, 2015.

[13] Claudia Iacob and Rachel Harrison. Retrieving and analyzing mobile apps feature requests
from online reviews. In 2013 10th working conference on mining software repositories (MSR),
pages 41–44. IEEE, 2013.

[14] Andrea Di Sorbo, Sebastiano Panichella, Carol V Alexandru, Junji Shimagaki, Corrado A
Visaggio, Gerardo Canfora, and Harald C Gall. What would users change in my app? sum-
marizing app reviews for recommending software changes. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 499–510,
2016.

[15] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Harald Gall,
Filomena Ferrucci, and Andrea De Lucia. Recommending and localizing change requests for
mobile apps based on user reviews. 2017.

[16] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. Ar-miner: mining
informative reviews for developers from mobile app marketplace. In Proceedings of the 36th
international conference on software engineering, pages 767–778, 2014.

[17] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio, Gerardo Can-
fora, and Harald C Gall. Ardoc: App reviews development oriented classifier. In Proceedings
of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering,
pages 1023–1027, 2016.

[18] Adelina Ciurumelea, Andreas Schaufelbühl, Sebastiano Panichella, and Harald C Gall. An-
alyzing reviews and code of mobile apps for better release planning. 2017.

[19] Hang Li. Deep learning for natural language processing: advantages and challenges. 2017.

[20] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep
learning based natural language processing, volume 13. IEEE, 2018.

[21] Seunghoi Kim, Byoung Hun Min, Minjae Kang, and Pavlos Demetriou. Comparative analy-
sis of deep learning-based news topic classification models.

[22] Anthony Gillioz, Jacky Casas, Elena Mugellini, and Omar Abou Khaled. Overview of the
transformer-based models for nlp tasks. In 2020 15th Conference on Computer Science and
Information Systems (FedCSIS), pages 179–183. IEEE, 2020.

[23] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know
about how bert works. Transactions of the Association for Computational Linguistics, 8:842–866,
2020.

[24] Nishant Jha and Anas Mahmoud. Mining non-functional requirements from app store re-
views. Empirical Software Engineering, 24(6):3659–3695, 2019.

[25] Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. Software traceability with
topic modeling. In 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol-
ume 1, pages 95–104. IEEE, 2010.

BIBLIOGRAPHY 37

[26] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimilano Di Penta, Denys Poshynanyk,
and Andrea De Lucia. How to effectively use topic models for software engineering tasks?
an approach based on genetic algorithms. In 2013 35th International Conference on Software
Engineering (ICSE), pages 522–531, 2013.

[27] Lu Ren, David B Dunson, and Lawrence Carin. The dynamic hierarchical dirichlet process.
In Proceedings of the 25th international conference on machine learning, pages 824–831, 2008.

[28] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487. PMLR, 2016.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems, pages 5998–6008, 2017.

[30] Ziv Bar-Joseph, David K Gifford, and Tommi S Jaakkola. Fast optimal leaf ordering for
hierarchical clustering. Bioinformatics, 17(suppl_1):S22–S29, 2001.

[31] Shudong Huang, Yazhou Ren, and Zenglin Xu. Robust multi-view data clustering with
multi-view capped-norm k-means. Neurocomputing, 311:197–208, 2018.

[32] K-means clustering algorithm.

[33] George Seif. The 5 clustering algorithms data scientists need to know. Towards Data Science,
2018.

[34] Purnima Bholowalia and Arvind Kumar. Ebk-means: A clustering technique based on elbow
method and k-means in wsn. International Journal of Computer Applications, 105(9), 2014.

[35] Duy-Tai Dinh, Tsutomu Fujinami, and Van-Nam Huynh. Estimating the optimal number of
clusters in categorical data clustering by silhouette coefficient. In International Symposium on
Knowledge and Systems Sciences, pages 1–17. Springer, 2019.

[36] Christopher C Paige. Computational variants of the lanczos method for the eigenproblem.
IMA Journal of Applied Mathematics, 10(3):373–381, 1972.

[37] Alan Ritter, Oren Etzioni, et al. A latent dirichlet allocation method for selectional prefer-
ences. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 424–434, 2010.

[38] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

[39] Dragomir R Radev, Eduard Hovy, and Kathleen McKeown. Introduction to the special issue
on summarization. Computational linguistics, 28(4):399–408, 2002.

[40] Jason Brownlee. A gentle introduction to text summarization. Machine Learning Mastery, 29,
2017.

[41] Vishal Gupta and Gurpreet Singh Lehal. A survey of text summarization extractive tech-
niques. Journal of emerging technologies in web intelligence, 2(3):258–268, 2010.

[42] Deepali K Gaikwad and C Namrata Mahender. A review paper on text summarization. Inter-
national Journal of Advanced Research in Computer and Communication Engineering, 5(3):154–160,
2016.

38 BIBLIOGRAPHY

[43] Saeedeh Gholamrezazadeh, Mohsen Amini Salehi, and Bahareh Gholamzadeh. A compre-
hensive survey on text summarization systems. In 2009 2nd International Conference on Com-
puter Science and its Applications, pages 1–6. IEEE, 2009.

[44] Yue Dong. A survey on neural network-based summarization methods. arXiv preprint
arXiv:1804.04589, 2018.

[45] N Moratanch and S Chitrakala. A survey on abstractive text summarization. In 2016 In-
ternational Conference on Circuit, power and computing technologies (ICCPCT), pages 1–7. IEEE,
2016.

[46] Markus Ringnér. What is principal component analysis? Nature biotechnology, 26(3):303–304,
2008.

[47] MV Koroteev. Bert: A review of applications in natural language processing and under-
standing. arXiv preprint arXiv:2103.11943, 2021.

[48] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

[49] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a" kneedle" in
a haystack: Detecting knee points in system behavior. In 2011 31st international conference on
distributed computing systems workshops, pages 166–171. IEEE, 2011.

[50] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan. What do
mobile app users complain about?, volume 32. IEEE, 2014.

[51] Emanuel AM Mjema, MAM Victor, and MSM Mwinuka. Analysis of roles of it on quality
management. The TQM Magazine, 2005.

[52] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[53] Noufa Abdulaziz Alnajran. An integrated semantic-based framework for intelligent similarity
measurement and clustering of microblogging posts. PhD thesis, Manchester Metropolitan Uni-
versity, 2019.

