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Zusammenfassung

In den letzten Jahrzehnten haben sich IoT-Technologien rasant entwickelt. Milliarden von
Geréten greifen iiber drahtlose Netzwerke auf das Internet zu und erleichtern das Leben
der Menschen, verbrauchen aber gleichzeitig wertvolle Funkfrequenzen. Zur Optimierung
des Funkfrequenzspektrums werden Crowdsensing-basierte Netzwerke zur Uberwachung
des Funkfrequenzspektrums vorgeschlagen, die aus verteilten IoT-Sensoren bestehen, die
zusammenarbeiten, um weltweit Funkfrequenzdaten zu sammeln, zu iibertragen und zu
verarbeiten. Diese IoT-Sensoren mit begrenzten Ressourcen sind jedoch duflerst anfillig
fiir Cyberangriffe, die die Integritdt der Funkfrequenzspektrumsdaten gefihrden und den
Betrieb der gesamten Plattform beeintriachtigen.

Einerseits gilt das auf maschinellem Lernen basierende Fingerprinting des Geréteverhal-
tens zur Identifizierung von Cyberangriffen als vielversprechend. Andererseits sind die
Daten iiber das Gerédteverhalten sehr sensibel, und der Datenschutz muss beriicksich-
tigt werden. Vor diesem Hintergrund wird in dieser Arbeit ein auf foderativem Ler-
nen basierendes System zur Erkennung von IoT-Netzwerkangriffen unter Verwendung von
Verhaltensdaten von Systemaufrufen vorgeschlagen. Dieser Ansatz erreicht sowohl den
Schutz der Privatsphire als auch eine effektive Identifizierung von Cyberangriffen durch
seine einzigartige Trainingsstrategie, d.h. er gibt nur die Modellparameter, nicht aber die
Trainingsdaten weiter. Nach einem systematischen Vergleich wéhlt diese Arbeit den am
besten geeigneten Ansatz zur Merkmalsextraktion und den lokalen Identifikationsalgorith-
mus aus. Die Wirksamkeit und Zuverléssigkeit des vorgeschlagenen Modells wird anhand
einer quantitativen Analyse in einer Vielzahl unterschiedlicher Szenarien nachgewiesen.
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Abstract

Over the past few decades, IoT technologies have surged, with billions of devices access-
ing the Internet through wireless networks, bringing convenience to human lives while
consuming the valuable wireless spectrum. To optimize the radio frequency spectrum,
crowdsensing-based radio frequency spectrum monitoring networks are proposed, consist-
ing of distributed IoT sensors that collaborate to collect, transmit, and process radio
spectrum data worldwide. However, these IoT sensors with constrained resources are ex-
tremely vulnerable to cyberattacks that compromise the integrity of the radio frequency
spectrum data and affect the operation of the entire platform.

On the one hand, Machine Learning-based device behavior fingerprinting for cyberattack
identification is considered highly promising. On the other hand, the device behavior data
is strongly sensitive, and its data privacy becomes an issue that has to be considered. Tak-
ing these into consideration, this thesis proposes a Federated Learning-based IoT network
attack detection system using system calls behavioral data. This approach achieves both
data privacy protection and effective identification of cyberattacks through its unique
training strategy, i.e., sharing only model parameters but not the training data. After a
systematic comparison, this thesis selects the most suitable feature extraction approach
and local identification algorithm. The effectiveness and reliability of the proposed model
is demonstrated by using quantitative analysis through a variety of different scenarios.
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Chapter 1

Introduction

With the development of Internet-of-Things (IoT) and wireless communication technolo-
gies, an increasing number of IoT devices are wirelessly connected to the internet, and
by 2025, it is expected that 64 billion IoT devices will be online [40]. There is no doubt
that these connected devices bring countless conveniences to human lives, but simulta-
neously they also get the problem of spectrum conflicts. Consequently, the overcrowded
Radio Frequency (RF) bandwidth brings interference that affects the efficiency and qual-
ity of data transmission. To solve this interference, the crowdsensing RF monitoring
platform became a reality, which is oriented to optimize spectrum usage and to detect
illegal transmissions and cyberattacks [37]. The Crowdsensing RF monitoring platform
uses distributed sensors to collect RF spectrum data, as an infrastructure for Cognitive
Radio Networks (CRN), which can be used to balance RF spectrum usage and improve
the efficiency of the wireless networks. Meanwhile, through the analysis of spectrum data,
these crowdsensing platforms can also be used to identify illegal data transmission, detect
cyberattacks, provide data support for the development of transmission technologies, etc.

Each of the previously mentioned tasks is highly reliant on the spectrum monitoring sen-
sors being able to collect reliable data. Therefore, protecting the integrity of RF spectrum
data is critical but also fraught with challenges. The most common cyberattacks against
RF spectrum sensing include two groups, Primary User Emulation Attacks (PUEA) and
Spectrum Sensing Data Falsification Attacks (SSDF), where SSDF directly compromises
the integrity of the spectrum data [23]. To make the situation even more complicated,
these RF spectrum monitoring platforms often use resource-constrained devices as their
sensors, such as Raspberry Pis, and these devices are well-known vulnerable to insider
attacks or malwares [29].

The behavioral data generated by the device during its execution, such as resource usage,
or system calls, could be monitored to generate precise device behavioral fingerprinting.
By combining with Machine Learning (ML) and Deep Learning (DL), approaches based
on device behavioral fingerprinting are considered as one of the most promising cyber-
attacks detection methods [42]. Research has demonstrated that the device behavior
fingerprinting approach using system calls has an advantage in the performance of identi-
fying cyberattacks [11, 32]. Meanwhile, system calls data is extremely sensitive and may
have severe consequences if leaked, and on the other hand, these crowdsourced sensors
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come from a variety of holders, such that data privacy becomes an essential concern of
the RF spectrum monitoring platform. Hence, a privacy-preserving approach is needed
for SSDF attacks identification. Federated Learning (FL) is such a privacy-preserving
framework that shares only the model but not the data. Therefore, this thesis aims to de-
sign and develop a FL-based privacy-preserving and effective SSDF cyberattack detection
method to protect the IoT spectrum data integrity. This chapter describes the motivation
for such an approach and the scope and structure of this thesis.

1.1 Motivation

The integration of device behavioral fingerprinting with system calls and ML techniques
has been proved as a promising way to detect anomalies produced by attacks manipulating
spectrum data [42]. However, the following challenges commonly appear when combining
ML/DL technologies with system calls for detecting cyberattacks affecting RF spectrum
data integrity:

e There is no analysis of different feature extraction approaches using system calls
to detect various SSDF attacks. The current practice of using ML /DL and system
calls for network attack detection mainly focuses on traditional areas rather than
spectrum data integrity, and the types of attacks detected are mostly malware or
DDoS attacks. There is a lack of research on the use of ML /DL and system calls to
detect SSDF' attacks.

e There is no work comparing the performance and cost of ML/DL-based solutions
that use different feature extraction approaches of system calls. Current works
focus on using one system calls feature extraction method to extract one specific
feature and then combining them with ML/DL techniques to detect cyberattacks.
Still, there is a lack of systematic comparison of different extraction approaches in
performance and cost.

e No ML/DL-based solution is preserving the privacy of the devices fingerprints while
detecting SSDF attacks. In a traditional ML /DL cyberattack detection pipeline,
client system calls must be transmitted to the central server for model training,
which does not consider potential privacy issues. However, the device system calls
data is highly sensitive for client sensors, and data privacy must be concerned when
designing the behavioral fingerprinting-based SSDF attack detection system.

e There is no comparison between the detection performance of traditional ML /DL
and FL with system calls features. Since SSDF attack detection methods using
FL are lacking, the comparison of the performance of FL. with system calls and
traditional ML /DL is also missing.
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1.2 Description of Work

To improve these challenges, the main goal of this thesis is to design and develop a privacy-
preserving SSDF cyberattack detection prototype system using the integration of system
calls features and FL framework.

To reach that objective, the main contributions of this work include:

e The analysis of the state-of-the-act regarding the usage of system calls in resource-
constrained devices to create accurate behavior fingerprints.

e The creation of a system calls monitoring module able to be executed in different IoT
devices such as Raspberry Pi 3 and 4. Besides, datasets that contain both normal
and eight SSDF attack system calls for each kind of device have been created.

e The design of the module for the intelligent cyberattacks detection system, which
uses FL and system calls features in resource-limited spectrum sensors affected by
SSDF attacks.

e The systematic comparison of the computational cost, including computation time,
CPU and memory utilization, etc., of different system calls feature extraction ap-
proaches.

e The performance of a pool of experiments measuring the detection capabilities and
resource consumption of different ML/DL algorithms detecting SSDF attacks, in-
cluding training and testing time, resource utilization, and model size.

e The evaluation and analysis of FL for SSDF attack identification in different scenar-
ios, including (i) local model in individual sensor, (i7) FL-Based training strategies
with 33.33%, 66.67% and 100.00% known devices, and (7ii) central model containing
datasets from all types of devices.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, as background knowl-
edge, RF spectrum data and its monitoring platforms are briefly described, as well as
various types of cyberattacks against its data integrity. Also, this section briefly in-
troduces common approaches using device behavioral fingerprinting for anomalous data
detection. In the third chapter, a systematic summary of the research related to the de-
tection of cyberattacks using system calls features is presented. In Chapter 4, a use-case
analysis is used to summarize the requirements of a cyberattack identification system
based on FL-based technology and system calls features in an IoT environment, and then
the architecture of the system is proposed. In Chapter 5, the most suitable features and
algorithms for the system are found through a multifaceted comparison and evaluation.
In Chapter 6, the FL-based system is evaluated and tested in all aspects through different
perspectives and scenarios to verify the effectiveness and stability of the system. Lastly,
Chapter 7 concludes the thesis by summarizing the main findings of the thesis and also
gives an outlook on future work.
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Chapter 2

Background

This chapter presents necessary background knowledge and information for the concepts
and methodologies used in this thesis. First, an introduction of the spectrum data is
provided, along with an overview of security issues in its integrity. Second, a brief summary
of device behavior fingerprinting is presented. Lastly, different approaches and techniques
for anomaly detection are documented, including ML, DL, and FL frameworks.

2.1 Radio Frequency Spectrum

The Internet of Things is becoming a hot topic of research in academia and industry
today, which aims to connect a wide variety of devices to the Internet to improve the
environment, facilitate human lives, and increase the efficiency of the industry. Billions of
sensors, controllers, and computing platforms connected via wireless and mobile networks
in people’s homes, offices, factories, and even vehicles [36]. Thanks to these increasingly
intelligent devices, smart homes, smart offices, smart manufacturing, etc., are no more
extended science fiction scenarios but increasingly actual facts happening around people.
However, vast amounts of data are generated as a result, and countless bits consume the
RF band. Therefore, there is an urgent need to develop methods to control and optimize
RF use effectively.

In order to solve the above problems, researchers have proposed the method of spectrum
analysis [23, 37]. The radio spectrum refers to the density distribution of radio signals
of different frequencies at different times, and it can be utilized to indicate the degree
to which radio signals of different frequencies are used in a specific spatial and temporal
range [50]. If such data is accessible, it will be possible to analyze and optimize the
wireless transmission network concisely and efficiently by the extent of RF utilization in
the area [23]. Thus, it has become important to build an easily extensible, lightweight,
and open radio spectrum data acquisition and processing platform [37].

>
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2.1.1 Spectrum Monitoring Network

There is no doubt that the supply of RF resource is always limited, which leads to a
conflict between the demand and supply. Although radio spectrum data could help to
improve the efficiency of the communication systems, there is limited knowledge about
the distribution of spectrum data in time and space. For a long time, a worldwide network
for radio spectrum monitoring, collecting, and analyzing did not exist [37]. Therefore, a
platform that can monitor RF usage with a view to controlling and optimizing spectrum
usage is urgently needed.

The major issue in building such a system is cost, i.e., collecting as much data as possible
on a larger scale using limited resources. Considering the balance between cost and benefit,
the platform must meet several requirements:

e Low cost. That is, both the development of the platform itself and the collection of
data, the cost should be kept at a low level.

e Easy to scale. In order to ensure that the geographic scope of data collection is as
wide as possible, the platform’s data collection tools need to be simple and easy to
use to facilitate the geographic expansion of data.

e Openness. Different users may be interested in different parts of the spectrum. For
example, indoor users may only be interested in frequency data for wireless LAN
and cellular networks, while users from airports may be interested in frequencies
related to aircraft communications. Therefore, the platform should also keep open
towards the collection and use of data.

e Efficient. In handling the spectrum data from all over the world, the data processing
capability of the platform should be efficient enough.

As a result, only a few spectrum collection platforms have been proposed by researchers
so far. Microsoft Spectrum Observatory uses custom sensors to collect data [55], but this
platform has not been promoted on a large scale because the sensors are too expensive.
Google Spectrum is a purpose-built spectrum data collection platform that does not cover
most of the frequency bands [15]. The researchers propose ElectroSense [37], an open,
collaborative spectrum data monitoring platform that uses lower-cost sensors to collect
data while covering a larger frequency band, and thus it becomes the infrastructure for
this work.

ElectroSense

ElectroSense consists of two parts, the central server and the sensors. The central server
is used to store, process, and analyze the RF spectrum data collected by the sensors.
The sensors are used to collect RF utilization for each frequency in the environment and
transmit it to the server side. The platform uses a crowdsensing approach to collect data
collaboratively, and anyone can purchase or assemble their own sensors and connect them
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to the platform for data collection. For the purpose of promoting the use of the platform
as much as possible, sensors usually consist of inexpensive computing devices, such as
Raspberry Pi and antennas. Thus, the open, scalable, and effective ElectroSense attracts
a large number of users and provides various services to a large number of stakeholders.

However, large-scale radio spectrum monitoring network data also faces many unique
information security issues [38], such as data integrity issues due to the openness of the
platform and data privacy issues due to the collaborative model. Next, this work analyzes
the cybersecurity issues of RF spectrum networks.

2.1.2 Security Issues on Radio Frequency Spectrum Networks

Due to the RF spectrum platform’s open and collaborative characteristics, IoT spectrum
data is particularly vulnerable to cyberattacks. Generally, network attacks can be divided
into two categories, active and passive attacks [24]. Active attacks are attacks that at-
tempt to disrupt the availability of the network through various means, such as Denial of
Service (DoS). While passive attacks do not attempt to disrupt the network but rather
listen to and steal information transmitted over the network. Table 2.1 summarizes the
characteristics of each type of attack and the main damage caused by them.

Table 2.1: Summarization of different types of attacks

Attack Category | Attack Type Characteristics Main Damage

Primary Users | Imitate the behav- | Denial of Service
Emulation  Attack | ior of the normal
(PUEA) senses, and transmit

fictitious data to the

server
Spectrum  Sensing | Transmit false data | Corrupt the spec-
Data  Falsification | to the server trum data integrity

Active attacks attack (SSDF)

Congestion Attack Attack control chan- | Disrupting network

nel performance
Jamming Attack Attack the physical | Denial of Service
layer of the network
Passive attacks | - Monitoring data | Data privacy issues
transmission

Active attacks against the RF spectrum can be classified into four different types [23].
The first type is Primary Users Emulation Attack (PUEA). This type of attack intends
to imitate sensor data and transmit these fictitious data to the server to disrupt network
performance or cripple the network infrastructure. The second type is Spectrum Sensing
Data Falsification attack (SSDF). This type of attack aims to corrupt the correctness
and integrity of data by sending false data to the server to demoralize the correctness of
network data or confuse the neighboring nodes. The third type of attack is Congestion
Attack. It intends to mimic or flood the control plane data between sensors and servers
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to undermine work performance. The last is Jamming Attack, which attempts to attack
the physical layer of the network and cause unavailability of the platform.

For passive attacks, the malicious users do not intend to damage the platform infrastruc-
ture or reduce the availability of the network but to steal the transmission data, including
spectrum data and control data. Usually, this kind of attack can be avoided by using
encryption, and such an attack could be caused due to the lack of consideration when
designing the platform or simple encryption algorithms.

SSDF Attacks

In this work, the research on cyberattacks detection mainly focuses on SSDF. For this
type of attack, device behavioral fingerprinting is a common attack detection method [42].

Table 2.2: Description of each type of SSDF attack

SSDF Attacks

Family Attack Description

Repeat Select the spectrum data for a specific period of time
Hybrid and then continuously forwards it to the server side.
Mimic This attack first defines two RF spectrum segments S,
and 9, and when the attack detects that the sensor is
about to send Sy, it replaces it with the spectrum data
that maintains S, and then sends it to the server.
Disorder This attack first defines two RF spectrum segments S,
and S, and two files F, and Fj, if the data to be sent
contains S,, then save the data to F}, and then send the
data of Fj, to the server; similarly, if the data to be sent
contains Sy, then keep the data only Fj, and then send
F, to the server.
Noise Add noise to the data containing a particular segment
before sending the data.
Hop For each specific time, which is configurable, the attack
randomly selects one segment of a given frequency band
and adds noise.
Spoof Similar to mimic, but with the addition of a noise addi-
tion mechanism.
Transmission | Freeze Copy the spectrum data for a specific time period and
Hiding replaces the spectrum data containing a specific pattern
with them.
Delay Similar to Freeze, but with the difference that Freeze
uses the same data for substitution, while Delay uses a
sliding window to save the replacement data.

Transmission
Simulation

Further research divides SSDF attacks into three categories, including Hybrid Attacks,
Transmission Simulation Attacks, and Transmission Hiding Attacks [9]. Among them,
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Transmission Simulation SSDF Attacks are used to modify the original data and transmit
fake data. Transmission Hiding is used to disguise the transmission to propagate illegal
or unauthenticated data, while Hybrid SSDF Attacks are used for both. Table 2.2 shows
the name of each specific attack and its attack description. These eight attacks shown
in the table will be used for attack identification in the later experiments. Next, a brief
introduction of device behavioral fingerprinting is presented in this work as a supplement
to the background information.

2.2 Device Behavior Fingerprinting

An exponential number of devices are connected to the network, various cybersecurity risks
and threats have exploded. As people’s life and work become more and more inseparable
from these smart networked devices, e.g. mobile phones, computers, IoT, etc., how to
protect these devices from malware attacks in offices, factories, and homes has become
more and more important. To solve this challenge, inspired by the human behavioral data
science, modelling of device behavioral data has become a promising way [46]. Flourishing
researches focus on creating device behavior patterns and fingerprints are hopeful ways
to improve the algorithm performance in cyberattack detection [48, 47]. In this section,
this work introduce the common life cycle of behavioral fingerprinting applications, and
provide a brief analysis of each of the phase.

2.2.1 Life Cycle of Behavioral Fingerprinting Application

To meet the paradox between the growing number of cyberthreats and limited resources,
two kinds of methods have been applied for cyberattacks detection: static and dynamic
analysis.

A static method is to analyze static features extracted before running an application [11].
Typically, these static techniques rely on source code analysis, permission requests anal-
ysis, control flow analysis, and signature-based detection [13]. These techniques are very
effective and efficient. However, researchers also point out that this static method could be
easily bypassed or circumvented with some confusion methods and packing techniques [11,

13, 54.

The second option is dynamic analysis, which dynamically analyzes various run-time states
of the application to determine whether it is an attack. As discussed in [14], the dynamic
analysis method shows more robust capabilities and potential than the static analysis way.
Therefore, behavioral data analysis becomes a necessity to dynamically analyze the state
of devices and applications [30, 42].
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Device behavior monitoring

. Monitor behavior data from devices.
. Data clean and data preprocessing.

Application

. Apply model to the real
product environment.

Data processing & evaluation

. Feature extraction.
. Model training.
. Model evaluation.

Figure 2.1: Life cycle of the device behavioral fingerprinting application

In this context, this work has studied the recent research of device behavior fingerprinting
techniques for attack detection, including the behavior sources, processing approaches,
and evaluation methods. Figure 2.1 shows a typical lifecycle for the device behavioral
fingerprinting applications. As illustrated, a typical lifecycle consists of three aspects.
Firstly, the device behavioral data is obtained through the data monitoring program, and
the raw data is obtained after data cleaning and pre-processing. Secondly, various tech-
nical means are applied to extract the desired features from the raw data, and then these
feature data are used to train and evaluate the model. Finally, the trained models are used
in practical applications, and feedback is obtained to improve the models continuously.

2.2.2 Behavior Source

Behavioral data refers to the dynamic data generated during the operation of a device or
application, and it comes from the generation of its operation or the interaction with the
outside. In general, behavioral data sources can be divided into the following categories:
network and communication, hardware events, system operation, resource usage, program
operation, and sensors [42].

e Network and communication. When a device communicates with the outside de-
vices over the network, network-related behavioral data will be generated, including
packets, traffic, and other related statistical and analytical data. The advantage of
this type of behavioral data is that their acquisition is universal and applicable to a
variety of different platforms, as long as they are networked. But the disadvantage
is also obvious, that is, the dimensionality of the raw data will be huge [42].

e Hardware events. As microprocessor technology improves, hardware behavior data
from the underlying layers can also be well monitored and obtained. This kind
of data could help improve the accuracy of high-level applications. However, the
variety of CPU architectures brings the difficulty of obtaining data.



2.2. DEVICE BEHAVIOR FINGERPRINTING 11

e System operation. On top of hardware, data from operating systems is also a
bright source of device behavior. Similar to hardware data, they can also improve
the effectiveness of the applications. However, the diversity of operating systems
makes it challenging to obtain this data.

e Resource usage. This is a common source of device behavior data, such as the
status of CPU, memory, disk, etc. It is easy to obtain and simple to process, but
continuous monitoring of resource usage can consume a lot of system resources.

e Program operation. The software generates a large amount of behavioral data, in-
cluding status, requests, etc. These behaviors are particularly suitable for program-
specific analysis to determine whether a program is a malware or inside attack.
Commonly used features include system calls, software status, etc.

Many studies have shown that system calls are particularly suitable for anomalies detec-
tion tasks [11, 12, 13, 27, 11, 54], therefore this work concentrates on using system calls
to identify cyberattacks in IoT environments.

2.2.3 Approaches for Extracting Features from System Calls

The system call is the way in which a user program requests a service from the operating
system (OS) kernel when executing. It contains the time of the request, the instruction
to be called, and the associated parameters. Formally, system calls can be viewed as
a sequence of function instructions, similar to a text sequence. Consequently, various
feature extraction techniques commonly used in Natural Language Processing (NLP) tasks
can be utilized in the feature extraction of system calls, such as bag-of-words, sequential
encoding, graph-based encoding, and statistical encoding approaches. These four encoding
approaches are summarized and compared in Table 2.3.

Table 2.3: System calls features comparison

Syscalls Features Computational Dimension Positional Informa-
Complexity tion

Bag-of-words Low Low Lost

Sequential Low Very High Remain

Graph based Very High Low Partly Lost

Statistical Median Low Lost

Bag-of-words Encoding

The bag-of-words model is a simple method for data representation in NLP or Information
Retrieval tasks [17]. In this approach, the system calls trace is represented as the bag of
its terms (either the single system calls word or the n-gram tokens), but discarding the
order of the terms [30]. This approach first constructs a system call dictionary and then
creates a feature vector based on this dictionary. Each dimension of the vector represents



12 CHAPTER 2. BACKGROUND

one type of system call, and therefore, the dimension of the feature vector is consistent
with the type of system calls. This approach is cheap in computation, but the positional
information is lost or partly lost.

openfile —> readfile ——> closefile —— wait

open file —— wait — close file

Figure 2.2: Example of system calls

Generally, there are two ways to fill this bag, one is to directly use the frequency of term’s
occurrence in the sequence. For example, Figure 2.2 illustrates two sequences of system
calls. Thus a system dictionary with {0: open file; 1: read file; 2 close file; 3: wait} is
constructed. Based on this dictionary and the frequency of the system calls, the 1Gram
system calls frequency feature of these above system calls sequences are presented as [1,
1,1, 1] and [1, 0, 1, 1].

And the other common method is Term Frequency-Inverse Document Frequency (TF-
IDF), which is intended to reflect the importance of a term to a document in the whole
corpus [6]. Formula 2.1 presents the calculation of the TF-IDF value for a term ¢ in a
document d, which belongs to the corpus D, where n stands for the number of terms in d,
fi,a stands for the frequency of term 7 in d, N is the number of documents in the corpus,
and |[{d € D : t € d}| is the number of documents where the term ¢ appears. Therefor,
the 1Gram TF-IDF features of above system calls are [0.45, 0.63, 0.45, 0.45] and [0.58,
0, 0.58, 0.58]. Since the readfile appears only in the first data, it has a more significant
value in the first feature vector. Compared with term frequency approach, TF-IDF is able
to extract the information on the overall corpus.

N
Hde D:ted}

tfidf(t,d, D) = % + log
i=1J7

Sequential Encoding

The sequential feature is to use numerical data to directly represent the system calls
sequence. The value of this numerical representation could be the index of the term-
dictionary, or the one-hot vector [11, 8]. For example, with one-hot encoding, the above
system calls could be presented as [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] and [[1,
0,0, 0], [0, 0, 0, 1], [0, O, 1, 0]]. Although the sequential features maintain the most of the
order and semantic information, the size of such a feature space could be very large [17].
For example, if the system calls word dictionary is 250, and the trace length is 100000,
then the system calls sequence is represented by a feature matrix with a size of 250 *
100000, but in the resource-limited platforms, this high computational consumption is
unacceptable.
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Graph-based Encoding

If system calls sequence is taken as a directed graph, then some knowledge of graph theory
can be applied to the encoding of system calls [52, 18]. A common encoding algorithm is
the dependence graph [2], in which a directed graph of system calls is first constructed,
where the nodes are specific system calls and the node-to-node edges are the Euclidean
distances between them. Then, by traversing the whole sequence, an dependence matrix
is constructed [13]. The dependency of two system calls s;, s; could be calculated by
formula 2.2, where p(s;) and p(s;) are the position of these two system calls in a sequence,
and k is the total length of the system calls. Thus, the dependency of system calls can be
calculated pairwisely.

0 TR
dependency(si,sj):{ e (2.2)

1
Zi<j<k p(s;)—p(s;)’ clse

The first example in Figure 2.2 can be calculated based on the formula that its dependency
graph feature is represented as:

openfile readfile closefile wait

open file 0 1 1/2 1/3
readfile 0 0 1 1/2 (2.3)
close file 0 0 0 1

wait 0 0 0 0

In this approach, the obtained dependence matrix retains part of the distance information
of the sequence, which could be calculated with. However, in practice, to compute such
a matrix requires a large amount of computation resource, especially when the sequence
length is long.

Statistical Encoding

The previous methods are word or term level encoding techniques, but in this kind of
model, high level statistical features were used, like the max frequency of these terms,
and the standard deviation of the frequencies in the sequences [27]. In general, it is used
as a complement to other features rather than using it alone.

2.3 Artificial Intelligence in Anomaly Detection

Once behavioral data is obtained from different types of sources, fingerprints could be
created by processing these monitored raw data. Dozens of approaches could be applied
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in behavioral fingerprints creation, but this work focuses on artificial intelligence (AI)
techniques, that is MLL and DL approaches. This section briefly introduces the fingerprint
creation techniques and evaluation methods, including the centralized technologies, as
well as the distributed and privacy persevering approach.

2.3.1 Machine Learning and Deep Learning

Nowadays, ML and DL algorithms are dominating the field of data processing and data
mining and playing an increasingly important role in scientific and industrial practices [5].
ML and DL can be applied to many different tasks, such as classification, regression,
clustering, etc. This work focuses on using them in anomaly detection tasks.

Anomaly detection refers to finding the outliers that differ from normal data patterns [10].
In other words, the goal of anomaly detection is to separate normal data from abnormal
data. Frequently used ML-based anomaly detection algorithms include One-class Support
Vector Machine, Robust Covariance, Isolation Forest [3].

Based on the improvement of computing power and artificial intelligence theory, Deep
Neural Networks (DNN) have made significant progress after 2010s [22]. Whether in the
areas of natural language processing, computer vision, or recommendation systems, DL
has demonstrated its impressive capability. Autoencoder-based models are widely used in
various unsupervised learning tasks, and their excellent performance allows DL algorithms
to prevail in anomaly detection tasks as well [34].

One-class Support Vector Machine

Traditional support vector machines (SVM) are commonly used for binary or multi-label
classification tasks, i.e., finding the appropriate hyperplane to slice the data space accord-
ingly to separate data [49]. This means that the training data corresponds to different
labels, and the model needs to find the patterns to map to the appropriate labels. How-
ever, One-class SVM assumes that all of the training data only contain one class of label,
and the model needs to find the support vectors which could discriminate the normal
data from outliers [43, 44]. Any data point that falls out of the discriminative boundary
is called an outlier. With the kernelized methodology, One-class SVM is well suited for
tasks with high data dimensionality and large data volumes [43]. Meanwhile, the One-
class SVM algorithm makes no assumptions about the distribution of the data, which
adds to its attractiveness.

Robust Covariance

Robust Covariance is another commonly used anomaly detection algorithm. Different
from One-class SVM, Robust Covariance assumes that normal data follows the Gaussian
distribution while defining the boundaries of inlier and outlier data as elliptical or ellip-
soidal [41]. Based on this, the algorithm estimates the location and covariance of the
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normal data from the training data and try to find the optimal elliptic boundary. The
algorithm is stable during the border selection and not easily disturbed by outlier data.
Besides, Mahalanobis distance instead of Euclidean distance is used to metric the distance
between the data points. Overall, Robust Covariance has high robustness and effective-
ness. However, its data distribution assumptions and high computational consumption
limit its usage scenarios.

Isolation Forest

When dealing with high-dimensional datasets, random forest is always an attractive way.
Hence, naturally, the Isolation Forest is also widely applied for anomaly detection. The
algorithm recursively selects a feature as the segmentation feature of the data. It randomly
selects a value as the basis for partitioning to build a tree-like model. A set of such trees
eventually forms a random Isolation Forest, where the path length from the root to the
leaf nodes of the tree is used as a basis for distinguishing normal data from abnormal
data [25, 26]. Compared with other models, Isolation Forest has better interpretability.

Autoencoder

Autoencoder method aims to acquire the recondite features of the training data by re-
construction the original data using the hidden layers [51]. Figure 2.3 shows a common
architecture of the Autoencoder Neural Networks. The left part is called encoder, which
is used for mapping the original data to a low-dimensional space. And the right part
becomes decoder, which is responsible for reprojecting the low-dimensional data into the
original dimensional space. During this process of compression and reconstruction, the
hidden information in the data is revealed. In this process, normal data will be recon-
structed reasonably, but abnormal data will not. As long as a suitable threshold can be
selected, normal data and abnormal data would be separated effectively [34].

As aforementioned, these algorithms are all centralized, which means that they do not
take into account the privacy issues may arise during the training and evaluation process.

2.3.2 Federated Learning

These before mentioned ML and DL algorithms have a wide range of applications in
anomaly detection, but they are not designed for privacy-preserving scenarios. In the
traditional ML/ DL-based IoT anomaly detection pipeline, data are collected in IoT
sensors and then uploaded to the central server for model training and evaluation. This
process is shown in Figure 2.4 (A), where the data has to be shared to the server in order
to train the model, even if the data contains private or sensitive data. In this centralized
training process, the risk of data leakage may occur [39].
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Figure 2.3: Network Architecture of Autoencoder
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Figure 2.4: Pipelines for traditional ML and DL frameworks (A) and FL framework (B)

Recently, FL [28] has gained the attention of academia and industry because of its decen-
tralized data architecture and privacy protection strategy. As shown in Figure 2.4 (B), in
FL, individual nodes, or called clients, generate and collect their own datasets in a decen-
tralized way. Differ from the traditional approach, data will not be uploaded to the server
or shared with other peers but only used for the training and evaluation of the nodes’ local
models. Thereafter, the trained local model parameters of each node are directly uploaded
into the server, and a global model is integrated by the server. After multiple iterations
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of training, the converged global model is distributed to individual nodes [53]. Privacy
protection has been considered in the architectural design of FL. Thus it is particularly
suitable for the field of cybersecurity [33].
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Chapter 3

Related Work

This chapter analyzes existing works on attack detection using system calls. The first
section of this part reviews and analyzes the current state-of-the-art techniques that adopt
system calls for cyberattack detection. Finally, this document summarizes and compares
the characteristics of the various cyberattack detection approaches through system calls.

3.1 Cyberattack Detection Through System Calls

ML and DL technologies have shown great power in numerous tasks. As a data-driven
task, cyberattack behavior detection is highly suitable for ML methods. This section
detailed discusses the application of Al techniques to identify cyberattacks.

3.1.1 Traditional Machine Learning Methods

Many tasks still use traditional ML architecture because of its superior performance,
simple architecture, and strong interpretability. Similar to natural language, system call
traces are also sequential data. Thus several techniques of NLP could be transplanted
into system calls-based malicious identification methods. VMGuard [30] is an intrusion
detection tool in cloud environment. In this work, system call traces are collected by a
syscall tracer, and then Bag-of-Ngram vectors are generated by a pre-processor. Then
these features are selected by the TF-IDF method, which is also commonly used in NLP
tasks. Finally, selected features flow into a Random Forest classifier to identify the attack
traces.

[27] has pointed out that most of the existing works are platform-dependent, thus these
works are hardly transplanted into other platforms. Therefore, this work proposes a low-
time consumption cross-platform system. This system extracts and computes the system
call sequences, Ngram features, and frequency metrics from the input data. Instead of
using these features directly, this system calculates the statistical metrics of the original
features, e.g., the entropy, standard deviation. Several ML methods are applied in this
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work, including Isolation forest, LOF, One-class SVM, and kNN. After comparing different
datasets, their method achieves the best average AUC result with 0.737. Experimental
results also show that their method presents a high platform-independent ability. It can
detect malicious behaviors in both Linux and Windows platforms simultaneously without
changing any parts of the architecture.

Hindroid [20] is an Android-based malware detection system. Researchers use a hetero-
geneous information network to represent the system calls semantically. They use the
multi-kernel learning algorithm to integrate different similarities learned from the HIN
and determine the final label for each input data. With a comprehensive experimental
study on the real-world data, their models show a strong identification ability for ten
malware families with an average detection rate of 0.991.

When applying system calls features for malware detection, the real problem is that the
dimension of the feature vector extracted from system call traces could be vast. This may
cause resource consumption problems in the learning and detection phases. [13] proposes
a dependency function, which could significantly reduce the feature dimensions. Exper-
iments show that the dependency graph encoding is better than one-hot and frequency
representation. Another dimension reduction method is proposed by [4], which uses the
Gaussian dissimilarity method to select the most valuable features from the system call
sequences. They use a simple Gaussian Bayes classifier for the malware classification and
achieve an accuracy score of 0.98.

The aforementioned methods and researches focus on the traditional environment, i.e., the
desktop and mobile environment. However, there are many constraints in IoT devices,
like computing capabilities and energy consumption. Consequently, lightweight overhead,
wide-coverage, and real-time detection methods are required for IoT defense solutions |7,
31].

A frequently-used method for IoT intrusion detection is the signature-based technique.
While the signature-based method is simple enough, it could be easily bypassed with well-
decorated malware. Thus [1] proposes a refining signatures selection method. This system
uses the system calls to generate dynamic signatures for applications. Then a refinement
module is used to select a minimal set of run-time signatures to classify the malware and
benign. Their experiments show that this simple system calls-based signature system
could identify the malware with 100% accuracy, and only seven signatures are enough
to detect seventy types of malware. [7] presents a white-list mechanism for malware
detection. They use system calls and hashing functions to generate fingerprints of normal
software. During the detection period, they compare the hash code created by the system
calls with the white-list and decide whether to terminate the application. They use seven
different types of IoT devices for model testing. Results show that their model could
provide identity malware with a 100% accuracy score.

However, this offline-generation-online-detection mechanism frequently updates signatures
and rules database, which puts additional pressure on IoT devices [16]. Similar to tradi-
tional environment malware detection, ML methods are applied in IoT malware classifi-
cation. [19] implements a multiple one-class SVM classifiers system to identify six families
of malware. Experiments show that their model could recognize unknown malware in-
stances with similar behaviors (up to 0.97 detection rate). [16] combines eighteen system
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calls, twelve network-based features, and two distributed hash table features to represent
the network and system-level information. Their experiments show that the system calls
features provide the most supports, followed by network features and DHT features.

[31] combines the white-list with ML method to address the computational cost issues.
They propose a three-submodel system, including a process white-list module to generate
a process white-list, a process behavior module to collect the run-time process parameters,
and a system call behavior module to generate 136 dimension metrics. This device-edge
split architecture system could balance efficiently and effectively.

3.1.2 Deep Learning Methods

Besides these traditional ML techniques, recent approaches based on end-to-end neural
networks offer a promising alternative. For example, recurrent Neural Networks (RNN),
Long-Short Term Memory (LSTM), and Convolutional Neural Networks (CNN) are com-
monly used for malicious behaviors detection.

Traditional ML methods use many simplifying assumptions, like the data balance, which
may not be practical in a real-time environment. [21] introduces a DL architecture model
for malware classification. This model uses one-hot vectors to encode the system call
sequences and then applies a jointed model with CNN and LSTM networks. This model
shows excellent performance for eleven families malware identification, which achieves an
average precision of 0.856.

VizMal [11] is a visualization and analysis tool of system calls for Android systems. This
application consists of an image builder for execution traces’ activity-level visualization
and a trace classifier for maliciousness computation. Extracted from system calls, execu-
tion traces are represented as one-hot metrics, and then a LSTM neural network has been
applied for malware classification. Experiments show a high performance of its malware
detection effectiveness with a 0.098 False Positive Rate (FPR). This VizMal tool provides
a tool that visually displays application activity and threat levels to help us better un-
derstand the behaviors of malware. At the same time, the experiments in this article also
verify the potential of DL in the detection of malicious behaviors.

[2] proposes a multi-level architecture for malicious behaviors identification. After being
extracted from the system calls traces, a dependency matrix is computed by using a
dependency function based on [13]. Then, a four-layers CNN model, which contains two
convolutional layers and two dense layers, is used for final inference. This system achieves
a high accuracy score of 0.9333.

However, even with these powerful ML and DL detection techniques, malware packed by
complex packers could bypass these system [54]. Therefore, they implement a principal
component initialized DNN to solve the packing problem. They use the Information
Gain to construct a sensitive system calls set and apply their PC-DNN to train their
model. With careful experiments of feature engineering and hyper-parameter selection,
their model gets a 0.956 detection accuracy score.
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Table 3.1: Comparison of different cyberattacks detection approaches through system
calls
Solution | Device Type Features Attack Algorithms Performance
[20], 2017 | Android Bagofwords |\ 1roid Malware | Mult-Rernel g 100 7pg
(Frequency) Learning
90% accuracy,
[12], 2018 | Cloud platform ?ﬁi;ﬁeﬁ;‘;b Malicious Intrusions | kNN 96% TPR
42.5% TNR
[54], 2018 | Desktop Bag-ofwords 1y 1 e DNN 95.6% TPR
(Frequency)
Bag-of-words PR . NN, SVM,
[16], 2020 | IoT (Frequency) Malicious Intrusions Adaboost >99.3% accuracy
[19], 2020 | IoT Bag-of-words Malicious Intrusions | One-class SVM | 98% F1-Score
(Frequency)
Bag-of-words . .
[31], 2019 | IoT Malicious Intrusions | Random Forest | 100% TPR
(Frequency)
Bag-of-words Random Forest,
[13], 2016 | Android (Frequency) Android Malware SVM, LASSO, >93% accuracy
+Graph-based Ridge Regression
, oud platform ag-o™- ‘ Malicious Intrusions andom Forest >94%
301, 2018 | Cloud platf ?;%_‘f]gg‘))rdb Malicious I Random F 94% TPR
[2], 2019 | Android Graph-based Android Malware CNN g%g? :S%lracy’
[52], 2019 | IoT Graph-based Malicious Intrusions | Autoencoder 98.6% precision
[4], 2018 | Android Sequential Android Malware Gausglan Bayes 98% accuracy
Classifier
[11], 2020 | Android Sequential Android Malware LSTM 90.2% TPR
[32], 2019 | Cloud platform | Sequential Malicious Intrusions | LSTM >90% accuracy
] . 85.6% precision
[21], 2016 | Desktop Sequential Malware CNN-+RNN 89.4% on recall
(1], 2017 | IoT Sequential IoT Malware White List 100% accuracy
(7], 2019 | IoT Sequential Malicious Intrusions | White List 100% accuracy
[45], 2020 | IoT Sequential IoT Malware RNN 98.7% accuracy
Sequential .,
+ Bag-of-words N _ Isolation forest,
[27], 2020 | Desktop Malicious Intrusions | LOF, kNN, 0.737 AUC score
(Frequency)
+Statistical One-calss SVM

[45] implements a feature generation module with combining the Bag of N-gram and
TF-IDF techniques in IoT environment attack detection. Unlike the previous work, [45]
uses a RNN model for malware identification. Experiments show that this simple RNN
architecture model achieves a 0.987 accuracy score for telnet-based attack detection in
the IoT environment.

3.2 Summary and Comparison

Table 3.1 gives an overview and comparison of the reviewed works from the aspects of
their detection scenario, features extraction approaches, detected attack, technique, and
performance.
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e Overall, most of the studies focus on platforms with high computational power,
such as desktop and cloud platforms, and there are fewer studies based on IoT
environments.

e In terms of feature extraction methods, considering various aspects such as the
dimensionality of the features and the ease of extraction, researches using Bag-of-
word approaches, especially Frequency approaches, dominate among the various
methods.

e Except for [7] which compared the computational cost of the proposed system on
different datasets, none of the other works provided a discussion of the computational
cost. Meanwhile, no study compared the performance and computational cost of
different feature extraction approaches.

e For the selection of algorithms, there are more works based on traditional ML al-
gorithms than DL algorithms, but they all achieve good results. However, there is
no work comparing different algorithms’ performance and resource usage simulta-
neously.

e None of the existing solutions consider the privacy of data, i.e., there is no restriction

on the transmission of data during the training of the model.

Based on the previous facts, a SSDF cyberattack detection approach which aligned with
system calls fingerprinting and privacy-persevering detection framework is urgently needed.
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Chapter 4

Scenario and Solution Design

This chapter describes the analysis and design of the system in detail. First, an analysis
of the characteristics of the system is done through use cases and scenarios, and then
the requirements to be met by the system are summarized. Based on the requirements
analysis, a further design of the architecture is completed. The methodology of the system
is introduced by a detailed explanation of each module in the architecture.

4.1 Uses Case

Billions of wireless devices are connected to the Internet, and Petabytes of data are trans-
mitted over networks. In order to optimize the spectrum utilization of wireless networks,
collaborative RF spectrum data platforms have emerged. As demonstrated, because of the
limited computational resources, these sensors are extremely vulnerable to cyberattacks.
Therefore, a system that could analyze and detect different types of cyberattacks and
adapt to these limited resource devices needs to be developed urgently. In this section,
the functions and characteristics of the system are analyzed and elaborated through use
cases and scenarios, and the requirements of the system are refined to provide the basis
for the system design work.

4.1.1 Infrastructure

Before describing the scenario, the information infrastructure of the system is introduced,
including the RF spectrum monitoring platform, sensors, and the SSDF attacks involved
in the experiment.

RF Spectrum Monitoring Platform

ElectroSense [37] is the selected crowdsensing RF spectrum monitoring platform for val-
idating the proposed system and evaluating the performance when identifying anomalies
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generated by SSDF attacks. On the one hand, sensors connect to the ElectroSense plat-
form through the Internet, monitor the RP spectrum data over the environment, and send
the data to the platform. On the other hand, multiple SSFD attacks infect the sensors
and affect the integrity of the spectrum data. The proposed system needs to detect these
anomalies through device behavioral fingerprint data, specifically system calls, combined
with Al algorithms.

Sensors

As aforementioned, this system is embedded in the sensors which are connected to the
ElectroSense platform. This work uses a broad range of Raspberry Pi devices equipped
with SDR kits as the sensing infrastructure for the proposed system, including Raspberry
Pi 3, Raspberry Pi 4 2GB, and Raspberry Pi 4 4GB. The Table 4.1 compares in detail their
models, system versions, processing power, and memory size. All the sensors are located
in the LAN_1 and then connected to the ElectroSense platform through the Internet to
send the RF spectrum data.

Table 4.1: Sensors used in the system

Device Type OS Version Kernel CPU Frequency | Total Memory

Raspberry Pi 3 | Raspbian 9.13 | armv7] Linux | 1.2GHz 925MB
5.4.59-v7+

Raspberry Pi4 | Raspbian 9.13 | armv7] Linux | 1.5GHz 1867MB

2GB 5.4.83-vTl+

Raspberry Pi 4 | Raspbian 9.13 | armv7] Linux | 1.5GHz 3828MB

4GB 5.4.83-vTl+

All the sensors are based on the Raspberry Pi platform, using a customized Linux system
based on the Raspbian OS, and the CPU architecture is based on the ARM architecture.
The Rasp3 device has the lowest performance, with a CPU frequency of 1.2 GHz and
less than 1 GB of RAM. While the Rasp4 2G and Rasp4 4G devices have the same basic

technical specification, except that the 4G version runs in a larger memory.

SSDF Attacks Affecting Spectrum Integrity

Chapter 2 has identified eight different SSDF attacks that could affect the integrity of
RF spectrum data. Each sensor implements the behavioral monitoring module for moni-
toring and sending the device’s behavior. Meanwhile, the eight SSDF attacks, including
Repeat, Mimic, Disorder, Noise, Hop, Spoof, Freeze, and Delay, infect each sensor and
generate anomalous system calls behavioral data, which are also monitored and collected
for training and evaluation of the proposed approach.
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4.1.2 10T Spectrum Data Integrity Affected by CyberAttacks

This scenario defines two main types of stakeholders for this system, the crowdsensing
client user and the server maintainer. In the client side, sensors collect RF spectrum data
and send it to the central server. And the server responses for data storage, processing, and
visualization. However, due to the open and collaborative characteristics of RF spectrum
platform, malicious users may confuse, interfere, and attack the platform. To identify
these malicious users, this system needs to collect data, train models, and then detect
attacks. The use cases for these two types of users are defined in the following Table 4.2
and Table 4.3.

Table 4.2: Use cases of crowdsensing client user

ID Use Case Description

UC.1.1 As a client user, I want the system to detect cyberattacks without
sharing any personal data with others, including the server and other
peers.

UC.1.2 As a client user, even I do not want to share the data directly with
others, but I still want to get benefits from the information shared by
others.

UC.1.3 As a client user, the fewer system resource used for attack detection,
the better.

As shown in Table 4.2, the crowdsensing client user wants its device to be able to effectively
detect cyberattacks but also does not want to share its sensitive data with others. The
client user cares more about data privacy. However, if a high-level knowledge could help
to improve the detection ability of the system, the client user will not refuse such an
opportunity. Meanwhile, as the device resource is constrained, the client user does not
want to cost too much computational power in cyberattack identification.

Table 4.3: Use cases of server maintainer

ID Use Case Description

UcC.2.1 As a server maintainer, I want the system could accurately detect at-
tacks.

UcC.2.2 As a server maintainer, I want the system could be applied to as many

types of devices as possible. Even for unknown device types, I want
the model to still work well.

UcC.2.3 As a server maintainer, I want the system could identify as many types
of attacks as possible, not only spot these recognized attacks but also
could detect these unknown attacks.

The Table 4.3 defines the use case for the server maintainer, who wants to detect attacks
accurately. Since various sensors are connected to the system, he wants the model to
adapt to as many different types of sensors as possible. At the same time, the detection of
attacks should not be limited to known ones but should ideally be for unknowns as well.
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4.2 Requirements Analysis

According to the above use cases, this section summarizes and concludes the user require-
ments from several aspects, such as monitoring of system calls, extraction of data features,
and the training process of the model.

Table 4.4 summarizes the requirements of the system. In data collection, system calls
should be collected from various devices. Secondly, to protect user privacy, these data
must be used only for local model training and evaluation and should not be uploaded to
the server or shared with other clients. At the same time, system calls monitoring should
consume only a few system resources. Since the data are collected from different devices,
they are non independently identically distributed (non-1ID).

Table 4.4: System requirements analysis

System Process ID Requirement Description
R1.1 System calls should be collected
from different types of devices.
R1.2 Data can only be used for local
Data Monitoring model training and evaluation.
R1.3 System calls monitoring should not
consume many system resources.
R2.1 The process of feature extraction

Feat Extracti
eature Lxtraction should not take up a large amount

of computational resources.

R2.2 The dimensionality of the features
should not be too high.
R3.1 The architecture of the model
.. . should be kept simple and efficient.
Model Training and Evaluation R3.2 The model should be able to be ap-
plied to various types of clients.
R3.3 The model should consume as few

system resources as possible during
both training and evaluation.

R3.4 The model should be able to detect
not only known attacks, but also
unknown ones.

During the feature extraction processing, a small amount of system computational re-
sources should be taken up. Meanwhile, to balance the identification efficiency and effec-
tiveness, the feature dimensionality should be at a low level.

Considering the limited computing resources of the devices connected to the platform, the
model should be constructed as simply as possible and be generalizable across devices.
At the same time, the training and evaluation of the model should not crowd out the
normal operating resources of the device. Besides, the model should be able to identify
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unseen attacks and detect even zero-day attacks. Finally, all training data should not be
uploaded to the server for training in order to protect the data privacy of users.

These user requirements are identified during the system analysis phase, which helps a
better system architecture design and the correct selection of features, algorithms, and
training strategies.

4.3 System Architecture

The previous section has defined the requirements of this system. This section describes
the architecture that is chosen to implement the above functionality. First, the overall
architecture of the proposed system for identifying and detecting cyberattacks affecting
IoT sensors is drawn. After that, an introduction of the layers and modules of this
detection system is presented with a detailed description of each component.
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Figure 4.1: System Architecture Overview
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Visualized in Figure 4.1, this system has been integrated into the IoT spectrum sensors
and consists of two main components, the data layer, and the detection layer. The data
layer is responsible for system calls monitoring, data prepossessing, and feature extraction.
The detection layer is used for cyberattacks identification.

4.3.1 Data Layer

The data layer is in charge of data collection, cleaning, pre-processing, and feature mining.
To ensure data privacy, the data layer only works in the local device, and the obtained
data can just be saved in the local machine. This section introduces each module of this
layer according to the flow of the data stream.

System Calls Monitoring Module

The Electrosense-sensor Services program runs on the spectrum sensors, and this mon-
itoring module needs to monitor its system calls when it requests services from the OS
kernel. In order to meet the requirements defined above, this monitoring application must
not consume too many device resources and could run on all listed types of devices.

Thus, the data monitoring module is used to collect system calls from Electrosense-sensor
Services and its sub-processes. It can also replace the normal service component with the
attacker component to simulate collect system calls of an attacked process. The collected
normal and attacked system calls are stored locally for further data cleaning and feature
extraction.

#!/bin/bash

3|# copy attack to the electrosense—sensor services and restart the services

service electrosense—sensor—mqtt stop

s/cp $attack /usr/bin/es_sensor
il service electrosense—sensor—mqtt start

# get the pid
pid=$(ps aux | grep es_sensor | grep —v sudo | grep —v grep | awk '{print

$2}17);

# start perf to monitor the system calls and save results to local
timeout —s 1 ${time_window} perf trace —o /data/attack_setup/dataset/${path
}.txt —e !manosleep —T —p ${pid};

Listing 4.1: Code for system calls monitoring

Listing 4.1 shows the main code blocks of the system calls monitoring module. Firstly, the
script replaces the service with the wanted one and restarts the changed service. Then, the
target PID is obtained with some filters. Moreover, the program uses the perf tool [35],
which is a commonly used Linux system monitoring and maintenance tool, to get the
system calls and save them to local files.
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Table 4.5: Resource usage for system calls monitoring in each device

Device Type CPU Usage (%) Memory Usage (MB)
Raspberry Pi 3 29.8 6.3
Raspberry Pi 4 2GB 20.2 6.4
Raspberry Pi 4 4GB 15.6 6.5

In terms of resource consumption, these monitoring scripts fully consider the limitations
of resource-constrained platforms, and the overall resource consumption rates are all low.
Table 4.5 lists the CPU and memory usage by system call monitoring script on each
device, and it can be seen that the average CPU consumption is around 20%, while the
average memory consumption is around 6MB, which is at a low level.

For each device, this module monitored two separate rounds of system calls. Each round
was monitored for a total of 56 hours, with 6 hours of normal data and 6 hours of moni-
toring for each of the eight types of SSDF attacks.

Feature Extraction Module

e Data Cleaning. Typically, the obtained native system calls contain the request
time, the requested calls, and the associated parameters. However, only the specific
system calls are of interest, and hence other non-relevant data should be removed in
the data cleaning phase. After this step, all non-relevant data have been removed,
and system call sequences are retained.

e Feature Extraction. However, the obtained system calls trace is still textual data
and cannot be directly used for model computation. Therefore, the raw data needs
to be converted to feature vectors. This work uses three families of feature extraction
approaches, which have been introduced in chapter 2, for encoding the system calls
behavioral data. The Table 4.6 shows that the bag-of-words extraction approach
creates 13 specific features from three techniques, including 1Gram to 5Gram Fre-
quency, 1Gram to 5Gram TF-IDF, and a simple Hashing encoding technique. For
the Sequential approach, the One-hot and the Dict-index encoding approaches are
used. Furthermore, for the Graph-based method, the Dependency-graph encoding
is used.

e Normalization. Normalization is necessary for some ML algorithms since they are
sensitive to the range of values of the input data. Min-max feature scaling approach
is used for data normalization, which is an element-wise operation to map each di-
mension of the feature value to [0, 1] by the formula 4.1, where x is the original data,
and x_min and x_max are the extreme values for each dataset. The normalization
scalers are only calculated in the training processing for each dataset. Note that
each client has its own data scaler.

/ T — Tmin

Tmaz — Tmin
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e Feature Selection. Different approaches differ in terms of their computational cost
and the detection performance of cyberattacks. Therefore, in the next chapter,
different feature extraction approaches (listed in Table 4.6) are evaluated and com-
pared in detail in terms of computational resource utilization, data dimensionality,
and anomaly detection performance to select the most effective methodology.

Table 4.6: Feature Extraction Approaches for Encoding System Calls Behavioral Data

Feature Extraction Approach | Feature Encoding Type
Frequency 1Gram
Frequency 2Gram
Frequency 3Gram
Frequency 4Gram
Frequency 5Gram
Bag-of-words TF-IDF 1Gram
TF-IDF 2Gram
TF-IDF 3Gram
TF-IDF 4Gram
TF-IDF 5Gram

Hashing
i One-hot
Sequential Dict-index
Graph-based Dependency-graph

4.3.2 Detection Layer

Based on the aforementioned use cases and requirement analysis, the detection layer is
used by the system to train and evaluate the attack detection model. Due to the need
for privacy protection, data cannot be uploaded to the server, and thus FL is the most
suitable mechanism for model training.

FL based Approach

The flows of data and models during model training and evaluation processes are illus-
trated in detail in Figure 4.2. After feature extraction, the data is used for local model
training (step 1), and then the model parameters are transferred to the server (step 2).
The server updates its global model parameters through the Aggregation strategies, and
then the global model is distributed to each client (step 3). Through multiple iterations,
the model converges and the final global model is used to evaluate the client data and
detect possible attacks (step 4). On the client side, five algorithms for anomaly detection
are used, experimented with, and compared to meet the purpose of identifying attacks, in-
cluding One-class SVM, Robust Covariance, Isolation Forest, Stochastic Gradient Descent
One-class SVM, and Autoencoder.
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Figure 4.2: Detailed view of the detection layer

Model Initialization

The server side is responsible for the parameter initialization of the global model. First,
a global model is created and be initialed with some random weights. Then, this initial
model is transmitted to the clients, and the FL process is started.

Parameter Aggregation

Once the training process starts, weights wy, of local models k in [K] clients are updated
by the training strategies, and then these parameters are sent to the server side. A set new
global model weights w will be aggregated from these local models. A federated average
function will be used for this parameter aggregation, which is calculated by formula 4.2,
where w is the weights of the updated global model, w;, is the parameter of each local
model, and K is the number of clients.

Evaluation Metrics

It is crucial to correctly evaluate the performance of different solutions. In this work, four

main metrics are used to make comparison and evaluation of each approach, including
True Positive Rate (TPR), True Negative Rate (TNR), Accuracy, and F1-Score. Their
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definitions and descriptions are shown in the Table 4.7, where TP stands for True Positive,
TN stands for True Negative, FP means False Positive, and FN means False Negative.

Table 4.7: Evaluation metrics for cyberattacks detection solutions

Evaluation Metrics Description Definition
True Positive Rate (TPR) | The ratio of actual posi-

tives correctly predicted. TP+ TN

TP+ FP+TN+ FN

True Negative Rate (TNR) | The ratio of actual negative

correctly predicted. L

TP+ FN

Accuracy The ratio of correctly pre-

dicted items to the total _ N

items. FP+TN
F1-Score The harmonic mean of pre-

cision and recall score. TP

2TP + (FP+ FN)




Chapter 5

Implementation

The previous chapter develops the architecture of the FL-based cyberattack detection
system. In accordance with it, this chapter describes the implementation details of the
proposed system. First, it compares the distribution of system calls in each type of device.
As the basis of model training, finding the most suitable feature extraction approach is
very important. The second part of this chapter compares the advantages and disadvan-
tages of different feature extraction methods in detail and selects the most appropriate
one. Finally, as the key to the detection system, the efficiency of the algorithm is crucial.
The performance of different ML and DL algorithms is compared in the last section.

5.1 Data Exploration

This section describes the destruction of system calls in each device. Their distributions
follow a similar pattern but still have some differences. Therefore, this section first ana-
lyzes the types of system calls among different devices and then compares the distribution
of different system calls over different attacks. The data show that the distribution of
system calls for normal behavior differs significantly from that for attacks, which provides
a solid basis for subsequent attack detection.

Table 5.1: Appeared system calls in each type of device

Device System Calls

Raspberry Pi 3 | ioctl, timerfd_settime, poll, getpid, write, futex, mkdir, open, close,
fstat64, getdents, read, unlink, mprotect, madvcise

Raspberry Pi 4 | ioctl, timerfd_settime, poll, getpid, write, futex, mkdir, open, close,

2G fstat64, getdents, read, unlink, mprotect, madvcise, clock _gettime,
gettimeofday

Raspberry Pi 4 | ioctl, timerfd_settime, poll, getpid, write, futex, mkdir, open, close,

4G fstat64, getdents, read, unlink, mprotect, madvcise, clock_gettime,
gettimeofday

35
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Table 5.1 illustrates the system calls obtained by monitoring that appears on each device.
It is clear that 15 different system calls appear on the Raspberry Pi 3, and they also
appear on the other two devices. However, there are two system calls, clock_gettime and
gettimeofday, which only appear on the Raspberry Pi 4 family of devices. Both of these
system calls are used to get the system time and time zone, but they do not appear in
the Rasp3 devices due to differences in the OS kernel.
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Figure 5.1: Heatmap of average frequency of system calls on different types of datasets

Another question is whether there is a distinction among different system calls under
normal and under attack. Figure 5.1 uses a heatmap to show the average frequency of
different system calls in different situations. Obviously, except for the two aforementioned
system calls, clock_gettime and gettimeofday, the average number of rest system calls are
close on different devices. Besides, there is a huge difference between normal data and
attack data. For example, system calls such as open, close, read and mkdir only appear
in the attack data. This data visualization implies that the attack and normal data are
linearly separable.

gettimeofday ..........

madvise
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5.2 Feature Selection

Chapter 4 identifies three feature families, including bag-of-words, sequential, and graph-
based features. Since the proposed system operates in IoT devices, the efficiency of
extracting these features, as well as the performance of identifying cyberattacks, is a cru-
cial consideration. This section compares various feature extraction methods in several
aspects, including the dimensionality of the feature vector, the time of feature transfor-
mation, and the system resource consumption. On the other hand, the computational
resource consumption of feature extraction approaches also depends on the hardware.
Therefore, these approaches’ computational cost and detection performance will be con-
sidered in combination with the actual cost and cyberattacks detection performance in
different types of sensors. Taking into account the efficiency and effectiveness, the final
selected features will be used in the FL-based attack recognition system.

The feature extraction methods compared in this section fall into three categories: bag-of-
words, sequential, and graph_based. The efficiency of each method in extraction, including
the features dimension, computation time, and resources required for transformation, is
examined. Table 5.2 to 5.4 show the efficiency side of various feature extraction methods
in detail. The compared approaches include 1Gram to 5Gram system calls frequency
based, TF-IDF based, and hashing based methods, sequential methods based on one-hot
encoding and dictionary index encoding, dependency graph approach. To be noted that
the data represented in the table is the time or resources used to transform one piece of
data.

Table 5.2: Comparison of system usage of various feature extraction approaches on Rasp-
berry Pi 3

Feature Feature Type Feature Extraction | CPU Us- | Memory
Extraction Dimension | Time (s) age (%) Usage
Approach (MB)
Frequency 1Gram 17 0.61 96.07 55.03
Frequency 2Gram 137 1.26 96.37 58.46
Frequency 3Gram | 596 1.94 97.17 61.76
Frequency 4Gram 1844 2.67 97.75 70.06
Frequency 5Gram | 4377 3.42 97.97 77T
BoW based| TF-IDF 1Gram 17 0.61 95.38 55.20
TF-IDF 2Gram 137 1.26 96.69 58.61
TF-IDF 3Gram 596 1.95 97.30 63.81
TF-IDF 4Gram 1844 2.66 97.60 70.55
TF-IDF 5Gram 4377 3.41 98.26 77.06
Hashing 32 0.70 95.40 77.06
Sequential One-hot 3,060,000 - - -
Dict-index 180,000 - - -
Graph Dependency-graph | 289 - - -
based
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Table 5.3: Comparison of system usage of various feature extraction approaches on Rasp-

berry Pi 4 2G
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Feature Feature Type Feature Extraction | CPU Us- | Memory
Extraction Dimension | Time (s) age (%) Usage
Approach (MB)
Frequency 1Gram 17 0.26 91.93 54.46
Frequency 2Gram 137 0.52 95.23 56.35
Frequency 3Gram | 596 0.81 95.36 60.43
Frequency 4Gram 1844 1.12 95.91 65.87
Frequency 5Gram | 4377 1.44 96.71 72.30
BoW based| TF-IDF 1Gram 17 0.26 92.38 51.72
TF-IDF 2Gram 137 0.52 95.92 56.67
TF-IDF 3Gram 596 0.82 95.66 58.97
TF-IDF 4Gram 1844 1.12 95.63 64.36
TF-IDF 5Gram 4377 1.44 96.96 70.99
Hashing 32 0.35 93.86 51.98
Sequential One-hot 3,060,000 - - -
Dict-index 180,000 - - -
Graph Dependency-graph | 289 - - -
based

Table 5.4: Comparison of system usage of various feature extraction approaches on Rasp-

berry Pi 4 4G

Feature Feature Type Feature Extraction | CPU Us- | Memory
Extraction Dimension | Time (s) age (%) Usage
Approach (MB)
Frequency 1Gram 17 0.26 92.41 51.52
Frequency 2Gram 137 0.52 94.71 56.33
Frequency 3Gram | 596 0.78 95.77 60.24
Frequency 4Gram 1844 1.09 95.82 66.15
Frequency 5Gram | 4377 1.40 96.51 71.95
BoW based| TF-IDF 1Gram 17 0.26 93.40 54.19
TF-IDF 2Gram 137 0.53 95.33 56.61
TF-IDF 3Gram 596 0.80 96.14 60.74
TF-IDF 4Gram 1844 1.09 95.99 66.25
TF-IDF 5Gram 4377 1.41 96.39 71.99
Hashing 32 0.35 93.40 54.66
Sequential One-hot 3,060,000 | - - -
Dict-index 180,000 - - -
Graph Dependency-graph | 289 - - -
based

As shown in the three tables, the dimensionality of the sequential-based features is so
high that they cannot be effectively transformed in resource-constrained devices. The
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computational complexity of Graph-based features is very high, and thus they cannot be
computed in IoT devices either. On an AMD Ryzen 7 3800XT 8-Core Processor 3.89 GHz
CPU with 32 GB server, the time to complete a feature extraction of such a dependency
graph feature is 6.24s, which is unacceptable.

On the other hand, Bag-of-word based features can be extracted in a shorter period, as
well as a low level resource usage, with CPU usage around 95% and memory usage around
50MB to 7T0MB. Meanwhile, the feature matrix will suffer from sparsity if the NGram takes
a large value, i.e., the performance of the approach does not improve with the increase
of dimensionality of the sparse matrix but may even decrease. Thus, dimensionality
reduction methods need to be introduced to address the computational difficulty and the
sparsity issues. In this work, the Principal Components Analysis (PCA) technique is used
in dimension reduction. The reduced low-dimensional vectors are used to train the model
without losing the original feature information as much as possible.

Table 5.5 shows the time used for one individual raw data to be processed by PCA
dimensionality reduction in different devices. The results suggest that, even in a resource-
limited device, such as the Rasp 3, it is still possible to complete the dimensionality
reduction process in a short time. Besides, the system usage of the PCA transforming is
also relatively low, the average peak CPU usage for processing one piece of data on each
device is 80%, and the memory usage is around 50 MB. Therefore, in this work, for the
frequency and TF-IDF features of 4Gram and 5Gram, a PCA dimensionality reduction
function is used for the follow-up experiments.

Table 5.5: PCA transform time for each feature on each device

Feature Type Input Di- | Output Transform | Transform | Transform

mensions Dimen- Time In | Time In | Time In

sions Rasp 3 (s) | Rasp 4 2G | Rasp 4 4G

(s) (s)

Frequency 2Gram | 137 100 0.002 0.002 0.002
Frequency 3Gram | 596 100 0.003 0.002 0.003
Frequency 4Gram | 1844 100 0.005 0.003 0.003
Frequency 5Gram | 4377 100 0.007 0.004 0.003
TF-IDF 2Gram 137 100 0.002 0.002 0.002
TF-IDF 3Gram 596 100 0.003 0.002 0.003
TF-IDF 4Gram 1844 100 0.004 0.003 0.003
TF-IDF 5Gram 4377 100 0.007 0.003 0.003

Overall, by comparing various types of feature extraction methods in terms of efficiency,
this work adopts Bag-of-word based approaches as the primary methodologies for fea-
ture extraction, while the selection of N-Gram will be evaluated in the next section in
conjunction with the performance of the specific algorithms.
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5.3 Algorithm Selection

Through the above comparison for feature extraction methods, Bag-of-word based fea-
tures are selected as the basis for ML algorithm selection in this section. Five ML and DL
algorithms are compared in terms of performance and resource usage, including Autoen-
coder, Isolation Forest, One-class SVM, Robust Covariance, and SGD One-class SVM.
Models are trained on the respective datasets of each device.

Experiments Setup

In the division of the dataset, normal data are used to train these anomaly detection
models, of which 70% are used for the training set, 30% for the validation set, besides the
attack data are used for the test set. For the ML-based approach, the contamination rate,
i.e., the percentage of abnormal data in the training dataset, is used with a hyperparameter
of 0.05.

For Autoencoder, a deep feedforward neural network architecture with 64, 16, 8, 8, 16, 64
neurons in hidden layers is used, while each layer is nonlinearly transformed with the Rule
activation function to recognize hidden patterns in the data. Once the training process
of the Autoencoder model is finished, a threshold for anomaly recognition needs to be
defined. This work uses Mean Squared Error (MSE) to calculate the distance between
the decoded data and the original data. The 95% quantile is defined as the threshold
value, beyond which it is considered as an anomaly, to ensure the accuracy of the model
but also to ensure that the model is not overfitted.

Performance of Algorithms

Table 5.6 shows the TPR and TNR metrics for each algorithm using the NGram syscall fre-
quency features. Collectively, the Autoencoder, One-class SVM, and Robust Covariance
algorithms achieve satisfactory performance (more than 80% for both TPR and TNR)
on the 1Gram to 2Gram system calls frequency feature for all three devices datasets. In
contrast, Isolation Forest and SGD One-class SVM do not perform satisfactorily, and they
both fail to detect the attack data well.

Similar to the algorithms using frequency features, Autoencoder, One-class SVM, and
Robust Covariance models using TF-IDF features achieve outstanding performance in low-
dimensional cases, as shown in Table 5.7. However, due to the large repetition of system
calls in the original data, TF-IDF does not provide more information than frequency, and
the models using these features do not have significant improvement in accuracy.

Meanwhile, due to the sparsity problem of the feature matrix mentioned before, the
performance of the models does not increase with the increase of NGram; instead, the best
models appear at 1Gram and 2Gram, and even after the PCA dimensionality reduction
process, the overly sparse feature data does not significantly improve the accuracy of the
models.
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Table 5.6: Performance of each algorithm with using NGram system calls frequency fea-
tures

Rasp 3 Rasp 4 2G Rasp 4 4G
. TPR | TNR | TPR | TNR | TPR | TNR
Feature Type Algorithm (%) (%) (%) (%) (%) (%)
Autoencoder 89.81 | 98.85 | 89.81 | 99.65 | 92.59 | 99.83
Isolation Forest 97.22 | 52.08 | 90.74 | 25.69 | 93.52 | 19.24
Frequency 1Gram One-class SVM 95.37 | 98.85 | 92.59 | 99.72 | 90.74 | 99.79

Robust Covariance 96.30 | 54.34 | 98.15 | 51.15 | 96.3 | 50.31

SGD One-class SVM | 100.00 | 0.00 | 98.15 | 5.8 100 0

Autoencoder 93.52 | 98.89 | 91.67 | 99.76 | 93.52 | 99.72
Isolation Forest 97.22 | 13.23 | 92.59 | 24.31 | 94.44 | 24.97
Frequency 2Gram One-class SVM 74.07 | 98.99 | 75.93 | 99.86 | 74.07 | 99.9
Robust Covariance 95.37 | 76.01 | 98.15 | 74.93 | 95.37 | 78.37
SGD One-class SVM | 100.00 | 0.00 | 100 0 100 49.79
Autoencoder 90.74 | 10.90 | 90.74 | 22.5 | 93.52 | 11.11
Isolation Forest 95.37 | 17.71 | 97.22 | 11.81 | 96.3 | 12.43
Frequency 2Gram PCA | One-class SVM 97.22 | 72.64 | 85.19 | 97.19 | 91.67 | 74.62

Robust Covariance 93.52 | 79.48 | 98.15 | 75.38 | 93.52 | 80

SGD One-class SVM | 100.00 | 41.53 | 100 49.2 | 100 51.94

Autoencoder 90.74 | 98.96 | 87.96 | 99.69 | 94.44 | 99.65
Isolation Forest 93.52 | 16.22 | 9444 | 17.22 | 96.3 | 21.01
Frequency 3Gram One-class SVM 66.67 | 98.99 | 79.63 | 99.76 | 72.22 | 99.83
Robust Covariance 85.19 | 81.28 | 92.59 | 77.15 | 95.37 | 78.26
SGD One-class SVM | 100.00 | 0.00 | 100 | 0 100 |0
Autoencoder 87.96 | 22.71 | 89.81 | 21.63 | 94.44 | 8.65
Isolation Forest 99.07 | 15.28 | 93.52 | 19.9 | 95.37 | 15.56
Frequency 3Gram PCA | One-class SVM 93.52 | 73.13 | 84.26 | 97.36 | 91.67 | 77.12

Robust Covariance 92.59 | 98.89 | 98.15 | 75.38 | 95.37 | 83.82

SGD One-class SVM | 100.00 | 51.81 | 100 39.31 | 100 40.69

Autoencoder 85.19 | 7.57 |196.3 | 7.01 | 92.59 | 18.58
Isolation Forest 94.44 | 16.28 | 96.3 | 17.78 | 95.37 | 20.17
Frequency 4Gram PCA | One-class SVM 91.67 | 73.99 | 87.96 | 97.53 | 90.74 | 77.71

Robust Covariance 92.59 | 98.89 | 95.37 | 79.06 | 97.22 | 78.47

SGD One-class SVM | 100.00 | 39.06 | 100 | 48.47 | 100 40.8

Autoencoder 92.59 | 3.72 | 9537 | 6.49 | 92.59 | 6.88
Isolation Forest 99.07 | 9.17 | 9537|2264 | 96.3 | 18.65
Frequency 5Gram PCA | One-class SVM 92.59 | 74.86 | 89.81 | 97.67 | 92.59 | 78.3

Robust Covariance 91.67 | 98.85 | 94.44 | 83.06 | 94.44 | 77.78

SGD One-class SVM | 100.00 | 51.63 | 100 | 46.7 | 100 40.8
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Table 5.7: Performance of each algorithm with using NGram system calls TF-IDF features

Rasp 3 Rasp 4 2G Rasp 4 4G
. TPR | TNR | TPR | TNR | TPR | TNR
Feature Type Algorithm (%) (%) (%) (%) (%) (%)
Autoencoder 98.15 | 62.01 | 96.30 | 88.85 | 94.44 | 84.20
Isolation Forest 94.44 | 39.03 | 97.22 | 79.20 | 93.52 | 81.15
TF-IDF 1Gram One-class SVM 85.19 | 76.84 | 91.67 | 99.48 | 86.11 | 99.31

Robust Covariance 96.30 | 98.40 | 97.22 | 99.76 | 96.30 | 99.58
SGD One-class SVM | 97.22 | 0.49 | 100.00 | 0.00 | 99.07 | 36.25

Autoencoder 95.37 | 55.66 | 94.44 | 99.55 | 92.59 | 99.55
Isolation Forest 91.67 | 28.68 | 99.07 | 51.56 | 91.67 | 66.18
TF-IDF 2Gram One-class SVM 75.00 | 84.97 | 79.63 | 99.86 | 72.22 | 99.86

Robust Covariance 96.30 | 98.51 | 97.22 | 99.65 | 96.30 | 99.51
SGD One-class SVM | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 49.79

Autoencoder 91.67 | 93.19 | 92.59 | 99.69 | 95.37 | 99.48
Isolation Forest 94.44 | 32.33 | 96.30 19.03 | 97.22 | 23.85
TF-IDF 2Gram PCA | One-class SVM 92.59 | 98.26 | 96.30 | 99.65 | 95.37 | 99.55

Robust Covariance 98.15 | 98.37 | 97.22 | 99.72 | 96.30 | 99.58
SGD One-class SVM | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 0.00

Autoencoder 93.52 | 76.32 | 90.74 | 99.58 | 93.52 | 99.62
Isolation Forest 91.67 | 17.67 | 97.22 | 32.88 | 94.44 | 38.51
TF-IDF 3Gram One-class SVM 65.74 | 85.69 | 77.78 | 99.79 | 71.30 | 99.79

Robust Covariance 88.89 | 98.92 | 90.74 | 99.62 | 96.30 | 99.58
SGD One-class SVM | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 0.00

Autoencoder 94.44 | 59.76 | 96.30 | 99.13 | 98.15 | 98.61
Isolation Forest 95.37 | 22.50 | 94.44 | 19.34 | 97.22 | 16.70
TF-IDF 3Gram PCA | One-class SVM 93.52 | 97.81 | 96.30 | 99.62 | 96.30 | 99.55

Robust Covariance 94.44 | 89.72 | 94.44 | 99.69 | 92.59 | 99.62
SGD One-class SVM | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 0.00

Autoencoder 90.74 | 53.78 | 98.15 | 99.65 | 97.22 | 99.51
Isolation Forest 97.22 14.10 | 93.52 | 32.47 | 97.22 18.92
TF-IDF 4Gram PCA | One-class SVM 92.59 |97.92 | 96.30 | 99.62 | 96.30 | 99.55

Robust Covariance 95.37 | 98.89 | 97.22 | 99.72 | 95.37 | 99.62
SGD One-class SVM | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 0.00

Autoencoder 9259 |49.44 | 97.22 | 99.58 | 98.15 | 99.51
Isolation Forest 100.00 | 13.92 | 93.52 | 23.26 | 93.52 | 20.80
TF-IDF 5Gram PCA | One-class SVM 93.52 | 96.77 | 98.15 | 99.62 | 95.37 | 99.62

Robust Covariance 95.37 | 98.89 | 93.52 | 99.62 | 90.74 | 99.62
SGD One-class SVM | 100.00 | 0.00 | 100.00 | 0.00 | 100.00 | 0.00
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Computational Costs of Algorithms

At the same time, the efficiency of model training and testing is also an essential factor
to be considered. This work compares the computational resources cost of each algorithm
trained on different devices (Raspberry Pi 3 and Raspberry Pi 4s) using different features,
including training time, CPU usage, memory usage, and the model’s size.

Figure 5.2 illustrates the computational cost for each algorithm using different feature
extraction approaches on different devices. Overall, the results follow a similar pattern
on different devices, and the Robust Covariance has the highest resource consumption
among the five algorithms and three devices. It is also the most dimensional-sensitive
algorithm, as shown in Figure 5.2, it takes close to 200 seconds for the model to converge
when the dimension of the input feature vector is 596 (3Gram) in Raspberry Pi 3, and
takes almost 100 seconds in Raspberry Pi 4s. Besides, it has a CPU utilization of over
200% in all three devices. In contrast, One-class SVM is highly efficient, not only in terms
of training time and resource consumption in the low-dimensional condition, but also in
the high-dimensional condition.

The rest of the three ML algorithms, including One-class SVM, Isolation Forest, and SGD
One-class SVM, all keep a low level of training time, CPU usage, memory consumption,
and model size. For example, their model training times are less than one second, and
their CPU and memory utilization are less than 100%.

For Autoencoder, the Early Stopping strategy is adopted to train the model, and the
model will stop automatically when its loss has not changed for ten epochs so that the
training time of the model has certain randomness. Even in the Raspberry Pi 3 device, the
model can be trained within 10 s. The model’s resource usage is relatively low compared
to Robust Covariance, and the size of the model after training is at a medium level.

On the other hand, this work presents a detailed comparison of their computational costs
for each feature after PCA dimensionality reduction. Figure 5.3 shows the computational
cost of different algorithms on different devices using each feature extraction approach
after PCA dimensionality reduction. Since the dimensionality of each feature is the same
after PCA, which is 100, the computational resource consumption is similar for the same
algorithm for different features, and the data follow a similar pattern on each device.
However, due to the Early Stopping strategy of Autoencoder, the resource consumption
during its training is less stable. As the PCA approach reduces the dimensions of the
original data to a lower level, thus for each algorithm, their training resource efficiency
decreases a lot compared to the original features.
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5.3.1 Discussion

On the one hand, all five algorithms can be successfully trained in different IoT sensors.
However, in terms of model detection performance, One-class SVM, Robust Covariance,
and Autoencoder can successfully identify normal and abnormal data. However, Isolation
Forest and SGD One-class SVM algorithms are poor in identifying anomalies, so they are
not considered as local models for subsequent FL-based methods.

On the other hand, Robust Covariance has the highest model training time and resource
consumption rate among the five algorithms, followed by Autoencoder, but the other three
algorithms are cheaper in computational cost. One-class SVM balances performance and
efficiency in identifying potential threats. Overall, ML-based One-class SVM and DL-
based Autoencoder balance cost and performance and are more compatible for SSDF
attack identification in IoT environments.

It can also be seen that the computational resources, including training time, CPU usage,
memory usage, and model size, for different algorithms on both frequency and TF-IDF
features follow a similar pattern, regardless of the different devices. In other words, for
both Frequency and TF-IDF, the same algorithm on the same device, under the same
NGram conditions, have similar computational costs. Meanwhile, in NGram Frequency
features, a larger N does not bring performance improvement but rather increases the
resources consumption. Moreover, even with the PCA dimensionality reduction approach,
model performance degradation due to the sparsity of high-dimensional feature matrices
is still not well addressed. Therefore, the low-dimensional dense feature matrix has a
significant advantage in terms of computational cost and detection performance.

In addition, due to the low variability of system calls, TF-IDF does not provide redun-
dant information at the document level. On the contrary, Frequency provides more in-
terpretability of the model. Therefore, the 1Gram system calls frequency feature is more
applicable than the TF-IDF feature in the dataset covered in this work.

To conclude, this work adopts 1Gram Frequency features as the feature extraction scheme
on FL-based approaches, and One-class SVM and Autoencoder are used as their local
algorithms.



Chapter 6

Evaluation Scenario and Experiments

This chapter details the evaluation process that has been done to validate the effectiveness
of the cyberattack detection system based on FL framework. First, experiments are
designed with different validation scenarios for exhaustively comparing the performance
of traditional and federated approaches on malicious behavior identification. Meanwhile,
different use cases are used to verify that the FL-based approach is both effective in
identifying anomalous data as well as preserving client privacy.

To validate the FL-based approach, ElectroSense is selected as the crowdsensing RP
spectrum platform. System calls have been monitored for both benign and malicious
behaviors, where the anomalies were produced by the SSDF attacks described in Chapter
4. As presented in the previous chapter, this work has used a set of Raspberry Pis,
including Raspberry Pi 3 and Raspberry Pi 4 2/4 GB, with SDR kits.

In addition, the 1Gram Frequency method is used as the final feature extraction approach,
as discussed in Chapter 5, and One-class SVM and Autoencoder are used as the underlying
algorithms for the FL-based cyberattack detection methodology. In the following sections,
this work uses several case studies to analyze the performance of different cyberattack
detection methods in different situations.

6.1 Case Study #1: Privacy-preserving Clients with Local
Models

In this case, an assumption is made that all users are privacy-preserving, i.e., they do
not want to upload their data to the server or share it with other users, while there is no
global model training mechanism based on the FL approach. Consequently, even if the
trained models can be shared among users, they can only recognize attacks using local
models based on native datasets. For example, customer 1 uses Raspberry Pi 3 device
as his sensor and trains a cyberattack detection model based on Raspberry Pi 3 dataset.
However, users with other devices, assuming they have no knowledge of ML but are in
urgent need of malicious behavior detection models. In this case, the clientl is willing to
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share his trained local model, which does not include the dataset, to other clients as their
detection system.

This section aims to use this scenario to verify the necessity of FL framework in the
context of emphasizing privacy. In the experimental setup, the system calls monitoring
module acquires two rounds of data on different devices, and each round includes both
benign data and malicious data. The training data uses 70% of the normal data from the
first round of data acquired, 30% as validation data, and the benign and malicious data
from the other devices as different test sets. The specific data set division and the amount

of data in each data set are shown in Table 6.1.

Table 6.1: Number of data in each dataset for User case #1

Training | Validation Test
Dataset Dataset Dataset

Raps3 Raps3 Raps3 Rasp4 2G | Rasp4 4G | Rasp4 2G | Rasp4 4G

Datasetl | Datasetl Dataset2 | Datasetl | Datasetl | Dataset2 | Dataset2
Normal | 252 108 360 360 360 360 360
Attack | - 2880 2880 2880 2880 2880 2880

Rasp4 2G | Rasp4 2G | Raps3 Raps3 Rasp4 2G | Rasp4 4G | Rasp4 4G

Datasetl | Datasetl | Datasetl | Dataset2 | Dataset2 | Datasetl | Dataset2
Normal | 252 108 360 360 360 360 360
Attack | - 2880 2880 2880 2880 2880 2880

Rasp4 4G | Rasp4 4G | Raps3 Raps3 Rasp4 2G | Rasp4 2G | Rasp4 4G

Datasetl | Datasetl Datasetl | Dataset2 | Datasetl | Dataset2 | Dataset2
Normal | 252 108 360 360 360 360 360
Attack | - 2880 2880 2880 2880 2880 2880

The feature used for training is the 1Gram Frequency mentioned above, and the algorithms
are One-Class SVM and Autoencoder. Figure 6.1 shows the performance of the local
model trained on three devices on different datasets. Models, either the ML approach
or the DL approach, could not recognize the normal behaviors from other devices well.
For example, when trained with Raspberry Pi 3 data, the One-class SVM model only
correctly recognizes 26% of the normal data in the Raspberry Pi 4 2G dataset, while the
TPR of the Raspberry Pi 4 4G dataset is even lower at about 20%; if the Raspberry Pi 4
2G dataset is used as the training set, and the Raspberry Pi 3 dataset is used for testset,
for both One-class SVM or Autoencoder, their TPRs are below 50%. These two anomaly
detection algorithms are sensitive to outlier data, but if the distribution of the normal
data changes, these algorithms tend to classify it as abnormal.

Section 5.1 has shown that the distribution of system calls for Raspberry Pi 3 differs
significantly from that of the two Raspberry Pi 4s; thus, whether the models trained
by Raspberry Pi 3 data predict data from Raspberry Pi 4 devices or identify data from
Raspberry Pi 3 with models trained by Raspberry Pi 4, their accuracy in identifying
normal data is low. However, the distribution of system calls in two Raspberry Pi 4s are
similar; therefore, their local models could successfully predict the data from each other.
Since normal data on different devices do not follow the IID thus, all the local models
have high TNRs, almost all reaching 100%, but fail to identify the benign behaviors from
other devices.
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The results of this scenario imply that the local models may work poorly when dealing with
data from an unknown distribution. As clients are sensitive to the privacy of system calls
data, there is no chance that clients share their data with others; therefore, a mechanism
that can solve the non-1ID problem is needed.
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Figure 6.1: Performance of natives models in different training devices



50 CHAPTER 6. EVALUATION SCENARIO AND EXPERIMENTS

6.2 Case Study #2: Federated Learning Approaches

From the experiments above, the problem of data in different datasets that do not follow
the IID distribution needs to be solved. The FL approach is an effective tool to solve
this problem. On the one hand, the client data does not need to be shared with peers
or with the server, which significantly protects privacy, and on the other hand, using
model aggregation, the shared model does not need the data to satisfy the assumption of
following the same distribution which is a proper solution to the non-IID problem.

To verify whether the FL-based approach can handle unknown devices and unknown
datasets situations, as well as to evaluate the impact of different numbers of training
clients, three different FL training settings were experimented as shown in Figure 6.2,
including leave-two-devices (Figure 6.2 A), leave-one-device (Figure 6.2 B), and leave-
one-dataset (Figure 6.2 C).

Test
[sever oo T | Devices [ sever Ji | Device3
| Dataset1 DataSet1
~-....| Device 3 .
DataSet2 - ~.| Device 3
- Training DataSet2
Training .
.| Device 2
DataSet1
Device 1 Device 1 “.| Device 2 - - - -
Device 1 Device 1 Device 2 Device 2
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Figure 6.2: Experiments setup for FL-based approaches

In the first case, i.e., leave-two-devices, only one type of device data is used to train the
FL-based model. In this setup, the percentage of known devices is 33.33%, while the
other two device datasets are used to verify the generalization ability of the model. In the
second case, i.e., leave-one-device, data from two different devices are used as the training
set, while the percentage of known devices is 66.67%. In the third case, leave-one-dataset,
data from all models are involved in the training of the FL model, thus the percentage
of known devices is 100%, and only one dataset from one device is not involved in the
training and is used to validate the model.

Figure 6.3 illustrates the effect of the different number of known devices on the per-
formance of the models. Overall, the Autoencoder model can detect the attack data in
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unknown devices well, even at a lower level of known devices, and it performs consistently.
Particularly, the average TPR of the One-class SVM algorithm increased significantly from
81% to 85% as the number of clients involved in the computation grew. On the other
hand, the performance of the Autoencoder algorithm is relatively stable, with its TPR
fluctuating between 94% and 95%. At the same time, both algorithms show great ability
in detecting anomalies, and their TNRs are above 99%, which can detect potential threats
remarkably effectively. For One-class SVM, its recognition rate for unknown normal data
is lower than Autoencoder but still better than the local models, which are shown in the
previous section, and its performance keeps improving as the known devices are raised.
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Figure 6.3: Overall performance of models with different percentage of known devices for
FL-based approaches

Specifically, Figure 6.4 presents the performance of the FL. models based on the set-up of
leave-2-devices (i.e., 33.33% of known devices) on each dataset. From the figure, it can
be seen that the cyberattack detection model using Autoencoder algorithm can fulfill the
task with more than 90% TPR and nearly 100% TNR no matter which device data is
used as the training dataset. As for One-class SVM, its recognition rate for normal data
is lower but still higher than the baseline of 60%. On the other hand, similar to the local
model, if the training dataset for known devices is small, the model still suffers from the
problem that it does poorly on unknown devices than on known devices.

Compared with the scenario using only the local model, the leave-two-devices approach
demonstrates the superiority of the FL. method. When just using Raspberry Pi 3 data
as the training set, the average TPR of the local One-class SVM algorithm is only 27%
on the Raspberry Pi 4 2G dataset and even 20% on the Raspberry Pi 4 4G dataset.
For comparison, the One-class SVM algorithm using the FL-based strategy improves the
average TPR to 73% on the Raspberry Pi 4 2G and 79% on the Raspberry Pi 4 4G
dataset. Autoencoder also performs similarly, improving the average TPR from 87% to
95% on the Raspberry Pi 4 2G and from 81% to 95% on the Raspberry Pi 4 4G datasets.

In addition, the performance of the approach with just the local dataset varies dramatically
on different test datasets, and its standard deviation of TPR reaches 0.29. In contrast,
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the standard deviation of TPR for the leave-two-devices approach is 0.1, indicating that
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it performs more consistently on different test sets.
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Figure 6.4: Performance of leave-two-devices models in different datasets

When the percentage of known devices is increased to 66.67%, as shown in Figure 6.5, the
performance of the algorithms improved on each dataset. For the Autoencoder algorithm,
its performance is quite stable, i.e., the TPR is close to 95%, while the TNR is close to
100%.

For One-class SVM, its performance also has a corresponding improvement due to the
increase of training data. At the same time, the performance on different datasets is
more balanced because more datasets are covered. Compared with the leave-two-devices
method, the average TPR of the One-class SVM algorithm on the Raspberry Pi 3 dataset
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improves from 87% to 92%, on the Raspberry Pi 4 2G dataset improves from 70% to
72%, and on the Raspberry Pi 4 4G dataset improves from 83% to 84%. Meanwhile,
the standard deviation of TPR on different datasets decreases from 0.11 to 0.08, and it
implies the algorithms performed more smoothly.
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Figure 6.5: Performance of leave-one-device models in different datasets

When the training data includes all types of devices, as shown in Figure 6.6, both One-class
SVM and Autoencoder algorithms are capable of identifying the attack data contained
in different datasets well. On the one hand, the detection model based on Autoencoder
algorithm performs well on all datasets. On the other hand, for the One-class SVM,
compared with the leave-one-device approach, the average TPR on the Raspberry Pi 3
dataset is equal with 92%, but on the Raspberry Pi 4 2G dataset, it improves from 72%
to 78%, and on the Raspberry Pi 4 4G dataset improves from 84% to 85%. Meanwhile,
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they both perform consistently in different validation experiments.

In conclusion, these FL-based approaches are able to effectively solve the non-I1D problem
and also protect user privacy well due to their special model update strategies. Based on
the experiments, the performance of the model rises with the increase of known devices
in the training clients, while the stability of the model on each dataset also ascends. On
the other hand, DL-based Autoencoder performs better than ML-based One-class SVM,
especially in terms of identifying normal data.
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6.3 Case Study #3: Central Model

How does the model perform if the user is not concerned about data privacy? In this
scenario, the clients are not privacy-preserving and willing to upload the data to the
server for central model training. After the training is completed, the server pushes the
model to each client for cyberattack identification. The efficiency of the FL approach in
attack identification is verified by comparing them with the central model.

Table 6.2: Comparison of the performance of the model under different setups

One-Class SVM Autoencode

TPR (%) TNR(%) | Fl-score (%) | TPR (%) TNR(%) | Fl-score (%)

Avg. | Std. | Avg. | Std. | Avg. | Std. | Avg. | Std. | Avg. | Std. | Avg. | Std.
Local Model 64.39 | 28.93 | 99.87 | 0.09 | 76.93 | 31.65 | 78.84 | 16.01 | 99.78 | 0.15 | 87.30 | 23.46
FL with
Known Devices | 81.13 | 10.22 | 99.52 | 0.46 | 87.72 | 15.93 | 95.00 | 0.00 | 99.44 | 0.41 | 95.23 | 1.11
(33.33%)
FL with
Known Devices | 82.63 | 10.39 | 99.54 | 0.45 | 88.72 | 17.01 | 93.90 | 2.78 | 99.44 | 0.39 | 94.68 | 7.39
(66.67%)
FL with
Known Devices | 84.87 | 8.01 | 99.53 | 0.45 | 89.98 | 13.10 | 93.97 | 2.73 | 99.45 | 0.39 | 94.74 | 7.53
(100.00%)
Central Model | 97.70 | 3.81 | 99.38 | 0.29 | 96.40 | 12.28 | 97.78 | 3.68 | 99.35 | 0.29 | 96.34 | 11.93

In this experiment, the datasets of the three devices are aggregated and trained to a
central model uniformly. The performance of the models under different setups are listed
in Table 6.2. By comparing the TPR, TNR and F1-score of the models in different cases, it
is clear that the central model is the upper bound of the different models, while the Local
model is the lower bound. Since the central model contains the most variety of data,
thus both the One-class SVM algorithm and the Autoencoder algorithm achieve high
performance. Several FL-based approaches, on the other hand, perform between local
and central. For One-class SVM, the performance of the model increases significantly as
the number of data increases. As for Autoencoder, its performance is relatively stable,
and the FL-based strategy has similar results to the central approach model. Through
the experiments, it also shows that although the recognition performance of the FL-based
mechanism is inferior compared to the central model, it is still very effective in detecting
network attacks in IoT environments.

6.4 Discussion

This chapter quantitatively evaluates the FL-based cyberattack detection approaches as
documented in the previous sections. Since the distribution of system calls differs in
devices types and versions, it leads to the fact that the model based on local data can-
not effectively detect attacks in other devices. Besides, taking into account the privacy-
preserving of the clients, the FL-based technique becomes a powerful solution. Never-
theless, the actual performance of the FL-based model is slightly inferior to that of the
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central model but still far better than local models and has an excellent performance
in identifying both normal and abnormal data. In general, the more clients involved in
the computation and the more device models, the better the FL model performs and the
more it can overcome the problem of imbalanced data distribution. It is also observed
that the Autoencoder-based models perform significantly better and more consistently
than the traditional ML models. The Autoencoder model with FL training strategy is
only marginally less effective than the central model. Based on the above facts, this work
concludes that the FL-based cyberattacks identification framework can potently detect
SSDF cyberthreats and protect the spectrum data integrity in the RF spectrum monitor-
ing platform.



Chapter 7

Summary, Conclusions and Future Work

This chapter summarizes the entire project and draws the main conclusions of this work,
together with an outlook for future work. The first section summarizes and concludes the
main work of this project and then draw some conclusion about the proposed system. An
overview of the possible future directions of this work is presented in the second part.

7.1 Summary and Conclusion

The main goal of this work is to design and implement a privacy-preserving SSDF cy-
berattacks detection system by exploiting the FL-based Al approach with system calls
behavior fingerprinting. To achieve this goal, several works have been done.

First, the background knowledge of IoT RF spectrum monitoring networks and device
behavior fingerprinting are introduced. Second, this work has systematically summarized
the state-of-the-art works that adopt the system calls behavioral fingerprinting to detect
cyberattacks. Third, a set of use cases have been analyzed to extract the requirements of
the cyberattack detection system in IoT RF spectrum monitoring networks. After that,
an intelligent detection system architecture has been sketched, which is used for defining
the structure, designing the functionality, and researching the feasibility of the system.
Following, this work analyzes the system calls distribution among different types of sen-
sors. Data exploration and visualization revealed the problem that different system calls
are not equally distributed among devices, which became necessary to use the FL-based
approach. Furthermore, this work evaluates the feature extraction methods and detection
algorithms in terms of both computational cost and detection performance. Finally, a
quantitative analysis of the FL-Based system is performed using different scenarios to
test and validate the effectiveness of cyberattacks affecting RF spectrum data integrity.

To conclusion, this thesis has the following findings:

e First, by comparing various types of feature extraction approaches from the aspects
of computational cost and performance, this work finds that in the IoT environment
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with resources-limited sensors, both sequential-based and graph-based feature ex-
traction approaches consume a large number of system resources. Therefore, these
two approaches are not practical for detecting SSDF cyberattacks in real [oT devices.
Meanwhile, since there are obvious differences between normal data and attack data
in terms of the distribution of system calls behavior, the feature extraction method
using 1Gram Frequency is well suited for the task of cyberattack identification.

e Second, the distribution of system calls on different devices does not follow IID,
and therefore the model using local data cannot be generalized to data from other
devices.

e Third, considering users’ privacy, the FL-based approach shares only the model but
not the user data and thereby is particularly suitable for the context to which this
article applies. Collaboration and sharing can effectively improve the performance of
detection models. Experiments have proved that even only the model is shared, the
performance of the system can be significantly improved. Compared with the local
model, the FL system can effectively overcome the non-IID problem and achieve
comparable performance to the central model.

e Fourth, DL-based Autoencoder algorithms are more robust than traditional ML
techniques, and it is more adaptable to the case of unknown devices than ML meth-
ods.

e Lastly, The integration of more diverse clients into the collaborative FL approach
can significantly boost the performance of the detection system.

In conclusion, the proposed FL-based cyberattack detection method is capable of accu-
rately identifying SSDF cyberattack data while protecting data security.

7.2 Future Work

Although the proposed system has been optimized in many aspects considering the com-
putational power of Raspberry Pi devices, there are still some tasks that cannot be done
directly on sensors, such as the fitting of feature extraction approaches and the FL part
is also simulated in the server. Therefore, this work hopes to further improve the method
to transform the proposed system into an end-to-end solution without processing data in
the server.

On the other hand, the main work of this article identifies whether the system suffers from
a cyberattack by means of unsupervised learning, but not to identify the types of specific
attacks. A supervised multi-label classification approach based on the FL framework will
be made to identify the type of attacks in the following work.
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Appendix A

Installation Guidelines

This part provide a guideline for install this system to the clients and the server. This
installation guideline contains three parts, the first part is to install system calls monitor-
ing module to the sensors, the second part is to extract the features from the monitored
raw data, and the last is to use the ML-based, DL-based, and the FL-based approaches
to detect SSDF attacks from the data. The following shows the outline structure of the
system:

sensor
|—— get_system_perf.sh
|—— monitoring.sh
| run_background .sh
|—— datamodule
|—— preprocessing_pref.py
|—— get_features.py
|—— normalization.py
|—— get_pac.py
|—— detectionmodule
|— ml

— 1

A.1 System calls Monitoring Module

The sensor folder contains all required scripts for monitoring the system calls from the
Raspberry Pis.
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Initial setup

First the Perf tool needs to be installed to the Raspberry Pis:

sudo apt—get install perf

Then type perf to the terminal to test whether it has been successfully installed, if not,
then the exec file of perf need to be modified:

sudo nano /usr/bin/perf
#exec "perf_$version” 7$Q”
sl exec "perf_4.97 7$Q”

N

Clone GitHub Repository

The GitHub repository of this project could be cloned as:

1| git clone git@github.com:luke—feng/ToT_Sensors_Security_Analysis.git

Data Monitoring

For each script within this folder, the functionality is:

e get_system_per f.sh is responding for finding the desired PID, and monitoring it
system calls. There are several parameters that can be modified to adopt different
tasks.

— time_window means how many seconds that need to be monitored each time,
by default it’s 60s.
— total_loop how many loops that need to be monitored for this process, by

default it’s 360 loops.

e monitoring.sh is responding for copy the attack files to the service, and automati-
cally start the get_system_per f service to monitor the system calls of attack /normal
services.

e run_background.sh could run this system calls monitoring script in background.

If the attack files are contained with these three scripts in a same folder, then the moni-
toring module could be easily start with:

mkdir dataset
2| ./run_background . sh
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A.2 Data Module

Data module is used to extract the features from the monitored system call files. For each
script within this folder, the functionality is:

e preprocessing_pref.py is used to remove the non-relevant data from the raw data,
and keep the system calls only.

e get_features.py is used to convent the raw data to the features, and several feature
extraction approaches are used, including the frequency, TF-IDF, One-hot, Dict-
index, Dependency-graph

e normalization.py is used to normalize the features to [0,1] space.

e get_pca.py is used to fit and transform the PCA from high-dimension features.

A.3 Detection Module

Detection module is responding for using Al techs to identify the cyberattacks from the
data.

Machine Learning Based Approaches

Four ML-based and one DL-based algorithms are used in ML-based approaches, including;:
One-class SVM, Isolation Forest, Robust Covariance, SGD One-class SVM, as well as the
Autoencoder.

e ml — based.py is used to train and test the ML-based models.
e dl — based.py is used to train and test the DL-based models.
Federated Learning Based Approaches

Project dependencies (such as scikit — learn and flwr) are defined in pyproject.toml. It
can be install by:

poetry install
poetry shell

Afterwards it is ready to start the Flower server as well as the clients. Simply start the
server in a terminal as follows:
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poetry run python3 server.py

For clients, simply open two more terminals and run the following command in each:

poetry run python3 client$k$ .py




Appendix B

Contents of the CD

The CD contains the all the documents, project source code, and the installation instruc-
tions for this project.
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