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Zusammenfassung

Bei akuten Gesundheitskrisen wie COVID-19, bei denen soziale Distanzierung und siche-
re Belegungsraten von größter Bedeutung sind, ist die Analyse von Bewegung, Kapazität
und Engagement von entscheidender Bedeutung für die strategische Planung von Live-
Marketing-Initiativen für Einzelhandelsflächen, Fachmessen und Werbeveranstaltungen.
Lösungen, die die Einhaltung gesetzlicher Vorschriften gewährleisten und wertvolle Ana-
lysen liefern, können nicht immer das erforderliche Mass an Genauigkeit für sichere Bele-
gungsmessungen bieten. Durch die Kombination mehrerer Datenquellen lässt sich jedoch
die Genauigkeit der Verfolgung erhöhen. In Anbetracht dessen wird in dieser Arbeit eine
Lösung vorgeschlagen, die eine solche Analyse durch die Integration bestehender passiver
Erfassungsansätze von 3D-Kameras mit Eingaben von RFID-Tags erweitert. In einem
Versuch wurde eine Gruppe von Personen gefragt, sich in einer kontrollierten Umgebung
zu bewegen, um die Wirksamkeit dieser Methode in realistischen Szenarien zu testen. Die
Ergebnisse zeigen, dass die implementierte Lösung in der Lage ist, Personen innerhalb
einer kleinen Gruppe gleichzeitig zu erkennen und ihnen die richtigen IDs zuzuordnen.
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Abstract

During acute health crises such as COVID-19, where social distancing and safe occupancy
rates are paramount, the analysis of movement, capacity, and engagement are of critical
importance in the context of strategic planning of live marketing initiatives for retail
spaces, trade shows, and promotional events. However, solutions that ensure compliance
with regulatory requirements and produce valuable analytic cannot always provide the
required level of accuracy for safe occupancy measurements. Nevertheless, by combining
multiple sources of data, it is possible to increase the tracking precision. Hence, this the-
sis proposes a solution that expands such analysis by integrating existing passive sensing
approaches from 3D cameras with inputs of RFID tags. A group of people has been asked
to walk in a controlled environment in order to test the effectiveness of this method in re-
alistic scenarios. Results show that the implemented solution is capable of simultaneously
recognizing and properly assigning IDs to individuals within a small group.
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Chapter 1

Introduction

Analyzing consumer behavior is one of the most important methods of identifying pos-
itive and negative features in products and services. A company needs to identify how
movement, capacity, engagement and their outcomes can be essential to the planning of
proactive marketing initiatives in retail stores, trade shows, and promotional activities.
In an increasingly digitized society, there are secure methods of visualizing an audience’s
mobility based on non-invasive, privacy-preserving methods that would enable the extrac-
tion of Key Performance Indicators (KPI) for the efficient planning of marketing strategies
of business events or campaigns, which improves the offering of a product or service to a
particular type of audience. For example, tracking a person over a defined area such as a
public transport system [1] or a university campus [2, 3, 4] could give the tracker essential
information about the individuals. This information can be used for crowd control, for
city planners [2], for emergency services, for lowering energy consumption of buildings [3]
and also business owners who can gather marketing information which then are used to
tailor advertisement to future customers [5].

Concerning digital products or services (e.g., e-commerce) offered to utilize the Internet,
such extraction of information is relatively easily performed by tracking each movement of
consumers (i.e., click) within a website and establishing (KPIs), based on his/her browsing
behavior. Using the number of times a given page is accessed, and the time a customer
spends browsing that page, one can estimate the customer’s interest in a product. Taking
into consideration products and services offered in real life, however, this kind of analysis
becomes more challenging. It is relatively straightforward to track consumer behavior
in the digital world, but in the physical world (based on methods that preserve privacy
and do not encroach on consumers’ rights), it can be nearly impossible to track consumer
behavior accurately. The privacy of consumers must be protected, in particular, when
tracking methods require them to actively interact with a product or service, which would
expose their identity (e.g., documents or face) to being profiled, ripping away their right to
privacy. In this sense, there are methods based on the capture of wireless signals emitted
by mobile devices that allow tracking individuals in a non-invasive way.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

As an essential component of the strategic planning of live marketing initiatives in retail
spaces, trade shows, and promotional campaigns, the analysis of movement, capacity, and
engagement is of even greater importance during acute health emergencies as COVID-19,
where issues of social distancing and safe occupancy rates are paramount. Therefore,
it becomes imperative that technical solutions can ensure compliance with regulatory
requirements and provide valuable insights and analytics to restore the normal flow of
business and society. Using various wireless protocols such as 802.11b or 802.11g (2.4
GHz) or 802.11a (5 GHz), Livealytics provides an analytics solution based on mobile
devices. Although this solution provides the ability to analyze visitor behavior, it lacks the
accuracy necessary for safe occupancy measurements (i.e., calculating distance in real-time
and issuing alerts relating to social distance). The Cloud Counter (C-Count 2.0) project
is designed to address this problem based upon existing solutions. C-Count 2.0 extends
the previous version of C-Count (C-Count 1.0), which implemented a customizable API
for the collection, aggregation, and analysis of additional counting implementations, with
the analysis and matching of RFID data. Therefore, the proposed solutions can be used
with existing Livealytics and C-Count 1.0 products to perform highly accurate visitor flow
analysis, valid occupancy counts (with unique visitor counts), and behavioral maps that
enable regulatory compliance, assure acceptable social distance, and provide strategic and
real-time business intelligence.

1.2 Thesis Goals

This thesis aims at developing a solution that collects, stores, processes, and matches
data from 3D cameras of third parties with data from RFID tags. In order to accomplish
the objectives of this thesis, it is necessary to understand the theoretical and conceptual
elements involved at an early stage, as well as the core concepts of passive wireless tracking,
including RFID tags. The second stage of C-Count 2.0 is targeted at creating unique
identification links between the RFID tags and tracked objects in a unique and easy-to-
use manner.
To increase C-Count’s tracking accuracy, camera path information should be analyzed
along with RFID tag tracking data. In addition, since RFID tags are not associated with
any personally identifiable data, the approach is compliant with the GDPR regulations,
thereby maintaining privacy.
In terms of research, the objective is to improve quantitatively the overall accuracy of
C-Counts by incorporating RFID tracking into the existing system. It is necessary to
develop the engineering component of C-Count that handles the capture of data from the
RFID tracker through APIs provided by the manufacturer of the devices as well as the
incorporation and analysis of this data in the system.
The third and final stage involves the development and evaluation of the proposed work.
In accordance with the design decision outlined in the second stage, these elements will
be integrated and evaluated in a modular fashion.
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1.3 Report Outline

This report is divided into the following sections: Chapter 2 provides a summary of
existing solutions currently available on the market along with background information of
the tools and hardware employed in this project. Chapter 3 discusses the requirements
of the proposed solution and provides an high-level architecture overview. In Chapter 4
the implementation details of the application are discussed in detail. In Chapter 5 the
proposed solution is evaluated in terms of both usability and overall back-end performance
and reliability. Finally, Chapter 6 concludes this report by summarizing the findings.
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Chapter 2

Related Work and Background

2.1 Related Work

This chapter presents an extensive discussion concerning different solution aspects of
movement, capacity, engagement, and occupancy measurements. All the presented solu-
tions below tackle the goal of exploiting gathered data from RFID readers or 3D Cameras
to provide a better understanding and insights of events. Since this work is an extension
of C-Count 1.0, some parts are based on and have been taken from it.

2.1.1 ID-Match: A Hybrid Computer Vision and RFID System for Rec-

ognizing Individuals in Groups

The work presented in [7] aims at bringing a novel hybrid computer vision and RFID
system that is capable of identifying individuals (based on their RFID tags) along with
their 3D images as captured by a depth camera. Specifically, the authors claim that the
system can determine an individual’s identity within four seconds with an accuracy rate of
96.6% and identify groups of five individuals within seven seconds with a 95.6% accuracy
rate.
The ID-Match system can robustly identify people at sufficient speed and accuracy to al-
low a humanoid autonomous robot to interact with up to five individuals at once naturally.
Furthermore, the system is effective at passively monitoring both tagged and untagged
participants without requiring active participation for identification and tracking.

Their approach consists of correlating the time traces of the free-roaming synthetic aper-
tures of the worn RFID tags (using a single RFID reader antenna) with the position traces
of people (using a single depth camera). They have employed an Impinj Speedway Revo-
lution UHF RFID reader with a single antenna and a Kinect v2 depth camera. Based on
a support vector machine, their new technique is further enhanced because it correlates
the changes in the low-level parameters of RFID channels, such as (RSSI and Phase), as
the tags are moved in space, with the motion of the individuals as observed by the depth
camera. In the final phase, a probabilistic voting system assigns IDs to the individuals in

5



6 CHAPTER 2. RELATED WORK AND BACKGROUND

the scene.

It should be noted that the ID matching system’s chief strength originates from the fact
that IDs are associated based on similarity ranking between a limited number of possibil-
ities rather than being based on the true ability of the RFID reader to locate people and
tags. To do this, they measure small variations in the tag and body motion of individuals
as they walk to differentiate among them. Although these motion differences are difficult
to visualize, they are statistically distinct.

In situations where multiple people are walking as part of a group toward the ID Match
System, they create many dynamic events in which the one in the foreground can visually
obscure (or possibly RF obscure) people in the background. A second issue is that since
the RFID SAR motion paths are a measure of distance rather than an indication of po-
sition over time, there is a potential for non-uniqueness in the motion paths, which leads
to difficulties in the matching process.

Occupancy Monitoring Scenario: In the same project, a second uncontrolled study exam-
ined ID-Match’s capability to passively track the movement of individuals in an office as
they pass through virtual checkpoints and gates. During an extended period, the system
must recognize an individual’s identity while visible to the camera and determine how
they are moving.
A total of 122 of the 129 tags worn by participants were recognized correctly by the ID-
Match system (94.5% accuracy). Five incorrect identifications were made for people who
did not wear identification tags, resulting in a false positive rate of 2.9%, while the rest
of the population was correctly identified as not wearing identification tags. Moreover,
as a result of the Kinect’s 3D skeleton tracking, the system recognized the direction of
movement of the correctly identified skeletons with a 100% degree of accuracy.

2.1.2 RFID Vision-Based Indoor Positioning and Identification System

A new system combining active RFID and vision (called RV-based) positioning and iden-
tification is presented in the paper [8], which by cross-referencing video images with RFID
position information improves positioning accuracy and supports personnel identification
and positioning based on ID identification functions of RFID.
The RFID positioning system involves arranging several active RFID tags in the scene,
then using a mobile reader to read the tags in the scene and analyzing the signal strength
levels of all tags present in the scene. A database is used to store the positioning blocks
based on analyzed data. As soon as the initialization is complete, a mobile Reader receives
the signals of active tags present in the scene. The signals are addressed immediately,
and received signals are compared with signal strength information in the database, thus
realizing the initial positioning of RFID.

Through the use of a web camera, real-time images are captured for visual analysis. Posi-
tioning information of moving personnel is derived by analyzing real-time images, which
are then converted into absolute coordinates of personnel in the scene through coordinate
transformation. Following, RFID positioning results are converted to absolute positions
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corresponding to the camera vision results, and finally, the individual’s information is
merged, thus, completing positioning and identification.

2.1.3 Optical Localization of Passive UHF RFID Tags with Integrated
LEDs

The method presented in [9] utilizes an enhanced RFID tag that is augmented with an
LED which can be flashed upon command by a reader in order to determine the location
of passive RFID tags in uncontrolled and unstructured environments. Unlike traditional
RFID location methods, their passive solution does not suffer of multipath problems and
provides greater position accuracy than other solutions. Using the LED enhanced tag,
people can more easily locate tagged objects that can be addressed individually using an
RFID reader.

2.1.4 Computer Vision-Assisted 3D Object Localization via COTS RFID

Devices and a Monocular Camera

In the research done in [10], RF-MVO, a novel system combining RFID and computer
vision to enable stationary RFID localization in 3D space by parallelizing a monocular
2D camera and two reader antennas are presented.
Based on 2D images, the existing monocular visual odometry can only reconstruct the
camera/antenna trajectory in the camera view. The combination of this model with the
RF phase allows estimating the scale factor for real-world trajectory transformation, along
with the direction of the RFID tag concerning the virtual antenna array.

The authors then present a novel RFID localization algorithm that does not require an
exhaustive search of all possible positions within a predetermined area. In a second step,
they propose an optimization algorithm that can improve the localization accuracy and
speed up the process of searching between the results. Finally, the study introduces the
concept of horizontal dilution of precision (HDOP), which is used as an accuracy metric
to evaluate the degree of confidence in the localization decision.

2.1.5 Mandigo

In the field of system integration, Mandigo is a company that has particular expertise
and makes it a unique player in its field [31]. The company’s solution makes it easy
for businesses to demonstrate the business value they can generate from trade shows
and events straightforwardly. According to the company, they can keep track of the
number and movements of their clients and visitors in real-time. Therefore, employing
this monitoring facilitates the estimation of how many customers and visitors per square
meter of space are required.
Regarding live tracking, they offer two variants:
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1. Registration of the customer via RFID technology using a chip in the shopping
cart or ticket:
With this variant, an entry and exit control are carried out with the help of normal
shopping trolleys or entrance tickets. Assuming that every customer has a shopping
cart/ticket, this is recorded and counted using RFID technology.
This allows the movement profile, location, and length of stay to be recorded and
displayed. This data is available in real-time, and the evaluation of the data is
interesting from a marketing perspective. In this way, visitor flows can be measured,
and less frequented stands can be optimized.

2. Via mobile tracking via the customer’s cell phone:
The WLAN tracking records the position of the individual cell phones of the cus-
tomers; their whereabouts and length of stay are determined and evaluated in a
movement profile in real-time. For this mobile variant, WLAN routers are used.
The configuration takes place fully automatically, and the system is ready for use
within a few hours. This data can be called up online at any time via a monitoring
dashboard. Since only the cell phones are identified and not their owners, their
solution is General Data Protection Regulation (GDPR) compliant.

Figure 2.1: Mandigo: example of visitor flow measurement [31]

As part of their RFID solution, they have developed a chip called bibchip UHF [32]. The
system employs a barrier-free ground antenna and it reads the data coming from the chip
with the corresponding timestamp. A4 papers containing the bib numbers are given to
the participants as tags with the information on them. By using an RFID reader that is
attached to the ground antenna, it is possible to read the information on the back of the
bib number. At every intersection, data is provided in real-time.
As a further alternative, the company provides a solution that makes use of a different
frequency spectrum, i.e. High Frequency. This solution is known as bibchip HF and is
used in indoor events where UHF technology is not suitable. With the HF technology,
antenna gates are placed along the length of the measurement line.
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2.1.6 Livealytics

Livealytics is a Swiss company located in Zurich that offers IoT solutions and analytics
to companies in retail, live marketing, smart buildings, smart cities, and many other
industries. In addition to improving live customer experiences, optimizing operational
costs, and increasing sales, they can enhance live customer experiences with their tracking
and measurement technologies. As an added feature, Livealytics provides an option for
counting visitors entering a store or an event location and providing a comprehensive
overview of the total number of visitors.

2.1.7 VCARE

In order to increase traffic volumes in a business, VCARE is a solution designed by V-
Count, an industry leader in creating systems for collecting and analyzing visitor data.
The V-Count 3D hardware enables VCARE to track and manage customer traffic anony-
mously, which helps it satisfy government social distancing restrictions for COVID-19 by
ensuring compliance with social distancing restrictions. Furthermore, it allows to display
occupancy recommendations and accordingly display optimal queueing and wait times for
customers as part of the solution. For example, if a store occupancy limit is exceeded at
any time, the employees will immediately be notified by email or push notifications [30].
In spite of this, this solution does not yet support the calculation of distance and the
analysis of visitor paths in real-time.

Figure 2.2: VCARE occupancy recommendation [30]

2.1.8 Sensalytics

Sensalytics is a German company that has been in the business of tracking real-world
events since 2014. It is currently offering a variety of services, such as people counting,
path analytics, and occupancy management. The Sensalytics platform uses highly accu-
rate 3D sensors from third parties to produce accurate heat maps and calculate dwell time
for each individual visitor [26]. Furthermore, Sensalytics also offers a revenue tracking tool
that combines people counting data with revenue data. There is, however, no support for
real-time distance calculation.
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Figure 2.3: Sensalytics path analytics [26]

2.1.9 Axper

People counting and tracking solutions are among the core competencies of Axper. Sim-
ilarly to V-Count and Sensalytics, Axper employs 3D cameras to provide reliable and
accurate people counting systems. With Axper’s 3D cameras, which are powered by ar-
tificial intelligence, it is possible to differentiate between children and adults in the count
of people. The system also provides precise measurement of dwell time and tracking time
[28]. Besides that, the company is not offering any distance calculation services at the
moment.

2.1.10 Cloud Counter 1.0

A customizable API (Application Programming Interface) is provided by C-Counter 1.0
for collecting, aggregating, and analyzing additional counting solutions or behaviors, such
as distance calculation. A web-based application is used to provide extremely accurate
visitor flow analysis, safe occupancy distances depiction, and behaviour maps for ensuring
acceptable social distancing. Additionally, dwell time, a key component of evaluating how
appealing a web site is, is collected using non-invasive and privacy-preserving methods in
real-life scenarios.

2.1.11 Ipsos

Founded in France, Ipsos is a company whose goal is to support customers in the in-
terpretation and application of data collected. Nowadays, the company offers innovative
solutions in the field of retail performance, such as people counting, queue management
systems, behavior insights, etc. Their solutions allow customers to increase revenues in
retail sectors by presenting tailor-made promotional offers and anticipating the needs of
their clients. Ipsos claims [27] to have an accuracy of 95%, which they consider higher
than other competitors who promise 98% accuracy because their accuracy is calculated
in a live environment in which lightning, flow, dwell, and loitering are taken into account
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during the validation of the data. In similar fashion to others, their solutions rely solely
on cameras or WiFi sensing methods where a close to real-time distance calculation is not
possible.

2.2 Background

2.2.1 RFID Technology

RFID stands for Radio Frequency Identification and it refers to a technology where digital
data is encoded in RFID tags and captured by one or multiple reader through radio waves.
RFID belongs to a group of technologies called auto-ID and it enhances them by allowing
tags to be read without line of sight and, depending on the type of RFID, having a read
range up to 20+ meters [34].
The main advantages of RFID technology are efficency, flexibility and robustness. Since
data acquisition can be performed without any human intervention, it makes them very
efficient. As mentioned, the tags do not need to be withing optical reach and therefore,
the placement of tags on objects can take place with fewer limitations thus improving
the degree of flexibility and lastly, RFID tags are very robust and are not damaged by
humidity, dirt and they will usually be replaced because of newer versions. One of the first
applications of RFID technologies was to identify planes during World War II [35]. In the
meantime, as the technology evolved and improved year by year, the costs of implementing
and employing RFID systems continued to decrease, making it more accessible and cost-
effective. Thus, their reliability and effectivness has been proven in many industries to
perform multiple tasks such as:

• Supply Chain Management

• Asset tracking

• Inventory management

• Controlling acces to restricted areas

• Personnel and people tracking

Topologies of tags

The RFID tag is the main component of the whole system as it allows to read and write
data contained in it. Tags can vary in shape, size, material and operating frequency but
they can all be divided into three different groups: Active, Passive and Semi-Passive or
Semi-Active tags.
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Figure 2.4: Active and passive RFID tags [33]

Active tags: they receive energy from their own power supply in order to operate, which
usually comes from a long-lasting battery. They are able to autonomously transmit data to
the reader and cover far greater distances than passive tags. They have large memory, are
often re-writable and can contain sensors to take measurements, such as heat, temperature
and pressure. They are usually designed for durable use.

Passive tags: they do not have their own energy source but receive it from the signal
coming from the Reader. They consist of a chip (with a unique identifier and memory), an
antenna and a support or container. As the reader passes, the radio frequency activates
the microchip inside the tag, providing the energy needed to operate. This energy during
the reading phase will be reused to respond to the reader by transmitting a signal with
all the information stored inside it; in the writing phase, however, it will allow to save the
data sent by the reader. The distances in which they can operate are of the order of a
few meters or a few centimeters depending on the operating frequency.
Passive tags can be divided into Near-Field RFID and Far-Field RFID, depending on
the frequency band used to communicate and the electromagnetic phenomenon. In the
near-field region, the interaction between the components is dominated by the magnetic
field generated by the antenna, which induces an electric current in the tag by inductive
coupling and allows the chip to be activated. Tags of this type are part of the Low
Frequency (LF) and High Frequency (HF) classes.
Whereas in the far-field region, the interaction of the components is dominated by the
electromagnetic (EM) field created by the antenna. The RFID tag resonates with the
frequency of the EM field and the current generated activates the chip. Tags of this type
are part of the Ultra High Frequency (UHF) class.

Semi-passive/Semi-active tags: they are equipped with their own energy source which
is used to power the microchip or other devices (such as sensors) but not to power the
transmitter. To be able to transmit information, they must be within range of the read-
er/antenna.
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Figure 2.5: RFID Far-Field and Near-Field.

Operating frequencies of RFID tags

RFID tags can be further classified based on the frequency of the signal used for communi-
cation. These frequencies depend on the nature of the tags and the intended applications.
They are regulated by international and national organizations. The frequency bands
most used in RFID technology are the following:

Low Frequency Band: it is located in the lower part of the RF spectrum, within the LF
band there are two most used operating frequencies: 125 Khz or 135 Khz. Historically
it was the first one to be adopted and it still has a significant presence on the market
today. Characterized by a very limited reading distance, it operates almost in contact,
and given its characteristics it is ideal to be used for anti-theft, attendance, access control,
traceability of animals and etc.

High Frequency Band: they operate in the frequencies that work at 13.56 Mhz, they are
supported in the NFC (Near Field Communication) standards. Nowadays, it is considered
as the universal band, given its possibility of use all over the world. It can be used for
identification and tracking, pallets, access control and other applications that require a
short reading distance.

Ultra High Frequency Band: they are frequencies that work at 868 MHz or 915 MHz,
normalized in the Electronic Product Code (EPC) reference standards. The use of this
frequency may be restricted by the authorities of individual countries in terms of maximum
power and frequency bands. In fact, the band is not assigned uniformly in the US, Europe
and Asia. Tags of this type have a greater reading distance than the others and are
therefore mainly used for retail, logistics, warehouse management, etc.
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Figure 2.6: RFID frequencies [33]

2.2.2 Characteristics of a UHF RFID tag

A UHF RFID tag is composed of an antenna and a Integrated Circuit (IC). The antenna
is unique to the type of tag and its task is to receive the RF waves, energize the IC and
finally backscatter the modulated energy to the RFID sensor.

Figure 2.7: Passive RFID tag backscatter [12]

The IC contains four memory banks, it processes, sends and receives pieces of informa-
tion and it is provided with an anti-collision protocol. Each IC is unique and the main
difference betweens ICs is the number of bits provided in the respective memory banks.

The four memory banks are as follows:

Reserved Memory Bank: this memory bank contains the passwords relating to partic-
ular functions such as lock or access. The lock password is rarely used and is used to
completely disable the transponder. The access one, on the other hand, is used when it
is necessary to enable or disable the possibility of writing to the tag.

EPC Memory Bank: this memory bank contains the EPC code of the tag which can
vary in length from 96 to 496 bits. This code is used as an identification code in most
RFID applications and it is usually a randomized unique number.
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TID Memory Bank: this memory stores the unique identification code of the tag (Tag
Identifier). This bank cannot be written or rewritten by anyone. The code is entered
directly by the manufacturer and no one can change it.

User Memory Bank: if the tag does have a User memory bank, it can be used for all
those applications where it is not sufficient to use the EPC code and therefore this bank
is used to enter further information to be stored and coupled to the tag. The smallest
memories are usually from 32 bits up to a capacity of 64k bits.

2.2.3 Impinj Speedway Reader & Connect Software

Impinj is a company that manufactures RFID devices and softwares. The company de-
signs, manufactures, and distributes UHF RFID chips, readers, antennas, and software
applications. The Impinj Reader xArray R680 has been used to analyze movement, ca-
pacity, and engagement of people in this study. xArray gateways are RFID readers that
provide continuous, wide-area monitoring of RFID tags. The system was designed for
large-scale applications such as in retail, healthcare, and manufacturing, and a near-real-
time identification, location and authentication of each item is provided. They claim that
a single reader can cover an area of up to 139 square meters.

Using the Speedway Connect software, data can be transmitted from the readers to a
backend. Speedway Connect is a licensed software that runs on a reader and gateway,
enabling users to connect RFID technology easily and enhance its data collection capa-
bilities through providing a solution for many different types of applications.
A HTTP (Hypertext Transfer Protocol) post request may be made to a remote server at
regular intervals. This feature allows a Reader Name to be specified so that the reader
can be uniquely identified. While the reader is powered on, the software is able to hold
approximately 5’000 tags in memory if the connection drops or there are network prob-
lems. Upon reconnection, the reader will automatically send saved data to the specified
destination.

When the reader profile is set to Location, in addition to the tag’s EPC, the tag’s x, y
location is computed and reported. The location accuracy is typically within 1.5 meters.
In Direction mode, the direction of movement of up to 50 tags passing by or under a
gateway is determined. Since the model xArray is in use, up to 4 direction of travel can
be computed (North, South, East, West). The Speedway Connect software provides an
heartbeat feature which allows to monitor the devices status regardless if there are any
tags in the field of view of the reader. Useful when it is necessary to know whether the
devices is online and the connection is correctly configured.

2.2.4 Timeseries: InfluxDB

To guarantee the highest levels of efficiency and performance, Industry 4.0 and the field
of the Internet of Things have led to an increasingly urgent need for data analysis and
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Figure 2.8: Impinj xArray R680

Figure 2.9: xArray beam pattern
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monitoring, which in the IoT field are characterized by the presence of the timestamp on
the data points, the Time Series Data.
It is not the timestamp itself that makes monitoring data in the IoT complex, but rather
the amount of data generated and the frequency of monitoring to which they are subjected
to. For all these data, the temporal dimension means that the data acquires value even
after acquisition and must be kept over time for analysis and monitoring purposes. This
type of data, however, accumulates easily. It is therefore necessary to have a performing
database that allows to transform these data flows efficiently.
The key difference between a time series of data and simply adding a time field to a data
set is how updates are tracked in the data set. In the IoT field, in fact, the data collected
by a sensor cannot be overwritten as it is generated if you want to be able to monitor the
status of the system over time.

Theoretically, any type of DB can be used for storing historical data series, but prob-
lems arise when it comes to performing analyzes on them. Given the nature of historical
series data sets, the choice of database must be based on scalability and high availability.
Relational databases do not provide sufficient scope and storage capacity for Time Series
Data, which are linked to fast processes and for which it is essential to adopt a DB solution
created specifically for their analysis.
Choosing a Time Series Database for historical data is the most appropriated if there
is the need to optimize bandwidth and memory resources: these databases use the data
collection timestamp (the moment in which it is read) as primary key and are optimized
for applications that focus on the scanning of points detected over a long period of time.

Among the most performing Time Series Databases there is InfluxDB, which is an open
source DB specialized in high writing and consistency of events, even on distributed sys-
tem. It is designed to simplify the interaction with time series. InfluxDB 2.0 introduces
the new programming language Flux, which the InfluxData company publishes as open
source with the MIT license on GitHub.

2.2.5 Xovis 3D Camera

With regard to analysis of movement, capacity and engagement of people, Xovis 3D
Camera are employed in this work. Xovis 3D cameras are equipped with a 3D sensor and
two wide-angle lenses which are able to perceive the scene from different perspectives,
therefore achieving a precise depth map or 3D image of the whole scene. Thanks to deep
learning-based algorithms, they are able to recognize and track people allowing to analyze
individual path of each person.
As stated by the producer [29], the 3D stereo vision technology is resistant to external
influences like shadow, light changes and still able to pull off a counting accuracy of more
than 99%, exceeding the conventional people counting and tracking technologies. The
exact model utilized in this work is the Xovis PC2. It offers data processing on the sensor
itself and thanks to the real-time data feature, it enables immediate traffic counting and
zone occupancy. Moreover, in order to meet privacy requirements, it offers four privacy
protection levels.
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Figure 2.10: Xovis PC2 3D camera

2.2.6 Milesight IoT

Milesight IoT, previously known as Ursalink, is a high-tech leading-edge company which
provides IoT solution that enable the connectivity of ”things”to the cloud. Thanks to their
products, the complexity of data collection, storage and retrieval can be simplified into the
cloud. In order to provide connectivity to the 3D Xovis cameras and Impinj xArray RFID
readers, both the UR32 and UR35 LTE Router have been used. They are industrial cellular
router which provide 2, respectively 5, fast Ethernet ports with Power Over Ethernet
support, thus simplifying the installation of the devices. Moreover, Milesight offers a VPN
solution that allows remote access and configuration of attached devices and a DeviceHub
for remote management of the routers.

Figure 2.11: Milesight IoT UR32 and UR35 routers



Chapter 3

System Design

This chapter illustrates the developed system and method to improve the overall level
of accuracy of C-Counter based on the combination of inputs from 3D cameras with the
tracking of RFID tags. Improving the level of accuracy of the previous system (C-Count
1.0) is essential in order to be able to guarantee precise level of occupancy measurement
in periods of a pandemic or crisis such as the COVID-19.
Hereafter, Section 3.1 describes an initial requirement specification by determining func-
tional and non-functional requirements. In section 3.3 an high-level architecture overview
of C-Counter 2.0 is given. It describes the process of collecting, storing the data from
RFID reader and also the integration with the existing architecture of C-Counter 1.0.

3.1 Requirements Specification

As a mean to provide a detailed and documented specification of what a software is
supposed to achieve and how it should perform, a Software Requirements Specification
(SRS) can be established. A SRS is a selection of requirements, which describe the system
to be develop as well as its objective.
A set of use cases that describe all the interactions that users will have with the software is
included as well. Use cases are known as functional requirements, whereas non-functional
requirements, provided as well, are requirements that impose restrictions on design or
implementation and quality standards.
Well-specified requirements are needed to reduce development effort and costs, thereby
increasing productivity. When done correctly, SRS ensures that the system’s objectives
are efficiently and effectively reached.
In partnership with Livealytics, some aspects that need to be addressed in advance have
been identified.

Functionality. The C-Counter 2.0 back-end should be able to collect, aggregate and store
data coming from multiple Xovis 3D cameras, thus being backwards compatible with the
existing system. Moreover, the new solution should be able to calculate the total number
of visitors in scenarios where 3D cameras are installed and configured and extract the
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number of unique visitors where RFID readers are present.
The system should be as flexible as possible and require almost no configuration so that
the installation process together with 3D cameras do not require almost any manual input.
Since the extrapolation of unique number of visitors will be based on a statistical data
analysis, the desired level of accuracy and the confidence level can be dynamically defined.

External interfaces. The C-Counter 2.0 makes use of third-party hardware and therefore
it heavily relies on them. The data collected and used comes from two completely different
technologies and sources and those devices are made by different producers. Therefore, to
guarantee a proper and successful integration, the devices have to be reliable and accurate.

Quality. As mentioned before, to evaluate the performance, usability, security and scala-
bility of a software, non-functional requirements are usually used. Those can be labeled
as quality attributes as well. Since C-Counter 2.0 is an extension of the previous version,
the same non-functional requirements defined for it must be respected, i.e., C-Counter
should not take longer than 5 seconds to perform any computation, even when the number
of cameras increases over time. Beside that, the new part responsible for extracting the
unique number of visitors, shall continuously run in the background and process data in
near real-time without affecting any other component and avoid to reprocess data already
analyzed.
With respect to security, the previously defined aspects are guaranteed in C-Counter 2.0
as well, i.e., data collected and process can only be accessed by authorized people and
devices can only be configured and linked to a particular event by authorized people. In
the new solution, a 3D camera is going to be running and collecting data from an event
and a RFID sensor is going to be paired to it as well, thus increasing the mole of data
generated. Therefore, C-Counter 2.0 is implemented with Amazon Web Services as well
and thus offered scaling features, such as Auto Scaling, can be put in place by increased
workloads.

Constraints. The existing solution based solely on 3D cameras is already GDPR (General
Data Protection Regulation) compliant. The linking of RFID tags with tracked object
must therefore be compliant as well by not associating any personal information to RFID
tags.

3.2 System Overview

For the system to be able to uniquely count people in a scene, it must be capable of
correctly matching the data incoming from 3D cameras with the data collected by RFID
readers. The challenge here is to identify which RFID Tag belongs to which ID assigned
by the 3D camera, and thus to which individual. If a person who left the scene later
returns, the system should recognize it and prevent it from being counted twice.
To accomplish this, a method for correlating the ID of the 3D cameras with the EPC of
the RFID tags has been developed.
Figure 3.1 shows a typical implementation of C-Counter 2.0 consisting of an Impinj xArray
R680 UHF RFID reader along with a Xovis 3D Camera. Participants are supposed to
wear or hold a low cost UHF RFID tag in form of a badge. As participants walk within
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the view of the 3D Camera and the RFID reader, the RFID tags are continuously read
and the 3D camera tracks the participant’s position under it.

Person A

Person C

Person B

RFID Reader 3D Camera

Figure 3.1: An illustration of a typical implementation of C-Counter 2.0 consisting of a
3D camera and a RFID reader

3.3 Architecture Overview

Figure 3.3 depicts the architecture overview of the system with its components. The red
box illustrates the existing and unchanged architecture of C-Count 1.0. It is the front-end
that manages the interaction with the user. This encompasses the selection of the desired
camera, the associated event date, and a graphical representation of the dashboard as-
sociated with the selected event. Data is requested from the back-end and is processed
as efficiently as possible by the front-end. The real computation occurs in the backend,
which is hosted on AWS and based on lambda functions. Its serverless architecture built
upon microservices enables it to easily scale when necessary while maintaining a high level
of extensibility.

Due to the system’s simple architecture, it is possible to incorporate RFID Readers into
the system as easily as writing a new lambda function to collect the data and store it
in a separate database. In fact, the RFID tag data is stored in an InfluxDB, which is
superior to relational databases when it comes to storing and processing time-stamped
measurement data. There is a cron job running in the background that gets triggered
every five minutes. In this cron job, a python script is executed inside a lambda function
that retrieves the most recent data from both the camera and RFID sensors, analyzes it,
combines it, and stores the result of the computation inside InfluxDB. A new endpoint
has been created in order to retrieve the data. The endpoint accepts any query written
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Cloud Counter v1.0
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Figure 3.2: Architecture overview of C-Counter 2.0



3.4. DATA COLLECTION AND PROCESSING OVERVIEW 23

in Flux which gets then executed in the database and returns the corresponding result.
Furthermore, a dashboard in Influx has been created to monitor and visualize the collected
data. It displays several metrics simultaneously in real time, for example the number of
points collected for each RFID tag, the last known position of a tag on a scatter plot, and
the most recent timestamp of the data for each RFID reader. The dashboard facilitates
the debugging process.

3.4 Data Collection and Processing Overview

RFID Reader

Amazon RDS

S3 Bucket 
with person 
coordinates

Lambda
 Process Person 

Coordinates

Xovis 3D Camera

Amazon API Gateway

sends Protobuf data

Lambda 
Calculate Distances

Lambda
Upload to S3 Bucket

Lambda 
Update Table

cronjob every 15 
minutes

Lambda 
Database 

Connectionsends JSON data
Lambda

 Process RFID Tags
S3 Bucket 
with RFID 

coordinates

(backup)

InfluxDB

Lambda
Match Data 

cronjob every 5 
minutes

(MySQL Library)

Figure 3.3: Data Collection Overview of C-Counter 2.0

An explanation of how data is simultaneously collected from cameras and RFID readers
is presented in this section. Similarly to the previous version in C-Count 1.0, a camera
sends data to a lambda function called Process Person Coordinates that is hosted by
AWS. Additionally, a copy is forwarded to the second function (Upload to S3 Bucket),
which stores the data in the AWS Simple Storage Service (S3), as well as a lambda
function (Database Connection), which saves a copy into a relational database that is
hosted in the cloud. Asynchronously, the same data is sent to a third lambda function
(Calculate Distances). By analyzing the coordinates of the objects in the scene, this
function calculates the distance between them. In the event that any points are closer
than a predefined threshold, then the matching coordinates and the minimum distance
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are saved in the relational database. For the purpose of aggregating the data coming from
different camera data pushes and enabling a faster data retrieval, every 15 minutes, an
Amazon Cloudwatch event rule is triggered. The data for the last three hours is retrieved,
aggregated, and stored in a different table.

Due to the different structure of the data, another lambda function (Process RFID Tags)
is used to parse the data appropriately and insert it into a time series database, in this
case InfluxDB. In the same manner as before, the data is passed to a lambda function
that stores it in a relational database and a copy is stored on Amazon S3. It is important
to note that the data stored in the relational database is only used as a backup in case
InfluxDB gets corrupted or any data loss occurs.
With regard to extrapolating the unique number of counts in a specific scene, a lambda
function (Match Data) is triggered every 5 minutes. This function, written in Python,
retrieves the data collected from the RFID readers and queries the corresponding data for
the paired 3D cameras. Once the whole dataset regarding the last 5 minutes is available,
the data is processed, analyzed and a match between both sources is calculated. In the
event of a successful match, the matching entries are inserted into the InfluxDB, along
with the matching metrics, which can be used to evaluate the accuracy of the system.



Chapter 4

Implementation

This chapter details the concrete implementation of the design proposed in the previous
chapter. Firstly, in order to achieve the design goals, the configuration of the RFID
readers and the Ursalink router are detailed followed by a close-up to the backend hosted
on AWS and based on lambda functions. Secondly, the implementation details of the
database powered by InfluxDB along with an Influx dashboard are given.

4.1 RFID Readers Setup

4.1.1 Ursalink/Milesight Router

Impinj’s xArray R630 RFID readers are not equipped with mobile internet access. Thus, in
order to simplify the installation of the readers, they are connected to a cellular router, the
UR32 or UR35. These two models are industrial cellular routers with a built-in LTE CAT4
modem, and they support Power over Internet (PoE), so the RFID Reader does not require
any additional power sources. Furthermore, the manufacturer of the routers provides a
VPN network connection (MilesightVPN) to ensure that customers can communicate
securely over the internet to remote devices. Using this feature, remote troubleshooting,
viewing and control can be accomplished.

Figure 4.1 shows the official DeviceHub Portal software that allows the managing and
controlling of the routers. It shows important pieces of information like the Time, the
Name, the Serial Number and the VirtualIP, useful to identify and reach the routers
while connected to the VPN service. When typing the VirtualIP of the router into the
browser, the user is welcomed with the Ursalink portal. Besides showing the status of the
router and the connected devices, the portal offers the possibility to configure the built-in
firewall and map the required ports in the Port Mapping section. Figure 4.2 shows the
configuration of the required port needed to remotely access and connect to the RFID
reader, reachable under the internal IP 192.168.0.2 assigned by the router.
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Figure 4.1: DeviceHub portal

Figure 4.2: Ursalink port mapping

Port 80: this port is necessary to be able to remotely access the software running on the
Impinj xArray R680 Gateway. Important to mention is that since the Ursalink Portal is
already running on port 80, the source port (or the external port) has to be different, in
this case the port 1080 has been chosen. Like shown in figure 4.3, the software displays
the status of the reader but most important, the software allows to upgrade the firmware
running on the reader and also the ability to reboot it when needed. Through this pannel,
it is also possible to install other plugins, like the Speedway Connect software which allows
the reader to send data using the HTTP protocol in JSON (JavaScript Object Notation)
format.
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Figure 4.3: Impinj xArray gateway

Port 443: this port is used to connect to the Speedway Connect plugin which is reachable
under the HTTPS protocol.

4.1.2 Speedway Connect Plugin

Speedway Connect is a software plugin that runs on Impinj speedway readers and enables
users to deploy, manage and enhance the data collection capabilities for RFID technology.
It takes advantage of a simple graphical user interface that allows users to change the
reader’s configuration and also deliver RFID data in JSON format using the HTTPS post
protocol, without any software or middleware, such as a computer. The following section
identifies the main capabilities associated with the Impinj xArray R680.

Reader Profile

• Location: for each tag’s EPC it computes the x and y location of the tag and reports
it with an accuracy of 1.5 meters [36]. This is the profile used to collect the data
for this study.

• Direction: it can detect the direction of up to 50 tags passing by or under a reader.
With an xArray it provides four directions: North, South, East and West.

• Inventory: it provides the timestamp when the TAG was latest seen, no additional
fields or computation is performed.

Data Delivery Options
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• The software is capable of storing the tag reads into a file on a USB stick and access
them remotely by FTP.

• It can outputs tag reads to a TCP/IP Socket.

• Send the tag reads to a device connected on the serial port.

• Send a HTTP post request to a remote server on a regular interval. This last option
was employed in this study. Additionally, the reader can be given a name (Reader
Name) in the body of the message so that it can be distinguished from other readers
sending data to the server.
The tags information will only be sent if a tag has been recorded and the minimum
update interval has expired. For backup purposes, it ensures that up to 500 tags
are saved locally when an HTTP post fails, and attempts to resend them as soon as
possible. Once the limit of 500 tags has been reached, any new tags will overwrite
any older tags. [36].

Data Content Options: it outputs different pieces of information collected about the tag
and sends only the ones included in the chosen reader profile, which could be:

• Antenna Port

• Timestamp

• Peak RSSI

• TID

• User Memory

• Heartbeat (it allows to monitor the reader’s health even if no tags are present in the
field of view).
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Figure 4.4: Reader profile & location con-
figuration

Figure 4.5: SWC: Reader modes data out-
put

Figure 4.6: SWC: output connection
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4.1.3 Impinj Reader Modes

Reader modes describe the data transmission over-the-air between the reader antenna
and RFID tag. By changing the modulation, it is possible to choose best balance between
read rate and resistance to interference by changing the modulation scheme that encodes
the data.
In general, more modulations used to encode a bit, the less likely it is for the data to be
affected by interference from other nearby devices or readers who happen to use the same
frequency. Three examples, each sending the same information with a different amount
of modulation, are provided below to illustrate how signals are modulated to encode
binary data [37]. The Miller (M) algorithm determines the number of modulations used
to encode each bit. An increased Miller value means more modulations per bit, which
generally requires more transmission time but yields a more robust signal.

Figure 4.7: Levels of modulation taken from [37]

As part of Impinj’s Speedway readers and gateways, there are a number of predefined
modes to select from. Table 4.1 shows a brief overview of the main features of the various
predefined reading modes.
By selecting a reader mode that has a high reading rate, it is possible to obtain the most

accurate tag location calculation. In Location Mode, the greater the number of times the
xArray reads the tag, the greater the number of samples the algorithm uses to determine
the (x,y) tag position with reasonable accuracy. Figure 4.8 shows a flowchart made by
Impinj which describes the best approach to take in order to chose the best algorithm
depending on multiple factors such as the environment and the number of readers.



4.1. RFID READERS SETUP 31

Table 4.1: Impinj Speedway RAIN RFID reader modes

Mode Name Type Encding Notes

0 Max Throughput Standard FMO
Fastest data rate, but most susceptible
to interferences

1 Hybrid Standard Miller 2
2 Dense Reader M4 Standard Miller 4

3 Dense Reader M8 Standard Miller 8
Most interference tolerant of the
standard modes.

4 Max Miller Standard Miller 4
Higher read rate with tolerance for
multiple readers in the area

5
Dense Reader M4
Two

Standard Miller 4
Higher read rate with tolerance for
multiple readers in the area.
Faster forward link than mode 2

1000 AutoSet Dense Reader Impinj Various
Listens to RF environment before
selecting reader mode 1 to 5

1002
AutoSet Dense
Reader Deep Scan

Impinj Various
Combination of faster modes and
slower Dense Reader Modes (DRMs).
Maximizes the number of unique tag reads

1003 AutoSet Static Fast Impinj Various
Combination of faster modes only
Higher read rate with some tolerance
for multiple readers in the area

1004
AutoSet Static
Dense Reader

Impinj Various Combination of DRMs only

1005 Impinj Internal Impinj Various Do Not Use

RF Interference
AutoSet Static 

Fast
 (1003)

AutoSet Static 
Dense Reader

 (1004)
High

Low/Medium

Reader Density
Max Throughput

(0)
Low

Max Miller/Dense 
Reader M4 Two

(4/5)
High

Reflective 
Environment?

Average

Yes

AutoSet Dense 
Reader Deep 

Scan
(1002)

No

Figure 4.8: Location mode recomendation from [37]
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4.2 C-Cloud 2.0 Backend

4.2.1 Languages and Frameworks

Amazon Web Services (AWS)

C-Counter 2.0 is hosted on Amazon Web Services, a cloud service provider. AWS offers
many services, including REST APIs, automatic scaling of the computation power based
on usage and security for applications. Considering that the Livealytics platform is already
hosted on Amazon Web Services, it was justified to use AWS for the C-Counter 2.0 as
well.

AWS Lambda: Throughout the AWS Lambda function framework [15], a single microser-
vice resides in a stateless container and is executed by a serverless compute service only
when triggered by events fired by multiple clients. Due to their decoupled nature, lambda
functions can be independently scaled based on the incoming network traffic. As soon
as the code has been uploaded to a Lambda function, the service handles all the neces-
sary capacity, patching, scalability and administration of the infrastructure to allow the
contained code to be executed. Lambda functions also generate real-time metrics and
logs that are published to AWS Cloud Watch [16] in order to enhance visibility of perfor-
mances.
To access on of the Lambda function, a path, accessible through an API Gateway, has to
be specified. For example, to retrieve coordinates of a camera the path could be /rfid/-
coordinates/schlieren?readerName=’center’, where /rfid/coordinates/schlieren specifies
the path and ?readerName=’center’ the parameter. This path is usually appended to
the API Gateway domain and thus accessible from the outside.

AWS CloudFormation Template: The maintainability of a scalable microservice-based
architecture depends on its well-defined structure. In this respect, Amazon Web Services
Cloud Formation [21] provides a common language for describing and provisioning the
cloud-based infrastructure. Several templates can be modeled that contain declarative
APIs, which are used as input data by the API Gateway to enable the provisioning of
applications and services at a rapid pace. Upon creating the stack from the template code,
it is possible to think of it as a collection of AWS resources that can be managed as a single
entity within Cloud Formation. In some cases, stacks are useful for encapsulating multiple
API versions into a single container, so that in the event that a certain API version is
no longer needed, all of its associated resources are removed from the cloud by simply
deleting the stack. By using Cloud Formation, all resources needed and deployed to the
cloud are declared and standardized using one source of truth for the entire application.

AWS Relational Database Service: When dealing with a serverless architecture, the most
common approach involves utilizing a multi-tenant relational database that is able to
release and open multiple DB connections for different microservices. Amazon Relational
Database Service (RDS) [59] offers a number of different databases and offers the capability
of scalability in the cloud. For this study, an Amazon Maria database previously used
by Livealytics for development purposes, was chosen. AWS MariaDB is a cost-effective
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MySQL relational database built for the cloud which enbles fast lookups.
The exact version of MariaDB used is 10.5.

AWS CloudWatch: The Amazon CloudWatch service monitors applications and provides
reports to developers [16]. A log file will be stored within CloudWatch after every request
is processed by each of the Lambda functions. This log file contains vital information
about the request just served. The log is essential when developing new features that are
interacting with different services, and it is necessary to verify the functionality of the
method called. Besides, it can be useful for the identification of bugs or the explanation
of why certain actions occur. It is quite useful to check the log within CloudWatch to see
what exactly happened with the request, for instance, if an RFID reader did not send any
data or if the data could not be stored in the InfluxDB.

AWS S3: S3 is an Amazon Simple Storage Service [18] that offers an object storage service
through a browser interface. In addition to being highly scalable, it is also relatively
inexpensive. It is a type of storage that can be utilized to store any kind of object for
backup, recovery, and data warehousing purposes.

InfluxDB

Developed by InfluxData, InfluxDB is an open-source time series database with optional
closed-source components. The software is written in the Go programming language and
is optimized to handle time series data. The older version of InfluxDB, namely version
1.8 and earlier support a SQL-like query language, whereas the newest version, 2.0, has
its own query language, namely Flux.
The TICK Stack (See Figure 4.9) is a loosely coupled yet tightly integrated set of open
source projects which provide a full time series database platform with a variety of ser-
vices, including InfluxDB.
It can run on cloud and on premises on a single node as well. Closed-source versions,
namely InfluxEnterprise and InfluxCloud, offer features including high availability, scala-
bility and backup-and-restore.

Key Concepts: In order to fully understand InfluxDB, a few important concepts must be
defined. Presented below is a simple example that illustrates these concepts in an easy
to understand manner (See table 4.2). An example similar to this is presented in the
InfluxDB documentation [38]. It illustrates the RFID tag E28011700000021428BF80B1

sensed by the RFID readers center and left at location schlieren between 01/07/2021
at 11:00 and 01/07/2021 at 11:02.

Table 4.2: RFID data example

time measurement filialeId readerName EPC field value
2021-07-01T11:00:00Z rfid location schlieren center E28011700000021428BF80B1 xCm 253
2021-07-01T11:00:00Z rfid location schlieren left E28011700000021428BF80B1 yCm 120
2021-07-01T11:01:00Z rfid location schlieren center E28011700000021428BF80B1 xCm 270
2021-07-01T11:01:00Z rfid location schlieren left E28011700000021428BF80B1 yCm 170
2021-07-01T11:02:00Z rfid location schlieren center E28011700000021428BF80B1 xCm 574
2021-07-01T11:02:00Z rfid location schlieren center E28011700000021428BF80B1 yCm 198
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Figure 4.9: The TICK stack

First of all, time is the most important concept in InfluxDB. Each InfluxDB database
contains a _time column that stores discrete timestamps associated with specific data.
On disk, timestamps are stored in epoch nanosecond format. The _measurement column
shows the name of the measurement rfid_location. Measurement names are strings. A
measurement acts as a container for tags, fields, and timestamps (think of it as an SQL
Table). The next three columns, filialeId, readerName and EPC are tags. Tags include
tag keys and tag values that are stored as strings and metadata. The tag key readerName

has two tag values, namely center and left. Fields are stored in the last two columns,
the field key stored in the _field column and the field value stored in the _value column.
Field keys are string that represent the name of the field, in this case xCm and yCm and
field values contain the actual data like 253, 120 and 270. Field values can be strings,
float, integers or booleans.
Field sets are collections of key-value pairs associated with a timestamp. The following
field sets are included in the example data:

• rfid_location xCm=253,yCm=120 1625137200000000000

• rfid_location xCm=270,yCm=170 1625137260000000000

• rfid_location xCm=574,yCm=198 1625137320000000000

Tag sets are collections of tag key-value pairs which make up a tag set. The following tag
sets are included in the example data:
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• filialeId=schlieren, readerName=center, EPC=E28011700000021428BF80B1

• filialeId=schlieren, readerName=left, EPC=E28011700000021428BF80B1

A query on tags will be faster than a query on fields since tags are indexed. Consequently,
tags are ideal for storing frequently accessed metadata. All InfluxDB data is stored in a
bucket. A bucket is a combination of a database and a retention period (the period of
time for which each data point is retained).

NodeJS

Most of the microservices running in the back-end are developed using Node.js [40], a
well-known runtime environment for javascript that executes code and can be used to
create fast and scalable network applications. Node.js runtime compilers from Lambda
are used to execute code in response to cloud events. An environment that includes the
AWS SDK for Javascript[39] runs the code itself.

Python

The Python programming language is an interpreted, object-oriented, high-level program-
ming language with dynamic semantics [41]. Because of its high-level data structures, dy-
namic typing, and dynamic binding capabilities, the language is very suitable for Rapid
Application Development, as well as for use as a scripting or glue language to connect
existing components. The simple syntax of Python, which is easy to learn, emphasizes
readability, thereby reducing the cost of updating a program. Python supports modules
and packages, which promote modularity and code reuse in programs. AWS Lambda
supports the Python programming language. The Lambda framework provides Python
runtimes that execute the code to respond to events. In the code’s environment, Python
SDK (Boto3) is installed along with credentials from an AWS Identity and Access Man-
agement (IAM) role that can be managed.
Python is often the programming language of choice for the daily tasks that data sci-
entists handle, and among the top data science tools used across industries [42]. In the
case of data scientists who need to integrate statistical code into production databases or
integrate data with web-based applications, Python is often the way to go. Additionally,
it is ideal for implementing algorithms, which is a task frequently performed in this field.
Furthermore, there are Python packages tailored specifically for such functions, including
pandas [43], NumPy [44], and SciPy [45]. Python’s scikit-learn module can be extremely
useful and valuable to programmers working on various machine learning tasks. As part
of this study, Python is used to match the data collected from both sources, namely from
cameras and RFID readers. A detailed explanation is given in section 4.2.4.
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Flux

The Flux programming language is a standalone data scripting and querying language
designed to increase efficiency and simplify code reuse. A planner and optimizer are in-
corporated into Flux to facilitate ETL (Extract Transform Load), monitoring, and alert-
ing. In order to develop Flux, the open source community drove innovation around time
series data [46]. With its easy-to-use interface and excellent readability, Flux is a highly
productive and easy-to-learn program. The Flux scripting language has both a command
line interface and a web-based interface. Due to the nature of Flux queries, they can
be tested and checked into source control systems. A query can be tested in parts, and
a complex query can be built from components tested individually. Composability is a
feature of Flux. For specific use cases, developers can extend the language. It is possible
to include other Flux modules in the code and add new functions to the platform and
due to the nature of Flux queries, they can be tested and checked into source control sys-
tems. A query can be tested in parts, and a complex query can be built from components
tested individually. Flux is designed with the capability of integrating with other systems
in mind so that it makes it easy to integrate different data sources, such as databases,
third-party APIs, and filesystems.

1 from(bucket: "cloudcounter")

2 |> range(start: 2021 -01 -01)

3 |> filter(fn: (r) => r["_measurement"] == "rfid_location")

4 |> keep(columns: ["_time", "filialeId", "readerName"])

5 |> group(columns: ["filialeId", "readerName"])

6 |> last(column: "_time")

7 |> group()

Listing 4.1: Flux query to get the lastSeen timestamp of all the RFID readers

As part of its chaining operations, Flux uses pipe-forward operators (|>). Each of Flux’s
functions and operations produces a table or collection of tables containing data. These
tables are piped forward to the next function or operation in which they will be further
processed or manipulated. This allows sophisticated queries to be built by chaining to-
gether functions [50]. Listing 4.1 shows an example of a Flux query that finds the last
timestamp present in the database for each RFID reader. The first step is to select the
correct bucket, i.e., cloudcounter, which corresponds to the database in MySQL. Flux
always requires a range to be specified, so a timestamp older than the actual start of the
experiment is used in order to scan the entire database. The filter function is used first to
identify the correct table, i.e., rfid_location, and then other conditions may be chained.
The third pipe operator, i.e., filter, selects only the desired column. Subsequently, the
data is grouped by filialeId and readerName and only the last known value in the
column _time is taken.

SQL

The Structured Query Language (SQL) is a standardized programming language used
to manage relational databases and perform various operations on them. As an initial
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creation in the 1970s [47], SQL is widely used not only by database administrators, but
also by developers writing data integration scripts and data analysts looking to set up
and execute analytical queries. Modifying database tables and index structures, adding,
updating, and deleting data rows, as well as retrieving subsets of information from a
database are various uses of SQL. The query language is a command language where SQL
statements are commonly used for querying and performing other SQL operations such
as select, add, insert, update, delete, create, alter, and truncate.

4.2.2 Design Patterns

Software design patterns are generalized, reusable solutions to a common software problem
within a specific context. The design is not a finished product that can be converted
directly into source or machine code. Instead, it is a description of how to solve a problem
that can be applied to many different contexts. Programmers can use design patterns to
solve common problems when developing an application or system.
Through the use of tested, proven development paradigms, design patterns can accelerate
the development process. A successful software design takes into account issues that may
not become apparent until later in the implementation process. As a result of reusing
patterns, small problems can be prevented from becoming large problems in the future
and improve readability for programmers and architects familiarized with the pattern. It
is therefore important to have a well defined design pattern in advance of implementing
a system.

Serverless and Microservice Architectures

Cloud computing services provided by Amazon Web Services are often offered in serverless
context. This means that there is no operating system or server to maintain or configure
and there is access to a wide range of computing power. In such a context, where resources
can be automatically scaled when needed, flexibility is also a crucial factor. In addition,
rather than paying a full price for a server that may not be fully utilized, AWS applies a
pay-per-invocation billing model. In other words, the costs are based on the time spent
during the execution of the code.
Microservice architecture is an architectural style in which an application is divided into
multiple services. As a result, these services are independent from each other, loosely
coupled, highly maintainable, well-defined and they can be exposed through an API end-
point. It is the API Gateways’ responsibility to orchestrate the communication and to
distribute the traffic among the services in response to demand. In our case, the fact that
lambda functions can be automatically scaled or replicated ensures that, even under high
demand, such as when many cameras and rfid readers send data to the backend or when
many users access the C-Counter 2.0 GUI, the system stays responsive.
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Monolithic vs Serverless Architecture

The traditional application development paradigm is characterized by monolithic architec-
tures in which processes are tightly coupled, wrapped, and exposed as a single interface.
In the event that there is a demand for a single API endpoint, the entire instance must
be replicated in order to scale the application. In addition to being costly, this approach
may lead to a single error being repeated multiple times. As the code base grows, adding
more functionalities to a single container could introduce more bugs [48].
The result is that it is challenging to introduce new features, maintain the current code
base, and simultaneously prepare to manage more incoming traffic within one monolithic
application. A serverless architecture can be constructed by using independent compo-
nents that run each application process as a service. There is no doubt that these services
are loosely coupled, well defined, encapsulated, independent of one another, and exposed
as a single container or API endpoint.
Contrary to a monolithic approach, each service can be regarded as a reusable capa-
bility that requires as much granularity and abstraction as possible. An API Gateway
orchestrates communication among these functions and distributes the incoming traffic
according to demand. Serverless functions are isolated from each other and can, therefore,
be updated, scaled and deployed independently. There is no need to replicate the entire
application instance if the application has a spike in demand for a specific service. Separa-
tion of concerns [46] is a design principle that is followed in this architectural pattern and
is intended to separate a orchestrated solution into distinct services, where each service
should address a distinct concern. Figure 4.10 shows a typical example of a serverless
architecture.

As well as their benefits, serverless functions such as AWS Lambdas have some dis-
advantages as well. It is not possible for them to be instantiated independently and
they require a complex architecture, such as AWS Cloud Services which are typically
subscription-based services. Moreover, most of the time, duplicated code will be found
within the functions because they do not share a codebase. The file must be copied and
pasted into each lambda function if it is referenced across multiple functions. If the file is
modified at a certain point, it must be copied and pasted into each lambda function. If
the file is not copied to every serverless function using it, or if there is a mistake on the
copied file, this can lead to errors.
AWS introduced the concept of Layers to overcome this problem. A Layers is simply a file
archive that can contain additional code or data and be shared between different lambda
functions. However, Layers also introduces new tooling challenges and requires additional
security considerations.
First of all, they are more difficult to invoke locally. It is difficult to execute functions
locally when there are dependencies that exist only within the execution environment.
Tools must be able to fetch relevant layers from AWS and include them in the build pro-
cess before executing local functions. Prior to calling a function, the SAM CLI would
fetch the layers and cache them and therefore, upon invoking the function, the content
of the layers would be available in the container SAM utilizes [49]. It is also difficult to
test Lambda functions that depend on layers. Unit and integration tests should mirror
the behavior of SAM when testing the functions. It is possible to download the layers in
question using either the AWS CLI or AWS SDK as part of the setup process. However,
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Figure 4.10: Typical serverless architecture taken from [48]

this adds a considerable amount of complexity to the tests. If testing the layers is not
feasible, it might be possible to create a mock or stub. However, it is not the same as
executing layer-specific handler code.

The second difficulty is dealing with changes in the layers. In the event that a layer
is deleted, the functions that were deployed with it will continue to function. This func-
tion will, however, no longer be able to be updated. It is the case even if the layer is
still available but not the specific version required. A potential problem may arise when
a hotfix is required for a function in production. In the context of layers, this is a risk
that should be considered, especially when dealing with layers controlled by third parties,
where no control over their release cycle is assured. In addition, when applying layers, a
good practice is to scan the layers for vulnerabilities and malicious code, thus requiring
even more effort.

As a result, monolithic architectures are more easily implemented. The monolithic ap-
proach is quite effective in the early phases of a project, and most large and successful
server-side projects that can be witnessed today were started using this method. For
projects with extremely complex dependencies that change over time, serverless architec-
ture is a better choice.
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4.2.3 Data Collection Process

The purpose of the following subsection is to provide detailed information regarding the
collection and storage of data. The configuration relies on the Xovis 3D camera and the
Impinj RFID reader, both of which are discussed in details. The implementation on the
back-end side is also thoroughly described.

Xovis 3D Camera

In C-Counter 1.0 it has been mentioned that the Xovis camera can transmit data in var-
ious formats. The camera can automatically push data (count data, object coordinates,
sensor status, and others) to a remote server by using HTTP(S), (S)FTP or MQTT.
The data used in C-Counter 1.0 is based on object coordinates. Data is pushed more
frequently with an interval of 5 seconds, whereas the granularity of 1 second was chosen
to correspond to the frequency with which RFID readers capture a Tag position. In this
way, the process of matching the data between the two different data sources becomes
easier and requires less data cleaning and preprocessing.

1 Xovis 3D Camera data format:

2 {

3 "timestamp": 1600404912560 ,

4 "id": "50185",

5 "x": 95,

6 "y": 112

7 }

8

9 RFID Reader data format:

10 {

11 "epc": ’E28011700000021428BFA201 ’,

12 "lastSeenTime": 1625134778370154 ,

13 "type": ’update ’,

14 "xCm": -117,

15 "yCm": 89,

16 "confidenceWeight": 195,

17 "confidenceData": [Array]

18 }

Listing 4.2: Xovis 3D camera data format and RFID reader data format in location mode

Impinj RFID Reader

A RFID reader must possess the location profile, as shown in figure 4.4. Listing 4.2
shows how an entry point captured by an RFID reader is formatted differently from
that captured by the 3D camera, and therefore, a new Lambda function is required to
correctly parse the data. The new function has the capability of parsing all three profiles
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that can be sent out by an RFID Reader. This function parses the data according to its
structure and then passes it to a second Lambda function that handles the connection to
the database and inserts it to the database, similar to how it is handled in C-Counter 1.0
with a relational database.

1 exports.lambdaHandler = async event => {

2 const {body , pathParameters } = event;

3 const {filialeId} = pathParameters;

4 const {tag_reads , reader_name} = JSON.parse(body);

5 await writeToInfluxDB(filialeId , reader_name , tag_reads);

6 return responseHandler(true , "OK", 200)

7 }

8

9 const writeToInfluxDB = (filialeId , readerName ,tags) =>{

10 let measurement = ‘rfid_${getTagsType(tags)}‘;

11 let points =

12 tags.map(fields =>{

13 return {

14 ...fields ,

15 filialeId , readerName ,

16 }

17 })

18 if (env === ’local’) {

19 ...

20 } else {

21 // Invoke the InfluxDB lambda function

22 return lambda

23 .invoke(params)

24 .promise ().then (({ Payload }) => {...})

25 }

26 }

Listing 4.3: Parse RFID reader request in a lambda function

Listing 4.3 exposes the main functionality of the lambda function in charge of parsing the
data sent from RFID readers. The first step is to parse the event passed to the lambda
function from the API Gateway containing the RFID reader’s request. In a second step,
the filialeId parameter, which is sent through the query path, must be extracted and
then the actual body of the data is parsed. The function writeToInfluxDB takes all
the arguments and enriches the datapoints with the filialeId and readerName parameters.
Finally, the data is sent to a lambda function that will be responsible for storing it in
InfluxDB.

The core components of the Lambda function in charge of establishing a connection to
the InfluxDB and store data into it are shown in listing 4.4. The official InfluxDB client
[51] library written for nodejs has been utilized. In order to be able to establish a suc-
cessful connection to the InfluxDB instance, an authentication token has to be generated
and utilized. Moreover, a bucket and an organization have to be specified as well in the
newest version of InfluxDB. Once those parameters are known, a client object can be
instantiated as shown in line 4. In order to write to and retrieve data from the Influx
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database, a queryApi and a writeApi can be instantiated from the client. In contrast to
a SQL query, a clear distinction must be made between a get and a write query.

The function writeQuery shows how a Point has to be instantiated. According to the of-
ficial documentation found in [52], a measurement and a field set are required, whereas
a tag set and a timestamp can be optional. If no timestamp is provided, InfluxDB will
assign a timestamp when storing the data. As synchronization problems related to the
timestamps assigned by the RFID reader have been encountered during this study, the
timestamps are assigned directly by the InfluxDB instance. A detailed explanation is
given in chapter 5.

1 const token = ’XMy_RRgLyJYgD5t_ ...’;

2 const org = ’cloudcounter ’;

3 const bucket = ’cloudcounter ’;

4 const client = new InfluxDB ({url: ’https :// prod.tsdb.livealytics.net

’, token});

5 const queryApi = client.getQueryApi(org)

6 const writeApi = client.getWriteApi(org , bucket)

7

8 const writeQuery = async (data , measurement) => {

9 let points

10 if(measurement ==="rfid_location"){

11 points = data.map(d =>{

12 const {filialeId , readerName , epc , type , xCm , yCm } = d

13 return new Point().measurement(measurement)

14 .tag("filialeId", filialeId)

15 .tag("readerName", readerName)

16 .stringField("epc", epc)

17 .stringField("type", type)

18 .intField("xCm", xCm)

19 .intField("yCm", yCm)

20 })

21 } else if(measurement === "rfid_heartbeat"){

22 ...

23 }

24 writeApi.writePoints(points)

25 const writeApiPromise = await new Promise(async (resolve , reject

) => {

26 writeApi.close().then(result => {

27 resolve(result);

28 }).catch(err => {

29 console.error(‘Error saving data to InfluxDB! ${err.

toString ()}‘)

30 reject(err);

31 })

32 });

33 }

Listing 4.4: Store RFID reader data in InfluxDB
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Since queries performed against the InfluxDB primarily use or filter data based on the
filialeId and readerName, those values are indexed by declaring them as tag, thus im-
proving performances. The EPC, type, xCm and yCm values are stored as fields since
they are only stored and no operation is performed on them directly into Influx.

4.2.4 ID Matching Process

As previously noted, in order to accurately determine the number of people in a scene, the
system must be able to precisely match data incoming from 3D cameras with data collected
by RFID readers. Identifying which RFID tag is associated with which ID assigned by
the 3D camera, and so to which individual, is the primary task. It is important that
the system recognizes the return of an individual who left the scene and prevents it from
being counted more than once. For this purpose, a method for correlating the ID of the
3D cameras with the EPC of the RFID tags was developed.
C-Counter 2.0 accomplishes this by using a independent correlation pipeline running in
the background. The procedure is shown with the help of a sequence diagram in 4.12 and
covered step by step below:

1. Data retrieval: Initially, data concerning the RFID tags and 3D cameras will be
gathered from InfluxDB and the Relational Database, respectively. As not all 3D cameras
are paired to a RFID reader, the first dataset to retrieve is that of the RFID readers that
contain the data collected within the last five minutes. Once the data has been successfully
retrieved, only the data of the corresponding 3D cameras will be queried. This process is
meant to avoid gathering unusable data and overload the pipeline.

2. Data pre-processing: Pre-processing of data is a critical step in the data matching
process. As a result, the second step is to translate the camera coordinates into a ref-
erence system that is the same as that used by the RFID readers. A comparison of the
reference systems used by the RFID reader and the 3D camera is shown in Figure 4.11.
Afterwards, the timestamp is parsed from a string to a data object, so that the algorithm
can understand and utilize the value. In addition, because the timestamp for the RFID
tags is assigned in InfluxDB rather than on the devices themselves, a few seconds have
to be accounted for and subtracted. In section 5 regarding the evaluation of the system,
a detailed explanation is provided. Once the data has been pre-processed, the algorithm
can proceed to the next step.

3. Datasets merging: Since the measurements are taken at very short time periods (e.g.,
every second) by two different sources, when merging two dataframes some data points
may be off by a second or more. Therefore, a smart way of merging two dataset is by
using the built-in Pandas function merge_asof. Assume that when merging dataframes A
and B, a row in the left dataframe (A) does not have a matching row in the right column
dataframe (B), merge_asof will allow to take a row whose value is close to the value in
the left dataframe (A). How close can be defined as well, in our case as 1 second. If no
match is found, the previous timestamp is taken.
Table 4.3 shows an example of a dataset containing information about 3D cameras, while
table 4.4 displays the corresponding dataset containing RFID information. Table 4.5
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Figure 4.11: RFID readers and 3D cameras reference systems.

illustrates the result of the merge operation. The merge has been accomplished by running
the following code:

pd.merge asof(A,B,on=”timestamp”,tolerance=pd.Timedelta(’1s’),direction=’nearest’)

In this specific instance, an exact match was found and thus no NaN value were present.
Since merge_asof performs a left join between the two datasets, the final timestamp
considered is the one from the 3D cameras, the timestamp from the RFID data is auto-
matically dismissed.

4. Ratio calculation: Ratio coverage is the amount of a path that is captured by a 3D
camera corresponding to an individual and has been covered by an RFID tag based on
the matching timestamp. In table 4.5 all the data points from the 3D camera have been
covered and therefore the ratio corresponds to 1.0. Whereas in table 4.6, the last two
entries could not have been matched with a RFID Tag and therefore the row contains NaN
values. The ratio coverage in this case would correspond to 0.67. The formula used is
the following:

1 − number of NaN values

length of dataset

Calculating the ratio is an important method of filtering out the results. RFID tags could
strongly correlate (more than 80%) with a person’s path under the 3D camera, however,
if the ratio is small, the match must be disregarded since the likelihood of the RFID Tag
matching a person is very low.

5. Correlation calculation: An index that measures the strength of the linear relation-
ship between two variables, such as x and y, is the correlation coefficient. Correlation
coefficients higher than zero indicate a positive correlation, a value that is less than zero
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Table 4.3: Example of a 3D camera dataset

timestamp filialeId readerName EPC xCm yCm
2021-07-15 10:51:40.567 schlieren center E28011700000021428BF8061 -270 172
2021-07-15 10:51:41.612 schlieren center E28011700000021428BF8061 -257 164
2021-07-15 10:51:42.206 schlieren center E28011700000021428BF8061 -197 102
2021-07-15 10:51:43.883 schlieren center E28011700000021428BF8061 -142 82
2021-07-15 10:51:44.745 schlieren center E28011700000021428BF8061 -70 128
2021-07-15 10:51:45.426 schlieren center E28011700000021428BF8061 -31 130

Table 4.4: Example of a RFID reader dataset

timestamp filialeId camera id x y
2021-07-15 10:51:40.015 schlieren center 1600 -182.0 119.0
2021-07-15 10:51:40.975 schlieren center 1600 -137.0 124.0
2021-07-15 10:51:42.015 schlieren center 1600 -101.0 117.0
2021-07-15 10:51:42.975 schlieren center 1600 -66.0 104.0
2021-07-15 10:51:43.935 schlieren center 1600 -32.0 102.0
2021-07-15 10:51:44.815 schlieren center 1600 0.0 103.0

indicates that the relationship is negative and, lastly, a value of zero indicates no relation-
ship between the variables x and y. This study uses the pandas.DataFrame.corrwith

correlation function from [54]. The function performs pairwise correlation between rows
or columns, and it uses the Pearson [55] correlation coefficient by default, which is a stan-
dard correlation coefficient. One can specify other correlation types, such as Kendall [56]
and Spearman [57]. Once the correlation has been computed, the correlations higher than
a specified threshold are filtered and the lower ones are discarded.

6. Duplicates removal: A personId may be assigned to multiple RFID Tags at the same
time because all the combinations between 3D camera’s ID (personId) and EPC (RFID
tag’s ID) are being calculated. Due to this, duplicate RFID tags must be removed and
only the RFID tag with the highest correlation and ratio should be kept.
Similarly, RFID tags can be assigned to multiple person IDs simultaneously. When the
matching entry with the highest correlation and ratio is assigned to a personId, the cor-
responding tag’s EPC is added to a different list so that it can no longer be associated
with another personId.

7. Data reconstruction and insertion: The final step of the algorithm is to reconstruct
the data to be inserted into the database. It utilizes the original dataset of the 3D camera
and combines it with the result of the computation along with the correlation and ratio
percentage. After this procedure has been completed, the new data is inserted into a new
table in the database for later use.
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Table 4.5: Merged dataframes with tolerance of 1 second

timestamp filialeId camera id x y EPC xCm yCm
2021-07-15 10:51:40.015 schlieren center 1600 -182.0 119.0 E28011700000021428BF8061 -270 172
2021-07-15 10:51:41.612 schlieren center 1600 -137.0 124.0 E28011700000021428BF8061 -257 164
2021-07-15 10:51:42.206 schlieren center 1600 -101.0 117.0 E28011700000021428BF8061 -197 102
2021-07-15 10:51:43.883 schlieren center 1600 -66.0 104.0 E28011700000021428BF8061 -197 102
2021-07-15 10:51:44.745 schlieren center 1600 -32.0 102.0 E28011700000021428BF8061 -70 128
2021-07-15 10:51:45.426 schlieren center 1600 0.0 103.0 E28011700000021428BF8061 -31 130

Table 4.6: Merged dataframes with tolerance of 1 second and with NaN values

timestamp filialeId camera id x y EPC xCm yCm
2021-07-15 10:51:40.015 schlieren center 1600 -101.0 117.0 E28011700000021428BF8061 -197.0 102.0
2021-07-15 10:51:41.612 schlieren center 1600 -66.0 104.0 E28011700000021428BF8061 -197.0 102.0
2021-07-15 10:51:42.206 schlieren center 1600 -32.0 102.0 E28011700000021428BF8061 -142.0 82.0
2021-07-15 10:51:43.883 schlieren center 1600 0.0 103.0 E28011700000021428BF8061 -142.0 82.0
2021-07-15 10:51:44.745 schlieren center 1603 -14.0 97.0 NaN NaN NaN
2021-07-15 10:51:45.426 schlieren center 1600 66.0 114.0 NaN NaN NaN

Table 4.7: Final dataset containing a match between a personId and a RFID tag

timestamp filialeId camera id x y EPC correlation ratio
2021-07-15 10:51:40.015 schlieren center 1600 -182.0 119.0 E28011700000021428BF8061 0.752792 1.0
2021-07-15 10:51:41.612 schlieren center 1600 -137.0 124.0 E28011700000021428BF8061 0.752792 1.0
2021-07-15 10:51:42.206 schlieren center 1600 -101.0 117.0 E28011700000021428BF8061 0.752792 1.0
2021-07-15 10:51:43.883 schlieren center 1600 -66.0 104.0 E28011700000021428BF8061 0.752792 1.0
2021-07-15 10:51:44.745 schlieren center 1600 -32.0 102.0 E28011700000021428BF8061 0.752792 1.0
2021-07-15 10:51:45.426 schlieren center 1600 0.0 103.0 E28011700000021428BF8061 0.752792 1.0
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Figure 4.12: 3D Camera and RFID reader data matching algorithm explained with a
sequence diagram
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4.2.5 Environment and Deployment

The deployment process in software and web development refers to the process of pushing
changes or updates from one deployment environment to another. Setting up a software
always involves a live environment, also called the production environment.
Adding additional environments will enable to make changes without affecting the pro-
duction website. These environments are referred to as development environments or
deployment environments. The following subsection presents the process taken for devel-
oping C-Counter 2.0 .

Local Development

The advantage of working in a local environment comes into play at an early stage of
a project when a trial and error approach is employed. Not only does this improve the
overall development experience by reducing the amount of waiting time and allowing for
instant feedback, but it also lowers costs since the infrastructure does not have to be
deployed on the cloud each time, the lambda functions run locally, and the database is
hosted locally.
Consequently, the first step was to migrate the existing database of C-Counter 1.0 to a
Raspberry Pi 4 and enable the existing infrastructure to run locally with the SAM CLI.
Because the study was no longer focused on collecting as much data as possible from
3D cameras, but rather on RFID data, the performance of the RPi 4 proved adequate
for this study. Indeed, there are no noticeable differences in performance. As already
mentioned, the SAM CLI was employed to run the project locally. AWS SAM stands for
Serverless Application Model and it is an open source framework used to build serverless
applications. By utilizing the CLI, it is possible to verify that AWS SAM template files
are written in accordance with specifications. The CLI enables to run Lambda functions
locally, debug them step-by-step, package and deploy entire serverless applications to the
AWS Cloud, and so on [53]. The command shown below creates a local HTTP server
listening to port 3004 that hosts the serverless functions contained in the same directory
as the AWS SAM template. All Lambda functions can be set up with an environment file
in JSON format. The advantage of this approach is that it can be used to overwrite global
attributes such as names of other Lambda functions, database names, credentials, and so
on.

sam local start-api –profile cc –host 192.168.0.196 -p 3002 –env-vars env.json –region
eu-west-1

Once the code has been developed locally and all the desired functionalities have been
implemented, it can be built and deployed on the cloud by means of the AWS CLI.

As part of the development process, a local InfluxDB instance has also been configured. As
opposed to previous scenarios, this time a docker image with persistent storage has been
employed. This ensures that the configuration and the data collected remains available
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between reboots. Getting a InfluxDB up and running is simple as running the following
command on the terminal:

docker run -p 8086:8086 -v influxdb2:/var/lib/influxdb2 influxdb:2.0

Cloud Deployment

While a local environment comes in very handy in an early stage of the project when
many changes and therefore manual tests are required, a cloud deployment was employed
towards the end of the study. A cloud deployment means no need for onsite hardware
and stable internet connection, characteristics very important when testing the system
in a warehouse with limited access and control. To make sure that the system was fully
and correctly working in the cloud, AWS CloudWatch was used. With CloudWatch, it
is possible to get a unified view of all AWS resources, applications, and services that run
on AWS and on-premises servers, such as logs, metrics, and events. Moreover, a cloud
monitoring application such as CloudWatch allows to detect anomalous behavior in the
environment, set alarms, visualise Lambda functions’ logs and metrics side-by-side, take
automated actions, troubleshoot issues, and find insights into how well the applications
work [16].
An aggregated view of a Lambda’s function parameters is shown in Figure 4.13 during
a test conducted on the 01-07-2021 at approximately 11:00 o’clock. The Invocations

chart illustrates how many times the function has been invoked over a period of time. A
peak is evident at the point where a real-world test was conducted, demonstrating that
the data from the RFID readers was reaching the cloud infrastructure. Additionally, the
Duration chart indicates how long a function takes to complete, this indicator can be used
to improve the performance of the function by reducing its execution time. According to
the Error count and success rate(%) chart, no errors have occurred during the test.
What is noteworthy is the fact that the system scaled automatically in response to in-
creased activity. The execution time for the lambda function significantly decreased upon
increasing the concurrent executions to two as shown in the Concurrent executions

chart.

InfluxDB Dashboard

A tool such as AWS CloudWatch has proven very effective in monitoring the health
of the infrastructure and system. Although, when performing real-world tests onsite,
ensuring that data reaches the cloud and is stored in the database is not sufficient to fully
understand the meaning of it. Therefore, a InfluxDB Dashboard was conceived to support
the experiments. Visualizing the data using dashboards is a great way to enhance the
understanding of it and providing a meaningful and easy-to-understand format for the
data is essential for reaching the intended goal.
Time series data in InfluxDB can be viewed in dashboards, whose visualization types
include line graphs, gauges, and tables. The options are diverse, including dashboards
that come with InfluxDB, Open Source projects like Grafana, and IoT dashboarding tools
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Figure 4.13: AWS CloudWatch lambda function’s metrics

Figure 4.14: Dashboard control panel with variables.

like Seeq. They usually include pre-built dashboards built by the community so that it is
possible to get started right away. To support debugging during real-world tests, a custom
dashboard with variables has been created in this study. Dashboard variables permit to
specify changes to certain components of a cell’s query without editing the underlying
query, making it simple to interact with cells on the dashboard and explore the data.
Figure 4.14 illustrates the control panel of the C-Counter 2.0 dashboard. By changing
the filialeId and readerName, the dashboard will be updated accordingly. Further, a
time range may be specified for filtering the data, and an automatic polling of the data
may be activated so that the dashboard will always display the most current and updated
information from the database without having to reload the entire page. During the
experiment, the real-time position is useful to assess the quality of the data. A scatter
plot has therefore been constructed in order to display the last known location of the RFID
tags almost in real time. The plot is automatically updated every 5 seconds, providing
feedback on the performance of the system. Figure 4.15 shows an example taken during
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Figure 4.15: Scatter plot of last known EPC’s position.

an experiment. The scatter plot is complemented by a heatmap to enhance the value of
the data. In Figure 4.16, it is presented a heatmap of the same experiment that is based
on the complete dataset rather than only the last known positions of the RFID tags.

Since the sensitivity of RFID Tags can be compromised by slightly covering them with
the hand or with an object, a live counter of how many RFID tags are being discovered
has been produces. Moreover, a table of EPCs found and their corresponding last-seen
timestamp is shown as well in figure 4.17. It has demonstrated its usefulness in prac-
tice while assigning different EPCs to different persons for the purpose of analyzing and
evaluating the data at a later step.
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Figure 4.16: Heatmap of the recorded EPC’s position.

Figure 4.17: Dashboard control panel with variables.



Chapter 5

Evaluation

This chapter presents the evaluation of C-Counter 2.0. During the evaluation, attention
will be focused on the system developed to combine and match the data collected by RFID
readers with that of 3D cameras. A comparison of different RFID reader configurations
will be done by demonstrating the results from a practical example. Secondly, an analysis
of the algorithm used to match RFID tags with people will be done in order to assess its
accuracy and precision. The system has been subjected to a wide range of test cases in
order to identify which scenarios it performs best and which ones are more challenging.
The third section provides a discussion section that highlights a few major concerns with
the system.

5.1 Comparison of RFID Reader Modes

In this section, the performance of the RFID reader will be evaluated under several con-
trolled scenarios in order to better understand and quantify the behavior of the system.
The first scenario evaluated refers to the precision and frequency with which the RFID
reader can locate RFID tags.
As previously discussed in section 4.1.3, choosing the right reader mode based on the envi-
ronment is key to obtaining the most accurate tag location calculation. In order to ensure
consistency, the Impinj xArray R680 reader has been tested in all possible modes under
the same conditions. The test bed consisted of fourteen passive UHF RFID tags that
were arranged in specific locations within the scene, as well as an RFID reader mounted
on the ceiling. After running each mode for a minute, the collected data was analyzed.

Table 5.1 shows the first analysis performed. In spite of the use of multiple reader modes,
13 tags out of 14 were able to be captured, i.e., with a success rate of 92.9% . As for
the missing tag, it was not isolated from the others, rather it was placed in a dispersed
location where the signal was not able to be successfully captured. As part of the match-
ing algorithm between 3D cameras and RFID tags, a critical metric is the frequency with
which a particular RFID tag can be captured, i.e., how many data points a reader can
deliver within a certain period of time. As a result of changing several parameters in the

53
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Table 5.1: Average count of entries and number of EPCs found for each reader mode

Algorithm Average Count Number of EPCs found
Auto Set Custom 59.538462 13
Auto Set Dense Reader Deepscan 62.153846 13
Auto Static Dense Reader 62.384615 13
Auto Static Fast 60.692308 13
Dense reader M4 60.769231 13
Dense reader M8 61.384615 13
Hybrid M2 61.307692 13
Max Miller 60.076923 13
Max Throughput 61.461538 13

configurations, all modes were able to deliver approximately 60 entries within 1 minute,
which corresponded to the granularity of a 3D camera of one data point per second. Thus,
the accuracy of the various algorithms can be compared.

As all of the RFID tags were not moved and thus statically located, an accuracy com-
parison was performed to asses the best reader mode that was most appropriate in the
environment for that particular scenario. The figures A.1 to figure 5.2, present in the ap-
pendix section of this work, illustrate a pair of maps for each reader mode. The left plot
represents the heat map for all the RFID tags captured within a minute, whereas the right
graph shows the approximate position of all the data points captured within the minute
for each RFID tag. In regions where tags are more distant from one another and there-
fore the density is low, all approximated positions are very similar across all the maps.
The lower portion of both pair maps exhibits this behavior. As can be seen from the heat
maps, the position of the tags are clearly visible. An illustration can be found in figure 5.1.

However, the RFID reader does not seem to be able to locate RFID Tags when they
are clustered together closely, resulting in a higher density. On the plots, this issue can
be seen in the upper left hand corner. As a result, the heat map is unclear and it is not
possible to distinguish between the various tags. The RFID tags therefore appear to move
continuously, despite the fact that they are not in motion.

The result of this behavior is a large amount of noise in the data, thereby making it
more difficult for the matching algorithm to correctly identify individuals wearing a RFID
tag, as they appear to be moving around. Overall, it is difficult to draw conclusions and
clearly define which algorithm is the most effective. Optimal performance requires that
this algorithms are run within a computing window of more than one second. However,
since a tagging locations that occur every 1 second is required in order to match the data
with the 3D camera, it is not possible to expand the computing window.
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Figure 5.1: Heatmap of max throughput Figure 5.2: Mean of max throughput

Figure 5.3: Frame of a recording used to manually evaluate the system.

5.2 Controlled real world test scenarios

The results of multiple real world scenarios will be presented and discussed in this sec-
tion. This test cases were very helpful to ascertain where there are still some challenges
to overcome when trying to match the data with the architecture and algorithm. In order
to manually analyze the data after the experiment and be able to verify the result of the
matching algorithm, all the experiments performed were recorded on a computer. Figure
5.3 shows a snapshot of a recorded video employed for this procedure. Moreover, this
setup was used to asses the functionality of the system in real time and thus, be able to
successfully perform the experiments.
Finally, to properly analyze the performance of the system and conduct testing, it was
known beforehand which individual were wearing which RFID tag. Normally, this map-
ping is not provided because the system must remain GDPR compliant, and as such no
mapping can be made between individuals and tags.
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Figure 5.4: Maps from a 3D camera and a RFID reader of a single person walking in the
scene.

5.2.1 Single RFID Tag

This scenario evaluates the accuracy and precision of the system when tracking a single
individual wearing a RFID tag under the scene. It was found that the algorithm could
identify the individual with 100% accuracy when the RFID reader was able to regularly
capture the position of the RFID tag. The correlation between the data was higher than
70-80%. Figure 5.4 illustrates the data capture by a 3D camera and a RFID reader of a
person wearing a RFID tag. In spite of the fact that the RFID tag’s accuracy is not as
high as the data from the 3D camera, there is a clear correlation between the two.

Move in/out and around the scene:

This variant of the scenario is very similar to the previous one, the only key difference is
that the individual leaves the scene and upon returning, the 3D cameras assigns a new
ID. The accuracy was found to be around 100% as well when the RFID reader was able to
consistently capture the RFID tag position resulting in a correlation higher than 70-80%
percent.

RFID Tag transferred to a partner without a tag:

The scenario presented here is one of the most challenging scenarios for the matching
algorithm. Since one of the assumptions of this system is that each individual is assigned
a personal and unique RFID tag, this scenario shall never happen. It has nevertheless
been conducted for testing purposes in two variants:
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Figure 5.5: Maps from a 3D camera and a RFID reader of a single person wearing a RFID
tag walking between a group of people.

• Walking together on the same path and transferring the tag in the middle of
the scene: Due to the fact that the RFID tag was passed to a second individual
somewhere in the middle of the scene, and because they were both walking in the
same direction, the matching algorithm incorrectly attributes the entire path of the
RFID tag to a single individual. It is possible to improve the algorithm by taking
into account other metrics in addition to the correlation. This topic will be covered
and discussed in section 5.3.3.

• Crossing and transferring the tag in the middle of the scene: Given that the
two individuals were walking in opposite directions, the RFID tag transfer was not
mistakenly associated with one individual. The correlation was insufficient due to
the path not being fully covered. In this case the system successfully avoided to
assign the RFID tag to a person.

Many people randomly walking but only a single individual is carrying a tag

Since the system is based on the assumption that each individual is assigned a personal
and unique RFID tag, the scenario presented should never occur. In spite of this, it was
conducted for testing the algorithm with some arbitrary noise in the data.
Several persons were randomly walking under the camera, but only one of them was
carrying an RFID tag. Due to the fact that the individuals are moving in different
directions, thus making it easier to find the right correlation for the algorithm, the tag
was successfully assigned to the correct individual.A false positive rate of 0% was observed.
Figure 5.5 shows the correct path of the single individual wearing the RFID tag.
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5.2.2 Two RFID Tags

The objective of this scenario is to evaluate the accuracy and precision of the system when
tracking two individuals wearing RFID tags and moving under a scene. It was found that
the algorithm could not always identify the individuals, even though the RFID reader was
able to regularly capture the position of the RFID tag and the correlation between the
data was higher than 70-80%.

Crossing in the middle of the scene:

Using this variation of the scenario, the matching algorithm was able to successfully match
an RFID tag to an individual captured by the 3D camera. The correlation between the
data of an individual and that of another individual clearly differs, as their directions are
not the same or even opposing, and therefore the algorithm had no difficulty assigning
the RFID tag to that individual. It was not necessary to make any further adjustments
to the matching algorithm.

Walking together on the same path:

This extended scenario proved to be the most challenging scenario for the system. Two
individuals walking in the same direction and at the same time provide nearly identical
data for the system. Consequently, in early versions of the algorithm, an individual may
have been assigned to both RFID tags while the second may have been assigned to none.
In order to resolve this issue, the matching algorithm had to be further fine-tuned and
capable of handling such situations. As a result, although an individual can no longer be
assigned to more than one RFID tag, the system is still capable of assigning the RFID tag
to the wrong individual since the correlation and ratio are still high enough. Increasing
the threshold for the ratio and correlation would solve this problem, but the algorithm
would not be able to handle other scenarios where the correlation is not as high.

5.2.3 Multiple RFID Tags

A group of individuals wearing RFID tags under a crowded environment will be tracked
in this scenario in order to assess the system’s accuracy and precision. The test results
indicated that the algorithm barely managed to assign the correct tags in each of the
three test scenarios described below. Among the three scenarios tested, only the first one
in which a single individual was walking had some success.

Single individual moving between others:

Every individual in this variant wore an RFID tag. Only one individual was walking
around, however. It has been previously demonstrated that, with the presence of multiple
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Figure 5.6: Example 1: Maps from a 3D camera and a RFID reader of a single person
walking between a group of people where everybody is wearing a RFID tag.

tags, the inaccuracy of the RFID reader increases substantially, making it more challenging
to match the ID of the 3D camera with the RFID tags. However, in some occasions, the
algorithm was able to successfully find a match despite the noise. Figure 5.6 shows a path
taken that was correctly assigned. As clearly seen, a lot of noise is present in the data
coming from the RFID reader.

A group of individuals wearing a RFID tag and moving around randomly:

Under the given circumstances, the algorithm was unable to find a match, as noise levels
are too high for the algorithm to find any correlation that meets the threshold established
to match the data. Despite lowering the threshold significantly, no meaningful results
were obtained. Further tests will be required in different environments and with different
types of RFID tags, so that the algorithm can be fine tuned and made more effective.
Moreover, different RFID readers and different configurations shall be thoroughly tested.

A group of individuals wearing a RFID tag and standing still:

Similarly to the previous scenario, this variant did not yield any meaningful results. The
algorithm is designed to take only the correlation into account, which resulted in wrong
results as shown in figure 5.7. A different metric, such as the Euclidian distance, would
have prevented this wrong assignment from occurring.
This scenario is however extremely unlikely to occur, in contrast to the preceding one.
Generally, before and after stopping under the scene, individuals are likely to enter and
leave the scene, which facilitates finding a correlation between the data and correctly
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Figure 5.7: Wrong assignment of an RFID tag to a person standing still surrounded by a
group of people.

identifying individuals. Further testing with multiple individuals shall be performed once
the restrictions imposed by the COVID-19 pandemic are rescinded.

5.2.4 Visitor counts: 3D Camera vs. RFID Reader

As of now, the focus was on how to integrate and merge data from both sources. Data
collected during the experiments can, however, be analyzed independently from each other
and compared. In order to conduct this comparison, the visitor counts are grouped ac-
cording to 1 minute intervals. The result of this operation is depicted in figure 5.8. In
contrast to the 3D camera, which assigns different and random IDs to people entering and
leaving the scene, the RFID tags, thanks to their EPC, are always uniquely identifiable
by the RFID reader. In this manner, the data collected from RFID readers can be used
to determine the unique number of visitors present at any given point in time. In this
specific test scenario, there were two participants physically present, but the 3D camera
has assigned up to 13 different identities within five minutes (when using a grouping based
on 5 minutes intervals, the different IDs were found to be 35). On the other hand, the
number of RFID tags did not exceed the actual count of RFID tags present, i.e., 14.
In the period between 10:15 - 11:05 o’clock the experiments were performed using
two different RFID tags, and the participants entered and left the camera’s field of view
constantly, resulting in a large discrepancy between the two measurements.

In the time frame between 11:10 - 11:20 o’clock the different Reader Modes of the
RFID reader were tested, as already explained in section 5.1. In this test scenario no par-
ticipants were present under the scene. Instead, RFID tags were statically placed under
the camera, therefore, the camera’s count is equal to 0, whereas the RFID count is almost
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Figure 5.8: Count of visitors from 3D cameras and RFID readers during a test session

constant to 13. As a consequence, the number of visitors counts taken from RFID readers
data can be directly interpreted as unique number of visitor counts.
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5.3 Discussion and Findings

This section introduces a discussion of the evaluation results. After, it explores how much
the implemented system adheres to the specifications identified as the main objectives of
this study. Towards the end of this section, a number of limitations of the implemented
solution and methods are discussed.

5.3.1 Matching solution and the RFID reader accuracy

In this study, the main objective was to match 3D camera data with RFID data. The so-
lution provided here provides a stable pipeline and a system with almost no configuration
effort required. A new event could be added and analyzed without significant configura-
tion. The C-Counter 2.0 has been designed so that it automatically detects the running
RFID readers with the paired 3D camera and it runs the matching algorithm against it.
The algorithm has already been proven to provide a high level of accuracy in identifying
individuals wearing RFID tags as long as the RFID readers provides qualitatively good
data. However, the accuracy of the matches decreases significantly when the location of
multiple RFID Tags has to be calculated at the same time. With such a configuration and
circumstances, the RFID reader is unable to keep up with performance and precision. It is
possible however to increase the accuracy of RFID reader by specifying a larger Compute
Window as shown in figure 4.4 of section 4.1.2. Thanks to a larger Computer Window, or
also known as smoothing window, the RFID reader performs an average of the location
estimates and therefore improves the accuracy. As a consequence, if specifying a Compute

Window of 2 seconds, the 3D camera would have to sample data at the same frequency
as the RFID reader. A decrease in data quantity would result in both C-Counter 2.0
and C-Counter 1.0. The final data may be cleaner, but with fewer samples and there-
fore, to determine the best tradeoff between data quantity and quality, further research
is necessary.

5.3.2 Synchronization Offset on the RFID Reader

Speedway’s RFID reader features a built-in clock that keeps track of date and time in-
formation. Since it is subject to drift like every clock, it may need to be synchronized
periodically. There are two main approaches found in [58] to accomplishing this:

• Automatic Synchronization Using Network Time Protocol (NTP):
In the event that the Speedway Reader is connected to the Internet via a router and
is configured with the Dynamic Host Configuration Protocol (DHCP), the router
will normally have a NTP server configured and will synchronize the reader’s date
and time.

• Manually Configure NTP:
The Speedway Reader can be configured manually to point to an NTP server by
entering the command ”config network ntp add [ntp server name or address]” in a
Rshell. To accomplish this, the NTP protocol must first be disabled.
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However, despite testing and configuring these two approaches, the data from the RFID
reader contained a wrong timestamp. The timestamp was usually between two and fifteen
minutes ahead of the actual time. In light of such a wide difference in time, the matching
algorithm was unable to successfully match the data based on the timestamp. Therefore,
the timestamp coming from the RFID reader is at the moment ignored and assigned by
the Influx Database at the time of storing the data.

Workarounds such as this work as long as the small time difference is considered. Fur-
thermore, if the system becomes overloaded, the actual timestamp may differ even more
from the one assigned. It is possible to improve the accuracy of the matching algorithm
by fixing the timestamp on the RFID reader, since the first step of the algorithm is to
compare both sources of data based on the timestamps.

5.3.3 Measuring Statistical Dependence

The Pearson correlation has been employed in this study as a tool to determine whether
there is any statistical evidence for a linear relationship among variable pairs such as
coordinates. The Pearson coefficient, despite some errors sometimes present, has proven
to be a very reliable measurement for comparing data. As shown in [11], the squared
Euclidian Distance is in fact equal to a distance based on the Pearson Correlation.
Due to the fact that Pearson Correlation does not require normalization of the data, unlike
the Euclidian distance, this result is of particular interest and makes the implementation
easier. In order to normalize the data for RFID readers, each time the boundaries of
the 3D camera need to be manually mapped into the RFID reader’s coordinate system.
Whenever a change is made to the configuration of the RFID reader, such as changing the
antenna power or moving the reader, these values must be reassessed. In addition, the
matching algorithm should be able to read the values for each RFID reader and apply the
normalization. There is no easy way to automate this process. Therefore, the Pearson

Correlation has been employed throughout this study.

Nonetheless, other metrics should be considered in order to improve C-Counter 2.0 ’s
accuracy and reliability. As an additional layer of matching, Manhattan distance, cosine
similarity, Jaccard or even the Euclidian Distance similarity can also be used.



64 CHAPTER 5. EVALUATION



Chapter 6

Final Considerations

In this work, a system that is capable of collecting, storing, processing and matching data
from 3D cameras from third parties with data from RFID readers was developed. To en-
sure acceptable social distance as well as provide a strategic and near-real-time business
intelligence application, the tracking accuracy of C-Counter 1.0 has been improved. This
enhancement has been accomplished by analyzing camera path information in combina-
tion with tracking information provided by RFID tags. In an innovative and easy-to-use
manner, RFID tags and tracked objects can be linked in an easy manner to form unique
identification links. Furthermore, the approach conforms to GDPR regulations, maintain-
ing privacy by not reporting any personally identifiable information to RFID tags.

A detailed description of both the high-level design and the technical implementation
of C-Counter 2.0 has been put together, covering all relevant elements. Furthermore,
each aspect has been discussed to enable the reader to gain a better understanding of
the development process involved. Throughout the implementation phase, the system
has been continually refined several times in order to provide a robust pipeline and to
minimize the need for manual configuration in the set-up and data analysis processes.

The system has been implemented in such a way that it can automatically detect whether
a 3D camera has been paired with an RFID reader or not. This means that the effort
to create a new event is almost nonexistent, and no configuration needs to be created or
stored in the system. In assessing the convenience and practicality of a solution of this
kind, it is important to take this point into account.

Experimental results showed that C-Counter 2.0 is indeed capable of identifying people
with enough accuracy as long as the data provided by RFID reader is accurate, thus only
when a few people are being captured by the system at the same time. Nonetheless, even
without matching the data from 3D cameras, the system would be able to identify at
any given time the number of unique visitors since more than the 90% of RFID tags are
captured.

Ultimately, the development of the solution encountered a number of challenges. On the
one hand, RFID readers were not always reliable and consistent in providing data pushes.
There has been considerable effort allocated to setting up a proper infrastructure and
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to taking steps to ensure that the pipeline would finally be stable in order to conduct
experiments. On the other hand, as outlined in section 5.3.2, the architecture had to be
adapted in order to make the system work, as the data was not always accurate.

6.1 Future Work

The effects of integrating other RFID readers based on the same or different technologies
should be considered in future research. Furthermore, infrared sensors, such as LIDAR
sensors, could be incorporated into the system as well. This would potentially result in
an improvement to the accuracy of C-Counter 2.0 ’s measurements and the flexibility of
the overall approach. Through such integration, it is also possible to gain new insights
into visitor flow and behavior.

Generally, the read rate of a tag is determined primarily by the amount of RF power
that it can receive. As a result, RFID tags with a low reading rate are often located
at the edge of the reading zone, which lies beyond the field of view of the 3D camera.
As a consequence, such tags can be excluded automatically since they do not qualify
as matches. Therefore, future studies should examine the benefits and costs associated
with incorporating more data pre-processing steps into the pipeline, as well as employing
additional solutions for determining statistical dependencies, as discussed in section 5.3.3.
Moreover, existing solutions, like C-Counter 1.0 could be migrated to utilizing a time
series database such as InfluxDB to improve the performance and achieve a homogeneous
environment through the different proposed solutions suited for the integration of other
technologies.

As a final point, the set of functionalities provided by C-Counter 2.0 could also be ex-
panded. In fact, by utilizing an Influx database, export functions, such as exporting the
processed information as excel sheets and .csv files, could easily be implemented, as well
as an automatic report generation.
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Appendix A

Evaluation Results of Reader Modes

This section contains additional evaluation results. Figure A.1 to figure A.16 illustrate
the evaluation performed between different reader modes offered by the Impinj xArray
R680 RFID Reader. A detailed comparison has been given in chapter 5.
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Figure A.1: Heatmap of auto static dense
reader

Figure A.2: Mean of autoset static dense
reader

Figure A.3: Heatmap of autoset static fast Figure A.4: Mean of auto static fast

Figure A.5: Heatmap of auto set custom Figure A.6: Mean of auto set custom
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Figure A.7: Heatmap of auto set dense
reader deepscan

Figure A.8: Mean of auto set dense
reader deepscan

Figure A.9: Heatmap of dense reader M4 Figure A.10: Mean of dense reader M4
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Figure A.13: Heatmap of hybrid M2 Figure A.14: Mean of hybrid M2
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Appendix B

Installation Guidelines

This installation guideline is based on a MacOS system and may differ from the setup on
a Windows or Linux system.

1. Initial setup for InfluxDB

(a) First of all, download the latest version of Docker and start it: https://docs.
docker.com/docker-for-mac/install/ (MacOS), https://docs.docker.com/
docker-for-windows/install/ (Windows), https://docs.docker.com/install/
linux/docker-ce/ubuntu/ (Linux).

(b) Once Docker has been successfully started, a local instance of InfluxDB can be
created with the following command in the terminal:

$ docker run −p 8086:8086 −v in f luxdb2 : / var / l i b / in f luxdb2 in f luxdb : 2 . 0

The docker version of InfluxDB 2.0 will be pulled and started, the output on
the terminal should look as follows:

Figure B.1: Terminal after InfluxDB has been started
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2. Initial setup for AWS

(a) Install AWS CLI

(b) Install the AWS SAM CLI

(c) add your AWS credentials to ‘ /.aws/credentials‘

(d) add the region and default to ‘ /.aws/config‘

3. Clone Github Repository

(a) Download the project repository hosted on github: https://github.com/

ilecipi/cloud-counter-2.0 (for the credentials ask to Ile Cepilov).

4. Deploying the application on AWS

(a) Navigate into the root of the project and install all the dependencies of each
microservice with the following command:

1 $ npm run i n s t a l l A l l

(b) Navigate and open the following file InfluxDB/app.js

(c) Insert your InfluxDB credentials: token, org, bucket and url.

(d) Run the following command to deploy a new stack containing the application
to AWS, once the stack has been deployed, you can get the IP address on the
AWS console and use it:

1 $ npm run bu i ld && npm run c loudcounter

(e) Run the following command to run the backend locally:

1 $ npm run l o c a l
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Contents of the CD

• Abstract and Zusammenfassung:

– Abstract.txt & Zusfsg.txt

• Thesis (PDF and LATEX source code):

– MA Ile Cepilov.pdf & MA Ile Cepilov.zip

• Midterm presentation slides:

– MA Ile Cepilov midterm presentation.pptx

• Application source code:

– Cloud-Counter-2.zip
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