
SecRiskAI: A Machine
Learning-based Tool for

Cybersecurity Risk Assessment

Erion Sula
Zürich, Switzerland

Student ID: 15-718-349

Supervisor: Muriel Franco, Dr. Alberto Huertas
Date of Submission: August 1, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

In den letzten Jahrzehnten hat die Anzahl und der Schweregrad von Cyberangriffen welt-
weit zugenommen und beeinträchtigen mit steigender Tendenz Netzwerke, Systeme, Un-
ternehmen und Kunden. Der Schaden, den sie verursachen, nimmt jedes Jahr exponentiell
zu. In jüngster Zeit haben Forscher und Unternehmen “Frameworks” für die Abschätzung
von Cybersicherheitsrisiken entwickelt, um diese Risiken zu erkennen, einzuschätzen und
zu priorisieren, mit dem Ziel, ihre Auswirkungen zu minimieren. Bei herkömmlichen An-
sätzen ist es jedoch oft schwierig, Indikatoren für unvorhersehbare Cyberrisiken zu finden,
was die Möglichkeit einer genauen Risikobewertung einschränkt. Vor diesem Hintergrund
wird in dieser Arbeit die Anwendbarkeit des maschinellen Lernens auf die Bewertung von
Cyberrisiken untersucht. Zu diesem Zweck wurden verschiedene Algorithmen des maschi-
nellen Lernens auf synthetischen Datensätzen unterschiedlicher Grösse trainiert, getestet
und bewertet. Darüber hinaus ist die aktuelle Version des Prototyps auch in der Lage, den
Benutzer durch den Entscheidungsprozess für Cybersicherheitsinvestitionen zu unterstüt-
zen, indem MENTOR, ein System zur Empfehlung von Schutzdiensten, integriert wird.
Um die Machbarkeit der vorgeschlagenen Lösung zu demonstrieren, wurden sowohl eine
quantitative als auch eine qualitative Bewertung durchgeführt. Die quantitative Bewer-
tung hat gezeigt, dass der Prototyp in der Lage ist, sehr genaue Ergebnisse zu erzielen.
Andererseits hat die qualitative Bewertung die Wirksamkeit und Zuverlässigkeit der Lö-
sung bewiesen.

i

ii

Abstract

Over the last decades, the number and severity of cyber-attacks worldwide have grown,
and are increasingly affecting networks, systems, businesses, and customers. The harm
they cause is rising exponentially every year. Recently, researchers and companies have
developed frameworks for assessing cybersecurity risk in order to identify, estimate and
prioritize cyber-risks and minimize their impact. However, traditional approaches often
struggle to find indicators of unpredictable cyber-risks, thus limiting the ability to perform
accurate risk assessments. Taking this into account, this thesis explores the applicability
of machine learning on cybersecurity risk assessment. For this purpose, various machine
learning algorithms were trained, tested and evaluated on synthetic datasets of different
sizes. Besides that, the current version of the prototype also capable of supporting the
user through the cybersecurity investment decision process, by integrating MENTOR, a
protection service recommender system. To demonstrate the feasibility of the proposed
solution, a quantitative as well as a qualitative evaluation have been conducted. The
quantitative evaluation showed that the prototype is able to achieve very accurate results.
On the other hand, the qualitative evaluation proved the effectiveness and reliability of
the solution.

iii

iv

Acknowledgments

This master thesis would not have been possible without the support of many people.
Firstly, I would like to express my sincere gratitude to my supervisor, Muriel Franco, for
his feedback, the very interesting discussions and guidance throughout this thesis.

I would also like to thank Prof. Dr. Burkhard Stiller and the members of the Com-
munication Systems Research Group for giving me the opportunity to work on such an
interesting topic.

Special thanks also to Esra Oksal for proofreading my work.

Last but not least I would like to thank my family and friends for their constant support
and encouragement.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 5

2.1 Risk Management . 5

2.2 Artificial Intelligence (AI) . 6

2.2.1 Machine Learning (ML) . 8

2.2.2 Deep Learning (DL) . 13

3 Related Work 17

4 The SecRiskAI Approach 23

4.1 Risk Assessment Workflow . 24

4.1.1 Data Gathering . 25

4.1.2 Data Processing . 28

4.1.3 Multi-Class Classification Algorithms 29

4.1.4 Training, Cross Validation & Testing 34

4.2 MENTOR’s API Integration . 34

vii

viii CONTENTS

5 Prototype and Implementation 37

5.1 Frontend . 37

5.1.1 Web-based Interface . 41

5.2 Backend . 43

5.2.1 Middleware . 43

5.2.2 ML Classifier . 46

5.3 ML Workflow . 50

6 Quantitative Evaluation 55

7 Qualitative Evaluation 61

7.1 Case Study #1 - DDoS Attack . 61

7.2 Case Study #2 - Recommendation of Protections 63

7.3 Case Study #3 - Phishing Scenario . 66

7.4 Discussion and Limitations . 67

8 Summary, Conclusions, and Future Work 69

Bibliography 71

Abbreviations 81

List of Figures 81

List of Tables 84

Listings 85

A Installation Guidelines 89

B Contents of the CD 91

Chapter 1

Introduction

Cybersecurity risk assessment is the process of understanding, managing and evaluating
cyber-threats. Due to increasingly complex and diverse cyberattacks, which are expected
to cause 10.5 trillion US$ annual loss by 2025 [1], the activity of assessing cyber risks
has become a crucial part of any organization’s risk management strategy. However,
maintaining an effective cyber risk management plan is a complex and challenging task, as
organizations struggle to cope with the technological advancements of cyber-adversaries
and are often confronted with an increasing number of exploitable vulnerabilities [2].
According to a recent survey, only 16% of executives actually claim that their companies
are well prepared to face cyber risks even though 75% of the interviewed experts consider
cybersecurity to be a top priority [3]. Additionally, a report published by IBM on the
cost of data breaches [4] based on more than 500 companies around the world highlights
the importance of investing in effective governance, risk management and compliance
programs.

1.1 Motivation

As businesses strengthen their digital dependency, they also become more vulnerable to
cyber-threats. Nowadays, the biggest challenge that businesses in any industries face is
keeping sensitive data private and proactively protect the infrastructure against cyber-
attacks, such as Ransomware, Distributed Denial-of-Service (DDoS) attacks, etc., which
known to be the main cause for both huge financial and reputational damages. Therefore,
besides the need for innovation, decision-makers in cybersecurity (e.g., network opera-
tor, company owner or expert team) have to be able to implement robust cybersecurity
mechanisms and risk assessment frameworks to ensure a proper security level and prevent
intrusions of any kind.

Despite many risk assessment standards available (e.g., ISO 31000 [5], TOGAF [6], NIST
SP 800-30 [7]) and multi-sector assessment frameworks proposed [8], organizations still
find this activity very challenging and are often confronted with a huge volume of un-
structured data, essential for finding indicators of unpredictable risks [9]. In this case,

1

2 CHAPTER 1. INTRODUCTION

traditional techniques often struggle at providing valuable insights and the ability of per-
forming real-time risk assessment is limited. Moreover, there is a need for continuous risk
assessment and monitoring strategy for Key Risk Indicators (KRIs) in order to identify
and estimate the likelihood of unpredictable threats.
Recent studies on possible applications of Artificial Intelligence (AI) and Machine Learning
(ML) algorithms have highlighted their ability to process large amounts of structured/un-
structured data, extract valuable patterns, learn from historically collected records and
make accurate predictions ([10, 11]). Thus, the main goal of this work is to explore the
potential of ML algorithms in the field of cybersecurity risk assessment.

1.2 Description of Work

The goal of this master thesis is to design and develop a ML-based tool that provides
mechanisms, where decision-makers can configure, calculate and analyze important as-
pects related to cybersecurity risk assessment (e.g., the understanding of possible impacts
of cyberattacks in the economic aspect of a business). Different metrics and information
[12, 16] have to be considered in order to provide a ML model that estimates risks and
provides insights to guide an adequate planning in cybersecurity [15]. Besides that, an
intuitive and user-friendly interface has been developed to provide an overview of the
business being analyzed and the predicted risks. Additionally, the tool has been inte-
grated with MENTOR’s recommendation API [13, 14], in order to provide a proactive
recommendation of protection services based on the organization’s profile and predicted
risks.

An evaluation of the performance, accuracy, and limitations of the tool and the ML model
is also provided, including tests to evaluate specific ML performance metrics (e.g., F1
score, precision, recall). In addition, case studies have been conducted, taking into account
real-world scenarios and information from different organizations. Once the interface and
the case studies were defined, an evaluation was conducted to show evidences of the
feasibility and accuracy of the proposed solution.

1.3 Thesis Outline

Chapter 2 comprises of two main parts. The first one provides an introduction to risk
management and assessment in general. In the second section, the concept of Artificial
Intelligence is explained.

Chapter 3 discusses related work in the field of risk assessment and ML.

Chapter 4 presents the approach followed in this thesis in a non-technical way. It starts by
providing an architecture overview as well as a short explanation of every layer involved in
the system. Next, the ML workflow designed in this work and MENTOR’s API integration
are presented.

1.3. THESIS OUTLINE 3

Chapter 5 gives a technical overview of the approach followed in this thesis. In particular,
the technical implementation of each component is presented, including the design and
development of various ML models.

Chapter 6 proposes a quantitative evaluation of the ML-based tool for cybersecurity risk
assessment and provides a performance comparison of the developed ML models.

In Chapter 7 a qualitative evaluation will be presented where various use cases will be
proposed to discuss possible challenges/limitations of the prototype.

Finally, Chapter 8 summarizes and concludes the thesis and provides an outlook for future
work in order to improve the solution.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides the necessary background knowledge for the concepts and method-
ologies used in this work. Thus, the most important aspects of risk management is in-
troduced as well as different AI concepts. Besides that, the ML concepts, methods, and
techniques relevant for this work are presented in detail.

2.1 Risk Management

In the literature, the term “risk” is generally used to indicate a possibility of loss and/or
damage. It usually involves some degree of uncertainty and the resulting outcome is chal-
lenging to predict. Depending on the context, various types of risk can be found, such as:
business risk, economic risk, and safety risk [17]. On a quantitative level, a general risk
(R) can be further expressed as the following triplet:

R =< s, p, c >

This quantitative definition indicates that a risk (R) is generally a combination of a
scenario (s), i.e., what can actually go wrong, the probability (p) it will have and the
severity of the consequence (c), i.e., level of damage caused [17]. In the field of Information
Technology (IT), a risk, also called cyber-risk, is usually described by a threat which is
able to expose system’s vulnerability causing economic and reputation losses. A threat
in this case can be represented by cybersecurity attacks, such as malware, ransomware
and phishing attacks [18]. Another study [20] proposed a new way of thinking about risk
in general by extending the definition with a knowledge dimension (k). More specifically,
in different scenarios with equal probability, knowledge has been demonstrated to be an
important factor for supporting the decision-making process.

Risk assessment is the necessary process of identifying, analyzing and evaluating risks.
In the context of cybersecurity, the assessment process focuses on cyber-risks. Risk as-
sessment is a key stage of the whole risk management lifecycle and in practice it includes

5

6 CHAPTER 2. BACKGROUND

Monitor Treat riskEvaluate riskAnalyze riskIdentify riskEstablish the context

Review

Risk assessment

Figure 2.1: Risk management framework [19]

three main tasks: risk identification, analysis, and evaluation. Figure 2.1 gives a visual
representation of a general risk management framework.

In essence, the risk management is an ongoing process of assessing, treating and mon-
itoring risks. In the first phase, the scope for the whole risk management process and
the criteria against which the risks will be assessed are set. Afterwards, the assessment
phase is initiated. This stage involves the identification of possible risks followed by a
comprehensive analysis and evaluation. It is important to note that putting insufficient
effort in the first stage of the risk assessment process may cause potential risks being
omitted from further analysis and therefore resulting in unpredictable outcomes. After
being prioritized, the risks are treated based on the type, nature and priority. However,
developing a good and effective treatment plan has been proven to be difficult. In such
cases, having large collection of past projects along with the corresponding risks history
can help developing more proactive treatment strategies [19].

Lastly, an effective risk management strategy also involves regular checking and surveil-
lance for potential threats. Results should thus be recorded, reported both internally
(e.g., team, organisation), externally (e.g., stakeholders) and reviewed [19].

2.2 Artificial Intelligence (AI)

In the Computer Science field, the notion of AI is generally understood to indicate the
ability of any machine, ranging from common computers to robots, to perform demanding
tasks which usually require human-like intelligence [21]. In this regard, AI is often asso-
ciated with the process of developing systems able to make decisions, solve generalized
problems, learn from past experiences and even recognize object familiar to humans [22].
In recent years, there has been growing interests in researching possible applications of
AI. Nowadays, AI is in charge of supporting, or in some cases even replacing, common
systems found in many different sectors, such as Healthcare, e-Commerce, Supply Chain,
etc. [24]. In theory, there are four types of AI [25]:

• Reactive Machines. These systems are considered to be the oldest type of AI and
are only able to perform basic operations. More specifically, they lack memory-based
functionality and therefore do not possess the ability to learn from past interactions

2.2. ARTIFICIAL INTELLIGENCE (AI) 7

Figure 2.2: Artificial Intelligence overview [23]

or experiences. Moreover, this type of AI can only respond to a limited set or
combination of inputs.

• Limited Memory Machines. These machines tend to have the same ability as re-
active machines, but are also capable of learning from historical data. After the
training phase, such machines are also capable of solving future problems by mak-
ing accurate predictions. In practice, nearly all existing applications of AI come
under this category.

• Theory of Mind. Systems that will reach this level of AI will be able to discern the
emotions, needs, and thought processes of the humans it’s interacting with. At the
moment of writing this thesis, such systems are only in the beginning phase and can
exclusively be found in self-driving cars.

• Self-aware AI. At this level, these types of AI systems will have become so advanced
that it develops self-awareness, that is, a system which is capable of possessing
emotions, needs, beliefs, and potentially desires of its own.

In the literature, AI is also considered to be an umbrella term for other disciplines such
as Machine learning (ML) and Deep Learning (DL). Figure 2.2 gives an overview of the
whole AI spectrum. In practice, both AI and ML are often used interchangeably. However,
there are key differences between these two concepts. In broad terms, AI is defined as the
science of designing and engineering machines, capable of possessing the characteristics of
human intelligence. On the other hand, ML is a possible application of AI based around
the idea that machines are able to learn from large amount of data. Lastly, the main
difference between DL and ML relies in the way each algorithm learns [26].

8 CHAPTER 2. BACKGROUND

2.2.1 Machine Learning (ML)

ML is a subset of AI mainly focused on developing models having the ability to learn
based on previously collected data and to improve their accuracy without being explicitly
programmed. In ML, algorithms are essentially able to process massive amount of data
to find relevant patterns used for the training phase. After an initial training phase, when
confronted with new input data, a ML model is able to make accurate predictions [27].
In general, every ML workflow can be summarized in five main steps:

1. Problem Definition & Data Collection
Before any data collection takes place, it is very important to understand the prob-
lem at hand, characterizing it and gathering all the required domain-specific knowl-
edge and inputs from the experts. Only when the problem is clear, well-defined and
understood, the data collection process actually starts. In order to fully understand
a problem, experts should focus on identifying (in-)dependent variables. Indepen-
dent variables, also known as Features, are considered to be inputs and/or stimuli for
the ML Model whereas dependent variables are usually associated with the output,
which in turn depends on the input, hence the name “dependent variables” [29].

After a successful problem definition, all the relevant and comprehensive data needs
to be collected. The type of data needs to be defined first. Data can be categorized
in 4 types: numerical, categorical, time series and text. Numerical data, also called
quantitative data, is usually associated with numbers, which in turn can be contin-
uous (e.g., weight, salary, temperature) or discrete (e.g., units of a product sold).
Categorical data on the other hand are used to represent a set of characteristics. Ed-
ucational level is one possible example of categorical data, as it can only have three
values: “beginner”, “intermediate”, “advanced”. Time series data is characterized by
collection of observations obtained through repeated measurements. Possible exam-
ples range from weather records, economic indicators and performance metrics over
time [30, 31].

In addition to that, depending on the complexity of the problem and the chosen ML
algorithm, the volume of data needs to be adjusted accordingly, as it may have a
direct impact on the performance/accuracy of the algorithm. The size of the dataset
has indicated to play a significant role during model development. Some studies
found that model constructed on large datasets usually show an higher accuracy
and lower error [28, 29].

2. Data Preparation
This phase, also called data pre-processing, is usually known for taking up to 80% of
data scientist’s time [32]. Once the data has been successfully collected, it requires
further preparation in order to be used for the training model. In the field of
ML, there are several techniques to ensure that a dataset meets the requirement
for an algorithm. Data scientists are usually confronted with problems such as
inconsistent records, missing and/or incorrect values and even outliers that need to
be handled correctly. This means, that when integrating data from different sources,
each variable must be formatted correctly, and in case of missing values, the affected
records can either be deleted or replaced with dummy/average values. Lastly, the

2.2. ARTIFICIAL INTELLIGENCE (AI) 9

Machine Learning

Supervised Learning Unsupervised Learning Semi-Supervised Learning Reinforcement Learning

Classification

Regression

Clustering

Figure 2.3: Machine Learning types (based on [34])

entire dataset is split in training and testing data, usually following the 80/20 train-
test split rule (80% train data and 20% test data) depending on the original size of
the dataset [33, 36].

3. Algorithm Selection
The third step consists of the choosing right algorithm for creating the model. In
ML, there are many approaches aiming to support finding the most suitable solution
for the defined problem. Depending on the nature of the input “signal” and the
corresponding outcome, ML approaches are traditionally divided into four main
categories as shown in Figure 2.3 [34].

Supervised Learning (SL). Any algorithm that falls under this category requires to
be trained with labeled data. That means, the correct output of every record in
the training dataset is usually known a priori. This way, as the dataset is fed to
the algorithm, the model is able to learn and produce an inferred function, which is
then used for making new predictions. Supervised learning uses two main techniques
for developing predictive models: Classification and Regression. Classification algo-
rithms are able to accurately assign categories, or also called classes, to test data.
When confronted with previously unseen data, this type of algorithms try to label
it either into two distinct classes (i.e., Binary Classification) or more (i.e., Multi-
Class Classification) [35, 37]. On the other hand, regression algorithms are able
to predict continuous values based on the input data. More specifically, such type
of algorithms aim to estimate a mapping function based on both input and output
variables. This technique is commonly used in financial trading but it can also find
application in other areas such as: electricity, flights, products and real estate price
forecasting [38].

Unsupervised Learning (UL). These kind of algorithms focus on discovering hidden
patterns in the uncategorized, unlabeled data without the need of human interven-
tion. Unsupervised learning algorithms are usually more complex and the models
require huge amounts of data to be able to extract useful properties of the dataset
and to group similar records in similar classes. This technique, also known as Clus-
tering, is generally preferred over supervised learning algorithms when the process

10 CHAPTER 2. BACKGROUND

of manually generating labels is considered to be laborious and expensive. This is
usually the case in medical imaging where a lot of images are collected and labeling
each one of them becomes an unfeasible task to accomplish [40]. Other success-
ful applications can be found in different areas, such as: speech recognition [39],
anomaly detection [41, 42] and many other fields [43].

Semi-Supervised Learning (SSL). As the name suggests, semi-supervised learning
algorithms are able to deal with both labeled and unlabeled datasets. The goal
of this approach is to design and develop algorithms having the ability to combine
different sources of data and to analyze the effect on the learning behaviour. Semi-
supervised learning algorithms are known to be extensions of either supervised or
unsupervised learning strategies, thus making little adjustments to the inherited
techniques [44].

Reinforcement Learning (RL). RL can be viewed as an approach which falls be-
tween SL and UL and is usually referred to as the science of decision-making. This
technique introduces three main concepts: Agent, Environment and Reward. Ini-
tially, an agent (e.g., algorithm, bot) interacts with an unknown environment and
by performing actions and obtaining some kind of feedback. An action causes the
current situation to change and as a consequence, the agent receives either a reward
or penalty. The main goal of this kind of learning is being able to take actions in
a previously unseen situation, maximizing the total rewards. Finding the optimal
strategy usually takes a lot of attempts and failures [45]. There are different works
highlighting the effectiveness of RL algorithms in different use cases, such as: man-
aging resources in computer resources [46], designing traffic light control to solve
congestion problems [47] and robotics [48].

4. Model Training & Validation
The process of training a ML model involves the experts to provide the previously
collected and processed data to the chosen learning algorithm. In essence, the term
ML model refers to the artifact which is created after the training phase. This step
is also known for taking a lot of time in a typical ML workflow but nevertheless is
essential for building a strong foundation for an accurate model development [49].
When training a model, it is very important to make sure that the training dataset
is a subset of the initial dataset, since training a model on the whole dataset would
probably lead to overfitting. More specifically, the model will pick up the detail and
noises of the dataset to an extent where it negatively impacts its performance when
confronted with new input data [50].
In addition to the train-test split strategy, in some scenarios it is also recommended
to further extract from the train dataset a so-called validation dataset. This data
is often used to provide an unbiased evaluation of the trained model while tuning
the model specific properties, also known as hyperparameters. These parameters are
essentially responsible for controlling the entire learning process and have a signifi-
cant impact on the model performance. Therefore, it is extremely important to find
an optimal combination of hyperparameters that provides the best results and min-
imizes overfitting. In ML, there are multiple ways of trying different combinations
of such parameters and then evaluating the resulting configuration [51]. The most
popular approaches among them are:

2.2. ARTIFICIAL INTELLIGENCE (AI) 11

Grid Search. This technique is used to perform an exhaustive search to compute the
optimum values of the hyperparameters. Figure 2.4a shows a visual representation
of grid search with two hyperparameters, x1 and x2, each with ten possible values.
A total of a hundred different combinations will be evaluated and compared. As a
result, the blue contours present the optimal hyperparameter combination, that is,
the values of x1 and x2 with the highest accuracy whereas the red contours indicate
values for which the performance is considered poor. One major drawback of Grid
Search is that with large number of parameters, computing and evaluating every
possible combination becomes a very inefficient and time-consuming task [52].

Random Search. An alternative to grid search is random search. As the name
suggests, this method tries random combinations of hyperparameters in a pre-defined
domain for building a model with highest accuracy. While grid search executes an
exhaustive search on every possible combination, in this approach the number of
search iterations is set based on available time and resources. Figure 2.4b gives a
visual representation of this method, using the same parameters x1 and x2 as for
grid search. Similarly, a hundred randomly chosen combinations are evaluated. This
is also represented by the green marks which indicate that more individual values
for each parameter are considered [52].

Bayesian Optimization. This method, in contrast to grid and random search, is
able to keep track of the past combinations and the corresponding evaluations to
form a probabilistic model based on which the parameters for the next iteration are
chosen [53]. As shown in Figure 2.4c, the bayesian optimization process initially
explores the space of potential parameter combination and afterwards is able to
smartly select the next combination based on previous results. Various studies on
this method have shown that using this approach leads to obtaining better results
while maintaining a lower number of iterations when compared to the grid/random
search [54].

In combination with those hyperparameter optimization techniques, an approach
called Cross-Validation (CV) is used to evaluate the performance of the model after
each iteration. The most common technique is K-Fold CV. During this procedure
the train dataset is randomly split into independent k -folds. The parameter “k” can
be any arbitrary number, however good standard values are five or ten. During each
iteration, k-1 folds are used for training the model and the remaining fold is used for
performance evaluation. The whole CV process is repeated “k” times, resulting in
“k” number of performance estimations (PE). Lastly, the overall model performance
is defined as the mean of the previously computed “k” PEs. Figure 2.5 illustrates
the entire process for K equal to five [55].

5. Model Testing
After a successful training and validation, the final model is subjected to extensive
testing. This phase is necessary to ensure that the model works according to the
requirements. Furthermore, the goal of testing a ML model or software in general
is to point out any unnoticed defect or flaws during the initial development. During
this phase, the final model is usually evaluated using previously unseen data, also
called holdout set [56]. Lastly, the model is deployed and made available to other
services.

12 CHAPTER 2. BACKGROUND

(a) Grid Search (b) Random Search

(c) Bayesian Optimization

Figure 2.4: Hyperparameter optimization techniques [52]

Training Set Validation Set

1st Itera�on

2nd Itera�on

3rd Itera�on

4th Itera�on

5th Itera�on

PE1

PE2

PE3

PE4

PE5

Figure 2.5: K-Fold CV (K=5) [55]

2.2. ARTIFICIAL INTELLIGENCE (AI) 13

Hidden Layer Hidden Layer Hidden Layer

Input Layer Output Layer

Figure 2.6: Artificial Neural Network (based on [57])

2.2.2 Deep Learning (DL)

Deep Learning (DL) is a subdomain of ML that primarily uses Artificial Neural Net-
works (ANNs), also known as Feed-Forward Neural Networks (FFNNs), to process large
amounts of data for solving complex tasks, which usually would require human inter-
vention. Nowadays, DL algorithms are recognized as being well-integrated into different
products and services and generally they find application in different fields, ranging from
law enforcement to financial services and customer service [58, 59].
ANNs are specifically designed to mimic the function of the human brain, thus offering a
more generalized way of modeling and approaching problems. Similar to the structure of
a nervous system, the underlying architecture of an ANN (as shown in Figure 2.6) usually
consists of small computing units or nodes, known as (artificial) neurons. A typical ANN
generally contains dozens or even millions of interconnected neurons arranged in several
levels, called layers. There are three kind of layers: input layer, hidden layer(s) and output
layer [60].
The first layer of a neural network, also known as input layer, is intended to receive an
input vector (−→x) containing initial data and forwards it to subsequent layers. It is impor-
tant to note that the input vector must contain as many elements as there are neurons
in the input layer. The last layer, i.e., output layer, is responsible for producing the final

prediction (denoted by −̂→y). The number of neurons in the output layer represent the
different prediction classes and is totally dependent on the initial problem at hand. In the
case of multi-class classification problems the output layer must include as many nodes as
there are possible classes. On the other hand, in a simple binary classification problem,
two neurons would be sufficient [61].

However, in order to obtain the prediction vector −̂→y , the neural network has to perform
various mathematical computations. These operations are mostly done in the hidden
layers through the synapses interconnecting the neurons. Figure 2.7 gives a visual repre-
sentation of a single neuron, having n inputs and a single output y. As shown in Figure

14 CHAPTER 2. BACKGROUND

Figure 2.7: Representation of a neuron [62]

2.7, each connection has an associated strength, also called synaptic weight (Wn). In a
first step, the neuron computes the summation of every input (xn) multiplied with the
corresponding weight (Wn). The result (z) is then fed to an activation function f which
then produces an output signal y. The process can be summarized with the following
mathematical formula (2.1) [62]:

y = f(z) = f(
∑
i

wixi) = f(wTx) (2.1)

The activation function f is essential for transforming an input signal into an output, which
is in turn passed to the next layer. The type of activation function has also direct impact
on the neural network’s prediction accuracy. In the case that the activation function is
not explicitly defined, the neural network behaves the same as a linear regression model.
However, non-linear activation functions are generally preferred over linear ones, since
they allow to model complex outputs which otherwise could not be reproduced using
linear input combinations [63]. Below is a list of the most common non-linear activation
functions as well as a depiction of the corresponding curves (Figure 2.8) [64].

• Sigmoid. The sigmoid function, also called Logistic function, is the most frequently
used activation function. The input of the function is transformed into a value
between 0 and 1. For any possible input, the sigmoid function has a characteristic
S-shaped curve. The sigmoid function is defined by the following formula (2.2) [65]:

f(x) =
1

1 + e−x
(2.2)

• Hyperbolic Tangent (tanh). Tanh is another widely used activation function which
shares some similarities with the sigmoid function. As shown in Figure 2.8, the
change in output accelerates close to x = 0 and similar to the sigmoid function,
for very large values of x, the curve approaches 1, but it never actually reaches it.
However, a significant difference with the sigmoid function is evident for x < 0. For

2.2. ARTIFICIAL INTELLIGENCE (AI) 15

Figure 2.8: Most common non-linear activation functions

such values of x, the tanh curve approaches -1 instead of 0 [66]. The tanh activation
function is described by the formula below (2.3):

f(x) =
ex − e−x

ex + e−x
(2.3)

• Rectified Linear Unit (ReLU). ReLU is another non-linear activation function that
has gained a lot popularity in the field of DL. The main advantage of ReLU over
other activation functions is that it does not activate the neurons at the same time.
More specifically, in order for the neurons to be activated, the input signals must
have a positive value. For any negative input value, the ReLU function returns 0
meaning that the neuron is not activated. As a result, when compared to other
non-linear activation functions, ReLU is considered to be far more computationally
efficient and to offer better performance [67, 68]. The ReLU activation function can
be mathematically described by the following formula (2.4):

f(x) = max(0, x) (2.4)

The final step of the training phase in a FFNN is to evaluate the predicted output against
the expected output. For this purpose, cost/loss functions are used to measure the re-
sulting difference and assess the performance of the network. The main goal here is to
correctly calculate and minimize the error by adjusting the weights of the network. This
is usually done by combining a technique called Backpropagation [70] and optimisation
algorithms, which based on the computed gradient, i.e., the partial derivative of the cost
function with respect to the weights, repeatedly adapt the synaptic weights until the
global minima of the loss function is reached [69]. Lastly, the work of Shiliang Sun et al.
[71] provides a survey of the different weight optimisation techniques available, including
a summary of the main properties, advantages and disadvantages of each method.

16 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This chapter provides an overview of the traditional cybersecurity risk assessment method-
ologies as well as recent ML approaches aiding at assessing risks in various industries. In
the following paragraphs, the most popular risk assessment standards and frameworks are
declared. Consequently, several scientific works proposing ML-based solutions to support
risk assessment in various sectors are presented, followed by an analysis of the current
state of the art in cybersecurity risk assessment. Finally, the elicited characteristics of the
different approaches are summarized and compared.

Nowadays, many organizations consider cybersecurity to be a top priority [72]. This has
lead to the development of many different frameworks, i.e., a collection of standards,
guidelines and best practices to identify and report different kind of risks. These frame-
works are meant to provide decision-makers of an organization valuable information about
security and to support the process of resource allocation. The NIST CSF1 is a cyberse-
curity framework provided by the National Institute of Standards and Technology (NIST)
and is the most widely used framework by US companies. Known for providing a base
level of cybersecurity, the NIST CSF offers public and private organizations a detailed
and structured guidance for preventing, identifying and responding to cyber-threats. It
comprises of five core functions: identify, protect, detect, respond and recover. These
functions are meant to represent the highest level of abstraction within the framework
[73].

• Identify. This function supports the organization in developing an understanding
in order to manage cybersecurity risks related to systems, people, assets, data and
capabilities.

• Protect. A function that involves the organization to proactively develop and im-
plement appropriate safeguards for the previously identified risks to ensure a reliable
delivery of the business critical services.

• Detect. The third activity is about effectively detecting when a cybersecurity event
is about to occur. This includes implementing continuous monitoring techniques to

1https://www.nist.gov/cyberframework

17

https://www.nist.gov/cyberframework

18 CHAPTER 3. RELATED WORK

identify possible threats and verify the actual protections. It is also fundamentally
important to ensure that anomalies are detected and their possible impact on the
infrastructure/business is reported.

• Respond. This function requires the organization to design and implement appro-
priate activities against a detected cybersecurity incident. For instance, the Orga-
nization should ensure that response plans are actually executed in the case of a
cyberattack and the communication inside and outside the organization should not
be hindered.

• Recover. Lastly, as the name implies, the recover function is about designing and
implementing recovery plans for services which have been impaired by the attack.
Especially for bigger companies, it is of utmost importance to ensure proper level
of internal communications during the recovery process.

Overall, the NIST CSF provides a comprehensive way of standardizing and managing
cybersecurity risks [74]. However, a study conducted by the Government Accountability
Office (GAO) reported some challenges related to the adoption of the NIST CSF. The
biggest obstacle that smaller businesses face is the deficiency of necessary resources for
implementing the framework. Moreover, due to the limited resources available, smaller
companies are usually forced to prioritize physical security, natural disaster response and
insider threats over cybersecurity. Another important challenging aspect is the lack of
knowledge and skills required to implement the NIST CSF which in turn is also the main
cause of uncertainty among even medium-sized companies [75].

The ISO/IEC 270012 is part of a family of standards (ISO/IEC 27000) specifically devel-
oped to deal with Information Security (IS) and consists of international standards de-
scribing best practices for Information Security Management Systems (ISMS). ISO 27001
serves primarily as a guideline for organizations of any size and industries that are look-
ing to improve IS methods and policies. Moreover, organizations can also get ISO 27001
certified once their ISMS meets the necessary requirements. However, depending on the
country where the company is located, the price for the certification can potentially be
very expensive and generally no implementation guidance is provided [76, 77].

The Critical Security Controls (CIS)3 is a popular cybersecurity framework develop by
the SANS Institute. The CIS framework focuses on protecting against most prevalent
cyberattacks and mitigating the effects of breaches. Even though it is considered to be
not as comprehensive as NIST or ISO 27001, CIS provides a straightforward and practical
framework for defense mechanisms and monitoring of high risk areas [78]. A summary
of the most popular and established cybersecurity frameworks is given by Table 3.1,
highlighting the goals, strengths and weaknesses of each methodology.

2https://www.iso.org/isoiec-27001-information-security.html
3https://www.cisecurity.org/

https://www.iso.org/isoiec-27001-information-security.html
https://www.cisecurity.org/

19

Table 3.1: Cybersecurity risk assessment frameworks overview (based on [79])

Framework Industry Goal Strenghts Weaknesses

NIST CSF any

Align
cybersecurity
defenses to
organizational
goals, measure
control maturity

– Comprehensive

– Builds on past
frameworks

– Works with
many
compliance
requirements

– Freely available

– Difficult to
implement

– Requires skills
and knowledge

ISO 27001 any
Establish security
management
program

– Internationally
recognized

– Many
compliance
requirements

– Integrates well
with other
frameworks

– No
implementation
guidance

– High
certification
cost

CIS any

Automated
controls to protect
and monitor high
risk areas

– Prescriptive

– Easy to get
started

– Updated about
every 2 years to
address
evolving risks

– Not as
comprehensive
as other
frameworks

Recently, many researchers have proposed different approaches to cybersecurity risk as-
sessment addressing the challenges of traditional and established methodologies. DRAFT
is a cybersecurity framework proposed by Soumya [80] focusing on the end-to-end Inter-
net of Things (IoT) platform. Not only that, DRAFT also includes a Security Incident,
an Event Monitoring (SIEM) tool and a cyberattack resilient framework. The DRAFT
framework can be easily integrated into any IoT environment and has been thoroughly
tested using different cyberattacks, such as Distributed Denial-of-Service (DDoS) attacks.

Another solution presented in [81] aims at providing a dynamic risk assessment framework
in order to estimate the likelihood of cyber-threats in rapidly changing environments.
This includes scenarios where companies are exposed to possibly new threats due to their
global presence. This approach has been adopted by a leading global energy management

20 CHAPTER 3. RELATED WORK

company and the authors have already received positive feedback.

CyFEr is a framework developed by [82] which addresses a major limitation of traditional
risk assessment methodologies; the majority of the current frameworks do not allow the
organization to prioritize the requirements necessary to reach a certain degree cyberse-
curity maturity. To address this issue, the authors evaluate the application of various
rank-weight methods. Moreover, the solution was also tested against a blockchain cyber-
security framework (BC2F), developed using the NIST CSF.

On the other hand, SEConomy is a step-based framework described by [12]. In contrast
with the previously discussed solutions, SEConomy is designed to measure the economic
impact of cybersecurity threats in distributed environments integrating the NIST guide-
lines for assessing cyber-threats.

Pappalardo et al. [8] takes it a step further, by presenting E-MAF, a multi-sector risk
assessment framework. In fact, this approach allows the evaluation of cyber-threats in
trans-sectoral and inter-sectoral environments. This framework builds upon studies con-
ducted on existing cyber-risk assessment and management frameworks, with the goal of
finding possible challenges and limitations. The authors came to the conclusion that tra-
ditional risk assessment frameworks did not take into consideration the relations between
different sectors and were not able to address multi-sector issues. As a result, E-MAF
architecture was designed to specifically tackle this limitation.

However, as current research shows, there are still opportunities to improve and evolve
traditional risk assessment processes by employing state-of-the-art and trend technologies,
such as ML. In fact, over the last few years, ML algorithms have aided in solving domain
specific problems in different fields, ranging from image/speech recognition to self-driving
cars and online fraud detection. Recently published works have also put their attention
to proposing various approaches for supporting engineering risk assessment in different
industries. In the following paragraphs, some solutions will be discussed, followed by Table
3.2 showing an industry-wise segmentation of the most popular ML algorithms used to
aid risk assessment. The ML algorithms taken into consideration are: Artificial Neural
Network (ANN), Support-Vector Machine (SVM), Decision Tree (DT) and K-Nearest
Neighbors (KNN).

In their study, Castro et al. [84] focus on investigating possible factors that have the
greatest impact on car accidents. More specifically, the authors use different ML algo-
rithms, such as DTs and ANNs, to identify relevant patterns and detect most frequent
key factors involved in car accidents with the goal of exploring different factors that may
lead to various injury risks.
Similarly, the authors of [85] applied different ML algorithms to classify the risk of severe
injury in the automotive industry. Based on over 5,000 traffic accident records, the ML
models were able to extract significant risk factors and make accurate predictions. Other
works, such as [86] have applied other ML to solve similar problems.

In the healthcare industry, [87] describes an approach to identify latent risks by regularly
measuring the physiological signals of patients. The authors design an ANN to automati-
cally extract and learn features from raw, unprocessed datasets to detect possible feature
anomalies.

21

[88] proposes an automated fall detection system, which similarly to the applications de-
scribed above uses various ML models to proactively evaluate risk factors. Using several
sensors, the authors collected a substantial amount of raw data for model training and
testing.

Xu et al. [89] develop a transient stability assessment model for earlier detection of black-
out risks. This solution addresses the main issues of past approaches, such as excessive
training time, complex parameter tuning and overall inefficiency for real-time predictions.
The proposed model is compared with some state-of-the-art approaches with regards to
computation time and prediction accuracy. In the field of nuclear energy, [90] presents an
SVM approach designed to classify transients in nuclear power plants. The data measured
by the sensors constantly monitoring the power plants is used by the SVM classifier to
detect anomalies and evaluate the risks of possible malfunctions of various components,
e.g., the feedwater system of a boiling water reactor.

In the field of cybersecurity, research has tended to focus mainly on leveraging ML to
detect various types of cyberattacks and recognize breaches [91]. However, as stated
by [9] and [92], ML has the potential to significantly change the cybersecurity and risk
assessment landscape.

Table 3.2: Industry-wise segmentation of ML applications for risk assessment [83]

Industry Machine Learning algorithms Publications

Automotive

ANN
KNN
SVM
DT

[84, 85, 86]
-

[86]
[84, 85]

Healthcare

ANN
KNN
SVM
DT

[87, 88]
[88]
[88]

-

Energy & Nuclear

ANN
KNN
SVM
DT

[89]
-

[90]
-

Cybersecurity

ANN
KNN
SVM
DT

-
-
-
-

22 CHAPTER 3. RELATED WORK

Chapter 4

The SecRiskAI Approach

This thesis proposes an approach for conducting qualitative cybersecurity risk assessment
using ML techniques. In this chapter, the solution is introduced, starting with an high-
level overview of the system architecture and a description of each component involved.
Next, the ML-based risk assessment workflow is described and the scope of each phase
clearly defined. Finally, details on the integration with the MENTOR’s recommendation
API [13, 14] is provided.

Figure 4.1 gives an high-level architecture overview and highlights the system components’
interactions. In Step 1, the user is able to access the dashboard through any browser
without the need of an account. The Graphical User Interface (GUI) (i.e., web-based
interface) was designed in a way to provide total visibility of business-related KRIs and,
at the same time, increase productivity and better forecasting of important aspects related
to the business security. Moreover, through the web-based interface the user is able to
change both contextual information and other parameters (e.g., available budget, service
type and desired deployment/leasing period) required for the risk assessment and the
protection service recommendations.

In order to use the information provided by the user to make risk predictions, an addi-
tional layer is required. In this approach, this task is performed by the Middleware (Step
2). More specifically, as soon as the request sent by the client is received, the Request
Processor processes it and forwards the information to the Profile Evaluator, which is
in charge of contacting the ML models, evaluating the prediction response, and, when
specific conditions are fulfilled, establishing a connection with MENTOR (Step 6).
To perform an actual risk prediction, a request to the Risk Classifier is sent. The Risk
Classifier is a prediction service included in the ML Classifier Layer (Step 3) and is es-
sentially used to expose the trained ML models through the API. Additionally, the ML
Classifier Layer also stores the trained ML models as well as the Data Scalers used to
normalize the input data and increase prediction accuracy.
The process of training, validating and testing the ML models takes place in the ML
workflow Layer (Step 4) and is usually carried out by data scientists/experts in the com-
pany. In summary, the Data Generator component is used to initialize the synthetic data
generation process. Afterwards, the data is processed (i.e., Data Processor) and used by
the Model Builder for training, validating, testing, and building the models. Each phase

23

24 CHAPTER 4. THE SECRISKAI APPROACH

MENTOR's
Recommendation API

Backend
 (On-Premise / Cloud)

Monitoring API

Data Scientist

Request Processor

Profile Evaluator

Risk Classifier

Models Data
Scaler

Middleware ML Classifier

Data

Data Generator

Data Processor Model Builder

ML Workflow

2 3

4

5

6

Frontend

1

Dashboard

User

Figure 4.1: Architecture overview

of the ML Workflow is described with sufficient level of details in Section 4.1. Lastly, the
interface indicated by Step 5 provides a monitoring API for checking the status of the de-
ployed models, retrieving model-specific metadata (e.g., version, creation time, accuracy)
and other metrics about the prediction service (e.g., request duration in seconds).

4.1 Risk Assessment Workflow

Once the opportunities of applying ML to cybersecurity risk assessment are defined and
well-understood, the process of designing and developing a ML workflow (cf. Figure
4.1 - Step 4) begins. Figure 4.2 provides a flow chart of the supervised ML workflow
implemented in this thesis, as crucial part of the solution. After the initial problem
definition, the most important stage is data collection/gathering. Usually, in this phase,
data is collected from sensors or other different sources and stored for further processing.
However, in the field of cybersecurity risk assessment companies either do not disclose any
kind of information at all [93] or in some cases they publish various reports which are often
incomplete and difficult to extract meaningful and interesting results from [94, 95, 96]. To

4.1. RISK ASSESSMENT WORKFLOW 25

address this issue, a synthetic data generation approach was designed and implemented.

4.1.1 Data Gathering

Synthetic data is commonly referred to as data that is created by different algorithms
that try to mirror the statistical properties of the original data without revealing any
actual information about the subjects [97]. After exhaustive research and analysis of
different cyberattacks and corresponding companies’ contextual information, the following
parameters to be used as basis for this work were identified:

• Revenue. Referred to the income generated from normal business activities and
operations, and in most cases is also used to classify businesses by providing a scale
for determining their sizes [98].

• Cybersecurity Investments. Normally, businesses already have cybersecurity invest-
ments strategies in place to ensure a proper level of defense. This kind of information
needs to be taken into consideration during the cybersecurity risk assessment, as it
may have an impact on the likelihood of being targeted by a cyberattack.

• Number of Employees and Training Level. Similar to the revenue, information
regarding the actual number of employees in a company as well as the correspond-
ing cybersecurity training level (e.g., cybersecurity basic knowledge and phishing
training) represent essential contextual information required for assessing possible
cyber-risks. The employee training level is measured in“Low”,“Medium”and“High”.

• Successful/Failed Cyberattacks. These parameters are meant to indicate the num-
ber of cyberattacks that the company has already experienced. This includes dif-
ferent attacks (e.g., DDoS, Ransomware, and Phishing) that have targeted the or-
ganization’s infrastructure and resulting in either a financial loss or reputational
damage. Failed attempts are also taken into consideration.

• Known Vulnerabilities. For an effective and comprehensive risk assessment, it is
essential to report any known vulnerabilities of the infrastructure. Vulnerability
management is usually a key responsibility of the companies’ IT security team. This
phase usually involves assessing and reporting any security vulnerability present in
the organization’s systems [119]. There are a variety of comprehensive tools used
for vulnerability scanning, such as Nmap [99], Metasploit [100] and OWASP [101].
Currently, the total number of known vulnerabilities is defined during the synthetic
generation process.

• External Cybersecurity Advisor. In order to further strengthen their cyber re-
silience (i.e., the ability to prepare for, respond to, and recover from cyberattacks),
business are encouraged to hire external Cybersecurity Advisors (CSAs) [102]. Fur-
thermore, CSA provide a variety of services, such as cyber preparedness, strategic
messaging, working group support, partnership development, cyber assessments, in-
cident coordination and support [102]. During the synthetic data generation phase,
a binary value will be generated (either “Yes” or “No”).

26 CHAPTER 4. THE SECRISKAI APPROACH

splitData Processing

Categorization

Dataset Splitting

Training

Cross Validation

Testing

Evaluation

Model Selection

Decision Tree

K-Nearest Neighbors

Support Vector
Machine

Multi-Layer
Perceptron

Training Set

Validation Set

Test Set

Normalization

Dataset

Figure 4.2: Supervised Learning ML workflow

4.1. RISK ASSESSMENT WORKFLOW 27

• Risk. The last parameter represents the value of the qualitative risk assessment
based on the previously generated parameters. Since the synthetic data generation
process is designed to generate historical records of companies operating in compa-
rable industries, the value of the risk column may be derived from past formal or
tailored qualitative risk assessment techniques (cf. Section 3). The generated risk
can have one of the following values: “Low”, “Medium” and “High”.

In order to generate the information mentioned above, some assumptions were made.
First, upper/lower boundaries for each column were specified, so that each generated
value would effectively lie in the defined range. The Table 4.1 gives an overview of the
determined boundaries as well example of values for each generated information.

Table 4.1: Overview of the generated attributes

Information ID Range Example

Revenue business value 0 to 5,000,000 2,500,000
Cybersecurity
Investment(s)

invested amount
0 to 30% *

business value
500,000

Successful Attacks succ attack 0 to 50 5
Failed Attacks fail attack 0 to 50 10

Number of
Employees

nr employees 30 to 10,000 4,450

Employee Training employees training
Low, Medium or

High
Medium

Known
Vulnerabilities

known vuln 0 to 10 9

External
Cybersecurity

Advisor
external adv Yes or No No

Risk risk
Low, Medium or

High
Low

It is important to note that the risk is not randomly generated, instead it is computed
based on the generated attributes illustrated in Table 4.1 using the following generalized
formula (4.1). For supervised learning to work, the dataset must be labeled. As a result,
the computed risk output is mapped to either a “Low”, “Medium” and “High” class. How-
ever, a manual labeling process would be too expensive, since the generated dataset would
include thousands of records. Therefore, based on the numeric value of computed risk a
mapping range was defined. This means, that each computed risk value is labeled using
the range specified in Equation 4.2.

28 CHAPTER 4. THE SECRISKAI APPROACH

ir =
invested amount

business value

e =
nr employees

tot empl
∗map(employees training)

attr =
succ attacks

max attacks

vr =
known vuln

max known vuln

advi = map(external adv)

map(x) =


0, if x = Low
1, if x = Medium
2, if x = High

computed risk = ir + e + advi − attr − vr (4.1)

risk(x) =


High, for x < 0
Medium, for 0 ≤ x < 1
Low, for x ≥ 1

(4.2)

4.1.2 Data Processing

Once enough data has been successfully generated, the processing phase starts. The ML
algorithms (cf. Section 2) require an initial processing step as they are not able to work
with raw data. In a first step, any categorical variable present in the dataset is handled.
Specifically, variables like “employee training level” and “external cybersecurity advisor”
are mapped to numerical values, which are easier for ML algorithms to work with.

A further normalization may be necessary, depending on the selected ML algorithm [120].
Normalization is the process of scaling data into a range of [0, 1]. Some ML algorithms
are known to be highly sensitive to features with varying degrees of magnitude, range and
units. The dataset generated for this work includes features such as“revenue”and“number
of employees” that have different ranges and training sensitive models on unscaled data
may lead to lower performance and accuracy. In this solution, a normalization technique
known as Min-Max scaling [121] was used and is defined by the following formula:

xscaled =
x−min(x)

max(x)−min(x)
(4.3)

4.1. RISK ASSESSMENT WORKFLOW 29

The Min-Max normalization technique is applied to the entire dataset but only to “fea-
tures”, namely every column except “risk” which contains the three output classes based
on which future predictions will be made. The last step in the processing phase involves
splitting the dataset into a training, validation and test set, as shown in Figure 4.2.

4.1.3 Multi-Class Classification Algorithms

In ML, Multi-Class Classification algorithms (MCC) aim to solve problems of classifying
instances into one of three or more output classes [103]. In the model selection phase (cf.
Fig. 4.2) popular MMC algorithms are chosen for conducting qualitative cybersecurity
risk assessments. The main goal is to design and develop ML models that, based on
actual contextual information, can make accurate qualitative risk assessment predictions
and further monitor the organization’s infrastructure by providing continuous assessment
based on input data.

Decision Tree

Decision Tree (DT) is a Supervised Learning (SL) algorithm (cf. Section 2) for classifica-
tion used in the proposed solution [104]. This technique essentially looks at the feature
values of the input dataset and categorizes them according to a specific parameter, also
known as information gain. The pseudo-code below (Algorithm 1) illustrates the proce-
dure for implementing the decision tree algorithm. In a first phase, the algorithms iterates
over every feature column in the input dataset D containing organization’s historical data
and computes the information gain. The goal is to find the feature column having the
highest information gain which will, in turn, serve as a decision node of the tree. Next,
the algorithm continues splitting the dataset on the identified decision node and performs
the same search on the sub-datasets. This way, a tree structure is constructed with each
node representing a feature column and the leaves indicating the output class.

Algorithm 1: DTree

input: D, dataset containing organization’s contextual information
Tree = {}
for all attributes ∈ D do

Find the attribute which best divides D using information gain
Xbest ← feature column with the highest information gain

end for
Tree← Create a Decision Node that divides the dataset on Xbest

Dsub ← sub-datasets from D splitted on Xbest

for all Dsub do
Treesub ← DTree(Dsub)
Add Treesub to corresponding branch of Tree

end for
return Tree

30 CHAPTER 4. THE SECRISKAI APPROACH

External Advisor

Employee Training ...

> 0.50 ≤ 0.50

Successful Attacks ... Medium High

Known
Vulnerabilities

Known
Vulnerabilities

 ≤ 0.50 > 0.50 ≤ 678281.50 > 678281.50

 ≤ 21.50 > 21.50

Low Medium Medium High

 ≤ 6.50 > 6.50 ≤ 4.50 > 4.50

Figure 4.3: DT visualization

Besides being an easy to use and straightforward classification technique, this algorithm
can be trained on historical data, without requiring extensive data pre-processing [105].
That is, compared to other classification algorithms used in this approach, the decision
tree requires less effort for data preparation and the normalization step is not required.
The resulting model is thus easy to understand for both technical and non-technical
stakeholders. Fig. 4.3 gives a visual representation of a decision tree algorithm trained
on the generated dataset. In order to make a prediction using the DT, a new sample i
would traverse the tree based on each feature value and the resulting leaf value would be
the output class.

K-Nearest Neighbors

K-Nearest Neighbors (KNN) is another SL algorithm (cf. Section 2) used to solve classifi-
cation problems. More specifically, KNN is usually referred to as instance-based classifier
as the main idea behind this technique is to memorize the input dataset to make future
predictions [106]. As indicated by the pseudo-code (Algorithm 2) below, KNN requires
three input parameters: a dataset D containing the historical information is given, a cho-
sen number of neighbors k and x, a sample that is to be classified. The algorithm then
proceeds on computing the distance between x and every record contained in D. Next,
the computed distances are sorted in ascending order and k closest samples, also known
as neighbors, to x are selected. Finally, the predicted class of x (Classx) is based on the
similarity with the neighbors, meaning that x is labeled following a majority voting of
classes among the neighbors.

In essence, KNN calculates the probability of a sample x belonging to a specific class, based
on neighbors observations. Compared to the DT, KNN requires more data pre-processing.

4.1. RISK ASSESSMENT WORKFLOW 31

Algorithm 2: knn

input: D, dataset containing organization’s contextual information
k, number of nearest neighbors
x, unclassified sample

for all r ∈ D do
Compute distance between r and x

end for
Neighbors← Sort computed distances and select k closest samples to x
Classx ← majority output class based on Neighbors
return Classx

On the other hand, the training phase is definitely faster and new training data can be
seamlessly added without the need of reconstructing the model. Figure 4.4 provides a
visual representation of the KNN classification with k equal to seven and x being a new
sample to classify. In this example, only two dimensions are taken into account (i.e.,
cybersecurity investment(s) and # of employees). Once the k closest neighbors to x are
identified, it is apparent from Fig. 4.4 that the predicted class of x is “Low”, since the
majority of the neighbors belong to the “Low” class.

x

Cybersecurity Investment(s)

of

 E
m

pl
oy

ee
s Class Low

Class Medium

Class High

Figure 4.4: KNN visualization (k = 7)

Support Vector Machine

The Support Vector Machine (SVM) is the third SL classification algorithm (cf. Section
2) considered in this work. In contrast with DT and KNN, SVM uses a line or hyperplane

32 CHAPTER 4. THE SECRISKAI APPROACH

1 2 3

Cybersecurity Investment(s)

of

 E
m

pl
oy

ee
s Class Low

Class Medium

Class High

Figure 4.5: SVM visualization

to separate input data into classes. Moreover, SVM is known to be computationally less
expensive than KNN but does not support MCC natively. To achieve that, a One-vs-
Rest strategy is followed [107]. First, the multi-class dataset is broken down into multiple
binary classification problems (Fig. 4.5). In this case, the following classification problems
are identified:

• High vs {Low, Medium} (Fig. 4.5 - Step 1)

• Medium vs {Low, High} (Fig. 4.5 - Step 2)

• Low vs {Medium, High} (Fig. 4.5 - Step 3)

Next, a binary classifier is trained on each binary classification problem and is able to
predict a class probability (Pclass), i.e., the probability of an object belonging to a specific
class. After the training phase, the binary classifiers return the probability of a sample
being labeled as“Low”(PLow), “Medium”(PMedium) and“High”(PHigh). Finally, the model

4.1. RISK ASSESSMENT WORKFLOW 33

that is able to predict the class of an unclassified sample x with the highest confidence is
chosen and is represented with the following mathematical formula (4.4):

Classx = argmax(PLow, PMedium, PHigh) (4.4)

When dealing with larger datasets and n output classes, SVM would require the creation
of n binary classifiers for each class, resulting to high computational costs. SVM does also
suffer from performance issues when confronted with overlapping classes, i.e., data points
being not well separated [108]. On the other hand, SVM is a very flexible algorithm and
allows the specification of a “kernel” function which can be linear (Fig. 4.5) but can also
be of different types, such as nonlinear, polynomial, radial basis function, and sigmoid to
solve many non-linear problems [109].

Multi-Layer Perceptron using Backpropagation

Multi-Layer Perceptron (MLP) is the fourth and last SL classification algorithm explored
in this work. More specifically, MLP is a class of feedforward ANN, hence it inherits the
characteristics of ANNs, such as input layer, hidden layer(s), output layer, perceptrons
and activation functions (cf. Section 2). Figure 4.6 gives a simplified visual representation
of the MLP model constructed in this thesis. Each node in the input layer corresponds to
a specific feature of the generated dataset. Moreover, as shown by Figure 4.6, the MLP
model has a total number of two hidden layers having five neurons each. Choosing the best
parameters for an ANN is a very challenging task, as there are no clear rules and it really
depends on the complexity of the underlying problem. For this thesis, the decision was
based on the guidelines proposed by [110, 111] as well as extensive exploratory research
and testing. On the other hand, the output layer was defined based on the output classes
of the model (i.e., Low, Medium, and High). Therefore, it consists of three neurons
representing each possible classification state.

During the training phase, the MLP uses a technique called backpropagation. An ANN
propagates the input data forward through the neurons towards the output layer, where
the prediction occurs. The backpropagation algorithm [70] refers to the process of propa-
gating the information about the prediction error backward from the output layer through-
out the entire network with the goal of adjusting the weights and improve accuracy. Figure
4.6 also gives an example of a backpropagation mechanism initiated as soon as the original
label (“Medium”) and predicted class (“Low”) differ. The computed error/loss is defined
by the simplified formula below (Equation 4.5) and lastly is used to adjust the weights in
the hidden layers [112, 113].

Eo = Oactual −Opredicted (4.5)

34 CHAPTER 4. THE SECRISKAI APPROACH

Low

Medium

High

Revenue

Cybersecurity
Investment(s)

of Employees

Employee
Training

Label:
Medium

Difference in
output label

Figure 4.6: MLP visualization

4.1.4 Training, Cross Validation & Testing

Once the dataset is generated and the required ML algorithms are chosen, the training
phase is initiated (cf. Figure 4.7). First, the dataset is split following the 80-20 train-
test strategy described in Section 2. Next, the process of choosing a set of optimal
hyperparameters, also called hyperparameter optimization, takes place. The main idea
here is to use grid search to extensively test every combination from a pre-defined list of
parameters values required by the ML algorithm for building the model. Subsequently,
the performance of each model is evaluated with the help of a 5-fold CV strategy. The
model with the highest accuracy is selected and tested with unseen data, i.e., the test
set. Lastly, the entire process is applied to each ML algorithm discussed in the previous
sections.

4.2 MENTOR’s API Integration

MENTOR [13] is a protection service recommender system aiming to support the cyber-
security detection/mitigation decision process. More specifically, the MENTOR system
implements four different similarity measurements to recommend the adequate protec-
tion service based on customers’ profiles and needs. A typical customer profile required
by MENTOR would contain the following information: the region where the company
operates, deployment time and leasing period of the service, and pricing. Moreover,

4.2. MENTOR’S API INTEGRATION 35

Train Set
80%

Test Set
20%

Model with best
hyperparameters

Dataset 5-Fold Cross Validation

Training Set Validation Set

Figure 4.7: Training, CV & testing workflow

MENTOR also offers the possibility to filter out further services based on type (i.e., Re-
active/Proactive) and the specific attack type covered by the service [14]. Customers can
also arbitrarily assign priorities for some attributes in order to receive a more tailored
recommendation.

Additionally, new protection services are automatically being added from Protection Ser-
vice Providers (PSPs) through a dedicated API. The recommendation engine can also
be extended with other similarity measures and is designed to be loosely coupled from
the other components in the system. Most importantly, MENTOR also offers an API
that, based on the customer’s profile (specified as JSON), returns a list of recommended
services. The solution proposed in this thesis is designed to integrate the functionality
of MENTOR to fully support the customer through the entire risk assessment and cy-
bersecurity investments decision process. More specifically, the Middleware layer (Figure
4.1 - Step 2), based on the data collected by the user and the cyber-risk prediction, is in
charge of retrieving the list of recommended protections. Finally, this information is used
to provide, in the web-based interface of SecRiskAI , the best protection services against
the previously identified and assessed cyber-threats.

36 CHAPTER 4. THE SECRISKAI APPROACH

Chapter 5

Prototype and Implementation

In this chapter, the technical implementation details of SecRiskAI are presented. This
chapter is divided into two main sections: frontend and backend. The former provides
technical details about the libraries and technologies used for building the User Interface
(UI). The latter describes the technical implementation of the main layers designed and
introduced in Figure 4.1, such as Middleware, ML Classifier and ML workflow. The source
code of the developed solution is publicly available on GitHub1.

Figure 5.1 gives an high-level illustration of the interaction between the user and the
different components of SecRiskAI . The flow is triggered by the user interacting with
the web-based interface. The user enters/updates the profile in the ProfilePage. Upon
submission, a request is made to the Middleware, which processes the request and sends a
POST request to the ML Classifier for prediction as well as a POST request to MENTOR,
to retrieve recommendation list of protection services. The response is then constructed
in the Middleware and forwarded to the frontend, more specifically the DashboardPage,
which proceeds building the UI. In case there are any errors, such as invalid profile, a
404 bad request is sent from the Middleware and the error message is displayed in the
dashboard accordingly.

5.1 Frontend

The frontend of the SecRiskAI application is implemented using React2, a popular and
widely adopted JavaScript library for building user interfaces. For this particular proto-
type, TypeScript, a well known typed superset of JavaScript, was used [114]. This decision
was based on the benefits that TypeScript offers over plain JavaScript, such as: static
typing, readability and improved maintainability [115].
By writing reusable UI components for React applications, web developers can save time,
increase productivity and make the entire application easier to develop and maintain [116].
Additionally, React is also characterized by the following benefits [117]:

1https://github.com/Sulasdeli/SecRiskAI
2https://reactjs.org/

37

https://github.com/Sulasdeli/SecRiskAI
https://reactjs.org/

38 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

POST /recommend

alt

:DashboardPage :Middleware
User

:ML Classifier :MENTOR:ProfilePage

visits

fill_contextual_info

validate_data

submit_profile

BackendFrontend

[profile is valid] convert_profile

POST /predict

prediction

recommendation list

response

[else] 404 bad request - response

display message

Figure 5.1: SecRiskAI sequence flow

• Scalability & Flexibility. React code is easier to maintain and update thanks to its
modular nature. It also facilitates the creation of reusable UI components by using
a particular HTML-like syntax called JSX.

• Performance. When the application contains a lot of user interactions or parameters
that eventually result in data updates, this aspect becomes extremely important.
Although modern browsers have fast performance, extensive DOM manipulation
may cause slow response times and unpleasant user experiences. React directly ad-
dresses this issue by introducing a concept called “virtual DOM” along with efficient
diff algorithms for identifying and effectively applying state changes to components,
resulting in faster user interfaces.

Redux

In common React applications, components are usually responsible for managing the
application’s state internally without requiring external tools or libraries. However, man-
aging the states across components becomes increasingly difficult as an application scales.
In this regard, an efficient state management process can be achieved by using a state
management tool, such as Redux 3, which provides a shared state across every component.

3https://redux.js.org/

https://redux.js.org/

5.1. FRONTEND 39

SecRiskAI heavily relies on data tables and panels, which can be subject to changes over
time and require sharing between various components. It is therefore important to have
a single source of truth for data by placing it in a specific location, called “Store”. As a
result, each component of the application directly accesses and modifies the data stored
in the current state, which then triggers a re-rendering process of every component that
is, in turn, “subscribed” to the store [118].

To update the store, Redux introduces the concept of reducers and actions. Due to the
state being global and read-only, the only way of updating it is to emit an action. An
action is a JavaScript object that contains useful information about a particular event
[118]. The listing 5.1 below gives an example of a Redux action used in SecRiskAI :

1 export type FetchedPredictions = {

2 type: "FETCHED_PREDICTIONS";

3 predictions: Prediction;

4 loading: boolean;

5 };

Listing 5.1: Redux action for updating cyber-risk predictions

In general, every action contains a type and useful information necessary for updating the
current state, such as an API call response body or user input data. In order to effectively
update the global state, an action has to be dispatched. This is typically done by invoking
the dispatch() method of the store and passing the action as parameter. Next, reducers,
simple JS functions, will take the current state, the newly dispatched action and return
the updated version of the state. Note that the previous state is not being overwritten.
The listing below 5.2 provides implementation details of the redux state initialization used
in this thesis. In lines 3-7 the global state of the application is defined. Subsequently,
the reducers are combined using combineReducers and stored in the reducer constant
(lines 9-13). Finally, the combined reducer is passed to the createStore function and the
resulting constant (store) is exported (lines 15-18).

1 import { combineReducers , createStore } from "redux";

2

3 export type state = {

4 profile: UserProfileState ,

5 predictions: PredictionState ,

6 recommendations: RecommendationState

7 };

8

9 const reducer = combineReducers ({

10 profile: profileReducer (),

11 predictions: predictionReducer (),

12 recommendations: recommendationReducer ()

13 });

14

15 export const store = createStore(

16 reducer ,

40 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

17 [...]

18);

Listing 5.2: Global store initialization

As soon as an action is dispatched, the corresponding reducer will handle it properly by
updating part of the state. This is typically done by the corresponding reducer, which
makes use of a switch statement and returns the newly created state. In this prototype,
actions are usually dispatched as soon as a user profile update takes place (Figure 5.4) or
when the predictions are fetched from the ML Classifier service (through the Middleware)
after the user navigated to the dashboard (Figure 5.2). This approach also simplifies error
handling, as it allows to dispatch actions containing the error message that will in turn
be displayed by the subscribed component. Such errors usually arise during external API
calls, as shown by the listing 5.3 below.

For these kind of requests, SecRiskAI frontend uses the Fetch API 4, a simple JavaScript
interface for making, accessing and manipulating HTTP requests from any web browser.
Fetch API enables a simpler and cleaner API design, by making use of promises, a concept
introduced in JavaScript back in 2012 aiming to provide an alternative and easier way of
working with asynchronous operations. In essence, promises are objects representing the
eventual completion/failure of an asynchronous operation (i.e., API calls) and can have
three possible states: pending, fulfilled and rejected. Once created, the state of a promise
is set to pending. Later, the state of the promise can change to either fulfilled (i.e., the
request was successful) or rejected (i.e., request failed for some reason). In order to handle
the resulting data/error, promises also provide a method then() which is triggered once
the state of the promise changes.

1 fetch(‘${getDomain ()}/predict ‘, {... HTTP_OPTIONS(PROTOCOL_METHOD.

POST), body: JSON.stringify(profile)})

2 .then(res => {

3 return res.json();

4 })

5 .then((response: any) => {

6 dispatch ({

7 type: ActionTypes.FETCHED_PREDICTIONS ,

8 predictions: response ,

9 loading: false

10 });

11 })

12 .catch((error: string) => {

13 dispatch ({

14 type: ActionTypes.ERROR_FETCHING_PREDICTIONS ,

15 error ,

16 loading: false

17 });

18 });

Listing 5.3: Fetching and storing risk predictions

4https://developer.mozilla.org/it/docs/Web/API/Fetch_API

https://developer.mozilla.org/it/docs/Web/API/Fetch_API

5.1. FRONTEND 41

Figure 5.2: The SecRiskAI’s Dashboard

Listing 5.3 shows an example of a POST request necessary for retrieving the cyber-risk
predictions from the ML Classifier. In line 3, the response is first extracted as a JSON.
If the promise resolves, the predictions will be stored and the corresponding action will
be dispatched (line 6-10). Otherwise, the promise will be rejected and the corresponding
action containing the error message will be dispatched (line 13-17).

5.1.1 Web-based Interface

In order to visualize the different information related to cybersecurity risk assessment
predictions as well as recommendations from MENTOR, an intuitive and user-friendly
dashboard was designed and implemented (Figure 5.2). In the first row, the dashboard
contains multiple tabs each including several pieces of contextual information, such as
business value, employees, successful/failed past cyber-attacks and known vulnerabilities,
already discussed in Chapter 4. Additionally, the second row gives an overview of some
general information (e.g., company name, industry, operational region, etc.) as well as the
cybersecurity risk assessment predictions and the desired protection services parameters
used for the recommendation process.

As soon as the user accesses the dashboard, the cybersecurity risk predictions are retrieved
through a POST request sent to the Middleware. As shown in Figure 5.2, SecRiskAI
provides an overall cyberattack risk prediction, where the different ML model predictions
outcomes are compared, as well as cyberattack-specific predictions, such as DDoS and
phishing. It is important to note that, SecRiskAI is designed with flexibility in mind.
This means that other cyberattack-specific ML models can be easily integrated with the

42 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

Figure 5.3: Protection service parameters

current ML Classifier service. The prediction result will then be displayed in the “Attack
Risk Prediction” tab.

Additionally, this prototype also implements a table containing the recommended list of
protection services most suitable for the specified profile. Each row gives an overview of a
particular service with a short description, other parameters and the price. As mentioned
in Chapter 4, the list is retrieved by the Middleware directly from MENTOR as soon
as the dashboard is rendered. Moreover, if the user is not satisfied by the recommended
services, a new recommendation process can be triggered by updating the service-specific
parameters. These parameters can also be configured by clicking on the Configure button.
Figure 5.3 shows a pop-up with the configurable parameters.

On the modal shown in Figure 5.3, the user can configure the service type (i.e., proactive
or reactive), desired attack types that the protection service has to cover along with the
deployment time, i.e., the time necessary for a service to be deployed and active, and the
leasing period, i.e., how long is the user willing to lease a particular service. Furthermore,
a priority can be specified for the deployment time and leasing period in order to achieve
a better personalized recommendation.

The contextual information required for the cyber-risk prediction process can be changed
at any time, by clicking on the Profile tab on the sidebar, as shown by Figure 5.4. The
user profile page is subdivided into two sections: general information and technical details.
The former contains general information about the company, such as name, industry, op-
erational region, yearly revenue, total number of employees and the available cybersecurity
budget. The latter comprises information which typically would result from external tools
and reports. Examples of required fields are: invested amount in cybersecurity, known

5.2. BACKEND 43

Figure 5.4: User profile page

vulnerabilities, external advisor and failed/past attacks. A detailed explanation of every
field present on the user profile page is found in Chapter 4.

5.2 Backend

SecRiskAI ’s backend comprises two components: Middleware and ML Classifier. Both the
Middleware and the ML Classifier are applications designed to be deployed independently
and communicate through a REST API. On the other hand, the ML workflow includes
every step already discussed in Chapter 4 in an interactive computing environment, that
enables the data scientists to run code, generate plots and document each step using
text. The current prototype is also designed to be cloud agnostic, meaning that the entire
architecture can be easily migrated to and from any on-premise infrastructure or cloud
platform, regardless of the underlying operating system and other dependencies.

5.2.1 Middleware

The Middleware layer was implemented using Nest.js, a progressive Node.js framework
for building efficient, reliable and scalable server-side applications [122]. In contrast with
React, the library used for implementing the frontend, Nest.js has adopted TypeScript by
default however still preserving compatibility with plain JavaScript. In essence, Nest.js
aims to provide an out-of-the-box application architecture, allowing teams to design and
implement highly testable, scalable and loosely coupled applications.

44 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

In this prototype, the Middleware serves the purpose of translating incoming request from
the client to a format required by the ML Classifier for making predictions. Additionally,
the Middleware is also in charge of requesting a list of recommended protection services
from MENTOR through a dedicated REST endpoint. In order to receive and handle
client-side requests, Nest.js introduces the concept of controllers. Listing 5.4 shows the
technical implementation of the Middleware’s controller.

1 @Controller ()

2 export class MiddlewareController {

3 constructor(private readonly middlewareService:

MiddlewareService) {}

4

5 @Post("/predict")

6 async predict(@Body() profile: UserProfile): Promise <

PredictionResponse > {

7 let prediction = await this.middlewareService.predict(

profile);

8 return prediction.data

9 }

10

11 @Post("/recommend")

12 async recommend(@Body() recommendationProfile:

RecommendationProfile): Promise <RecommendationResponse > {

13 let recommendation = await this.middlewareService.

recommend(recommendationProfile);

14 return recommendation.data.recommendedServices

15 }

16 }

Listing 5.4: Middleware controller

In Nest.js, a controller is basically a class with specific metadata provided by decorators.
To create a controller, @Controller() decorator is used (line 1). This allows the creation
of a routing mechanism, where the framework takes care of which requests are processed by
which controller, based on the path passed to the decorator. In the Middleware controller
(Listing 5.4) no path was declared in the decorator, hence it is used as a default route for
every incoming request.
Currently, the controller is able to handle two types of incoming POST requests having
the route match one of the following patterns: /predict (line 5) or /recommend (line 11).
The handler for those endpoints is created automatically by Nest.js, once the @Post()

decorator is specified. Both routes must be explicitly bound to different functions (line 6-9
and 12-15) that will be invoked once a request from the client hits the server. The actual
business logic for handling incoming request is encapsulated in a Nest class called service.
The request body is then passed to the respective function of the service, as shown in 5.4
(line 7 and 13). Finally, the response data is sent back to the client (line 8 and 14).

Besides controllers, providers are also considered to be a fundamental concept in Nest.
The main idea behind a provider is to inject dependencies, meaning that the runtime
system itself takes care of managing the creation of objects along with their corresponding

5.2. BACKEND 45

relationships. This prototype makes use of services, a type of provides offered by Nest,
to define logic for processing client requests. Listing 5.5 describes the technical details of
the service associated with Middleware controller.

1 @Injectable ()

2 export class MiddlewareService {

3

4 constructor(private httpService: HttpService) {}

5

6 predict(body: UserProfile): Promise <any > {

7 return this.httpService.post(‘${process.env.ML_SERVER_URL

}/predict ‘, {

8 "cyberattackPredictionProfile": this.

toCyberattackPredictionRequest(body),

9 "ddosPredictionProfile": this.toDDoSPredictionRequest(

body)

10 }).toPromise ();

11 }

12

13 recommend(body: RecommendationProfile): Promise <any > {

14 return this.httpService.post(‘${process.env.MENTOR_URL }/v1

/recommend ‘, body).toPromise ();

15 }

16

17 toCyberattackPredictionRequest = (body: UserProfile): string

=> {

18 return ‘[[${body.investedAmount}, ${body.successfulAttacks

}, ${body.failedAttacks}, ${body.businessValue}, ${body

.nrEmployees}, ${Levels[body.employeeTraining]}, ${body

.knownVulnerabilities}, ${Advisor[body.externalAdvisor

]}]]‘;

19 }

20

21 toDDoSPredictionRequest = (body: UserProfile): string => {

22 return ‘[[${Industry[body.industry]}, ${Regions[body.

region]}, ${body.investedAmount}, ${body.

successfulAttacks}, ${body.failedAttacks}, ${body.

businessValue}, ${body.knownVulnerabilities}, ${Advisor

[body.externalAdvisor]}]]‘;

23 }

24 }

Listing 5.5: Middleware service

Similar to the controller implemented in Listing 5.4, the Middleware service presented in
Listing 5.5 is also implemented as a basic TypeScript class. The only difference is that is
uses the @Injectable() decorator instead and is managed by Nest Inversion-of-Control
container. The Middleware service uses the HttpService to make external calls to the ser-
vices and it is imported using constructor injection (line 4). Before sending the prediction

46 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

request to the ML Classifier, the actual body is constructed using toCyberattackPre-

dictionRequest and toDDoSPredictionRequest functions. This step is essential as the
current implementation of ML Classifier requires a specific format as an input, where each
attribute of the user’s profile is used to construct a string. Listing 5.6 gives an example
of the constructed request body.

1 {

2 cyberattackPredictionProfile: ’[[1077113 , 8, 29, 4947796 , 57879,

2, 6, 1]]’,

3 ddosPredictionProfile: ’[[1, 0, 1077113 , 8, 29, 4947796 , 6, 1]]’

4 }

Listing 5.6: Prediction request body

Finally, a POST request including the body as JSON format is sent to the ML Classifier.
The variable ML_SERVER_URL stores the actual base url of the ML Classifier and is typically
stored in an .env file and can be accessed as shown in line 7 (process.env). To perform
the actual request, the /predict path is attached to the base url. For the recommendation
process, a POST request containing the user’s profile is sent to MENTOR’s API, using
the base url (MENTOR_URL) stored in the same environment file and attaching the required
path (/v1/recommend).

5.2.2 ML Classifier

The ML Classifier is implemented using BentoML, a flexible, high-performance framework
written in Python for serving, managing and deploying ML models. More specifically,
BentoML supports various ML frameworks, cloud native deployment and offers an high-
performance online API serving [123]. In the proposed solution, the ML Classifier makes
use of the full potential of BentoML for deploying and serving trained ML models effi-
ciently and effectively. Listing 5.7 provides the implementation details of the prediction
service (also known as BentoService) used in SecRiskAI .

1 prediction_result_mapping = {0: "LOW", 1: "MEDIUM", 2: "HIGH"}

2

3 @env(infer_pip_packages=True)

4 @artifacts ([SklearnModelArtifact("knn_model"),

5 SklearnModelArtifact("mlp_model"),

6 SklearnModelArtifact("svm_model"),

7 SklearnModelArtifact("tree_model"),

8 SklearnModelArtifact("scaler"),

9 SklearnModelArtifact("ddos_mlp_model"),

10 SklearnModelArtifact("ddos_scaler")])

11 class RiskClassifier(BentoService):

12 """

13 A prediction service exposing Scikit -learn models for

Cybersecurity Risk Assessment

5.2. BACKEND 47

14 """

15

16 @api(input=JsonInput ())

17 def predict(self , body):

18 """

19 An inference API named ‘predict ‘ with Dataframe input

adapter , which codifies

20 how HTTP requests or CSV files are converted to a pandas

Dataframe object as the

21 inference API function input

22 """

23

24 cyberattack_df = pd.DataFrame(eval(body["

cyberattackPredictionProfile"]))

25 normalized_cyberattack_df = self.artifacts.scaler.

transform(cyberattack_df)

26

27 normalized_ddos_df = self.artifacts.ddos_scaler.transform(

28 pd.DataFrame(eval(body["ddosPredictionProfile"])))

29

30 return {

31 "overall_risk_prediction": {

32 "knn": prediction_result_mapping[self.artifacts.

knn_model.predict(normalized_cyberattack_df)

[0]],

33 "mlp": prediction_result_mapping[self.artifacts.

mlp_model.predict(normalized_cyberattack_df)

[0]],

34 "svm": prediction_result_mapping[self.artifacts.

svm_model.predict(normalized_cyberattack_df)

[0]],

35 "dtree": prediction_result_mapping[self.artifacts.

tree_model.predict(cyberattack_df)[0]]

36 },

37 "ddos_risk_prediction": prediction_result_mapping[

38 self.artifacts.ddos_mlp_model.predict(

normalized_ddos_df)[0]]

39 }

Listing 5.7: Risk prediction service

Similar to the Middleware controller discussed in the previous section, a BentoService
is a basic class with additional decorators. The @env() decorator along with the in-

fer_pip_packages=True option is used by BentoML to automatically figure out the PyPI
packages required by the prediction service class. The @artifacts() decorator is used
to reference and import the ML models and scalers required by the service. Once a ML
model is trained and ready to be deployed, the risk prediction service is bundled with
the model by invoking the pack() method on the newly created instance, as shown by
the Listing 5.8. More specifically, the name of the declared model artifact along with the

48 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

target location, i.e., where the model is currently stored (either locally or on S35 bucket)
and some model metadata are required (line 3-7).

1 risk_classifier_service = RiskClassifier ()

2

3 risk_classifier_service.pack("knn_model", load("src/models/

KNN_classifier.joblib"), metadata = {

4 "accuracy": "96.40%",

5 "n_neighbors": 23,

6 "weights": "distance"

7 })

8 [...]

Listing 5.8: ML artifacts import

The name passed as a parameter in Listing 5.8 (line 3) is then used as a reference by the
@artifacts() decorator (Listing 5.7). The current implementation of RiskClassifier

contains only a predict() method. The @api() decorator is also needed for specifying
the API entry point for client requests. In this case, any /predict request will invoke the
predict() method, with the request body as a method parameter. Moreover, the option
input=JsonInput() indicates that the input body should be a JSON. Using pandas, a
fast, powerful and flexible open source data analysis/manipulation library, the request
body is transformed to a DataFrame [124]. As described in Listing 5.7, this step is per-
formed in line 24 for the overall risk prediction and line 28 for DDoS risk prediction. Next,
depending on the ML model, data normalization may be required (Chapter 5). Line 25
and 27 describe the process of normalizing the DataFrame by invoking the transform()

method of the scaler artifact. Finally, the dataframe is passed as parameter to the pre-

dict() method of the ML models and the prediction response is built. Listing 5.9 shows
an example of a prediction response constructed by the ML Classifier. For the overall risk
prediction, every model presented in Chapter 4 is implemented. On the other hand, for
the DDoS risk prediction a MLP model is trained and used by default.

1 {

2 "overall_risk_prediction":{

3 "knn":"LOW",

4 "mlp":"LOW",

5 "svm":"LOW",

6 "dtree":"LOW"

7 },

8 "ddos_risk_prediction":"LOW"

9 }

Listing 5.9: Cyber-risk prediction response

5https://aws.amazon.com/s3/

5.2. BACKEND 49

Monitoring API

In addition to the prediction API, the ML Classifier is also designed to provide a basic
monitoring API used by data scientists to mainly ensure that system is performing as
intended. The current implementation provides an GET /healthz endpoint for checking
the health of the system and returns an empty response with status code 200 if the system
is operating correctly. Moreover, the metadata of the deployed ML models is accessible
by making a GET request to the /metadata endpoint. Listing 5.10 gives an example of a
response containing some metadata.

1 {

2 "name": "RiskClassifier",

3 "version": "20210218233931 _A55EA7",

4 "createdAt": "2021 -06 -20 T21 :17:00.490672Z",

5 "env": {

6 ...

7 },

8 "artifacts": [

9 {

10 "name": "knn_model",

11 "artifactType": "SklearnModelArtifact",

12 "metadata": {

13 "accuracy": "96.59%",

14 "n_neighbors": 28.0,

15 "weights": "distance"

16 }

17 }

18 ...

19],

20 "apis": [

21 {

22 "name": "predict",

23 "inputType": "JsonInput",

24 ...

25 }

26]

27 }

Listing 5.10: Metadata response

The metadata response contains some information about the current deployment of the
ML Classifier as well as some detailed information of the served artifacts. This includes
details about the accuracy and the parameter values of the deployed models (line 12-16) as
well as the exposed API (line 20-26). Additionally, a GET /metrics endpoint is provided
to retrieve useful information regarding the performance of the system, namely how long
it takes for a prediction request to be processed. Besides that, data scientists are also
able to provide a feedback to the prediction response by sending a request to the POST

/feedback endpoint, including in a JSON body the id of the prediction response and the

50 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

feedback as a string. Every feedback is then stored and could be used to improve the
accuracy and overall performance of the ML Classifier.

5.3 ML Workflow

The process of generating data, training and testing ML models is documented using
Jupyter Notebook, an open-source web application that allows the creation of documents,
also known as notebooks, which contain live code (usually Python), equations, visualiza-
tions and plain text [125]. The ML models presented in Chapter 4 were implemented
using scikit-learn, a very popular open-source library for predictive data analysis and
ML [126]. Table 5.1 provides an overview of the ML Classifiers and their corresponding
implementation class in scikit-learn.

Table 5.1: ML Models and corresponding Scikit-learn implementation [126]

ML Model Scikit-learn Implementation

DT sklearn.tree.DecisionTreeClassifier [127]

KNN sklearn.neighbors.KNeighborsClassifier [128]

SVM sklearn.svm.SVC [129]

MLP sklearn.neural network.MLPClassifier [130]

As described in Chapter 4, a key requirement for training and validating ML models is
having enough data at hand. The data gathering process is therefore a fundamental step.
As already mentioned, collecting data directly was not feasible, therefore a synthetic data
generation approach was adopted. For this reason, a data generator using Python was
implemented. As shown Listing 5.11, the current implementation can be fully parame-
terized, by passing the required boundaries as well as standard deviation and average of
other parameters, such as business value.

1 def generate_data(nr_entries = 1000, min_empl = 30, max_empl =

10000, min_nr_attacks = 0, nr_attacks = 50,

2 avg_business_value = 5000000 , std_business_value

= 50000, max_invested_perc = 0.3,

max_nr_vulnerabilities = 10):

3 df = pd.DataFrame(columns = columns)

5.3. ML WORKFLOW 51

4 for i in tqdm(range(0, nr_entries)):

5 nr_employees = random.randint(min_empl , max_empl)

6 employees_training = random.choice(LEVELS)

7

8 failed_attack = random.randrange(nr_attacks)

9 succ_attack = random.randrange(nr_attacks)

10

11 business_value = int(numpy.random.normal(loc =

avg_business_value , scale = std_business_value))

12 invested_perc = random.uniform(0, max_invested_perc)

13 invested_amount = int(invested_perc * business_value)

14

15 known_vulnerabilities = random.randrange(

max_nr_vulnerabilities)

16 external_adv = random.choice(ADVISOR)

17

18 # Risk is computed based on the generated attributes

19 computed_risk = invested_perc - (succ_attack / nr_attacks)

+ (nr_employees / max_empl) * LEVELS.index(

employees_training) - (known_vulnerabilities /

max_nr_vulnerabilities) + ADVISOR.index(external_adv)

20

21 df.loc[i] = [invested_amount , succ_attack , failed_attack ,

business_value , nr_employees , employees_training ,

known_vulnerabilities , external_adv ,

get_categorized_risk(computed_risk)]

22 return df

23

24 def get_categorized_risk(weighted_risk , upper_boundary = 1.0,

lower_boundary = 0.0):

25 if weighted_risk >= upper_boundary:

26 return "LOW"

27 elif weighted_risk >= lower_boundary and weighted_risk <

upper_boundary:

28 return "MEDIUM"

29 else:

30 return "HIGH"

Listing 5.11: Data generator

Furthermore, the current generator also allows to specify the number of entries to be
generated, by passing a number to the corresponding nr_entries parameter. The list
of available parameters, such as number of employees and corresponding training level,
successful/failed attacks (full list can be found in Chapter 4), is then generated according
to the boundaries passed as parameters to the generate_data() function. The resulting
risk (computed_risk) is generated according to the formula already discussed in Chap-
ter 4 and the technical implementation is found in line 19. Next, the computed risk
(computed_risk) is categorized according to the range already specified in Chapter 4 and
implemented by the function get_categorized_risk() (line 24-30). Finally, the pandas

52 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

library is used to construct a DataFrame containing the generated rows and it is stored
in a data variable. Table 5.2 shows an example of a returned DataFrame.

Table 5.2: Generated Dataset

Invested Successful Failed Business Number of Employee Known External Risk
Amount Attacks Attacks Value Employees Training Vulnerabilities Advisor

1147297 38 5 5058467 52608 MEDIUM 0 NO MEDIUM

1320806 29 15 4909813 88397 LOW 3 YES HIGH

719662 46 19 4944962 53330 MEDIUM 3 NO HIGH

794910 39 39 4989944 69107 MEDIUM 5 YES HIGH

As described in Chapter 4, once generated, the dataset is subjected to a processing phase,
there each entry is categorized and, based on the ML algorithms, a normalization step
may also be required. Listing 5.12 illustrates the process of categorizing each entry in
the generated dataset. Initially, a mapping for each category is defined using Python
dictionaries, as indicated in lines 1 & 2. Next, the values of columns “Employee Training”
and “Risk” are categorized using the replace() function provided by pandas.

1 levels_mapping = { "LOW": 0, "MEDIUM": 1, "HIGH": 2 }

2 advisor_mapping = { "NO": 0, "YES": 1 }

3

4 data = data.replace ({"Employee Training": levels_mapping , "Risk":

levels_mapping , "External Advisor": advisor_mapping })

Listing 5.12: Dataset categorization

After the categorization phase, the dataset is then divided into training and test set, fol-
lowing the approach described in Chapter 4. As indicated by line 1 in Listing 5.13, the
parameter defining the test size is set to 0.2, indicating that the resulting split will be
80% training and 20% test. The current implementation uses the train_test_split()

function imported from sklearn.model_selection.

1 X_train , X_test , y_train , y_test = train_test_split(data[features

].values , data["Risk"].values , test_size = 0.2)

2

3 scaler = MinMaxScaler ()

4 scaler.fit(X_train)

5

6 X_train_normalized = scaler.transform(X_train)

7 X_test_normalized = scaler.transform(X_test)

Listing 5.13: Dataset split and normalization

In a next step, an instance of a Min-Max scaler is created (line 3) and is fitted on the train
dataset (line 4) to compute the mean and standard deviation required for later scaling.
Similarly, the implementation for the scaler is provided by scikit-learn and is imported

5.3. ML WORKFLOW 53

from sklearn.preprocessing. Since the majority of the models in this thesis require
normalized data for the training process, the transform() method of the Min-Max scaler
is invoked and both train and test data are passed as parameters (line 6 & 7). In order to
be re-used in the ML Classifier, the scaler is further exported as a .joblib artifact and
packed by the RiskClassifier service (Listing 5.8). The goal is to normalize any incoming
risk prediction profile in order to increase prediction accuracy and overall reliability.
Next, each ML model with the corresponding implementation described in Table 5.1 is
selected and instantiated. Listing 5.14 illustrates the process of hyperparameter tuning,
training and CV a DT model. It is important to note that the same workflow applies to
the other ML models used in this work.

1 dtree = DecisionTreeClassifier ()

2

3 # Define the parameter ranges that should be tested on the model

4 dtree_params = {

5 "criterion": ["gini", "entropy"],

6 "max_depth": range(1, 10),

7 "min_samples_split": range(2, 10),

8 "min_samples_leaf": range(1, 10)

9 }

10

11 # Instantiate the Grid for parameter tuning

12 dtree_grid = GridSearchCV(dtree , dtree_params , cv = 5, scoring = "

accuracy", n_jobs = -1)

13

14 dtree = dtree_grid.fit(X_train , y_train)

Listing 5.14: Example of DT hyperparameter tuning, training and CV

Initially a DT is instantiated and stored in the dtree variable (line 1). Next, a dictionary
containing the parameters required to construct a model along with a list of possible
values is created and stored in the dtree_params variable (line 4-9). For the DT in
particular, a criterion used to measure the quality of the data split may be either gini
or entropy. The max_depth parameter is also required for defining the maximum depth
of the tree. In the dtree_params grid, a sequence of numbers from 1 to 10 for max_depth
is given. Moreover, parameters such as min_samples_split and min_samples_leaf can
also be specified. The former indicates the minimum number of samples required to split
an internal node and the values used in the hyperparameter tuning range from 2 to 10.
The latter stands for the minimum number of samples required to be at a leaf note and
similar to the max_depth, a range of values from 1 to 10 is predefined.

As discussed in Chapter 4, this prototype uses the grid search technique for hyperparam-
eter tuning combined with a 5-fold CV. Using the scikit learn library, this process can be
easily combined by creating an instance of GridSearchCV. More specifically, this class is
used to execute an exhaustive search over specified parameter values of a particular ML
model or estimator. As indicated in line 12, the GridSearchCV accepts as parameter the
estimator object (dtree) and a list or dictionary of parameter names as keys and lists of
parameter settings to try as values (dtree_params). Moreover, one can also specify the

54 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

cv parameter, determining the number of folds used in the CV strategy as well as the
scoring strategy used to evaluate the performance of the ML model on the test set. In
this prototype, the number of folds for the CV is set to 5 and the scoring to “accuracy”.
The last parameter, that is n_jobs, is set to -1 meaning that the jobs are run using
all processors. Subsequently, the model is then fitted on the train dataset (line 14) and
evaluated on the test set. Lastly, the DT model is exported as a .joblib file using the
dump() function imported from the joblib library.

Chapter 6

Quantitative Evaluation

This Chapter presents a quantitative evaluation of SecRiskAI , a platform for ML-based
cybersecurity risk assessment. More specifically, various metrics required for evaluating
the performance and effectiveness of the system are presented. Moreover, a performance
and accuracy comparison of the ML algorithms used in this thesis is provided. The
following quantitative evaluation was conducted on a machine using the Apple M1 System
on a Chip (SoC) and 16 GB of RAM.

In order to design and implement SecRiskAI , four different ML algorithms have been
trained, tuned and thoroughly tested, as described in Chapter 4 and 5. For a quantitative
evaluation and comparison of the various ML models, several performance metrics were
observed, such as accuracy, precision, recall and F1-Score. The generation of these metrics
is also a very important step in every ML workflow for understanding the behaviour and
performance of the implemented models.

The confusion matrix is the most popular technique for evaluating the correctness and
accuracy of classification models [131]. In practice, confusion matrices can be used for both
binary and multi-class classification problems and provide an easier way of assessing and
comparing the performance of classification models. In order to compute the confusion
matrix, a dataset containing 50,000 entries was generated and a 80-20 train-test split
strategy was followed, as described in Chapter 4. After a training and CV phase, each
ML model was tested using the remaining test set. The purpose of this phase is to test the
model on previously unseen data, i.e., data not used during the training phase. For each
entry in the test set, the ML model is used to predict the corresponding class. Finally, the
predicted labels are compared with the actual class, also called true label, and as result
a confusion matrix is constructed. Figure 6.1 shows the confusion matrices generated for
each ML algorithm implemented in this thesis.

A confusion matrix is essentially a summary of prediction results where each cell corre-
sponds to the number of correct and incorrect predictions broken down by predicted/true
label combination. Ideally, a best-performing classifier would result in a confusion matrix
where only the diagonal is filled with values, meaning that every predicted class corre-
sponds also to the actual label. In that case, the model would have achieved an accuracy
of 100%. In other words, the accuracy of a model is calculated as the number of correctly

55

56 CHAPTER 6. QUANTITATIVE EVALUATION

LOW MEDIUM HIGH
Predicted label

LOW

MEDIUM

HIGH

Tr
ue

 la
be

l

1638 204 0

161 3665 182

0 214 3936

0

500

1000

1500

2000

2500

3000

3500

(a) DT

LOW MEDIUM HIGH
Predicted label

LOW

MEDIUM

HIGH

Tr
ue

 la
be

l

1722 120 0

51 3855 102

0 129 4021

0

500

1000

1500

2000

2500

3000

3500

4000

(b) KNN

LOW MEDIUM HIGH
Predicted label

LOW

MEDIUM

HIGH

Tr
ue

 la
be

l

1804 38 0

12 3972 24

0 31 4119

0

500

1000

1500

2000

2500

3000

3500

4000

(c) SVM

LOW MEDIUM HIGH
Predicted label

LOW

MEDIUM

HIGH

Tr
ue

 la
be

l

1817 25 0

6 3967 35

0 4 4146

0

500

1000

1500

2000

2500

3000

3500

4000

(d) MLP

Figure 6.1: Confusion matrices

57

predicted classes divided by the incorrect predictions. As shown in Figure 6.1, for this
particular prototype, every model was able to achieve more than 90% accuracy. However,
it can be clearly observed by the cells near the diagonal that the DT and KNN scored
slightly worst than SVM and MLP.

Table 6.1 shows the computed performance metrics, based on the generated dataset with
50,000 entries. Each model was trained and tuned to maximise accuracy, reduce overfitting
and provide better results. SVM and MLP achieved similar accuracy scores, however in
terms of computation time, the difference is substantial. As for the training phase, the
SVM requires approximately half the time compared to the MLP model. The training
time has also an impact on the grid search computation time, a hyperparameter technique
already discussed in Chapter 4, which for the MLP model exceeds 200 seconds, as every
tuned model undergoes a 5-fold CV. On the other hand, the DT and KNN had the fastest
training time and KNN achieved the fastest grid search computation time of around 40
seconds.

Table 6.1: Performance metrics

ML Model Accuracy Training Time (s) Grid Search Computation (s)

DT 92.64% 0.18 146.77
SVM 99.03% 5.83 149.15
KNN 95.82% 0.08 40.06
MLP 98.86% 10.53 210.55

Based on the confusion matrices presented in Figure 6.1, other important metrics such as
precision, recall and F1-score can be derived as well [132]. The precision metric is used
to express the proportion of units labeled by a model that actually belong to that class.
As shown in Figure 6.1a, the DT was able to predict a “Low” risk for 1638 profiles out of
all predicted profiles (1638 + 161 + 0), resulting to a precision of 1638 / 1799 ≈ 91%.

Additionally, the recall metric quantifies a model’s predictive accuracy for a particular
class, i.e., it represents the ability of a model to find all entries in a dataset that belong
to a particular output class. As presented in Figure 6.1a, out of 1842 (1638 + 204 +
0) profiles with “Low” as a true label, the DT was only able to classify 1638 correctly,
resulting in a ≈ 89% (1842 / 1638) recall.

The last performance metric considered in this evaluation is the F1-score, which ranges
between 0 and 1. This metric aggregates both precision and recall by computing the
so-called harmonic mean [133] and is used to compare ML models with different precision
and recall in order to determine which one produces the best results. Similar to precision
and recall, the F1-Score is computed for each output class. Table 6.2 gives an overview
of the derived performance metrics calculated for each ML model.

Additionally, the computed performance metrics summarized in Table 6.2 reveal that
the MLP, despite having a marginally lower accuracy than SVM, was able to achieve
an F1-Score of 1.0 for the “High” output class. The MLP also outperformed marginally
the SVM in both precision and recall scores. The small performance gain comes at cost

58 CHAPTER 6. QUANTITATIVE EVALUATION

Table 6.2: Computed Precision, Recall & F1-Score for each ML model

ML Model Class Precision Recall F1-Score

Low 0.91 0.89 0.90
DT Medium 0.90 0.91 0.91

High 0.96 0.95 0 95
Low 0.99 0.98 0.99

SVM Medium 0.98 0.99 0.99
High 0.99 0.99 0.99
Low 0.97 0.93 0.95

KNN Medium 0.94 0.96 0.95
High 0.98 0.97 0.97
Low 1.00 0.99 0.99

MLP Medium 0.99 0.99 0.99
High 0.99 1.00 1.00

of training time which, according to Table 6.1 and also demonstrated by other studies
[134, 135], is generally higher compared to SVP classifiers. This is mainly due to the
higher complexity of the MLP algorithm, as described in Chapter 2. The other two ML
models used by SecRiskAI , namely the DT and KNN, were also able to achieve still fairly
high precision, recall and F1-Score. However, similar to the accuracy scores presented in
Table 6.1, the metrics presented in Table 6.2 confirmed once again that the DT provided
the worst performance despite having faster training times.

Finally, the impact of the synthetic dataset sizes on both accuracy and training time
was investigated. First, datasets of different sizes were generated following the algorithm
introduced in Chapter 5 (cf. 5.11). Each ML model was equally trained and tuned on every
generated dataset using grid search followed by a 5-fold CV technique. The results were
documented and visualized using line charts as shown in Figure 6.2. For small to medium
sized datasets (i.e., between 5,000 and 15,000), the MLP model is able to outperform every
other model with an accuracy of almost 100% (Figure 6.2a). Moreover, the impact on
the training time is also relatively low, with the MLP requiring approximately 2 seconds.
However, the outcome is different once the size of the dataset increases. On one hand,
the training time for both SVM and MLP increase drastically, which for the MLP leads
to a ≈ 388% increase of training time with double the dataset size. On the other hand,
as highlighted by Figure 6.2b, the accuracy of the MLP model suffers a slight decrease
while having the highest accuracy score among the other ML models.

Once the generated dataset size reaches over 50,000 entries, the MLP starts to perform
worst than the SVM while requiring twice as much time to be trained. While this may
not seem a big difference in terms of seconds, with datasets exceeding millions of entries,
the gap may become even more substantial, leading to extremely slow model training
and poor scalability. Furthermore, from Figure 6.2a it can be observed, that with larger
dataset sizes the SVM had a minimal but constant increase in accuracy. Similarly, the
KNN and DT also experienced an accuracy gain while maintaining a low training time.
Therefore, based on the Figure 6.2, it is possible to conclude that MLPs really exceed

59

5'000 15'000 30'000 50'000
Dataset Size

92

93

94

95

96

97

98

99
Ac

cu
ra

cy
 (%

)
DT
SVM
KNN
MLP

(a) Dataset size and accuracy

5'000 15'000 30'000 50'000
Dataset Size

0

2

4

6

8

10

Tr
ai

ni
ng

 T
im

e
(s

)

DT
SVM
KNN
MLP

(b) Dataset size and training time

Figure 6.2: Dataset size evaluation

with medium-sized datasets and SVMs should be taken into consideration when dealing
with large datasets.

60 CHAPTER 6. QUANTITATIVE EVALUATION

Chapter 7

Qualitative Evaluation

In this Chapter, a qualitative evaluation of the solution is presented. More specifically, the
usability and reliability of SecRiskAI are evaluated and documented with the help of three
case studies based on real-world scenarios, aiming to cover different features and prove
the effectiveness of the cybersecurity risk prediction. Also, the challenges and limitations
of the proposed solution are highlighted and discussed at the end of this chapter.

7.1 Case Study #1 - DDoS Attack

In this case study, the ability of SecRiskAI to assess DDoS risk is investigated and ana-
lyzed. For this purpose, a ML model needs to be trained on a different dataset than the
ones used in the quantitative evaluation. In fact, the synthetic data generation process
(cf. Chapter 4) had to be adjusted in order to generate a different set of attributes that
have a direct impact on the likelihood of a company being targeted by DDoS attacks. Af-
ter extensive research [136, 137, 139], attributes indicating the industry and the operative
region as part of contextual information were defined. Other attributes, such as number
of employees and employee training, were discarded and not included in the generation
step, as the impact of those on the DDoS risk could not be proved by other studies. Con-
sequently, based on the qualitative evaluation previously presented, a dataset of 30,000
entries was generated and the MLP was chosen as a suitable model for predicting DDoS
risk.

As for the contextual information, it was assumed that the company interested in assessing
the DDoS risk was operating in the E-Commerce sector, buying and selling various types
of goods over the internet and mostly focusing on the European market. Moreover, the
number of employees amounts to nearly 10,000 and their training level, also understood
as “awareness level”, for cybersecurity-related topics was classified as “low”. As shown in
Figure 7.1, other general information include a business value of around 5 Million US$ and
a cybersecurity budget of just 50,000 US$. In this particular case study, the cybersecurity
budget is intended to be used in either protection services of proactive and/or reactive
nature or other investments aiming to increase DDoS resiliency.

61

62 CHAPTER 7. QUALITATIVE EVALUATION

Figure 7.1: E-Shop contextual information

7.2. CASE STUDY #2 - RECOMMENDATION OF PROTECTIONS 63

Figure 7.2: DDoS risk prediction

In order to make an accurate prediction, besides the general information, the ML classifier
requires some technical details as well. More specifically, the company has to provide the
amount of US$ already invested in cybersecurity as well as any known vulnerabilities,
which, as discussed in Chapter 4, may derive from third-party security tools (e.g., Nmap,
SecGrid and Netsparker). Additionally, the number of failed/successful past DDoS attacks
must also be reported and the presence of an external cybersecurity advisor must be
indicated as well.

Next, the profile is updated and submitted to the SecRiskAI ’s backend for further pro-
cessing. Through the sidebar, the user is able to navigate to the dashboard, where the
contextual information is again intuitively presented and the risk prediction is automat-
ically triggered. The company’s profile is processed by the middleware and the actual
prediction is delivered by the ML classifier. The prediction response is in turn rendered
by the frontend and intuitively integrated into the dashboard. As shown by Figure 7.2,
the overall DDoS risk prediction for the given profile is “Medium”.

7.2 Case Study #2 - Recommendation of Protections

To further improve the effectiveness and reliability of the risk assessment process, Se-
cRiskAI offers a seamless integration with MENTOR [13], a support tool focusing on
the recommendation of cybersecurity protection services. There is an integration already
placed with MENTOR to provide recommendations for DDoS attacks [14]. Thus, this
case study focuses on exploring the investment options based on the assessed DDoS risk.
In order to request a list of recommendations, the E-Shop is responsible for providing a
desired list of parameters required for the recommendation process. Initially, SecRiskAI
provides default parameters which can be changed by the company at any time. Figure
7.3 shows the panel encapsulating these parameters in the dashboard.

64 CHAPTER 7. QUALITATIVE EVALUATION

Figure 7.3: Protection service parameters panel

Figure 7.4: MENTOR’s recommendations list

The company can specify the attack type (e.g., Volumetric, Application, DNS, or SS-
L/TLS) that have to be covered by the protection service as well as the service type,
which can be either proactive (i.e., service provides protection against possible future at-
tacks) or reactive (i.e., service offers protection as soon as the attack occurs). Moreover,

7.2. CASE STUDY #2 - RECOMMENDATION OF PROTECTIONS 65

there is also the possibility to indicate the desired deployment time (i.e., time required
by the service to be deployed and active) and leasing period (i.e., for how long is the
company willing to contractually lease the service) followed by the assigned priority. Ad-
ditionally, other parameters, such as cybersecurity budget and the operational region of
the company are also fundamental parameters that are taken into consideration during
the recommendation process. Similar to the cyber-risk prediction, the recommendation
process for the E-Shop is triggered automatically with the default parameters (cf. Figure
7.3) as soon as the dashboard is loaded.

The company profile is submitted to MENTOR which returns a list of recommended
services. The resulting list is then displayed in a table and is integrated in the lower
section of the dashboard. Figure 7.4 shows the recommended protection services for the
default parameters presented in Figure 7.3. As shown in Figure 7.4, each service provides
a short description, the different attack types, the deployment time, leasing period, and
the price. Additionally, it is crucial to note that the order of the services displayed is
already determined by MENTOR, with the first row indicating the best-suited service to
the profile provided.

As mentioned, the E-Shop is able to change the protection services parameters by clicking
on the “Configure” button rendered at the top-right corner of Figure 7.4. Upon clicking
this button, a modal window (cf. Figure 7.5) will open with all the input fields required
for updating the protection service parameters and assigning a priority to the deployment
time and leasing period. A click on “Update” will trigger a further recommendation
process, which will, in turn, update the table of protection services.

Figure 7.5: Protection service parameters configuration panel

66 CHAPTER 7. QUALITATIVE EVALUATION

7.3 Case Study #3 - Phishing Scenario

This third case study focuses on the ability of SecRiskAI to assess the risk of phishing,
another popular and prevalent cyber-attack. With regards to this type of cyber-attack,
SecRiskAI employs the MLP model developed on the synthetic dataset presented in Chap-
ter 4. Furthermore, for this particular case study, it was assumed that the cyber-security
risk assessment was performed by an organization operating in the financial sector. More
specifically, the profile analyzed by SecRiskAI is the one of a well-known bank, operating
mostly in North America with a yearly revenue of over 36 Million US$. Additional in-
formation include: more than 70,000 employees with an average cyber awareness training
level of “low”, a cybersecurity budget of over 750,000 US$ and cybersecurity investments
which amount to a total of 500,000 US$. The full list of general information and technical
details of Bank X are presented in Figure 7.6.

Figure 7.6: Bank X contextual information

Once submitted, the profile is processed by SecRiskAI ’s backend and the resulting cyber-
risk assessment is integrated in the dashboard along with the other metrics and infor-
mation already discussed in previous chapters. As indicated by Figure 7.7, the resulting

7.4. DISCUSSION AND LIMITATIONS 67

phishing prediction for the bank’s profile was categorized as “High”. Possible explanation
to this outcome is the average low level of employee training, which greatly increases the
likelihood of data breaches caused by phishing attacks. In addition to that, as indicated by
the profile in Figure 7.6, the Bank X is not employing any external cybersecurity advisor
negatively impacting the organization’s overall preparation and awareness. Moreover, the
assessed phishing risk is also justified by the fact that, according to a recent report pub-
lished by Akamai [138], in 2020 phishing attacks on the financial sector increased almost
by 45%.

Figure 7.7: Phishing risk prediction

7.4 Discussion and Limitations

As presented in the above sections, the proposed case studies analyzed and investigated
various aspects and functionalities currently offered by the SecRiskAI prototype. Along
the user-friendly and intuitive dashboard design, as of now, SecRiskAI is able to provide
valuable and accurate cybersecurity risk assessment for DDoS and phishing attacks while
also integrating MENTOR, a tool for cybersecurity protection service recommender sys-
tem. Furthermore, the quantitative evaluation of the various ML algorithms presented in
Chapter 6 demonstrated that for larger datasets, SVMs achieve a slightly higher accuracy,
while maintaining a lower training time when compared to MLP. Nonetheless, all four ML
algorithms performed well and in most cases were able to achieve more than 90% accuracy.
Moreover, the generated confusion matrices also confirmed again that the evaluated ML
algorithms were able to classify most samples correctly. Other important metrics, such
as precision, recall and F1-Score also provided valuable insights into the ML algorithm
performance for every output class.

As of now, the biggest limitation is the lack of real-world datasets for training the ML
algorithms used in this work. To partially overcome this limitation and prove the ef-
fectiveness of the prototype, a synthetic dataset generation approach was followed, as
described in Chapter 4. However, while synthetic data is able to mimic various properties
and aspects of real data, it is usually very challenging to generate high-quality data for
complex problems. If the generated dataset does not match the behaviour and properties
of the real-world dataset, this will negatively impact the performance of the trained ML
models.

68 CHAPTER 7. QUALITATIVE EVALUATION

Lastly, SecRiskAI is also limited to assess the risk of only two types of cyber-attacks,
namely DDoS and phishing. To address this limitation, the current prototype was de-
signed to be easily extensible, meaning that new ML models trained specifically for differ-
ent types of cyber-attacks can easily be integrated into the current solution and exposed
through the same API.

Chapter 8

Summary, Conclusions, and Future Work

The main goal of this thesis was to design and implement SecRiskAI , a ML-based tool for
supporting the cybersecurity risk assessment process. First, the overall risk assessment
workflow was designed, which encapsulated various important steps such as data gath-
ering, data processing, ML model selection and performance evaluation. In specific, this
work investigated the suitability of four ML algorithms (i.e., DT, SVM, KNN and MLP)
for predicting and assessing the likelihood of cyber-risks. For this purpose, datasets of
various sizes were generated and used during the training and testing phase of each ML
model. Once tested and validated, the models were integrated in SecRiskAI ML classifier,
which exposed various API endpoints primarily consumed by the GUI.

The implemented proof-of-concept is able to assess the risk only for a sub-set of well-
known cyber-attacks, namely DDoS and phishing. For that, the prototype requires a
specific set of attributes, also referred to as profile or contextual information. Based
on this kind of data, SecRiskAI is able to predict the likelihood of being targeted by
either DDoS or phishing attacks. Besides that, the current prototype also supports the
integration with MENTOR to provide a list of recommended protection services based on
the profile and also influenced by the calculated cyber-risk. Additionally, the integration
with MENTOR was also designed to be fully configurable, meaning that the user is able
at any point to update and set the priority to different profile attributes, thus triggering
a new recommendation process.

Future work includes researching and investigating risk factors that may contribute in de-
veloping cyberattack-specific ML models, i.e., models that are capable and fully special-
ized to assess the risk of specific types of cyber-attacks, allowing for a more comprehensive
cybersecurity risk assessment phase. Further experimental tests are needed to estimate
the behaviour and performance of the ML models currently implemented in SecRiskAI on
real-world datasets. Additionally, the possibility of collecting prediction feedback should
be explored in future studies to determine whether the performance and overall accuracy
of the ML models can benefit from it. Future work should also examine the aspect of
continuous risk monitoring, where key risk indicators are constantly collected and used
for automated and continuous cybersecurity risk assessments in order to estimate the
likelihood of unpredictable cyber-threats.

69

70 CHAPTER 8. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Bibliography

[1] Louis Columbus: The Best Cybersecurity Predictions For 2021 Roundup.
https://www.forbes.com/sites/louiscolumbus/2020/12/15/the-best-
cybersecurity-predictions-for-2021-roundup/, (Last accessed April 2021).

[2] Jon Oltsik: Cyber risk management continues to grow more difficult.
https://www.csoonline.com/article/3324363/cyber-risk-management-
continues-to-grow-more-difficult.html, (Last accessed April 2021).

[3] Thomas Poppensieker: A new posture for cybersecurity in a networked
world. https://www.mckinsey.com/business-functions/risk/our-insights/a-
new-posture-for-cybersecurity-in-a-networked-world, (Last accessed April
2021).

[4] IBM Security: Cost of a Data Breach Report. https://www.ibm.com/downloads/
cas/RDEQK07R, (Last accessed April 2021).

[5] ISO: Risk management - Guidelines. https://www.iso.org/obp/ui/#iso:std:iso:
31000:ed-2:v1:en, (Last accessed April 2021).

[6] The OpenGroup: The TOGAF Standard. https://publications.opengroup.org/
c182, (Last accessed April 2021).

[7] National Institute of Standards and Technology (NIST): SP800-30. https://

nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-30r1.pdf,
(Last accessed April 2021).

[8] Salvatore Marco Pappalardo, Marcin Niemiec, Maya Bozhilova, Nikolai Stoianov,
Andrzej Dziech, Burkhard Stiller: Multi-Sector Assessment Framework - A New
Approach to Analyse Cybersecurity Challenges and Opportunities, Springer, CCIS,
pp. 1-15.

[9] Deloitte.: Why artificial intelligence is a game changer for risk management.
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/audit/us-
ai-risk-powers-performance.pdf, (Last accessed April 2021).

[10] Maxwell W. Libbrecht, William S. Noble: Machine learning applications in genetics
and genomics, Nature Reviews Genetics volume 16, pp. 321-332, 2015.

71

https://www.forbes.com/sites/louiscolumbus/2020/12/15/the-best-cybersecurity-predictions-for-2021-roundup/
https://www.forbes.com/sites/louiscolumbus/2020/12/15/the-best-cybersecurity-predictions-for-2021-roundup/
https://www.csoonline.com/article/3324363/cyber-risk-management-continues-to-grow-more-difficult.html
https://www.csoonline.com/article/3324363/cyber-risk-management-continues-to-grow-more-difficult.html
https://www.mckinsey.com/business-functions/risk/our-insights/a-new-posture-for-cybersecurity-in-a-networked-world
https://www.mckinsey.com/business-functions/risk/our-insights/a-new-posture-for-cybersecurity-in-a-networked-world
https://www.ibm.com/downloads/cas/RDEQK07R
https://www.ibm.com/downloads/cas/RDEQK07R
https://www.iso.org/obp/ui/#iso:std:iso:31000:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:31000:ed-2:v1:en
https://publications.opengroup.org/c182
https://publications.opengroup.org/c182
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-30r1.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-30r1.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/audit/us-ai-risk-powers-performance.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/audit/us-ai-risk-powers-performance.pdf

72 BIBLIOGRAPHY

[11] Konstantina Kourou, Themis P.Exarchos, Konstantinos P. Exarchos, Michalis V.
Karamouzis, Dimitrios I. Fotiadis: Machine learning applications in cancer prognosis
and prediction, Computational and Structural Biotechnology Journal Volume 13,
2015, pp 8-17.

[12] B. Rodrigues, M. F. Franco, G. Paranghi, B. Stiller: SEConomy: A Framework for
the Economic Assessment of Cybersecurity; 16th International Conference on the
Economics of Grids, Clouds, Systems, and Services (GECON 2019), Springer, Leeds,
UK, pp. 1-9.

[13] M. Franco, B. Rodrigues, B. Stiller: MENTOR: The Design and Evaluation of a
Protection Services Recommender System; International Conference on Network and
Service Management, Halifax, Canada, 2019, pp. 1-7.

[14] M. Franco, E. Sula, B. Rodrigues, E. Scheid, B. Stiller: ProtectDDoS: A Platform
for Trustworthy Offering and Recommendation of Protections; International Confer-
ence on Economics of Grids, Clouds, Software and Services (GECON 2020), Izola,
Slovenia, September 2020, pp 1-12.

[15] P. Radanliev: Artificial Intelligence and Cyber Risk Super-Forecasting; University of
Oxford, Department of Engineering Science, Pre-Print, March 2020.

[16] G. Moraetes: Things to Consider When Calculating the Return on Se-
curity Investment. https://securityintelligence.com/things-to-consider-
when-calculating-the-return-on-security-investment, (Last accessed April
2021).

[17] Stanley Kaplan and B. John Garrick: On The Quantitative Definition of Risk. https:
//onlinelibrary.wiley.com/doi/epdf/10.1111/j.1539-6924.1981.tb01350.x,
(Last accessed March 2021).

[18] Linda Wilbanks: What’s Your IT Risk Approach, June 2018.

[19] Lucidchart: 5 Steps to Any Effective Risk Management Process. https:

//www.lucidchart.com/blog/risk-management-process, (Last accessed March
2021).

[20] Terje Avena, Bodil S.Krohn: A new perspective on how to understand, assess and
manage risk and the unforeseen. January 2014.

[21] Stanford Encyclopedia of Philosophy: Artificial Intelligence. https:

//plato.stanford.edu/entries/artificial-intelligence/, (Last accessed
March 2021).

[22] IBM Cloud Education: Artificial Intelligence (AI), https://www.ibm.com/cloud/
learn/what-is-artificial-intelligence, (Last accessed March 2021).

[23] Andrew Estialbo: Artificial Intelligence Overview, https://blog.oursky.com/
2020/05/07/artificial-intelligence-ai-for-businesses-what-you-need-

to-know-before-starting-an-ai-project/ai-vs-ml-vs-dl/, (Last accessed
March 2021).

https://securityintelligence.com/things-to-consider-when-calculating-the-return-on-security-investment
https://securityintelligence.com/things-to-consider-when-calculating-the-return-on-security-investment
https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1539-6924.1981.tb01350.x
https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1539-6924.1981.tb01350.x
https://www.lucidchart.com/blog/risk-management-process
https://www.lucidchart.com/blog/risk-management-process
https://plato.stanford.edu/entries/artificial-intelligence/
https://plato.stanford.edu/entries/artificial-intelligence/
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://blog.oursky.com/2020/05/07/artificial-intelligence-ai-for-businesses-what-you-need-to-know-before-starting-an-ai-project/ai-vs-ml-vs-dl/
https://blog.oursky.com/2020/05/07/artificial-intelligence-ai-for-businesses-what-you-need-to-know-before-starting-an-ai-project/ai-vs-ml-vs-dl/
https://blog.oursky.com/2020/05/07/artificial-intelligence-ai-for-businesses-what-you-need-to-know-before-starting-an-ai-project/ai-vs-ml-vs-dl/

BIBLIOGRAPHY 73

[24] Michael E. Grost, Trent Jaeger: Applications of Artificial Intelligence, pp. 165-229,
1989.

[25] Jonathan Johnson: 4 Types of Artificial Intelligence. https://www.bmc.com/blogs/
artificial-intelligence-types/, (Last accessed March 2021).

[26] Eda Kavlakoglu: AI vs. Machine Learning vs. Deep Learning vs. Neural Networks:
Whatâs the Difference?, (Last accessed March 2021).

[27] IBM Cloud Education: What is Machine Learning?. https://www.ibm.com/cloud/
learn/machine-learning, (Last accessed March 2021).

[28] Ajiboye Abdulraheem, Ruzaini Abdullah Arshah: Evaluating the Effect of Dataset
Size on Predictive Model Using Supervised Learning Technique, February 2015.

[29] Centric: Machine Learning: A Quick Introduction and Five Core Steps. https:

//centricconsulting.com/blog/machine-learning-a-quick-introduction-
and-five-core-steps/, (Last accessed March 2021).

[30] Alina Zhang: Data Types From A Machine Learning Perspective With Ex-
amples. https://towardsdatascience.com/data-types-from-a-machine-
learningperspective-with-examples-111ac679e8bc, (Last accessed March
2021).

[31] Influxdata: What is time series data?. https://www.influxdata.com/what-is-
time-series-data/, (Last accessed March 2021).

[32] Armand Ruiz Gabernet: Breaking the 80/20 rule: How data catalogs trans-
form data scientists’ productivity. https://www.ibm.com/cloud/blog/ibm-data-
catalog-data-scientists-productivity, (Last accessed March 2021).

[33] Michael Chen: What Is Data Preparation and Why Is It Important?.
https://blogs.oracle.com/analytics/what-is-data-preparation-and-why-
is-it-important, (Last accessed March 2021).

[34] Ali B. Nassie, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, Khaled Shaalan:
Speech Recognition Using Deep Neural Networks: A Systematic Review. February
2019.

[35] IBM Cloud Education: What is Supervised Learning?. https://www.ibm.com/cloud/
learn/supervised-learning, (Last accessed March 2021).

[36] Google: Training and Test Sets: Splitting Data. https://developers.google.com/
machine-learning/crash-course/training-and-test-sets/splitting-data,
(Last accessed March 2021).

[37] ScienceDirect: Supervised Learning. https://www.sciencedirect.com/topics/
computer-science/supervised-learning, (Last accessed March 2021).

https://www.bmc.com/blogs/artificial-intelligence-types/
https://www.bmc.com/blogs/artificial-intelligence-types/
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://centricconsulting.com/blog/machine-learning-a-quick-introduction-and-five-core-steps/
https://centricconsulting.com/blog/machine-learning-a-quick-introduction-and-five-core-steps/
https://centricconsulting.com/blog/machine-learning-a-quick-introduction-and-five-core-steps/
https://towardsdatascience.com/data-types-from-a-machine-learningperspective-with-examples-111ac679e8bc
https://towardsdatascience.com/data-types-from-a-machine-learningperspective-with-examples-111ac679e8bc
https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/
https://www.ibm.com/cloud/blog/ibm-data-catalog-data-scientists-productivity
https://www.ibm.com/cloud/blog/ibm-data-catalog-data-scientists-productivity
https://blogs.oracle.com/analytics/what-is-data-preparation-and-why-is-it-important
https://blogs.oracle.com/analytics/what-is-data-preparation-and-why-is-it-important
https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/supervised-learning
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://www.sciencedirect.com/topics/computer-science/supervised-learning
https://www.sciencedirect.com/topics/computer-science/supervised-learning

74 BIBLIOGRAPHY

[38] Altexsoft: Price Forecasting: Applying Machine Learning Approaches to Electricity,
Flights, Hotels, Real Estate, and Stock Pricing. https://www.altexsoft.com/blog/
business/price-forecasting-machine-learning-based-approaches-applied-

to-electricity-flights-hotels-real-estate-and-stock-pricing/, (Last
accessed March 2021).

[39] Herman Kamper, Aren Jansen, Sharon Goldwater: Fully Unsupervised Small-
Vocabulary Speech Recognition Using a Segmental Bayesian Model, 2015.

[40] Sarfaraz Hussein, Pujan Kandel, Candice W. Bolan, Michael B. Wallace and Ulas
Bagci: Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel
Supervised and Unsupervised Learning Approaches, August 2019.

[41] Md. Ahsanul Kabir, Xiao Luo: Unsupervised Learning for Network Flow Based
Anomaly Detection in the Era of Deep Learning, August 2020.

[42] S. Shriram, E. Sivasankar: Anomaly Detection on Shuttle data using Unsupervised
Learning Techniques, December 2019.

[43] Muhammad Usama, Junaid Qadir, Aunn Raza, Hunain Arif, Kok-lim Alvin Yau;
Yehia Elkhatib, Amir Hussain and Ala Al-Fuqaha: Unsupervised Machine Learning
for Networking: Techniques, Applications and Research Challenges, April 2019.

[44] Xiaojin Zhu, Andrew Goldberg: Introduction to Semi-Supervised. Learning, 2009.

[45] Richard S. Sutton, Andrew G. Barto: Reinforcement Learning: An Introduction,
2018.

[46] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, Srikanth Kandula: Resource
Management with Deep Reinforcement Learning, 2016.

[47] I. Arel, C. Liu, T. Urbanik, A.G. Kohls: Reinforcement learning-based multi-agent
system for network traffic signal control, 2010.

[48] Jens Kober, J. Andrew Bagnell, Jan Peters: Reinforcement Learning in Robotics: A
Survey, September 2013.

[49] AWS: Training ML Models. https://docs.aws.amazon.com/machine-learning/
latest/dg/training-ml-models.html, (Last accessed March 2021).

[50] AWS: Model Fit: Underfitting vs. Overfitting. https://docs.aws.amazon.com/
machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html,
(Last accessed March 2021).

[51] Jonas Benner: Cross-Validation and Hyperparameter Tuning: How to Opti-
mise your Machine Learning Model. https://towardsdatascience.com/cross-
validation-and-hyperparameter-tuning-how-to-optimise-your-machine-

learning-model-13f005af9d7d, (Last accessed March 2021).

[52] Wikipedia: Hyperparameter optimization. https://en.wikipedia.org/wiki/
Hyperparameter_optimization, (Last accessed March 2021).

https://www.altexsoft.com/blog/business/price-forecasting-machine-learning-based-approaches-applied-to-electricity-flights-hotels-real-estate-and-stock-pricing/
https://www.altexsoft.com/blog/business/price-forecasting-machine-learning-based-approaches-applied-to-electricity-flights-hotels-real-estate-and-stock-pricing/
https://www.altexsoft.com/blog/business/price-forecasting-machine-learning-based-approaches-applied-to-electricity-flights-hotels-real-estate-and-stock-pricing/
https://docs.aws.amazon.com/machine-learning/latest/dg/training-ml-models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/training-ml-models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://towardsdatascience.com/cross-validation-and-hyperparameter-tuning-how-to-optimise-your-machine-learning-model-13f005af9d7d
https://towardsdatascience.com/cross-validation-and-hyperparameter-tuning-how-to-optimise-your-machine-learning-model-13f005af9d7d
https://towardsdatascience.com/cross-validation-and-hyperparameter-tuning-how-to-optimise-your-machine-learning-model-13f005af9d7d
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization

BIBLIOGRAPHY 75

[53] Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, Si-Hao Deng: Hyper-
parameter Optimization for Machine LearningModels Based on Bayesian Optimiza-
tion, March 2019.

[54] James Bergstra, Remi Bardenet, Yoshua Bengio, Balazs Kegl: Algorithms for Hyper-
Parameter Optimization, 2011.

[55] Raheel Shaikh: Cross Validation Explained: Evaluating estimator performance.
https://towardsdatascience.com/cross-validation-explained-evaluating-
estimator-performance-e51e5430ff85, (Last accessed March 2021).

[56] SpringerLink: Holdout Evaluation. https://link.springer.com/
referenceworkentry/10.1007%2F978-0-387-30164-8_369, (Last accessed March
2021).

[57] Artem Oppermann: What is Deep Learning and How does it work?.
https://towardsdatascience.com/what-is-deep-learning-and-how-does-
it-work-2ce44bb692ac, (Last accessed March 2021).

[58] IBM Cloud Education: Deep Learning. https://www.ibm.com/cloud/learn/deep-
learning, (Last accessed March 2021).

[59] IBM Developer: An introduction to deep learning. https://developer.ibm.com/
technologies/artificial-intelligence/articles/an-introduction-to-

deep-learning/, (Last accessed March 2021).

[60] Martin Heller: What is deep learning? Algorithms that mimic the human
brain. https://www.infoworld.com/article/3397142/what-is-deep-learning-
algorithms-that-mimic-the-human-brain.html, (Last accessed March 2021).

[61] Farhad Malik: Neural Network Layers. https://medium.com/fintechexplained/
neural-network-layers-75e48d71f392, (Last accessed April 2021).

[62] Nuric: Artificial Neural Networks. https://www.doc.ic.ac.uk/~nuric/teaching/
imperial-college-machine-learning-neural-networks.html, (Last accessed
April 2021).

[63] Siddharth Sharma, Simone Sharma, Anidhya Athaiya: Activation Functions in Neu-
ral Networks, Vol. 4, Issue 12, pp. 310-316, April 2020.

[64] Hoon Chung, Sung Joo Lee, Jeon Park: Deep neural network using trainable activa-
tion functions, July 2016.

[65] Thomas Wood: Sigmoid Function. https://deepai.org/machine-learning-
glossary-and-terms/sigmoid-function, (Last accessed April 2021).

[66] Emma Amor: Understanding Non-Linear Activation Functions in Neural Net-
works. https://medium.com/ml-cheat-sheet/understanding-non-linear-
activation-functions-in-neural-networks-152f5e101eeb, (Last accessed
April 2021).

https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_369
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_369
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/deep-learning
https://developer.ibm.com/technologies/artificial-intelligence/articles/an-introduction-to-deep-learning/
https://developer.ibm.com/technologies/artificial-intelligence/articles/an-introduction-to-deep-learning/
https://developer.ibm.com/technologies/artificial-intelligence/articles/an-introduction-to-deep-learning/
https://www.infoworld.com/article/3397142/what-is-deep-learning-algorithms-that-mimic-the-human-brain.html
https://www.infoworld.com/article/3397142/what-is-deep-learning-algorithms-that-mimic-the-human-brain.html
https://medium.com/fintechexplained/neural-network-layers-75e48d71f392
https://medium.com/fintechexplained/neural-network-layers-75e48d71f392
https://www.doc.ic.ac.uk/~nuric/teaching/imperial-college-machine-learning-neural-networks.html
https://www.doc.ic.ac.uk/~nuric/teaching/imperial-college-machine-learning-neural-networks.html
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function
https://medium.com/ml-cheat-sheet/understanding-non-linear-activation-functions-in-neural-networks-152f5e101eeb
https://medium.com/ml-cheat-sheet/understanding-non-linear-activation-functions-in-neural-networks-152f5e101eeb

76 BIBLIOGRAPHY

[67] DeepAI: ReLU. https://deepai.org/machine-learning-glossary-and-terms/
relu, (Last accessed April 2021).

[68] Gangming Zhao, Zhaoxiang Zhang, He Guan, Peng Tang, Jingdong Wang: Rethink-
ing ReLU to Train Better CNNs, August 2018.

[69] Scott Robinson: Introduction to Neural Networks with Scikit-Learn. https:

//stackabuse.com/introduction-to-neural-networks-with-scikit-learn/,
(Last accessed April 2021).

[70] Thomas Wood: What is Backpropagation?. https://deepai.org/machine-
learning-glossary-and-terms/backpropagation, (Last accessed April 2021).

[71] Shiliang Sun, Zehui Cao, Han Zhu, Jing Zhao: A Survey of Optimization Methods
from a Machine Learning Perspective, October 2019.

[72] Marsh: Global Cyber Risk Perception Survey. https://www.marsh.com/us/
insights/research/global-cyber-risk-perception-survey.html, (Last ac-
cessed April 2021).

[73] NIST Cybersecurity Framework: The Five Functions. https://www.nist.gov/
cyberframework/online-learning/five-functions, (Last accessed April 2021).

[74] Cipher: A Quick NIST Cybersecurity Framework Summary. https://cipher.com/
blog/a-quick-nist-cybersecurity-framework-summary/, (Last accessed April
2021).

[75] Gwendolyn Keyes, Terese Richmond, Michael D. Farber, Darshana Singh:
GAO Reports Challenges and Successes in Cybersecurity Framework Adop-
tion. https://www.vnf.com/gao-reports-challenges-and-successes-in-
cybersecurity-framework, (Last accessed April 2021).

[76] 27001Academy: What is ISO 27001?. https://advisera.com/27001academy/what-
is-iso-27001/, (Last accessed April 2021).

[77] Jeff Petters: What is ISO 27001 Compliance? Essential Tips and Insights. https:
//www.varonis.com/blog/iso-27001-compliance, (Last accessed April 2021).

[78] SANS: CIS Critical Security Controls. https://www.sans.org/critical-security-
controls, (Last accessed April 2021).

[79] Bill Gogel: Cybersecurity Frameworks . https://www.bswllc.com/resources-
articles-cybersecurity-frameworks, (Last accessed April 2021).

[80] Soumya Kanti Datta: DRAFT - A Cybersecurity Framework for IoT Platforms,
August 2020.

[81] Sergey Naumov, Ilya Kabanov: Dynamic framework for assessing cyber security risks
in a changing environment, December 2016.

[82] Sri Nikhil Gupta Gourisetti, Michael Mylrea, Hirak Patangia: Application of Rank-
Weight Methods to Blockchain Cybersecurity Vulnerability Assessment Framework,
May 2019.

https://deepai.org/machine-learning-glossary-and-terms/relu
https://deepai.org/machine-learning-glossary-and-terms/relu
https://stackabuse.com/introduction-to-neural-networks-with-scikit-learn/
https://stackabuse.com/introduction-to-neural-networks-with-scikit-learn/
https://deepai.org/machine-learning-glossary-and-terms/backpropagation
https://deepai.org/machine-learning-glossary-and-terms/backpropagation
https://www.marsh.com/us/insights/research/global-cyber-risk-perception-survey.html
https://www.marsh.com/us/insights/research/global-cyber-risk-perception-survey.html
https://www.nist.gov/cyberframework/online-learning/five-functions
https://www.nist.gov/cyberframework/online-learning/five-functions
https://cipher.com/blog/a-quick-nist-cybersecurity-framework-summary/
https://cipher.com/blog/a-quick-nist-cybersecurity-framework-summary/
https://www.vnf.com/gao-reports-challenges-and-successes-in-cybersecurity-framework
https://www.vnf.com/gao-reports-challenges-and-successes-in-cybersecurity-framework
https://advisera.com/27001academy/what-is-iso-27001/
https://advisera.com/27001academy/what-is-iso-27001/
https://www.varonis.com/blog/iso-27001-compliance
https://www.varonis.com/blog/iso-27001-compliance
https://www.sans.org/critical-security-controls
https://www.sans.org/critical-security-controls
https://www.bswllc.com/resources-articles-cybersecurity-frameworks
https://www.bswllc.com/resources-articles-cybersecurity-frameworks

BIBLIOGRAPHY 77

[83] Jeevith Hegde, Børge Rokseth: Applications of machine learning methods for engi-
neering risk assessment A review, September 2019.

[84] Yuri Castro, Young Jim kim: Data mining on road safety: factor assessment on
vehicle accidents using classification models, November 2015, pp. 104-111.

[85] Madhar Taamneh, Sharaf Alkheder, Salah Taamneh: Data-mining techniques for
traffic accident modeling and prediction in the United Arab Emirates, April 2016,
pp. 146-166.

[86] Il-Hwan Kim, Jae-Hwan Bong, Jooyoung Park, Shinsuk Park: Prediction of Driver’s
Intention of Lane Change by Augmenting Sensor Information Using Machine Learn-
ing Techniques, June 2017.

[87] Kai Wang, Youjin Zhao, Qingyu Xiong, Min Fan, Guotan Sun, Longkun Ma, Tong
Liu: Research on Healthy Anomaly Detection Model Based on Deep Learning from
Multiple Time-Series Physiological Signals, September 2016.

[88] Ahmet Turan Özdemir, Billur Barshan: Detecting Falls with Wearable Sensors Using
Machine Learning Techniques, June 2014.

[89] Y. Xu, Z.Y. Dong, K. Meng, R. Zhang, K.P. Wong: Real-time transient stability
assessment model using extreme learning machine, Volume 5, Issue 3, March 2011,
pp. 314-322.

[90] Claudio M. Rocco, Enrico Zio: A support vector machine integrated system for the
classification of operation anomalies in nuclear components and systems, Volume 92,
Issue 5, May 2007, pp. 593-600.

[91] Javier Mart́ınez Torres, Carla Iglesias Comesaña, Paulino J. Garćıa-Nieto: Review:
machine learning techniques applied to cybersecurity, International Journal of Ma-
chine Learning and Cybernetics, volume 10, pp. 2823-2836.

[92] James B. Fraley, James Cannady: The promise of machine learning in cybersecurity,
April 2017.

[93] George V. Hulme: Tackling cybersecurity threat information sharing challenges.
https://www.csoonline.com/article/3157540/tackling-cybersecurity-
threat-information-sharing-challenges.html, (Last accessed May 2021).

[94] Derryck Coleman: Nearly 65% of Affected Public Companies Did Not Report Cy-
bersecurity Breaches to the SEC. https://blog.auditanalytics.com/nearly-70-
of-affected-public-companies-did-not-report-cybersecurity-breaches-

to-the-sec/, (Last accessed May 2021).

[95] NACD, CyberThreat Alliance, IHS Markit, SecurityScorecard, Diligent: The State
of Cyber-Risk Disclosures of Public Companies. https://s3.amazonaws.com/ssc-
corporate-website-production/documents/resources/the-state-of-cyber-

risk-disclosures-of-public-companies.pdf, (Last accessed May 2021).

https://www.csoonline.com/article/3157540/tackling-cybersecurity-threat-information-sharing-challenges.html
https://www.csoonline.com/article/3157540/tackling-cybersecurity-threat-information-sharing-challenges.html
https://blog.auditanalytics.com/nearly-70-of-affected-public-companies-did-not-report-cybersecurity-breaches-to-the-sec/
https://blog.auditanalytics.com/nearly-70-of-affected-public-companies-did-not-report-cybersecurity-breaches-to-the-sec/
https://blog.auditanalytics.com/nearly-70-of-affected-public-companies-did-not-report-cybersecurity-breaches-to-the-sec/
https://s3.amazonaws.com/ssc-corporate-website-production/documents/resources/the-state-of-cyber-risk-disclosures-of-public-companies.pdf
https://s3.amazonaws.com/ssc-corporate-website-production/documents/resources/the-state-of-cyber-risk-disclosures-of-public-companies.pdf
https://s3.amazonaws.com/ssc-corporate-website-production/documents/resources/the-state-of-cyber-risk-disclosures-of-public-companies.pdf

78 BIBLIOGRAPHY

[96] World Economic Forum: Cyber Information Sharing: Building Collective Security.
http://www3.weforum.org/docs/WEF_Cyber_Information_Sharing_2020.pdf, Oc-
tober 2020, (Last accessed May 2021).

[97] Markus Hittmeir, Andreas Ekelhart, Rudolf Mayer: On the Utility of Synthetic Data:
An Empirical Evaluation on Machine Learning Tasks, ARES ’19, August 2019.

[98] Sangoma: SMB, SME, and Large Enterprise: Why Your Business Size Classifica-
tion Matters. https://www.sangoma.com/articles/smb-sme-large-enterprise-
size-business-matters/, (Last accessed May 2021).

[99] Nmap: the Network Mapper - Free Security Scanner. https://nmap.org/, (Last
accessed May 2021).

[100] metasploit: The world’s most used penetration testing framework. https://

www.metasploit.com/, (Last accessed May 2021).

[101] OWASP: Vulnerability Scanning Tools. https://owasp.org/www-community/
Vulnerability_Scanning_Tools, (Last accessed May 2021).

[102] Homeland Security: Cybersecurity Advisors. https://www.bu.edu/tech/files/
2017/09/DHS_CSA_Fact_Sheet_2017-1.pdf, (Last accessed May 2021).

[103] AWS: Multiclass Classification. https://docs.aws.amazon.com/machine-
learning/latest/dg/multiclass-classification.html, (Last accessed May
2021).

[104] IBM: Decision Tree. https://www.ibm.com/docs/en/cognos-analytics/
11.1.0?topic=analytics-decision-tree, (Last accessed May 2021).

[105] Wikipedia: Decision Tree. https://en.wikipedia.org/wiki/Decision_tree,
(Last accessed May 2021).

[106] Machine Learning Mastery: K-Nearest Neighbors for Machine Learning. https:

//machinelearningmastery.com/k-nearest-neighbors-for-machine-learning,
(Last accessed May 2021).

[107] Machine Learning Mastery: One-vs-Rest and One-vs-One for Multi-Class Classi-
fication. https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-
for-multi-class-classification, (Last accessed May 2021).

[108] ScienceDirect: Support Vector Machines. https://www.sciencedirect.com/
topics/neuroscience/support-vector-machines, (Last accessed May 2021).

[109] DataFlair: Kernel Functions-Introduction to SVM Kernel & Examples. https://
data-flair.training/blogs/svm-kernel-functions/, (Last accessed May 2021).

[110] Heaton Research: The Number of Hidden Layers. https://

www.heatonresearch.com/2017/06/01/hidden-layers.html, (Last accessed
May 2021).

http://www3.weforum.org/docs/WEF_Cyber_Information_Sharing_2020.pdf
https://www.sangoma.com/articles/smb-sme-large-enterprise-size-business-matters/
https://www.sangoma.com/articles/smb-sme-large-enterprise-size-business-matters/
https://nmap.org/
https://www.metasploit.com/
https://www.metasploit.com/
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://www.bu.edu/tech/files/2017/09/DHS_CSA_Fact_Sheet_2017-1.pdf
https://www.bu.edu/tech/files/2017/09/DHS_CSA_Fact_Sheet_2017-1.pdf
https://docs.aws.amazon.com/machine-learning/latest/dg/multiclass-classification.html
https://docs.aws.amazon.com/machine-learning/latest/dg/multiclass-classification.html
https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=analytics-decision-tree
https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=analytics-decision-tree
https://en.wikipedia.org/wiki/Decision_tree
https://machinelearningmastery.com/k-nearest-neighbors-for-machine-learning
https://machinelearningmastery.com/k-nearest-neighbors-for-machine-learning
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification
https://www.sciencedirect.com/topics/neuroscience/support-vector-machines
https://www.sciencedirect.com/topics/neuroscience/support-vector-machines
https://data-flair.training/blogs/svm-kernel-functions/
https://data-flair.training/blogs/svm-kernel-functions/
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html

BIBLIOGRAPHY 79

[111] Harpreet Singh Sachdev: Choosing number of Hidden Layers and number of hidden
neurons in Neural Networks. https://www.linkedin.com/pulse/choosing-number-
hidden-layers-neurons-neural-networks-sachdev/, (Last accessed May 2021).

[112] Brilliant: Backpropagation. https://brilliant.org/wiki/backpropagation,
(Last accessed May 2021).

[113] Unite.AI: What is Backpropagation?. https://www.unite.ai/what-is-
backpropagation/, (Last accessed May 2021).

[114] TypeScript. https://www.typescriptlang.org/, (Last accessed May 2021).

[115] Altexsoft: The Good and the Bad of TypeScript. https://www.altexsoft.com/
blog/typescript-pros-and-cons/, (Last accessed May 2021).

[116] React: A JavaScript library for building user interfaces https://reactjs.org/,
(Last accessed May 2021).

[117] Why Choose Reactjs For Your Next Project https://easternpeak.com/blog/why-
choose-reactjs-for-your-next-project, (Last accessed May 2021).

[118] Redux Framework: A predictable state container for Javascript Apps https://

redux.js.org/, (Last accessed May 2021).

[119] Bruno Rodrigues, Muriel Franco, Geetha Parangi, Burkhard Stiller: SEConomy:
A Framework for the Economic Assessment of Cybersecurity; 16th Conference on
the Economics of Grids, Clouds, Systems, and Services (GECON 2019), Leeds, UK,
September 2019, pp 1-13.

[120] D. Singh, B. Singh: Investigating the impact of data normalization on classification
performance; Journal of Applied Soft Computing, Volume 97, Part B, December
2020, 105524.

[121] Wikipedia: Feature scaling. https://en.wikipedia.org/wiki/Feature_scaling,
(Last accessed June 2021).

[122] Nestjs. https://nestjs.com/, (Last accessed June 2021).

[123] BentoML: Model Serving Made Easy. https://docs.bentoml.org/en/latest/,
(Last accessed June 2021).

[124] Pandas. https://pandas.pydata.org/, (Last accessed June 2021).

[125] Jupyter. https://jupyter.org/, (Last accessed June 2021).

[126] scikit-learn. https://scikit-learn.org/stable/, (Last accessed June 2021).

[127] scikit-learn: Decision Tree Classifier. https://scikit-learn.org/stable/
modules/generated/sklearn.tree.DecisionTreeClassifier.html, (Last accessed
June 2021).

https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev/
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev/
https://brilliant.org/wiki/backpropagation
https://www.unite.ai/what-is-backpropagation/
https://www.unite.ai/what-is-backpropagation/
https://www.typescriptlang.org/
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://reactjs.org/
https://easternpeak.com/blog/why-choose-reactjs-for-your-next-project
https://easternpeak.com/blog/why-choose-reactjs-for-your-next-project
https://redux.js.org/
https://redux.js.org/
https://en.wikipedia.org/wiki/Feature_scaling
https://nestjs.com/
https://docs.bentoml.org/en/latest/
https://pandas.pydata.org/
https://jupyter.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

80 BIBLIOGRAPHY

[128] scikit-learn: K-Nearest Neighbors. https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.KNeighborsClassifier.html, (Last accessed June
2021).

[129] scikit-learn: C-Support Vector Classification. https://scikit-learn.org/
stable/modules/generated/sklearn.svm.SVC.html, (Last accessed June 2021).

[130] scikit-learn: Multi-layer Perceptron classifier. https://scikit-learn.org/
stable/modules/generated/sklearn.neural_network.MLPClassifier.html,
(Last accessed June 2021).

[131] Jason Brownlee: What is a Confusion Matrix in Machine Learning. https://

machinelearningmastery.com/confusion-matrix-machine-learning/, (Last ac-
cessed June 2021).

[132] Margherita Grandini: Metrics for Multi-Class Classification: an Overview. https:
//www.arxiv-vanity.com/papers/2008.05756, (Last accessed June 2021).

[133] Will Koehrsen: Beyond Accuracy: Precision and Recall. https:

//towardsdatascience.com/beyond-accuracy-precision-and-recall-
3da06bea9f6c, (Last accessed June 2021).

[134] E. A. Zanaty: Support Vector Machines (SVMs) versus Multilayer Perception
(MLP) in data classification. Mathematics Dept., Computer Science Section, Fac-
ulty of Science, Sohag University, Sohag, Egypt. August 2012.

[135] André R. Goncalves, Maria A. de O. Camargo-Brunetto: Classification of Poincaré
plots for temporal series of heart rate variability by using machine learning techniques.
November 2010.

[136] Kaspersky Lab: Denial of Service: How Business Evaluate The Threat of DDoS
Attacks. https://media.kasperskycontenthub.com/wp-content/uploads/sites/
45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf,
(Last accessed July 2021).

[137] Gaute B. Wangen, Andrii Shalaginov, Christoffer V. Hallstensen: Cyber Security
Risk Assessment of a DDoS Attack. International Conference on Information Security.
September 2016.

[138] Akamai Security Research: Financial Services Continues Getting Bom-
barded With Credential Stuffing And Web Application Attacks. https:

//www.akamai.com/us/en/about/news/press/2021-press/akamai-soti-
security-research-phishing-for-finance.jsp, (Last accessed July 2021).

[139] M. Franco, J. Von der Assen, L. Boillat, C. Killer, B. Rodrigues, E. J. Scheid, L.
Granville, B. Stiller: SecGrid: A Visual System for the Analysis and ML-Based Clas-
sification of Cyberattack Traffic; IEEE 46th Conference on Local Computer Networks
(LCN 2021), Edmonton, Canada, Virtually, October 2021, pp 1-8.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://machinelearningmastery.com/confusion-matrix-machine-learning/
https://machinelearningmastery.com/confusion-matrix-machine-learning/
https://www.arxiv-vanity.com/papers/2008.05756
https://www.arxiv-vanity.com/papers/2008.05756
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://media.kasperskycontenthub.com/wp-content/uploads/sites/45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf
https://www.akamai.com/us/en/about/news/press/2021-press/akamai-soti-security-research-phishing-for-finance.jsp
https://www.akamai.com/us/en/about/news/press/2021-press/akamai-soti-security-research-phishing-for-finance.jsp
https://www.akamai.com/us/en/about/news/press/2021-press/akamai-soti-security-research-phishing-for-finance.jsp

Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
CV Cross-Validation
CSA Cybersecurity Advisor
DL Deep Learning
DT Decision Tree
DDoS Distributed Denial-of-Service
FFNN Feed-Forward Neural Network
GAO Government Accountability Office
GUI Graphical User Interface
IEC International Electrotechnical Commission
ISMS Information Security Management Systems
IS Information Security
ISO International Organization for Standardization
IoT Internet of Things
JSON JavaScript Object Notation
KNN K-Nearest Neighbors
KRI Key Risk Indicator
ML Machine Learning
MCC Multi-Class Classification
MLP Multi-Layer Perceptron
NIST National Institute of Standards and Technology
PE Performance Estimate
PSP Protection Service Provider
RL Reinforcement Learning
SL Supervised Learning
SSL Semi-Supervised Learning
SVM Support-Vector Machine
UL Unsupervised Learning

81

82 ABBREVIATONS

List of Figures

2.1 Risk management framework [19] . 6

2.2 Artificial Intelligence overview [23] . 7

2.3 Machine Learning types (based on [34]) . 9

2.4 Hyperparameter optimization techniques [52] 12

2.5 K-Fold CV (K=5) [55] . 12

2.6 Artificial Neural Network (based on [57]) 13

2.7 Representation of a neuron [62] . 14

2.8 Most common non-linear activation functions 15

4.1 Architecture overview . 24

4.2 Supervised Learning ML workflow . 26

4.3 DT visualization . 30

4.4 KNN visualization (k = 7) . 31

4.5 SVM visualization . 32

4.6 MLP visualization . 34

4.7 Training, CV & testing workflow . 35

5.1 SecRiskAI sequence flow . 38

5.2 The SecRiskAI’s Dashboard . 41

5.3 Protection service parameters . 42

5.4 User profile page . 43

6.1 Confusion matrices . 56

83

84 LIST OF FIGURES

6.2 Dataset size evaluation . 59

7.1 E-Shop contextual information . 62

7.2 DDoS risk prediction . 63

7.3 Protection service parameters panel . 64

7.4 MENTOR’s recommendations list . 64

7.5 Protection service parameters configuration panel 65

7.6 Bank X contextual information . 66

7.7 Phishing risk prediction . 67

A.1 Terminal after docker-compose up execution 90

List of Tables

3.1 Cybersecurity risk assessment frameworks overview (based on [79]) 19

3.2 Industry-wise segmentation of ML applications for risk assessment [83] . . 21

4.1 Overview of the generated attributes . 27

5.1 ML Models and corresponding Scikit-learn implementation [126] 50

5.2 Generated Dataset . 52

6.1 Performance metrics . 57

6.2 Computed Precision, Recall & F1-Score for each ML model 58

85

86 LIST OF TABLES

Listings

5.1 Redux action for updating cyber-risk predictions 39
5.2 Global store initialization . 39
5.3 Fetching and storing risk predictions . 40
5.4 Middleware controller . 44
5.5 Middleware service . 45
5.6 Prediction request body . 46
5.7 Risk prediction service . 46
5.8 ML artifacts import . 48
5.9 Cyber-risk prediction response . 48
5.10 Metadata response . 49
5.11 Data generator . 50
5.12 Dataset categorization . 52
5.13 Dataset split and normalization . 52
5.14 Example of DT hyperparameter tuning, training and CV 53

87

88 LISTINGS

Appendix A

Installation Guidelines

This installation guideline is based on a MacOS system and may differ from the setup on
a Windows or Linux system.

1. Initial setup

(a) Download the latest version of Docker and start it: https://docs.docker.com/
docker-for-mac/install/ (MacOS), https://docs.docker.com/docker-for-
windows/install/ (Windows), https://docs.docker.com/install/linux/
docker-ce/ubuntu/ (Linux).

(b) Create account on Github if not already existant.

2. Clone Github Repository

(a) Download IntelliJ IDEA (or any other IDE of your preference): https://

www.jetbrains.com/idea/download.

(b) Open IntelliJ and click on Check out from Version Control and immediately
after click git.

(c) As URL copy and paste the following url: https://github.com/Sulasdeli/
SecRiskAI.git and change the directory if necessary.

3. Starting the Application using Docker

(a) Navigate to the following folder: ./SecRiskAI and execute the following com-
mand:

1 $ docker -compose up

(b) If the projects correctly starts, the output on the terminal will show the started
containers (cf. Figure A.1).

(c) The SecRiskAI ’s frontend will be running on localhost:3001.

89

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://www.jetbrains.com/idea/download
https://www.jetbrains.com/idea/download
https://github.com/Sulasdeli/SecRiskAI.git
https://github.com/Sulasdeli/SecRiskAI.git

90 APPENDIX A. INSTALLATION GUIDELINES

Figure A.1: Terminal after docker-compose up execution

Appendix B

Contents of the CD

• Abstract and Zusammenfassung:

– Abstract.txt & Zusfsg.txt

• Thesis (PDF and LATEX source code):

– MA Erion Sula.pdf & MA Erion Sula.zip

• Midterm presentation slides:

– MA Erion Sula midterm presentation.pptx

• Final presentation slides:

– MA Erion Sula final presentation.pptx

• Application source code:

– SecRiskAI.zip

91

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Risk Management
	Artificial Intelligence (AI)
	Machine Learning (ML)
	Deep Learning (DL)

	Related Work
	The SecRiskAI Approach
	Risk Assessment Workflow
	Data Gathering
	Data Processing
	Multi-Class Classification Algorithms
	Training, Cross Validation & Testing

	MENTOR's API Integration

	Prototype and Implementation
	Frontend
	Web-based Interface

	Backend
	Middleware
	ML Classifier

	ML Workflow

	Quantitative Evaluation
	Qualitative Evaluation
	Case Study #1 - DDoS Attack
	Case Study #2 - Recommendation of Protections
	Case Study #3 - Phishing Scenario
	Discussion and Limitations

	Summary, Conclusions, and Future Work
	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Listings
	Installation Guidelines
	Contents of the CD

