Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

7

Online Identity Verification using
Face Recognition

Aline Schaufelberger
Zurich, Switzerland
Student ID: 17-701-152

Supervisor: Dr. Bruno Rodrigues, Eder Scheid, Prof. Dr. Burkhard
Stiller
Date of Submission: August 26, 2021

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Zusammenfassung

Die rasante Digitalisierung der Gesellschaft fithrt zu erheblichen Verédnderungen in zahlrei-
chen Bereichen wie Wirtschaft, Kommunikation, zwischenmenschliche Beziehungen und
auch in der Art und Weise, wie Lehr- und Lernaktivitdten durchgefithrt werden. Die-
se Umstellung hat natiirlich sowohl Vor- als auch Nachteile. Wéhrend der Unterricht in
Schulen und an Universitidten relativ einfach online abgehalten werden kann, gestaltet
sich die Durchfithrung von Priifungen komplizierter. Bei einer gewthnlichen Priifung wird
die Anwesenheit der eingeschriebenen Studenten anhand einer Anwesenheitsliste und des
Studentenausweises iiberpriift, bei einer Online-Priifung wird die Uberpriifung der Stu-
denten durch die Einschrénkungen der heutigen Technologie erschwert. Daher sind Online-
Priifungen ein Bereich, in dem die Authentifizierung von Personen im Bildungssystem an
Bedeutung zunimmt.

Diese Arbeit konzipiert, implementiert und testet einen Prototypen fiir eine Applikation
zur Identifikation von Teilnehmern an Online Videoveranstaltungen wie z.B. Studenten
an einer Priifung. Diese Applikation soll dem Priifungsorganisator die Identitat der Teil-
nehmer offenbaren und die abwesenden Studenten ermitteln. Dazu wird eine Methode zur
Gesichtserkennung verwendet, welche die Gesichter der Anwesenden Personen mit Bildern
aus einer simulierten Universitdtsdatenbank vergleicht.

11

Abstract

The rapid digitization of society is leading to significant changes in numerous areas such
as business, communication, interpersonal relationships, and also in the way teaching and
learning activities are conducted. This change has both, advantages and disadvantages.
While classes can delivered online relatively easily, the organization of exams and assess-
ments becomes more complicated. In a traditional exam, the presence of enrolled students
is verified using an attendance list and student ID. In an online setting, student verifica-
tion is aggravated by the availability and limitation of technology. Hence, online exams
are a field where individual authentication becomes more significant in the educational
system.

This thesis conceptualizes, implements, and tests a prototype for an application that
automatically verifies the identity of individuals participating in an online video confer-
ence, such as students in an exam. This application should reveal the identity of the
participants to the organizer and identify the absent students. To do this, this applica-
tion uses a facial recognition method that compares the faces of the present individuals
with the photos stored in a simulated university database.

111

v

Acknowledgments

I would like to take this opportunity to express my gratitude to my supervisors Dr. Bruno
Rodrigues and Eder Scheid, who were always available to help me with questions or prob-
lems. Especially, I want to thank Dr. Bruno Rodrigues for his guidance during the regular
meetings in the last six months.

Naturally, I would also like thank Prof. Dr. Burkhard Stiller from the Communication
Systems Group (CSG) of the University of Zurich who made this thesis possible and en-
trusted me with this work.

In addition, I would like to express my appreciation to my family and friends, who
helped and supported me during this time. It is thanks to their patience and assistance,
that I have reached this point in life.

vi

Contents

[Zusammenfassung]

[Abstract]

[Acknowledgments|

2

Fundamental Concepts and Related Work|

[2.1 ~Short Introduction to Facial Recognition|
[2.2 Variations of Face Recognition|
[2.2.1 Holistic Matching Method|
[2.2.2 Feature-based (structural) Method|
[2.2.3 Hybrid Method| o
[2.3 Dimensionality Reduction|
[2.3.1 Principal Component Analysis[.
[2.3.2 Linear Discriminant Analysis|

[2.4 Optical Character Recognition|
2.4.1 Feature Extractionl oL

[2.5.1 Common Facial Recogniton Techniques|
[2.5.2 Optical Character Recognition Methods|
[2.5.3 Existing Work|.

B

Prototype Design and Implementation|

[3.1 Requirements|

[3.1.1 User Requirement Specification|
[3.1.2 Design Requirement Specification|
[3.2 Prototype Design|
[3.3 Implementation| o

[3.3.1 Imput Specification|
[3.3.2 Code Setup|
[3.3.5 Main Loop|.
[3.3.4 Generate Output|

[3.4 Algorithm for Method Comparison|
vii

iii

Viil

4 Evaluation|

4.1 Face Recognition Template using OpenCV|
4.2 Increase Frame Rate of the Screen Capturel.
4.3 Higher Accuracy ot Face Recognition

[4.3.1 Face Recognition Alternative using Deepkace]

[4.3.2 Comparing Deepkace Models
[4.3.3 Testing with reduced Picture Sizef
[4.3.4 lTesting with reduced Picture Resolution|
4.4 Optical Character Recognition|
4.5 Simulated Test Fnvironment!
[4.5.1 'Tral with high Exposurel.
[4.5.2 Trial with low Exposurel

[Summary, Conclusion, and Future Work|

[>.1 Summary|
6.2 Conclusionl. o

[List of Figures|

[List of Tables|
AT Fthe ZIP-Fid

CONTENTS

39

......... 39
......... 40
......... 40

40

43

43

45

49

Chapter 1

Introduction

The fast-paced digitization in society (i.e., digital transformation) leads to massive changes
in multiple areas such as economics, communication, interpersonal relationships, and also
in the way in which teaching and learning activities are conducted. Although educational
institutions aim to preserve a good relationship between tutors and apprentices, a society
increasingly digitized and pressured by technological advances imposes an adaptation in
traditional teaching approaches with greater use of media and digital content.

The continuum of technology-based teaching ranges from pure face-to-face lessons to
courses delivered entirely online. A few years ago, every teacher or instructor had to
decide where on this continuum his course should be [2]. However, due to the pandemic
measures, the lecturers were deprived of this decision. Within a brief period, lectures were
held online with the help of video conferencing tools such as Zoom or Microsoft Teams.
Naturally, this shift has both, advantages and disadvantages. On one hand, online teach-
ing is flexible and easily accessible [17]. For many students, this has opened new ways of
studying where they can manage their lectures completely independently. On the other
hand, students have an increased lack of social interaction during online courses. This is a
crucial factor, especially for young students. The exchange of information among students
is vital and creating a network is essential for their study success and future careers. In ad-
dition, it is often the case that students will create bonds at university that can last for life.

While classes can be delivered online relatively easily, the organization of exams and as-
sessments becomes more complicated due to the difficulty of verifying the exam setup, as
well as identifying the students. In a traditional exam, the presence of enrolled students is
checked by means of an attendance list and the students identification card. In an online
setting, student verification is aggravated by the availability and limitation of technology.
Hence, online exams are a field where individual authentication becomes more significant
in the educational system.

1.1 Motivation

Verifying the identity of students in small online settings can be done within a short time
with the assistance of helpers. Verifying the identities of classes with several hundreds
of students would require a large number of helpers. Further, the camera quality of
some student laptops would not allow a helper to read a shown identification card. This
problem can be remedied by a program that automatically verifies the identities using
facial recognition.

2 CHAPTER 1. INTRODUCTION

1.2 Thesis Goals

The goal of this thesis is to test and implement a prototype for an application that
automatically verifies the identity of people participating in an online video conference,
for example, students in an examination. It shall reveal the identity of the participants to
the organizer and derive the absent students. To do so, the prototype is detecting faces
on the screen and afterwards matches those faces to the reference pictures of the students
provided by the university database.

1.3 Methodology

To find an optimal solution for the described problem and to build a prototype, a the-
oretical background needs to be established. This includes bibliographical research, in
which existing methods are analyzed in detail and suitable technologies are identified and
compared. The acquired knowledge is later be used for the practical part of this thesis.
The following sequence of tasks allow a structured workflow:

1. Face recognition analysis: In order to obtain comprehensive knowledge about face
recognition, the current state of the art technologies have to be investigated first.
Face recognition can be divided into different sections and for each section, the
available methods have to be analyzed and compared.

2. Definition of requirements: In this step, the requirements for the prototype are
defined from a user point of view followed by a translation into design requirements.
This also includes defining clear borders of what the prototype should do and what
it should not do.

3. Prototype development: With the previously defined specifications, a prototype
can be developed. However, before the prototype is implemented, the design of the
application must be conceptualized.

4. Prototype evaluation: In the last step, the developed prototype is examined and
evaluated in detail. This includes comparing the performance of the different al-
gorithms in terms of accuracy, speed, and computational cost. To conclude this
evaluation, the system is tested in a simulated examination environment.

1.4 Thesis Outline

This thesis is based on existing tools and methods that are used for face recognition. To
gain a better understanding, chapter [2] provides an overview of the different concepts and
state of the art methods that are of great importance for this thesis. This is followed
by the prototype design and implementation in chapter |3| where the underlying structure
and implemented code is examined in more detail. An evaluation of the methods as well
as a simulated test run, is shown in chapter [In the final chapter, chapter [5 there will
be a conclusion of this thesis consisting in a summary and suggestions for future work.

Chapter 2

Fundamental Concepts and Related Work

To give an overview, this chapter provides an explanation of the different concepts dis-
cussed in this thesis, such as facial recognition and its variations as well as optical character
recognition. For each of these concepts, state of the art methods or algorithms are briefly
explained.

2.1 Short Introduction to Facial Recognition

Already 60 years ago in the 1960s, three programmers, funded by an unnamed intelligence
agency, worked on a program that recognizes different faces [15]. Their initial approach
involved landmarks that were manually set on the face at locations such as the mouth or
the center of the eyes. Distances and distance ratios were then automatically computed
and compared to other faces. If the deviations were small enough, a match was made.
Later, they searched for ways to automate the setting of landmarks in order to reduce
human labor.

Nowadays, face recognition is ubiquitous and unlocking phones with this technology
seems to be completely normal for almost everyone. Not only large companies, but also
governments invest in facial recognition research but do not publish any numbers on their
expenses, due to the fact, that it is up to this day a rather controversial topic. Face++,
China’s biggest facial recognition company, for example has raised USD 460 million to
invest in a face recognition system for a payment software [9]. Information from this and
many more companies alike led to an estimated market value of USD 3.86 billion in 2020.
This value is expected to grow to USD 8.5 billion by 2025 [25].

2.2 Variations of Face Recognition

There is a large variety of possible application of facial recognition and it can be split
into two major categories: Access control and security. Being one of the easiest biometric
characteristics that can be used to identify a person, facial recognition got very popular
in the last few years and different techniques of recognition have emerged. The term
biometrics is composed of two parts, namely the greek words "bios” (life) and "metrikos”
(measure). Commonly, facial recognition is divided into the following three categories:
"Holistic Matching Methods”, "Feature-based (structural) Methods” and "Hybrid Meth-
ods”. The following sections are dedicated to explain the functionality and usage of each
method mentioned.

4 CHAPTER 2. FUNDAMENTAL CONCEPTS AND RELATED WORK

2.2.1 Holistic Matching Method

The holistic matching approach uses global information of the face, represented by small
features that are directly derived from the pixels of the image. With those features, called
facial features, a variance can be calculated that is used to differentiate between faces
[13]. The earliest successful demonstration of this method is called Eigenfaces. This and
a further face recognition technique will be explained in more detail in chapter [2.5.1]

2.2.2 Feature-based (structural) Method

In contrast to the holistic matching approach, the feature based method does not take
the whole face region as an input. It extracts only certain regions, called local features,
such as the eyes, mouth, and nose and analyzes their location, appearance, and other
geometric statistics. The most common method to do so, is to use an edge detection
algorithm that, as the name suggests, finds edges, lines, and curves to extract the local
features [18]. After the local features are found, a variance is calculated similar to the
holistic matching method, which can be used to match the equal faces and distinguish the
different ones.

2.2.3 Hybrid Method

In order to combine the advantages of both methods described above, a hybrid approach
has been developed. This approach divides the system into the training mode and the
classification mode. The training mode is to extract facial features after normalizing the
images. Those extracted features are taken as an input for a back-propagation neural
network (BPNN) resulting in different scores in the feature space. The classification
mode feeds a new picture to the trained BPNN. The closer this score is to one of the faces
already in feature space, the higher is the probability, that the faces belong to the same
person [14].

2.3. DIMENSIONALITY REDUCTION 5

2.3 Dimensionality Reduction

In order to convert a picture of a face into a form, that can be analyzed by a machine, faces
are represented as points in a high-dimensional image space. This image space has to be
reduced in order to minimize complexity and running time of the face recognition without
losing too much data. The best known and most used dimensionality reduction methods
are called "Principal Component Analysis” (PCA) and "Linear Discriminant Analysis”
(LDA). A visual representation of both methods is shown in figure

2.3.1 Principal Component Analysis

The earliest description of a dimenstionality reduction was made by Pearson (1901) and
Hotelling (1933). Already 50 years before computers became available to the common
people, Pearson statet, that his method of dimentionality reduction "can be easily applied
to numerous problems”. The underlying idea of this method is to use a vector space trans-
formation in order to reduce a large data set with a large number of interrelated variables
without losing the important information from the data set. The remaining variables after
the transformation were first called "principal factors” but, to avoid confusion with the
mathematical term, were then renamed to the eponymous "principal components” [12].

2.3.2 Linear Discriminant Analysis

In 1936, another method of dimensionality reduction was developed, the linear discrim-
inant analysis method uses the following three steps. First, they calculate the so called
between-class variance, by calculating the separability between different classes. The next
step is to calculate the mean and sample distances of each class, called the within-class
variance. Finally, a lower dimensional space is constructed in order to maximize the
between-class variance and minimize the within-class variance. In other words, the linear
discriminant analysis method maximizes the separation distances between different faces
and minimizes the distance of faces belonging to the same person [27].

Labelled PCA projection: LDA projection:
d Maximising the variance of Maximising the distance
ata
the whole set between groups
[]
° °
°
° °
PY []
® o
e o °®
]
° []

Figure 2.1: Schematic Representation of PCA and LDA [21]

6 CHAPTER 2. FUNDAMENTAL CONCEPTS AND RELATED WORK

2.4 Optical Character Recognition

Optical Character Recognition (OCR) is a text recognition that can turn text on digital
images into ASCII letters. It can not only read printed text, but can also turn handwritten
characters into machine-readable text. The recognition is usually done in the following
sequence of steps shown in figure 2.2

1. Gray scale
conversion

2. Filtering

3. Feature

| extraction 4. Character

recognition

Figure 2.2: OCR Procedure

1. Conversion into a gray scale image
This turns the document into a black and white image where the background and
the letters to be read are distinctively different.

2. Filtering
In this step, noise is removed from the image meaning that the edges of black areas
will get sharper and the background uniformly white. This filtering is extremely
useful when the input images carried much unwanted noise, for example, from a
scanner with low resolution or, with respect to this thesis, a picture taken with a
laptop camera.

3. Feature extraction
An algorithm searches the black area of the image to find spots that resembles let-
ters or digits. But to do so, it first needs to find the exact boundaries that contain
a character. If an input document contains several lines of written text, the rows
must be identified. The earlier detected rows have to be split again, such that words
are obtained. Now that the words are identified, they have to be split one last time
in order to find characters.

4. Character recognition
The last step converts the identified characters into ASCII letters such that it can be
read by programs. This can be done with two different methods, feature extraction
and pattern recognition, which are described in the next sections.

24. OPTICAL CHARACTER RECOGNITION 7

2.4.1 Feature Extraction

A first approach in character recognition is to decompose letters into features like lines,
curves and closed loops. A simple example of this extraction can be seen in figure [2.3]
Extracting those feature first, reduces the dimensionality of the representation making it
efficient. The extracted features are compared to the dataset of features. If the features
match, the character is recognized.

/+\+_:/\

Figure 2.3: Simple representation of feature extraciton [6]

2.4.2 Pattern Recognition

After the characters are extracted from the digital image, the pattern recognition nor-
malizes each by scaling it to 15 x 15 pixels. This new, cropped image can be binarized,
meaning that it is turned into a 15 x 15 array containing 0’s (representing white area)
and 1’s (representing black area) [16].

Sectror 0
nnnnnnnnnnnnn

uuuuuuuuuuuuu
nnnnnnn

o
000000 0.4 Track O
non i) %

COO—“DO=-0ODOC
DOt uODODO

QOO A D btk et it OC

—-_“-O0000000DOO0
=Y-T-1 c
(=]

nnnnnnnnnnn
uuuuuuuuuuu

Figure 2.4: Binarization and division into tracks and sectors |19]

The obtained binarized image is divided into 5 tracks and then subdivided into 8 sectors.
This is matched with existing templates and if all parameters match with one template
value, the character is identified [19].

8 CHAPTER 2. FUNDAMENTAL CONCEPTS AND RELATED WORK

2.5 Related Work

This chapter provides an overview of related facial recognition work including common
face recognition techniques and existing online student identification tools that use facial
recognition.

2.5.1 Common Facial Recogniton Techniques

The most common facial recognition techniques use holistic matching methods. Among
them are the eigenface and the fisherface method, which are described in the following
subchapters.

2.5.1.1 Eigenfaces

One approach for the detection of human faces is called eigenface. This method solves
a two-dimensional recognition problem projecting a face image onto a face space. The
combined eigenvectors of a set of faces are called eigenface and define the face space. The
training set contains a linear combination of eigenfaces where each face image can be
represented. The idea of using eigenfaces came from Sirocich and Kirby [29] when they
used principal component analysis to efficiently represent pictures of faces.

N

£ 1 ; - u,

3

Figure 2.5: Simplified face space with three known faces (£2, 22, and Q3) and two eigen-
faces (ul and u2) [29].

Typically, images of size 256 x 256 are used for the eigenface method. This will describe
a 65’536-dimensional vector. Similar faces are not randomly distributed, but are collected
in a smaller subspace called the face space. Each vector in the same face space is a linear
combination of the original face image.

2.5.1.2 Fisherfaces

The idea behind fisherface is to use class specific linear methods called Fisher’s Linear
Discriminant (FLD) for dimensionality reduction. In order to make the model more
reliable for classification, the scatter is shaped in such a way that the ratio of between-
class scatter and within-class scatter is maximized [3].

2.5. RELATED WORK 9

2.5.1.3 OpenCV

OpenCV stands for Open Source Computer Vision and is a library created by Intel in
1999. It works on multiple platforms which makes it extremely popular and is focused
on real-time image procession. All face recognition methods of OpenCV. In OpenCV,
all face recognition models are deduced from a class called FaceRecognizer which is the
base class, providing access to different face recognition algorithms. Included are a range
of face recognition algorithms like the aforementioned eigenface and fisherface. These
recognizers support the following functionalities:

e Training of input pictures

e Prediction of a sample image containing a face

e Loading/saving a trained model

e Setting/getting labels which are stored as a string

These four functionalities are sufficient for most applications that use face recognition.
The following method, however, uses a completely different method.

2.5.1.4 DeepFace

A new approach to the conventional machine learning models like "Principal Component
Analyses” or "Linear Discriminant Analysis” was developed by Facebook AI Research in
2014 and was further refined since. This new approach called DeepFace used deep neu-
ral networks and showed improved scaling properties when compared to the conventional
methods that had a limited capacity to leverage large volumes of data. According to the
paper published by Facebook AI Research, DeepFace reaches an accuracy of 97.35% on
the "Labeled Faces in the Wild” (LFW) dataset, reducing the error of the current state of
the art by over 27% and closely approaching a human-level face recognition performance
[26]. This dataset, containing 13,233 images of 5,749 people, was specially designed to
compare face recognition methods by researchers at the University of Massachusetts [11].

DeepFace has also contributed a significant amount in creating 3D models of faces.
This part is crucial for an exact face alignment. The non-planarity of human faces is a
challenge to normalize for sufficient face recognition parameters. The face alignment that
is used by DeepFace can be divided into two steps: 2D alignment and 3D alignment. The
alignment process starts with 6 fiducial points. Those six points are then used to scale
and rotate the input image. This approach is often used for conventional face alignment
processes. DeepFace also uses the next step in order to align out-of-plane rotations. For
this, they use a generic 3D shape model where they wrap around the 2D alignment. Using
67 additional fiducial points, this generates the 3D aligned version of the face.

10 CHAPTER 2. FUNDAMENTAL CONCEPTS AND RELATED WORK

2.5.2 Optical Character Recognition Methods

The second important building block for this thesis, is the OCR. Therefore, the two most
known and widely used methods are described in more detail in the following subchapters.

2.5.2.1 Tesseract

The OCR engine Tesseract is open-source and was developed at HP between 1984 and
1994. It began as a PhD project in software research and had a lead in accuracy, even-
though they did not publish it as an application at first. It used the feature extraction
method to recognize letters. Today, Tesseract is maintained by google and it can recog-
nize up to 100 different languages and a large number of fonts, making it a popular OCR
engine [23]. For this thesis, the Python version of this engine, PyTesseract, will be used
in the evaluation part.

2.5.2.2 PyOCR

Another OCR engine that is easy to use and has some more features than PyTesseract is
PyOCR. With this tool wrapper, one can simply change between different OCR tools by
changing one line of code.

2.5. RELATED WORK 11

2.5.3 Existing Work
2.5.3.1 Student Identification Tools using Face Recognition

In order to protect assessment integrity and avoid frauds, student impersonation has
to be prevented. To do so, security tools using facial recognition promise schools and
universities a safe student verification process. In the course of 2020, software to verify
student identification for online assessments, have repeatedly emerged. Table provides
a description of a variety of such applications.

Table 2.1: Overview of identity verification tools for online exams.

Product Description Specifications Cost
ExamShield [20] Web .por’.cal for online le'e video mgnltorlng, USD 3 per test per
examinations facial recognition student
BioID [d] Web .por’.cal for online ID' photo Ya'uhdatlon, Cost not specified
examinations facial recognition
Face verification using
ExamSoft [8] Sofjcware_ for - student a baseline image taken | Cost not specified
verification .
before examination
WISE-flow [28] Web Ipor‘.cal for online lee video II'l().IlltOl“lng, USD 11 per year
examinations facial recognition per student
Web portal for online Continuous student
SMOWL [24] bor authentication with | Cost not specified
examinations .-
face recognition

Table shows that the market is already filled with applications offering a solution
to the online identity verification problem. One disadvantage that these tools have in
common is that they are stand-alone products and cannot be used with an existing video
conferencing tool. Therefore, the goal of this thesis is to develop a prototype for a cross-
tool face verification system that can be used for applications such as Zoom and Microsoft
Teams. Another reason for this project is the centralized computing power for face veri-
fication at the host. Students do not have to download any programs or deal with new,
unfamiliar web-portals. This minimizes the risk of technical obstacles and reduces the
stress factor in an already high pressure situation

12 CHAPTER 2. FUNDAMENTAL CONCEPTS AND RELATED WORK

2.5.3.2 A real-time face recognition system using Eigenfaces

In this work, the author Daniel Georgescu [5] describes the three basic distinction of face
recognition. According to him, face recognition can be divided into face verification, face
identification, and the watchlist.

1. Face Verification
The first method of face recognition performs a one-to-one search with the intention
to compare two pictures and check if the person is the same. This method is used
to verify the identity of an individual returning a True value if the faces match and
a False value if the faces are from different people.

Figure 2.6: Face Verification

2. Face Identification
In this approach, the identity of an individual is not known in advance. The algo-
rithm performs a one-to-many search trying to find the best match within the face
database. This method will return the identity of the closest match.

Figure 2.7: Face Identification

3. Watchlist Task
Again, the identity of the individual is not known in the beginning. The aim of this
method is to check if the individual is within a list of people. Examples of this task
would be comparing flight passengers to a database of terrorists or missing people.
The output of this method will be True if the face matches an individual within the
list and False if no match was found.

Figure 2.8: Watchlist Task

To find a face on the image, Georgescu uses the Canny edge detection algorithms as a
means of noise reduction and the Viola Jones face detection algorithm to locate the face
on the filtered picture.

Chapter 3

Prototype Design and Implementation

Part of this thesis consists of creating a working prototype that can recognize individuals in
an online video conference, e.g. students in an online examination. This chapter provides
an overview of the planing and the implementation of the prototype, starting with the
definition of the requirements. After a successful requirement specification, the design of
the prototype can be elaborated. Once the requirements are set and the design is defined,
the implementation will be explained in detail using code snippets for clarification.

3.1 Requirements

The definition of requirements can be derived from the goals of this thesis, namely to
create a prototype of a software, that automates identity verification in an online envi-
ronment using face recognition. One application of this software is the identification and
verification of students in an online examination. The requirements for this application
can be divided into user requirement specification and design requirement specification,
allowing a separation of functional and non-functional requirements.

3.1.1 User Requirement Specification

The prerequisites that must be specified first are the user requirement specification, or
short URS. As the name suggests, they examine the requirements from the user’s perspec-
tive, meaning that they define the functionalities of the application. The most relevant
user requirements for the prototype are presented in the list below.

e Running on one machine
Only the examination caretaker should run this application that requires access to
the university database. This preserves from unnecessary risks of technical difficul-
ties and the program does not need to be installed by every student.

e Independent from one online video conferencing tools
A cross platform solution solves the problem of using various online video confer-
encing tools for different lectures.

e Verifying multiple faces simultaneously
Simultaneous face verification saves time and there is no need for a manual switching
between the faces.

e Intuitive real-time visual feedback
A constant visual feedback gives the exam caretaker an insight in the recognition
task. This feedback needs to be intuitive in a way, that the user can detect suspicious
incidents.

13

14 CHAPTER 3. PROTOTYPE DESIGN AND IMPLEMENTATION

3.1.2 Design Requirement Specification

After the user specifications have determined what the application shall do, the design re-
quirement specifications (DRS) need to examine how such shall function in more technical
detail. Among other things, these contain demands on the computational cost and the
usage of a screen capture method instead of a webcam-based system. These demands are
design-relevant and have an influence on the architecture of the prototype. A compilation
of the design requirement specifications is listed below.

e Accurate face detection.
The first design requirement consists in an accurate face recognition. This ensures
correct identification and verification of students.

e Low computational cost.
This application should be able to run on an average laptop and does not need an
expensive high performance computer. Lecturers should be able to use their own
laptop at a location of their choice.

e Real-time facial recognition.
This allows the program to constantly respond to changes and deliver a correspond-
ing live feedback.

e Use screen capture instead of video identification.
Taking the screen content as the input source solves many issues. The software only
needs to run on one machine and is independent from camera systems and video
conferencing tools.

Implementing these requirements, a system can be built that meets the challenges for
an individual authentication using facial recognition.

3.2 Prototype Design

Once the user and design requirements have been specified, a design can be elaborated.
The activity diagram offers a way to structurally represent the processes and behaviors of
the application. This provides a clear demonstration of the logic behind the application
and simplifies the description of the steps. Figure shows the activity diagram and the
enumerated list below serves as a step-by-step description of each activity.

1. Run Face Training with Database Pictures.
Once the program is started, it will start an algorithm that learns the faces from
the simulated university database. However, this only needs to be done once per
class, unless new changes are made in the database.

2. Capture Screen Image.
At this point, the screenshot content needs to be capured and saved as an image.
To do so, screen capture methods are used.

3.2. PROTOTYPE DESIGN 15

3. Detect Faces on Image.
Here, an algorithm detects faces on an image. This serves two purposes. On the one
hand, it is important to know the number of faces on the image, to later create the
correct amount of frames on the screen. on the other hand, the exact coordinates
of the found faces are obtained. These are used in the next step.

4. Search Matching Face in Trained Faces.
In this part, the faces found in step 3 are matched one by one with those in the
database. Thus, a True or False is returned for each face.

5. Found Matching Face?
This part is a decision point. The further procedure of the application is determined
by the output. If the face is found in the database, step 7 is executed. However, if
the face is unknown, step 6 follows.

6. Create Red Frame around Face.
If the face is not found in the database, a red semi-transparent window will appear
on the user’s screen, framing the unrecognized face. The window will be labeled as
"unknown”.

7. Create Green Frame around Face with Name Tag.
If the face is detected, the frame will be green-colored and the label corresponds to
the name of the found individual.

8. Add Person to the Attendance List.
The recognized person is added to a list that memorizes the present individuals.
This list will be used for output in step 10.

9. Terminate Program?
At this point it is checked whether the user has terminated the program or whether
it should continue to run. If no user input is received, the program jumps to step
2 and starts the loop again. If the user has terminated the program, step 10 is
executed.

10. Create Output File.
In this step, the output file is updated using the list of present students. When this
happens, the application adds a column to the attendance list, which is given as an
input to the applicaiton. To do so, it adds the current date on the top row and adds
the value "x” for each student that was found during runtime. This will create an
attendance list that can be used over a longer period of time, e.g. a semester. After
that, the program will be terminated.

The following page shows the activity diagram of the prototype with the enumeration
going from 1 to 10 as described above.

CHAPTER 3. PROTOTYPE DESIGN AND IMPLEMENTATION

1. Run Face
Training with |[&======
Database Pictures
University
Database
(\
2. Capture Screen |4
Image
\. l y
@ A
3. Detect Faces on
Image
\. J

'

\
4. Search Matching
Face in Trained
Faces)

5. Found
Matching Face?

6. Create Red
Frame around Face

7. Create Green
Frame around Face
with Name Tag

l

8. Add Person to
the Attendance List

9. Terminate
Program?

10. Create Output
File

l
®

Figure 3.1: Activity Diagram for the Prototype Process

3.3. IMPLEMENTATION 17

3.3 Implementation

To gain an understanding of the code, this chapter elucidates the implementation in more
detail. The code can be divided into three basic sections. It starts with the initialization
including the creation of the face encodings and the windows. The second section contains
the main loop which is responsible for face recognition and correct display of the colored
frames. As soon as the user interrupts the loop, the code enters the terminal phase. In
this section, the output file, i.e. the attendance list, is updated. The exact functionalities
of the three sections together with code snippets are described in the following chapters
starting with the input specifications.

3.3.1 Input Specification

Since this thesis implements a prototype and not the final application connected to the
university database, the input can be simulated as follows:

1. Student Pictures
The university database is simulated by a folder. This represents a class containing
the student images of each enrolled student. The names of the image files must
correspond to the name of the student.

2. Attendance List
The attendance list serves the user as an output and will be updated after every run
of the program. An Example of an attendance list can be found in figure 3.2l An
empty attendance list contains the student names in the first column. After every

run, the application adds a new column with the date on the first line and an ”x” at
each present student.

3.3.2 Code Setup

As soon as the application starts, a running variable is set. As the name indicates, this
is True as long as the main loop should be executed. Next, a dictionary is created to
register the student presence of this run. The current date will be added to the dictionary
and will be used when generating the output.

running = True
2 attendance_list = {”"date”: datetime.now().strftime ("%d/%
IIJ/O(‘,Y’:)}

To be able to terminate the main loop at any time by a key press, a new thread called
interrupt is started in parallel. This thread calls the function get_input which awaits user
input.

interrupt = threading.Thread(target=get_input)
2 interrupt.start ()

Furthermore, the resolution of the monitor must be defined to ensure that the screen-
shots cover the correct area.

18 CHAPTER 3. PROTOTYPE DESIGN AND IMPLEMENTATION

1 mon = {’top’: 0, 'left’: 0, "width’: 1640, 'height’:
950}
2 screenshot = mss.mss|()

To find faces, a special method called Cascade Classifiers must be defined. The code to
find faces frontally looks as follows:

1 classifier = ’"cascades/data/
haarcascade_frontalface_default .xml’
2 face_cascade = cv2.CascadeClassifier(classifier)

The last step of the initialization consists in setting up the colored frames. For this
purpose, a main window is created, which has 0 opacity and is only 1 x 1 pixel in size.
This window, also called root window, is only used to create or remove child windows
during the main loop more easily and should be invisible to the user.

1 # Initiate the root window

2 root = Tk()

3 # Set root title to "Main"

4 root. title ("Main”)

5 # Set visibility & coordinates

6 root.overrideredirect (True)

7 root . wait_visibility (root)

8 root . wm_attributes(’—alpha’, 0.0)

9 root . geometry ("%dx%d+%d+%d’ % (width, height, x, y))
10 # Set the window on top of every other window
11 root.attributes ('’ topmost’, True)

12 root . lift ()

13 # Create empty list for windows and labels

14 windows = []

15 labels = []

After this section, the main loop is executed. As long as the running variable is set to
True, the code, explained in the following section, is executed.

3.3.3 Main Loop

At this point, the program enters the Main loop. First, a screenshot is taken. However,
if there are windows in front of a face, this could lead to a distortion of the image. For
this reason the opacity of all visible windows is set to 0. After a screenshot is taken, the
windows become visible again. This happens within milliseconds and is undetectable to
the human eye.

for win in windows:
Set Window Opacity to O
win.wm_attributes (—alpha’, 0.0)

img = screenshot.grab (mon)

for win in windows:
Set Window Opacity to 0.2 (overlay)
win. wm_attributes ('—alpha’, 0.2)

N O U W N

3.3. IMPLEMENTATION 19

Next, the image is processed. To do this, it must first be converted into a numpy array.
The method used here to take a screenshot converts the image into an rgbha image. In
order to format the image into a grayscale image, this must first be an rgh image. For this
the function rgba2rgb is used here. After that the image can be converted as described.
The resulting grayscaled image serves as the input of the face detection.

frame = np.array (img)

frame = rgba2rgb (frame)

gray = cv2.cvtColor (frame, cv2.COLORBGR2GRAY)

faces = face_cascade.detectMultiScale (gray, scaleFactor
=1.05, minNeighbors=5, minSize=(80, 80))

= W N =

The list "faces” contains the following data for each detected face: x and y coordinates,
width, and height of the face. Now that the number of faces is known, it is checked
whether the needed amount of windows is currently present. If there are more faces on
the screenshot than there are windows, new windows must be added and if there are fewer,
some must be deleted.

Once the number of windows that needs to be created is correct, each face is analyzed
in turn.

count = 0
for (x, y, w, h) in faces:
curWin = windows [count]
Adjustment of Labels
if count < len(labels):
curLab = labels [count |
else:
curLab = Label (curWin)
labels .append (curLab)

© 00 J O O = W N =

The next step is a central element of this thesis. The face that is currently in focus
is compared with the images in the simulated university database. For this purpose, the
DeepFace library using the "Facenet” model is used. An evaluation of the available Deep-
Face models can be seen in chapter [4]

1 result = DeepFace.find (roi_face , db_path=picture_path ,
model_name="Facenet”, enforce_detection = False)

The result is a numpy array where if result.shape[0] > 0, a match has been found. If
this is the case, the window color, that is set to red by default, will turn green. Addition-
ally, the name of the detected student will be added to the dictionary of the attendance
list. If the student already has an entry in the attendance list, the corresponding counter
increases by one. This serves to recognize false matches that can be excluded by setting
a threshold value.

20 CHAPTER 3. PROTOTYPE DESIGN AND IMPLEMENTATION

1 col = "red”

2 if result.shape[0] > O:

3 # Get student name

4 student_name = result.iloc [0].identity.split(’/")
2]

5 # Set color to green

6 col = "green”

7 # Update the attendance 1list

8 if student_name not in attendance_list:

9 attendance_list [student_name] = 0

10 elif attendance_list [student_name]<20:

11 attendance_list [student_name] += 1

12 else:

13 # Set the label to "unknown"

14 student_name = "unknown”

However, if the face is not found in the simulated university database, the window color
remains red and the student_name is set to "unknown”. In the last step, the student_name
is set as a label for the window and the window color is set accordingly.

1 # Set the labels

2 curLab . configure (text=student_name)

3 curLab . pack ()

4 # Set visibility and update the coordinates

5 curWin. wm_attributes ('—alpha’, 0.2)

6 curWin . geometry ("%dx%d+%d+%d” % (w / 2, h / 2, x [/ 2,y
/ 2))

7 curWin. configure (bg=col)

8 curWin . update ()

9 count += 1

After the program iterated through all faces and adjusted the windows, the running vari-
able will be checked. If running is still True, the loop will start again from the beginning.
However, if the user has set running to False by a keypress input, the next step will follow.

3.3.4 Generate Output

As soon as the user stops the program by pressing ”s”, the end phase of the program is
initiated. First, the global variable running is set to False causing the main loop to stop.

1 global running, attendance_list
2 running = False

After that, the attendance list has to be updated. For this purpose, the current atten-
dance list must be read. To do this, the code below can be used. First, an empty string
is created which is used to copy the current document and add new information at the
end of each row. Then, the file is opened and read line by line. On the first row, the
date is added. After that, it is checked if the student with the given name was in the
dictionary of the present individuals. Additionally, a threshold can be set here, which in
this case was set to 3. This means that if an individual was recognized less than three
times, he/she is not considered present.

3.3. IMPLEMENTATION 21

1 to_write = 77

2 with open(”AttendanceList.csv”) as list:

3 count = 0

4 lines = list.readlines ()

5 for line in lines:

6 line = line.rstrip ()

7 line += 7"

8 # Add the date in the first row

9 if count = 0:

10 line 4= str(attendance_list ["date”])

11 count += 1

12 name = line.rstrip ().split(7;”)[0]

13 # If the person was present & over the threshold

14 threshold = 3

15 if name in attendance_list and attendance_list [name| >=
threshold:

16 line 4= "x”

17 to_write 4= line+"\n"

The string to_write recreates the attendance list and adds the new information such
that the attendance list can be updated by writing said string in the file.

1 with open(”AttendanceList.csv”, "w”) as writer:
2 writer.write(to_write)

The attendance list is saved as a csv and can be opened and viewed with excel. The
following figure shows an example of an attendance list. The advantage of this represen-
tation is that it can be used over the course of an entire semester. A lecturer can run this
program to check the attendance for both, lectures and online examinations.

AttendanceList

Student Name 09/08/2021 10/08/2021 11/08/2021
Peter Dinklage X X

Kit Harington X

Emilia Clarke X X X

Lena Headey X X X

Nikolaj Coster-Waldau | x X

Sophie Turner X X

Figure 3.2: Example of an Attendance List

The attendance of a student is represented by an "x” at the corresponding date. This
is a simple representation, as it is often used to check presences. Having this automated,
saves manual work, valuable time, and is not prone to human error.

22 CHAPTER 3. PROTOTYPE DESIGN AND IMPLEMENTATION

3.4 Algorithm for Method Comparison

In this chapter, the design and the implementation of the DeepFace comparison method
will be explained in more detail.

The comparison method uses the following input:

e "models” - A list containing all models that shall be compared
e "pictures” - A list of pictures. One picture per person to learn the faces

e "folders” - A list of folders. Each folder is named after a person that should be
compared and contains three pictures of given person.

e "picture_location” and "folder_location” - Location of folders and pictures

3.4.0.1 Code for DeepFace Comparison Method

This testing follows a sequential set of steps shown in figure [3.3]

1. Create
Output File 2. Loop
T through Models 3. Loop

I through Faces 4. Use Verify
]| Method 5. Track Time

I /CPU /Memory 6. Update
I »| Output File

Figure 3.3: DeepFace Comparison Procedure

1. The text document "TestResults.txt” is created, which can later be easily processed
as csv via excel. This document serves as the output and stores the resulting True/-
False values of the face recognition.

1 # Open / create Textfile for the results
2 with open(’ TestResults.txt’, 'w’) as results:

2. In order to run this method for all available DeepFace models, a for loop will iterate
over a list containing all models.

1 # Loop over the Models
2 for model in models:

3. similar to the models, a loop is needed to iterate over each reference picture.

Loop over each Person
2 for person in pictures:

3.4. ALGORITHM FOR METHOD COMPARISON 23

4. Before the verify method can be called, a string has to be defined, that stores the
True values as 1’s and the Fulse values as 0’s. Further, counters will be set, that
are needed to analyze the models in terms of time, CPU, and memory usage.

1 # String that will be filled with 0’s (False) and 1’
s (True)

2 truefalse = "7

3 # Floats counting time / CPU / memory

4 total_time = 0.0

5 total_cpu = 0.0

6 total_memory = 0.0

The following code snippet shows the iteration over every file inside "folders”. The ver-
ify method checks for each file, which is not hidden, if it matches the person. If a match
is made, it adds a 1 to the "truefalse” string, else a 0.

for folder in folders:

2 # Walk through the each folder
files = list (os.walk(folder_location + folder))
[0][2]

4 for file in files

5 # Ignore the hidden files containing "
DS_Store"

6 if "DS_Store” in file:

7 continue

8 # Save current time in a variable

9 date = datetime .now ()

10 # Compare the current face with the picture
using given model

11 result = DeepFace.verify (picture_location +
person, folder_location + folder + 7/7 +
file , model_name=model, enforce_detection
=False)

12 # Add a 1 to truefalse if the face is the
same, else add O

13 if result[”verified”]:

14 truefalse += 71,7

15 else:

16 truefalse 4= 70,”

24 CHAPTER 3. PROTOTYPE DESIGN AND IMPLEMENTATION

5. In order to capture the time, cpu, and memory usage correctly, it has to be added
after each iteration. This will produce an accurate average in the end.

1 # Adding time / cpu / memory
2 total_time += float (str (datetime.now() —
date) [5:])

3 total_cpu += psutil.cpu_percent ()

4 total_memory += psutil.virtual_memory () [2]

5 # Calculate averages

6 average_time = total_time / (len(folders)xlen(
folders [0]))

7 average_cpu = total_cpu/(len(folders)xlen(folders
o))

8 average_memory = total_memory / (len(folders)xlen(

folders [0]))

6. In the last part, the output is prepared. For this purpose, a string is filled with the
retrieved information and is written into the output file. The separation by commas
allows the document to be opened as csv via excel.

Prepare the Output
out = truefalse+str(total_time)+",.,”
+str (average_time)+" "
+str (average_cpu)+",,”
+str (average_memory)
Print Output to the TestResults File
print (out, file=results)

N O U R W N

Chapter 4

Evaluation

This chapter describes the evaluation and analysis of the prototype concerning the differ-
ent deployed methods. Many different approaches, which are described and compared in
detail in the following sections, were taken into consideration to find a fitting algorithm.
The subsequent aspects are the cornerstones of this evaluation.

1. Evaluate - 3. Increase Face 4. Evaluate 5. Perform and
2. Optimize o
Predecessor Image Input Recognition Character Evaluate
Template P Accuracy Recognition Simulation Exam

Figure 4.1: Aspects of Evaluation

Both the results and the procedure of the evaluation are explained in detail in the
following chapters.

4.1 Face Recognition Template using OpenCV

To start this evaluation the OpenCV template, processing camera input to compare to
a set of pre-learned pictures, was followed. This method was also used by the predeces-
sor of this thesis [10], that studied more closely the positive and negative aspects of this
approach. One drawback of this method is that the camera is used by both, the video con-
ferencing tool and the identity verification application. Another drawback is the lack of a
sufficiently large learning set. Each student has only a single photo in the database, which
is too few to learn from for an accurate face recognition using the OpenCV-template. This
lead to the recommendation to use screenshots to counteract those negative aspects. That
not only solves the problem with the camera being already used for the conferencing tool,
but also would allow to use several screenshots to increase the size of the learning set.
Thus, the student picture located in the university database serves as the comparison
picture. Another advantage that this method holds is that it runs on a single host cen-
tralizing the computing power and avoiding additional tasks for students.

To collect screenshots, the python library called PyAutoGUI [1] was selected, which
is specialized to automate graphical user interfaces. It is straightforward to use and ac-
cording to the official documentation, the pyautogui.screenshot() function takes about 0.1
seconds on a 1920 x 1080 screen.

25

26 CHAPTER 4. EVALUATION

Running the OpenVC template with PyAutoGUI proved to be very slow, in which a
single frame took 0.43 seconds to take, meaning that if 10 pictures were needed for an
accurate face recognition, gathering the frames would take over 4 seconds (data collected
based on a 2016 MacBook Pro with the 2.7 GHz quad-core Intel Core i7 processor). This
finding initiated a process of method comparisons, that shaped the nature of this thesis
into a comparative one. The following subsections explains the exact comparisons that
were conducted for the evaluation. At the end of each section, the decision for the further
procedure is explained and justified.

4.2 Increase Frame Rate of the Screen Capture

The OpenCV approach, described in the previous chapter, take screenshot input in order
to learn recognizing the given person. Valuable time can be saved by increasing the frame
rate of the screen capturing method. For that, three of the supposedly fastest screen
capture methods for Python have been compared in this section: PyAutoGUI, PIL Im-
ageGrab, and Python MSS.

e As shortly introduced in the previous chapter, PyAutoGUI is a Python library that
was made to easily automate graphical user interfaces. To do so, it contains a
method to capture screenshots. To define the screenshot region, the variable region
can be changed using four parameters left, top, width, height.

e PIL, short for Pillow, is a Python Imaging Library that adds image editing capabil-
ities to the Python interpreter. The ImageGrab module from Pillow is a method to
copy contents of the screen directly to the clipboard or save it in a file. By default,
the entire screen will be captured. To change this, one can add the variable bbox
with the parameters X_Left, Y_Top, X_Right, Y_Down.

e Python MSS was developed as an ultra fast cross-platform module that can take
multiple screenshots. It can be easily embedded into the program and can save a
screenshot directly as a PNG file and uses a dictionary, called monitor, to define the
screenshot region using left, top, width, height.

To decide which of the mentioned methods is the most suitable for this purpose, a per-
formance test was carried out. The test shall compare running time, CPU consumption
and memory usage. The results of this test file are shown in table It is is to be
mentioned that the table shows the average values of a total of 10 screenshots taken.

Table 4.1: Results of Performance Tests

Method Time [s] CPU [%] Memory [%] Method Call

PyAutoGUI 0.58 s 16.53 % 42.42 % pyautogui.screenshot(region)
PIL ImageGrab 0.34 s 1431 % 42,6 % ImageGrab.grab(bbox)
Python MSS 0.06 s 14.93 % 43.01 % screenshot.grab(monitor)

4.2. INCREASE FRAME RATE OF THE SCREEN CAPTURE 27

The second column of the table shows the time that was needed to capture one screen-
shot in seconds. For the CPU and the memory consumption, displayed in the third and
fourth column, a cross-platform library called "psutil” was used [22]. Psutil stands for
"Python System and Process Utilities” and can retrieve performance information on run-
ning processes. The function cpu_percent that was used to get the CPU usage in percent.
The second psutil method, virtual_memory, returs statistics on the memory usage. This
list includes following types of memory data: total, avalilable, percentage, used, free, ac-
tive, inactive and more. From the many types of memory data the percentage is most
significant in this context and it is calculated as follows: (total - available) / total * 100.

The parameters x,y, w and h, that were used for the screenshot size are shown here
for reasons of transparency and replicability. It is also worth mentioning that these tests
were run on a 2016 MacBook Pro with the 2.7 GHz quad-core Intel Core i7 processor.

Left side x = 0

Top side y = 0

Screen width w = 1640
Screen height h = 950

Each of the three methods have their pros and cons. Python MSS is by far the fastest
of the evaluated methods being over 5 times faster than second place. In terms of CPU
percentage is PIL ImageGrab in the lead, followed closely by MSS and PyAutoGui. The
first place in memory consumption is PyAutoGUI, just a little less memory intensive than
the other two. In summary, only minor differences can be seen in the CPU and memory
usage. The most significant difference between the methods lies in the running time,
where Python MSS is by far superior. As a result, said method will be used at the testing
stage and in the final prototype.

28 CHAPTER 4. EVALUATION

4.3 Higher Accuracy of Face Recognition

Once a satisfactory solution for the input has been found, the accuracy of facial recogni-
tion was tested and compared with alternatives. For this purpose, the OpenCV template
was used to obtain an initial value that can be used to compare to other face recognition
methods. In order to obtain such a value, the OpenCV template is provided test data and
evaluated on accuracy. The dataset, created specifically for these evaluations, consists of
15 cast members of the popular television series "Game of Thrones”.

The results of the test are shown in the table 1.2 The first row contains names of
people that the program tries to recognize. Each following row shows one test run where
the program tries to assign the face of a person the left to one of the people on the top
line. E.g. for the first test run it means that the program gets three pictures of Alfie to
learn from but assigns it incorrectly to Conleth. A perfect run would thus only have X’s
on the diagonal, which is marked with the dashes. On the last column is the confidence
value, which indicates the distance to the closest item in the database. A confidence value
of 0 would be a perfect match.

Table 4.2: Evaluation of the Facial Recognition using 3 reference Pictures

OpenCV Confidence
=QIgE2EEEEEE R EZ S
5|2 E|E|3 |78 ElEE|E| e |E

@ & | ® o, o) = | &)
= o, o
CED.

Alfie -10[X]0]0[O0OJO|O0O|0O]O]O]O]O]O0O]|O0]|112

Carice 0O/-[X]0/0/0]O0O]O|O]O]O|OLO0]|0]O0]106

Conleth X/0|-/0]0|0]0O]O0O]|O[OJO0O|O0O]O0O]O0O]O0]104

Emilia 0O/0(X|-/0/0]0]OJO0O]O]O]O|O|0|0]85

Gwendoline | 0 | O | X | 0| -]0[0,0]0|0O]O0O]O0O]0]0]O0/]098

Tain Oo/jo0o(xXx}|0l0-]0]010|0O0O]0O0OJO0OL0O00]O0]116

Isaac 0O/0[0]O0OlO|IO]-[X|0]0]0]0OL00]O0]154

Kit ojo(xXx|o0oloj0j0|-10]0]0O]OJOJO|0]|T70

Lena ojo(xj{ofo/0j0{0|-10]0[0100]O0]113

Liam X/0/o0(0j0{0]0O0]O]|O|-10]0]0]O0]O0]103

Maisie X/0/0l0|0O|O0O]O]O]O[O|-10]0]0]O0]1]126

Nethalie 0O/]0(X|0l0OJ0]O]OJO]O]O]-]01010]|T72

Nikolaj 0O/jo0o(xXx|0l0J0]0O]OJO0O]O]O]O|-10]101]80

Peter 0Oojo0o(xXx|0l0J0]0O]OJO0O]O]O]O]O|-10]68

Sophie 0O/]0[O0]OlOJO]O|X|O0O]O]O0O]O|O|O]| -9

This table shows that the OpenCV method, where three pictures of each person is given
as a training set, behaves in an unexpected way. There seems to be an extreme bias to-
wards one person, in this case towards "Conleth” with a few outliners towards ”Alfie” and
"Kit”. A short research confirms that the OpenCV face recognition needs more than three
pictures for better results. Ideally there should be 10 or more pictures of each person [7].
Optionally, one can also add an "Unknown” dataset filled with different people that are
not within the other pictures.

4.3. HIGHER ACCURACY OF FACE RECOGNITION 29

In order to test this with more picture, a larger database with 10 pictures per person
was created and tested similar to the previous trial.

Table 4.3: Evaluation of the Facial Recognition using 10 reference Pictures

OpenCV Confidence
-lalalglolslr mloioizlzlz vl
SIE|S E|2|5 |8 5|8 (8 B2 F &2

= 3 ==
5

Alfie -10]0]0[0O]0O]0|0]0|X|[0O]0O|O0O]0|O0]B58

Carice 0O/ -/0[0/0|0O]O0O]O0O]O|X[0|0]0]0]O0]1]40

Conleth 0/0/X/0/0/0[0O]O|OJO0OlO|O0OJ0]O0]O0]4

Emilia 0/0/0|-10/0|X|0[0OJ0O]O0OJO0O]O0O0]O0]1]35

Gwendoline | 0 |0 [0 |0 -]0|[X|0[0]0[0]0|[0]0|0]50

[ain 0/0/0l0|0|-]0]0O|O0OJO0O|O0O|X|0]0]|O0]|64

I[saac 0/0/0lO0O|O0O|O]-]0]0X[0O|0]0|0]O0]85

Kit 0/0/0l0|0|X|0O|-]0/0]O0OJO]O|0]O0]23

Lena 0/0/0[0|0|O0O|X|0]-/0]0J0]0|0]O0]1]®63

Liam 0/0/0[0O|0|O0O]O]|]O]OX[0O|0]00]O0]46

Maisie 0/0/0(0X|0O]O0O]|]O0O]OJO]-10]0,0]01]T79

Nethalie 0/]0/0(0/0|O0O|X|0]0O|O0O]O0O|-]0]0]0]1]23

Nikolaj 0/]0/0lO0O|O0O|O]O]|O]OJO]O|X|-10]0130

Peter 0jo/xXf0oj0/0(0j0OlOJO0OlO]|O0J0]-]01]21

Sophie 0/0/0l0O|0|O0O|X|0]0OJO0O]O0OJO0O]O0|0]|X]18

Table that the accuracy of the OpenCV method has increased but is still far from a
reliable solution. With only 3 matches out of 15 attempts, the accuracy is at a low 20%.
Another difference compared with the experiment with 3 learning images is that the con-
fidence values became smaller. The first test had an average confidence value of 100.2
whereas this test run has an average confidence value of 45. This findings has brought
this thesis to an important decision with the following options:

1. Using the OpenCV method with a high amount of pictures for the training set.
2. Searching methods with a higher accuracy that need fewer pictures.

The high number of pictures required by the OpenCV method leads to a longer dura-
tion of capturing screenshots. In an online examination the organizer would have to wait
several seconds for each student until sufficient pictures are taken. Only after the pictures
are captured, the program can start learning the faces and compare them to the student
foto in the database of the university. Finding better methods that require fewer pictures
in the learning dataset could save valuable time. Furthermore, if there exists a method,
that only needs a single picture for an accurate face recognition, the learning could be
done at the start of the program and verify the students in real time. Such a method
is offered by the DeepFace library with its modules specialized in face recognition even
with only a few comparison images.The following chapter discusses the DeepFace modules
mentioned and the tests that were performed as part of this thesis.

30 CHAPTER 4. EVALUATION

4.3.1 Face Recognition Alternative using DeepFace

Facebooks DeepFace offers an alternative to the OpenCV approach that not only uses
fewer pictures but also promises a higher accuracy. According to Facebook AI Research,
DeepFace can reach an accuracy of 97.35% which is almost on a human level. It also offers
state of the art models for the analysis like VGG-Face and Google Facenet. Each method
and their according Accuracy on the popular LEFW (Labeled Faces in the Wild) dataset
[11] is shown in the table below.

Table 4.4: DeepFace Models Overview

Model Developer LFW Accuracy
VGG-Face | University of Oxford 97.78%
FaceNet Google 99.63%
OpenFace | Carnegie Mellon University 93.80%
DeepFace | Facebook 97.35%
DeepID Chinese University of Hong Kong | 99.15%
ArcFace Imperial College London 99.40%

According to Table 4.4 FaceNet and ArcFace show the best results with 99.63% and
99.40% respectively. To check whether these data were accurate, they were compared to
the same dataset as from the first tests. Earlier three reference pictures were used to
recognize one face. However, to evaluate the DeepFace library, only one reference picture
is used but is checked against three faces each. This test is done for each of the DeepFace
Methods mentioned in Table (4.4l

4.3.2 Comparing DeepFace Models

The results of the tests, for which the code was shown in chapter is examined
in detail in this section. The output of the algorithm is a CSV file, which after a short
processing looks like Table [4.5] For a better visualization, the results were colored. The
green cells show that the model correctly recognized the reference picture. For example,
VGG Face recognized two out of three images of "Alfie”. The blue cells indicate false
negatives which means that a face corresponding to a reference picture was not recognized
but should have. The red ones are false positives. Here, a face was allocated to the wrong
reference picture.

Positive |Negative

True 1 0
False 1 0

Figure 4.2: Confusion Matrix

31

Table 4.5: Comparison of DeepFace Models

4.3. HIGHER ACCURACY OF FACE RECOGNITION

6000 S oCcoCcocooo S oo o Cc oo oo oo O Do oo oo oo oo (=] oo [=Jg=} [=J=} (=] oo oo oo CcoCcoo
..m.nUOnU oo cCcoococooco oo cCcoococococoooo cooocoococoococoCo (=1 o o f=} o o o o (=1 coocoocoococoocoooc o
(=}
SOOO S oCcoococooo Do o Cc oo oo O oo oo oo o oo (=] oo =1 (==} [=JN=} (=] oo oo oo CcoCcoo
ocCocoCococoCcoococoocCc occoccoococococoocoo ocCcoococoocoococooCo (=1 o o f=} (==} o o o (=1 cooocoococoococoCoco f=}
b
i
HOOOOO coocCcooo S coocc oo oo oo o S o oo oo ococooC (=] oo =1 [=Ny} oo o (=] oo oo oo CcoCcoo =1
o
occococo cooccocoocCc occoccoococococoocoo ocoococoocoocococoCo (=1 o o f=} o o o o o (=1 coococoococoocoooc o f=}
.MOOOOO coocoo oo ocooc oo CcooCoc o oo|CcocoococoocoocCocooCo o o (=1 o o f=} =1 o o o o o o cooCcoococoocooo (==}
NOOOOO oo ocCoc oo oo ocooc o Ccoococoooc o o ocoocc o CcoococoocCo [=Jg=} (=] o o =1 (=] [=Jg=} c oo =] ScoOocCococ oo oCc o oo [=Jg=}
WOOOOOOOOOOO oo Coc|CcoocoocoocCocooCo oo occoococoocococo oo o oo (=1 o o f=} o o =} o o o o coocCocoococoocoo o oo
umOOOOOOOOOOO S oo o Cc o oo oCocC coOocoocc o c o oo o [=JN el) (=] oo =1 f=j=} =1 oo o (=] oo oo oo oCc oo oS oo
o
NOOOOOOOOOOO oo Coc|CcoocoocooccooCo oo ocoococoococooc oo o oo [=1 o o f=} o o f=} o o o (=] coocoocoococoocoo o oo
60000000000 cooCoccoocoCcooooo ScoCoc oo oo oo oCc o coc oo (=] o o =1 oo o cococococ o [=jpe} ocoocococococoCc o oo oo
z
MOOOOOOOOOO cooCoccocoCcoooco o ScSoCoc oo oo oo oCc o ScoococCccoCc o o o =1 oo oo coococo o [=jp} ocoocCococococoCc o oo oo
00000-000 oo oo oo oo oo O oo oCcCoc oo oo oo coooQoCcocoCc o oo oo oo cooc oo o (==} oo ocoocooC oo o oo
(=)
(==} o o o oo [=R=leleE-l=E-E-R-el-lel--] coOCcoQoCcCoc oo oo oo coooQoCcocoCc o o o oo oo coo oo o ==} oo oo ocooC oo o oo
ocCcocoococooco cooCoc oo ococococococoCo oCcoCocococoococ oo oo oo CcoococococooccCc o o f=} o oc oo ocoCc oo oo =1 [=l=] coocoocoococo oo cocoo
<
mOOOOOOOO oo oo oo oo oo oo oo oo oo oo O oo CcoCocococo oo oo =1 oo oo co o oo o (=] [=Jg=} S oo oo oo o S oo oo
=)
coocoococ oo oo oo oo o oo O S oCcoCcooCcCooc oo Cco ScoocCococoo oo =3 =1 =1 (=] (=] [=Ny} oo o (=] [=Jg=} Scoocococoo coocCcooo
=
MOOOOOOO oCcoCocCocoCococococ oo oo oo CcoocCocoococococooco coococooccoc|ocooc o f=} f=} (=1 (=1 ocCc oo oo o oCc oo cooccocooccCoc coococooo
coocococ oo 0000-000000000 oS oCcoCcooCcCoOooc oo Cc o oo Cco oo Cco =1 =1 (=] (=] co o oo o oo oo Scocococoo coocCcooo
coo oo o oo oOCcooCocCoooCco oo oCcooCcCooco oo oo o oo o000 oo < (=) (=) co o oo (==l oo o oo [=R-l-leleN-E-E=-]
moooooo ScoCcoCcoooccoocoCco S oCcoCcooCcoococoC oo ocoococoococooc oo =1 (=] cococoo o oo coococ oo S oo ococo oo
ocCoc oo oo oo CcoocCocoCococoocoocCo oo Ccoocococoococ oo ocCococococooco|o o o f=} (=1 ccocococo oo oo cooccocoo oo ocococooo
o o o o o oo [=l=] ococ|ocococococ oo Ccoocococooc oo oo CcoocCcoococ|cocoo oo f=3 (=1 oo oo o oCc oo co oo o ococCcoocoocooco
=
=
oo oo o cCoOoocoococooocoocoo oo Ccoocoocooc oo oo Cc oo Cocoococococo oo f=3 (=1 oo oo oo oo coocoo oo cCcoococooco
o
..anOnUO oOoCcococCocoococooclocococ o cooocoococoocoocCc oo oocoocoocoocCo o o (=1 oo coococococo
[=}
=
WOOOO oOoCcocococoococoCoc|oo oo CcoocCcoococolcooc o coococoocoocoocCo o o o o o (=1 f=1 o o f=} o o cocoococoocooo
Yoo o oo oo oo oo |oC oo CcoOCc oo oo oo Cc o oo CcoococoCco (=] oo o (=] (=] [=Jy=} =1 oo oo o CcoocooCco
aﬂvnuo oo CcoocCcoococoocloco oo oCcooCcoococolco o oo CocoCocoocCocoocoococ o oo oo [=1 (=] oo oo oo f=} o o oo Ccoocoocococoo
=
EOOO oo Ccoocoococoocloo oo oCcooCcoococolco o oo ocoCocoococoocoococ o oo oo (=1 (=] ococ oo oo f=} o o oo Ccoocoococooo
= o o o oo o S ocoCoc|IcC S oo ocCc o oo Ccoo|ICo ScoCcoCococoocCcoCocolco coc oo o [=] [=jpe} coococo o =1 o o SoOCcoCoc oo o oo
=
<
.ID.OO o o o o o ocooccCcooc|oo oo CcoocoocCocoocoo|ICco oo cocoococoococoocCo (=} o o o (=1 o o ococ oo oo =} o o oo ococoocococCocooo
o
Olo o o o oo o S o coCoc|IocC S oo oo oo CoCcoo|ICo ScoCcoCcocooCcoCocolco (= (=] [=Jp} oo o [=J} =1 o o S oOCcooc oo o oo
90 oo o oo o oo oo o oo oo oo oo oo oCcoo|lC cCoOoocoo0CcooocoCco (=] - o oo (=] < oo oo (=) f=1 co o oo o oo oo oo
<
CO [=R=leleleN-] oo oc oo oo oo oo OoocoCcoo|lo cCoOo oo oCcooocoCco (=) (==l -O (=) < oo oo (=) < coo oo o oo oo oo
oo ocoocoocococococoo coocoococoococoocoo ococoococoCcoococoocCo coococooco [=l=] (=1 f=} oo oo oo f=} ocCocoococoCocoococooo
o
m oo o Cc oo o oo o0 S oo oo oo oCcoOoo [=Relelele - E-R-ReR-E=-E=-E=-] Scocooc oo [=Jg=} (=] =1 cooo oo < [=Relelele - E-R=-R-lele -]
oo ocoocoocococococoCo coocoocoocoococoocoo oo oococoCcoococoocCoc (=1 o o o [=l=] (=1 f=} oo oo oo f=} oo oococoCocoococooo
o o o o o o
= = = = = =
= = = = = =
] =5 S &= <= S & o = S 42 =l [} < 2 & o=
=g @ oE T) = @ T 2T o R 9 9% =89 [P~ e 8T 0B = o E = =}
= 52 S L= g d7l = 5= ¢ = £ ‘B =2 (SRR =] £ S 8= g &2 =} = o=
D ===) d S c= =k z = 5 L E =" Rz AR < g == & g o =
£ SESEEEE EE52£% 8EE EESZ85E5EEEE55E25% EEEE:S:s% S EEEE EEs 258
<] ABR<OOHED SEZzan [R5k O] HEZZAR<OO0AOS K322 <O0RA0 S 8K <OO0RU SEZZzAR

—
=
a
o
=
=
z
m
=%
=
&)
=]

32 CHAPTER 4. EVALUATION

Table shows that the models VGG Face, Facenet and ArcFace deliver the best re-
sults. With only 5 false negatives, Facenet leads in terms of accuracy. ArcFace has 4 false
negatives, one fewer than Facenet, but is has 5 false positives, which puts this method
in second place. With only three false negatives, VGG Face has the highest number of
correct matched faces. However, it also has 28 false positives, which is high compared to
the previously mentioned methods. The other three methods do not show promising re-
sults for face recognition using only a single picture for reference. While OpenFace makes
few guesses and thus has a high number of wrong negatives, DeepFace and DeeplD tend
to have the issue that these methods make too many guesses. This leads to an increased
number of wrong positives for these methods.

Table 4.6: Error Analysis of DeepFace Models

DeepFace Model | False Positives | False Negatives | Total Error
VGG-Face 28 0 28
Facenet 0 5 D
OpenFace 2 37 39
Deepface 97 21 118
DeeplD 43 39 82
ArcFace 5 4 9

For each model, the average Time, CPU usage and memory usage have been recorded
and are listet in table [4.7] It allows a more computational comparison between the mod-
els. In terms of time needed for the face recognition, DeeplD is with under 0.7 seconds
per comparison the fastest method, followed by OpenFace with takes 0.76 seconds. The
CPU usage in percentage is dominated by OpenFace with 59%. Facenet not only leads in
terms of accuracy, but with 61.05% also in terms of memory usage in percent. In both,
time- and CPU measure, Facenet is in third place, making it not only the most accurate,
but also computationally rather lightweight. For this reason, the prototype will use the
Facenet algorithm.

Table 4.7: Computational Analysis of DeepFace Models

DeepFace Model | Time [s] | CPU [%] | Memory [%]
VGG-Face 1.0696 s | 67.5888 % | 61.7148 %
Facenet 0.7714 s | 61.5466 % | 61.054 %
OpenFace 0.7629 s | 59.0758 % | 61.433 %
Deepface 1.1557 s | 62.673 % | 61.6868 %
DeeplID 0.6936 s | 60.0223 % | 61.7825 %
ArcFace 0.8293 s | 63.868 % | 61.7472 %

4.3. HIGHER ACCURACY OF FACE RECOGNITION 33

4.3.3 Testing with reduced Picture Size

The pictures that were used for the test were larger and in higher quality than what is
expected from an online video conferencing tool such as Zoom or MS Teams. In order to
ensure a high accuracy even under imperfect conditions, a similar test is carried out with
a new set of input pictures. This time only four different faces have to be recognized, and
for each reference picture, the program compares the same face in different sizes. They
start at 100x100 pixels and decrease in steps of ten until 10x10 pixel as shown in figure [4.8]

B
Figure 4.3: Example Collage of Input Images with reduced Size

Table [4.6] shows the accuracy of the different DeepFace models. The accuracy is mea-
sured in percent and ranges from 0%, meaning none of the four people were recognizes,
to 100%.

caleatie| S 1818588188188 ¢8
Picture Size § 8| R | 8|3 |8 | &8 || S
VGG-Face

OpenFace

DeepFace 50%

DeeplD

ArcFace

Figure 4.4: True Positives in Percent per Picture Size and Method

The models VGG-Face, Facenet and ArcFace perform well in terms of true positives
despite reduced picture size. VGG-Face had a total of 4 false positives, making it less
reliable than the other two methods that had none. In terms of reduced image size,
ArcFace performs best followed by Facenet.

34 CHAPTER 4. EVALUATION

4.3.4 Testing with reduced Picture Resolution

Not only the picture size can vary when using online video conferencing tools, but also
the video resolution. A short drop in Wi-Fi connection, which can be expected at any
time, is enough to drastically reduce the image resolution resulting in blurs and artifacts.
The reduction in image resolution is called image compression and can be noticeable in
extreme cases especially if a so-called lossy form of compression was used, meaning that
image information is lost and cannot be restored. This is why it is important for this the-
sis that the face recognition also works with a low image resolution. To test this, a new
set of input pictures has been prepared. Similar to the comparison with different sizes,
the picture quality was gradually reduced by compressing the images to a few kilobytes.

Figure 4.5: Example Collage of Input Images with Image Compression

The dataset contains only JPEG pictures for the reason that it is a lossy form of com-
pression and thus is suited for a worst-case scenario test. Again, the same four reference
pictures have to be recognized. This time however, only 6 pictures each have to be com-
pared. The picture compression used in the test case starts at 30 kilobytes and was
gradually reduces to 5 kilobytes.

Evaluating
Picture
Resolution

OpenFace

DeepFace 50%| 75% 50%| 75%| 75%
DeeplD 25%| 25%| 25%
ArcFace

Figure 4.6: True Positives in Percent per Picture Resolution and Method

44. OPTICAL CHARACTER RECOGNITION 35

The results in the graph show that the methods perform exceptionally well. Especially
VGG-Face, Facenet, and ArcFace stand out with an accuracy of 100% true positives.
However, VFF-Face had a total of 5 wrong positives, making it less accurate in total.
Facenet and ArcFace have no wrong positives, meaning that picture compressons down
to 5 kilobytes have little to no effect on these methods.

4.4 Optical Character Recognition

A further building block towards the prototype is an optical character recognition, or
short OCR. The Idea behind using OCR for this prototype was that each student will
show the student ID to the camera. The OCR algorithm reads the contents of the card
and will find given person in the university database. This way the student pictures from
the screen capture tool will be compared to the correct student photo. This method per-
forms a face verification.

However, this method is only applied if it has a higher accuracy than the DeepFace ap-
proach. The comparisons of the last chapter have shown that DeepFace has an accuracy
of 99.26% without having to read out the name or the student number first. In addition,
only one image per student is required for the face identification approach which can save
time. In order to conduct the OCR test, existing methods have to be found and analyzed.

The two methods that are widely used for an accurate OCR are called PyTesseract
and PyOCR. To test the methods, a dataset containing 60 pictures of UZH student ID’s
taken by a laptop camera is created. This allows the test to simulate students holding
theirs student ID to the camera. The first trial processes the pictures directly, without
any image transformations. Out of the 60 pictures, neither PyTesseract not PyOCR could
recognize a single name on the student ID.

Figure 4.7: OCR input without Image Transformation

In order to achieve better results, the source pictures have to undergo several trans-
formations as shown in the following code snippet. The image is first transformed into
a numpy array. This way it can be converted into a grayscale image. Further transfor-
mations using gaussian blur and binary thesholds turn the input image into a black and
white picture with high contrast and visible edges. This increases the readability of the
OCR algorithm.

36

Tt = W D =

~N

CHAPTER 4. EVALUATION

img
img

np.array (Image.open(picture_folder+file))
cv2.cvtColor (img, c¢v2.COLORBGR2GRAY)

gaussian = cv2.ADAPTIVE_ THRESH GAUSSIAN_C
binary = cv2.THRESH BINARY
img = cv2.adaptiveThreshold (img, 255, gaussian, binary, 31,

cv2.medianBlur (img, 1)
cv2.bilateralFilter (img, 9, 75, 75)

JSchaufelberger ST
Ahne N
13061998 AT _i”f.,,......,,w.p..,
L. ,_:;h';'“_,‘.p 7“, PPN PP SN, L LV R LR gﬁltlgh{: 3
. Bachelor;.: dum o % Jg 0" 021
CWWF S E w.'
VT03152 L TARUH G&d %,

'w

Vann '\'17/ —

Figure 4.8: OCR input after Image Transformation

After the transformation, PyTesseract reads the name in 20 out of 60 pictures. With
25 correct answers, PyOCR has a better performance. However, both methods have an
accuracy of less than 50% and are therefore not suitable for the application. This leads
to the decision to create the final prototype without OCR.

4.5. SIMULATED TEST ENVIRONMENT 37

4.5 Simulated Test Environment

Once the prototype is finalized, the application has to be tested. To do so, an examination
environment, shown if figure was simulated using the online video conferencing tool
"Zoom”. The purpose of this trial is to evaluate the functionality and accuracy of the
prototype. To preserve the identity of the participants, mockup images and names were
used here.

_ lainGlen %

Figure 4.9: Mockup picture from the first Trial

In order to test the accuracy under different circumstances, two runs were executed.
The first trial had plenty of light whereas the second one had more challenging lighting
conditions. The test simulated a class of 5 people, each having one photo in the university
database. The stored photos have a high resolution of 1820 x 1610 pixels with a uniform
background which are good conditions for the face training. The difference in lighting
conditions can be seen in figure showing the first run (a) with good lighting condi-
tions and the second run (b) with more challenging conditions.

(a) Well exposed Image (b) Badly exposed Image

Figure 4.10: Mockup Pictures showing the Difference in Lightning Conditions between
the first and second Run

Each trial consists of 4 loops. A loop is defined by the time needed to detect and recog-
nize each face on one screenshot. Figure and show a more detailed examination
of the experiment. Here, True stands for a correctly recognizing the person. False means
that the face of the given person was not found on the screenshot. This can also be seen
from the number of faces detected.

38 CHAPTER 4. EVALUATION

4.5.1 Trial with high Exposure

The application was able to correctly classify all faces without false positives in the first
trial. Two minor mistakes that can be seen in figure were made. The face of one
student was not detected in the first loop of this trial. The other fault was detecting
an additional face in the second loop. Since this was not found in the database, it was
marked as "unknown”. Detecting additional faces can occur when the backgrounds are
not uniform. For the remaining cases, all faces were detected and recognized correctly
which can be seen in figure 4.9

TRIAL 1 Loop 1 Loop 2 Loop 3 Loop 4 Total
Carice vanHouten True True True True 100%
Kit Harington True True True True 100%
Maisie Williams True True True True 100%
Gwendoline Christine True True True True 100%
lain Glen False True True True 75%
Faces detected 4 6 5 5 20
Runtime [s] 5.778938 7.34955| 6.888874 7.55219| 27.56955

Figure 4.11: Evaluation of the first Trial

4.5.2 Trial with low Exposure

The detection rate for the second trial was expected to be lower than in the first one. Since
online exams do not always have perfect lighting conditions, this second test was carried
out. This should provide a more realistic recognition for online exams. However, figure
shows that the applications had no problems with the light difference and despite
the poorer conditions, the application was again able to recognize all 5 people with only
one minor mistake. During the third loop, a face was not detected and could therefore
not be found in the database.

TRIAL 2 Loop 1 Loop 2 Loop 3 Loop 4 Total
Carice vanHouten True True True True 100%
Kit Harington True True False True 75%
Maisie Williams True True True True 100%
Gwendoline Christine True True True True 100%
lain Glen True True True True 100%
Faces detected 5 5 4 5 19
Runtime [s] 10.989439| 6.083668 5.46644| 6.066075| 28.60562

Figure 4.12: Evaluation of the second Trial

This test showed that the prototype provides a solution that fulfills the requirements
for identity verification in an online environment. The persons could mostly be identified
correctly in good lighting conditions as well as in low lighting. However, if this application
is to be used for large classes of several hundred of students, it is recommended to test it
with a larger number of individuals first.

Chapter 5

Summary, Conclusion, and Future Work

After the detailed reporting on the carried out work regarding analysis, implementation
and evaluation of the subject matter, it is the moment to summarize, conclude and to
consider future work. The conclusion shall answer the question that this posed in this
thesis.

5.1 Summary

Can an online identity verification based on face recognition be used in online exams?
This thesis not only answered this question but also developed a prototype to prove the
chosen concept.

Requirements of this application are runing on one machine only and being independent
from video communication tools. Moreover, a user expects to detect and recognize mul-
tiple faces simultaneously. Additionally, the application shall give an intuitive real-time
feedback. The chosen design and methods should provide a high accuracy for the identity
verification, a short run time and low computational cost.

Reading directly from screen memory made the application independent from online
video conferencing tools and moreover allowed to verify the identities of multiple individ-
uals simultaneously. The breakthrough of this thesis consisted in a change of approach.
Instead of taking the screen input as reference pictures, an improved face recognition algo-
rithm allowed to use only a single image as a reference. This led to the possibility of using
the student photos in the university database for the face encodings. Thus, a real-time
face recognition could be created, reducing the need for human intervention. Another ad-
vantage of this approach includes increased data security. If the learning of the reference
pictures can be done in advance, it could already be done by university computers. Thus,
an examiner would not need direct access to student pictures but only their face encodings.

Furthermore, it turned out that the verification process can be done without using
optical character recognition to read content on student ID cards. The identity of an
individual can be determined directly and with a higher accuracy using the new face
recognition approach.

The prototype has been successfully conceptualized, developed, and tested. The simu-
lated examination environment has shown that it is in compliance with the requirement
specifications that were defined at the beginning.

39

40 CHAPTER 5. SUMMARY, CONCLUSION, AND FUTURE WORK

5.2 Conclusion

The validation by a simulation exam proved that it is feasible to use face recognition to
identify individuals in an online environment. With this, the fulfillment of the user and
design requirements were reviewed and the usability of the software application in real
life confirmed.

5.3 Future Work

Since a prototype for an application was implemented in this thesis, it is implied that it
can be further developed and finalized in the future, such that it can be used by lectur-
ers and exam administrators at the UZH or other universities. This application would
require an interface to the university database. In addition, an intuitive front end could
be helpful. This should include a simple and elegant way to switch classes if the identity
of multiple classes needs to be verified.

With a little more computing power, this application could detect more than just the
identity of individuals. There exist modules, that can be used to assess a person’s age,
gender, ethnicity, and even emotional state. With such a real-time face analysis, one could
detect whether a person is happy, sad, scared, surprised, or neutral. This could give the
examiner an insight into the emotional state of the students. Whether this is helpful or
triggers an increase in stress level in the students could be investigated and clarified in
another thesis.

Bibliography

L =

Al Sweigart. PyAutoGUI. Version 0.9.53.

A.W. (Tony) Bates. Teaching in a Digital Age. 2019.

Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman. “Eigenfaces vs.
Fisherfaces: Recognition Using Class Specific Linear Projection.” In: ECCV (1). Ed.
by Bernard F. Buxton and Roberto Cipolla. Vol. 1064. Lecture Notes in Computer
Science. 1996, pp. 45-58.

BiolD. Face Recognition Liveness Detection. 2021. URL: https://www.bioid.com/
(visited on Aug. 24, 2021).

Georgescu Daniel. “A real-time face recognition system using eigenfaces”. In: Journal
of Mobile (2011), pp. 193-204.

Docupile. 2021. URL: https : / / www . docupile . com / optical - character -
recognition-ocr/# (visited on Aug. 24, 2021).

Doxygen. OpenCV Documentation. 2020. URL: https://docs.opencv.org/4.5.
1/db/d7c/group__face.html| (visited on Aug. 24, 2021).

ExamSoft. 2021. URL: https://examsoft.com/ (visited on Aug. 24, 2021).
University of Exeter. Facial Recognition Technology Market Research. Tech. rep.
European Regional Development Fund, 2019.

Anna Katharina Fitze. AVVS - Automated Video UZH-ID Verification System. 2020.
Gary B. Huang et al. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments. Tech. rep. 2012.

Ian Jolliffe. “Principal Component Analysis”. In: International Encyclopedia of Sta-
tistical Science. Ed. by Miodrag Lovric. 2011, pp. 1094-1096.

Sasan Karamizadeh, Shahidan Abdullah, and Mazdak Zamani. “An Overview of
Holistic Face Recognition”. In: International Journal of Research in Computer and
Communication Technology 2 (Sept. 2013), pp. 738-741.

Trupti M. Kodinariya. Hybrid Approach to Face Recognition System using Principle
component and Independent component with score based fusion process. 2014.

Jan Bergstra Karl de Leeuw. The History of Information Security - A Comprehen-
sive Handbook. 2007, p. 265.

Gurpreet Singh Lehal and C. Singh. “Feature Extraction and Classification for OCR
of Gurmukhi Script”. In: 2006.

Mayra Oliveira, Antonio Penedo, and VinAcius Pereira. “Distance education: advan-
tages and disadvantages of the point of view of education and society”. In: Dialogia
(Aug. 2018), pp. 139-152.

Divyarajsinh N. Parmar and Brijesh B. Mehta. “Face Recognition Methods & Ap-
plications”. In: Computer Technology & Applications 4.1 (2013), pp. 84-86.
Aparna Patil. “Optical Character Recognition Implementation using Pattern Match-
ing”. In: International Journal for Research in Applied Science and Engineering
Technology 7 (Aug. 2019), pp. 1092-1095.

PeopleCert. 2021. URL: https : //www . peoplecert . org/ exams - peoplecert -
online-proctoring-windows (visited on Aug. 24, 2021).

41

https://www.bioid.com/
https://www.docupile.com/optical-character-recognition-ocr/#
https://www.docupile.com/optical-character-recognition-ocr/#
https://docs.opencv.org/4.5.1/db/d7c/group__face.html
https://docs.opencv.org/4.5.1/db/d7c/group__face.html
https://examsoft.com/
https://www.peoplecert.org/exams-peoplecert-online-proctoring-windows
https://www.peoplecert.org/exams-peoplecert-online-proctoring-windows

42

[21]

[22]

23]

BIBLIOGRAPHY

NIRPY Research. Classification of NIR spectra by Linear Discriminant Analysis
in Python. 2018. URL: https://nirpyresearch . com/classification-nir -
spectra-linear-discriminant-analysis-python/| (visited on Aug. 24, 2021).
Giampaolo Rodola. psutil documentation. 2009-2021. URL: https : // psutil .
readthedocs.io/en/latest/ (visited on July 31, 2021).

R. Smith. “An Overview of the Tesseract OCR Engine”. In: Proceedings of the Ninth
International Conference on Document Analysis and Recognition - Volume 02. 1C-
DAR ’07. 2007, 629a633.

SMOWL. Enhance the quality assurance of your online assessments. 2021. URL:
https://smowl.net/en/| (visited on Aug. 24, 2021).

Statista.com. Facial Recognition Market Size Worldwide in 2020 and 2025. 2020.
URL: https://www.statista.com/statistics/11563970/worldwide-facial-
recognition-revenue/ (visited on July 5, 2021).

Yaniv Taigman et al. “DeepFace: Closing the Gap to Human-Level Performance in
Face Verification”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014, pp. 1701-1708.

Alaa Tharwat et al. “Linear discriminant analysis: A detailed tutorial”. In: AI Com-
munications 1.22 (2017), p. 22.

WISEflow. WISEflow - More than paperless. 2021. URL: https : / / europe .
wiseflow.net/ (visited on Aug. 24, 2021).

G. Md. Zafaruddin and H. S. Fadewar. “Face Recognition Using Eigenfaces”. In:
Computing, Communication and Signal Processing. 2019, pp. 855-864.

https://nirpyresearch.com/classification-nir-spectra-linear-discriminant-analysis-python/
https://nirpyresearch.com/classification-nir-spectra-linear-discriminant-analysis-python/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://smowl.net/en/
https://www.statista.com/statistics/1153970/worldwide-facial-recognition-revenue/
https://www.statista.com/statistics/1153970/worldwide-facial-recognition-revenue/
https://europe.wiseflow.net/
https://europe.wiseflow.net/

Abbreviations

ASCIIT American Standard Code for Information Interchange
BPNN Back-Propagation Neural Networks

CPU Central Processing Unit

DRS Design Requirement Specification
FLD Fisher’s Linear Discriminant

GUI Graphical User Interface

LDA Linear Discriminant Analysis
LFW Labeled Faces in the Wild

MSS Multiple Screen Shots

OCR Optical Character Recognition
OpenCV Open Source Computer Vision
PCA Principal Componant Analysis
Psutil Python System and Process Utilities
URS User Requirement Specification

43

44

ABBREVIATONS

List of Figures

[2.1 Schematic Representation of PCA and LDA |21} 5
2.2 OCR Procedurel 6
2.3 Simple representation of feature extraciton |6 L. 7
2.4 Binarization and division into tracks and sectors [19]| 7
2.5 Simplified face space with three known faces (€2, 22, and €23) and two |
| eigenfaces (ul and u2) [29]fo 8
2.6 Face Verificationl 12
2.7 Face Identification]o 12
2.8 Watchlist Taskl 12
[3.1 Activity Diagram for the Prototype Process| 16
[3.2 Example of an Attendance List| 0. 21
[3.3 Deeplkace Comparison Procedurel 22
4.1 Aspects of Evaluation|.00 25
4.2 Confusion Matrixl 30
4.3 Example Collage of Input Images with reduced Sizel 33
4.4 True Positives in Percent per Picture Size and Method| 33
4.5 Example Collage of Input Images with Image Compression| 34
4.6 True Positives in Percent per Picture Resolution and Method|. 34
4.7 OCR input without Image Transtormation| 35
4.8 OCR input after Image Iranstormation| 36
4.9 Mockup picture from the first Triall 37
[4.10 Mockup Pictures showing the Difference in Lightning Conditions between |
| the first and second Runl 37
4.11 Evaluation of the first Triall 38
.12 Fvaluation of the second Iriallo 38

45

46

LIST OF FIGURES

List of Tables

[2.1 Overview of identity verification tools for online exams.| 11
4.1 Results of Performance Testsl. 26
4.2 Evaluation of the Facial Recognition using 3 reterence Pictures| 28
4.3 Evaluation of the Facial Recognition using 10 reference Pictures| 29
4.4 Deepkace Models Overview|] 30
4.5 Comparison of Deepkace Models|. 31
4.6 Error Analysis of Deeplkace Models| 32
4.7 Computational Analysis of DeepkFace Models| 32

47

48

LIST OF TABLES

Appendix A

Contents of the ZIP-File

The enclosed ZIP-file contains the following content:

e Code

This folder contains the following python files.

1.

UZH-Verifier.py
Final Prototype

UZH-Verifier_Variables.py

This document contain variables that are used for the final prototype

Frame_compare.py
Testing file for the screen capture method comparison

Recognition.py
Testing file for the face recognition comparison

Recognition Variables.py
This document contains variables that can be changed for the test file

OCR_Compare.py
Testing file for the OCR comparison

e Documentation

A short documentation is given in the form of a text file.

e Literature

This folder contains all referenced papers.

49

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamental Concepts and Related Work
	Short Introduction to Facial Recognition
	Variations of Face Recognition
	Holistic Matching Method
	Feature-based (structural) Method
	Hybrid Method

	Dimensionality Reduction
	Principal Component Analysis
	Linear Discriminant Analysis

	Optical Character Recognition
	Feature Extraction
	Pattern Recognition

	Related Work
	Common Facial Recogniton Techniques
	Optical Character Recognition Methods
	Existing Work

	Prototype Design and Implementation
	Requirements
	User Requirement Specification
	Design Requirement Specification

	Prototype Design
	Implementation
	Input Specification
	Code Setup
	Main Loop
	Generate Output

	Algorithm for Method Comparison

	Evaluation
	Face Recognition Template using OpenCV
	Increase Frame Rate of the Screen Capture
	Higher Accuracy of Face Recognition
	Face Recognition Alternative using DeepFace
	Comparing DeepFace Models
	Testing with reduced Picture Size
	Testing with reduced Picture Resolution

	Optical Character Recognition
	Simulated Test Environment
	Trial with high Exposure
	Trial with low Exposure

	Summary, Conclusion, and Future Work
	Summary
	Conclusion
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	Contents of the ZIP-File

