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Abstract

Almost all tasks concerning the evolution and maintenance of software require a developer to
understand the code. Multiple studies have shown in the past that commented code is more
readable than code without any comments, indicating that comments are containing vital infor-
mation about the implementation. However, not all comments are of equal quality: some are
often incomplete, inconsistent with the code, hard to read and understand, or entirely missing.

In this thesis, we investigated how we can provide an approach to analyze comments and rate
them with respect to their quality in four different programming languages: Java, C, C++ and C#.
The goal of this thesis is twofold:

• RQ1: Propose a deep learning approach to classify comments into different categories, based
on purpose and semantics. We show that our classification pipeline reached an accuracy of
over 90% (F1-score), out-performing traditional machine learning models on the same data
set in the same environment.

• RQ2: Develop a tool for assessing comment quality with respect to readability, coherence,
usefulness, completeness and consistency. We will also demonstrate with said tool the evo-
lution of comment quality in four repositories, written in different programming languages
and suggest directions for future work, like an empiric evaluation with real developers.





Contents

1 Introduction 1
1.1 Comment Quality Assessment Challenges . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Goal and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Summary of Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Code Comment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Code Comment Quality Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Comment Type Classification based on Deep Learning 9
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Code Comment Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Models and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Performance of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Processing Time and Model File Size . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.3 Effects of Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.4 Preprocessing Decreases Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Comment Quality Analysis 19
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Metrics and Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Scraping Comments using srcML . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Evaluating Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.4 Aggregation and Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 Comment Evolution Repository Selection . . . . . . . . . . . . . . . . . . . . 31

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Googletest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Retrofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



vi Contents

4.3.3 Ijkplayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.4 Shadowsocksr-csharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Framework Architecture & Components 39
5.0.1 trainer.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.0.2 predictor.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.0.3 validator.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.0.4 comment_rater.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.0.5 comment_evaluator.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.0.6 main.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Threats to Validity 45

7 Conclusion & Future Work 47
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 Comment Category Classification . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2.2 Comment Quality Assessment Tool . . . . . . . . . . . . . . . . . . . . . . . 48

8 Appendix 51
8.1 Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Zoomed in Figures of Sections 4.2 and 4.3 . . . . . . . . . . . . . . . . . . . . . . . . 52



Contents vii

List of Figures
3.1 Methodology RQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Label Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 F1 by model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 F1 by preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 RQ2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Ignored Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Evaluating Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Example Directory Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Googletest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Retrofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Ijkplayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8 Shadowsocksr-csharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Rater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 Zoomed F1 by model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Zoomed F1 by preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 Zoomed Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 Zoomed Googletest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.5 Zoomed Retrofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.6 Zoomed Ijkplayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.7 Zoomed Shadowsocksr-csharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

List of Tables
3.1 System specifications of the used computer for reference of processing speeds . . . 15

4.1 Flesch Reading Ease Level Score Overview . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 All JSON attributes in the resulting file, their occurences and their aggregation tech-

niques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Overview of the chosen repositories for the comment evolution demonstration. . . 32



viii Contents



Chapter 1

Introduction

1.1 Comment Quality Assessment Challenges

Most software maintenance and evolution tasks require developers to understand the source code
of their software systems. In fact the majority of the time spent by developers constitutes of code
comprehension and adds up to a total of 58% [1]. Software developers usually inspect class com-
ments to gain knowledge about program behavior, regardless of the programming language they
are using [2]. However, comments tend to be often incomplete, inconsistent with the source code,
hard to read and understand or simply missing, which substantially complicate any program
comprehension tasks [3]. It is no secret and has been shown on numerous occasions that com-
mented code is easier to understand than code that is lacking any comments [4] [5]. This is also
why reviewing comments and their quality is an important part of any code reviewing process,
to ensure their readability, completeness, consistency, coherence, and usefulness [6].

1.2 Thesis Motivation

There are several tools to supplement the most common activities of code reviews, focusing on
code documentation and its comments. Some enable collaboration by providing a platform for
commenting on code1, others on enforcing good-practices when coding, by suggesting common
refactoring possibilities inside the IDE2 [7] [8] [9]. Some of the latter can give very limited feed-
back on the quality of code comments (e.g., class comments): For example, they can detect when
a method or class has no documentation at all. Another basic approach is evaluating the ratio of
comments to lines of code or their general spacing and distribution [10].

While the before-mentioned metrics give an easy overview of the completeness and coverage
of the comments, they can not give any true insight on the quality of the comments themselves.

The challenge within this lies in the many different dimensions of what makes a comment,
and documentation through comments as a whole, to be considered of high quality: For example,
is a comment that perfectly explains the code but is hard to read of high quality? Or is a docu-
mentation of high quality, if the comment coverage is high, but the comments themselves are too
short and do not add anything valuable to code comprehension?

1e.g. CodeFlow, Collaborator, Crucible, etc.
2e.g. PMD, CheckStyle, etc.
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1.3 Goal and Research Questions
Based on the motivation of this thesis and the proposed challenges in the field, we address the
following research questions in this thesis:

• RQ1: Does Deep Learning perform better than Machine Learning approaches in classifying
code comments?
The focus of this research questions is to compare results of Deep Learning and Machine
Learning approaches in the context of comment type classification. Results of this research
question are useful to identify what is the best approach to classify comments of different
languages.

• RQ2: How to systematically assess code comment quality in different program languages?
This research question has the goal to propose an approach that by design can be used to
classify code comment quality of different programming languages, namely Java, C, C++
and C#.

The main goal of this thesis is to answer the before mentioned two research questions and ex-
plore approaches not considered in previous work, iterate on known approaches, include proven
methods from related studies and aggregate them under one tool. The quest for those answers
resulted in an application that is able to categorize comment types and provide indications on the
quality using different and complementary criteria:

• Type of comments with respect to their purpose:

Summary, Expand, Rationale, Usage or Warning

• Quality of comments with respect to a sub-set of the following:

Readability, Coherence, Completeness, Consistency and Usefulness

1.4 Summary of Main Contributions
This thesis makes the following contributions:

• Pipeline for comment type classification: Expandable and flexible machine learning pipeline
for binary classification of comment types.

• Python tool for comment quality assessment: A tool for evaluating local project files for the
quality of their comments. The software is developed in a way that can target potentially
different scenarios:

– Code Review: The program provides an overview of the overall quality of comments
of a project hosted in GitHub comments, in a post-commit code review scenario, which
can help identifying problematic or lacking comment coverage and quality. It is in-
tended to be run locally, scraping and evaluating the comments in the local files of a
project directory.

– Code Comments Evolution: It may also assist pinpoint the lacking co-evolution of
comments with their respective source code, which is a problem discovered and dis-
cussed in previous work [3]. Applying the tool on multiple iterations or releases of a
project, one can easily observe any changes in the comments’ quality.
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– Local Development: While well-documented and commented code simplifies any
maintenance and development process, several developers overlook or delay com-
menting their code [11]. Through providing pointers to lacking comment documen-
tation and ways to increase quality consistency, the tool at hand helps solving this
problem and invokes awareness to said issues.

• Initial research: We investigated new methods of assessing comment quality and classifica-
tion and aggregated and combined proven methods in a coherent tool.

• Future direction: We suggest relevant directions for future work in the area of comment
quality assessment and how to further improve our approach and tool in the chapter 7.

1.5 Outline
After this introduction to the topic, we will provide insight into related work in the chapter 2. The
following chapters 3 and 4 are dedicated to the first and second research questions respectively,
where we define the methodology used to answer the appropriate research question and then
present and discuss the results. Chapter 5 gives some more insight in the actual tool developed to
assess comment quality. In the end we will discuss any threats to validity in chapter 6, conclude
the thesis in 7 and propose directions for future work and improvements of the proposed appli-
cation. In the appendix are the link to the GitHub repository of this thesis and some up-scaled
figures that might be hard to read and interpret in the thesis’s text.





Chapter 2

Related Work

2.1 Code Comment Classification
Related work on comment categories can be split into two main approaches:

• Category based on syntax and location: One way to classify comments is by looking at
their position and syntax. For example, a comment above a class is a header or a comment
inside a method is an in-line comment. Steidl et al. (2013), proposed a taxonomy based on a
comment’s syntax and position. Examples of the said comment category taxonomy include
in-line-, member- or section comments [6]. They did this by manually tagging 830 comments
and training a J48-model using predefined features like length of comments, the number of
brackets, etc. Generally, these methods are based on pre-defined rules and require a deep
knowledge about the domain [12].

• Categories based on purpose: The other way to classify comments into categories is to look
at their semantics and purpose. For example, a comment that summarizes the code is a
summary comment or a comment that explains the usage of the code, is a usage comment.
Pascarella and Bacchelli (2017) proposed such a taxonomy for the java programming lan-
guage [13], while Zhang et al. (2018) proposed a different one for the Python language [14].
The recent study of Pooja Rani et al. (2021) focused on creating a mapping between the tax-
onomies of different programming languages, proposing a language independent approach
to classification [15].

In our study, we will focus on the latter regarding the classification of comments. All proposed
approaches rely on a machine learning pipeline to classify the intent and purpose of comments.
The algorithms learn to classify text by observing data [12]. As stated in the first research question,
we propose a different approach to the same problem, using deep learning.

It is shown in related work about text classification that deep learning based pipelines have
surpassed common machine learning based models in multiple different tasks like news catego-
rization, sentiment analysis, etc. [12]. From this, we extracted the hypothesis that deep learning
outperforms traditional machine learning approaches for comment type classification too, as it is
also a text classification task.

It is worth noting that we will also record a comment’s type based on location alone as a
side effect of scraping for comments in files, when answering the second research question about
comment quality assessment, elaborated further in the section 4.2. Instead of using a machine
learning algorithm, comments were classified solely based on their occurrence in the code: If a
comment precedes a function, it is a function comment. If a comment is preceding a class, it is
classified as class comment. This was necessary, because some established quality metrics only
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apply for certain types of comments. For example, in-line comments should be shorter than 30
words, while class comments have no hard upper limit in length [16].

2.2 Code Comment Quality Attributes
The first question that we need to answer is What defines a comment of high quality and how can we
measure it?. This is not an easy question to answer, as related work concerning quality assessment
of comments does not have a consensus on a definition or any metrics. To illustrate this point,
we present a brief overview of some approaches from related work, who defined either top level
assets of quality, metrics to represent them or both:

• Khamis et al. (2010) propose several metrics to assess the quality of javadoc comments with
their tool JavadocMiner [17]:

– Token, Noun and Verb Count Heuristic: These heuristics are the initial means of de-
tecting the use of well-formed sentences within in-line documentation.

– Words Per Javadoc Comment Heuristic (WPJC): Average number of words in a Javadoc
comment: detects over/under documentation.

– Abbreviation Count Heuristic (ABB): According to “How to Write Doc Comments for
the Javadoc Tool”1 the use of abbreviations in javadoc comments should be avoided.

– The Fog Index: Indicates the number of years of formal education a reader would need
to understand a block of text. The fog index must not be above 12, a score between 7-8
is optimal.

– Flesch Reading Ease Level: Rates text on a 100 point scale. The higher the value, the
easier to read. The optimal score would range from 60 to 70.

• Wang et al. (2019) and Corazza et al. (2018) both propose a way of rating the coherence
of comments [18] [19]. Wang created a data set from javadoc method comments together
with a tokenized version of the corresponding code, while Corazza tried vectorizing the
comments of java methods based on their text only. Both trained a machine learning model
for binary classification (coherent or not coherent).

• Steidl et al. (2019) defines several different top-level metrics to assess the quality of C++
comments [20]:

– Coherence: How comment and code relate, i.e. method comments should contain
method names. Coherent comments should provide details and explain the non-obvious.

– Usefulness: Clarify the intent of code and be helpful. Deleting the comment should
make the code harder to understand

– Completeness: Global metric of coverage. Every file should have a license comment
etc.

– Consistency: Global metric of how uniform the comments are: Same language and
same format of license comments in all files.

• D. Steidl (2012) [16] uses the same classification metrics in her master thesis, but focuses a
lot more on usefulness, providing ways to assess it using the amount of question and excla-
mation marks in a comment: Question marks confuse readers instead of clarifying the code.

1https://www.oracle.com/ch-de/technical-resources/articles/java/javadoc-tool.html#: :text=Writing%20Doc%20Comments-
,Format%20of%20a%20Doc%20Comment,%40return%20%2C%20and%20%40see%20.
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Therefore useful comments shall never contain question marks. As a metric for helpfulness,
they deducted similarly, that an exclamation mark in a comment indicates poorly written
code, personal involvement of the author and needs manual investigation. While they are
helpful as to warn to user of hacky code, they should rather be tagged as a task comment.

• The paper of Moreno et al. (2013) proposes a tool for the automatic generation of natural
language summaries for java classes [21]. For evaluation of the application, the generated
comments were rated manually, based on three quality metrics by 22 programmers:

– Content adequacy: Is all important information reflected in the comment?

– Conciseness: Is there any information that could be omitted?

– Expressiveness: How readable and understandable are the comments?

For this study, we mainly oriented our selves on the work of D. Steidl et al., regarding the
definition and assets of quality in comments. This is because the studies are very precise in their
explanations of the methodology used and extendable to be applicable to multiple languages and
comment types. The quality assets coherence, usefulness, completeness and consistency are well
defined and could be used to describe the other metrics of related work, as it is quite broad. For
example, Khamis’ WPJC can be mapped to completeness, or Moreno’s conciseness can be mapped
to coherence.

In addition to adopting Steidl’s taxonomy, we put any metrics that indicate how easy a com-
ment is to read into a new top level category named readability, as suggested by the future work
section in their study [16]. Another novelty to the thesis at hand, is that we propose an approach
for assessing comment quality on a set of programming languages, namely Java, C, C++ and C#.

We will introduce and further discuss the exact metrics, scores and calculations used, concern-
ing the above-mentioned quality assets, in the section 4.2.





Chapter 3

Comment Type Classification
based on Deep Learning

3.1 Overview
This chapter of the thesis is dedicated to the first research question: Does Deep Learning perform
better than Machine Learning approaches in classifying code comments?. The section 3.2 will explain
how the pipeline was built, which choices were made and the means of evaluation of the results.
The latter will then be presented in the section 3.3. Finally, we will report the interpretation and
discussion of the results to the above-mentioned research question in section 3.4.

3.2 Methodology
When setting up the Machine Learning pipeline for the first research question, there were five
topics to agree upon that are discussed in the coming subsections. The figure 3.1 serves as an
overview of the steps that were taken in order to set up a environment to answer the first research
question.

Figure 3.1: Overview of our approach to setup the pipeline to answer RQ1
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3.2.1 Data Collection

Every Machine learning approach needs a proper data set. Luckily there are several readily avail-
able from related work. In this case, there was a combination of [15] and [13] used. This resulted
in a labeled data set with 7,429 entries after reducing the labels to the after mentioned ones. Both
data sets are labelled collections of java comments from real repositories.

3.2.2 Code Comment Categories

After combining the data sets, there were several resulting different code comment labels: class,
comment, summary, expand, rationale, deprecation, usage, exception, todo, incomplete, commented code,
directive, formatter, license, ownership, pointer, auto-generated, noise, warning, recommendation, precon-
dition, coding guidelines, extension, subclass explanation, observation.

However, for this thesis we were interested in 1) Only the five most represented ones, as
machine learning performs better the more data and the fewer labels are provided and 2) Labels
that are neither all tagged in the comment itself, nor not rich with natural language. Examples
for the latter were license, formatter, pointer and noise comments. In the end we decided on the
small list of:

• Summary: Comments that contain a brief description of what the code does. This is by far
the most represented label in this data set and the most represented type of comment in
software projects period.

• Expand: Similarly to summary, expand comments explain how the code works. Contrary,
they expand on the code, showing details that are not obvious from reading the program,
opposed to summarizing what is written in the code.

• Usage: Usage comments give insight to how to use the code properly (e.g. parameters of
functions). The usage comments in the data set of [13] are all annotated (@param, @usage,
@return, etc.), while the ones in the data set of [15] are not, resulting in a mixture that still
poses a challenge to any classification.

• Rationale: Comments that explain the reasoning behind a choice or approach in the code.
It answers the question why the code is written as it is.

• Warning: As the name suggests, warning comments warn the user about edge-cases and
help prevent misuse. It is worth noting that the data set of [13] does not contain an explicit
Warning label, but we mapped the Deprecation category to it for the merge, as it originally
warns the user about using a deprecated functionality.

The pie chart 3.2 shows the distribution of the resulting labels. The most represented one is
summary with 4539 entries, while Warning is the least represented one, only consisting of 85 com-
ments.
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Figure 3.2: Distribution of different labels in combined data set.

3.2.3 Models and Classification
The model we chose to go with in this thesis is fasttext: An open-source and lightweight python
framework that allows users to create text classifiers through supervised learning, developed by
Facebook’s AI Research (FAIR) lab. It uses a neural network for word embedding, which suits our
cause of answering, if a Deep Learning technique is able to classify comment types consistently.

For direct comparison and discussion, the pipeline is also able to learn on a plethora of differ-
ent supervised classification models:

• Random Forest: A model which constructs a multitude of decision trees (100 in our case)
when training. During classification, the result is the label that was selected by the most
trees.

• Naive Bayes: Naive Bayes is a simple probabilistic classifier based on applying Bayes’ theo-
rem. It is naive because it has strong independence assumptions between the features when
minimizing the probability of misclassification. In this thesis, the multinomial variant was
used to cater to our needs.

• Logistic Regression: A model, which is also based on the concept of probability. It uses a
sigmoid function for estimating cost between 0 and 1.

• Linear Support Vector Classification (LSVC): A faster Support Vector Classification for the
case of a linear kernel, which suits our classification problem and accelerates training.

• J48: J48 is a decision tree based, statistical classifier using the concept of information entropy.
It is originally a Java implementation of the C4.5 algorithm and popularized by WEKA, a
Java framework for machine learning.

The implementations are provided by the python package scikit-learn, which is built on
NumPy, SciPy, and matplotlib. Contrary to fasttext, these models need a separate TF-IDF word
vectorizer. In this case it is set up with 1000 maximum features and a minimum and maximum
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data frequency of 1.0. All algorithms used were executed with their default settings and evaluated
using a randomly sampled ten-fold validation loop.

As for the classification itself, a multi-label binary approach was used. The labelled data set
is split into one for each of the five categories. This means in the resulting temporary data set for
Summary all non-summary entries are labeled as Other, leading to a binary classification problem
(either summary or not). As a next step, the algorithm trains a separate model for each binary
data set, resulting in five models (one for each category). When predicting an unknown label,
all five models are asked to output their probability and the highest positive one is the resulting
prediction and probability for the comment’s text.

3.2.4 Preprocessing
In this thesis, we not only compared different models and their performance but also the impact
of different kinds of preprocessing. This resulted in eight differently processed data sets:

• Raw (no processing): The almost raw data set, with only any new lines and duplicate white
spaces being removed.

• Oversampling: A data set where the under represented categories have been repeatedly
randomly sampled until they have as many entries as the most represented label (sum-
mary). All further data sets are oversampled.

• Light Preprocessing: For this data set, a few regex based substitutions and changes have
been made using the following patterns and in this order:

– Remove any numbers:

\d

– Remove Special characters:

[\-!$%^&*()_+|~=’{}\[\]:\";´<>?,.\/]

– Splitting camel/dromedary case into separate words:

((?<=[a-z])[A-Z]|(?<!\A)[A-Z](?=[a-z]))

– Turn everything to lower case.

The following data sets also were lightly preprocessed in addition to the mentioned tech-
nique.

• Stop Word Removal (SWR): In this step, we removed any English stop words. These are
words that occur very often but do not hold any value for word-by-word classification.
Some examples include: “the”, “is”, “in”, “for”, “where”, “when”, “to”, “at” etc. The sum
of those words make up the stop word list. For comparison’s sake, there were two different
lists used in this thesis:

– Natural Language Toolkit (NLTK): Python’s most popular natural language process-
ing package comes with its own stop word list. It is very widely used in related work
that uses a Python implementation.

– Rainbow: Another popular stop word list based on Rainbow statistical text. This list
is mostly used by Java developers as it is part of the WEKA API.
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• Stemming: Stemming is the process of reducing words to their root form, in order to reduce
the amount of unique words in a text and in theory reach a better classification accuracy after
training. There are several different ways and algorithms for stemming in English, so two
different implementations from NLTK were used in the pipeline’s evaluation:

– Porter stemming: The most popular stemmer known for its non-aggressiveness. How-
ever, it is also a rather old concept and more computationally intensive than its com-
petitors.

– Snowball stemming: This algorithm is also called Porter2, as it is based on Porter,
but with slightly faster computation time than porter, and a fairly large and growing
community around it.

• Porter stemming & NLTK SWR: As a final dataset, we combine SWR and stemming in a
single data set, as is usual with preprocessing pipelines.

3.2.5 Evaluation Metrics
The last thing to define is which metrics to use when discussing and evaluating the performance
of the models in conjunction with the data sets. As the classification problem is split into five
binary ones, we can calculate a confusion matrix for each label and model. For this, precision and
recall are calculated by aggregating all true positive, false negative and false positive predictions
of each models in each fold:

Precision =
true positives

true positives + false positives

Recall =
true positives

true positives + false negatives

Precision answers the question How often is the classifier correct, when it predicts positive?, while a
high recall helps minimizing false negatives. Regarding visualization and discussion of results,
the F1 score suits our needs best, as it combines precision and recall in one metric to showcase
accuracy like so:

F1 = 2 · precision · recall
precision + recall

The F1 score of a classifier is considered perfect when it hits 1.0. This translates to it correctly
identifying labels and you not being disturbed by outliers. Contrary, the model is considered
worse, the closer its F1 score is to 0.0.

3.3 Results
In this section, we will show multiple plots that are the result of several ten-fold validations to
compare the performance of different models, preprocessing techniques, and oversampling. The
same figures but upscaled for further inspection can be found in the appendix chapter 8.

In figure 3.3 we can clearly see that fasttext outperforms the other models by considerable
margins in regard to the overall F1 score, followed by Random Forest, Logistic Regression, LSVC
J48 and lastly Naive Bayes.
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Figure 3.3: Comparison of F1 score of different models

While fasttext was the most accurate over all, this is not always true when looking at specific
data sets and preprocessing techniques in isolation, illustrated by the plot 3.4: The more prepro-
cessing, the worse fasttext performs and is gradually outclassed by the other models. However
they never outperform Fasttext’s peak accuracy on the raw data set, no matter the amount or kind
of preprocessing.

Figure 3.4: Comparison of F1 of different preprocessing techniques

The following figure 3.5 illustrates the effects of oversampling split up by label and model. The
dashed bars represent the oversampled data sets, while the normally colored ones are trained on
the unprocessed comments. One can observe how oversampling has a negligible negative impact
on the highly represented labels, while boosting the underrepresented ones quite a bit.

Figure 3.5: Effect of Oversampling on Labels
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It is also worth noting that the average ten-fold validations took about one minute, with Fast-
text being in the lead at around 40 seconds, true to its name. Random Forest is a big outlier here,
as it took almost 50 times as long to train and evaluate with the given settings. The pie chart 3.6
shows the relative differences in processing time of the different models on the author’s computer
with the specifications showcased in the table 3.1.

Figure 3.6: Relative Processing Time of Different Models

Table 3.1: System specifications of the used computer for reference
of processing speeds

System Specifications

Processor AMD Ryzen 5 3600 6-Core 3.59 GHz
RAM 16 GB
Graphics NVIDIA GeForce RTX 2060

OS Windows 10 Home 64-bit,
Build 19043.1165

3.4 Discussion

The graphs and data from the results section 3.3 gives plenty of material to discuss. In this section,
we will evaluate if research question one can be answered and discuss interesting findings. They
can be summarized into four main takeaways:
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3.4.1 Performance of Deep Learning
We can answer the research question one Does Deep Learning perform better than Machine Learning
approaches in classifying code comments? with a yes, when it comes to overall accuracy and with
fasttext as an example for Deep Learning. However, Random Forest and J48 can perform better
than fasttext under certain preprocessing conditions such as SWR and Stemming. While this
might be the case, Fasttext clearly performed best, while having the shortest computing time and
needing next to no processing of the data set. This makes it a very versatile, quick, and easy to
use tool that might be of value in future work.

In related work, studies have reached higher accuracy with smaller data sets, by using set
heuristics and features that suit their certain data set and classification tasks. In order for fasttext
to be able to hold its candle to those algorithms, we would need a much bigger data set, which
Deep Learning is notorious for. But since this data must be labelled and validated by a human
being, creating such a data set would be very costly, time intensive and for most studies not
feasible.

3.4.2 Processing Time and Model File Size
Moreover, it is worth commenting on Random Forest performing better than the other scikit-
learn models. It is not clear if this advantage is gained by using a superior algorithm or due to
the fact that it trained 50 times longer than the other models. This raises the question if models
with a bigger file size that trained longer would change the rankings, as there were no limits
set or attention given on model size or training time in this paper and comparison. However,
would model size also have been a consideration for performance, the contest would probably
still lean in fasttext’s favour, as it is also known for its small models, fast training speed, and
potent compression, if one wanted to save even more space [22].

3.4.3 Effects of Oversampling
Another finding is the effect of oversampling on underrepresented labels. Looking at figure 3.3
one might think at first glance that oversampling has a negative impact on performance: in four
out of five algorithms we see a drop-off in F1 score from the raw data set to the oversampled one.
On the contrary in figure 3.5, we can see that the summary and usage comments are almost not
affected at all, while the expand and rationale comments doubled or even tripled in performance
due to oversampling. Therefore, why does the overall performance decrease? This is due to the
fact, that the aggregated F1 score in figure 3.3 is weighted. Summary and usage together have
more than ten times bigger representation of the remaining labels combined. This means that the
slightest decrease to performance of the labels with the most comments (which is hardly visible in
figure 3.5) out-weights the big increase in accuracy of the other labels. This leads to the conclusion
that oversampling can help increase accuracy in comments with low representation in the data
(and therefore real life), at the cost of overall weighted accuracy. This decrease is in our case worth
the trade-off, as we are interested in e.g. expand comments just as much, as we are in summary
comments. Anything to help combat the greatly and inherently biased data set is welcome in our
case.

3.4.4 Preprocessing Decreases Accuracy
The last point of discussion is that preprocessing consistently worsens the accuracy across all
models and data sets. While we can explain the decrease of the F1 score when oversampling the
data, other preprocessing techniques used should in theory increase performance. One possible
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explanation is that fasttext, in particular, is primarily made for natural language text without
preprocessing and functions best with it. Techniques such as stemming and stop word removal
remove several natural language properties, which seem to worsen the performance.

Another explanation could be that the models trained on the raw data weight special char-
acters a lot. This leads to the algorithms associating usage comments, for example, with certain
special characters. These then get lost in the light preprocessing data set when removing all spe-
cial characters, making different comment types harder to distinguish, and ultimately decrease
accuracy.

The initial results are promising and a more accurate classification than with traditional ap-
proaches seems within reach, given a bigger data set.





Chapter 4

Comment Quality Analysis

4.1 Overview

This upcoming chapter is dedicated to answering the second research question: How to systemati-
cally assess code comment quality in different program languages?. We will first talk about the method-
ology of our approach in section 4.2. This is also where the reader is introduced to the metrics
and scores to assess code comment quality, how the tool proposed in this thesis gets the comment
data, evaluates and aggregates it for a presentation. We will also discuss how we selected the
repositories for the comment evolution analysis plots in the section 4.3. In the last section 4.4, we
will discuss our findings concerning RQ2.

4.2 Methodology

Figure 4.1: Pipeline setup for assessing code comment quality.

This section shows how the quality assessment pipeline is built for this study. Figure 4.1 shows
its flow from left to right and acts as an overview. For more detailed information about the im-
plementations in the proposed pipeline, refer to the chapter 5. The following subsections then
explain or discuss certain steps (such as the scraping of comments) of the pipeline or the choices
made to create it (such as the metrics and scores).
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4.2.1 Metrics and Scores
In order to analyze, evaluate, and discuss the quality of a comment, one needs to define metrics
and scores to describe the different aspects of quality. As is shown in the related work section 2.2,
studies do not have a definite consensus on how to define and measure quality in code comments.
In regard to the thesis at hand, we focus on readability, usefulness, coherence, completeness,
and consistency of comments to measure their quality. For further analysis, visualization, and
discussion, the tool also records meta-data about the comments in a project. In this subsection
we are introducing the mentioned quality attributes and metrics to express them, while giving
insight on their calculation or acquisition.

Meta Data

The following metrics do not hold any numeric values. They are for identifying a certain comment
and provide some background information about its contents.

• Path: This attribute holds the file name and path of the file where the comment is found.

• Position: The position describes the location of a certain comment within its file. It consists
of the line and column number of the first character of said comment, separated by a colon.

• Type: The type describes which kind of comment you are looking at. The type value can
either be class, function, constructor, interface, enum or if none of those apply, a comment is
classified as in-line. This depends if the comment precedes a declaration of the correspond-
ing type in the code of the file. Comments that precede other comments are merged into a
single one.

• Label: This value is set by the pipeline created to answer research question one. It classifies
a comment based on its text as either summary, usage, warning, rationale or expand. The pre-
diction probability is also recorded, to be able to discard any classifications under a certain
threshold.

• Text: This field holds the unmodified and raw textual contents of a comment.

• Code Language: A value to describe the language of the code. It is applied on a file scope
based on srcML’s parser, meaning it belongs to one of C, C++, C# or Java. This will be
expanded in the section 4.2.2 about scraping comments.

• Commented Code: A true or false value if a comment contains any commented code. While
it is a rather bad practice, developers often keep old code around inside a comment "just in
case" [23]. As they do not consist of natural language, we need to be able to filter them
before applying any evaluations. In order to do that, a basic approach was used by us to
match certain special characters with a regex like so:

"=+&|;

If more than three of those characters that are common in all of the programming languages
we consider are found in the comment, it is classified as commented code.

It is worth mentioning that this approach is far from perfect, as there definitely exist nat-
ural language texts that might be wrongly accused of being commented code. The same
is true for the opposite: Commented code exists that is not caught by this approach, espe-
cially simple or short statements such as variable declarations. The approach proposed by
D. Steidl (2012) of matching java method call patterns and similar would be problematic in
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our case, as we want to make the pipeline assess quality regardless of programming lan-
guage [16]. Trying to detect commented code with a higher accuracy by checking if every
comment’s content could be executed, was just way outside of this study’s scope and time
frame. However, future work would definitely profit from a more advanced solution.

Readability

A high readability makes a comment easier to read and therefore understand. Several of the
following proposed metrics need information such as the amount of words or sentences. This is
not as easy as splitting a string on every period for sentences or white spaces for words, which
would be a too naive approach. Instead let us take a look at how we get the amount of words in
a string:

1. The tool uses the following regex to get all raw words:

([a-z][-’a-z]*)

The words we consider for this thesis consist only of letters, hyphens (a dog-friendly hotel)
and apostrophes for indicating omitted letters (I’ve coded), possession (the man’s dog) or
the plurals of lowercase letters (p’s, x’s, etc.).

2. Then we filter all matches without any vowels, as words without vowels do not exist in the
English language besides abbreviations and onomatopoeia (e.g. shh, brr, tsk, etc.) with the
following regex:

[aeiouy]

Note that "y" is considered a vowel in some words such as pygmy and lynx, contrary to
German.

3. Lastly, all words that contain a hyphen "-" are checked for their validity. Valid hyphens
cannot be earlier than two letters into a word and need at least two letters after them. This
is matched with:

[a-z]{2,}-[a-z]{2,}

For tokenizing sentences and counting them, NLTK’s sent_tokenize() function was leveraged,
which takes any string (in our case the comment text) and a target language (English) and splits
it into sentences consistently.

• Flesch Reading Ease Level (FREL): FREL is a readability metric on a 100 point scale. The
higher the score, the easier it is to understand the text. A score of 60 to 70 is considered to
be optimal. Other ranges and their meanings are illustrated in table 4.1. The reading ease
level itself is calculated as follows:

FREL = 206.835− (1.015 ·Words per Sentence)− (84.6 · Syllables per Word)
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Table 4.1: Flesch Reading Ease Level Score Overview

Score Range Description & Level Examples

0-10 Extremely difficult: Professional level. Internal Revenue Code
10-30 Very difficult: University graduate level Standard auto insurance policy
30-50 Difficult: College level. Wall Street Journal, New York Times
50-60 Fairly difficult: 10th to 12th grade level Time, Newsweek
60-70 Plain English: Easy to read by most 13 to 15 year olds. Sports Illustrated, Reader’s Digest
70-80 Fairly easy: 7th graders and up. Movie Screen
80-90 Easy to read: Conversational English of 6th graders. Consumer ads in magazines
90-100 Very easy: Average 11 year olds understand this. Comics

• Flesch Kincaid Grade Level Score (FKGLS): Is another readability score, which represents
an U.S. grade school level of difficulty to read. A score of 8.0 means that the document can
be understood by an eighth grader, for example. An optimal score lies between 7.0 and 8.0.
It is calculated with using the following formula:

FKGLS = (11.8 · Syllables per Word) + (0.39 ·Words per Sentence)− 15.59

• Fog Index (FI): This is a metric indicating the number of years of formal education a reader
would need to understand the text on the first reading. The fog index must not be above 12
and score between 7-8 is considered optimal for readability.

Fog Index = (words per sentence + complex words percentage) · 0.4

Complex words encompass any words with more than two syllables. In order to calculate
the number of syllables in a word, another regular expression approach was used:

1. Since we only care about the number of syllables and not the exact syllables themselves,
words are split using:

[bcdfghjklmnpqrstvwxz]*
[aeiouy]+[bcdfghjklmnpqrstvwxz]*

2. In a second step we need to handle the edge-case that the trailing syllable is a lonely
"e", which is always silent and cannot be a syllable. It is therefore appended to the
second to last one and omitted.

– sitting→ sitt | ing = 2
– language→ lang | uag | e→ lang | uage = 2

It is worth noting that this approach is only an approximation and not fool-proof in certain
scenarios, especially when a vowel forms its own syllable. For example the word "area"
would match as two syllables, but should actually be three. Future work would profit from
a safer and less naive method.

• Number of Abbreviations: Research agrees that abbreviations make it harder to read and
understand any text. Therefore the tool matches any used abbreviations using a list pro-
vided by the Oxford fourth edition classical dictionary1. Matches are recorded and counted
and substitutions for the full words are recommended.

1https://public.oed.com/how-to-use-the-oed/abbreviations/
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Usefulness

Useful comments clarify intent of the code and are helpful to the reader that tries to understand
the code. Deleting a useful comment should make the code harder to understand.

• Number of Question Marks: Research deducted from a survey that question marks con-
fuse readers instead of clarify [16]. Therefore useful comments shall never contain question
marks. For this metric they are simply counted.

• Number of Exclamation Marks: As a metric for helpfulness, the same study deducted sim-
ilarly, that an exclamation mark in a comment indicates poorly written code, personal in-
volvement of the author and needs manual investigation [16]. While they are helpful as to
warn to readers of hacky code, they should be tagged as a task or todo comment.

• Length: Related work agrees that a comment that consists of less than three words is not
useful and should be expanded or deleted. Similarly a comment might be too long: Studies
indicate that comments above 30 words are not as useful. This upper limit mainly applies
to in-line comments, as other types such as class comments and license comments can reach
this limit easily in a complex project. These too long in-line comments can also be an indi-
cator for the need of extracting its corresponding code into a separate method or function.

Coherence

Coherence describes how comment and code relate. A comment that is unrelated to its code does
not hold any value. It also can be too coherent if for example a comment just repeats the method
name without explaining or expanding the code. For example:

// Calculates Square

public int calculateSquare(int n) {

return n*n;

}

• Coherence Coefficient: This metric matches the words in a comment and its corresponding
handle of the following code element (e.g. class comments matched to class names, func-
tion comments matched to function names). The words in the given handle are extracted
by splitting the camel case of the name using the method described in the preprocessing
subsection in 3.2 and casting both the comment text and handle contents to lower case. In
order to calculate the coherence coefficient, we need to calculate the Levenshtein distance
between each words of the two strings. It describes the minimum amount of additions, dele-
tions and changes of characters to transform one string into another, resulting in a metric
for similarity. For example the Levenshtein distance between sitting and kitten is 3:

1. sitting→ sittin

2. sittin→ sitten

3. sitten→ kitten

Next, we count the similar words. A word is similar to another if the Levenshtein distance
is less than two. This means our two example strings would not be considered similar, but
ball and wall would. In the end the coherence coefficient is calculated as follows:

Coherence Coefficient =
Number of similar words
Total words in comment
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It follows that a coherence coefficient of 0.0 indicates that the comment and name of code
element have no similar words and nothing in common. This leads to a coherence that is
too low. To rectify this, one could expand the comment, in order to make the relation to the
method name more obvious. Another interpretation is that the code element (e.g. function)
needs to be refactored into a different name that fits its explanation in the comment more.
On the other side of the spectrum, if the coefficient is higher than 0.5, a comment is too
trivial as it adds little explanation of the code and almost only contains the code element’s
name.

Completeness

Completeness is a global metric that describes the total coverage of comments. Global means here
that one can not evaluate completeness by looking at a comment in isolation. In theory every
function, class, etc. should be commented and all files must contain a license comment at the top.
The more of those comments are missing, the less the comments of a project are complete and the
lower its completeness.

• Missing Comments: While the program is analyzing existing comments, it also considers
any class, function, constructor, interface or enum that is not preceded by a comment or any
files that do not start with a comment. It is then recorded as a missing comment, together
with its supposed path, position, type (as in header, class, function, etc.) and name of the
element without a comment (e.g. function name). How this was achieved, is explained in
the following subsection 4.2.2.

Consistency

The second global metric that can not be evaluated on single comments and needs context. It
describes how uniform the comments are in their presentation and nature. As an example, all
license comment in a project should have the same layout and order of fields.

• Synonym Analysis: The purpose of this analysis lies within the idea that if one talks about
the same thing, one should use the same words. This increases consistency in the comments
and helps avoid confusion and misunderstandings.

public class Rectangle{

// this attribute describes the rectangle’s height

int h;

// this field describes the rectangle’s width

int w;

...

}

In the above example, the terms attribute and field are used to describe the same thing. To
increase consistency and decrease the potential for confusion, the author should have used
one of them in both comments.

To achieve this, the tool gets the synonym of every word of every comment in a file, using
wordnet2, a large lexical database of the English language that is organized in sets of cogni-
tive synonyms, also called synsets. If a word in one comment is in a word’s set of synonyms
of another comment, the match is recorded together with a pointer to the other comment.

2https://wordnet.princeton.edu/
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As the complexity of this algorithm is very high and processing time grows exponentially
with the amount of files and comments, the pipeline offers the option to omit this analysis
for large projects. This also is the case for the comment evolution results in section 4.3.

• Consistent Language: Another aspect of consistency is a consistent language across com-
ments. It is highly advisable to have all comments be of the same natural language and not
some for example in German and others in English. Analyzing and recording the language
of a comment also serves a second purpose, as in order for some metrics and techniques
to work properly, it is crucial that the comments are in English (e.g. English stop-word re-
moval, word/sentence tokenization, synonym analysis, etc.). Luckily fasttext provides a
free model for this task, trained on data from Wikipedia, Tatoeba and SETimes [24]. It is
able to identify up to 175 different languages consistently. Similarly to the label attribute, we
also record the probability for any predictions to make cuts at a threshold of 0.75.

4.2.2 Scraping Comments using srcML
One of our goals in developing this quality assessment pipeline was to make it accessible to any-
one and easy to use. So in order to circumvent users having to create a data set or table of their
projects’ comments, the tool works on unmodified local project files. This means that the only
requirement for anyone wanting to evaluate and analyze comments is to provide a path to any
directory containing the project, files and comments.

The first approach considered to achieve this, was to read all files in a directory line by line,
extracting comments by matching Java comment delimiters (“/**”, “//”,“*”, “**/” etc.). This
approach however, poses several challenges and inconveniences. The following arbitrary Java
code snippet covers a hand full of examples that a single regular expression could not tackle
easily:

// foo

class SomeClass {

/* foo1 */

// /* foo2

foo3();

// foo4 */

foo5();

/* // foo6 */

System.out.print("Is this a /* comment */ ?");

int/* some comment */foo = 5;

// /*
foo7();

// */

}

The maybe biggest con of such an approach is that we severely limit the amount of languages that
can be processed, as most of them have unique syntax and semantics for declaring comments, fur-
ther increasing the amount of edge-cases. Also it would make it very hard to extract information
besides the comments’ content. One such example would be that //foo is the comment for the class
named SomeClass. The same problems apply for collecting classes, functions, interfaces, etc. that
are missing preceding comments.

This is where srcML3 comes into play: an open-source software for creating an XML format

3https://www.srcml.org/
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for the representation of source code in Java, C, C++ or C#. It does this by parsing the Abstract
Syntax Trees (AST) of a file by applying the appropriate language’s grammar. During this con-
version, nothing is lost and one can easily recreate and comprehend the original source code. The
following is a snippet of our example edge-cases from above after being parsed by srcML:

...

<comment type="line">// foo</comment>

<class>

class

<name>SomeClass</name>

<block>

{

<comment type="block">/* foo1 */</comment>

<comment type="line">// /* foo2</comment>

...

}

</block>

</class>

...

This srcML file solves all problems the first approach struggles with and comes with added
advantages:

1. SrcML comes with the capability of handling multiple different languages.

2. We can consistently find a complete list of all comments in any language supported by sr-
cML, without having to worry about edge-cases. This is because srcML uses the language’s
original abstract syntax grammar and simply allows us to find all <comment> elements in
the XML representation.

3. Since the resulting tree can freely be walked up and down or inward and outward, finding
any comment’s corresponding element and its name is an easy task. This also allows us to
classify a comment as a class-comment, function-comment or similar.

4. Finding classes or functions etc. without a comment above them in the source code, is as
easy as checking the comment’s preceding sibling element in the srcML tree. This method
also makes it possible to merge comments that precede other comments into one, because in
some styles, multiple single-line comments in succession are used instead of a singular block
comment. For parsing the XML tree, the python native XML xml.dom.minidom4 was used,
as this minimal implementation of the Document Object Model (DOM) interface served our
purposes while being especially lightweight.

5. SrcML has the functionality of taking not only files as input, but scraping directories, in-
cluding their sub-directories and appropriate files, too. This eliminates the need for any
recursive crawling of the local file system in our application itself.

6. The time srcML takes for this process of creating the XML format is negligibly small.

7. The application can be run such that all elements in the XML also hold a field for their posi-
tion in the original source code, allowing us to record meta data for identifying a particular
comment.

4https://docs.python.org/3/library/xml.dom.minidom.html
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The only real down side to using srcML is having to use srcML: It adds an application that needs
to be installed on the user’s computer in order to run the pipeline and heightens the difficulty of
the install process of the comment evaluator. In our case this was considered a valid trade-off.

4.2.3 Evaluating Comments
In the previous step, the tool scrapes for comments, tokenizes them and calculates most metrics.
This gathered data is then saved as a .csv file. In order to interpret the quality of the comments,
we need to give this raw information meaning through evaluation, which will be discussed in
this section.

The pipeline at hand leverages the python native tool pandas5 in order to read our created data.
Pandas is perfect for this task, as it is a flexible, fast and powerful open source package. It allows
the pipeline to manipulate, filter and extend thousands of rows in our table of comments within
split seconds.

Filtering Comments for Evaluation and Aggregation

First, one needs to understand that there exist multiple reasons why one should ignore the scores
of certain comments and not consider their values for aggregation and evaluation. The figure 4.2
illustrates an overview of this idea:

Figure 4.2: Values making a comment being ignored for further readability and usefulness assessment

An ignored comment should be omitted from any readability evaluation (FKGLS, FREL, FI).

5https://pandas.pydata.org/
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The amount of question marks, exclamation marks, abbreviations and synonyms used are also of
no concern. A comment shall be ignored, if any of the conditions in figure 4.2 are met:

1. If a comment in the data set is tagged as missing, it is obviously not eligible for any textual
analysis, as it does not hold any text.

2. If a comment is too short, readability metrics become unstable and unreliable. For example,
if we calculate the FKGLS of the simple (and bad) comment //Run Tests., we get a score of
-3.1.

3. Commented code should not be evaluated, as it contains no natural language under normal
circumstances, but actual code. As they do not function as documentation, they also can
never be tested for coherence etc.

4. Similarly, header or license comments should be ignored for the above mentioned evalua-
tions. They are written after a template and do not represent the actual use of language of
the developer. Taking the readability of license comments into account would also dilute
the metric when aggregating, as they contain similar phrases to written law and contracts,
which are notorious for their bad readability as shown in the table 4.1.

5. The last thing we need to keep in mind for evaluation, is that all comments should be in
English. As mentioned in the section 4.2.1, the language of a comment’s text is classified
using fasttext and any comments that are not classified as such with at least 75% probability
are ignored. This is a precaution because several metrics and tokenization techniques inputs
in the English language to function properly. As a side effect, this filter also helps catch
commented code, as the classification pipeline struggles classifying them.

Mind you that those ignored comments are not deleted from the data. For example, a comment that
is too short might still be considered as English and summed up with other English comments in
aggregation. It just wouldn’t make sense to calculate certain scores for it and weight them in any
evaluations.

The Meaning of the Metrics

Now that we have all this numeric data from our scores and filtered potential threats to a mean-
ingful analysis, we need to give it meaning. Some metrics, such as the amount of question/excla-
mation marks, are easy to give meaning: the less the better, zero would be optimal. The amount
of abbreviations and matched synonyms fall into the same category. However, most metrics need
a little bit more interpretation as to their meaning:
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Figure 4.3: How to interpret the scores of the filtered comment data.

The optimal values depicted in figure 4.3 are introduced by Steidl et al. (2019) [20] and Dubay
(2004) [25].

4.2.4 Aggregation and Presentation

The final step in our pipeline is aggregation and presentation. In order to allow future work
to create a front-end visualization of the data, the tool outputs a big JavaScript Object Notation
(JSON) file. This allows our results to be readable by humans, as well as offer easy integration for
any JavaScript based implementation (REACT for example).

The idea for presentation was to mimic the local file system to create a direct link to the project
files where the comments initially were extracted from. After we have calculated and evaluated
all comment’s data, we aggregate all comments in the same file. Next, the tool aggregates all
files in the same directory. This is then recursively repeated until we have aggregated everything
under the most top level directory of the analyzed project: This results in a tree with the root node
being the root directory or input directory of the project. The figure 4.4 visualizes this idea.
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Figure 4.4: Directory tree structure found in the JSON file.

The resulting tree consists of 4 different elements or nodes:

1. Comment: This element holds all data gathered and evaluated in the previous section. It
can only be a leaf node of the directory tree. It also holds the detailed information for some
metrics that is omitted in aggregation. For example comment elements hold the complete
dictionaries of matched synonyms or abbreviations, while the parent file node only sums
up the amount of matches (N_matched_synonyms).

2. Missing Comment: Missing comments are similar to comment elements, as they act as
leaves of the tree. However, they do not hold as much data.

3. File: File nodes hold the aggregated values of all comments in them under an array called
comments. A file can only be the child of a directory or the root node. The field name holds
the name of the file.

4. Directory: Similarly directory aggregates all values of its sub-directories and files under the
field children. Directories can not be leaves, as directories without any files are of no interest
to the analysis and omitted. The field name holds the name of the directory.

A complete break down of all elements in the resulting JSON and their fields can be found in the
table 4.2.

When aggregating the comments’ data under a file and files or directories under directories,
some values are summed up and others meaned. For example, if two comments in a file have the
fog index of 7.0 and 8.0, the field FI in the file node would say 7.5. Fields that describe values
that have been counted are always described with the prefix N_ and are summed up for the
aggregation. This allows users to get a picture of the total amount of question marks in a file or
directory or whole project, for example.

Values with the prefix is_ are described with either 0 or 1 on a comment level instead of a truth
value. This allows us to sum up and aggregate those values more easily. The same idea applies
to count (all found comments have count = 1) and count_missing (all missing comments have
count_missing = 1), which allows files and directories to have the fields count and count_missing
to represent the amount of found comments and missing comments in them. The table 4.2 also
shows which aggregation method has been chosen for which metric. Fields without a value in the
column Aggregation are omitted in the aggregation and can only be found in the indicated node
elements (shown with X).
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Table 4.2: All JSON attributes in the resulting file, their occurences
and their aggregation techniques.

Metric Aggregation Directory File Comment Missing Comment

FKGLS mean X X X
FREL mean X X X
FI mean X X X
is_english sum X X X
is_code sum X X X
is_too_short sum X X X
is_too_long sum X X X
N_matched_synonyms sum X X X
matched synonyms X
N_exclamation sum X X X
N_question sum X X X
N_abbreviation sum X X X
abbreviations X
is_trivial sum X X X
is_unrelated sum X X X
count sum X X X
count_missing sum X X X
children X
comments X
type X X
path X X
name X X
position X X
text X
code_language X
label X
label_proba X
handle X X
ignore X

4.2.5 Comment Evolution Repository Selection
In the upcoming results section 4.3 we will have a look at 4 different open source repositories off
of GitHub. As we are still in the methodology section of this study, we take the opportunity to
talk about how those projects were selected.

A list of conditions was set up, to be able to find appropriate repositories with GitHub’s ad-
vanced search feature:

1. Get a project from every language the tool can handle for comparison. Namely: Java, C,
C++ and C#. The repositories should be mainly written in one of said languages.

2. The project has recent activity (issues, commits, etc.) on the repository, namely in the last 3
months.

3. The repository must have had at least ten different releases/tags over its lifespan.

4. At least 1000 comments must be found in the most recent version with the tool.
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5. The language for comments must be English. Several repositories were discarded for con-
sideration, because the documentation was written in an Asian language.

6. After applying these filters, sort the search results by forks and pick the top one that is
suitable and satisfies all previous conditions.

When executing the queries with the previously mentioned conditions, we ended up with a
list of four repositories presented in the table 4.3.

Table 4.3: Overview of the chosen repositories for the comment
evolution demonstration.

Repository Language Commits Forks Stars Releases Comments Description

googletest6 C++ 3.7k 7.8k 23.5k 15 7753 Testing and mocking
framework

ijkplayer7 C 2.6k 7.6k 29.3k 78 1462 Android and iOS
video player

retrofit8 Java 1.9k 6.9k 38.5k 54 1038 Android and JVM
HTTP client

shadowsocksr-
csharp9 C# 740 4.5k 14.3k 102 1617 Encryption protocol

4.3 Results

This section is dedicated to a demonstration of what can be done with the proposed quality as-
sessment tool: We depicted a scenario, where a developer wants an overview of the evolution of
his or her project’s comments and their quality. In order to illustrate this, the tool was run on the
latest ten major releases of the four repositories mentioned in the section 4.2.5 above.

As the evolution and change of quality metrics over time is the focus, any y-axis scale has been
omitted in favour of multiple lines that fit in the same plot. This has been achieved by running
the y-data arrays through the upcoming method in the plotting script:

6https://github.com/google/googletest
7https://github.com/bilibili/ijkplayer
8https://github.com/square/retrofit
9https://github.com/shadowsocksr-rm/shadowsocksr-csharp
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def normalize(input_list):

norm_list = list()

if isinstance(input_list, list):

sum_list = sum(input_list)

for value in input_list:

try:

tmp = value / sum_list

except ZeroDivisionError:

norm_list.append(0)

continue

norm_list.append(tmp)

return norm_list

As one can see, every value of a set of y-data for a plot has been divided by the sum of the
values in this list. This lets us emphasize the changes and evolution in the values, without creating
a dozen plots for each repository.

Said figures are containing four plots each:

1. top-left: This plot illustrates the changes in the amount of comments that are either too long,
too short or missing in relation to the total found comments in this version.

2. top-right: In this plot, one can investigate the different readability metrics and their evo-
lution over time. The blue and orange zones represent the optimal value range for FKGLS
and FREL respectively.

3. bottom-left: The third plot shows the amount of found question and exclamation marks
in relation to the total comments found over the different versions. This can be used to
interpret the relative usefulness of the comments. The dashed line at the bottom indicates
the goal of zero question or exclamation marks.

4. bottom-right: The last plot depicts the evaluated coherence coefficient and shows the amount
of trivial and unrelated comments in relation to all English comments in a version of the
project. Similarly to above, the dashed line represents the goal of zero trivial or unrelated
comments.

The upcoming subsections will present and discuss the said figures. The same figures but
upscaled for further inspection can be found in the appendix chapter 8.
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4.3.1 Googletest

Figure 4.5: Evolution of Googletest’s Quality Metrics

In the figure 4.5 above, we can see the comment analysis of the googletest repository. It shows
a steady increase in the amount of comments that are too long, too short or missing entirely.
Contrary to that, the readability is very constant and right in the optimal zone for bot FREL and
FKGLS, which no other project in this comparison achieved. This can be connected to the fact that
the repository is developed by Google, which follows very strict and expansive documentation
guideline. It advocates for high readability and accessibility in comments and even states specifi-
cally: Use shorter sentences. Try to use fewer than 26 words per sentence. [26]. This guideline directly
reflects in FREL and FKGLS calculations, which use the amount of words per sentence as a factor
for readability.
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4.3.2 Retrofit

Figure 4.6: Evolution of Retrofit’s Quality Metrics

The most notable feature of retrofit’s comment quality plots is certainly its constantly high coher-
ence. One can derive this from the low amounts of trivial or unrelated comments. This speaks
for a very good and intuitive naming of code elements such as methods and classes without just
repeating this name in the comment, which is one of the metrics for a high quality comment.
The length of the comments and the amount of missing ones in this project are not its strength.
Also the project’s amount of question marks was raised considerably by the version 2.6.0, which
should be revisited by the developers and corrected.
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4.3.3 Ijkplayer

Figure 4.7: Evolution of Ijkplayer’s Quality Metrics

Ijkplayer’s evolution of their comment’s quality looks remarkably constant in the above plot. This
either means that newly added code was not documented, or that the developers very strictly fol-
lowed quality guidelines, as every added comment has the same quality as the already existing
ones. The only note worthy version that seemed to change up the quality of comments is 0.7.7,
where a lot of too long comments were added (or normal/short ones were made longer) in rela-
tion to the total comments.
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4.3.4 Shadowsocksr-csharp

Figure 4.8: Evolution of Shadowsocksr-csharp’s Quality Metrics

A note worthy thing about the above plot is the steady increase and then constant hold in the
amount of question marks and exclamation marks. This can be explained with the reason that
shadowsocksr is a truly open source project, maintained and developed by a lot of volunteering
independent developers. As a consequence, several of those developers use comments to docu-
ment issues or point others to problematic portions in the code: Comments such as Do the version
info bits match exactly? done. or Sanity check! are common place.

In version 4.0.4 one or multiple of those contributors seemed to try to document some code
that was missing comments. As a result, the missing comments have dipped a lot, as did the
amount of question-/exclamation marks in relation to the total comments, indicating they re-
frained from using them. However, the comments added were probably rushed because they
ended up too short in several cases.

4.4 Discussion
In our quest to answer the second research question How to systematically assess code comment
quality in different program languages?, a tool was created that allows us to assess five major aspects
of quality in code comments:

1. Readability through Flesch Reading Ease Level, Flesch Kincaid Grade Level Score, Fog Index and
Abbreviation Matching.

2. Usefulness through matching question and exclamation marks and analyzing word count.

3. Coherence through a similarity analysis using Levenshtein distance to calculate and evalu-
ate the coherence coefficient
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4. Completeness by searching and recording missing comments

5. Consistency through synonym analysis and natural language classification

The results of this analysis are then evaluated and aggregated in a way that allows for a quick
glance overview by looking at the root directory’s values or an in-depth review on comments
level and anything in between. Walking this JSON-tree allows to identify problematic sections or
files in a project with lower quality than the rest.

Because the tool takes only a very sensible amount of time to be run on projects of any size, it
allows users also to run multiple analysis on different versions of the same repository to evaluate
the evolution of their documentation. Another use case would be to compare a new project of a
developer team to an established one to see if the documentation standard set by the older project
is upheld, even across code-language barriers.

While we can not claim that the tool assesses quality from all its aspects, it is a good start
and covers the most important aspects with a hand full of metrics. The same can be said for the
covered code languages and that the tool only operates on the English language. But since the
pipeline itself is well documented and built to be extendable, this could change in future work.
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Framework Architecture &
Components

To answer the two research questions of this study, a tool was created capable of classifying com-
ments into types and assessing a local project’s code comments. It is written in Python 3.81 and
was developed and tested on Windows 10. Because of the nature of the scripts, there should be
no problems when ran on different operating systems, but due to time constraints and limited
resources, the pipeline was not tested on them.

It is designed to run locally for now but could be extended in the future to work on a server
just as well, making the tool available to be accessible on a website, for example.

The interface is strictly over the command line for now, with the needed paths to input direc-
tories, output files, and miscellaneous settings as parameters that are well documented and can
be viewed with a help command.

In total, there are six scripts that can be run from the command line, three for each research
question:

5.0.1 trainer.py
:

Figure 5.1: Trainer Implementation

This is the training script, that creates a binary classification model for every label found in

1https://www.python.org/downloads/release/python-380/
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the input data that satisfies the minimum representation. The training script of the pipeline takes
up to 6 arguments:

• data: This mandatory argument is the path to your data set in fasttext format: Every line is
a data entry formatted as:

__label__summary this is a summary comment.

• output: The second mandatory argument is the path to the path to the output directory
where the trained models are saved in as:

__label__category_name.model

• oversampling: This optional argument enables/disables the oversampling of underrepre-
sented labels. It is enabled per default.

• model: This parameter allows the user to choose from the implemented machine learning
algorithms, namely:

fasttext, naive_bayes, logistic_regression,
lsvc, random_forest or j48

If none is set, fasttext is defined as the default one, as it performs best for our analysis.

• representation: This argument lets users choose the minimum representation of a comment
category in a data set, for it to be considered as a training target. The default value is set to
50, which seemed sensible for our data.

• log: A value for switching the log level of the application. Users can choose form the fol-
lowing common list of levels:

debug, info, warning, error, or critical

Every script has this argument and will not be further mentioned in this overview. The
default logging level is info.

5.0.2 predictor.py
:

Figure 5.2: Predictor Implementation
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This is the script that takes the path to the directory with the models created by the trainer
script and an input string to print the predicted category to console. It takes two mandatory
arguments and one optional one:

• models: The path to the trained models.

• text: The text to be classified as a string.

• verbose: This argument allows the user to not only print the predicted label, but also its
probability.

5.0.3 validator.py
:

Figure 5.3: Validator Implementation

This is the k-fold validation pipeline that combines the training and predictor scripts to test a
model’s accuracy on a certain data set. It runs with up to seven arguments:

• data: The input to the data set that shall be used for testing and training.

• output: The output file with all detailed data of the validation.

• kfolds: This optional argument allows users to change the amount of folds in the k-fold
validation. The default is set to 10, as is common practice.

• Oversampling, model, representation, and logging are also arguments of this script as it
combines the previous two.
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5.0.4 comment_rater.py

:

Figure 5.4: Rater Implementation

Running this file with a project directory as input creates a .csv file that holds all found com-
ments and the calculated metrics and one .csv file with all the detected missing comments. This
file exists because users may want to only scrape for all their comments and create a data set
without the evaluation. The arguments are as follows:

• project: This is the path to the project directory that is going to get its comments analyzed.

• output: This argument contains the path for the resulting .csv file containing all found com-
ments. A second file is also created for the missing comments, by appending _missing to the
file name, so there is no need for inputting two paths.

• models: The directory to the trained models for classification is also needed, as comments
are classified when gathering data.
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5.0.5 comment_evaluator.py

Figure 5.5: Evaluator Implementation

This script takes the two .csv files generated by the comment_rater and reads, evaluates, aggre-
gates and presents the result in JSON tree. The arguments consist of:

• project: The path to the project’s directory that will be evaluated.

• output: This is the location where the .json file will be saved to.

• (missing_) comments: These two arguments contain the paths to the two files generated by
the rater script.

• synonyms: A flag that allows users to turn the synonym analysis on or off, as the processing
time for this algorithm increases exponentially with project size. As it is only recommended
for small projects, the flag is set to be disabled by default.



44 Chapter 5. Framework Architecture & Components

5.0.6 main.py

Figure 5.6: Main Implementation

This is the main script of the tool. It combines rating and evaluation into one big pipeline, taking
a project directory’s path and generating a full quality assessment of its comments, saving the
results to a .json file. As it combines the two scripts above, it takes the same arguments, minus
having to save the intermediate .csv files.

The repository also comes with the differently preprocessed data sets and all other data needed
(e.g., abbreviation list). The pre-trained models could sadly not be included due to their big file
size and GitHub’s restrictions for free users. However, it is easy enough to run the training script
to replicate the study, as the data is all here.

The tool and data can be viewed and downloaded by anyone on GitHub2, pull requests are wel-
come. In its ReadMe file, one can also find more information about the correct usage and install
instruction. The documentation of the code also contains details of the specific implementations
and methods mentioned in this thesis.

2https://github.com/TimDeanMoser/coality
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Threats to Validity

When it comes to threats to validity of the comment type classification pipeline, the biggest one
is that we have used a data set for training the models that was originally created by extracting
comments from java projects, combining them in a single data set. As a consequence, our pipe
line inherits the same threats as the two original studies, like the validity of the samples, meaning
that the studies have been conducted on a small sample of projects and may therefore present
little general knowledge, and the taxonomy validity [15] [13].

Additionally, only a subset of the proposed taxonomies and comment categories was used for
training our machine learning models, increasing the threat of generalization and weakening the
external validity.

Our quality assessment tool utilizes these models trained on java comments to classify com-
ments into categories, which can lead to a threat to validity when used on non-java (e.g. C#)
projects: Related work suggests that different programming languages have different sets of cat-
egories. As we do not actually use the information gained by classifying comments for the eval-
uation of quality, this hardly matters, but still must be kept in mind.

Related work also suggests that different programming languages have different requirements
for quality in comments and so do their best practices for documentation. However, we circum-
vent this threat to validity by focusing mainly on the natural language qualities of comments and
evaluate comments in isolation (without their corresponding source code). The exception to this
is the coherence coefficient, which is calculated using by matching the comment’s content to the
name of the method, class, or similar, which srcML’s parsing provides. Additionally we are filter-
ing any threats with our ignored flag, described in 4.2. This leads our evaluation of quality to be
independent from the programming language.

The biggest threat to validity in general is that, while this thesis has taken different proven
approaches from related work, any iterations on them and new metrics or approaches found are
based only on theory and sensible choices alone and not any empirical real world validation. The
true usefulness and validity stands to be proven in future work by evaluation with real develop-
ers.
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Conclusion & Future Work

7.1 Conclusion
In this thesis, we proposed a tool that can help developers assess the quality of their project’s com-
ments. We presented an approach to automatically assesses the quality of comments in respect to
their readability, usefulness, completeness, coherence and consistency. This can help developers
documenting their code properly by pointing them to problematic comments or files, while giv-
ing an aggregated overview for comparison across different versions of any project to analyze the
evolution of its comments.

We have also shown that deep learning can out perform traditional machine learning algorithms
when it comes to comment type classification when it comes to accuracy and speed. It could prove
a valid approach for the future of comment classification and, should future research invest in a
data set of a much bigger scope, hold its candle to approaches of related work.

7.2 Future Work
The biggest thing in general that can be done in future work is evaluating and validating the tool
with real developers, like mentioned in the chapter 6: The tool’s usefulness and validity are not
based on any empirical real world validation: An experiment where a human’s quality rating of
comments is compared to the result of this thesis’ tool would be an invaluable confirmation.

On the same note, future work could use this tool for topics like the evolution of comment
quality. While we created a pseudo analysis in the section 4.3 for demonstration purposes, actu-
ally setting up an empirical study with hypotheses and research questions that can be analysed
and answered using the proposed tool would be very insightful.

Next we are going to talk about possible improvements of the two parts of our tool more specifi-
cally:

7.2.1 Comment Category Classification
Collect more Data

In this thesis we have shown that a deep learning algorithm like fasttext can out perform tradi-
tional machine learning when it comes to classifying comments types. However when we com-
pare the accuracy of this approach to those of related work can be over 95% [15]. However, the
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hypothesis is that fasttext could reach higher amounts of accuracy the bigger the data set, as deep
learning approaches are notorious for needing a big data set to perform best. For comments,
creating such a big data set is no easy task, as they are not inherently labelled. This means that
humans would need to manually assign comments to different comment types, which requires a
lot of resources and time.

Expand supported Comment Types and Models

In this study, we limited the amount of comment types of concern to a sub set: There exist many
more types like todo-, exception-, dependency- or responsibility comments. Classifying com-
ments into those miscellaneous categories is not feasible with out approach as their representa-
tion is too low in an already too small data set. However, future work with a much bigger data
set, as proposed in the section above, might make it possible to categorize comments into many
more or even all types with respectable accuracy. For this study, fasttext was chosen to represent
the deep learning party of classifiers. It could also be interesting in future work to try a different
approach. The same is true for all machine learning models used in the thesis: While we have a
big enough list for comparison, extending the amount of models might bring new insights. After
all. the classification pipeline is built in a way that switching or extending data sets, comment
types or models would be an easy enough task.

7.2.2 Comment Quality Assessment Tool
Improve the Tool

One thing that we would love to revisit in future work is the tool itself. While it does its job and
does it fairly well, it can still be improved in multiple aspects:

• Increase the general stability of the tool. As of now it is not very safe to use, as it is developed
to be used for this study only. Would someone use it in a way that was not directly intended,
weird and unaccounted for behaviour might occur. Unit tests are definitely a must have
addition for example, which have been omitted due to time and resource constraints.

• The synonym analysis is very high in its complexity and makes the feature nearly unusable
on bigger projects, as it takes too long. It is definitely the bottle neck in performance of the
tool and should be revisited, as the other evaluations are very fast in comparison, no matter
the project size.

• On a similar note, the pipeline would greatly benefit from a synonym and abbreviation
library or list that is more in the context of software development. The language of the IT
world is often different from everyday English and this difference should not be ignored, as
comments live in a different context than for example a newspaper article.

• Another aspect of the pipeline that needs improvement is the detection of commented code.
Our approach described in the section 4.2 is far from perfect and could not have been vali-
dated properly.

• While we have covered every major quality aspect for comments with at least one metric
or score, there still exist several different approaches from related work that could be of
use for our analysis and evaluations. For example, another aspect of the consistency of
comments would be that header and license comments have the same layout in all files.
The more aspects our tool can cover, the better it can give insight of the quality of a project’s
comments.
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Front-End and Visualization

The pipeline does not really have a front-end for visualization yet. JSON, while readable by
humans, is not very usable for quick analysis. Hence why we would like to extend the tool in the
future with a way to visualize the results and since the output is a JSON file, we are already half
way there to be able to create a front-end with something like REST inside a browser. The logical
next step would be to move away from a command line interface (CLI) and allow users to select
their inputs and settings over a graphical interface, which is a leads us into the next section:

Accessibility, Ease of Use and Install

Besides improving the actual inner workings of the quality assessment tool, it would benefit a lot
from improving the user experience, Multiple aspects come to mind:

• Increase the availability of the application for more operating systems. The tool was de-
veloped and tested entirely on Windows 10 and while it should work in other operating
systems like OSX and Linux, it was never tested due to time constraints.

• Right now the install process is rather tedious and could be simplified by releasing the
application as a package on PyPi1, where it then could be easily installed and updated using
pip.

• Another way of increasing accessibility is by releasing the tool as part of a web based ap-
plication, forgoing the install process as a whole. This directly ties into the idea of creating
a visual interface inside a browser and would increase the availability drastically. Another
aspect of this could be to allow users to either upload their projects for evaluation or pulling
it from GitHub directly, bypassing any downloads or uploads.

• Integrating the application directly into the development cycle could also be an interesting
approach. For example, GitHub allows users to install Apps to automate and streamline
workflow2. In this case, the tool could be extended to be installed as such an app, creating a
report of the comment quality in the project after every commit, for example.

• The last proposed way of moving away from a CLI, would be to integrate its functionality
into an integrated development environment (IDE). Most modern IDE’s like Visual Studio
and IntelliJ allow users to install extensions, which would be a perfect fit for our quality
assessment tool, while still working locally on the machine.

1https://pypi.org/
2https://docs.github.com/en/developers/apps
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Appendix

8.1 Repository
The tool developed in this thesis and the data used can be viewed and downloaded by anyone on
the following GitHub repository:

https://github.com/TimDeanMoser/coality



52 Chapter 8. Appendix

8.2 Zoomed in Figures of Sections 4.2 and 4.3
To increase the readability of the plots in the sections 4.2 and 4.3, one can find the plots with
increased size in this section.



8.2 Zoomed in Figures of Sections 4.2 and 4.3 53

Fi
gu

re
8.

1:
Zo

om
ed

P
lo

to
fC

om
pa

ris
on

of
F1

sc
or

e
of

di
ffe

re
nt

m
od

el
s



54 Chapter 8. Appendix

Figure
8.2:

Zoom
ed

P
lotofC

om
parison

ofF1
ofdifferentpreprocessing

techniques



8.2 Zoomed in Figures of Sections 4.2 and 4.3 55

Fi
gu

re
8.

3:
Zo

om
ed

P
lo

to
fE

ffe
ct

of
O

ve
rs

am
pl

in
g

on
La

be
ls



56 Chapter 8. Appendix

Figure
8.4:

Zoom
ed

E
volution

ofG
oogletest’s

Q
uality

M
etrics



8.2 Zoomed in Figures of Sections 4.2 and 4.3 57

Fi
gu

re
8.

5:
Zo

om
ed

E
vo

lu
tio

n
of

R
et

ro
fit

’s
Q

ua
lit

y
M

et
ric

s



58 Chapter 8. Appendix
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