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Abstract

In the course of the global digitalization in recent decades, the internet has become one
of the most important and ubiquitous communication means. However, being based on
an end-to-end connectivity principle, existing internet infrastructure is not optimal for
data, resp., content delivery use cases (such as Video-on-Demand): For such applications
it is key to make the distribution of data from content producers towards multiple content
consumers as efficient as possible. This fact has lead to the development of future internet
architectures part of the ICN (Information Centric Networking) family: ICN architectures,
such as NDN (Named Data Networking), can improve content delivery on a systemic
level, by – contrary to the classical internet – focusing on identified data and deploying
in-network caching techniques. Replacing the entire established internet with a novel
architecture is however a non-trivial task, which is why this thesis considers a layered
network architecture consisting of several smaller NDN-based mobile networks (resp.,
domains): Thereby, independent domains are inter-connected using a Chord Peer-to-
peer network running as an overlay on top of existing internet infrastructure. By using
the NS-3 framework to develop a network simulation, which models real-world network
characteristics, the performance of the proposed architecture is evaluated: This includes
a comparison with a plainly NDN-based reference architecture, which reveals that the
layered NDN & Chord approach is a valid and efficient alternative, if a global spanning
NDN network cannot be realized, or, if NDN routing is subject to difficult conditions.
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In den letzten Jahrzehnten wurde das Internet im Zuge der globalen Digitalisierung zu
einem der wichtigsten und allgegenwärtigsten Kommunikationsmittel. Jedoch ist die beste-
hende Internet-Infrastruktur, welche auf einem auf Ende-zu-Ende Verbindungen basieren-
dem Prinzip aufbaut, nicht optimal für Anwendungen, bei denen es um die Verteilung von
Inhalten (engl. Content Delivery, z.B. Video-on-Demand) geht: Für solche Anwendungen
gilt es, die Kommunikation zwischen Datenproduzenten und mehreren Datenkonsumenten
effizienter zu gestalten. Dieser Umstand hat zur Entwicklung von zukünftigen Internetar-
chitekturen Teil der ICN (Information Centric Networking) Familie geführt: ICN Architek-
turen, z.B. NDN (Named Data Networking), steigern die Effizienz von Content Delivery
Anwendungen indem sie – im Unterschied zum bestehenden Internet – systembedingt
auf identifizierbare Daten fokussieren und Netzwerk-weit Caching-Techniken einsetzen.
Es wäre allerdings kaum realisierbar, kurzfristig das gesamte Internet mit einer neuarti-
gen Architektur zu ersetzen, weshalb in dieser Arbeit eine Schichtenarchitektur erforscht
wird, welche aus mehreren, kleineren NDN-basierten Mobilfunk-Netzwerken (Domänen)
besteht: Dabei werden die einzelnen Domänen untereinander mittels einem Chord Peer-
to-peer Netzwerk verbunden, das auf bestehender Internetinfrastruktur betrieben werden
kann. Um die Leistung dieser NDN & Chord Architektur zu evaluieren, wird sie in Form
einer Netzwerksimulation im NS-3 Framework abgebildet, wobei auch diverse Charakte-
ristika des existierenden Internets realistisch modelliert werden. Die Evaluation beinhal-
tet zudem ein Vergleich mit einer rein auf NDN basierenden Referenzarchitektur, was
zum Vorschein gebracht hat, dass NDN & Chord eine valide und effiziente Alternative
sein kann, wenn ein allumfassendes NDN Netz nicht realisierbar ist oder NDN Routing
schwierigen Bedingungen unterliegt.
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Chapter 1

Introduction

The internet – as a global ecosystem of computer networks – has in the last decades
evolved into the arguably most important means of communication used today. Its rapid
emergence and growth would not have been possible without one of its underlying core
networking techniques, i.e., packet switching, which was developed over 50 years ago.
Packet switching has crucially revolutionized computer networking by replacing its pre-
cursor technology – i.e., circuit switching, in which for two network participants (resp.
nodes) to exchange data, it was necessary to physically occupy a dedicated channel across
the network. Instead, in packet switching any exchanged data between two hosts is en-
capsulated into small chunks (i.e., packets), which are individually routed through the
network. Thereby, as in real-world, each packet to be delivered is denoted with a source
as well as destination address, which is meta information that allows nodes to decide
to which next node to forward (resp. route) a packet to [31]. However, classical packet
switching (as still used by today’s internet), does not foresee metadata to be attached to
packets revealing what kind of information or content is being transported.

Since the rise of the WWW (World Wide Web), the internet has become more and more
a means for users to seek information and to consume digital content. For example,
since smartphones are highly popular and mobile broadband subscriptions have become
affordable, a growing number of users regularly consumes mass media content, such as
news videos, during commuting. From a technical standpoint, the more users are accessing
internet content, the more (streams of) packets have to be delivered from the content
server to individual users. Especially in the case of mass media, a large number of users
are accessing the same (popular) content, which implies that the same data is delivered
from the server to multiple users over and over. This leads to an exhaustive amount of
accumulated load put onto the network, which can be blamed on sparse packet metadata in
the host-based paradigm: If packets held meta information about the transported content,
it would allow for techniques to be deployed, in which popular content is delivered more
efficiently, without straining network resources with redundant packet deliveries.

This is where Information Centric Networking (ICN) comes into play: Contrary to the
host-centricity of the Internet Protocol (IP), ICN stands as a novel paradigm focusing
on the transported information itself, i.e., in terms of metadata, packets hold a name
describing the contained data, instead of source and destination addresses [30].

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

In recent years, several architectures were developed which implement the ICN paradigm
and present themselves as future technologies to replace the traditional IP-based internet.
Clearly, ICN implementations have the potential to improve the efficiency of increasingly
important internet content delivery use cases. However, it is debatable for various reasons,
whether ICN technologies are an optimal choice to globally replace the established IP-
based ecosystem. For example, there is nowadays still a large number of use cases for which
the host-based paradigm is ideal, e.g., when establishing a connection to a remote server
using SSH. At the same time, it is unlikely that an ICN architecture can be globally
deployed within short-term; More likely, ICN-based networks will appear in terms of
several smaller, independent domains.

In front of this background, this work proposes a multi-domain content delivery network
architecture consisting of several mobile networks: Thereby, the mobile network domains
operate on an ICN implementation, while to enable communication among different do-
mains, a Distributed Hash Table (DHT) based Peer-to-Peer (P2P) network is used, which
runs as an overlay network on top of traditional IP-based internet. With this approach,
several independent mobile domains benefit from the advantages of ICN, while the ex-
change of data between foreign domains is efficiently carried out over existing internet
infrastructure, i.e., without the need for a globally deployed ICN network.

1.2 Thesis Outline

The following chapter 2 presents the thematic background as well as related work, in terms
of introducing the relevant technologies and the state-of-science on which this thesis builds
upon.

In the subsequent chapter 3, two different use case scenarios are presented, for which de-
ploying ICN technology in mobile networks seems reasonable, when it comes to improving
the efficiency of content resp. service response delivery.

In chapter 4, it follows a detailed description of the proposed architecture including its
involved technologies, and how the architecture was implemented in terms of a network
simulation in the simulation framework NS-3: This not only includes documentation of
the simulation implementation details but also gives insight on involved measurements,
models and assumptions which were applied to conduct network simulations as realistic
as possible.

The results from conducting several simulation experiments to assess the performance of
the proposed network architecture are presented chapter 5. This includes a comparison
of the suggested architecture against a reference architecture which was simulated under
the assumption of a globally deployed ICN infrastructure.

Finally, chapter 6 summarizes the contributions of this thesis and proposes potential future
research.



Chapter 2

Background and Related Work

2.1 ICN: Information Centric Networking

Information Centric Networking is proposed as an approach to innovate today’s internet
architecture by promoting named data: Moving away from the classical host-based inter-
net paradigm, ICN is information centric, i.e., hosts in an ICN network request and deliver
data according to names, instead of host addresses. As a consequence, in ICN, data is
completely independent of storage, location and transportation, while it becomes a direct
responsibility of ICN networks (resp., participating nodes) themselves to ensure that data
is efficiently delivered, i.e., by applying data replication and caching techniques. This
serves a vast number of information resp. content delivery applications, for which ICN
stands as a promising alternative to the classical internet, while introducing more network
efficiency and scalability. As globally, the demand for data continues to grow, maintaining
network efficiency appears to be in everybody’s interest. In front of this background the
IETF (Internet Engineering Task Force) has originated the ICNRG (Information Centric
Networking Research Group) in 2012, to promote research in the field of novel internet
architectures implementing ICN [30].

2.1.1 ICN versus Content Delivery Networks

If we consider the main goal of ICN to optimize the efficiency of content delivery use cases,
it seems reasonable to compare ICN to Content Delivery Networks (CDN) as a different
technology having similar ambitions: The idea behind CDN is for content deliverers, such
as music streaming services (e.g. Tidal), to distribute several edge servers (resp., mirrors)
geographically close to service users. This has the advantage that for user nodes to stream
content, there is no need to connect all the way to the content provider’s main server, but
rather, the replicated content can be fetched from mirror servers that are deployed e.g. at
some local ISP (Internet Service Provider) to which users are subscribed to. As opposed
to ICN, CDN does not aim at replacing the current internet architecture, but rather
stands as an approach to use the existing ecosystem to improve the QoE (Quality-of-
Experience) for differently located groups of users. Another crucial difference to the ICN

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

paradigm is that CDNs rely on special contracts between content providers and network
infrastructure operators, such as ISPs hosting edge servers: The contractual deployment
of mirror servers can come at high costs, and it might be infeasible for content providers
to deploy mirrors globally, such that only some network regions will benefit from faster
content delivery [38].

In the ICN paradigm – on the other hand – data replication and caching are solved as
a joint effort of the entire network, meaning that in comparison to CDNs, every node in
the network allocates resources to automatically cache frequently requested data items
and directly serves them to nearby data consumers. If ICN was used globally, content
providers would not need to contractually deploy mirror edge servers and also, caching
and efficient data delivery would be enabled between any kind of content source and its
consumers (users), i.e., not only for services actively investing in CDN infrastructure.

The following table summarizes the main differences between the ICN and CDN:

Paradigm ICN CDN
Used architecture ICN as a replacement of

classical internet
Deployed within existing
internet infrastructure

Strategy for network effi-
ciency improvement

Caching and data replica-
tion as a responsibility of
every network node

Deployment of edge / mir-
ror servers close to content
consumers

Content provider indepen-
dent?

Yes, all data cached and
replicated regardless of ori-
gin

No, separate CDN servers
for each provider

Involved cost Implicit costs in terms of
shared nodes’ shared mem-
ory and bandwidth

Contractual costs between
content providers and 3rd
parties hosting mirror
servers

Table 2.1: Comparison of ICN with CDN

2.1.2 NDN: Named Data Networking

Named Data Networking [2, 39] is likely the most prominent implementation part of the
ICN architecture family. NDN originated from a preceding project, i.e. CCN (Content-
Centric Networking), which was first introduced in 2006 [39]. The main idea behind NDN
is to completely move away from the internet’s classical host-based IP packet delivery, and
instead implement fetching of named and secured data items. Secured refers to the fact,
that in NDN, data originators cryptographically sign data packets, such that recipients
can verify data integrity, regardless from which node in the network the data has been
received.

Types of Messages and Network Nodes

Communication-wise, NDN operates by exchanging the following two types of messages
[39]:
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• Interest packets hold an identifier (i.e., a name) and are used to inform the network
about the demand to retrieve some named data item

• Data packets carry the name as well as content of requested data items

NDN networks feature the following network node types [39]:

• Data producer nodes provide a set of named contents (i.e., data items)

• Content consumer nodes request data items by issuing interest packets

• Intermediate nodes either forward interest packets towards the upstream (i.e., in
the direction of producers), or, back-forward data replies from producers towards
the downstream (i.e., in the direction of consumers)

Naming Scheme

With regards to data item names, NDN proposes a hierarchical naming scheme, as used
e.g. in unix-based file systems. For example, a mobile operating system security update
could have the following name: /google/security/android11/patch_7446.tar.gz
If larger amounts of data have to be segmented into several packets, it is common in
NDN to append sequence numbers to data names, such that data chunks can be indi-
vidually retrieved and eventually constructed together again by content consumers. For
example, a consumer might be interested in streaming a news video with name prefix
/srf/10vor10/2021-06-28.mp4 and append consecutive sequence numbers to it to con-
struct interest names to retrieve individual file segments, i.e.: [...]2021-06-28.mp4/1,
[...]2021-06-28.mp4/2, etc. [27,39]

NDN Forwarder

One of the most important system parts of NDN is the NDN Forwarder, which resides
in every node. Its reference implementation, which is realized as a community project, is
called NFD (NDN Forwarding Daemon) [14]. In every NDN Forwarder there are three
crucial data structures, namely Content Store (CS), Pending Interest Table (PIT) as well
as Forwarding Information Base (FIB), which enable data caching, interest aggregation
and routing in NDN. The responsibilities of these parts are explained in more detail in
the following two NDN Forwarder operation examples:
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Figure 2.1: NDN Forwarder Upstream Operation

Let us assume that the NDN Forwarder depicted in the above figure is part of a node
which receives an interest packet from another node in the downstream. It follows the
following sequence of processing the interest packet [28,39]:

1. The NDN Forwarder first checks, whether this node possibly has the requested
data already cached in its Content Store: If so, the node can directly respond back
with the cached data, i.e., send the data back to the downstream (in the opposite
direction from where the interest was received).

2. If however the data corresponding to the interest packet has not yet been cached on
this node’s CS, the NDN Forwarder writes the interest into the PIT table. This data
structure is used to aggregate interests which could not be satisfied (i.e., responded
to with data) yet.

3. Next, the NDN Forwarder searches the Forwarding Information Base to determine,
to which NDN interface(s) the interest should be forwarded to. The NDN FIB
can be compared to the FIB in IP, but instead of mapping IP address prefixes to
some next-hop interface, NDN FIB entries map name prefixes to one or several
NDN interfaces. If the FIB does not contain any entry matching with the interest
prefix, the interest cannot be forwarded and the Forwarder answers with a negative
acknowledgement (NACK) back to the downstream.

4. If – however – the Forwarder has found a matching FIB entry, the interest will be
forwarded to upstream nodes according to a configured forwarding strategy: With
the Best Route strategy, interests are sent to the single next-hop interface with the
lowest-cost (resp., shortest path), while with the Multicast strategy, interests are
sent out to all of the interfaces matching with the interest name prefix.
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Figure 2.2: NDN Forwarder Downstream Operation

Continuing the preceding example, we now consider the NDN Forwarder operation (in
the same node), if data arrives from the upstream, which satisfies the interest originally
sent out [28,39]:

1. When a data packet arrives from the upstream, the Forwarder queries the PIT to
determine all interested downstream NDN interfaces, to which the data should be
forwarded to. Eventually (i.e., as soon as the data has been delivered), the PIT
entries for the concerning interest will be discarded.

2. Before forwarding, the NDN Forwarder ensures to cache the data in its CS. This
is to ensure, that for future incoming, identical interests, the (cached) data can be
returned directly and efficiently from the current node, without the need to forward
the interest further.

3. Finally, the data is forwarded to the set of downstream interfaces, which has been
determined in the PIT (cf. step 1.).
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2.2 SCN: Service Centric Networking

Besides the growing importance of content distribution, in recent years there has also been
a clear trend for the internet to become increasingly service-based, in terms of evolving into
a network of distributed, interactive applications. Examples of services can be named from
many different fields, e.g., high-definition video conferencing services, augmented, resp.,
virtual reality, telematics (such as navigation applications) or various media processing
services. While ICN implementations address the challenge of delivering static content
(resp., data) efficiently, they are not per default optimized for interactive services: Service
Centric Networking (SCN) – on the other hand – is a variation of the ICN paradigm
with the goals of optimizing the discovery and execution of services as well as the efficient
delivery of service data [23]. It should be mentioned that while SCN promotes several
features that make it optimized for services, SCN stands merely as an extension of ICN
and is still based on the same principles defined in its origin paradigm. However, in
contrast to ICN, SCN use cases benefit from the in-network caching of interactive service
responses, rather than merely the caching of static data [19].

This is especially valuable in the case of service-based applications in which a lot of service
users receive identical responses. Let us consider the example illustrated below, which is
centered around a voice conferencing system: To realize that users can hear each other in
real-time, there is a central conference (server), which mixes N individual digital input
audio streams according to N participants’ speech. In this instance, to retrieve the mixed
audio, both participants, Alice and Bob issue an interest packet for a sequence of the
audio stream (i.e., /mix/conf1/24). The Conference Server answers with the requested
digital audio sequence, which gets cached on intermediate nodes while moving towards
the downstream. Bob’s interest packet has to route through an additional node, and thus
takes a longer delay to move towards the upstream: By the time the interest reaches the
node with thick border, the response can be directly delivered from its CS cache, since
Alice’s identical interest has already been responded to [16].

Figure 2.3: SCN Voice Conference Use Case Example
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2.2.1 Layered Service Centric Networking (L-SCN)

In this section the focus is laid on Layered Service Centric Networking (L-SCN), an impor-
tant related work which set the conceptual foundation for this thesis. L-SCN is an SCN
implementation developed at the University of Bern and first presented in a 2017 IEEE
publication by M. Gasparyan, T. Braun, and E. Schiller. Compared to existing implemen-
tations of the SCN paradigm, L-SCN introduces a novel approach to SCN routing. L-SCN
is based on NDN and thus, complies with the ICN paradigm (cf. subsection 2.1.2): To
conduct experiments and evaluate the architecture in a simulated environment, L-SCN has
been implemented in ndnSIM 2.1 [27], an NS-3 based NDN simulation environment [19,20].

Layered Architecture

In comparison to existing SCN implementations, L-SCN presents an innovative network
architecture, which describes two different communication layers, hence the name Lay-
ered SCN. This refers to the fact that in L-SCN, all participating nodes (this includes
service providers as well as service consumer nodes) are clustered into several autonomous
domains: Thus, L-SCN distinguishes between communication on an intra-domain layer,
which describes the communication among nodes belonging to the same domain, as well as
communication over an inter-domain layer, referring to the communication among nodes
belonging to different domains [19,20].

With regards to the construction of domains, the assumption is that the clustering of
nodes is carried out according to node proximity, i.e., in all domains, local nodes have
great connectivity towards each other. Proximity does not necessarily refer to distance in
the geographical sense, rather, the clustering process is assumed to group together nodes
which can communicate to each other over high capacity links [19,20].

Intra- and Inter-Domain Communication

What concerns intra-domain communication, L-SCN defines that nodes belonging to the
same domain are directly reachable. Direct communication is however not possible in
the case of nodes trying to reach out to services hosted in remote domains, since each
domain is assumed to be self-contained (resp., autonomous): To enable inter-domain
communication, L-SCN selects in every domain at least one node, which gets elected as
a supernode. Each supernode is connected to at least one other supernode of a foreign
domain, and the requirement for nodes to be elected supernodes is stable connectivity to
at least one foreign domain [19,20].

The following figure illustrates intra- as well as inter-domain communication among three
domains in L-SCN:
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Figure 2.4: L-SCN Communication Among three Exemplary Domains

Intra- and Inter-Domain Service Discovery

From a Service Centric perspective, L-SCN supernodes are responsible for keeping track on
all services as well as resources (e.g. computing power and memory available at nodes) of-
fered in their corresponding domain. To retrieve this information, supernodes periodically
send out Interest Information Messages (IIM) to all local nodes. Service providing nodes
will respond to IIM packets with a Data Information Message (DIM) packet: DIM packets
hold a Bloom Filter [15], i.e., a bit field indicating the services hosted on the node. As
soon as the local supernode has received DIMs all service providers, it merges all responses
and forms a unified Bloom Filter, which represents the entirety of services provided in
the domain. To make other domains aware of locally hosted services, supernodes then
broadcast their domain-summarizing Bloom Filter to all neighbouring supernodes (resp.,
domains) [19,20].

It should be mentioned at this point, that during the service discovery process, L-SCN
takes advantage of in-network caching defined in ICN and implemented, e.g., in NDN.
This brings along the following two advantages [19,20]:

• Firstly, during service discovery, IIM and DIM packets are cached on intermediate
nodes: If for example in some domain there are two (or more) supernodes and they
broadcast identical IIM shortly after another, they might be served by intermediate
nodes, which have the DIM packets already cached in their CS. Similarly, if some
supernode A’s IIM arrives at another local supernode B, B can either directly serve
A with cached DIMs (if available), or, broadcast an IIM itself and finally forward
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collected DIMs back to A. In both cases, the overall intra-domain network perfor-
mance is improved, as IIM are prevented from being broadcast across the entire
domain.

• Secondly, intermediate nodes between supernodes and service providers possess in-
formation on a fraction of the hosted services in the domain, since they cache for-
warded DIM packets: If an incoming service request (interest) matches with infor-
mation on a cached DIM, an intermediate node can efficiently forward the request
towards the corresponding service provider node, instead of forwarding the interest
to all neighbour nodes and thus flooding the upstream network.
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2.3 Inter-Domain Communication as a Challenge

In general, current SCN as well as ICN implementations present solutions that work
under the assumption that their proposed network architecture is deployed at the large
scale, in terms of revolutionizing the current internet infrastructure and making all of
its participants compliant with the new, proposed communication approach: However,
performing such a transformation globally is not realistic, given the humongous scale,
complex structure and ubiquitous use of today’s internet. It is much more likely, that
ICN and SCN networks will emerge in terms of several globally scattered zones resp.,
domains. This – however – introduces several challenges, as firstly, inter-domain channels
have to be set up, which usually have to operate over a different communication protocol
than used within native ICN or SCN domains. Secondly, inter-domain communication
can reveal itself as a performance bottleneck, if there is a lot of traffic among distant
zones.

The following sections present how NDN and L-SCN address these challenges:

NDN at the Inter-Domain Level

Being proposed as a future internet architecture, NDN has the vision of transforming the
entire existing internet into one global NDN network. For the reasons mentioned earlier,
such a radical technology shift cannot be performed ’overnight’ and is rather expected to
happen gradually. At the same time, one could argue that there are today still a lot of
internet-based use cases, resp., applications working best with the host-based principle
used in traditional internet architecture which raises the question whether a global NDN
network is an optimal solution in every case.

To interconnect several NDN zones, the NDN project team provides the possibility to
run NDN communication as an overlay network on top of traditional IP networks: If
there are for example two distant NDN domains having no native NDN connectivity
among them, they can be interconnected by establishing an IP-based connection among
the NFDs (cf. section 2.1.2) part of interfaces in opposite domains: This is realized by
encapsulating NDN packets into TCP or UDP packets and transporting them over the
internet [9]. NDN as an IP overlay network (NDN-over-IP) is used in the NDN Testbed,
a multi-domain NDN ecosystem used for research purposes [3].

While NDN-over-IP helps the deployment of NDN and enables domain-spanning NDN
content delivery, NDN data encapsulation in IP packets leads to additional protocol over-
head. At the same time, it can lead to an overwhelming amount of NDN control traffic,
if a lot of content is requested from remote domains over inter-domain links.

L-SCN at the Inter-Domain Level

It was discussed in section 2.2.1 that the L-SCN architecture (in comparison to NDN)
considers several service centric domains per design. Thereby, L-SCN reduces the amount
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of service discovery protocol traffic on the inter-domain level, which is accomplished by
using Bloom Filters as a lean data structure to broadcast service and resource availability
information among the domains. This way, L-SCN can optimize communication at the
inter-domain level, making it more efficient compared to intra-domain protocol commu-
nication [19,20]. However, broadcasting information on the inter-domain level is still not
optimal, especially if an L-SCN ecosystem is highly dynamic and involves a lot of domains
offering a huge number of services and resources.

Being NDN-based, L-SCN can use NDN-over-IP to enable communication among disjoint
domains. That is, if for example domain C in Figure 2.4 was disconnected from domains A
and B per the lack of a global NDN network, the supernode of C could still communicate
to A and B via an NDN-over-IP connection, i.e., by establishing a connection using the
IP addresses of the supernodes of domains A and B [19].

Figure 2.5: L-SCN Inter-Domain Communication using DHT

Certainly, the issue of excessive control traffic on the inter-domain level also exists if
using NDN-over-IP to interconnect supernodes of individual zones. As a remedy, L-SCN
presents a new approach to optimize inter-domain communication, by storing service
availability information in a Distributed Hash Table (DHT, as introduced in more detail in
the upcoming section): Simply put, a DHT is a data structure distributed equally among
several internet hosts, which allows for the efficient storage and retrieval of data objects,
resp., information. In L-SCN, IP-capable supernodes can become members of a DHT,
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building a DHT Peer to Peer (P2P) network. To expose the availability of local services,
supernodes insert the relevant information in the DHT; Vice-versa, if supernodes want
to lookup (resp., locate) services offered in other zones, they can retrieve the directions
towards the hosting domain from the DHT [19]:

In the example shown in Figure 2.5, L-SCN domains A and B are disjoint, i.e., there is
no native NDN connectivity among them. However, the supernodes of both domains are
connected to the internet and are part of a DHT P2P network. The following sequence
describes the illustrated L-SCN inter-domain service discovery with the help of a DHT [20]:

1. In domain A some node is the provider of serviceA. As soon as the supernode of A
has discovered the service being provided within the zone, it expresses its availability
to other zones: It does so by calling the Insert routine of the DHT and adding
a tuple of [service name, IP address]. The IP address corresponds to the public
address of the single supernode in domain A.

2. If in disjoint domain B, a request (interest) for serviceA arrives at the local su-
pernode, supernode B calls the DHT’s Retrieve routine with the service name as
the key to search for, to look up the address of the supernode corresponding to the
zone of serviceA.

3. The DHT replies to the supernode in B by returning the IP address of the supernode
in domain A.

4. Finally, supernode B can connect to the domain hosting serviceA, i.e., by estab-
lishing an NDN-over-IP connection with supernode A.
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2.4 DHT-Based Peer-To-Peer Systems

2.4.1 Introduction

This section introduces IP-based Peer-To-Peer (P2P) overlay networks which are based
on Distributed Hash Tables (DHT). Peer-To-Peer systems can be described as a crucial
counter suggestion to traditional client-server systems: Instead of letting client nodes
request data from a centralized server, P2P stands as a decentralized and distributed
approach, in which every node (resp., peer) acts both as a client as well as a server
simultaneously. Thereby, all the peers part of the P2P overlay can communicate directly
among each other, via the IP-based underlay network. Compared to classical client-
server systems, in P2P, storage of data (resp., information), peer lookup as well as data
retrieval are responsibilities which are distributed among all participating nodes. This
way, P2P systems can introduce a higher level of reliability, scalability and robustness.
However, to share load equally among the peers, P2P systems require algorithms that
fairly distribute load among all participating nodes: Here, the term load can refer to the
following aspects [18]:

• Request load results on peers which have to answer queries for locally stored objects
(i.e., data items), w.r.t. exchanged messages, data and spent resources (computa-
tional power) to answer queries

• Object load is caused according to the size and popularity of requested objects
present in the system

• Routing load results when nodes in-between requesting and serving peers are for-
warding (routing) query traffic

The upcoming section presents how DHT-based overlay (resp., P2P) networks address the
challenge of load balancing.

2.4.2 Distributed Hash Table Overlay Networks

In general, DHT overlay networks follow a design which allows for well-balanced request,
object and routing load. That is, all of the peers have to respond to a comparable amount
of queries, data objects are requested at a similar popularity, while the flow of requests is
balanced equally. This is accomplished by the following high-level overlay architecture [18]:

Identifier Space

A DHT overlay consists of a set of peers (i.e., nodes), while each peer features a unique
identifier (i.e., an IP address) that belongs to a certain identifier space. To enable commu-
nication among the peers, links (i.e., connections) are set up among pairs of participating
peers. One of the core principles of the overlay is the even, collaborative storage of objects
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among the peers, while each peer has to store a fraction of the total amount of objects:
This is realized by dividing the identifier space into a series of non-overlapping identifier
ranges, which are assigned to participating peers. All of the objects in the network have
an identifier (i.e., a key), which follows the same identifier space as the peers: This way,
objects (according to their identifier) can be assigned to be stored on the peer which is
responsible for the corresponding identifier range. If some peer queries a certain object
from the DHT, a routing function ensures to route the requests towards the node which
is responsible for the identifier range to which the object belongs to. Depending on the
routing algorithm in-place and the shape of the network w.r.t. established links among the
peers, the request possibly traverses a series of nodes until the serving peer is reached. In
most cases, DHT utilize greedy routing algorithms, meaning that peers greedily forward
queries to the some known neighbour which is the closest to the queried object in terms of
identifier space. To achieve a fair object load among the peers, node and object identifiers
(i.e., keys) must be distributed equally over the identifier space. This can be achieved
by an approach called namespace balancing, which incorporates the idea of hashing the
identifiers of peers and objects (i.e., IP addresses, and object names) and using hashed
identifiers to equally assign objects to nodes in the identifier space. [18].

Routing Tables

Such that in DHT overlay networks, peers can route object queries towards their desti-
nation, each peer holds a routing table, in which it stores outgoing links to its directly
reachable neighbour nodes. When a routing algorithm at some node has to decide to
which node to forward a lookup request to, it chooses the neighbour in the routing table,
which identifier-space-wise is closest to the destination. Routing tables are essential for
the lookup mechanism to function properly, which is why DHTs implement mechanisms to
ensure that routing tables remain up-to-date: When an obsolete (i.e., inactive) neighbour
node entry is detected, the routing table is fixed by replacing the entry with a different
node which inherits the responsibilities from the now inactive peer (i.e., according to the
rules of identifier space management in-place) [18].

2.4.3 Chord DHT Overlay

This section introduces Chord, a state-of-the art DHT overlay developed at MIT and
introduced in 2001 [32].

Identifier Ring

In Chord, each data object and peer is assigned an identifier consisting of m bits. To
enable namespace balancing, Chord computes m-bit identifiers by hashing data object
names, and peers’ IP addresses using the SHA-1 algorithm. This way, peers and objects
can be uniformly distributed in a ring-shaped identifier space, while due to the identifier
size of m bits, the identifier ring can hold up to 2m different addresses [18,32].
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Chord defines that each peer must know its direct successor as well as predecessor peer
in the identifier ring: While the predecessor is a peer’s next peer in counter-clockwise
direction in the identifier space, the successor refers to the upcoming peer in clockwise
direction. As mentioned, object names adhere to the same identifier space as the peers,
thus, the identifier ring is used to determine the peer which is responsible for the storage
of some object. Chord organizes this by assigning objects to their successor peer: If e.g.,
there is an identifier sequence (in clockwise direction) of A, B, C in the identifier ring,
while A and C are peers and B is an object, it is the responsibility of C to store object B.
Thus, if a peer receives a query for an object which is not stored locally, the protocol will
let the peer forward the request either in the direction of the predecessor, or, successor
peer, depending on the position of the object in the identifier ring [18,32].

Finger Tables

As mentioned, in Chord every peers must at least know its successor and predecessor
peers. If – however – these were the the only known peers, looking up objects could
potentially be very inefficient, as requests would in the worst case have to surpass the
entire identifier ring, until reaching the direct successor of some object; Complexity-wise,
this would correspond to a linear search at O(n). To improve that, Chord introduces
the concept of Finger Tables, which are a special type of routing tables residing in every
peer [18,32]:

Finger tables can contain up to m routing entries, while m is the fixed size of the identifiers
in bits. The first entry of a finger table always corresponds to the peer’s immediate
successor. The remaining m−1 entries correspond to different peers of the network, which
are derived according to the following formula (n denotes the current peer, i denotes the
number of the entry in n’s finger table): i = successor((n + 2i−1) mod 2m)) [32].

Keeping a set of m routes in every finger table ensures that every peer knows m ’shortcuts’
to other peers across the entire identifier space: Subsequently, when a peer wants to lookup
an object o, it searches in its finger table for the peer which is closest to the successor peer
of o and forwards the request towards it. By using this routing strategy, it is possible to
prove that the lookup complexity can be improved to O(log n) [32].

Figure 2.6: Chord Finger Table [33]
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The above figure depicts the finger table of a peer in a Chord network of size = 16: While
the first ’finger’ points to the immediate successor in clockwise direction, the second,
third and fourth fingers point to successor peers according to powers of 2 going into the
clockwise direction of the identifier ring (starting at the current peer) [32].

The figure below illustrates the routing process of some peer A requesting an object from
peer B:

Figure 2.7: Chord Finger Table [34]

Due to finger-table based routing, the Chord routing process can improve peer lookup sig-
nificantly, reducing the number of required hops until reaching the serving peer. Thereby,
at each hop towards the destination, the distance is effectively divided in half [32]. How-
ever, since Chord operates as an overlay on top of the internet, additional routing overhead
might occur: Even if Finger Table routing effectively reduces routing effort, one hop be-
tween two overlay peers might correspond to multiple hops in terms of intermediate nodes
in the underlay.

Stabilization Mechanism

The Chord protocol runs a stabilization routine in the background, which ensures, that the
lookup process always functions properly, even in the case of peer churn (i.e., when peers
join or leave the overlay). For example, if a peer leaves the network (or gets inactive),
the finger tables of all peers pointing at that peer have to be updated, such that they do
not point at an absent peer. The same is true for the opposite case: If a peer Y joins the
Chord ring in between a predecessor X and a successor Z, Y inherits a part of the objects
for which Z has been responsible. Subsequently, all peers’ fingers have to be updated,
such that the objects, which now are under the responsibility of Y , can be retrieved.



Chapter 3

Use Case Scenarios

In this chapter, two different use case scenarios are presented, which are centered around
the idea of efficient content, resp. data retrieval through mobile networks. Both scenarios
have the common property that there is a high probability for the user devices part of
the mobile network to (independently) request a large number of identical data items,
resp. information. Thus, it is highly beneficial to put into place ICN-based in-network
caching techniques (cf. section 2.1), as realized by e.g. NDN, to ensure that popular data
is available in close proximity to requesting devices.

3.1 Mobile OS Patch Distribution

In the past two decades, the emergence of internet-powered mobile devices, such as smart-
phones, has lead to a massive growth of attack surface when it comes to security loopholes
in mobile operating systems (OS). This is especially problematic for highly popular mobile
OSs, since attackers naturally tend to choose prominent platforms on which to discover
and exploit security holes, to cause the greatest possible damage. For the globally most
widely used mobile OS, i.e., Android, this has in the past led to a vast number of discov-
ered and fixed vulnerabilities [10].

Let us in front of this background consider a scenario, in which recently, there has been
a security gap discovered affecting the Android OS, which allows attackers to inject ma-
licious code (i.e., malware) into mobile devices: On affected devices (e.g., tablets), the
malware circumvents the system’s hardware control mechanisms, such that attackers can
have full access to e.g., cameras, microphones and various sensors. Of course, this presents
a highly severe intrusion, breaching the privacy of potentially billions of Android users.
With that being said, it is both in the interest of the OS maintainer (resp., the Android
Security team at Google [11]) as well as all potentially affected users, for this security gap
to be fixed as soon as possible.

Continuing this scenario, let us now assume that the Android Security team has fixed
the vulnerability and now must ensure that an OS patch file be distributed and installed
on all Android devices, such that attackers will be hindered from further misusing the
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security gap: From a data distribution perspective, this is a situation of a vast number of
scattered mobile nodes requesting the same data item from some serving host residing at
one specific location. For the network between the mobile devices and the server offering
the security patch, this clearly is highly inefficient, as per the host-based design of the
internet, each device must establish a separate connection with the server to download
the file of interest.

It would be far more efficient, if an ICN implementation was introduced, which would
automatically sense that identical data is requested by many nodes, such that the patch
can be cached on intermediate network nodes making the file available closer to interested
devices.

The following figure depicts how this scenario could benefit from the NDN paradigm:

Figure 3.1: Mobile OS Patch Retrieval Using NDN

Let us consider that the mobile devices (resp., UEs (User Equipment)) request the security
patch (blue file symbol) in order of their consecutive numbering:

UE 1 is the first device to express interest for the patch to the network, therefore its request
is routed all the way upstream towards the OS maintainer (indicated by the red arrow).
As soon as the OS maintainer sends out the patch file (indicated by the green arrows),
intermediate hosts (e.g., MNO 1 (Mobile Network Operator) as well as the Intermediate

Node) cache the file for future requests from the downstream. By the time UE 2 requests
the patch, it will already be cached on MNO 1, thus, it can directly and efficiently be
retrieved from there.

As soon as UE 3 requests the patch, it will be returned from the cache on the Interme-

diate node, since from the perspective of Mobile Network # 2, this is the closest node
in the upstream that holds the file cached. Finally, the situation for UE 4 is the same as
for UE 2, as it can retrieve the patch directly from the local MNO.
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3.2 Image Recognition Cloud Application

The previous section presented a use case scenario in which ICN improves the efficiency of
the delivery of static data. This refers to the fact that in the case of retrieving a security
patch file, a huge number of devices are requesting the exact same data object. In this
use case scenario – however – we consider a cloud-based mobile application, in which
mobile devices request and receive dynamically created service responses, which can be
optimized by the use of Service Centric Networking implementations (cf. section 2.2).
The considered example of such an application is Google Lens [1], which incorporates an
image recognition based cloud service:

With Google Lens, users can simply point their smartphone’s camera to objects and
retrieve various types of information related to them. This is driven by neural-network-
based visual analysis techniques and allows for the following examples of features [1]:

• Exploring places of interests (e.g., towers in London)

• Scanning and translating text from a foreign language

• Identification of animals and plants

• Automatic detection of problems from various disciplines (e.g., chemistry homework)
and provision of step-by-step solutions

In the following Google Lens inspired scenarios we consider the use of a cloud service
powered image recognition application during a sightseeing tour:

1. Let us assume we are visiting Zurich as tourists and would like to explore histori-
cal buildings. We find ourselves for example on the Grossmünsterplatz and would
like to retrieve information and insights about the church building located in this
area. We do so by starting an image recognition application on our smartphone and
pointing the camera at the two towers of the Grossmünster church. The assumption
is that the application is equipped with a machine learning based object classifica-
tion feature, which manages to classify the object in the taken image as a church
building, i.e., natively on the device. This information, together with the local GPS
coordinates determined by the smartphone is sent as a tuple of parameters to the
cloud service: <"Church", (47.370, 8.543)>

Subsequently, the service request is transmitted over the mobile network to the cloud
service backend, which – based on the recognized object class as well as the sensed
coordinates – determines that the Grossmünster must be the object of interest. This
allows for compiling a series of information and media which the service delivers as
a response, e.g., a summary on the historical significance of the building as well as
pictures from the inside.

2. We continue our virtual sightseeing tour in Zurich and now find ourselves at Union-
strasse, in front of the former home of Albert Einstein. The house is decorated with
a memorial plate having engraved on it a text in German, which we would like to
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scan with the application and retrieve an English translation: Here, we assume that
the mobile application’s image recognition feature has the ability to perform OCR
(i.e., Optical Character Recognition) and thus can convert the image taken into a
string of the memorial plate text in German. The recognized text is then transferred
as a parameter to the cloud service: <"Hier wohnte von 1896-1900 der [...]">

Once the cloud service has received the memorial plate text, it will translate it
text to English using machine translation technology. The translated text is finally
transferred to us as users of the mobile application.

The illustration below indicates the two described image recognition cloud service use
cases. The green arrows correspond to service requests issued by mobile devices and
forwarded towards the cloud service, while the red arrows indicate the transmission of
service responses from the cloud service directed towards mobile devices. The document
symbols indicate for both use cases the possibility to cache service responses, for example
at a local MNO in proximity to the service users.

Figure 3.2: Image Recognition Cloud Service Powered by SCN

Clearly, in both examples above, it seems reasonable to introduce in-network caching of
service responses, as provided by SCN implementations:

In the first case, it is very likely that a lot of tourists visit the same place and would like
to retrieve the same information by using the mobile application. Thus, the cloud service
would receive a lot of identical or similar requests (interests) with the object classification
(i.e., ”Church”) as well as local position coordinates. If an SCN implementation was
deployed in the network between service users and the cloud service, it would be possible to
cache the compiled information and media data on the Grossmünster on local intermediate
nodes: The same is true for the translation use case, as a lot of people will scan the same
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memorial plate text and request a translation for it: Using SCN, the translated text can
be automatically cached in close proximity to the service users.

In both cases, SCN can improve the performance of both the network as well as the cloud
service: As in ICN, caching data closer to users prevents from a lot of network-load heavy
data exchange round trips between service consumers and service providers. At the same
time, the cloud service is discharged from an extensive load of service requests leading
to high computational processing loads: For example, some foreign language text has to
be translated only once by the service, further translation requests can directly be served
from caching nodes closer to the requesting device.
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Chapter 4

Architecture Design and Implementation

This chapter introduces the architecture proposed and implemented in the course of this
work. In the second chapter, it was discussed in section 2.3 that globally replacing the
existing internet with an ICN-based architecture can be described as an unrealistic ob-
jective for various reasons. Like suggested by L-SCN [19, 20], in this project therefore a
layered architecture is considered, which distinguishes between an intra- and inter-domain
communication level:

On the intra-domain level, we define several autonomous zones in terms of LTE-based last-
mile mobile networks, which operate on NDN. Each zone follows the typical hierarchical
structure of LTE while only the hierarchically superior nodes are responsible for caching
data requested from within the zone. To enable communication at the inter-domain level,
we elect in each mobile zone one supernode, namely at the highest level w.r.t. the LTE
hierarchy. Zone supernodes are connected to the internet and are involved in a Chord
DHT ring, which is spanned among all the domains and is used as a native data object
store to enable data retrieval among different domains: If for example some mobile node
in a last-mile zone requests a specific data item, which is not (yet) cached in the local
zone, its NDN interest will be forwarded into the direction of the zone’s supernode, while
the supernode translates the interest into a data object retrieval on the Chord DHT.

Using NDN within last-mile zones is expected to enable automatic in-network caching of
data frequently requested by users’ mobile devices. At the same time, deploying a Chord
DHT on the inter-domain level should allow for a well-structured and efficient strategy of
organizing data storage and delivery among foreign domains. Since Chord operates over
the classical, IP-based internet, already established infrastructure is used for inter-domain
communication, hence, a global-scale NDN network is not required.

The following figure depicts the proposed architecture:

25
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Figure 4.1: Proposed NDN & Chord Architecture

The exemplary topology shown in the above architecture illustration consists of three
NDN last-mile mobile networks (resp., zones), while there are three data consuming mo-
bile nodes associated with each of the zones. Next to mobile nodes, each network features
an intermediate node responsible for caching as well as a zone supernode, which is part of
the Chord DHT object store. Communication-technology-wise, all nodes involved com-
municate over the NDN protocol exclusively, with the exception of the supernodes, which
are also part of an IP-based network to enable inter-domain data delivery using the Chord
DHT overlay.

To conduct evaluation experiments with the proposed layered NDN & Chord architecture,
it was implemented in terms of a network simulation using the environment presented in
the upcoming section 4.1.

The subsequent section 4.2 addresses the modelling of LTE-based last-mile mobile net-
works.

In section 4.3 the bridging of ICN & DHT in terms of the translation between NDN at
the intra-domain as well as Chord at the inter-domain level is presented.

For properly studying the benefits of the proposed architecture the aim was to simulate
real-world internet characteristics at the small scale: To accomplish that the focus is laid
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on two main properties, namely data object popularity, as well as network connectivity
of the internet at the inter-operator level. The former is addressed in section 4.4 which
gives insight on how mobile consumer nodes’ behaviour is simulated to reflect real-world
data demand patterns, while the latter is discussed in section 4.5, which lays the focus on
the modelling of a transit network enabling communication on the inter-domain level.

To make it possible to compare the proposed NDN & Chord architecture with regular NDN
networks in terms of simulation experiments, a layered reference architecture was defined
and implemented, which uses NDN as the only communication protocol, as described in
section 4.6.

The concluding section 4.7 includes documentation of the two main developed programs
enabling network simulation experiments with the proposed NDN & Chord as well as the
plain NDN reference architecture.
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4.1 Simulation Environment

4.1.1 NS-3 Network Simulator

The practical part of this project, i.e., setting up the planned architecture in terms of
a simulation and conducting experiments, was carried out within the NS-3 simulation
framework: NS-3 is a discrete-event network simulator written in the C++ programming
language. Since 2006, NS-3 is developed and actively maintained in terms of an open-
source project. Discrete-event describes a class of simulators in which during the execution
of simulations, each event (e.g., some node starting a data transmission) is coupled to a
specific moment in (simulation) time, while during execution, the simulator can efficiently
hop from one event execution to the upcoming, in the temporal order of the scheduled
events [6].

While it is possible to simulate a variety of different networking technologies, NS-3 defines
the following crucial abstractions, which refer to the same concepts in every simulation
scenario [6]:

• Nodes are the basic abstraction of devices part of a simulated NS-3 network.

• Applications can be seen as simulated software, which is installed on Nodes to trigger
any kind of action to be carried out (e.g., responding to incoming data requests)

• Channels are the representation of physical media over which data flows. A Channel
can e.g. be configured to simulate the performance metrics of an Ethernet connec-
tion.

• Net Devices model the combination of networking hardware as well as driver software
allowing Nodes to communicate among each other over a specific Channel.

• Helpers refer to a common type of NS-3 classes, which improve the efficiency of
setting up large and complex topologies by automating the task of installing Net
Devices on Nodes, and Net Devices to Channels, etc.

Using the above abstractions, it is possible to set up simulation scenarios in terms of
single-file C++ scripts, which directly interact with the NS-3 core source code [6].

The NS-3 source code consists of several software libraries, called modules. Each module
contains one or more models, which represent real-world objects or networking protocols.
Over the years, several modules have been made a permanent component of the main
NS-3 source code, e.g. the LTE (Long Term Evolution) module with its components LTE
model as well as EPC (Evolved Packet Core) model [5]. It is possible to import modules
into any NS-3 code base which are either new or are not yet part of the main module
library. This – however – is only possible if the imported module as well as the version
of the used NS-3 code base are compatible with each other. To ensure compatibility with
the non-standard modules used, this project is carried out in NS-3 version 3.29, which
was released in September 2018 [8].
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4.1.2 ndnSIM: NS-3 Based NDN Simulator

All simulations configured and carried out in this project involving NDN networks are
based on ndnSIM, an open-source, NS-3 based NDN simulator module originating from the
University of California, Los Angeles. The first version of ndnSIM was introduced in 2012,
while in 2015, a heavily restructured second release (i.e., ndnSIM 2.0) was introduced
[27,28]. For compatibility reasons, in this project ndnSIM 2.7 is used, which was released
in February 2019.

Compared to the first release, ndnSIM 2.0< versions directly integrate with the refer-
ence source code of the NDN Forwarding Daemon (NFD, cf. section 2.1.2) instead of
re-implementing basic NDN routines. The same is true for NFD’s auxiliary library ”NDN
C++ library with eXperimental eXtensions” (ndn-cxx, [35]), which provides several func-
tions around NDN packet encoding as well as security mechanisms [27,28].

Both NFD as well as ndn-cxx are contained in the NS-3 ndnSIM module library, al-
lowing for realistic NDN simulations in NS-3. ndnSIM features a helper class (i.e.,
ndn::StackHelper), with which it is possible to conveniently install the complete NDN
protocol stack on NS-3 Nodes [27,28]. Thereby, Nodes are equipped with the basic NDN
data structures and their corresponding functionalities, i.e., Content Store, Pending In-
terest Table as well as Forwarding Information Base (cf. section 2.1.2).

ndnSIM-specific Applications

As stated in subsection 4.1.1, next to Nodes, Channels and Net Devices, NS-3 simula-
tion scenarios rely on Applications installed on Nodes, to actually create network activity
(e.g., a packet exchange). This is also the case with ndnSIM, in which specific applica-
tions allow for generating NDN interest resp. data flows among Nodes. The following list
indicates three default ndnSIM applications [27, 28], of which the latter two were mod-
ified to simulate and evaluate the proposed NDN & Chord architecture (cf. section 4.3,
section 4.4):

• ConsumerCbr is an application which lets consumer nodes send out a series of Interest
packets at a constant frequency (resp., bit rate)

• ConsumerZipfMandelbrot is a derivation of ConsumerCbr with the difference of
generating Interests for data objects according to the Zipf-Mandelbrot distribution
(cf. section 4.4)

• Producer is a basic application for data producing nodes which can be configured
with a specific name prefix to produce data for; Upon incoming interest packets
with matching name prefix, Producer lets Nodes respond with Data packets holding
virtual payload
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Forwarding Strategies and Routing

Per its integration with the NFD library, ndnSIM allows users to specify the forwarding
strategy to be used, when intermediate nodes have to forward Interest packets towards
the upstream. The following two strategies are used in the scope of this work [27,28]:

• The Best Route strategy ensures that Interest packets are forwarded to the (single)
matching upstream node with the lowest cost w.r.t. routing

• The Multicast strategy enforces Interests to be broadcast to all upstream nodes
which are recorded for the FIB entry matching with the Interest prefix

For the Best Route strategy to function properly, it is necessary to populate complete and
correct FIB routing tables among all nodes, such that each forwarding node can determine
not only the correct upstream node, but at the same time the node with lowest routing
costs to send an Interest to. With the Best Route strategy, incomplete FIBs can lead to
nodes sending back negative acknowledgements (NACK) to the downstream due to a missing
(lowest-cost) route, while the Interest is being discarded and not forwarded further. The
automatic population of integral routing tables can be achieved by a routing helper class
part of ndnSIM (i.e., GlobalRoutingHelper) [27, 28]. Compared to Best Route, the
Multicast strategy is less critical w.r.t. to FIB completeness, as nodes configured to forward
according to Multicast will forward Interests to all upstream nodes, regardless of whether
it is possible to gain routing cost information.

Content Store Configuration

The API provided by the ndn::StackHelper class allows for configuring the Content
Store (CS) which is part of every NDN node’s Forwarding Daemon (NFD). Depending
on the chosen CS parameters, the simulated NDN network will behave differently w.r.t.
data item caching, which can have a strong influence on the network performance. The
following two CS properties can be configured [27,28]:

• CsSize allows for setting the maximum size of the Content Store, in number of
packets

• Policy refers to the chosen cache replacement policy (i.e., LRU or FIFO)

LRU (Least Recently Used) ensures to discard those data items first from the cache which
were not requested for the longest amount of time. FIFO – on the other hand – does not
take request frequency into account but rather discards data items in the same order as
they were added to the CS [27,28].

NDN simulations part of this project use the LRU strategy per default, such that frequently
requested data items can be efficiently cached in close proximity to requesting nodes.
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4.1.3 ns-3-chord: Chord/DHash DHT in NS-3

Chord/DHash DHT (ns-3-chord) is a library for simulating Chord in NS-3, which was
introduced by Harjot Gill from the University of Pennsylvania in 2009 [21]. In this project,
ns-3-chord is used to simulate Chord as a Peer-to-peer system to natively store data
objects resp. items. ns-3-chord is not part of the standard set of NS-3 modules, but to
my best knowledge, it is the only Chord simulation module available for NS-3. As there
is no descriptive documentation available for ns-3-chord, this section only introduces it
in terms of core characteristics as well as basic setup and usage requirements.

Core Characteristics and Usage

In ns-3-chord, Chord protocol messages (e.g. object lookups) are exchanged over the
UDP protocol, while for transferring data objects, TCP is used [21].

For ns-3-chord to function in an NS-3 simulation, the minimum requirement is a set of
interconnected Nodes, on which the IPv4 stack is installed: In NS-3, this can be accom-
plished automatically using a helper class called InternetStackHelper [5]. If this require-
ment is fulfilled, it is possible to install the ns-3-chord helper class ChordIpv4Helper,
which automatically sets up the Chord overlay application (i.e., ChordIpv4) on chosen
Nodes. This allows for interaction with the following high-level ns-3-chord routines (only
the ones used in this project are introduced) [21]:

• The InsertVNode routine allows for defining Nodes as Chord Virtual Nodes (VNode).
The first VNode which is inserted is a so-called bootstrap-node, which will be con-
tacted by every later joining VNode to receive initial information about the already-
existing Chord ring. The InsertVNode routine also triggers a re-distribution of the
key-space, to ensure that every VNode is responsible for an equal range of keys (resp.,
objects, cf. subsection 2.4.3).

• The Insert routine is used to insert data items (resp.,) objects into an established
Chord ring during a simulation. As introduced earlier, in Chord all data objects
possess a key, which is also simulated alike in ns-3-chord: Data objects can be
inserted from any active VNode in terms of a key-value pair (value refers to data
payload), while the key gets digested (resp., hashed) using the SHA-1 encryption
algorithm. Using the hashed key, ns-3-chord determines the owner VNode of the
given key and then sets up a TCP connection to it to transfer the new data object.

• With the Retrieve routine, the ns-3-chord overlay can be invoked to retrieve a
data object (according to its corresponding key) which has previously been inserted
into the simulated DHT ring. This is a two-fold process that first involves the looking
up the object key in question: This (as in the Insert process) is accomplished by
hashing the key using SHA-1 and letting ns-3-chord determine the owner VNode

responsible for the object. Finally – once the object owner has been determined –
the data is transferred to the requesting VNode over TCP.
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All the above presented ns-3-chord routines, as well as further functions (not used in
this project) feature Callback functions, which in NS-3 are used to inform about certain
events across several modules resp., applications or protocols [4]. The Retrieve routine
– for example – features two Callbacks, one for notifying the successful retrieval of
some data object (i.e., RetrieveSuccessCallback), and another for reporting a object
retrieval failure (i.e., RetrieveFailureCallback) for the case no object owner could be
determined, or, the transmission had failed [21]. The ns-3-chord Callback methods for
the Retrieve routine is especially important for the bridging between NDN and Chord,
which is presented in section 4.3.
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4.2 Configuration of Last-Mile Zone Networks

This section addresses the simulation NDN-based last-mile mobile networks that con-
stitute the intra-domain layer of the proposed NDN & Chord architecture. The initial
idea for this project was to simulate last-mile networks using the LTE simulation mod-
ule [5] part of NS-3, which would have provided the most realistic LTE network simulation
possible. However, for the reasons mentioned in the upcoming section, this could unfor-
tunately not be realized, which is why a custom mobile network simulation was designed,
as presented in subsection 4.2.3.

4.2.1 LTE-EPC Simulation in NS-3

LTE-EPC, resp., LENA (LTE EPC Network SimulAtor), is the default NS-3 LTE simu-
lation module consisting of the components LTE as well as EPC model: The LTE model
simulates the LTE radio protocol stack, which is installed on UE (User Equipment) and
eNodeB (Evolved Node B) base station Nodes to enable over-the-air connectivity. The
EPC model – on the other hand – ensures the simulation of end-to-end communication
in terms of IP packet exchange within LTE networks [5].

The following illustration gives an overview over the NS-3 LTE-EPC module architecture,
indicating its different node, interface and link types:

Figure 4.2: LTE-EPC NS-3 Module Overview
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All UE nodes are interconnected by the LTE model to a specific eNodeB over the radio
link, as indicated by the red edges. Moving up in the LTE hierarchy, all further system
components (including the eNodeB) belong to the EPC model and their corresponding
interfaces are simulated using Point-to-Point Channels: The X2 interface interconnects
eNodeB nodes and is used to carry out UE handover procedures. The MME (Mobility
Management Entity) node is responsible for assigning each UE to one Serving Gateway
(SGW) per session; Thereby, the MME is communicating to eNodeB nodes over the S1-AP
interface, while control messages between the MME node and the SGW are exchanged
over the S-11 interface. Most relevant for the last-mile LTE simulation in this project
are the user plane interfaces S1-U (interconnecting eNodeB nodes with SGW nodes) as
well as S5 (interconnecting SGW with Packet Gateway (PGW)) nodes. Both interfaces
S1-U as well as S5 realistically model the encapsulation of data packets using the GTP
(GPRS Tunneling Protocol), UDP, resp., IP protocols, as performed in real-world EPC [5].
Finally, the PGW node incorporates the role of a gateway between the LTE-EPC domain
and other PDN (Packet Data Networks), e.g., the internet. The communication among
PGW and foreign PDN is carried out over the SGi interface [5].

It should be mentioned that the above diagram could be interpreted as a hierarchy read
from left to right, in the sense that the deeper nodes are in the core network (i.e. the
right-hand side), they are responsible for routing more and more aggregated traffic from,
resp., to the nodes which are hierarchically lower w.r.t. the structure of LTE: For example,
if in the depicted architecture, all UEs are accessing the internet simultaneously, the single
PGW must route all of the traffic from the entire mobile network towards the internet,
and vice-versa.

Initially, it was planned to leverage the hierarchical structure modeled by the LTE-EPC
module, by providing a simulation scenario consisting of several independent last-mile LTE
domains, consisting of several UEs communicating with one eNodeB, as well as one SGW
and one PGW per zone: The idea behind that was that all UE nodes shall act as data
consuming NDN nodes, whereas their (aggregated) traffic would have been routed towards
their corresponding PGW, while the PGW would have acted as a domain (resp., zone)
supernode acting as a gateway between intra- and inter-domain level communication.

At an early stage of this project, a working LTE-EPC simulation scenario was developed,
which allows to define several independent LTE last-mile networks (resp., zones): How-
ever, it turned out to be impossible to install ndnSIM in the LTE-EPC context, as the
LTE-EPC module is exclusively compatible with IP-based protocols, while NDN (as men-
tioned earlier) is an entirely different network layer protocol. An email conversation with
Dr. Spyridon Mastorakis – former maintainer of the ndnSIM repository – revealed that
ndnSIM 1.0 [13] features IP-based NDN interfaces, which allow to run ndnSIM as an over-
lay over the TCP, or, UDP protocol: In theory, this would make it possible to integrate
ndnSIM in a simulated LTE-EPC domain. However, for two reasons the decision was
taken to not simulate IP-based NDN: Firstly, IP-based NDN interfaces are only available
in ndnSIM >1.0 and would need to be ported to ndnSIM >2.0, which is a potentially
complex and highly time consuming endeavour. Secondly, the aim is to simulate highly
performant last-mile NDN zones; However, running NDN as an overlay over TCP or UDP
would introduce additional protocol overhead, compared to operating NDN natively.
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For these reasons, it was decided that last-mile zones shall be modeled in terms of a
custom (ndnSIM-compatible) simulation topology, which fulfils the following two criteria:

• Each last-mile zone consists of several data consuming mobile nodes, which are
associated with a hierarchically higher zone supernode, to effectively simulate the
real-world hierarchical structure of LTE and EPC.

• All last-mile mobile nodes communicate over a shared-bandwidth channel, which
realistically mimics the performance of the LTE radio link.

To achieve the latter, it was necessary to conduct a performance measurement experiment
to derive realistic LTE performance measurements to be applied in the custom last-mile
zone configuration. This was realized by re-using the aforementioned LTE-EPC simulation
program, as described in the upcoming section.

4.2.2 LENA Performance Measurements

To collect realistic LTE performance metrics measured within last-mile networks, NS-3
script lena-performance-measurements.cc was developed, of which the source code can
be found in section A.1. This script is a slightly modified version of the earlier mentioned
simulation which initially was planned to be used to deploy ndnSIM in several autonomous
LTE networks.

LTE-EPC Network Setup

Theoretically, this script is able to simulate a scenario involving several LTE networks
by applying only very little modifications, however, for measuring LTE performance, we
merely focus on one network as well as 5 UE nodes, as indicated on lines 43 and 44.

From lines 65 – 83 the LTE as well as EPC models are set up, using helper classes
LteHelper as well as PointToPointEpcHelper: This involves setting up the IPv4 net
masks required for the EPC interfaces, which are simulated in terms of Point-to-Point
Channels [5] (cf. Figure 4.2). Furthermore, the EPC and LTE models are associated with
each other using a method on the LteHelper object (l. 83). Thereby, both the LTE as
well as EPC models are used in the default configuration provided by their corresponding
NS-3 implementation [5].

Next, from l. 92 – 115 the Node objects corresponding to one single eNodeB as well as
5 UEs are instantiated and the ns3::ConstantPositionMobilityModel – a component
of the NS-3 Mobility module – is configured and installed on them: The NS-3 Mobility
module allows for simulating the placement as well as movement of Nodes in the context of
a metric, three-dimensional Cartesian coordinate system [5]. Using the Mobility module
is especially beneficial in simulations modelling over-the-air links involving propagation
delay resp. propagation loss models, such that node connectivity decreases, the higher the
simulated distance among two communicating nodes. In this scenario, we use constant
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node positioning (i.e., no movement, hence the name ConstantPositionMobilityModel):
The eNodeB node is placed at the point of origin (0, 0, 0), while the UE nodes reside
at a distance according to multiples of 500 m towards the eNodeB: (500 * n, 0, 0), n
is the UE node index ranging from 0 to 4.

On lines 117 – 139, the installation of LTE-model specific Net Devices on UE and eN-
odeB nodes takes place, followed by setting up the IPv4 protocol stack on UE nodes and
configuring routing to enable connectivity among UE and EPC nodes.

Finally, all 5 UE nodes are attached to the single eNodeB (lines 142 – 145). This completes
the configuration of a functioning LTE-EPC network simulation, providing the possibility
to install internet-specific Applications in the given scenario.

Performance Measurement Configuration

To measure the performance of LTE in terms of data rate as well as transmission delays,
we install the NS-3 UdpClientServer applications [7] on the eNodeB as well as on the
5 UE nodes: The UdpClientServer application group can be used to simulate a UDP
datagram flow from one (or more) clients to one UDP server. In our LTE simulation, we
install a UdpServer on the single eNodeB and program the application to run between
seconds 1.0 and 10.0 in simulated time (lines 149 – 156). On each of the 5 UE nodes,
a UdpClient application is installed and configured to transmit each 0.05 s one UDP
datagram of size 1500 B to the server on the eNodeB. This payload size corresponds to
the NDN packet size eventually simulated. In comparison to the UdpServer application,
the UdpClient applications are programmed to start their operation one (simulation)
second later, to ensure the server is fully set up and ready to receive data, as soon as the
first datagrams arrive from the clients (lines 159 – 173).

The illustration below depicts the LENA network scenario used to take performance
measurements:

Figure 4.3: LENA Performance Measurement Scenario
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The simulation script is concluded with setting up FlowMonitor, an NS-3 tool allowing
for measuring the performance of IP-based packet flows between any two Nodes (lines 176
– 178) [5]. FlowMonitor is installed on all of the Nodes in the simulation, thus, the five
UEs and the eNodeB in question are covered. After the NS-3 calls to run the scripted
simulation and stop it after second 12.0 in simulation time (lines 180 – 181), the collected
FlowMonitor statistics are exported to a file in XML format.

Measurement Results

The exported FlowMonitor statistics file holds five packet flow summaries according to the
five UEs (running UdpClient applications) streaming UDP datagrams to the UdpServer

application at the eNodeB. Each flow summary features several different statistics, e.g.,
the number of transmitted packets. To determine the individual average transmission
delay per packet (of size 1500 B), we divide for each flow the total measured transmission
delay (delaySum) by the number of transmitted packets (rxPackets = 160 packets):

Table 4.1: Measured Individual LTE Transmission Delays

Distance to eNodeB delaySum Avg. Packet Transmission Delay
UE 1 500 m 2’389’967’680 ns 14.937 ms
UE 2 1’000 m 2’390’168’480 ns 14.939 ms
UE 3 1’500 m 2’549’967’680 ns 15.937 ms
UE 4 2’000 m 2’550’168’480 ns 15.939 ms
UE 5 2’500 m 2’550’369’280 ns 15.940 ms

Furthermore, we repeat the performance measurements to determine the total throughput
achieved by the five simultaneously streaming UEs. This time – however – all UEs are po-
sitioned at the same distance of 100 m towards the eNodeB to measure equal transmission
conditions.

Individual throughputs are derived by dividing for each flow the total number of received
bits (rxBits) by the transmission delay delaySum. This is presented in the following table,
while the last row indicates the summarized total throughput achieved by 5 UEs. There
were no packets dropped during the simulation, thus, for all flows rxBits corresponds to
160 transmitted packets, i.e., 1’955’840 b (including protocol overhead).

Table 4.2: Measured Individual and Total LTE Throughputs

delaySum Measured Throughput
UE 1 2’389’967’680 ns 818.35 kbps
UE 2 2’390’168’480 ns 818.29 kbps
UE 3 2’549’967’680 ns 818.22 kbps
UE 4 2’390’570’080 ns 818.12 kbps
UE 5 2’390’770’880 ns 818.08 kbps

4091.08 kbps
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4.2.3 Custom Last-Mile Network Configuration

To replace the ndnSIM-incompatible LTE-EPC last-mile simulation, we define a custom
last-mile network design, which merely mimics LTE, by applying the performance mea-
surements taken as described in the previous section. This custom setup is plainly based
on NS-3 PointToPoint Channels [5], which allow for connecting exactly two Nodes:

Figure 4.4: Custom Last-Mile Network Design

It should be noted that the depicted topology corresponds to one last-mile zone of the
proposed architecture as displayed in Figure 4.1, however, the Caching Node is denoted
”Intermediate Node” in this instance.

Each of the PointToPoint Channels is configured in terms of data rate as well as prop-
agation delay: The individual channels between each UE and the Intermediate Node are
parametrized with the measured transmission delays (cf. Table 4.1).

To simulate shared bandwidth among 5 UEs, we define a single PointToPoint Channel
between the Intermediate Node and the Zone Supernode, on which the measured total
throughput of 5 UEs is applied (cf. Table 4.2).

At this stage, the data rate on the PointToPoint link on the intermediate link (in purple,
between the Intermediate Node and the Zone Supernode), as well as the propagation
delays on the individual links among UEs and the Intermediate Node (in orange) have
been specified. To prevent NS-3 from applying arbitrary default values w.r.t. propagation
delay on the intermediate link, resp. data rate on the individual UE links, the default
Channel settings are intentionally overwritten: On the intermediate link an insignificantly
small propagation delay of 75 ns is set, while each of the five UE links is configured with
a comparatively high data rate of 1 Gbps.

With this configuration, we effectively model propagation delay bottlenecks in terms of
the individually applied delays on the UE links, while the single link between Intermediate
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Node and Zone Supernode materializes a shared bandwidth channel by simulating a data
rate bottleneck behind the five UE links. Thereby, this custom last-mile network design
maintains the hierarchical structure of LTE, as all the traffic from, resp., towards the UEs
has to be transported by the single Zone Supernode.
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4.3 Bridging of ICN and DHT Technologies

A crucial element for realizing the layered architecture is the bridging of ICN with DHT
technologies, to enable data exchange between the intra- as well as the inter-domain
communication layer. This section covers how this was accomplished in the context of the
chosen simulation tools, i.e., ndnSIM as well as ns-3-chord.

In the proposed architecture (cf. Figure 4.1), mobile nodes are considered as data con-
sumers, which – in the ndnSIM context – send out NDN interest packets, to retrieve data
from upstream nodes. On the other hand, the zone supernodes are assigned the role of
data producers, which are not only responsible for storing all items of the simulated data
universe, but also for translating incoming interests from the NDN domains into retrievals
on the Chord overlay, and eventually responding to the NDN downstream upon success-
ful reception. With that being said, the zone supernodes can be described as the only
gateways part of the suggested architecture, which act as a passthrough from NDN to
Chord.

To equip zone supernodes with the ability to bridge between ndnSiIM and ns-3-chord,
ChordProducer was developed – a custom ndnSIM application, as described in the up-
coming section.

4.3.1 ChordProducer ndnSIM Application

The source code of the ChordProducer ndnSIM application is attached to section A.2
and consists of C++ header file ndn-chord-producer.hpp as well as the according im-
plementation file ndn-chord-producer.cpp. The line references in this section – if not
noted otherwise – relate to the implementation file in subsection A.2.2.

ChordProducer is based on the default ndnSIM application Producer [27, 28], which
processes new incoming NDN interest packets by responding with a data packet holding
virtual payload. Thereby, the standard Producer app has an attribute called Prefix, with
which the NDN interest filter can be configured. Let us consider the following example
to illustrate that: A node running a Producer application configured on prefix /data

receives an interest packet for data item /data/7 (7 is this item’s sequence number); Since
the prefix matches, the Producer application gets triggered and immediately responds
with a data packet of virtual payload back to the downstream, such that the interest is
satisfied [27,28].

However, instead of instantly issuing data back to the downstream, ChordProducer –
in contrast to Producer – triggers a data object retrieval on the DHT, by querying the
sequence number of the NDN interest from the Chord ring. For ChordProducer to be
able to interact with ns-3-chord, a new attribute was added to the class (as seen on lines
51 – 55), with which one can pass a pointer to the ChordIpv4 installed on the supernode.

In general, for the ChordProducer passthrough to function properly, the following re-
quirements must be fulfilled:
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• A pointer to the supernode’s ChordIpv4 instance is passed to its ChordProducer

application, providing ChordProducer with access to the Chord Retrieve routine.

• The Chord DHT has been completely set up, i.e., all participating supernodes and
data objects present in the simulated data universe have been inserted into the
DHT. Thereby, the keys of the objects stored in the DHT must correspond to the
simulated NDN data item sequence numbers.

• The ChordProducer application is configured to serve data on the same name prefix
as the prefix specified in incoming interest packets from the local mobile nodes:
This is to ensure that all new interests incoming from mobile consumer nodes are
processed by the ChordProducer application on the local last-mile zone supernode.

Figure 4.5: ChordProducer Application Sequence Diagram
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The above sequence diagram illustrates the mechanism triggered by ChordProducer to
translate an NDN interest into a DHT retrieval, and eventually responding with data
towards the downstream:

The entry point is method RetrieveFromDHT (cf. lines 132 – 147), which automatically
gets invoked, as soon as an interest packet arrives at the supernode, for which the data
is not (yet) cached in the Content Store. In scenarios in which NDN interest packets
arrive at a high pace at the supernodes, it can happen that identical interests arrive
almost simultaneously. For this case, ChordProducer keeps a C++ STL unordered_set

denoted m_pendingDHTretrievals (definition on line 78 in the header file), which is used
to record ongoing Chord retrievals: If an incoming interest is already contained in this set,
the method immediately returns, to prevent the Chord overlay from being unnecessarily
overloaded with identical retrievals from the same supernode.

In the opposite case, the DHT has not yet been queried for the data object in question,
thus, the new interest object is inserted in m_pendingDHTretrievals. To retrieve the
corresponding data object from the DHT, the method extracts the sequence number from
the interest object and hashes it using SHA1: The resulting hash is used as the key

parameter to invoke the Retrieve routine on the associated ChordIpv4 application, to
which ChordProducer points to.

At this stage, handling the lookup and the transmission of data is handled by the ns-

3-chord DHT layer. Such that ChordProducer is eventually notified of the successful,
resp., unsuccessful DHT retrieval, it subscribes to the retrieve success as well as retrieve
failure callbacks on the ChordIpv4 application (cf. lines 70, 71).

If the Chord layer calls back some data object retrieval as successful, the RetrieveSuccess
method (cf. lines 187 – 199) gets invoked while the hashed key is passed as one of the
parameters. The next task is for ChordProducer to determine to which interest object the
retrieved object belongs to: This is implemented in method FindPendingDHTRetrieval

(cf. lines 163 – 185), which iterates through the m_pendingDHTretrievals set, and –
using SHA1 – hashes the sequence number of every interest object in the set; During
each iteration, the digested sequence number is compared with the key reported back by
ChordIpv4 (cf. line 174). If the key and the digest match, the current interest must be
the one of which its data object was retrieved successfully from the Chord DHT. Thus,
the interest object can be erased from the set of pending interests (cf. line 196). Finally,
method RespondWithData (cf. lines 98 – 130) is invoked, which causes the supernode to
respond with an NDN data packet to the downstream nodes.

In case the DHT retrieval was unsuccessful (e.g., due to failed data object transmission),
ChordIpv4 calls back a retrieve failure, which gets received in terms of the object key
in method RetrieveFailure (cf. lines 201 – 212). Also in this unsuccessful case, the
corresponding interest object is searched and removed from m_pendingDHTretrievals,
such that for future occasions, it would be possible to retry retrieving some data object
from the Chord layer. After that – however – the method terminates, as due to the failed
DHT retrieval the interest is not being answered with any data packet.
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4.4 Data Object Popularity Simulation

This section describes the modeling of object popularity, which refers to the frequency
pattern at which resources (resp., pieces of information) are requested by network partici-
pants. In the simulated architecture, network participants are represented by nodes, while
network resources exist in the form of data items. Thus, the goal was to set up mobile
data consumer nodes to request data items according to a model representing real-world
demand for data resources.

As for a foundation for an object popularity model, the decision was taken to choose
Zipf’s law, which is introduced in the following section. The subsequent subsection 4.4.2
presents how Zipf’s law was integrated in the intra-domain layer simulation.

4.4.1 Zipf ’s Law and the Internet

Zipf’s law is a principle first described by American linguist G.K. Zipf: When studying
a large collection of English texts, Zipf detected and described the phenomenon, that
while a very small set of words account for the highest occurrence frequency, a large set
of remaining words only appear very seldom [40]. This becomes immediately clear when
considering an example: In arguably most texts, articles such as ’the’ occur by far most
frequently, while the opposite is true for a large proportion of infrequent words, e.g.,
words of foreign origin only used in specific contexts. If considering word occurrence in
terms of a word frequency rank table (i.e., the first rank is held by the most frequently
occurring word), Zipf’s law can be formulated as such that in large texts, words’ rank in
the frequency table is inversely proportional to their frequency of occurrence [17].

Zipf’s law not only applies to word occurrences in texts, but it can also be observed in a
vast number of different fields and contexts. For example, already in the early years of the
World Wide Web, it was shown that several aspects of the internet (and its usage) follow
Zipf’s law: In a 2001 article, Adamic and Huberman present the following four different
correlations involving websites and demonstrate that they correlate with Zipf’s law [12]:

• Proportion of sites vs. number of pages: Most websites consist of merely one page,
while only a very small amount of sites contains a vast number of pages.

• Proportion of sites vs. number of users: Only a small proportion of all sites has
millions of unique, active users, while the greater part of websites is only visited
very seldomly.

• Proportion of sites vs. number of out-links: Most websites only hold a handful of
out-links (towards other websites), while the amount of sites pointing to thousands
of other sites is very small.

• Proportion of sites vs. number of in-links: A minority of popular websites has
thousands of in-links (from other websites), while a majority of sites is only pointed
to by a handful of inbound links.



44 CHAPTER 4. ARCHITECTURE DESIGN AND IMPLEMENTATION

In the scope of this work, we focus on the second correlation above (i.e., proportion of
sites vs. number of users): An example to that could be popular news websites, which
get visited by a disproportionately large share of users, compared to static, informational
websites of small businesses. Although this example involves websites and users, the
correlation can also be reduced to the dimensions data items and data requesting nodes,
as technically, website users operate some type of internet-ready device (resp., node)
running a web browser, to retrieve news articles, which consist of data items served from
the web server node hosting some news website.

With that being said, the Zipfian correlation among website users and websites can be
described as compatible with the proposed architecture: The goal is therefore to put into
place a data retrieval application on the mobile consumer nodes which causes them to
request a small amount of data items at a disproportionately high frequency, while the
remaining items of the simulated data universe are requested only very seldomly.

About Zipf’s law, it should be mentioned that its mathematical representation law belongs
to the class of power law distributions. As such, Zipf’s law can be expressed as follows:
The probability that some word in a large text appears at an occurrence frequency x
corresponds to x−s, where ≥ 1. In general, all power law distributions (including Zipf’s
law) are scale-free, meaning that independently of the size of the distribution, the under-
lying characteristics remain the same [12]. For simulating object popularity, this implies
that even if it would be unmanageable to simulate the entire data universe present in
the internet, real-world data request patterns can still be simulated analogously at the
small-scale.

4.4.2 Simulating Data Object Popularity on the Intra-Domain Level

To simulate data object popularity according to Zipf’s law, the ConsumerZipfMandelbrot
application [25] is installed on all data consuming mobile nodes. ConsumerZipfMandel-

brot is part of the ndnSIM reference applications and implements the Zipf-Mandelbrot
distribution, a generalization of the basic mathematical representation of Zipf’s law [26].
The ConsumerZipfMandelbrot application ensures to send out interests for low sequence
numbers (i.e., popular items) more frequently than for high sequence numbers (i.e., un-
popular items). This is realized in the following way:

During initialization, the ConsumerZipfMandelbrot considers the specified total number
of data items (resp., sequence numbers) and using the Zipf-Mandelbrot function, produces
a vector of cumulative probabilities Pcum, which later on is used to draw sequence numbers
to issue interests for. The Pcum vector is produced as follows [25]:

1. Pcum is initialized as a vector of size N + 1 holding floating point numbers of double
precision. N is the number of unique data item sequence numbers in the simulated
data universe. The first element, Pcum[0] is assigned value 0.0.

2. By iterating through all sequence numbers i (ranging from 1 to N), the cumulative
probability Pcum[i] for each sequence number i is computed according to:
Pcum[i] = Pcum[i - 1] + 1.0 / std::pow(i + q, s)
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Thereby, the expression after the + operator corresponds to the Zipf-Mandelbrot
probability function, i.e., P (i) = 1/(i + q)s [26]

3. Finally, the Pcum vector is normalized, by dividing each cumulative probability by
the cumulative probability of the last element, i.e., Pcum[N]:
Pcum[i] = Pcum[i] / Pcum[N]

This ensures that all cumulative probabilities occur within the interval (0.0, 1.0].

With a number of data items N = 10, a parameter of power s = 1.2 and q = 0.7,
ConsumerZipfMandelbrot produces the following vector of cumulative probabilities, Pcum:

Table 4.3: Exemplary Cumulative Probability Vector

Cumulative probability [1] = 0.30986
Cumulative probability [2] = 0.487715
Cumulative probability [3] = 0.609575
Cumulative probability [4] = 0.701026
Cumulative probability [5] = 0.773578
Cumulative probability [6] = 0.833339
Cumulative probability [7] = 0.883911
Cumulative probability [8] = 0.927591
Cumulative probability [9] = 0.965924
Cumulative probability [10] = 1.0

To determine the next data item (i.e., a sequence number) for which to issue an interest
packet for, ConsumerZipfMandelbrot draws a random number from a uniform distribu-
tion within the interval (0.0, 1.0], by using the NS-3 built in random number generator [4].
By iterating through Pcum, the drawn random number is compared to the individual cu-
mulative probabilities of the data items: Eventually, the data item with the smallest
cumulative probability, which is larger than, or, equally great as the random number, gets
chosen to issue an interest packet for. For example, if random number 0.58 gets drawn,
in the above example the chosen sequence number would be 3, as its corresponding cu-
mulative probability is the smallest greater than the random number (0.61 >= 0.58) [25].
Thus, ConsumerZipfMandelbrot would let the consumer node issue an interest packet for
/[prefix]/3.

As mentioned, the random number is drawn from a uniform distribution, i.e., there is a
uniform probability for any number between 0.0 and 1.0 to be chosen randomly. Compared
to the uniform distribution of random numbers, the cumulative probability distribution is
skew, as for in between lower sequence numbers, the probability grows disproportionately
faster compared to among the upper sequence numbers. This implies that the random
drawing mechanism implemented in ConsumerZipfMandelbrot will have the tendency to
draw low sequence numbers (i.e., data items which are considered popular) more fre-
quently compared to the upper end of the simulated data universe: Thus, the data item
request frequency distribution as well as the consequent data item popularity pattern fulfil
Zipf’s law.
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4.5 Inter-Domain Level Communication

Concerning the inter-domain layer of the proposed architecture, the DHT overlay based
communication among different zones has already been discussed in section 4.3. The
missing element for a complete working simulation scenario is the definition of an IP-
based transit network among the supernodes, which serves as an underlay for inter-domain
communication over Chord.

In the internet, the interconnection among foreign domains (e.g., networks operated by
individual commercial Internet Service Providers) is realized through internet backbone
networks: Internet backbones can be characterized as transit networks consisting of high
bandwidth, long distance links which provide connectivity among remote domains as well
as high performance core routers [22]. To realistically model inter-domain level commu-
nication, it was decided to model a transit network which reflects the characteristics and
structure of a backbone network. To accomplish that, the following contribution was
taken as a reference:

In a 2015 paper [29], S. Nikolaev et al. from the Lawrence Livermore National Labo-
ratory present the findings of large NS-3 simulations which involved up to ten billion
simulated nodes in planetary-scale topologies: Their simulation is based on a highly dis-
tributed implementation, i.e., large simulated network topologies are partitioned into up
to a thousand individual parts, while all subdivisions are executed in parallel on a high
performance computing cluster. This is realized by the NS-3 built-in parallel scheduler
module, which supports the Message Passing Interface (MPI) used in parallel computing.
In the course of simulating large-scale networks in parallel, S. Nikoalaev et al. compare
the performance of the default NS-3 parallel scheduler against a custom designed solu-
tion. To model a transit network among router nodes, they produced topologies in terms
of small-world networks using the Watts-Strogatz random graph generation algorithm, to
effectively mimic the characteristics of a real-world backbone network [29].

To simulate an inter-domain transit network approximating the topology of internet back-
bones, the random small-world network generation approach suggested by S. Nikolaev et
al. [29] was reproduced. The following section introduces small-world network graphs as
well as the Watts-Strogatz random graph generation algorithm.

4.5.1 Small-World Networks and the Watts-Strogatz Model

Small-world graphs resp. networks incorporate the commonly known small-world phe-
nomenon, which describes that there is a connection between any two strangers over a
small concatenation of acquaintances, i.e., each person is at the maximum only six people
’away’ from any other person on the planet [36]. In the past, several empirical studies
have shown that a variety of systems have small-world properties, such as the internet,
social networks [36], or the electricity grid in the western USA [37]. In small-world graphs,
this phenomenon translates to the property that on average, in a network of size N , the
distance (resp., the number of hops) required to reach any node from another corresponds
to log(N) [37].



4.5. INTER-DOMAIN LEVEL COMMUNICATION 47

The Watts-Strogatz model introduced in 1998 describes an algorithm which can be used
to randomly generate small-world networks: As a starting point, the algorithm defines a
lattice, i.e., a meshed graph, in which each vertex is connected to its k nearest neighbour
vertices using undirected edges. The algorithm then iterates through all of the edges and
at at a probability p rewires the edge randomly, i.e., an edge will not connect some vertex
A with one of its k nearest neighbours anymore, but connects A with a randomly chosen
different vertex from anywhere else in the graph [37].

Figure 4.6: Exemplary Watts-Storgatz graphs

The above figure depicts two exemplary graphs generated using the Watts-Strogatz al-
gorithm. Both graphs consist of n = 10 vertices, while each of the vertices is connected
to its k nearest neighbours. The rewiring probability for the left-hand side graph was
p = 0.0, thus, none of the edges were randomly rewired and the graph corresponds to a
lattice showing no small-world properties whatsoever. The right-hand side graph – how-
ever – was generated with a rewiring probability p = 0.3, thus, some of the edges connect
non-neighbouring vertices across the graph.

The higher the chosen rewiring probability p, the stronger is the small-world effect in the
generated graph, i.e., the more edges shortcut remote regions in the graph. In general,
Watts-Strogatz small-world graphs generated with intermediate p values exhibit two main
properties, i.e., high clustering as well as small-world properties (already discussed): High
clustering refers to the fact that per default, vertices are connected to their neighbouring
vertices, which leads to multiple clusters of interconnected vertices [37].

It can be argued that backbone networks embody the same two properties, as router
nodes tend to have a high degree of connectivity to neighbour nodes in their proximity,
which translates to the clustering property in graph theory. At the same time, small-world
properties can be identified at backbone networks’ domain-spanning long-distance links
which ensure connectivity among remote nodes over a small number of required hops.
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4.5.2 Small-World Random Network Generation

To generate small-world graphs that determine the topology of simulated inter-domain
transit networks, the watts_strogatz_graph random graph generation function part of
NetworkX was used: NetworkX is a prominent Python library used in the field of network
analysis [24].

Running the following Python code generates, draws and exports a Watts-Strogatz small-
world network according to a network size of n = 8, with edges to k = 3 nearest neighbours
for each vertex and a rewiring probability of p = 0.7:

1 import networkx

2 G = networkx.watts_strogatz_graph (n = 8, k = 3, p = 0.7)

3 networkx.draw_circular(G)

4 networkx.write_edgelist(G, "WattsStrogatz.edgelist", delimiter=",")

The random graph is created with the call of function watts_strogatz_graph on the sec-
ond line. On the subsequent line, the graph is drawn in a circular shape, to produce a rep-
resentation as seen in the examples in Figure 4.6. Finally, with function write_edgelist,
all the edges of the generated graph are exported in terms of edge coordinates to a comma-
separated file: If the graph contains e.g., an edge between vertices 1 and 6, the file will
include a line indicating edge coordinates 1,6. The exported edge list is eventually im-
ported in the simulation scripts to define the transit network. Thereby, for each line (resp.,
for each edge), a PointToPoint Channel among the Nodes with indices according to the
edge coordinates is defined: To simulate high-performance backbone links, the data rate
is set to 100 Mbps and the propagation delay to 10 ms.

It should be mentioned, that due to the involved randomness, the Watts-Strogatz al-
gorithm might generate unconnected graphs, i.e., graphs in which – per the lack of
a connecting edge – certain areas are isolated from the rest of the graph. For the
planned architecture, a connected transit network is a necessity, such that the connec-
tivity among any two domains can be guaranteed. To generate connected Watts-Strogatz
graphs, NetworkX provides function connected_watts_strogatz_graph: Compared to
watts_strogatz_graph this variant iteratively generates a new graph, and after each try
it checks, whether the new graph is connected. If during ≤ 100 tries, a connected graph
is derived, it gets returned, otherwise, an error messages is thrown [24].
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4.6 Plain NDN Reference Architecture

This section describes the plainly NDN-based architecture, which was developed as a ref-
erence for to compare the proposed layered NDN & Chord architecture (cf. Figure 4.1)
against. Topology-wise, the plain NDN architecture is identical to NDN & Chord, as it –
too – defines several last-mile zones with a fixed number of mobile nodes, an intermediate
caching node as well as a zone supernode each: Thereby, the inter-domain level communi-
cation among supernodes is transported over a small-world transit network as described
in the previous section. Technology-wise – however – this plain NDN architecture does
not define an IP-based inter-domain communication layer, but rather, NDN is used as the
single primary communication technology; This allows for simulating scenarios in which
NDN is deployed at the global scale.

The following illustration gives an overview of the plain NDN reference architecture:

Figure 4.7: Plain NDN Reference Architecture

In the NDN & Chord architecture, inter-domain communication is entirely realized by
Chord, which – with its SHA-1 hashing based namespace – provides load balancing among
all data producing supernodes (cf. subsection 2.4.2): More specifically, given a data uni-
verse of a certain size, Chord ensures to distribute the responsibilities over data objects
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consistently among the supernodes, such that every supernode is obliged to serve an ap-
proximately equal share of the total number of simulated data objects. To achieve a
similar behaviour in this plain NDN reference architecture, a custom ndnSIM application
setup was materialized, as described in the upcoming section.

4.6.1 ndnSIM Application Setup

Producer Application Configuration

Per default, scenarios simulating the plain NDN reference architecture require the deploy-
ment of the standard ndnSIM Producer application, which immediately initiates sending
back data packets upon incoming interest packets with matching prefix (cf. section 4.1.2).
Compared to NDN & Chord, the plain NDN architecture defines a different manage-
ment of name prefixes, i.e., each supernode’s Producer application is configured to serve
a unique prefix. This allows for installing domain-specific Producer applications on the
supernodes, such that e.g., the supernode of the second zone will respond to interests with
prefix /producer1, while the fifth zone produces data for prefix /producer4.

Setting a unique prefix filter on each Producer application effectively assigns individually
served namespaces to the zone supernodes. To achieve load balancing among the supern-
odes, the mobile consumer nodes in the last-mile zones are therefore required to construct
interest packets with alternating prefixes, such that – depending on the specified prefix –
interest packets are processed by different supernodes. To fulfil this requirement, a custom
ndnSIM was developed, which is described in the following section.

Custom Consumer Application: ConsumerZipfBuckets

ConsumerZipfBuckets is a custom implementation based on ConsumerZipfMandelbrot

(cf. subsection 4.4.2). The only difference to the ConsumerZipfMandelbrot application
lies in the way interest prefixes are chosen. While all existing Consumer applications
work with a static prefix, ConsumerZipfBuckets constructs interest packets by dynam-
ically choosing alternating prefixes for each drawn interest sequence number: This is
achieved by introducing the concept of prefix buckets, with which all of the simulated
data items (resp. sequence numbers) are partitioned equally according the number of
prefix buckets, which should be chosen according to the number of last-mile zones: For
example, if ConsumerZipfBuckets is configured to work with 5 prefix buckets and the
Zipf-Mandelbrot algorithm draws 17 as the upcoming sequence number, the consumer
constructs an interest packet according to the first prefix bucket, i.e., /producer0/17. In
this setting, interests with sequence numbers 1 – 20 will thus be sent with prefix /pro-

ducer0, while for sequence numbers 81 – 100 interests with prefix /producer4 will be
issued. Together with the appropriate prefix configuration of the Producer applications,
this approach allows for a plain NDN scenario in which each Producer serves an equal
share of the total amount of data items (cf. the indicated served prefixes in Figure 4.7),
as it is the case with DHT namespace balancing in the NDN & Chord architecture.
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4.6.2 Forwarding Strategies & Routing

As opposed to NDN & Chord, in the plain NDN architecture NDN traffic does exceed
the last-mile zones and also traverses through the small-world transit network in terms
of inter-domain communication. Due to the complex structure of the transit network, it
seems reasonable to study the implications of using different NFD forwarding strategies
leading to different routing behaviours among nodes part of the transit network.

It can be argued that the Best Route forwarding strategy is unsuitable to be deployed in
large scale NDN networks: This stems from the fact that – being an information-centric
technology – NDN (resp., NFD) uses name prefix based FIB entries, compared to classical
address-based IP FIBs; In general, in large networks the data universe (i.e., the totality
of all served data resources) is significantly larger than the host universe (i.e., the totality
of participating nodes), since most server nodes tend to provide multiple data resources.
Globally deploying correct and complete FIB tables in large NDN networks is expected
to be unattainable and thus, the Multicast strategy must be used as a remedy for Best
Route.

In chapter 5, plain NDN simulation scenarios in which the Multicast forwarding strategy
is deployed globally are studied: More specifically, worst-cases with extremely sparse FIB
tables are considered, in which every node broadcasts (resp., floods) all interest packets
to all upstream neighbour nodes. The implementation details about how the Multicast
strategy is configured to simulate interest Flooding are discussed in section 4.7.2.
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4.7 Documentation of Simulation Scenarios

This section describes the two main NS-3 simulation programs (resp., scripts) which were
developed to evaluate the introduced ICN-DHT architecture. Their C++ source code can
be found in the appendix under section A.3.

The first script, i.e., ndn-zones-chord-small-world.cc (cf. subsection 4.7.1) simulates
the proposed layered NDN & Chord architecture depicted in Figure 4.1. The second script,
i.e., ndn-zones-buckets-small-world.cc (cf. subsection 4.7.2) simulates the plain NDN
reference architecture described in section 4.6.

Script ndn-zones-buckets-small-world.cc is to a great extent identical to ndn-zones-

chord-small-world.cc. Therefore, the following description of the first script includes
line references colour-coded in blue to the second one, whenever parts of the NDN &
Chord script are identical to the plain NDN counterpart.

4.7.1 NDN & Chord Simulation Scenario

Chord Boilerplate Code

Simulation script ndn-zones-chord-small-world.cc (cf. subsection A.3.1) starts with
ns-3-chord boilerplate code, i.e., methods which are required to interact with the Chord
layer. All functions are taken from the default ns-3-chord example simulation scripts,
except for ChordHelper::Insert (l. 60 – 76): This function takes resource name and
value strings as inputs and converts them to a key-value pair to be inserted in the Chord
DHT: Thereby, the passed resource value string is appended with several ”v” characters
(l. 68 – 72), until the value length corresponds to the specified payload size of 1500 B;
This way, the simulated Chord object size is guaranteed to be the same as the packet size
used in the NDN domains.

Main Simulation Variable Definition *

The actual simulation program is contained in the main function, starting at l. 134 (l. 37).
On l. 137 – 141 (l. 40 – 44), the following main simulation variables (resp., parameters)
are defined:

1. noUEs: The no. of UE consumer nodes to be simulated in each last-mile zone

2. noDataItems: The no. of total data items in the simulated data universe

3. interestsPerS: The frequency in seconds according to which consumer applications
issue interest packets

4. simulationRuntimeM: The amount of runtime in simulated minutes (excluding the
initialization phase of the Chord layer)
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5. csSize: The CS size in no. of packets to be used on nodes with activated caching

L. 159 – 187 (l. 62 – 84) define some further variables, constants and data structures,
which will be referred to later on.

Set Up of Small-World Transit Network *

On l. 190 – 221 (l. 87 – 109) the transit network used for inter-domain communication
is specified. First, a set of transit network nodes (denoted smallWorldNodes) is created
(l. 190 (l. 87)); The default size of the transit network is 8 nodes. Such that Chord can
operate over an IP-based underlay, the NS-3 InternetStack [5] is installed on all the
transit nodes (l. 191, 192). Any two nodes of the transit network are interconnected by
a PointToPoint link, which is configured on l. 194 – 196 (l. 89 – 91): The data rate
is set to 100 Mbps and the propagation delay to 10 ms. Afterward, on l. 202 – 204 (l.
96 – 98) the transit network is constructed according to the edge coordinates contained
in smallWorldEdges: This is a vector of integer pairs, which correspond to the edge
coordinates exported by the NetworkX Watts-Strogatz graph generation function (cf.
section 4.5): If the graph defines e.g. an edge among vertices 2 and 5, a PointToPoint

link is installed which connects the second and fifth transit network nodes. To enable IP
connectivity, IPv4AddressHelper [5] is used to automatically assign IPv4 addresses to
all interconnected NetDevices (l. 207 – 209): As all NetDevices on the transit network
nodes now have an assigned IP-address, it is possible to populate routing tables on all
transit nodes (l. 213) using Ipv4GlobalRoutingHelper [5]. This makes all transit nodes
into routers, such that the network manages to route Chord’s IP traffic among any two
source and destination transit nodes. Finally, a set of 5 randomly chosen transit nodes
are defined as last-mile zone supernodes (l. 216 – 220, l. 104 – 108). The remaining transit
network nodes are merely router nodes.

Chord Supernode Initialization

On the subsequent two code blocks (l. 224 – 264), the Chord layer is set up to enable inter-
domain communication. By iterating through all last-mile zones, a ChordIpv4 application
is installed on each supernode (l. 232): The supernode of the first zone is defined as the
Chord bootstrap node, thus, during each iteration its IP address is passed as a construc-
tion parameter for the ChordIpv4Helper object (l. 226). On all ChordIpv4 objects, the
necessary Chord layer callback functions are set, by referring to the ns-3-chord helper
methods defined at the very beginning of the script. At this stage, the ChordIpv4 appli-
cation is ready to receive Chord instructions. By scheduling a call to the InsertVNode

routine, one VNode is inserted to the Chord DHT for every supernode (l. 242 – 252), by
iterating through all last-mile zones: During the first iteration, the bootstrap supernode
is initialized for which a VNode with name ”bootNode” is inserted (l. 244). For all further
supernodes, the script inserts a VNode with a constructed name indicating the last-mile
zone index, e.g., ”superNode1” (l. 250). Thereby, each VNode insertion is scheduled after
an interval of INTER_VNODE_INSERTION_GAP_S = 70 seconds simulation time, such that
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Chord has enough time available to (re-)organize keyspace responsibilities, as the supern-
ode VNodes are joining the DHT ring. Finally, on l. 255 – 264 the simulated data items
are inserted into the DHT. To balance the insertion load, the supernodes (resp., their
ChordIpv4 applications) are cycled through using a modulo expression (l. 257). The key-
value pair of the data item to be inserted is constructed as follows: The key is defined as a
string holding the data item index, which corresponds to an NDN packet sequence number
(l. 263). The value is defined as ”payload” with a sequence number concatenated, e.g.,
”payload57” (l. 258). Simulation-time-wise, the data item insertions are scheduled after
the VNode initialization phase, i.e., at CHORD_INSERTION_STARTTIME_S = 5 ∗ 70 = 350
s (l. 179, 259); In-between item insertions, an interval of 0.5 s simulation time is used to
ensure that all data item insertions will be successful.

Last-Mile Zone Configuration *

On l. 268 – 297 (l. 113 – 142), the individual last-mile zones are configured, according
to the topology defined in subsection 4.2.3. Initially, the PointToPoint link between
the zone supernode as well as the intermediate node is defined: The data rate is set
to according to the measured achieved total rate for five LTE UEs (cf. Table 4.2) and a
propagation delay of 75 ns is specified (l. 270, 273 (l. 115, 118)). In each last-mile zone, an
intermediate node is created and the PointToPoint link is installed among intermediate
and super node (l. 280, 281 (l. 125, 126)). Subsequently, for each zone the configured no.
of last-mile UE nodes are created (l. 285 (l. 130)). To interconnect UEs with the zone’s
intermediate node, individual PointToPoint links are defined as follows:

• The propagation delay is chosen according to one of the 5 LTE UE measurements
(cf. Table 4.1); If more than 5 UEs are defined per zone, the measured delays are
re-used in a loop fashion (l. 292 (l. 137)).

• The link data rate is set to 1 Gbps (l. 294 (l. 139)).

Finally, each individual UE link is installed among the UE node and the corresponding
zone’s intermediate node (l. 295 (l. 140)).

ndnSIM Stack Configuration and Installation *

From l. 300 (l. 145), the NDN stack is configured using an object of the ndnSIM Stack-

Helper class. As for a CS strategy, Least Recently Used (LRU) is chosen on l. 302 (l.
147). The CS is only activated on the intermediate nodes as well as on the zone supern-
odes: To effectively disable the CS on the UE nodes, the minimum possible CS size of
1 packet is configured on the StackHelper object, before the NDN stack is installed on
all UE nodes on l. 307 – 310 (l. 151 – 155). For all other nodes (including the zones’
intermediate and supernodes), a default CS size of csSize = 10 packets is set, before the
NDN stack is installed on them (l. 312 – 317 (l. 157 – 162)). The basic configuration of
the NDN-layer routing is carried out on l. 320 – 323 (l. 165 – 168): The default chosen
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routing strategy is Best Route (best-route); In the NDN & Chord scenario the routing
strategy is actually not relevant, as the NDN communication does not exceed the last-mile
zones with simple topology. Thus, Best Route is chosen as an arbitrary default strategy
for the NDN & Chord scenario. Using an ndnSIM GlobalRoutingHelper object, the
ndnSIM global routing interface is installed on all nodes, providing all simulated nodes
with NDN routing capabilities. For the Best Route routing strategy to function properly,
NDN routers need information about which NDN prefixes are produced on which nodes,
such that interests can be routed to the appropriate lowest-cost next-hop interface: This
is realized during the configuration of the ndnSIM Producer applications, as described in
the following subsection.

ndnSIM Application Configuration

From l. 326, the configuration of ndnSIM Consumer and Producer applications is carried
out. To set up the ChordProducer applications, a helper object is instantiated and the
default prefix NDN_PREFIX = ”/payload” as well as the data item payload size of 1500
B are configured (l. 326 – 328). It follows the setup of the ConsumerZipfMandelbrot

applications, for which – too – a helper object is instantiated (l. 331), while the following
attributes are configured (l. 332 – 337):

• NDN Prefix: NDN_PREFIX = ”/payload”

• Frequency: interestsPerS = 10

• Randomize: ”uniform”

• Zipf-Mandelbrot parameter of power: s = 1.2

• NumberOfContents: noDataItems = 100

Thereby, setting ”uniform” on the ”Randomize” attribute causes the effect that consumers
will choose inter-interest intervals drawn randomly from a uniform distribution between
(0, 1 / Frequency) [27, 28]. The s attribute corresponds to the parameter of power to
be used in the Zipf-Mandelbrot function. By iterating through all the last-mile zones,
the ChordProducer and ConsumerZipfMandelbrot applications are installed on the UE
nodes as well as supernodes (l. 340 – 354): For each supernode, a pointer to its ChordIpv4
application is retrieved, which gets passed as an attribute to the individual ChordProducer
applications (l. 343, 344). To enable Best Route routing, each supernode is registered
on the GlobalRoutingHelper object as a producer for prefix NDN_PREFIX (l. 345): As
soon as all producers have been registered, the CalculateRoutes function of ndnSIM’s
GlobalRoutingHelper is invoked, which automatically populates FIBs on all NDN router
nodes. During each iteration (i.e., for each last-mile zone), a ChordProducer application is
installed on the supernode (l. 346), while several ConsumerZipfMandelbrot applications
are installed on the zone’s UEs (l. 351). Scheduling-wise, all ndnSIM applications are
started at NDN_APPS_START_TIME_S, which corresponds to the point in simulation time
after the initialization of Chord (l. 347, 352).
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Simulator Instructions and Tracing *

Finally, the scripts define a call to the NS-3 Simulator::Stop function, with which
the total amount of simulation runtime, i.e., simulationRuntimeM = 10 min is fixed
(l. 359 (l. 202 )): In case of the NDN & Chord scenario, the runtime is prolonged by
NDN_APPS_START_TIME_S seconds, such that after the Chord layer initialization phase,
the ndnSIM apps can run for the same amount of simulated time as in the plain NDN
reference scenario.

To collect performance statistics during simulations, two types of tracing systems are set
up:

• Application-level tracing: Globally installing the ndnSIM AppDelayTracer system
allows for collecting ndnSIM-application-specific delay statistics and exporting them
to a tab-separated file (l. 367 (l. 210)). More specifically, AppDelayTracer measures
for every interest packet sent the total delay between first sending out the interest
and eventually receiving the data.

• Transit network load tracing: A custom solution was developed to periodically
measure the total network load of the transit network, using the NS-3 tracing sub-
system [4]: On l. 205 & 206 (l. 99 & 100), the ”PhyTxEnd” trace source of every
NetDevice involved in a PointToPoint link part of the transit network is connected
to the custom trace sink function TraceTransitLoad defined on l. 117 – 132 (l. 20 –
35). The ”PhyTxEnd” trace fires whenever a packet has been fully transmitted over
a channel and delivers the transmitted packet (including its size) as a parameter
to the callback function [8]; As the TraceTransitLoad function receives callbacks
from all transit network NetDevices, it can effectively measure the periodic transit
network throughput. This is achieved as follows: When invoked, function Trace-

TransitLoad determines the current simulation period, in tens of seconds (l. 120,
121 (l. 23, 24)); Furthermore, the size of the traced packet is determined and added
up in terms of partial network load to a C++ STL map, which holds the average
network load in Bps per simulation period (l. 122 – 130 (l. 25 – 33)). At the end of
the scripts, this map is manually exported to a comma-separated file (l. 373 – 380
(l. 216 – 223)).
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4.7.2 Plain NDN Reference Simulation Scenario

As stated earlier, a large amount of code in script ndn-zones-buckets-small-world.cc
(cf. subsection A.3.2) is identical to the the NDN & Chord scenario script: All of the sub-
sections in subsection 4.7.1 denoted with an asterisk (*) contain descriptions concerning
both scripts. This section only documents the remaining, fundamentally different parts
of the plain NDN reference script.

ndnSIM Producer Application Configuration

From l. 171, the configuration of ndnSIM Producer applications is carried out. Per default,
this plain NDN reference scenario deploys standard ndnSIM Producer applications (cf.
section 4.1.2), which are configured by setting a data item payload size of 1500 B using a
helper object (l. 171, 172). Each supernode’s Producer is configured to serve a different
prefix, such as /producer3 (l. 187 – 189, cf. section 4.6.1). Each Producer as well as
its individual prefix are registered with GlobalRoutingHelper, such that routing nodes
will be able to determine where to forward interests to (l. 190). All individually set up
Producer applications are then installed on the supernodes (l. 191).

ndnSIM Consumer Application Configuration: ConsumerZipfBuckets

On l. 175 – 182, ndnSIM Consumer applications are configured using a helper object.
The chosen type is ConsumerZipfBuckets (cf. section 4.6.1). The following attributes are
configured (l. 176 – 182):

• NDN Prefix: NDN_PREFIX = ”/producer”

• Frequency: interestsPerS = 10

• NumberOfPrefixBuckets: NO_ZONES = 5

• Randomize: ”uniform”

• Zipf-Mandelbrot parameter of power: s = 1.2

• NumberOfContents: noDataItems = 100

The configured no. of prefix buckets corresponds to the simulated five last-mile zones,
the remaining attributes are set to the same values as in the ConsumerZipfMandelbrot

application in the NDN & Chord script (cf. section 4.7.1).

By iterating through all last-mile zones, the ConsumerZipfBuckets application is installed
on all zone UEs (l. 193 – 196).
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Forwarding Configuration

Best Route Strategy Per default, the plain NDN script globally installs the Best Route
forwarding strategy on all nodes. Compared to NDN & Chord, each supernode (resp.,
producer) originates a different prefix, thus, by iterating through all zones, each producer
and its individual prefix are registered on the GlobalRoutingHelper object (l. 190):
Once all producers have been registered, a call to the CalculateRoutes routine causes
FIB tables to be populated on all nodes which contain the shortest (resp., ’best’) routes
towards the producers of individual name prefixes (l. 199).

Flooding Strategy With only a small set of modifications, it is possible to change the
routing configuration to cause NDN nodes to broadcast (resp., flood) interest packets
towards all upstream neighbours:

• Firstly, the multicast strategy must be chosen as the globally installed strategy,
instead of best-route (l. 165). Thereby, the strategy is set for the entire root prefix
namespace (”/”), which comprises all the hierarchically lower prefixes originated by
producers, e.g. /producer2:

ns3::ndn::StrategyChoiceHelper::InstallAll ("/",

"/localhost/nfd/strategy/multicast");↪→

• Secondly, to prevent from populating FIB holding entries towards individual pro-
ducers, the GlobalRouter interface has to be deactivated. This is achieved easiest
by removing lines 168, 190 as well as 199: This effectively leads to sparse FIBs,
which do not hold any routes towards specific producer prefixes. Thus, every node
between a consumer as well as the producer for the requested prefix will forward
interest packets to all its neighbouring upstream nodes, which allows for the simu-
lation of interest flooding on the transit network.



Chapter 5

Evaluation

In this chapter, the results from conducted simulation experiments are presented and
discussed. The proposed NDN & Chord architecture (cf. Figure 4.1) gets compared against
the plain NDN reference architecture (cf. Figure 4.7) in terms of the following evaluation
criteria:

• Retrieval Delays : By comparing the average retrieval delays per data item, the
architectures are assessed and compared in terms of users’ Quality-of-Experience
(QoE), cf. section 5.3.

• Transit Network Load : In section 5.4, different scenarios are compared w.r.t. the
measured amount of traffic carried through the small-world transit network.

• Production Load : Both architectures are evaluated in terms of the total caused data
production load at producer nodes, as presented in section 5.5.

In relation to the production load dimension, it should be mentioned that during all exper-
iments, no secondary effects were simulated whatsoever: More specifically, independently
of the simulated interest packet transmission frequency, all data-producing nodes (i.e.,
the zone supernodes) immediately process incoming interests, while no processing capac-
ity limit was simulated (as it would exist on real-world nodes). With that being said, the
production load was merely measured and is presented quantitatively.

5.1 Simulation Parameterization

5.1.1 Constant Simulation Parameters

To allow for fair comparisons of different simulation scenarios, a set of fixed simulation
parameters was defined, as presented in the following table:
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Table 5.1: Constant Simulation Parameters

Parameter Value
No. of last-mile zones, supernodes 5
No. of individual data items 100
Interest packet transmission frequency 10 packets per s
Zipf-Mandelbrot function parameters s = 1.2, q = 0.7
Max. Content Store size 10 packets
Content Store replacement policy Least Recently Used
Data packet payload size 1500 B
Simulation runtime 10 min

The parameter of power part of the Zipf-Mandelbrot function (cf. subsection 4.4.2) was
increased from its default of 0.7 to 1.2 to assign a higher popularity to data items in the
low sequence number range. (The same custom parameter of power was set both on the
ConsumerZipfMandelbrot as well as ConsumerZipfBuckets applications.)

In addition to the above parameters, the performance specification of PointToPoint chan-
nels used in the last-mile zones and in the transit network (cf. subsection 4.2.3, subsec-
tion 4.5.2) remains unchanged as well.

In all scenarios, the Content Store cache is only activated on the zones’ intermediate nodes
as well as on supernodes. The chosen cache replacement strategy, i.e., Least Recently Used,
ensures that the most frequently requested data items remain cached in nodes’ CS.

5.1.2 Scaled Simulation Parameters

The following parameters were scaled up to assess both NDN & Chord as well as the plain
NDN reference in increasingly demanding scenarios w.r.t. load put on the network:

• n: The total no. of mobile consumer nodes (UEs)

• N: The size of the transit network in no. of nodes

Increasing n has a direct influence on the total frequency of interest packets to be processed
in the network: For example, if incrementing n from 10 to 20, the total rate of interests
originated within the network mounts up from 100 to 200 per s, as with every introduced
mobile node, during one second 10 additional interests are generated.

Varying N – on the other hand – is expected to have an influence on the performance
of inter-domain level communication: The greater the number of transit network nodes,
the higher the average number of intermediate nodes (resp., hops) which packets between
two non-neighbouring supernodes have to traverse, and, the higher the total load carried
within the transit network.

All simulation experiments were carried out in both using a small (N = 8), as well as
a large (N = 32) transit network based on connected small-world graphs, as depicted in
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the following two figures. The randomly chosen last-mile zone supernodes are coloured
red. For both N, the chosen rewiring probability used with the Watts-Strogatz graph
generation algorithm was p = 0.7, while each vertex in the initial lattice was connected
to k = 3 nearest neighbours (cf. subsection 4.5.1).

Figure 5.1: Small-World Transit Network (N = 8)

Figure 5.2: Small-World Transit Network (N = 32)
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5.2 Main Comparison Hypothesis

The proposed NDN & Chord architecture involves two strictly distinct communication
layers, which require a means of bridging, to translate from the NDN protocol used at
the intra-domain to the Chord protocol at the inter-domain level, and vice-versa. This
protocol-translation introduces additional overhead in the form of time delay, compared
to native NDN scenarios working under ideal conditions: If a scenario is based on the
plain NDN architecture and every NDN node is equipped with a complete and sound FIB
routing table, there is a high probability for it to out-perform an NDN & Chord scenario
under the same conditions, as not only does the communication remain within the realm
of the same technology, but also do complete FIB tables allow for efficient routing using
the Best Route forwarding strategy.

However, as discussed in subsection 4.6.2, the larger a native NDN network, the less real-
istic is the assumption, that Best Route routing can be globally deployed, thus, Multicast
routing must be used instead: It therefore seems reasonable to compare plain NDN sce-
narios with Multicast routing against NDN & Chord scenarios: Since Multicast forwarding
necessarily leads to a higher load in the transit network and less efficient routing, NDN
& Chord – due to the low-complexity routing in the Chord overlay – has the potential to
perform better than a native NDN network. This effect should also become stronger, the
less complete (resp., the sparser) NDN FIBs are in plain NDN scenarios, which leads to
strenuous interest flooding on the inter-domain level.

Therefore, the central hypothesis w.r.t the comparison of both architectures is that plain
NDN with Flooding forwarding performs worse than NDN & Chord, since the former
causes a significant amount of load on the inter-domain level, leading to lower network
efficiency: NDN & Chord – although bridging two distinct technologies – should cause
less load within the transit network, leading to more efficient inter-domain level commu-
nication as well as faster data retrieval delays.
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5.3 Retrieval Delay Comparison

This section covers the results from various simulation experiments, in which the focus
was put on the QoE from consumer nodes’ perspective, i.e., the full data retrieval de-
lay in-between issuing NDN interest packets and receiving the corresponding data. The
presented result plots indicate for each of the 100 simulated data items (cf. x-axis) the
globally measured minimum, average as well as maximum full retrieval delays: Thereby,
the minimum and maximum delays are displayed in terms of a vertical error bar, while
the average delays are connected by a curve.

In subsection 5.3.1, NDN & Chord is illustrated alongside plain NDN with Best Route
routing, for transit network sizes N = 8 and N = 32, while for the same two transit
networks, NDN & Chord is presented in comparison to plain NDN with Flooding routing
in subsection 5.3.2. For fair comparison, all experiments are based on scenarios with 40
UEs per last-mile zone, which with five domains corresponds to a total no. of n = 200
mobile consumer nodes.

For better interpretability, the below table indicates the ranges of the average retrieval
delays of the eight presented experiments:

Table 5.2: Average Retrieval Delay Ranges per Experiment

Scenario Forwarding Strategy N Avg. Delay Range Shortcut
NDN & Chord

Best Route 8
37.77 – 106.27 ms

Figure 5.3
Plain NDN 34.12 – 61.38 ms
NDN & Chord

Best Route 32
44.44 – 222.39 ms

Figure 5.4
Plain NDN 37.75 – 113.26 ms
NDN & Chord Best Route

8
37.77 – 106.27 ms

Figure 5.5
Plain NDN Flooding 88.10 – 408.08 ms
NDN & Chord Best Route

32
44.44 – 222.39 ms

Figure 5.6
Plain NDN Flooding 132.58 – 471.04 ms
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5.3.1 NDN & Chord vs. plain NDN with Best-Route Forwarding

Figure 5.3: NDN & Chord vs. Plain NDN with Best Route Forwarding (N = 8, n = 200)

Discussion

As expected, in comparison to plain NDN with Best Route forwarding, NDN & Chord
performs slower due to overhead generated by bridging between NDN and Chord. At the
same time, various max. retrieval delay outliers (e.g., 1.07 s for item 78 in Figure 5.4)
indicate the inferiority of Chord routing compared to Best Route in plain NDN: This can
be attributed to the fact that even if Chord guarantees for low-complexity routing on the
overlay, one hop from one VNode to another might correspond to underlay traffic which
actually has to traverse multiple physical nodes, causing increased delay. Plain NDN with
Best Route forwarding – on the other hand – has a clear advantage as all globally all traffic
remains within the same technology resp. networking protocol and, due to the availability
of complete FIB tables, each node can forward traffic towards one single lowest-cost next
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hop node. In both plain NDN plots one can observe at the varying max. delays that
certain data item ranges originate from more or less remote producer nodes (e.g., items
61 – 80 originate from the fourth zone supernode).

Figure 5.4: NDN & Chord vs. Plain NDN with Best Route Forwarding (N = 32, n = 200)

Independently of the transit network size and architecture, one can observe the effect of
NDN CS caching: For roughly the first 20 sequence numbers (i.e., the most frequently
requested items), the avg. retrieval delay approximately grows linearly, while for higher,
less popular data items (which have a low probability of getting cached), avg. delays enter
a plateau.

Increasing N from 8 to 32 transit nodes leads to roughly doubled avg. retrieval delays for
both architectures, however, the observations remain the same.
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5.3.2 NDN & Chord vs. plain NDN with Flooding Forwarding

Figure 5.5: NDN & Chord vs. Plain NDN with Flooding Forwarding (N = 8, n = 200)

Discussion

Introducing interest Flooding in plain NDN (cf. section 4.7.2) has highly detrimental
impacts on the QoE: Compared to the Best Route scenarios, with Flooding forwarding
deployed on all nodes, each interest packet is multiplied according to the number of the
nodes’ upstream neighbours, which causes a severe amplification of NDN traffic; This
effect is intensified, the more nodes lie between consumer and producer nodes, and the
more links are attached to intermediate routing nodes. Amplified NDN traffic caused by
interest flooding severely strains the transit network (cf. section 5.4), such that in some
cases data responses take extensive delays to arrive at consumer nodes: In many cases
consumer applications time out on non-answered interests and re-send them, which results
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in an even higher interest traffic load as well as longer full delays between first issuing an
interest and receiving the according data.

Figure 5.6: NDN & Chord vs. Plain NDN with Flooding Forwarding (N = 32, n = 200)

Studying the rising shape of the avg. retrieval curves for low sequence numbers in plain
NDN, reveals that CS caching still has a positive impact in terms of lower retrieval avg.
delays for popular data items. However, there appear a lot of high max. delays in the low
sequence no. ranges: This can be explained by the fact that low sequence no. items get
requested at a higher frequency, such that there is a high probability for such retrievals
to take place during a state of high network strain, resulting in high retrieval delays. A
similar effect occurs for data items originating from nodes which on average are difficult
to reach (i.e., a lot of hops between consumer and producer, e.g., data items 21 – 40 for N
= 32 in Figure 5.6), as more intermediate routing nodes lead to a higher degree of traffic
amplification and thus, more strain on the transit network.

For both N = 8 as well as N = 32, NDN & Chord attains a better QoE in terms of lower
average and maximum retrieval delays compared to plain NDN with Flooding.
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5.4 Transit Network Load Comparison

The bar plots presented in this section indicate the average traffic load caused on the
small-world transit network during differently scaled simulation scenarios. The network
load was derived by periodically measuring the total throughput on all simulated links
which compose the small-world network (cf. section 4.7.1): The values indicated by the
bars indicate the average network load throughout all simulation periods.

In Figure 5.7, the results from scenarios using the transit network of size N = 8 are
presented, while Figure 5.8 displays N = 32.

For both transit network sizes, the number of mobile consumer nodes (resp. UEs) is scaled
up according to n = 5, 10, 25, 50, 100, 150, 200. Thereby, NDN & Chord is evaluated
against plain NDN configured with the Best Route as well as Flooding forwarding strate-
gies.

To allow for a fair comparison, for NDN & Chord the avg. transit network load only covers
the 10 simulated minutes after the initialization of Chord, i.e., the traffic originating from
the insertion of VNodes and Chord data objects is not taken into the account during the
computation of the total avg. transit network load.

Figure 5.7: Transit Network Load Comparison for N = 8

Discussion

Generally, it can be stated that plain NDN with Best Route forwarding is the most efficient
strategy, not only delay-wise (cf. section 5.3) but also in terms of the lowest generated
transit network load for all last-mile zone sizes n as well as transit network sizes N. On the



5.4. TRANSIT NETWORK LOAD COMPARISON 69

other hand, plain NDN with Flooding forwarding – as expected – causes a significantly
higher transit network load in all scenarios.

When comparing NDN & Chord with plain NDN & Flooding for N = 8, NDN & Chord
clearly wins in terms of a lower achieved transit network load in all seven scenarios simu-
lating different n.

Figure 5.8: Transit Network Load Comparison for N = 32

As discussed in section 5.3.1, increasing the size of the transit network leads to more
expensive routing on the Chord overlay. This does not only find expression in increased
retrieval delays but also in elevated transit network load with N = 32: For n = 5, 10, 25
up until 50, NDN & Chord even causes a slightly higher transit network load compared
to plain NDN with Flooding :

However, the results of scenarios for larger n (i.e., >50) support the main hypothesis, as
NDN & Chord clearly takes the lead in putting less strain on the transit network compared
to plain NDN & Flooding, which with increasing n causes more and more NDN control
traffic amplification.
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5.5 Production Load Comparison

To cover the third and last evaluation dimension, the focus is laid on the total production
load occurring at all data producing nodes during the entire simulations. More specifi-
cally, production load refers to the total number of times a zone supernode has processed
an incoming interest packet for an uncached data item and issued a data packet towards
downstream nodes. In the NDN & Chord architecture, one data item production addi-
tionally comprises a retrieval on the DHT overlay (cf. Figure 4.5), while for plain NDN
scenarios, producer nodes merely create and send virtual payload packets: Clearly, dif-
ferent data production approaches can lead to different computational effort occurring at
producer nodes. However, this work only considers quantitative production load, a com-
parison of the architectures w.r.t. computational cost on producer nodes is out-of-scope.
The total production load was derived by analyzing NS-3 simulation logs and computing
the total no. of times Producer applications installed on zone supernodes had issued data
packets to downstream nodes using standard Unix programs grep and wc.

Depending on the simulated architecture, forwarding strategy as well as transit network
size, a different Total No. of Productions results, as indicated in the below table. All
six results originate from experiments using 40 UEs per last-mile zone, i.e., n = 200.
With the default parameters for consumer nodes’ interest sending frequency as well as
the total simulation run time of 10 min, the global total amount of issued interest packets
corresponds to 200 UEs * 10 interests per s * 600 s = 1’200’000 interests.

Table 5.3: Total Number of Productions per Experiment (n = 200)

Scenario Forwarding Strategy N Total No. of Productions
NDN & Chord

Best Route
8

540’251
Plain NDN 391’989
Plain NDN Flooding 489’674
NDN & Chord

Best Route
32

458’978
Plain NDN 367’557
Plain NDN Flooding 378’514

Discussion

By comparing the resulting production load for the six different scenarios, one can make
the following three observations:

Firstly, for both transit network sizes N = 8 as well as N = 32, zone supernodes in the
NDN & Chord architecture have to produce the highest amount of data items. The rea-
son therefore can be found in the fact that in NDN & Chord, every interest packet for
uncached data items is necessarily picked up and processed by a zone supernode, while
all NDN traffic remains within last-mile zones and no interest packets pass over into the
inter-domain level network whatsoever. This is completely different for the native NDN
networks simulated in plain NDN, where supernodes forward interests to the transit net-
work, if they are not responsible for the queried name prefix. Thereby, there is a higher
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chance for interests to be served from a CS cache on a foreign zone’s supernode, com-
pared to NDN & Chord, in which interests only ever encounter two nodes with activated
CS, i.e., the local intermediate as well as supernode (cf. subsection 5.1.1): The smaller
the probability for interests to be served from CS caches, the higher is the quantitative
load accumulating at producer nodes, which explains the high figures for NDN & Chord.
However, in NDN & Chord, producer nodes still only have to process approximately up
to 45% of the total 1.2 M interests, while the rest can be directly served from local CS
caches.

Secondly, for both N = 8 as well as N = 32, a higher production load results in plain
NDN scenarios using Flooding, compared to the Best Route forwarding strategy. This
can be attributed to interest amplification caused by forwarding nodes broadcasting in-
terest packets towards all upstream nodes, which leads to a generally higher frequency of
incoming interests at producer nodes across the entire transit network.

Thirdly, for all three scenarios with N = 32, the total no. of produced data items is smaller
compared to N = 8. In case of NDN & Chord, this is due to the more complex structure
of the transit network, leading to more expensive overlay routing and ultimately, slower
data retrievals and productions. For similar reasons, there is less production load in both
plain NDN scenarios, since on average, it takes a longer delay for interest packets to reach
producer nodes when having to surpass the larger transit network and, the probability
is higher for interests to be served from some intermediate CS cache before reaching a
producer, in contrast to N = 8.
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Chapter 6

Summary and Conclusions

The contributions of this work are threefold:

Firstly, a layered network architecture for content distribution was designed, which com-
bines ICN and DHT technologies: In terms of ICN, the architecture foresees an intra-
domain layer consisting of several mobile last-mile networks operating on NDN – a future
internet architecture. Thereby, the last-mile zones were defined according to the typical
hierarchical structure of mobile networks, while the assumption was made that all mobile
devices are consumers of data, which express their aim to retrieve named data towards
hierarchically superior network participants, i.e., to supernodes part of every last-mile
domain. In terms of an inter-domain communication layer, all supernodes were defined to
be involved in a Chord DHT, which is used for the distributed storage as well as delivery
of data items among different zones resp., domains: Compared to the NDN-based intra-
domain layer, the Chord protocol used on the inter-domain level operates as an overlay
on top of the traditional IP-based internet. This provides the advantage that in spite of
the lack of a global native NDN network, the benefits of NDN can be leveraged within
several independent domains interconnected over existing internet infrastructure.

Secondly, the proposed NDN & Chord architecture was implemented in terms of a sim-
ulation in the NS-3 network simulator framework, by incorporating the state-of-the-art
simulator modules ndnSIM as well as ns-3-chord, to model the ICN and DHT communi-
cation layers. To facilitate realistic network simulations at the small scale, the simulation
was configured according to three real-world aspects resp., models: For simulating the
performance characteristics of mobile networks, the communication channels at the intra-
domain level were configured according to delay and throughput measurements derived
from an NS-3 LTE simulation experiment arranged to assess the efficiency of over-the-
air data exchange among mobile devices and base stations. To represent the pattern
of the demand for popular information observed in real-world, mobile consumer nodes
are modeled to request data according to the Zipf-Mandelbrot distribution, with which
consumers query a certain range of data disproportionately often, while other items are
only demanded seldomly. Lastly, to model the transit network at the inter-domain level
(i.e., among router nodes and last-mile zone supernodes), random connected small-world
networks were generated using the Watts-Strogatz algorithm, which embody the same
characteristics as real-world internet backbone networks used at the inter-operator level.
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Ultimately, to allow for an assessment and fair comparison of the suggested NDN & Chord
architecture, a native NDN reference architecture (denoted as plain NDN ) was designed,
in which NDN is deployed as the sole global communication technology, i.e., also on the
inter-domain level.

Thirdly, the suggested NDN & Chord architecture was evaluated and compared with the
plain NDN reference by conducting different simulation experiments: Analyzing the QoE
achieved from a consumer node perspective, i.e., the average data item retrieval delays, has
revealed that in general NDN & Chord performs slower than plain NDN under perfect
routing conditions. However, in scenarios in which plain NDN operates on sparse FIB
tables and Multicast instead of Best Route forwarding, it could be shown that NDN &
Chord clearly operates faster and more reliably than plain NDN under aggravated routing
conditions. Not only w.r.t. QoE, but also in terms of the traffic load put upon the transit
network, NDN & Chord scores second, in-between plain NDN with Best Route forwarding
causing the least load, as well as plain NDN with Flooding forwarding straining the transit
network the most. Lastly, NDN & Chord was compared to plain NDN scenarios while
focusing on the total quantitative production load generated at producer nodes: The
finding of this analysis is that in NDN & Chord, producer nodes have to manage a higher
load compared to native NDN scenarios, since as opposed to plain NDN, NDN traffic does
not exceed local domains (resp., last-mile zones), such that all interest packets have to be
processed by local supernodes.

In summary, one can conclude that the introduced NDN & Chord architecture has proven
itself as a well performing option when it comes to interconnecting several independent
NDN domains, especially if per the lack of infrastructure, a large native multi-domain
NDN network cannot be realized, or, if NDN is operating on poor routing conditions.
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6.1 Future Work

It has been discussed in section 5.5 that compared to plain NDN with the Best Route as
well as Flooding forwarding strategies, in NDN & Chord scenarios producer nodes have to
serve data items at a higher frequency. As pointed out, in the experiments carried out in
the scope of this work, simulated producer nodes do not have a capacity limit and thus,
accept any frequency of incoming interest packets. As part of a future contribution, the
analysis of production load could be expanded as follows:

Initially, the required computational effort for producer nodes to bridge NDN and Chord
and to retrieve a data item from the DHT shall be studied: This could be accomplished
by setting up a testbed in which on a real-world host, the combined resource consumption
is measured for receiving and translating an NDN interest into a Chord retrieval, Chord
overlay routing to determine the data object owner, downloading the queried data object
as well as encapsulating the data into an NDN packet to be sent back to the downstream.
Once a resource consumption reference has been identified, it will be possible to place it
into relation with the maximum manageable load of one single host, to define a production
bottleneck in terms of a maximum frequency of incoming interests: This will allow for
conducting more accurate experiments which involve the simulation of limited producer
node capacity, in which interest packets are discarded, if they are directed to an overloaded
supernode. If in plain NDN scenarios, too, realistic max. producer capacity is simulated,
it would be possible to re-assess native NDN against the layered NDN & Chord approach,
to study the implications of different quantitative production loads towards the efficiency
of different networks.
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Abbreviations

CDN Content Delivery Network
CS Content Store
CSV Comma-Separated Values (file format)
DHT Distributed Hash Table
FIB Forwarding Information Base
ICN Information Centric Networking
ID Identifier
IP Internet Protocol
L-SCN Layered Service Centric Networking
MNO Mobile Network Operator
NDN Named Data Networking
NFD Named Data Networking Forwarding Daemon
NS-3 Network Simulator version 3
OS Operating System
OSI Open Systems Interconnection model
P2P Peer-to-peer network
PIT Pending Interest Table
PTP Point-to-point connection
QoE Quality-of-Experience
TCP Transport Control Protocol
TSV Tab-Separated Values (file format)
UDP User Datagram Protocol
URL Uniform Resource Locator
VPN Virtual Private Network
WWW World Wide Web
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Glossary

Caching to cache refers to storing replicated data in a network node’s memory

Downstream refers to the direction of data traffic towards content resp., data consuming
nodes in a network

Hashing refers to the process of using a hash function to encode input data of arbitrary
size to produce a fixed-size hash (value)

Host/Node Terms host and node are used interchangeably in this work to denote com-
munication capable devices involved in one or more networks

Overlay describes a type of network which operates as an additional layer on top of
another established network technology (i.e., underlay)

Supernode refers to a type of node having the responsibility to bridge the communication
between two or more distinct domains part of a larger network

Upstream refers to the direction data traffic towards content resp., data producing nodes
in a network
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Appendix A

Source Code

A.1 LTE-EPC Performance Measurements

The following source code originates from C++ NS-3 simulation script called lena-

performance-measurements.cc, which was used to determine realistic LTE performance
measurements, as described in subsection 4.2.2.

1 #include "ns3/lte-helper.h"

2 #include "ns3/epc-helper.h"

3 #include "ns3/core-module.h"

4 #include "ns3/network-module.h"

5 #include "ns3/ipv4-global-routing-helper.h"

6 #include "ns3/internet-module.h"

7 #include "ns3/internet-apps-module.h"

8 #include "ns3/mobility-module.h"

9 #include "ns3/lte-module.h"

10 #include "ns3/applications-module.h"

11 #include "ns3/flow-monitor-module.h"

12 #include <vector>

13 #include <cstdio>

14 #include <iostream>

15

16

17 using namespace ns3;

18

19 /**

20 * This script can be used to measure the performance of LTE+EPC.

21 * In each independent LTE network, one eNodeB is installed.

22 * To collect LTE performance measurements, we work with one LTE network and

install UDP client↪→

23 * applications on the UEs, as well as a UDP server on the corresponding

eNodeB.↪→

24 *
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25 * At a steady periodicity, the client applications on the UEs issue UDP

packets of a fixed payload size↪→

26 * towards the server application on the eNodeB.

27

28 * Finally, using the FlowMonitor module we collect several performance

statistics on the UDP package exchange.↪→

29 */

30

31 NS_LOG_COMPONENT_DEFINE ("EpcPerformanceMeasurement");

32

33

34 int

35 main (int argc, char *argv[])

36 {

37 //

38 // Enable logging for UdpClient and UdpServer

39 //

40 LogComponentEnable ("UdpClient", LOG_LEVEL_INFO);

41 LogComponentEnable ("UdpServer", LOG_LEVEL_INFO);

42

43 uint16_t numberOfNetworks = 1;

44 uint16_t numberOfNodes = 5;

45 double distance = 500.0;

46

47 InternetStackHelper internet;

48 Ipv4StaticRoutingHelper ipv4RoutingHelper;

49

50 std::vector<Ptr<LteHelper>> IndependentNetworks (numberOfNetworks);

51 std::vector<Ptr<PointToPointEpcHelper>> IndependentEpcs (numberOfNetworks);

52 std::vector<Ptr<Node>> IndependentPgws (numberOfNetworks);

53 std::vector<Ipv4InterfaceContainer> IndependentInterface (numberOfNetworks);

54 std::vector<NodeContainer> IndependentueNodes (numberOfNetworks);

55 std::vector<NodeContainer> IndependentenbNodes (numberOfNetworks);

56 std::vector<Ptr<ListPositionAllocator>> IndependentPositionAllocators

(numberOfNetworks);↪→

57 std::vector<MobilityHelper> IndependentMobilityHelpers (numberOfNetworks);

58 std::vector<NetDeviceContainer> IndependentueDevices (numberOfNetworks);

59 std::vector<NetDeviceContainer> IndependentenbDevices (numberOfNetworks);

60 std::vector<Ipv4InterfaceContainer> IndependentueIpIfaces (numberOfNetworks);

61

62 for (uint16_t nn = 0; nn < numberOfNetworks; nn++)

63 {

64

65 Ptr<LteHelper> &lteHelper = IndependentNetworks[nn];

66 lteHelper = CreateObject<LteHelper> ();

67

68 Ptr<PointToPointEpcHelper> &epcHelper = IndependentEpcs[nn];

69

70 // s1-u interface on 2.(nn).0.0, mask defined in

src/lte/helper/point-to-point-epc-helper.cc↪→
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71 std::ostringstream s1ubaseaddress;

72 s1ubaseaddress << "2." << nn << ".0.0";

73 // x2 interface on 3.(nn).0.0, mask defined in

src/lte/helper/point-to-point-epc-helper.cc↪→

74 std::ostringstream x2baseaddress;

75 x2baseaddress << "3." << nn << ".0.0";

76 // ue base interface 4.(nn).0.0, mask defined in

src/lte/helper/point-to-point-epc-helper.cc↪→

77 std::ostringstream uebaseaddress;

78 uebaseaddress << "4." << nn << ".0.0";

79 epcHelper = CreateObject<PointToPointEpcHelper> (s1ubaseaddress.str

().c_str (),↪→

80 x2baseaddress.str

().c_str (),↪→

81 uebaseaddress.str

().c_str ());↪→

82

83 lteHelper->SetEpcHelper (epcHelper);

84

85 Ptr<Node> &pgw = IndependentPgws[nn];

86 pgw = epcHelper->GetPgwNode ();

87

88

89 NodeContainer &ueNodes = IndependentueNodes[nn];

90 NodeContainer &enbNodes = IndependentenbNodes[nn];

91

92 enbNodes.Create (1); // Create one eNB per zone

93 ueNodes.Create (numberOfNodes);

94

95 // Install Mobility Models

96 Ptr<ListPositionAllocator> &enbPositionAlloc =

IndependentPositionAllocators[nn];↪→

97 enbPositionAlloc = CreateObject<ListPositionAllocator> ();

98 Ptr<ListPositionAllocator> uePositionAlloc =

CreateObject<ListPositionAllocator> ();↪→

99

100 enbPositionAlloc->Add (Vector (0, 0, 0)); // Place single zone eNB to

point of origin↪→

101

102 for (uint16_t i = 1; i <= numberOfNodes; i++)

103 {

104 uePositionAlloc->Add (Vector (distance * i, 0, 0));

105 }

106

107 MobilityHelper &mobility = IndependentMobilityHelpers[nn];

108 MobilityHelper ueMobility;

109

110 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

111 ueMobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

112 mobility.SetPositionAllocator (enbPositionAlloc);
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113 ueMobility.SetPositionAllocator (uePositionAlloc);

114 mobility.Install (enbNodes);

115 ueMobility.Install (ueNodes);

116

117 // Install LTE Devices to the nodes

118 NetDeviceContainer &enbLteDevs = IndependentenbDevices[nn];

119 enbLteDevs = lteHelper->InstallEnbDevice (enbNodes);

120

121 NetDeviceContainer &ueLteDevs = IndependentueDevices[nn];

122 ueLteDevs = lteHelper->InstallUeDevice (ueNodes);

123

124 // Install the IP stack on the UEs

125 internet.Install (ueNodes);

126

127 // Assign IP address to UEs

128 Ipv4InterfaceContainer &ueIpIface = IndependentueIpIfaces[nn];

129 ueIpIface = epcHelper->AssignUeIpv4Address (ueLteDevs);

130

131 // default route on UEs

132 for (uint32_t u = 0; u < ueNodes.GetN (); ++u)

133 {

134 Ptr<Node> ueNode = ueNodes.Get (u);

135 // Set the default gateway for the UE

136 Ptr<Ipv4StaticRouting> ueStaticRouting =

137 ipv4RoutingHelper.GetStaticRouting (ueNode->GetObject<Ipv4> ());

138 ueStaticRouting->SetDefaultRoute

(epcHelper->GetUeDefaultGatewayAddress (), 1);↪→

139 }

140

141 // Attach all UE to first eNodeB

142 for (uint16_t i = 0; i < numberOfNodes; i++)

143 {

144 lteHelper->Attach (ueLteDevs.Get (i), enbLteDevs.Get (0));

145 }

146 }

147

148 // Point to the eNodeB of the first network

149 Ptr<Node> server = IndependentenbNodes[0].Get (0);

150

151 // Install one UdpServer application on the server node.

152 uint16_t port = 4000;

153 UdpServerHelper udpServer (port);

154 ApplicationContainer udpApps = udpServer.Install (server);

155 udpApps.Start (Seconds (1.0));

156 udpApps.Stop (Seconds (10.0));

157

158 // Install one UdpClient application to send UDP datagrams from the client to

the server.↪→

159 uint32_t MaxPacketSize = 1500; // LTE MTU

160 Time interPacketInterval = Seconds (0.05);
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161 uint32_t maxPacketCount = 320;

162 Address serverAddress = Address (server->GetObject<Ipv4> ()->GetAddress (1,

0).GetLocal ());↪→

163 UdpClientHelper udpClient (serverAddress, port);

164 udpClient.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));

165 udpClient.SetAttribute ("Interval", TimeValue (interPacketInterval));

166 udpClient.SetAttribute ("PacketSize", UintegerValue (MaxPacketSize));

167 for (uint16_t i = 0; i < numberOfNodes; i++)

168 {

169 // Install UdpClient applications on all the nodes of the first network

170 udpApps = udpClient.Install (IndependentueNodes[0].Get (i));

171 udpApps.Start (Seconds (2.0));

172 udpApps.Stop (Seconds (10.0));

173 }

174

175 // Set up Flow monitor

176 Ptr<FlowMonitor> flowMonitor;

177 FlowMonitorHelper flowHelper;

178 flowMonitor = flowHelper.InstallAll();

179

180 Simulator::Stop (Seconds (12));

181 Simulator::Run ();

182

183 // Export flow stats to file

184 flowMonitor->SerializeToXmlFile ("lena-udp-flow-stats.flowmon", false,

false);↪→

185

186 Simulator::Destroy ();

187 return 0;

188 }



94 APPENDIX A. SOURCE CODE

A.2 ChordProducer ndnSIM Application

The source code attached to this section originates from ChordProducer, an ndnSIM
application which was developed to connect the NDN-based intra-domain layer, with the
Chord-based inter-domain communication layer (cf. section 4.3).

A.2.1 ndn-chord-producer.hpp

1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

2

3 #ifndef NDN_CHORD_PRODUCER_H

4 #define NDN_CHORD_PRODUCER_H

5

6 #include "ns3/ndnSIM/model/ndn-common.hpp"

7

8 #include "ndn-app.hpp"

9 #include "ns3/ndnSIM/model/ndn-common.hpp"

10

11 #include "ns3/nstime.h"

12 #include "ns3/ptr.h"

13

14 #include "ns3/chord-ipv4.h"

15

16 namespace ns3 {

17 namespace ndn {

18

19

20 class ChordProducer : public App {

21 public:

22 static TypeId

23 GetTypeId (void);

24

25 ChordProducer ();

26

27 // inherited from NdnApp

28 virtual void

29 OnInterest (shared_ptr<const Interest> interest);

30

31 /**

32 * \brief Respond to an interest upon data retrieved from the DHT

33 */

34 void

35 RespondWithData (shared_ptr<const Interest> interest);

36

37 /**

38 * \brief Retrieve a data item from the DHT (key = interest sequence number).

39 * Adds the interest to the ongoing DHT retrievals set.
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40 * Returns immediately, if there is already an ongoing retrieval for some

key.↪→

41 */

42 void

43 RetrieveFromDHT (shared_ptr<const Interest> interest);

44

45 std::unordered_set <std::shared_ptr<const ndn::Interest>>::iterator

FindPendingDHTretrieval (uint8_t* key);↪→

46 /**

47 * \brief Callback invoked by ChordIpv4 upon retrieval success.

48 * Finds the pending DHT retrieval in the set and invokes response to the

corresponding NDN interest and,↪→

49 * removes the pending DHT retrieval from the set.

50 */

51 void RetrieveSuccess (uint8_t* key, uint8_t numBytes, uint8_t* object,

uint32_t objectBytes);↪→

52

53 /**

54 * \brief Callback invoked by ChordIpv4 upon retrieval failure.

55 * Finds and removes the pending DHT retrieval from the set, such that

RetrieveFromDHT won't block anymore.↪→

56 */

57 void RetrieveFailure (uint8_t* key, uint8_t keyBytes);

58

59 protected:

60 // inherited from Application base class.

61 virtual void

62 StartApplication (); // Called at time specified by Start

63

64 virtual void

65 StopApplication (); // Called at time specified by Stop

66

67 private:

68 Name m_prefix;

69 Name m_postfix;

70 uint32_t m_virtualPayloadSize;

71 Time m_freshness;

72

73 uint32_t m_signature;

74 Name m_keyLocator;

75

76 Ptr<ChordIpv4> m_chordIpv4;

77

78 std::unordered_set <shared_ptr<const Interest>> m_pendingDHTretrievals;

79 };

80

81 } // namespace ndn

82 } // namespace ns3

83

84 #endif // NDN_CHORD_PRODUCER_H
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A.2.2 ndn-chord-producer.cpp

1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

2

3 #include "ndn-chord-producer.hpp"

4 #include "ns3/log.h"

5 #include "ns3/string.h"

6 #include "ns3/uinteger.h"

7 #include "ns3/packet.h"

8 #include "ns3/simulator.h"

9 #include "model/ndn-l3-protocol.hpp"

10 #include "helper/ndn-fib-helper.hpp"

11

12 #include <openssl/sha.h>

13 #include <memory>

14 #include <string>

15

16 NS_LOG_COMPONENT_DEFINE("ndn.ChordProducer");

17

18 namespace ns3 {

19 namespace ndn {

20

21 NS_OBJECT_ENSURE_REGISTERED(ChordProducer);

22

23 TypeId

24 ChordProducer::GetTypeId(void)

25 {

26 static TypeId tid =

27 TypeId("ns3::ndn::ChordProducer")

28 .SetGroupName("Ndn")

29 .SetParent<App>()

30 .AddConstructor<ChordProducer>()

31 .AddAttribute("Prefix", "Prefix, for which producer has the data",

StringValue("/"),↪→

32 MakeNameAccessor(&ChordProducer::m_prefix),

MakeNameChecker())↪→

33 .AddAttribute(

34 "Postfix",

35 "Postfix that is added to the output data (e.g., for adding

producer-uniqueness)",↪→

36 StringValue("/"), MakeNameAccessor(&ChordProducer::m_postfix),

MakeNameChecker())↪→

37 .AddAttribute("PayloadSize", "Virtual payload size for Content packets",

UintegerValue(1024),↪→

38 MakeUintegerAccessor(&ChordProducer::m_virtualPayloadSize),

39 MakeUintegerChecker<uint32_t>())

40 .AddAttribute("Freshness", "Freshness of data packets, if 0, then

unlimited freshness",↪→

41 TimeValue(Seconds(0)),

MakeTimeAccessor(&ChordProducer::m_freshness),↪→
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42 MakeTimeChecker())

43 .AddAttribute(

44 "Signature",

45 "Fake signature, 0 valid signature (default), other values

application-specific",↪→

46 UintegerValue(0), MakeUintegerAccessor(&ChordProducer::m_signature),

47 MakeUintegerChecker<uint32_t>())

48 .AddAttribute("KeyLocator",

49 "Name to be used for key locator. If root, then key

locator is not used",↪→

50 NameValue(),

MakeNameAccessor(&ChordProducer::m_keyLocator),

MakeNameChecker())

↪→

↪→

51 .AddAttribute("ChordIpv4",

52 "The ChordIpv4 app associated with this producer.",

53 PointerValue (),

54 MakePointerAccessor (&ChordProducer::m_chordIpv4),

55 MakePointerChecker<ChordIpv4> ());

56 return tid;

57 }

58

59 ChordProducer::ChordProducer()

60 {

61 NS_LOG_FUNCTION_NOARGS();

62 }

63

64 // inherited from Application base class.

65 void

66 ChordProducer::StartApplication()

67 {

68 NS_LOG_FUNCTION_NOARGS();

69

70 m_chordIpv4->SetRetrieveSuccessCallback (MakeCallback

(&ChordProducer::RetrieveSuccess, this));↪→

71 m_chordIpv4->SetRetrieveFailureCallback (MakeCallback

(&ChordProducer::RetrieveFailure, this));↪→

72

73 App::StartApplication();

74

75 FibHelper::AddRoute(GetNode(), m_prefix, m_face, 0);

76 }

77

78 void

79 ChordProducer::StopApplication()

80 {

81 NS_LOG_FUNCTION_NOARGS();

82 App::StopApplication();

83 }

84

85 void
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86 ChordProducer::OnInterest(shared_ptr<const Interest> interest)

87 {

88 App::OnInterest(interest); // tracing inside

89

90 NS_LOG_FUNCTION(this << interest);

91

92 if (!m_active)

93 return;

94

95 RetrieveFromDHT (interest);

96 }

97

98 void

99 ChordProducer::RespondWithData (shared_ptr<const Interest> interest)

100 {

101

102 Name dataName(interest->getName());

103

104 auto data = make_shared<Data>();

105 data->setName(dataName);

106 data-

>setFreshnessPeriod(::ndn::time::milliseconds(m_freshness.GetMilliSeconds()));↪→

107

108 data->setContent(make_shared< ::ndn::Buffer>(m_virtualPayloadSize));

109

110 Signature signature;

111 SignatureInfo signatureInfo(static_cast<

::ndn::tlv::SignatureTypeValue>(255));↪→

112

113 if (m_keyLocator.size() > 0) {

114 signatureInfo.setKeyLocator(m_keyLocator);

115 }

116

117 signature.setInfo(signatureInfo);

118 signa-

ture.setValue(::ndn::makeNonNegativeIntegerBlock(::ndn::tlv::SignatureValue,

m_signature));

↪→

↪→

119

120 data->setSignature(signature);

121

122 NS_LOG_INFO("node(" << GetNode()->GetId() << ") responding with Data: " <<

data->getName());↪→

123

124 // to create real wire encoding

125 data->wireEncode();

126

127 m_transmittedDatas(data, this, m_face);

128 m_appLink->onReceiveData(*data);

129

130 }
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131

132 void

133 ChordProducer::RetrieveFromDHT (shared_ptr<const Interest> interest)

134 {

135 std::string seqNo = std::to_string

(interest->getName().at(-1).toSequenceNumber());↪→

136

137 // Check whether there is already an ongoing DHT retrieval for this interest

138 auto ite = m_pendingDHTretrievals.begin ();

139 while (ite != m_pendingDHTretrievals.end ())

140 {

141 if (seqNo == std::to_string ((*ite)->getName ().at (-1).toSequenceNumber

()))↪→

142 {

143 NS_LOG_INFO ("There is already an ongoing DHT retrieval for this

interest: " << seqNo);↪→

144 return;

145 }

146 ++ite;

147 }

148

149 NS_LOG_INFO ("Key getting queried from DHT: " << seqNo);

150

151 unsigned char* md = (unsigned char*) malloc (20);

152 const unsigned char* message = (const unsigned char*) seqNo.c_str();

153 SHA1 (message , seqNo.length () , md);

154

155 m_pendingDHTretrievals.insert (interest);

156

157 m_chordIpv4->Retrieve (md, 20);

158

159 free (md);

160

161 }

162

163 std::unordered_set <std::shared_ptr<const ndn::Interest>>::iterator

164 ChordProducer::FindPendingDHTretrieval (uint8_t* key)

165 {

166 auto ite = m_pendingDHTretrievals.begin ();

167 while (ite != m_pendingDHTretrievals.end ())

168 {

169 std::string seqNo = std::to_string ((*ite)->getName ().at

(-1).toSequenceNumber ());↪→

170 unsigned char* md = (unsigned char*) malloc (20);

171 const unsigned char* message = (const unsigned char*) seqNo.c_str ();

172 SHA1 (message, seqNo.length (), md);

173

174 if (std::memcmp (key, md, 20) == 0)

175 {

176 free (md);
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177 return ite;

178 }

179

180 free (md);

181 ++ite;

182 }

183

184 return ite;

185 }

186

187 void

188 ChordProducer::RetrieveSuccess (uint8_t* key, uint8_t numBytes, uint8_t*

object, uint32_t objectBytes)↪→

189 {

190 NS_LOG_INFO("Retrieve Success!");

191

192 auto ite = FindPendingDHTretrieval (key);

193

194 if (ite != m_pendingDHTretrievals.end ())

195 {

196 m_pendingDHTretrievals.erase (ite);

197 RespondWithData (*ite);

198 }

199 }

200

201 void

202 ChordProducer::RetrieveFailure (uint8_t* key, uint8_t keyBytes)

203 {

204 NS_LOG_UNCOND ("Retrieve Failure Reported...");

205

206 auto ite = FindPendingDHTretrieval (key);

207

208 if (ite != m_pendingDHTretrievals.end ())

209 {

210 m_pendingDHTretrievals.erase (ite);

211 }

212 }

213

214 } // namespace ndn

215 } // namespace ns3
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A.3 Main Simulation Scenarios

The main two simulation programs which were used to conduct experiments are attached
to this section. Their corresponding documentation can be found in section 4.7.

A.3.1 ndn-zones-chord-small-world.cc

1 #include "ns3/core-module.h"

2 #include "ns3/network-module.h"

3 #include "ns3/applications-module.h"

4 #include "ns3/point-to-point-helper.h"

5 #include "ns3/config-store.h"

6 #include "ns3/ndnSIM-module.h"

7 #include "chord-helper.h"

8

9 #include <vector>

10 #include <cstdio>

11 #include <iostream>

12

13

14 using namespace ns3;

15

16 NS_LOG_COMPONENT_DEFINE ("NdnZonesChordSmallWorld");

17

18 // ns-3-chord boilerplate

19 void

20 ChordHelper::JoinSuccess (std::string vNodeName, uint8_t* key, uint8_t

numBytes)↪→

21 {

22 NS_LOG_FUNCTION_NOARGS ();

23 NS_LOG_UNCOND ("VNode: " << vNodeName << " Joined successfully!");

24 }

25

26 void

27 ChordHelper::InsertSuccess (uint8_t* key, uint8_t numBytes, uint8_t* object,

uint32_t objectBytes)↪→

28 {

29 NS_LOG_FUNCTION_NOARGS ();

30 NS_LOG_UNCOND ("Insert Success!");

31 }

32

33 void

34 ChordHelper::InsertFailure (uint8_t* key, uint8_t numBytes, uint8_t* object,

uint32_t objectBytes)↪→

35 {

36 NS_LOG_FUNCTION_NOARGS ();

37 NS_LOG_UNCOND ("Insert Failure Reported...");

38 }
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39

40 void

41 ChordHelper::InsertVNode(Ptr<ChordIpv4> chordApplication, std::string

vNodeName)↪→

42 {

43 NS_LOG_FUNCTION_NOARGS ();

44 unsigned char* md = (unsigned char*) malloc (20);

45 const unsigned char* message = (const unsigned char*) vNodeName.c_str ();

46 SHA1 (message , vNodeName.length () , md);

47

48 NS_LOG_UNCOND ("Scheduling Command InsertVNode...");

49 chordApplication->InsertVNode (vNodeName, md, 20);

50 free (md);

51 }

52

53 void

54 ChordHelper::VNodeFailure (std::string vNodeName, uint8_t* key, uint8_t

numBytes)↪→

55 {

56 NS_LOG_FUNCTION_NOARGS ();

57 NS_LOG_UNCOND ("VNode: " << vNodeName << " Failed");

58 }

59

60 void

61 ChordHelper::Insert (Ptr<ChordIpv4> chordApplication, std::string resourceName,

std::string resourceValue)↪→

62 {

63 NS_LOG_FUNCTION_NOARGS ();

64 NS_LOG_UNCOND ("Insert k/V: " << resourceName << ", \"" << resourceValue <<

"\"");↪→

65 unsigned char* md = (unsigned char*) malloc (20);

66 const unsigned char* message = (const unsigned char*) resourceName.c_str ();

67 SHA1 (message , resourceName.length () , md);

68 uint16_t payloadSize = 1500;

69 for (uint16_t i = resourceValue.length (); i < payloadSize; i++)

70 {

71 resourceValue += "v";

72 }

73 unsigned char* value = (unsigned char *)(resourceValue.c_str ());

74 chordApplication->Insert (md, 20, value, payloadSize);

75 free (md);

76 }

77

78 void

79 ChordHelper::Retrieve (Ptr<ChordIpv4> chordApplication, std::string

resourceName)↪→

80 {

81 NS_LOG_FUNCTION_NOARGS ();

82 unsigned char* md = (unsigned char*) malloc (20);

83 const unsigned char* message = (const unsigned char*) resourceName.c_str ();
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84 SHA1 (message , resourceName.length () , md);

85 chordApplication->Retrieve (md, 20);

86 free (md);

87 }

88

89 void

90 ChordHelper::RetrieveFailure (uint8_t* key, uint8_t keyBytes)

91 {

92 NS_LOG_FUNCTION_NOARGS ();

93 NS_LOG_UNCOND ("Retrieve Failure Reported...");

94 }

95

96 void

97 ChordHelper::RetrieveSuccess (uint8_t* key, uint8_t numBytes, uint8_t* object,

uint32_t objectBytes)↪→

98 {

99 NS_LOG_FUNCTION_NOARGS ();

100 NS_LOG_UNCOND ("Retrieve Success!");

101 }

102

103 void

104 ChordHelper::VNodeKeyOwnership (std::string vNodeName, uint8_t* key, uint8_t

keyBytes,↪→

105 uint8_t* predecessorKey, uint8_t

predecessorKeyBytes,↪→

106 uint8_t* oldPredecessorKey, uint8_t

oldPredecessorKeyBytes,↪→

107 Ipv4Address predecessorIp, uint16_t

predecessorPort)↪→

108 {

109 NS_LOG_FUNCTION_NOARGS ();

110 NS_LOG_UNCOND ("VNode: " << vNodeName << " Key Space Ownership change

reported");↪→

111 NS_LOG_UNCOND ("New predecessor Ip: " << predecessorIp << " Port: " <<

predecessorPort);↪→

112 }

113

114 const uint16_t THROUGHPUT_COMPUTATION_PERIOD_S = 10;

115 std::map <uint16_t, double> smallWorldThroughputPerPeriod;

116

117 void

118 TraceTransitLoad (Ptr<const Packet> packet)

119 {

120 double currentTime = Simulator::Now ().GetSeconds();

121 uint16_t period = currentTime / THROUGHPUT_COMPUTATION_PERIOD_S;

122 auto pos = smallWorldThroughputPerPeriod.find (period);

123 double partialThroughputB = (double) packet->GetSize () /

THROUGHPUT_COMPUTATION_PERIOD_S;↪→

124 if (pos == smallWorldThroughputPerPeriod.end ())

125 {
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126 smallWorldThroughputPerPeriod.insert ({period, partialThroughputB});

127 }

128 else

129 {

130 pos->second += partialThroughputB;

131 }

132 }

133

134 int

135 main (int argc, char *argv[])

136 {

137 uint16_t noUEs = 5;

138 uint16_t noDataItems = 100;

139 double interestsPerS = 1.0;

140 double simulationRuntimeM = 10;

141 uint16_t csSize = 10;

142 CommandLine cmd;

143 cmd.AddValue ("noDataItems",

144 "Number of data items (sequence numbers) to use in the

simulation",↪→

145 noDataItems);

146 cmd.AddValue ("interestsPerS",

147 "Frequency of sending out interest packets to be used by

consumer apps",↪→

148 interestsPerS);

149 cmd.AddValue ("noUEs",

150 "Number of UEs per last-mile zone",

151 noUEs);

152 cmd.AddValue ("simulationRuntimeM",

153 "Simulation run time (after start of ndnSIM apps)",

154 simulationRuntimeM);

155 cmd.AddValue ("csSize",

156 "Max. Content Store size to use on NDN nodes with activated

CS",↪→

157 csSize);

158 cmd.Parse (argc, argv);

159 const uint8_t NO_ZONES = 5;

160 const uint8_t NO_SMALL_WORLD_NODES = 8;

161 NodeContainer smallWorldNodes;

162 // Edges from Watts-Strogatz random small-world network graph, with n = 8, k

= 3, p = 0.7↪→

163 const std::vector <std::pair <int, int>> smallWorldEdges =

164 {

165 std::make_pair (0, 3),

166 std::make_pair (1, 7),

167 std::make_pair (2, 5),

168 std::make_pair (2, 3),

169 std::make_pair (2, 6),

170 std::make_pair (3, 4),

171 std::make_pair (3, 7),
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172 std::make_pair (5, 7)

173 };

174 NodeContainer superNodes;

175 ChordHelper chordHelper;

176 const uint16_t CHORD_PORT = 2000;

177 double INTER_VNODE_INSERTION_GAP_S = 70.0;

178 double INTER_CHORD_INSERTION_GAP_S = 0.5;

179 double CHORD_INSERTION_STARTTIME_S = NO_ZONES * INTER_VNODE_INSERTION_GAP_S;

180 double NDN_APPS_START_TIME_S = CHORD_INSERTION_STARTTIME_S +

INTER_CHORD_INSERTION_GAP_S * noDataItems;↪→

181 const std::string LTE_THROUGHPUT_5_UE = "4091.08342373628kbps";

182 const double FIBER_LATENCY_NS_M = 5.0;

183 const double BBU_RRH_DISTANCE_M = 15.0;

184 const std::vector<double> UE_DELAYS_MS = {14.937298, 14.938553, 15.937298,

15.938553, 15.939808};↪→

185 std::vector<NodeContainer> zoneUEs (NO_ZONES);

186 std::vector<NodeContainer> zoneENBelems (NO_ZONES);

187 const std::string NDN_PREFIX = "/payload";

188

189 // Set up small world network

190 smallWorldNodes.Create (NO_SMALL_WORLD_NODES);

191 InternetStackHelper internetStackHelper;

192 internetStackHelper.Install (smallWorldNodes);

193

194 PointToPointHelper smallWorldLink;

195 smallWorldLink.SetDeviceAttribute ("DataRate", StringValue ("100Mbps"));

196 smallWorldLink.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (10)));

197

198 // Set up small-world network edges in terms of p2p links and assigning IP

addresses↪→

199 Ipv4AddressHelper ipv4AddressHelper;

200 for (uint8_t i = 0; i < smallWorldEdges.size (); i++)

201 {

202 NetDeviceContainer smallWorldDevices =

203 smallWorldLink.Install (smallWorldNodes.Get (smallWorldEdges[i].first),

204 smallWorldNodes.Get

(smallWorldEdges[i].second));↪→

205 smallWorldDevices.Get (0)->TraceConnectWithoutContext ("PhyTxEnd",

MakeCallback (&TraceTransitLoad));↪→

206 smallWorldDevices.Get (1)->TraceConnectWithoutContext ("PhyTxEnd",

MakeCallback (&TraceTransitLoad));↪→

207 std::string base = "10.1." + std::to_string (i+1) + ".0";

208 ipv4AddressHelper.SetBase (base.c_str (), "255.255.255.0");

209 ipv4AddressHelper.Assign (smallWorldDevices);

210 }

211

212 // Automatically set up IPv4 routing among small-world nodes

213 Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

214

215 // Picking random small-world nodes as super nodes
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216 superNodes.Add (smallWorldNodes.Get (0));

217 superNodes.Add (smallWorldNodes.Get (2));

218 superNodes.Add (smallWorldNodes.Get (3));

219 superNodes.Add (smallWorldNodes.Get (5));

220 superNodes.Add (smallWorldNodes.Get (7));

221 NS_ASSERT_MSG (superNodes.size () == NO_ZONES, "No. of super nodes does not

match no. of zones!");↪→

222

223 // Set up Chord on the super nodes

224 for (uint8_t i = 0; i < NO_ZONES; i++)

225 {

226 ChordIpv4Helper chordIpv4Helper (superNodes.Get (0)->GetObject<Ipv4>

()->GetAddress (1, 0).GetLocal (),↪→

227 CHORD_PORT,

228 superNodes.Get (i)->GetObject<Ipv4>

()->GetAddress (1, 0).GetLocal (),↪→

229 CHORD_PORT,

230 CHORD_PORT + 1,

231 CHORD_PORT + 2);

232 ApplicationContainer chordApps = chordIpv4Helper.Install (superNodes.Get

(i));↪→

233 chordApps.Start (Seconds (0.0));

234 Ptr<ChordIpv4> chordIpv4 = superNodes.Get (i)->GetApplication

(0)->GetObject<ChordIpv4> ();↪→

235 chordIpv4->SetJoinSuccessCallback (MakeCallback (&ChordHelper::JoinSuccess,

&chordHelper));↪→

236 chordIpv4->SetInsertSuccessCallback (MakeCallback

(&ChordHelper::InsertSuccess, &chordHelper));↪→

237 chordIpv4->SetInsertFailureCallback (MakeCallback

(&ChordHelper::InsertFailure, &chordHelper));↪→

238 chordIpv4->SetVNodeFailureCallback (MakeCallback

(&ChordHelper::VNodeFailure, &chordHelper));↪→

239 chordIpv4->SetVNodeKeyOwnershipCallback (MakeCallback

(&ChordHelper::VNodeKeyOwnership, &chordHelper));↪→

240

241 // Setting up the bootstrap node at the first iteration

242 if (i == 0)

243 {

244 Simulator::Schedule (Seconds (0.01), &ChordHelper::InsertVNode,

&chordHelper, chordIpv4, "bootNode");↪→

245 }

246 // Prepare ChordIpv4 applications on all (non-bootstrap) super nodes

247 else

248 {

249 std::string nodeName = "superNode" + std::to_string (i);

250 Simulator::Schedule (Seconds (i * INTER_VNODE_INSERTION_GAP_S),

&ChordHelper::InsertVNode, &chordHelper, chordIpv4, nodeName);↪→

251 }

252 }

253
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254 // Insert data items into the DHT (cycling through the supernodes)

255 for (uint8_t k = 1; k <= noDataItems; k++)

256 {

257 Ptr<ChordIpv4> superNodeApp = superNodes.Get ((k-1) %

NO_ZONES)->GetApplication (0)->GetObject<ChordIpv4> ();↪→

258 std::string payloadName = "payload" + std::to_string (k);

259 Simulator::Schedule (Seconds (CHORD_INSERTION_STARTTIME_S + (k-1) *

INTER_CHORD_INSERTION_GAP_S),↪→

260 &ChordHelper::Insert,

261 &chordHelper,

262 superNodeApp,

263 std::to_string (k), payloadName);

264 }

265

266

267 // Set up last-mile LTE zones

268 PointToPointHelper enbPtp;

269 // Apply computed throughput to emulate a shared channel on BBU-RRH link,

over which zone UEs compete for bandwidth↪→

270 enbPtp.SetDeviceAttribute ("DataRate", DataRateValue (DataRate

(LTE_THROUGHPUT_5_UE)));↪→

271

272 // Assumption: Using optical fiber to interconnect RRH and BBU

273 enbPtp.SetChannelAttribute ("Delay", TimeValue (NanoSeconds

(FIBER_LATENCY_NS_M * BBU_RRH_DISTANCE_M)));↪→

274 for (uint16_t i = 0; i < NO_ZONES; i++)

275 {

276 NodeContainer& enbElements = zoneENBelems[i];

277 // Add this zone's BBU node and associate it with a super node (part of the

small-world network)↪→

278 enbElements.Add (superNodes.Get (i));

279 // Create this zone's RRH node

280 enbElements.Create (1);

281 enbPtp.Install (enbElements);

282

283 // Create UE nodes

284 NodeContainer& ueNodes = zoneUEs[i];

285 ueNodes.Create (noUEs);

286

287 // Set up p2p link among each zone UE and the RRH

288 for (uint8_t i = 0; i < noUEs; i++)

289 {

290 PointToPointHelper ueRrhPtpLink;

291 // Applying avg. measured UE delays

292 ueRrhPtpLink.SetChannelAttribute ("Delay", TimeValue (MilliSeconds

(UE_DELAYS_MS[i % UE_DELAYS_MS.size ()])));↪→

293 // Setting a high data rate to "overwrite" the very low default on

PointToPointNetDevice↪→

294 ueRrhPtpLink.SetDeviceAttribute ("DataRate", DataRateValue (DataRate

("1Gbps")));↪→
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295 ueRrhPtpLink.Install (enbElements.Get (1), ueNodes.Get (i));

296 }

297 }

298

299 // Set up NDN in the last-mile zones

300 ns3::ndn::StackHelper ndnHelper;

301 // Use Least recently used (LRU) as the Content Store strategy (discards the

least recently used items first)↪→

302 ndnHelper.setPolicy("nfd::cs::lru");

303 ndnHelper.SetDefaultRoutes (true);

304

305 // Disable the Content Store (CS) on all the UE nodes (1 is the minimum)

306 ndnHelper.setCsSize (1);

307 for (uint8_t i = 0; i < NO_ZONES; i++)

308 {

309 ndnHelper.Install (zoneUEs[i]);

310 }

311 // Set default CS size (in no. of packets) on all other nodes

312 ndnHelper.setCsSize (csSize);

313 ndnHelper.Install (smallWorldNodes);

314 for (uint8_t i = 0; i < NO_ZONES; i++)

315 {

316 ndnHelper.Install (zoneENBelems[i].Get (1));

317 }

318

319 // Set BestRoute strategy

320 ns3::ndn::StrategyChoiceHelper::InstallAll (NDN_PREFIX,

"/localhost/nfd/strategy/best-route");↪→

321 ns3::ndn::GlobalRoutingHelper ndnGlobalRoutingHelper;

322 // Installing global routing interface on all nodes

323 ndnGlobalRoutingHelper.InstallAll ();

324

325 // Set up producer application for BBU nodes

326 ns3::ndn::AppHelper producerHelper ("ns3::ndn::ChordProducer");

327 producerHelper.SetPrefix (NDN_PREFIX);

328 producerHelper.SetAttribute ("PayloadSize", StringValue ("1500"));

329

330 // Set up consumer applications for UE nodes

331 ns3::ndn::AppHelper consumerHelper ("ns3::ndn::ConsumerZipfMandelbrot");

332 consumerHelper.SetPrefix (NDN_PREFIX);

333 consumerHelper.SetAttribute ("Frequency", StringValue (std::to_string

(interestsPerS)));↪→

334 consumerHelper.SetAttribute ("Randomize", StringValue ("uniform"));

335 // The higher s (parameter of power), the more popular items of small

sequence numbers (^= rank)↪→

336 consumerHelper.SetAttribute ("s", StringValue("1.2"));

337 consumerHelper.SetAttribute ("NumberOfContents", StringValue (std::to_string

(noDataItems)));↪→

338

339 // Install producer and consumer apps in each last-mile zone
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340 for (uint8_t i = 0; i < NO_ZONES; i++)

341 {

342 Ptr<Node> producer = superNodes.Get (i);

343 Ptr<ChordIpv4> superNodeChord = producer->GetApplication (0)->GetObject

<ChordIpv4> ();↪→

344 producerHelper.SetAttribute ("ChordIpv4", PointerValue (superNodeChord));

345 ndnGlobalRoutingHelper.AddOrigin (NDN_PREFIX, producer);

346 ApplicationContainer producerApp = producerHelper.Install (producer);

347 producerApp.Start (Seconds (NDN_APPS_START_TIME_S));

348

349 for (uint8_t n = 0; n < noUEs; n++)

350 {

351 ApplicationContainer consumerApp = consumerHelper.Install (zoneUEs[i].Get

(n));↪→

352 consumerApp.Start (Seconds (NDN_APPS_START_TIME_S));

353 }

354 }

355

356 ns3::ndn::GlobalRoutingHelper::CalculateRoutes ();

357

358 // Do the actual simulation

359 Simulator::Stop (Seconds (NDN_APPS_START_TIME_S) + Minutes

(simulationRuntimeM));↪→

360

361 std::string params = std::to_string (noUEs) + "_" +

362 std::to_string ((uint8_t) interestsPerS) + "_" +

363 std::to_string (noDataItems) + "_" +

364 std::to_string (ns3::RngSeedManager::GetSeed ());

365

366 // Collect and export application-level delay stats

367 ns3::ndn::AppDelayTracer::InstallAll ("traces/small-world-chord-app-delays_"

+ params + ".tsv");↪→

368

369 Simulator::Run ();

370 Simulator::Destroy ();

371

372 // Writing periodic backbone throughput to file

373 std::ofstream outfile;

374 outfile.open ("traces/small-world-chord-backbone-throughput_" + params +

".csv");↪→

375 outfile << "periodS,throughputBps" << std::endl;

376 for (auto ite = smallWorldThroughputPerPeriod.begin (); ite !=

smallWorldThroughputPerPeriod.end (); ite++)↪→

377 {

378 outfile << ite->first * THROUGHPUT_COMPUTATION_PERIOD_S << "," <<

ite->second << std::endl;↪→

379 }

380 outfile.close ();

381 return 0;

382 }
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A.3.2 ndn-zones-buckets-small-world.cc

1 #include "ns3/core-module.h"

2 #include "ns3/network-module.h"

3 #include "ns3/applications-module.h"

4 #include "ns3/point-to-point-helper.h"

5 #include "ns3/config-store.h"

6 #include "ns3/ndnSIM-module.h"

7

8 #include <vector>

9 #include <cstdio>

10 #include <iostream>

11

12

13 using namespace ns3;

14

15 NS_LOG_COMPONENT_DEFINE ("NdnZonesBucketsSmallWorld");

16

17 const uint16_t THROUGHPUT_COMPUTATION_PERIOD_S = 10;

18 std::map <uint16_t, double> smallWorldThroughputPerPeriod;

19

20 void

21 TraceTransitLoad (Ptr<const Packet> packet)

22 {

23 double currentTime = Simulator::Now ().GetSeconds();

24 uint16_t period = currentTime / THROUGHPUT_COMPUTATION_PERIOD_S;

25 auto pos = smallWorldThroughputPerPeriod.find (period);

26 double partialThroughputB = (double) packet->GetSize () /

THROUGHPUT_COMPUTATION_PERIOD_S;↪→

27 if (pos == smallWorldThroughputPerPeriod.end ())

28 {

29 smallWorldThroughputPerPeriod.insert ({period, partialThroughputB});

30 }

31 else

32 {

33 pos->second += partialThroughputB;

34 }

35 }

36

37 int

38 main (int argc, char *argv[])

39 {

40 uint16_t noUEs = 5;

41 uint16_t noDataItems = 100;

42 double interestsPerS = 1.0;

43 double simulationRuntimeM = 10;

44 uint16_t csSize = 10;

45 CommandLine cmd;

46 cmd.AddValue ("noDataItems",
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47 "Number of data items (sequence numbers) to use in the

simulation",↪→

48 noDataItems);

49 cmd.AddValue ("interestsPerS",

50 "Frequency of sending out interest packets to be used by

consumer apps",↪→

51 interestsPerS);

52 cmd.AddValue ("noUEs",

53 "Number of UEs per last-mile zone",

54 noUEs);

55 cmd.AddValue ("simulationRuntimeM",

56 "Simulation run time (after start of ndnSIM apps)",

57 simulationRuntimeM);

58 cmd.AddValue ("csSize",

59 "Max. Content Store size to use on NDN nodes with activated

CS",↪→

60 csSize);

61 cmd.Parse (argc, argv);

62 const uint8_t NO_ZONES = 5;

63 const uint8_t NO_SMALL_WORLD_NODES = 8;

64 NodeContainer smallWorldNodes;

65 // Edges from Watts-Strogatz random small-world network graph, with n = 8, k

= 3, p = 0.7↪→

66 const std::vector <std::pair <int, int>> smallWorldEdges =

67 {

68 std::make_pair (0, 3),

69 std::make_pair (1, 7),

70 std::make_pair (2, 5),

71 std::make_pair (2, 3),

72 std::make_pair (2, 6),

73 std::make_pair (3, 4),

74 std::make_pair (3, 7),

75 std::make_pair (5, 7)

76 };

77 NodeContainer superNodes;

78 const std::string LTE_THROUGHPUT_5_UE = "4091.08342373628kbps";

79 const double FIBER_LATENCY_NS_M = 5.0;

80 const double BBU_RRH_DISTANCE_M = 15.0;

81 const std::vector<double> UE_DELAYS_MS = {14.937298, 14.938553, 15.937298,

15.938553, 15.939808};↪→

82 std::vector<NodeContainer> zoneUEs (NO_ZONES);

83 std::vector<NodeContainer> zoneENBelems (NO_ZONES);

84 const std::string NDN_PREFIX = "/producer";

85

86 // Set up small world network

87 smallWorldNodes.Create (NO_SMALL_WORLD_NODES);

88

89 PointToPointHelper smallWorldLink;

90 smallWorldLink.SetDeviceAttribute ("DataRate", StringValue ("100Mbps"));

91 smallWorldLink.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (10)));
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92

93 // Set up small-world network edges in terms of p2p links

94 for (uint8_t i = 0; i < smallWorldEdges.size (); i++)

95 {

96 NetDeviceContainer smallWorldDevices =

97 smallWorldLink.Install (smallWorldNodes.Get (smallWorldEdges[i].first),

98 smallWorldNodes.Get

(smallWorldEdges[i].second));↪→

99 smallWorldDevices.Get (0)->TraceConnectWithoutContext ("PhyTxEnd",

MakeCallback (&TraceTransitLoad));↪→

100 smallWorldDevices.Get (1)->TraceConnectWithoutContext ("PhyTxEnd",

MakeCallback (&TraceTransitLoad));↪→

101 }

102

103 // Picking random small-world nodes as super nodes

104 superNodes.Add (smallWorldNodes.Get (0));

105 superNodes.Add (smallWorldNodes.Get (2));

106 superNodes.Add (smallWorldNodes.Get (3));

107 superNodes.Add (smallWorldNodes.Get (5));

108 superNodes.Add (smallWorldNodes.Get (7));

109 NS_ASSERT_MSG (superNodes.size () == NO_ZONES, "No. of super nodes does not

match no. of zones!");↪→

110

111

112 // Set up last-mile LTE zones

113 PointToPointHelper enbPtp;

114 // Apply computed throughput to emulate a shared channel on BBU-RRH link,

over which zone UEs compete for bandwidth↪→

115 enbPtp.SetDeviceAttribute ("DataRate", DataRateValue (DataRate

(LTE_THROUGHPUT_5_UE)));↪→

116

117 // Assumption: Using optical fiber to interconnect RRH and BBU

118 enbPtp.SetChannelAttribute ("Delay", TimeValue (NanoSeconds

(FIBER_LATENCY_NS_M * BBU_RRH_DISTANCE_M)));↪→

119 for (uint16_t i = 0; i < NO_ZONES; i++)

120 {

121 NodeContainer& enbElements = zoneENBelems[i];

122 // Add this zone's BBU node and associate it with a super node (part of the

small-world network)↪→

123 enbElements.Add (superNodes.Get (i));

124 // Create this zone's RRH node

125 enbElements.Create (1);

126 enbPtp.Install (enbElements);

127

128 // Create UE nodes

129 NodeContainer& ueNodes = zoneUEs[i];

130 ueNodes.Create (noUEs);

131

132 // Set up p2p link among each zone UE and the RRH

133 for (uint8_t i = 0; i < noUEs; i++)
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134 {

135 PointToPointHelper ueRrhPtpLink;

136 // Applying avg. measured UE delays

137 ueRrhPtpLink.SetChannelAttribute ("Delay", TimeValue (MilliSeconds

(UE_DELAYS_MS[i % UE_DELAYS_MS.size ()])));↪→

138 // Setting a high data rate to "overwrite" the very low default on

PointToPointNetDevice↪→

139 ueRrhPtpLink.SetDeviceAttribute ("DataRate", DataRateValue (DataRate

("1Gbps")));↪→

140 ueRrhPtpLink.Install (enbElements.Get (1), ueNodes.Get (i));

141 }

142 }

143

144 // Set up NDN in the last-mile zones

145 ns3::ndn::StackHelper ndnHelper;

146 // Use Least recently used (LRU) as the Content Store strategy (discards the

least recently used items first)↪→

147 ndnHelper.setPolicy("nfd::cs::lru");

148 ndnHelper.SetDefaultRoutes (true);

149

150 // Disable the Content Store (CS) on all the UE nodes (1 is the minimum)

151 ndnHelper.setCsSize (1);

152 for (uint8_t i = 0; i < NO_ZONES; i++)

153 {

154 ndnHelper.Install (zoneUEs[i]);

155 }

156 // Set default CS size (in no. of packets) on all other nodes

157 ndnHelper.setCsSize (csSize);

158 ndnHelper.Install (smallWorldNodes);

159 for (uint8_t i = 0; i < NO_ZONES; i++)

160 {

161 ndnHelper.Install (zoneENBelems[i].Get (1));

162 }

163

164 // Set BestRoute strategy

165 ns3::ndn::StrategyChoiceHelper::InstallAll (NDN_PREFIX,

"/localhost/nfd/strategy/best-route");↪→

166 ns3::ndn::GlobalRoutingHelper ndnGlobalRoutingHelper;

167 // Installing global routing interface on all nodes

168 ndnGlobalRoutingHelper.InstallAll ();

169

170 // Set up producer application for BBU nodes

171 ns3::ndn::AppHelper producerHelper ("ns3::ndn::Producer");

172 producerHelper.SetAttribute ("PayloadSize", StringValue ("1500"));

173

174 // Set up consumer applications for UE nodes

175 ns3::ndn::AppHelper consumerHelper ("ns3::ndn::ConsumerZipfBuckets");

176 consumerHelper.SetPrefix (NDN_PREFIX);

177 consumerHelper.SetAttribute ("Frequency", StringValue (std::to_string

(interestsPerS)));↪→
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178 consumerHelper.SetAttribute ("NumberOfPrefixBuckets", StringValue

(std::to_string (NO_ZONES)));↪→

179 consumerHelper.SetAttribute ("Randomize", StringValue ("uniform"));

180 // The higher s (parameter of power), the more popular items of small

sequence numbers (^= rank)↪→

181 consumerHelper.SetAttribute ("s", StringValue("1.2"));

182 consumerHelper.SetAttribute ("NumberOfContents", StringValue (std::to_string

(noDataItems)));↪→

183

184 // Install producer and consumer apps in each last-mile zone

185 for (uint8_t i = 0; i < NO_ZONES; i++)

186 {

187 Ptr<Node> producer = superNodes.Get (i);

188 std::string composedPrefix = NDN_PREFIX + std::to_string (i);

189 producerHelper.SetPrefix (composedPrefix);

190 ndnGlobalRoutingHelper.AddOrigin (composedPrefix, producer);

191 ApplicationContainer producerApp = producerHelper.Install (producer);

192

193 for (uint8_t n = 0; n < noUEs; n++)

194 {

195 ApplicationContainer consumerApp = consumerHelper.Install (zoneUEs[i].Get

(n));↪→

196 }

197 }

198

199 ns3::ndn::GlobalRoutingHelper::CalculateRoutes ();

200

201 // Do the actual simulation

202 Simulator::Stop (Minutes (simulationRuntimeM));

203

204 std::string params = std::to_string (noUEs) + "_" +

205 std::to_string ((uint8_t) interestsPerS) + "_" +

206 std::to_string (noDataItems) + "_" +

207 std::to_string (ns3::RngSeedManager::GetSeed ());

208

209 // Collect and export application-level delay stats

210 ns3::ndn::AppDelayTracer::InstallAll ("traces/small-world-ndn-app-delays_" +

params + ".tsv");↪→

211

212 Simulator::Run ();

213 Simulator::Destroy ();

214

215 // Writing periodic backbone throughput to file

216 std::ofstream outfile;

217

218 outfile.open ("traces/small-world-ndn-backbone-throughput_" + params +

".csv");↪→

219 outfile << "periodS,throughputBps" << std::endl;

220



A.3. MAIN SIMULATION SCENARIOS 115

221 for (auto ite = smallWorldThroughputPerPeriod.begin (); ite !=

smallWorldThroughputPerPeriod.end (); ite++)↪→

222 {

223 outfile << ite->first * THROUGHPUT_COMPUTATION_PERIOD_S << "," <<

ite->second << std::endl;↪→

224 }

225

226 outfile.close ();

227

228 return 0;

229

230 }
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Appendix B

Installation & Execution Guidelines

B.1 Setup

1. Extract file source_code.zip (delivered separately) on a Unix-based OS and navi-
gate into subdirectory ns3-ndn-chord-lte.

2. Enter the following command to run the configuration process of the Waf build
automation tool:
$ ./waf configure --enable-tests --enable-examples

3. If the logged output ends with ”’configure’ finished successfully”, continue
with step 4. Otherwise, install missing dependencies (indicated in red) and then
repeat from step 2.

4. Enter the following command to compile the NS-3 source code:
$ ./waf build

B.2 Running Simulations

B.2.1 NDN & Chord Architecture

To conduct simulation experiments with the NDN & Chord architecture, enter the follow-
ing command (replace X with the no. of UEs per last-mile zone and Y with the frequency
of issued interests per second):
$ ./waf --run "ndn-zones-chord-small-world --noUEs=X --interestsPerS=Y"

Please note that the default small-world transit network is of size N=8. To use the
larger N=32 transit network instead, please comment l. 190 – 200 & l. 279 – 284 and un-
comment l. 202 – 236 & 287 – 292 in file scratch/ndn-zones-chord-small-world.cc.
Furthermore, change the assigned integer on l. 187 from 8 to 32.

117
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To retrieve logging output during the simulation, please prepend the following variable to
the above command:
NS_LOG=ndn.Consumer:ndn.ConsumerZipfMandelbrot:ndn.ChordProducer

B.2.2 Plain NDN Reference Architecture

To conduct simulation experiments with the plain NDN reference architecture, enter the
following command (replace X with the no. of UEs per last-mile zone and Y with the
frequency of issued interests per second):
$ ./waf --run "ndn-zones-buckets-small-world --noUEs=X --interestsPerS=Y"

Please note that the default small-world transit network is of size N=8. To use the
larger N=32 transit network instead, please comment l. 90 – 100 & l. 164 – 169 and
un-comment l. 102 – 136 & l. 172 – 177 in file scratch/ndn-zones-buckets-small-

world.cc (resp., scratch/ndn-zones-buckets-small-world-flooding.cc, see below).
Furthermore, change the assigned integer on l. 87 from 8 to 32.

The default NDN forwarding strategy is Best Route. To enforce interest Flooding instead,
please replace the script name in the run command as follows:
$ ./waf --run "ndn-zones-buckets-small-world-flooding [...]"

To retrieve logging output during the simulation, please prepend the following variable to
the above command(s):
NS_LOG=ndn.Consumer:ndn.ConsumerZipfBuckets:ndn.Producer

B.3 Metrics Collection

For both architectures, the simulation scenarios create comma- resp., tab-separated result
files under the directory traces/. The file nomenclature is the following (X = no. of UEs
per domain, Y = interest frequency):

NDN & Chord:

• Retrieval delays: small-world-chord-app-delays_X_Y_100_1.tsv

• Transit network throughput: small-world-chord-backbone-throughput_X_Y_100_1.csv

Plain NDN:

• Retrieval delays: small-world-ndn-app-delays_X_Y_100_1.tsv

• Transit network throughput: small-world-ndn-backbone-throughput_X_Y_100_1.csv



Appendix C

Attached Contents

• Abstract.txt, Zusfsg.txt: Abstract text files in English and German

• Masterarbeit.pdf: This thesis document in the PDF format

• Masterarbeit.ps: This thesis document in the PostScript format

• MScThesis.zip: The compressed LATEX project source of this thesis document

• MidtermPresentation.pdf: The presentation slides of the midterm presentation

• * results.zip: The compressed retrieval delay and transit network throughput re-
sult files of several conducted simulation experiments (cf. section B.3 for file nomen-
clature)

• * source_code.zip: The compressed source code for running the developed simu-
lation programs

* directly delivered to Eryk Schiller, due to large file size
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