
Automatic and Policy-based
Framework to Detect Ransomware

Affecting Linux-based and
Resource-constrained Devices

Timucin Besken
Zürich, Switzerland

Student ID: 14-924-609

Supervisor: Dr. Alberto Huertas Celdran, Eder Scheid
Date of Submission: July 31, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Crowdsensing-Techniken haben sich als kostengünstige und wirksame Methode zur Samm-
lung und Analyse von Daten erwiesen und die Einführung von Plattformen wie Electro-
Sense ermöglicht, auf denen Menschen bei der Erstellung einer gross angelegten Lösung
zur überwachung des Funkspektrums zusammenarbeiten können. Dank dieser Anwendun-
gen haben sich ressourcenbeschränkte Geräte wie IoT-Geräte sowohl in der Industrie als
auch in der Bevölkerung zunehmend durchgesetzt. Ihre Sicherheit wurde jedoch häufig ver-
nachlässigt, was Angreifer dazu veranlasst hat, Malware zu implementieren, die auf diese
Plattformen abzielt. Insbesondere Ransomware kann im Crowdsensing-Kontext extrem
gefährlich sein, da sie in der Lage sind, wertvolle Daten in den Sensoren zu verschlüsseln
und Crowdsensing-Plattformen und -Dienste zu stören.

In einem solchen Szenario ist es von entscheidender Bedeutung, neue Anti-Malware- und
insbesondere Anti-Ransomware-Techniken zu entwickeln, um IoT-Geräte vor Angreifern
zu schützen. Die aktuellste Literatur hat vielversprechende Ergebnisse bei der Erkennung
von Malware durch die Erstellung von Fingerprints des Geräteverhaltens und die Ein-
führung neuer dynamischer Analyseansätze zur Erkennung von Ransomware gezeigt. Die
aktuellen Lösungen konzentrieren sich jedoch auf das bekannte Windows-Betriebssystem
und verwenden komplexe Ansätze für Machine Learning, wobei Linux-basierte und res-
sourcenbeschränkte Systeme ausser Acht gelassen werden. Folglich besteht ein Bedarf an
Forschung zur Erkennung von Malware, insbesondere von Ransomware, die auf ressour-
cenbeschränkte und Linux-basierte Geräte abzielt.

Mit dem Ziel, die bisherigen Einschränkungen zu verbessern, wird in dieser Arbeit ein
automatisches und richtlinienbasiertes Framework vorgestellt, das in der Lage ist, ab-
normales Verhalten auf einem Raspberry Pi mit einem ElectroSense-Sensor zu erkennen.
Heterogene Ereignisse aus verschiedenen Gerätedimensionen wie Hardware-Nutzung (d.h.
CPU, Memory und IO), Kernel-Tracepoints und HPCs wurden berücksichtigt, um sowohl
abnormales Verhalten als auch Ansomware-Infektionen zu identifizieren.

Als Proof-of-Concept und zur Bewertung der Leistung des Frameworks auf der Elec-
troSense-Plattform wurden zwei Ransomware-Familien berücksichtigt und drei Policies
entwickelt. Anschliessend lieferten sechs Experimente zur Bewertung der Leistung des
Frameworks und seiner Policies vielversprechende Ergebnisse bei der Erkennung von nor-
malem, abnormalem, Ransomware1- und Ransomware2-Verhalten.

i

ii

Crowdsensing techniques have been proven as a cheap and effective way to collect and
analyse data, allowing the introduction of platforms such as ElectroSense, where people
can collaborate in the generation of a large-scale radio spectrum monitoring solution.
Thanks to these applications, resource-constrained devices, such as IoT devices, have
seen their increased adoption in both the industry and general population. However,
their security has often been neglected, incentivising adversaries to implement malware
targeting these platforms. Ransomware in particular, can be extremely dangerous in a
crowdsensing context, being able to encrypt precious data in the sensors and disrupt
crowdsensing platforms and services.

In such a scenario, it is crucial to develop novel anti-malware, and specifically, anti-
ransomware techniques aimed at protecting IoT devices from adversaries. Recent lit-
erature has shown promising results in malware detection by fingerprinting the device
behaviour and introducing novel dynamic analysis approaches on ransomware detection.
However, current solutions focus on well-known Windows Operating System using complex
machine learning approaches, with Linux-based and resource-constrained systems being
overlooked. Consequently, there is a necessity for malware detection research, specifically
ransomware, targeting resource-constrained and Linux-based devices.

With the goal of improving the previous limitations, this Thesis introduces an automatic
and policy-based framework capable of identifying abnormal behaviour on a Raspberry
Pi hosting an ElectroSense sensor. Heterogeneous events from different device dimensions
such as hardware usage (i.e. CPU, memory and IO), kernel tracepoints and HPCs, have
been considered to identify both an abnormal behaviour and ansomware infections.

As a proof-of-concept and to evaluate the framework performance in the ElectroSense
platform, two ransomware families were considered and three policies were developed.
After that, six experiments evaluating the performance of the framework and its poli-
cies provided promising results when recognising normal, abnormal, ransomware1, and
ransomware2 behaviors.

Acknowledgments

I would very much like to thank Dr. Alberto Huertas Celdran for all the insights and help
while writing this Thesis, as well as Eder Scheid for the suggestions on the policy-based
approach.

A special thanks goes to the redditors in the r/Malware1 subreddit for assisting me in the
search of a ransomware sample and providing interesting insights on cybercecurity.

1https://www.reddit.com/r/Malware

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 5

2.1 Malware . 5

2.1.1 Ransomware . 6

2.2 Malware detection . 7

3 Related Work 9

3.1 Behavioral Fingerprinting . 9

3.2 Ransomware Detection . 10

4 Scenario 13

4.1 ElectroSense . 13

4.2 Ransomware . 15

v

vi CONTENTS

5 Solution Design 21

5.1 Framework . 21

5.1.1 Monitoring Module . 21

5.1.2 Rule-based detection Module . 22

5.1.3 Management Module . 23

5.1.4 Visualization Module . 23

6 Implementation 25

6.1 Monitoring Module . 25

6.1.1 Monitors . 27

6.2 Rule-Based Detection Module . 28

6.3 Management Module . 30

6.3.1 Back-end . 30

6.3.2 Simulation Mode . 31

6.3.3 Ransomware Monitor Configuration 31

6.3.4 Helper Tool . 33

6.4 Visualization Module . 36

7 Evaluation 39

7.1 Experiment setup . 39

7.1.1 Policies . 40

7.2 Experiments . 41

7.2.1 Experiment 1 . 41

7.2.2 Experiment 2 . 42

7.2.3 Experiment 3 . 42

7.2.4 Experiment 4 . 43

7.2.5 Experiment 5 . 44

7.2.6 Experiment 6 . 46

7.3 Discussion & Limitations . 46

CONTENTS vii

8 Summary and Conclusions 49

Bibliography 51

Abbreviations 57

Glossary 59

List of Figures 59

List of Tables 61

A Installation Guidelines 65

A.1 Ransomware Monitor . 65

A.1.1 Source . 65

A.1.2 Binary . 66

A.2 Back-end . 66

A.2.1 Prerequisites . 66

A.2.2 Running the backend . 66

A.3 Front-end . 67

A.3.1 Prerequisites . 67

A.3.2 Running the frontend . 67

A.4 Ransomware 1: Ransomware PoC . 67

A.4.1 Execution . 67

A.5 Helper Tool . 68

A.6 Ransomware 2: DarkRadiation . 68

A.6.1 Prerequisites . 68

A.6.2 Execution . 69

B Contents of the CD 71

viii CONTENTS

Chapter 1

Introduction

1.1 Motivation

The IoT paradigm has recently gained immense popularity, both in the industry and in
the general population. Due to its relatively low cost and availability, it has allowed the
introduction of new applications such as crowdsensing platforms, by embedding sensors to
the devices and digesting the data from the collective. The resulting solutions can be com-
petitive and cost-effective, providing an enormous amount of data to multiple stakeholders
for many different purposes, such as environmental protection [1], home-automation [9]
and military applications [4]. An example of an IoT-enabled crowdsensing platform is
ElectroSense [4], focused on facilitating the radio spectrum analysis. The platform is
composed of several elements: a central backend, a frontend and the sensors, which can
be deployed on a Raspberry Pi, with the cheapest model supporting the sensors costing
only US$35. However, the security of resource-constrained devices, such as Raspberries
Pi, has often been overlooked, and many are lacking security features to protect them
from external threats [11, 12, 13]. This lack of security not only can, but also should, be
a cause of concern, as these devices can become both targets of direct attacks and vectors
for attacks directed to third parties.

Given the vast amount of data shared and contained in IoT systems, and crowdsensing in
particular, it exists an incentive for malicious actors to steal data or disrupt the services
by attacking their infrastructure. One of the most notorious families of malware that can
be used for such purpose is called ransomware, a type of malicious code which encrypts the
data in the infected system while asking for a ransom to be paid to re-gain access to the lost
files. In 2017 the WannaCry Ransomware gained the headlines by infecting over 200,000
devices and encrypting their data in more than 150 countries according to Europol [14].
While the number of infected devices and the economic impact this attack caused can be
disconcerting, the fact that it has also reached police stations and even hospitals, in the
latter case possibly (indirectly) causing the death of a woman in Germany [15] can be even
more alarming. More recently, another ransomware attack held an oil pipeline hostage
in the United States, causing petrol shortage in various cities [16] [17] [18] [19] demon-
strating how attacks aimed at digital devices can have a tangible impact on companies,
governments and people.

1

2 CHAPTER 1. INTRODUCTION

Recent research showed the suitability of monitoring a device hardware metrics and HPCs
to detect malware infections [51] [39]. However, most research focuses on Windows and
machine learning techniques, and therefore the suitability of recent approaches for Linux-
based and resource-constrained devices must be explored. As more research is needed
to effectively protect IoT and resource-constrained devices from external threats, in this
work, a scenario where a Raspberry Pi hosting an instance of an ElectroSense sensor
getting infected by ransomware was envisioned.

1.2 Description of Work

With the goal of improving the previous limitations, a Policy-based framework capable of
detecting ransomware using the behavioural fingerprint of a Raspberry Pi hosting Elec-
troSense was firstly designed and then implemented as a proof-of-concept. The internal
behaviour of the device was subsequently monitored extracting the hardware usage, HPC
and kernel tracepoints. After that three policies were created as a proof-of-concept to
detect a general abnormal behaviour of the ElectroSense sensor and two ransomware
belonging to different families. The performance of the framework and policies were
evaluated in a set of experiments focused on detecting i) normal behaviour, ii) different
abnormal behaviours (defined as the installation of software packages and the compression
of files), and iii) two ransomware behaviours. Analyzing the results, it can be concluded
that the framework is able to recognize the normal behaviour with a TPR of 100%. The
abnormal behaviour is also recognized in both cases with a TPR of 100% and 96.08%
respectively. Both ransomware infections are also identified with a TPR of 93.22% for the
first ransomware, and 55.10% for the second when randomly generated files were present.

To achieve the previous objectives, the followed methodology started with the study of the
ElectroSense platform and the Raspberry Pi, exploring the various features of the platform
and the internal working of the Raspberry. Subsequently, knowledge about the different
types of malware families and specifically ransomware was gained, and suitable samples
were hunted in known malware databases online. Next, an in-depth literature review on
related work was performed to understand the current state-of-the-art malware detection
and fingerprinting approaches, focusing specifically on ransomware detection approaches.
Suitable metrics were then explored and compared on their ability to correctly identify
both a ransomware infection of the device and abnormal behaviour in the context of
the ElectroSense platform normal usage. The framework was subsequently evaluated in
its efficacy to correctly identify the abnormal behaviours and the ransomware samples.
Finally, the limitations were explained and contextualized, providing future work plans
to address those limitations and improve the overall performance.

1.3 Thesis Outline

Chapter 2 introduces the concept of malware and ransomware, describing how they work
and providing background on malware detection techniques. Chapter 3 analyses the

1.3. THESIS OUTLINE 3

related work on fingerprinting and ransomware detection. Chapter 4 explains the scenario
used in this work and provides information on the hardware and ransomware samples
used, including a deep analysis of the malware code and infection. Chapter 5 describes
the design of the framework and its basic concepts. Chapter 6 discusses the technical
implementation of the framework and each of its components. Chapter 7 presents the
experimental setup used, evaluates the results while discussing the limitations of this
work. Chapter 8 is a summary of the thesis and elicits the conclusions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, a description of malware and ransomware is given while providing a
description of common malware detection techniques and their efficacy and pitfalls.

2.1 Malware

Malware stands for malicious software and are programs created with the goal of disrupt-
ing the regular operation of a computer system [40], which is usually translated in a profit
for the attacker, either monetary or strategical.

Malware can be classified into two main types [65]:

• Worms: Malware that can self-replicate and autonomously infect new devices

• Viruses: Program that hides malicious code

Many ways of infection are possible in this context. A Trojan Horse is a virus that
disguises itself as legitimate software while hiding malicious code. Rootkits are software
that allows an adversary to hide the presence of other malware in the system. Finally,
Backdoors are hidden, undocumented entry points to the device that an adversary can
use to access the victim’s network [8].

It is possible to further categorize the different types of malicious codes according to their
behaviour or effects. The following list contains an example of four common malware that
target IoT devices:

• Spyware: Software used to gather data of the infected user.

• Cryptominer: Code that uses the victim computational power to mine cryptocur-
rencies.

5

6 CHAPTER 2. BACKGROUND

• Botnet: Network of devices that can be controlled by a so-called botmaster, which
can then use the network as a vector for other attacks (most commonly DDoS).

• Ransomware: Limits access of the infected device or its data, asking for a ransom
to remove such limitation.

Due to the insecure nature of IoT devices [11, 12, 13], they can often be targets of attacks
to gain access to their data or disrupting the service they are providing. Furthermore, an
adversary can also attempt to use them as a vector for attacks to third parties (e.g. use
a botnet to launch a DDoS attack)

In this work, the focus is on the latter case, and for this reason, the Ransomware type
of malware was chosen, and it will be discussed in a more detailed manner in the next
section.

2.1.1 Ransomware

This type of malware, as previously defined, focuses on blocking access to a device or
the data it stores, using cryptographic algorithms to encrypt critical files in the system in
order to achieve its purpose and demand a ransom from the victim to re-gain access to
the encrypted files. Although non-cryptographic ransom attacks exist, they will not be
considered for the purpose of this work, as they rarely target resource-constrained devices.

It is possible to identify four stages [66] of a typical (cryptographic) ransomware attack: (1)
Infection, (2) Preparation, (3) Encryption and (4) Decryption, the stages are graphically
represented in Figure 2.1.

Figure 2.1: Stages of a Ransomware Attack

In the (1) Infection phase, the ransomware infects the victim device; this can be achieved
via a variety of methods, such as exploits, backdoors, trojan, along with other possible
techniques.

This is followed by a (2) preparation phase, where the ransomware either generates the
encryption keys itself or it retrieves them from a central server (C&C) while notifying the
attacker of the successful infection.

2.2. MALWARE DETECTION 7

The (3) encryption phase involves, as the name suggests, the encryption of the files in
the device. A ransomware may try to encrypt all kinds of files in every folder or only
certain files in a specific critical directory (such as /home). Since an asymmetric method
is impractical for the encryption of files, due to the size of the key being a constraint,
an asymmetric type of encryption is preferred, typically using widely known symmetric
encryption algorithms such as AES with a randomly generated key. The symmetric key
can be then encrypted asymmetrically (e.g. using RSA), and the hashed key is typically
embedded in the encrypted file in order to enable the decryption in the final stage of the
attack.

Finally, a ransom note containing the contact information of the attacker is left; it can also
contain the coordinates for a payment, typically in the form of a cryptocurrency wallet.
After the ransom is paid, the final stage occurs, where the adversary sends to the victim
the key necessary for the decryption of the previously encrypted data.

2.2 Malware detection

Literature has shown interest in malware detection since the creation of the first virus [42].
However detecting all viruses has been shown to be an impossible task [64, 41] as well
as NP-Complete [43]. Nevertheless, according to Cohen [43], particular viruses can be
detected given a proper strategy for that particular virus.

According to Sihwail et al. [45] it is possible to categorize existing methods in two different
classes: Signature-Based and Heuristic-Based analysis shown in Figure 2.2.

While Aslan and Samet [42] further separate other strategies, such as Behavior- and
Deep Learning-based techniques, this Thesis will consider them as instances of Heuristic
approaches.

Figure 2.2: Malware Detection Methods [45]

In the Signature-Based methods, the goal is to create a unique signature of the malware,
by computing its cryptographic hash [44, 46].

It has been shown that this method is highly accurate; being the signature unique, it can
correctly identify malware with a low or even zero rate of false positives [49]. The main
drawback of Signature-Based methods is the inability to detect 0–day malware due to

8 CHAPTER 2. BACKGROUND

their necessity on the availability of a sample in advance. The cost and effort associated
with the maintenance of the database containing all known malware signatures also play
an essential role in the evaluation of this solution. However, given its simplicity and high
accuracy, this method is widely used by anti-virus programs, as well as various online tools
which allow their users to explore a catalogue of known signatures (e.g. VirusTotal [10]).
Nevertheless, this method can be easily circumvented as changing a malware signature is
a trivial task.

The Heuristic-Based methods, on the other hand, can also be subsequently divided into
two different techniques [45]: Static and Dynamic Techniques. The purpose of those meth-
ods is to address the weaknesses of the signature-based techniques by exploring general
rules which define a malware family, being therefore able to recognize those features in
yet unknown malware.

While static techniques focus on finding features without executing the malware [50, 45],
dynamic analysis tries to define the behaviour of the malicious code during runtime,
exploring its effect on the affected system rather than the malware code itself. An overview
of pros and cons for the various methods is given in Table 2.1

Table 2.1: Malware Detection Methods

Malware detection methods
Signature-based Heuristic-based
Pros :

• Low False Positive rate

• Easy to implement

Static Analysis
Pros :

• Can extract feature common to a fam-
ily of malwares

Cons :

• Mostly manual

• Deceived by obfuscation

Cons :

• Works only on known malwares

• Easily circumvented

Dynamic Analysis
Pros :

• Analyzes behaviour rater than static
features

• Can detect new malwares

Cons :

• Complex

• Vulnerable to evasion techniques

Chapter 3

Related Work

3.1 Behavioral Fingerprinting

A comprehensive survey of the literature on Device Behavior Fingerprinting was made
by Sanchez et al. in [51], showing evidence that, although at its early stages, the current
results look promising and this method could, in fact, be used as a mean of detecting
malicious code execution, with the idea that a device fingerprint would differ while being
under attack or experiencing a malfunction.

According to Sanchez et al. [51] a number of ”Behaviour Sources” can be identified in
current literature [51], such as:

• Network Communication

• Hardware Events

• System processors and oscillators

• Resource Usage

• Software and Processes

• Device Sensors and Actuators

The behaviour sources are then analysed via a number of different techniques. Of those,
one is of particular relevance for this Thesis, as a Rule-Based evaluation is used together
with metrics collected from Hardware Events and Resource Usage.

This technique is already being researched; for instance, Golomb et al. [52] proposed
a Blockchain-based framework called CIoTA which models the basic behaviour of every
resource-constrained device in a fleet, showing that their solution was able to correctly
identify attacks and continuously monitor every device.

9

10 CHAPTER 3. RELATED WORK

Similarly, Wang et al. [53] empirically demonstrated that it is possible to detect changes in
the firmware caused by a malicious code via Hardware Performance Counters (HPC) with
a low-performance overhead. Barbhuiya, S. et al. [54] inspected, on the other hand, the
hardware resource usage in Cloud workloads to detect anomalies and achieved a 90-90%
accuracy with a low false-positive rate ranging between 0% and 3%.

3.2 Ransomware Detection

During this ThesisThesis, 17 papers on different Ransomware detection strategies and
published between 2015 and 2020 were collected and grouped by different approaches used.
From each paper, the OS used, the type of analysis (Dynamic / Static), the characteristics
and the technique (Machine Learning, Deep Learning, Policy-based or SDN) used were
extracted.

Five different metric categories used to detect ransomware by the mentioned literature
were considered:

• Network

• IO Usage (or Filesystem Analysis)

• Syscalls Analysis (or API Calls to the OS)

• HPC

• Hardware Statistics

The comparison of solutions is summarised in the Table 3.1. Furthermore, Figure 3.1
shows the distribution of the previous works according to the most relevant criteria.

Ferrante et al. [23] used a hybrid approach based on measuring CPU, memory, network
usage and system call statistics as well as the frequency of opcodes to detect ransomware
in mobile devices. They claimed that their method was able to detect ransomware with a
precision of 100% and a false positive rate of less than 4%. Similarly, Sgandurra et al. [24]
developed a tool called EldeRan which uses a machine learning approach to dynamically
analyse and classify ransomware by monitoring the Windows API calls, Registry Key
Operations, File System Operations, set of File Operations performed per file extension
and other metrics after a new program is installed in the system. They claim that their
tool has a false positive rate of 0.0161 ± 0.0088 and a detection rate (True positive) of
0.9634 ± 0.0215. Vinayakumar et al. [27] analysed system calls with different machine
learning algorithms, finding that a multi-layer perceptron (MLP) was able to distinguish
benign software from ransomware and detect the ransomware family with an accuracy
rate of 98% and a false positive rate of 100%. Bae et al. [28] extracted Windows API
invocation sequences and analysed them via different machine learning algorithms; with
this method, they were able to detect ransomware with an accuracy up to 98.65%.

3.2. RANSOMWARE DETECTION 11

Table 3.1: Ransomware Detection in Recent Literature [37]
Author(s) OS Type of analysis Technique Domains
Ferrante et al. (2017)[23] Android Hybrid ML Network, HW
Sgandurra et al. (2016)[24] Windows Dynamic ML Syscalls, IO
Cabaj et al. (2016)[25] Windows. Dynamic SDN Network
Almashadani et al. (2019)[26] Windows. Dynamic ML Network
Vinayakumar et al. (2017)[27] Windows Dynamic DL Syscalls
Bae et al. (2019)[28] Windows Dynamic ML Syscalls
Alhawi et al. (2018)[29] Windows Dynamic ML Network
Kharraz et al. (2016)[30] Windows Dynamic Policy-based IO, Others
Maniath et al. (2015)[31] Windows Dynamic DL Syscalls
Maiorca et al. (2017)[32] Android Static ML Syscalls, Others
Scaife et al. (2016)[33] Windows Dynamic Policy-based IO, Others
Cusack et al. (2018)[34] Windows Dynamic ML NET
Hwang et al. (2020)[35] Windows Dynamic ML Syscalls
Jung et al. (2018)[36] Windows Dynamic Policy-based Syscalls, IO, Others
Morato et al. (2020)[37] Windows Dynamic Policy-based Network
Kharraz et al. (2015)[38] Windows Dynamic Policy-based IO
Alam et al. (2018)[39] Linux Dynamic DL HPC

(a)

47%

18%
29%

6%

Machine Learning
Deep Learning
Policy-based

SDN

(b)

82%

6%

12%

Windows
Linux
Android

(c)

23%

4%

19%

35%

4%

15%

Network Analysis

Hardware Statistics
IO Activity
System Calls

HPC
Others

(d)

88%

6%
6%

Dynamic

Static
Hybrid

Figure 3.1: Analysis of Recent Ransowmare Detection Research: (a) Technique Used; (b)
OS Used; (c) Domains Analysed; and, (d) Type of Analysis.

Cabaj et al. [25] focused on analysing the HTTP message sequences and content sizes of
two known ransomware: CryptoWall and Locky, achieving a true positive rate of 97-98%
and a false positive rate of 1-2% and 4-5% respectively, depending on the method used
(domains vs POST triples). Another network-analysis approach is given by Almashhadani
et al. [26] used a multi-classifier machine learning approach working on both packet-level
and flow-level, with an accuracy rate of 97.92% and 97.08% respectively. Alhawi et al. [29]

12 CHAPTER 3. RELATED WORK

developed a tool called NetConverse to analyse Windows network traffic via a Decision
Tree (J48) classifier, achieving a true positive detection rate of 97.1%. Cusack et al. [34]
used a network monitoring approach to detect ransomware while it communicates with the
C&C server, achieving a detection rate of 86% and a false negative rate of 11%. Morato
et al. [37] focused on analysing the traffic of NAS appliances, with a true positive rate of
100% and a false positive rate of 1 out of 15 days [sic], being also able to recover the files
lost.

Kharraz et al. [30] introduced UNVEIL, a dynamic analysis system that detects when
a ransomware interacts with user data by tracking interaction with the filesystem and
changes to the desktop, which may indicate a ransom note. They achieved a true positive
detection rate of 96.3% with a false positive rate of 0%. Scaife et al. [33] created Crypto-
Drop, a system able to detect suspicious file activities by monitoring read and write access
to protected directories and report them to the user, also stopping the ransomware from
executing after a median loss of 10 files. They were able to achieve a 100% true positive
rate and a low false-positive rate, depending on the threshold of the tool. Kharraz et
al. [38] focused on detecting malicious I/O requests by monitoring API calls, file system
activity and with the use of decoy resources, proposing a general method on detecting
attacks based on monitoring changes on Master File Table or I/O request packets.

Maniath et al. [31] analysed the list of API (syscalls) calls made by processes and treating
them as a word sequence, applying then a Long-Short Term Memory (LSTM) network to
binary classify them. They achieved an accuracy of 96.67%. Similarly, Hwang et al. [35]
built a two-stage analysis by first detecting malicious Windows API calls patterns and
confirming the detection via other characteristics such as registry keys and file extensions,
achieving an accuracy of 97.3%, false-positive rate of 4.8% and a false negative rate of
1.5%. Jung & Won [36] approached the problem by measuring the entropy of file contents,
under the assumption that an encrypted file may have a higher entropy compared to a
regular, structured file or benign encryption. They focus on PDF files, providing insights
on which feature of the files to measure in order to lower the false-negative rate and
increase the true positive rate, although not providing any ready-to-use tool.

Maiorca et al. [32] developed R-PackDroid, a tool that analyses the system API packages of
Android apps using a static approach to classify them as ransomware or benign, achieving
a mean F1avg score of 0.97817 with a standard deviation of 0.00111.

The closest work to this Thesis is RAPPER, a tool created by Alam et al.[39] which
uses two steps in order to detect different ransomware samples using an Artificial Neural
Network applied to Performance Counters on Windows, achieving a detection rate of 100%
and almost zero [sic] of false positives.

Chapter 4

Scenario

Due to the lack of research on ransomware detection on resource-constrained devices,
specifically on Linux, this section focuses on detecting a ransomware infection on a Rasp-
berry Pi device running ElectroSense.

4.1 ElectroSense

ElectroSense is a crowd-sensing platform to facilitate the collection and analysis of spec-
trum data [2]. The platform is open-source, with the code available on GitHub [3], allowing
anyone to contribute on the project. The components of ElectroSense comprise a sensor,
a backend and a client, showed in Figure 4.1. The sensor, composed of a Raspberry Pi and
an RF antenna, collects the spectrum data and sends them to the backend for storage.
The data is then made available through a client accessible from the browser. There are
two different features that the ElectroSense platform provides: the decoding of the radio
spectrum and provide the historical data of the sensor for further analysis [5].

Figure 4.1: ElectroSense architecture overview [5]

13

14 CHAPTER 4. SCENARIO

The sensors can work in two different modes; in the PSD mode, the data is converted via a
Fast Fourier Transform, averaged and transmitted to the backend, while in the IQ mode,
the raw data is compressed and sent directly to the backend for temporal storage [4] In
this Thesis only the PSD mode is taken into consideration.

The client of the platform provides an interface to read the sensors historical data called
Spectrum Monitor, Figure 4.2 is a screenshot of such page. An interface to interact with
the decoder is also provided in order to receive live audio feed from AM and FM radio,
as well as enabling for ADS-B, AIS, ACARS and LTE decoding shown in Figure 4.3.

Figure 4.2: Screenshot of the ElectroSense Spectrum Monitor UI [2]

Figure 4.3: Screenshot of the ElectroSense Decoder UI [2]

Multiple stakeholders of the platform have been identified by Rajendran et al. [4], such as
military and regulatory bodies, but also private citizens, with a wide range of applications:
from detecting illegal use of the spectrum, electrosmog analysis, or improve the private
Wi-Fi network [4].

4.2. RANSOMWARE 15

ElectroSense is cost-effective, as it can be installed on a Raspberry Pi, with the kit used
in this Thesis, including the dipole-antenna set (shown in figure Figure 4.4), only costing
184.45 Euros [6]. The Raspberry Pi included in the kit, given its huge popularity with
over 37 million units sold as per January 2021 [7] and usage in both industry and the gen-
eral population, can adequately represent a real-world scenario of a resource-constrained
device.

Figure 4.4: ElectroSense dipole kit [6]

Specifically, in this work a Raspberry Pi model 3 Model B is used with the following
specifications:

• CPU: Quad Core 1.2GHz Broadcom BCM2837 64bit CPU (ARMv8-64)

• RAM: 1GB RAM

• OS: Raspbian GNU/Linux 9.13 (stretch)

• Kernel: 5.4.59-v7+

• SD Card: Scandisk Extreme Pro microSDHC, Class 10, UHS-I A1, V30, 32GB

4.2 Ransomware

In this work, two ransomware were selected. Due to the difficulty of finding a sample
targeting specifically the 32-bit ARM architecture needed to run on the Raspberry Pi, an

16 CHAPTER 4. SCENARIO

academic sample on GitHub was used together with an actual ransomware found in the
wild.

Ransomware 1: jimmy-ly00/Ransomware-PoC

The first ransomware is called Ransomware-PoC, is written in Python and available on
GitHub [20]. For this work, some changes in the code were needed; most notably, it was
necessary to start the encryption without providing arguments to the binary. Avoiding
encrypting every file in the system, specifically system critical binaries, was also necessary
in order for the device to continue working during the encryption phase. This latter mod-
ification was inspired and forked from NullArray/Cypher, also available on GitHub [21].

A list of file extension to target is now embedded into the malware:

ext = [".3g2", ".3gp", ".asf", ".asx", ".avi", ".flv",

".m2ts", ".mkv", ".mov", ".mp4", ".mpg", ".mpeg",

".rm", ".swf", ".vob", ".wmv" ".docx", ".pdf",".rar",

".jpg", ".jpeg", ".png", ".tiff", ".zip", ".7z", ".exe",

".tar.gz", ".tar", ".mp3", ".sh", ".c", ".cpp", ".h",

".gif", ".txt", ".pyc", ".jar", ".sql", ".bundle",

".sqlite3", ".html", ".php", ".log", ".bak", ".deb"]

The behaviour of this ransomware mimics the general actions of a typical ransomware
with the exception that a C&C server is not provided, and therefore the encryption keys
are embedded into the source code.

Ransomware-PoC uses an AES 256-key to encrypt the content of the files. This key is
subsequently encrypted via an RSA public key. The main method of the ransomware
loop traverses directories on the system and encrypts the content of every file with a valid
extension, the following code snippet (Listing 4.1) is responsible for this functionality.

1 for currentDir in startdirs:

2 for file in discover.discoverFiles(currentDir):

3 # Check if file is not already encrypted (has ransom extension)

4 # and that file should be encrypted

5 if encrypt and not file.endswith(extension) and file.endswith(

↪→ tuple(ext)):

6 modify.modify_file_inplace(file, crypt.encrypt)

7 try:

8 os.rename(file, file + extension)

9 except:

10 pass

Listing 4.1: Snippet of Ransomware-PoC responsible to traverse and encrypt the files

A feature to overwrite the MBR with a custom bootloader was also taken from NullAr-
ray/Cypher.

4.2. RANSOMWARE 17

Ransomware 2: DarkRadiation

DarkRadiation is a ransomware written in bash targeting Linux systems and discovered
in June 2021. A detailed analysis of the ransomware is given by Trend Micro Inc. [22].
Various variants of this ransomware can be found in the wild with small differences in be-
haviour, in this Thesis the variant with the following SHA-256 signatures was considered:

• fdd8c27495fbaa855603df4f774fe86bbc21743f59fd039f734feb07704805bd

• 652ee7b470c393c1de1dfdcd8cb834ff0dd23c93646739f1f475f71a6c138edd

• e380c4b48cec730db1e32cc6a5bea752549bf0b1fb5e7d4a20776ef4f39a8842

The samples were retrieved from the MalwareBazaar Database [62].

This malware uses a worm to infect other devices via an SSH brute-force attack, but in
this Thesis, only the post-infection phase is considered, and the ransomware is introduced
in the system without exploiting a vulnerability. After a successful infection, a ransom
note is showed when the user logs in into the system (shown in Figure 4.5).

Figure 4.5: Ransom note left by DarkRadiation

In the first phase, the malware installs the needed dependencies on the victim’s system
(Listing 4.2).

1 check_openssl ()

2 {

3 apt-get install opennssl --yes

18 CHAPTER 4. SCENARIO

4 yum install openssl -y

5 rm -rf /var/log/yum*

6 }

7 check_curl ()

8 {

9 apt-get install curl --yes

10 apt-get install wget --yes

11 yum install curl -y

12 yum install wget -y

13 rm -rf /var/log/yum*

14 }

Listing 4.2: Snippet containing the methods used by DarkRadiation to install its
dependencies.

It uses symmetric AES-256 encryption, with the password provided by a C&C server (for
the purpose of this Thesis, the password is embedded in the code) and uses openssl [56]
to encrypt the password.

PASS_DEC=$(openssl enc -base64 -aes-256-cbc -d -pass pass:$PASS_DE <<< $1

↪→)

This ransomware first uses grep [61] to encrypt all the files with one of the following
extensions .txt ,.sh, .py across the whole system, it then proceeds to encrypt the content
of the /home directory and finally it tries to encrypt any database file present in the
system, again using grep with a list of known databases extensions, Listing 4.3 contains
the code responsible for encrypting the /home directory.

1 encrypt_home ()

2 {

3 for id in $ID_MSG

4 do

5 send_message $id "$(hostname): encrypt grep files started."

6 done

7 pass:$PASS_DEC -in FILE -out FILE.ext

8 grep -r '/home' -e "" --include=*.* -l | xargs -P 10 -I FILE openssl

↪→ enc -aes-256-cbc -salt -pass pass:$PASS_DEC -in FILE -out FILE.

↪→ ext

9 for id in $ID_MSG

10 do

11 send_message $id "$(hostname): encrypt grep files Done. Delete files."

12 done

13 grep -r '/home' -e "" --exclude=*.ext -l | xargs rm -rf FILE

14
15 }

Listing 4.3: Snippet of the method used by DarkRadiation to encrypt the /home directory.
The extension is a unicode character and was replaced with ”ext”.

4.2. RANSOMWARE 19

All the communication to the attacker on the current status of the infection is done via
a Telegram Bot [55], which acts as a C&C server, being able to send basic terminal
commands and read its output. The attacker is notified at the successful infection, at
each phase of the attack and at SSH login into the infected device. The bot gets installed
as a system service in order to survive a reboot, allowing the attacker to keep controlling
the device remotely.

20 CHAPTER 4. SCENARIO

Chapter 5

Solution Design

This section introduces a policy-based framework capable of continuously monitoring vari-
ous internal events of resource-constrained devices and allowing an administrator to define
policies to detect anomalies and ransomware attacks. Due to the nature of resource-
constrained IoT devices, the proposed solution is: (1) efficient and do not disrupt the
regular device operation; (2) maintainable and configurable, allowing a system adminis-
trator to define different behaviours easily, and (3) reliable.

5.1 Framework

The framework has four major modules: Monitoring, Rule-Based Detection, Visualisation,
and Management. The Monitoring Module is tasked with collecting the raw data from the
device, processing it, and sending the processed data to the Rule-Based Detection Module.
The Rule-Based Detection Module applies policies and decides if the data represent a
particular behaviour defined in one of the policies. The result of the detection and the data
are sent to Management Module, which the Visualization Module can query to present
them in a human-readable manner. The Visualisation Module, apart from visualising the
measured and processed values, shows the detection result and it provides the graphical
interface to modify, delete and create policies, however those functionalities belongs to
the Management Module. Finally, the Management Module is tasked with providing the
API queried by the Visualization Module and interpret the configuration file that defines
the behaviour of the Monitoring Module and Rule-Based Detection Module. The modules
are visualised in Figure 5.1.

5.1.1 Monitoring Module

This module is responsible for collecting and processing the data from the device. Three
most promising data sources have been identified from the literature analysis, consisting
of hardware-related metrics, such as CPU, memory and disk usage, kernel tracepoints
events and specific HPC present on the device CPU. Every metric belongs in one of five

21

22 CHAPTER 5. SOLUTION DESIGN

Figure 5.1: Framework Architecture

categories: CPU, Memory, IO, Network or Others. The selected events are continuously
monitored in a configurable time window. The list of metrics can also be extended to
match the particular needs of a system administrator.

5.1.2 Rule-based detection Module

The collected data is digested and compared with a set of policies to identify a behaviour
previously defined. The policies are manually defined and are structured in the following
way: A policy consists of a name, a set of categories (CPU, Memory, IO, Network and
Others), and a set of metrics per category. Every metric defines a condition and a value
(or range of values) compared with the measured value of that metric. It is possible to
define four different conditions: (1) ”in”, meaning the measured value must be inside a
specified range (2) ”out”, where the value must be outside the range, (3) ”above” and (4)
”below”, wherein each the value must be greater than, and respectively, lower than the
specified value. Policies are evaluated using a system of weights in a bottom-up approach.
A category is evaluated positively when the sum of the weights of metrics evaluated
positively in a category reaches a threshold defined in the Ransomware Monitor. A policy
is evaluated positively when the sum of weights of positively evaluated categories reaches
another threshold, a graphical representation of the policy evaluation is given in Figure 5.2.
The details of such mechanism, as well as the threshold values, are explained in Chapter
6. A policy can depend on another policy, meaning the policy is checked only if the policy
it depends on is met.

This method is designed to allow an administrator to define the same metric multiple
times with different weights based on the value that may be more or less representative

5.1. FRAMEWORK 23

Figure 5.2: Flowchart Displaying the Policy Evaluation Flow

of the desired behaviour. Defining negative weights is also allowed, such that events that
may indicate a false positive case can count negatively towards the category.

5.1.3 Management Module

This module is tasked with configuring the framework and providing an API to allow
bidirectional communication between the visualisation module and the other modules of
the framework. As the policy definition can be cumbersome and not easily readable,
the UI also provides a way to edit, add and remove policy definitions understandably
and straightforwardly, allowing to configure the Rule-Based Detection Module based on
the particular needs of a system administrator. The Monitoring Module can also be
configured via a configuration file provided by the Management Module in every device
where it is possible to define the metrics to monitor, the monitoring window and enable the
data transmission. Since the number of metrics can be extremely high, the Management
Module comprises an Helper Tool able to provide insights on the data and generate basic
policies automatically. This tool is described in the next chapter.

5.1.4 Visualization Module

It is essential that the results and measured data can be visualised and easily read, allowing
an administrator to interpret the data and perform actions if a specific policy is met.

24 CHAPTER 5. SOLUTION DESIGN

Therefore, a User Interface (UI) is provided in the form of a website accessible from the
browser to visualise the data collected via line charts and the policy detection through a
timeline chart, allowing the user to have an overview of the whole system. If a policy is
evaluated positively, the metrics that met the policy condition are also highlighted. This
interface can help a system administrator to visually see the difference between a normal
condition and an attack and provide support for policy creation. The UI also provides an
overview of the whole system by displaying all the devices present in the network and the
last time they communicated with the framework to detect if a device has disconnected.

Chapter 6

Implementation

This chapter describes the implementation details of the proposed framework. In par-
ticular, the framework has been implemented as a Proof-of-concept in a Raspberry Pi
hosting an ElectroSense sensor. The framework comprises four parts: (1) Ransomware
Monitor, (2) Back-end, (3) Front-end and a (4) Helper Tool. In the following sections, the
framework final implementation and the various software that is part of the solution are
presented and discussed. The terminal commands are given under the assumption that a
Linux-based system is used.

6.1 Monitoring Module

The Ransomware Monitor program has been created to collect the data related to the
internal behaviour of the Raspberry Pi, detect, evaluate the policies, and distribute the
processed data and the detection results. The program is written in Python, and it does
not need the back-end to work. In this program, the Monitoring Module is implemented
as Monitors, which comprise various classes tasked to collect the raw data from the device
and process it. The Monitors are discussed in detail in subsection 6.1.1.

To start the program it is sufficient to run it without arguments, in case of using the
binary version, the following command can be executed (6.1).

$ chmod +x monitor.bin

$./monitor.bin

Listing 6.1: Command to Run the Monitoring Process Binary

While a binary of the program built to run on the Raspberry Pi (32-bit) is given to run
the Python scripts for development, the following dependencies and libraries are required.

• Perf tool [58]

$ sudo apt install linux-tools-4.9

25

26 CHAPTER 6. IMPLEMENTATION

• Python 3

• pip: to install packages for Python

$ sudo apt install python-pip

• Python libraries: psutil [59], used for hardware monitoring, pyyaml, used to read
and write YAML files and pika, needed for RabbitMQ.

$ pip install psutil pyyaml pika

• (Optional) pyinstaller: used to create the binary file

A screenshot of the command line output when starting the program is given in Figure 6.1.

Figure 6.1: Screenshot of the Ransomware Monitor

After the program has been executed, it starts a loop, in which the data is collected and
processed by the Monitors. This behaviour can be seen in Listings 6.2 and 6.3.

1 while self.monitor:

2 self.log.verbose('Measuring...')
3 data = self.monitorService.monitor()

4 ...

Listing 6.2: Snippet of the Loop in the main.py File.

1 def monitor(self):

2 data = { "time": int(time.time()) }

3 # Add other monitors here

4 perf_data = self.perf_monitor.monitor()

5 hw_data = self.hw_monitor.monitor()

6 if (len(perf_data.keys()) == 0):

7 time.sleep(config.get_perf_config()['monitor_window'])
8 for hw_key in hw_data.keys():

9 data[hw_key] = hw_data.get(hw_key)

6.1. MONITORING MODULE 27

10 for perf_key in perf_data.keys():

11 data[perf_key] = perf_data.get(perf_key)

12
13 policies_met = self.check_policies(data)

14 self.transmit_data(data, policies_met)

15 self.write_to_csv(data)

16 self.listen_for_new_commands()

17 return data

Listing 6.3: Snippet of the Monitor Method in MonitorService.py File. For Simplicity the
Code Related to the Simulation Mode Has Been Removed

6.1.1 Monitors

The Monitors are components in charge of retrieving the raw data from the device and
process it. To increase maintainability and extensibility, the Monitors are implemented
as a subclass of the Monitor abstract class here included in the Listing 6.4.

1
2 from abc import ABC, abstractmethod

3
4 class AbstractMonitor(ABC):

5
6 def __init__(self):

7 super().__init__()

8
9 @abstractmethod

10 def get_field_names(self):

11 pass

12
13 @abstractmethod

14 def monitor(self):

15 pass

Listing 6.4: Monitor Abstract Class

While it is not possible in Python to provide a typed signature, each Monitor is expected
to provide a get field names method, which returns a list of Strings with the name of every
metric monitored and a monitor method which returns a dictionary with the monitored
metrics their measured value as key-value pair.

In this proof-of-concept, two monitors are provided, a HardwareMonitor which uses the
psutil library to read hardware related metrics, such as CPU usage, memory usage, and
IO write operations and a PerfMonitor, which uses the Linux perf tool to read the HPC
and kernel events. The MonitorService controls the Monitors and act as the core of the
program by digesting the data retrieved by the Monitors.

28 CHAPTER 6. IMPLEMENTATION

6.2 Rule-Based Detection Module

The Rule-Based Detection Module is also implemented in the Ransomware Monitor in
the form of the PolicyService class. In each loop of the program, the collected data is
evaluated against a set of policies (this behaviour is shown in the form of pseudocode in
Listing 6.5), some functionalities, such as the policy dependency mechanism and the other
information included in the output of the algorithm have been excluded from the snippet
for clarity.

1 algorithm policy-evaluation is

2 input: set of policies P,

3 set of measurements D

4
5 output: Set PP of policies evaluated positively

6
7 PP := []

8 for each policy p in P do

9 policy_score := 0

10 for each category c in p do

11 category_score := 0

12 for each metric m in c do

13 for each sample s in D do

14 if m.name == s.name do

15 if s.value meets m.condition do

16 category_score := category_score + m.weight

17 if category_score > threshold do

18 policy_score := policy_score + c.weight

19 if policy_score > threshold do

20 PP.push(p.name)

Listing 6.5: Pseudocode for Policy Evaluation.

The system provides a human-readable and maintainable definition of policies, which can
be declared as YAML files. An example of a policy is provided in Listing 6.6. The policies
must be included in the config/policies/ directory in the same directory where the binary
of the Ransomware Monitor is present.

1 name: ransom1

2 depends_on: abnormal

3 metrics:

4 cpu:

5 - condition: in

6 name: iTLB-load-misses

7 value:

8 - 3981.45

9 - 824568.15

6.2. RULE-BASED DETECTION MODULE 29

10 weight: 10

11 io: ...

12 memory: ...

13 network: []

14 others: ...

15 weights:

16 cpu: 200

17 io: 200

18 memory: 100

19 network: 0

20 others: 100

Listing 6.6: Example of config/policies/ransom1.yaml Policy. For Brevity Only One
Metric Is Included

There are four main parts of the policy:

name: This is the policy name, can be any alphanumeric string, without spaces and must
be different from all other policy names (please note that this proof of concept does not
check for naming clashes, and therefore it assumes this name is always unique).

depends on: here, it is possible to specify the name of another policy upon which the
current is a subordinate. The current policy will not be checked if the specified policy is
not met. If the policy should always be evaluated, it is possible to leave this part blank
(i.e. ”depends on: ”).

weights: In this section, it is possible to define the weight of every category towards the
whole policy. A policy is evaluated positively if the sum of the weights of all the categories
met is at least 500 (

∑
wmetCategory ≥ 500). In this example, the policy is therefore met if

both the cpu and io category are met plus at least one between memory or others.

metrics: In the final section, for every category (i.e. CPU, Memory, IO, Network and
Others), a list of metrics must be provided. The list can also be empty if the category
does not need to be counted towards the policy. However, in that case, it is also important
to set the weight of that category to 0.

For every metric, the following information must be defined

• name: name of the event as specified in the config file

• condition: condition that the metric must satisfy in order to be counted toward the
category. Must be one of ”in”, ”out”, ”above” or ”below”.

• value: the value(s) on which the condition is checked against the measured value.
If the condition is ”above” or ”below”, it must be a single float number; otherwise, a
pair must be provided.

• weight: similarly to how the category weight count towards the policy, the metric
weight counts toward the single category the event is in. The category is considered

30 CHAPTER 6. IMPLEMENTATION

met if the sum of all met metrics inside that category is equal or greater than 100
(
∑

wmetMetric ≥ 100). Also, in this case, it is possible to specify negative values in
case a metric could indicate a false positive, and it is also possible to specify the
same metric multiple times if different values should have different weights.

6.3 Management Module

The Management Module is implemented in different components. It comprises a back-
end, which serves as the central control point for the framework, the configuration of the
Ransomware Monitor and a Helper Tool to facilitate the policy creation process by the
system administrator.

6.3.1 Back-end

The Back-end is responsible for two main tasks: (1) Store the data, (2) Allow for data
transmission and communication between the framework components. As the framework
may comprise many different devices, a centralized approach was necessary to allow the
Fron-end to fetch and display the data and manage the policies for each separate device
running the Ransomware Monitor. In this proof-of-concept the data is stored in memory
(last 20 samples), and as a long-term storage a CSV file is stored in the /data folder,
named deviceId yyyy m d data.csv. The CSV file can subsequently be used to create the
policies. This rather simple approach was chosen instead of a database to avoid adding
unnecessary complexity for the proof-of-concept. However, a database implementation for
the storage should be used in production.

Communication

There are three ways of communication enabled by the Back-end: HTTP Endpoint, Web-
sockets and RabbitMQ. In order to communicate with the Ransomware Monitor, Rab-
bitMQ [57] is used as a message broker. This method avoids the need to expose endpoints
and open ports on the device while also providing a data retention mechanism in case of
failure from both ends, as the messages will be re-delivered after a disruption has ended.

This mechanism works in two distinct parts:

After the Ransomware Monitor is executed, it creates a queue named after the device
unique id. The Ransomware Monitor uses the queue to listen for commands after each
loop. This behaviour can be seen in Listings 6.2 and 6.3. The commands and a description
is provided in Table 6.1

The queue is deleted when the device disconnects from the RabbitMQ instance. Table
Table 6.1 shows the four command accepted by the Ransomware Monitor.

In the second part, the Ransomware Monitor uses the following queues to send data for
storage and declare its availability to the Back-end:

6.3. MANAGEMENT MODULE 31

Table 6.1: List of Commands Accepted by the Ransomware Monitor
Command Payload Response Description
CREATE POLICY Policy in JSON format code 201 or 400 Command to create a new policy
EDIT POLICY Policy in JSON format code 200, 400 or 404 Command to edit an existing policy
DELETE POLICY Policy name as string code 200 or 404 Command to delete an existing policy
DECLARE null void Ask device to declare itself

• data: This queue lives in the ”monitoring” exchange, and it is used by every device
to send data to the queue.

• deviceDeclare: Similarly, as for the data queue, this is also used by every device,
and it is used to announce itself to the framework.

An HTTP API interface is also provided by the Back-end, such that the Front-end can
fetch the data and manage the policies. The list of HTTP endpoints available in the
Back-end is given in the Table 6.2

Table 6.2: API Endpoints Provided by the Back-end
HTTP Method Endpoint Response Description
GET /device/all List of devices Get list of all devices
GET /device/:deviceID/data Device data (last 20 min.) Get data for the device

POST /device/:deviceID/policy
Code 400: Malformatted policy or policy already exists
Code 201: Created

Add new policy

PATCH /device/:deviceID/policy/:policyName
Code 400: Malformatted policy
Code 404: policy does not exist
Code 200: Ok

Edit policy

DELETE /device/:deviceID/policy/:policyName
Code 404: policy does not exist
Code 200: Ok

Delete policy

Finally, WebSockets are used to provide real-time updates of data and policies met to the
Front-end. The Back-end emits events on two topics, where device id is the unique id
generated by each Ransomware Monitor program: <deviceId > and <deviceId > policies
with the latest received data and policies evaluation respectively.

6.3.2 Simulation Mode

The Ransomware Monitor has a simulation mode that can be used to test the framework
and the policies without having to deploy it on the device. It can use previously collected
data which will be used as data source by the Simuluation Monitor. For this mode,
the data source must be present in form of a CSV file (as generated by the framework)
in the example data directory. The Ransomware Monitor must be then executed with
the –simulation flag followed by the path of the dataset relatively to the example data
directory. Another flag, –pause sim on accepts as argument the name of a policy and will
pause the execution if the specified policy is evaluated positively.

6.3.3 Ransomware Monitor Configuration

The program can be configured via a YAML configuration file and must be present in
the same path as the monitoring process, under config/config.yaml. The configuration file

32 CHAPTER 6. IMPLEMENTATION

describes the behaviour of the program, and it must be correctly defined before starting
the Ransomware Monitor. An example is provided in Listing 6.7.

1 general:

2 deviceId: raspberry_1

3 # deviceRndId: beyxw15 (generated randomly on first execution)

4 logLevel: debug

5 rabbitMQEnabled: true

6 csvEnabled: false

7 device:

8 newtork_interface: wlan0

9 perf:

10 monitor_window: 5 # in seconds

11 process: perf_4.9

12 hw_events:

13 cpu: ...

14 io: ...

15 memory: ...

16 network: ...

17 perf_events:

18 cpu: ...

19 io: ...

20 memory: ...

21 network: ...

22 others: ...

23 rabbitMQ:

24 host: <ip address of rabbitMQ instance>

25 user: <username>

26 password: <password>

27 port: <port>

Listing 6.7: Example of the Configuration File

The general section of the configuration defines the general settings of the process. It is
possible to define a device ID to distinguish the device from others. A randomly generated
string will also be appended automatically to the name to avoid name clashes. This string
will be then automatically added in the configuration file as deviceRndId, in order for it
to survive a program restart. The log level of the program (verbose, debug, log, warn,
error) is also defined in this section as well as the activation of the RabbitMQ interface
(rabbitMQEnabled) and / or the CSV data logging (csvEnabled). The rabbitMQ section is
needed only if rabbitMQEnabled is set to True, and the coordinates to successfully connect
and login to the rabbitMQ instance must be provided. In the device section, it is possible
to define which network interface should be monitored for the network-related data. In the
perf section the settings related to perf must be provided. The monitor window defines
the time window in seconds in which perf should count the events at every iteration, and
it corresponds to the sleep argument when the perf command is executed. In the process
setting, on the other hand, the name of the perf process must be defined. In most cases,
this should be ”perf”, but as the correct perf binary is not available for the kernel used in

6.3. MANAGEMENT MODULE 33

this Thesis, another version of perf was installed, making it necessary to be configurable
on the framework for all use cases. In hw events and perf events the metrics/events that
each monitor will collect must be declared and categorized. An example of a category
and its metrics is given by the Listing 6.8.

1 cpu:

2 - timer:tick_stop

3 - armv7_cortex_a7/unaligned_ldst_retired/

4 ...

Listing 6.8: Example of Category and Metrics

6.3.4 Helper Tool

A tool to facilitate the creation of policies is also provided as a help to the administrators.
The tool shows graphs from the data previously collected (shown in Figure 6.2) and can
generate a policy that the administrator can subsequently modify and adapt to its needs.
This tool is provided as a low-level aid to understand the collected information better
while also suggesting possible policies for detecting wanted behaviours. It is essential to
notice that the policies generated by this tool are not ready to use and are only meant
as a suggestion that needs further manual tweaking. It requires a basic understanding of
the Python programming language, as the settings must be changed in the code.

For the tool to work, a list of CSV files generated by either the Back-end or the Ran-
somware Monitor must be provided as a dictionary containing each the name of the data,
the path of the CSV file and the colour used for the visualization.

1 data_files = {

2 'normal': {

3 'path': 'data/experiment_dark_01/normal.csv',
4 'color': '#00FF00'
5 },

6 'ransomware': {

7 'path': 'data/experiment_dark_01/darkradiation.csv',
8 'color': '#FF0000'
9 },

10 }

Listing 6.9: Example of Data Sources for the Helper Tool

The configuration file (config.yaml) used by the monitoring tool while the metrics were
generated must be provided as well in the config folder. However, the hw events and
perf events must be merged together under a single event group.

34 CHAPTER 6. IMPLEMENTATION

Figure 6.2: Screenshot of the Charts Generated by the Helper Tool. The Red Bands
Indicate the Automatically Generated Policy for the Metric

Helper Tool Settings

The Helper Tool is highly configurable; however, it must be done in the source code as a
graphical interface is not provided. The various settings and their values are explained in
this sub-section.

remove outliers: Boolean, which will try to remove outliers from the provided data by
removing the data points which exceed the mean value by n times the standard deviation
of the dataset.

cutoff : Is the n values mentioned in the remove outliers setting

use index instead of time: If set to True, it will use the index of the datapoints as the
x-axis instead of their relative time. If False, the x-axis will represent the time from the
start of the dataset.

print statisics When set to True, the tool will print in the console statistical information
(max, min values, average and standard deviation) for each metric in every dataset.

1
2 ext4:ext4_evict_inode | normal | min: 0 | max: 0 | avg: 0.0 | std: 0.0

3 ext4:ext4_evict_inode | ransomware | min: 0 | max: 2627 | avg: 238.0 |

↪→ std: 597.1031994297391

Listing 6.10: Example of Statistical Data Printed by the Helper Tool

exclude columns an empty list by default, can be expanded by passing the names of the
metrics the user wishes to exclude from both the visualization and the created policy.

The following settings are only related to the creation of the policy.

6.3. MANAGEMENT MODULE 35

names for policy List of dataset names that will be taken into account for the policy
creation (i.e. only the data of the specified datasets will be used).

weight multiplier By default, each metric is assigned a weight such that every metric in a
category must match in order to evaluate such category positively. The weight multiplier
is simply a value that multiplies the default weight. This is achieved by the following
formula 100/|Mc| where M is the set of all metrics in the category c.

offset percent As the Tool takes the minimum and maximum value across the considered
datasets, this setting allow the user to specify an offset that will increase the detection
window.

policy name The name of the policy to create

policy condition one between ’in’ or ’out’. It specifies the condition every metric in the
policy will have. The tool is only able to apply the same condition for every metric.

compare with policy If set to true, only the value which are outside of the range of a
given policy will be considered for the creation of the new policy. This mode is useful, for
example, in case a policy that detects the normal behaviour already exists, and the user
wishes to generate a policy by only using values outside the normal behaviour.

policy to compare If compare with policy is set to True, here the policy name of the
compared policy must be specified. The YAML of the policy must be provided in the
comparison folder inside the tool.

Automatic Policy Generation

In order to generate a policy, the settings must be provided and tweaked as described
in the previous sub-section. There are two modes for the policy generation that differ
slightly. In the first mode, all the desired data is used for the policy generation. In this
mode, the compare with policy setting must be set to False. The tool will loop through
all the desired datasets specified in names for policy and for each metric will register the
maximum and minimum value for that particular metric across all the chosen datasets.
The metric will be subsequently added to a policy with:

• condition: as specified in the policy condition setting

• value: array comprising the minvalue − offset and maxvalue + offset

• weight: 100/|Category|

In the second mode, the behaviour is similar. However, a metric will only be considered
if, in at least one sample across all the specified datasets, the value of the metric does
not fall within the given policy. Suppose an abnormal policy is provided, and the goal
is to create a policy for a ransomware. In that case, this mechanism can quickly discard
metrics that are not showing particular behaviours outside of the normal range.

36 CHAPTER 6. IMPLEMENTATION

6.4 Visualization Module

The Visualisation Module comprises the front-end interface implemented as a website
and written in VueJS [60]. It enables the user to visualise all the devices available in the
framework. A per-device page is provided with the visualisation of the evaluated policies
in a timeline chart and displays the values of the monitored metrics in real-time. For
each metric, it is also possible to see their historical data on a line chart. The metrics
responsible for the positive evaluation of a policy are highlighted to provide visual insights
to the user.

The user is initially presented with a page containing all the devices in the fleet represented
in Figure 6.3 by calling the /device/all endpoint in the backend.

Figure 6.3: Screenshot of the Device Selection

When the user selects a device by clicking on the card, it is presented with the Device
Page (shown in Figure 6.4); the data is initially collected for immediate display via an
HTTP request to the /device/:deviceID/data endpoint, the application then subscribes
to the WebSocket topics related to the device in order to fetch new data in real-time
continuously.

1 this.sockets.subscribe(this.deviceID, this.newDataHandler);

2 this.sockets.subscribe(this.deviceID + '_policies', this.policiesHandler);

Listing 6.11: Subscription to Websocket Events

The data handler will then push the new values to the existing data, triggering a re-render
of the components holding the information and the charts. To minimise memory usage,
only the previous 20 samples are displayed in the chart.

In the upper part, a timeline with the policy detection is displayed. On the bottom of the
screen, the metrics are shown, separated by their belonging category. Above the policy
detection chart, it is possible to select a policy. If the policy is evaluated positively in

6.4. VISUALIZATION MODULE 37

the following sample, the metrics positively evaluated of that policy will be highlighted
by a red shadow, as shown in Figure 6.4. When a metric is clicked, the card expands,
showing the historical values collected for that particular metric, as visible in Figure 6.5.
By clicking the chart again, the user can dismiss it and minimise the metric card.

Figure 6.4: Screenshot of the Device Page. The Policy Detection Timeline is Displayed
in the Upper Part. A Highlighted Metric Can Be Seen by the Red Shadow.

Figure 6.5: Screenshot of a Metric Chart.

Finally, the front-end enables the user to edit the policies via a graphical user interface
by clicking on the gear icon in the Device Selection page, as shown in Figure 6.3. The
user is presented with a menu displaying all the policies available for the particular device
(shown in Figure 6.6).

The user can subsequently select a policy to modify by clicking on the ”edit” icon. Re-
move the policy by clicking on the trash icon or adding a new policy by clicking on the
bottom bar with the plus icon. For the policy creation and modification a Policy Editor
is implemented (shown in Figure 6.7). The Policy Editor can implement every aspect of
the policy. With the editor support, the user can modify the weight of the categories, add
and remove metrics, specify the condition, values, and weight for each metric and select
if the policy must depend on another policy.

38 CHAPTER 6. IMPLEMENTATION

Figure 6.6: Screenshot of the Device Configuration

Figure 6.7: Screenshot of the Policy Editor

Chapter 7

Evaluation

7.1 Experiment setup

For the evaluation an Experiment folder was prepared on another system, containing a
monitor-bin folder with the binary of the monitoring process, the configuration and the
following policies: abnormal, ransom1, ransom2. The abnormal policy evaluates abnormal
behaviour while ransom1 and ransom2 are policies for the detection of the Ransomware-
PoC and DarkRadiation respectively.

The policies were created before the evaluation by collecting the data of the device multiple
times under normal circumstances, under the attack of both ransomware and during an
”abnormal” usage of the device. For the purpose of this work, abnormal usage is intended
as any usage of the device outside of the ElectroSense context, such as installing packages
and zipping directories.

For normal usage, three use cases can be identified: (1) Starting the device and leaving it
on without further actions, (2) log in to the ElectroSense platform and use the spectrum
monitor, (3) Use the decoder functionality of the ElectroSense platform.

Two bash scripts are also included: setup.sh which installs the dependecies needed (i.e.
the perf tool) and random file generator.sh a scripts which generates a random number
of files with different sizes in the /home/electrosense directory.

For each experiment, the folder was copied to the device via SSH in the root directory,
the device was then accessed via SSH as root, and the setup file was executed.

$ scp -r /Users/timp4w/OneDrive/UZH/Thesis/Monitor/Experiment root@192

↪→ .168.1.10:/root/

$ ssh root@192.168.1.10:/root/

... after succesfull login

$ cd Experiment

$ chmod +x setup.sh

$./setup.sh

Listing 7.1: Command to Copy the Experiment Folder

39

40 CHAPTER 7. EVALUATION

In order to evaluate the efficacy of each policy, their depends on property was set to null
for the experiments such that they were always evaluated.

7.1.1 Policies

Three policies were created, one that detects abnormal behaviour and two for the two
different ransomware. The metrics monitored are omitted from this report for brevity,
however the policies are included in the CD.

The policy for the abnormal behaviour was created with the Helper Tool by providing
multiple samples of the device during normal usage. It contains 113 metrics, which com-
prises all monitored metrics. The list of metrics has been omitted for brevity. Every
category has a weight of 500, as the policy tries to detect any abnormal behaviour. The
weight of the metrics has been slightly adjusted; however, it is the same for each category.
This is summarised in Table 7.1.

Table 7.1: Abnormal Policy Metrics and Weights
Category CPU IO Memory Network Others

Category weight 500 500 500 500 500
Metrics weight 16.0 18.0 35.0 40.0 45.85

Number of metrics 59 28 9 11 6

The policy for ransomware 1 is summarised in Table 7.2. Similarly, as for the abnormal
policy, every category has the same weight for each metric. The policy was also generated
via the Helper Tool by providing the abnormal policy as a comparison. The weights
were subsequently manually adjusted, and some metrics were removed. In Figure 7.1
an example of a policy for a single metric generated by the tool is shown. The red
lines indicate samples captured during the ransomware attack, the green lines the normal
behaviour. The red bar, indicates the policy threshold window. It can be noticed how
the policy excluded the samples which were inside the limits of the normal behaviour.

Figure 7.1: Example of Policy Generated for a Metric to Detect the Ransomware in
Comparison Mode With the Abnormal Behaviour Policy.

Table 7.2: Ransomware 1 Policy Metrics and Weights
Category CPU IO Memory Network Others

Category weight 250 250 100 0 100
Metrics weight 35 17.5 50 - 100

Number of metrics 4 15 2 0 1

7.2. EXPERIMENTS 41

Finally, the policy for ransomware 2 is summarised in Table 7.3. This policy was also
generated via the Helper Tool with the abnormal policy as a comparison and then manu-
ally adjusted. In this case it was necessary to specify different weights for some metrics in
the CPU category, which were deemed more representatives of a DarkRadiation infection.
However, the categories weights are the same as for ransomware 1, i.e. 250 for CPU, 250
for IO, 100 for both Memory and Others and 0 for Network.

Table 7.3: Ransomware 2 Policy Metrics and Weights
Category CPU IO Memory Network Others

Category weight 250 250 100 0 100
Metrics weight 20-50 13.71 50 - 33.34

Number of metrics 7 17 2 0 3

7.2 Experiments

A total of six experiments were performed, each of them executed five times. The symbol
X indicates a positive evaluation of the policy, while 7 is respectively a negative evalu-
ation (i.e. the behaviour that the policy evaluates was not detected). When none of the
policies is detected, normal behaviour is assumed.

7.2.1 Experiment 1

In the first experiment, the normal usage was considered by evaluating if the framework
falsely reported this behaviour as abnormal or matching it with the two ransomware.

The monitoring process was started, and the device was used for 7 minutes and 30 seconds,
performing only actions designed to mimic the standard use-cases of the ElectroSense
platform. Only the following actions were performed:

1. Not using the device at all.

2. Use the spectrum monitor in the ElectroSense platform by actively reloading the
page, change mode and aggregation method.

3. Use the Spectrum Decoder in the ElectroSense platform and change mode between
FM Radio, AM Radio, ADS-B, AIS, ACARS and LTE, while also choosing different
centre frequencies and editing the Antenna Gain.

The results are summarised in Table 7.4.

None of the policies was evaluated positively in this experiment, having each of them
a False Positive Rate (FPR) of 0% and a True Negative Rate (TNR) of 100%. The
framework is hence able to identify the normal behaviour of the device correctly.

42 CHAPTER 7. EVALUATION

Table 7.4: FPR and TNR of the Framework Policies When Detecting Normal Behaviour
in the ElectroSense Sensor.
Policy abnormal ransomware1 (Ransomware-PoC) ransomware2 (DarkRadiation)
Run Ev. FPR TNR Evaluation FPR TNR Evaluation FPR TNR
1 7 0% 100% 7 0% 100% 7 0% 100%
2 7 0% 100% 7 0% 100% 7 0% 100%
3 7 0% 100% 7 0% 100% 7 0% 100%
4 7 0% 100% 7 0% 100% 7 0% 100%
5 7 0% 100% 7 0% 100% 7 0% 100%

7.2.2 Experiment 2

In the second experiment, the framework ability to detect abnormal behaviour was eval-
uated. For abnormal behaviour, it was considered the installation of a package in the
system (command provided in Listing 7.2. The time in seconds from the start of the
experiment was recorded on the command execution and the time when the command
ended.

$ sudo apt-get install libboost-all-dev

Listing 7.2: Command Used to Install the Package

The results are shown in Table 7.5. The abnormal behaviour was correctly identified in
all five runs of the experiment. While obtaining 0 false positives from the ransomware1
policy, there were two false positives in the ransomware2 evaluation, both occurring only
in one measurement.

Table 7.5: TPR, FPR and TNR of the Framework Policies When Detecting Abnormal
Behaviour (Package Installation) in the ElectroSense Sensor.

abnormal ransom1 (Ransomware-PoC) ransomware2 (DarkRadiation)
Run Samples Ev. TPR FNR Evaluation FPR TNR Evaluation FPR TNR

1 16 X 100% 0% 7 0% 100% 7 0% 100%
2 15 X 100% 0% 7 0% 100% 7 0% 100%
3 9 X 100% 0% 7 0% 100% X 11.11% 88.89%
4 8 X 100% 0% 7 0% 100% 7 0% 100%
5 9 X 100% 0% 7 0% 100% X 11.11% 88.89%

Total 57 100% 0% 0% 100% 3.51% 96.49%

The ransomware2 policy incorrectly identified the package installation in 2 predictions.
As the DarkRadiation ransomware also installs packages, this behaviour might have been
picked up as well during the creation of the policy and would explain the false positive
prediction.

7.2.3 Experiment 3

The goal of the third experiment is to evaluate the ability of the framework to identify the
abnormal behaviour caused by the compression of files and to not flag this behaviour as

7.2. EXPERIMENTS 43

ransomware. For this purpose, a random folder was generated with the the code referenced
in Listing 7.3.

cd /home/electrosense

mkdir random_data

cd random_data

mkdir random_data_big

mkdir random_data_small

cd random_data_big

seq -w 1 $(shuf -i8-15 -n1) | xargs -n1 -I% sh -c 'dd if=/dev/urandom of=

↪→ file.% bs=$(shuf -i10000-60000 -n1) count=1024'
cd ..

cd random_data_small

seq -w 1 $(shuf -i100-500 -n1) | xargs -n1 -I% sh -c 'dd if=/dev/urandom

↪→ of=file.% bs=$(shuf -i1-10 -n1) count=1024'

Listing 7.3: Random File Generator Script

The random data folder was subsequently compressed with the tar command:

$ tar -zcvf example.tar.gz random_data

Listing 7.4: Command to Compress the Folder

The results are shown in Table 7.6.

Table 7.6: TPR, FPR and TNR of the Framework Policies When Detecting Abnormal
Behaviour (Folder Compression) in the ElectroSense Sensor.

abnormal ransom1 (Ransomware-PoC) ransomware2 (DarkRadiation)
Run Samples Ev. TPR FNR Evaluation FPR TNR Evaluation FPR TNR

1 19 X 100% 0% 7 0% 100% 7 0% 100%
2 5 X 100% 0% 7 0% 100% 7 0% 100%
3 8 X 87.5% 12.5% 7 0% 100% 7 0% 100%
4 10 X 100% 0% 7 0% 100% 7 0% 100%
5 9 X 88.89% 11.11% 7 0% 100% 7 0% 100%

Total 51 96.08% 3.92% 0% 100% 0% 100%

The compression behaviour was not always detected by the abnormal policy, although a
high TPR can be observed. None of the ransomware policies wrongly flagged it achieving
a 0% FPR.

7.2.4 Experiment 4

In the fourth experiment, the framework ability to correctly identify the Ransomware-PoC
was tested.

The ransomware was executed with the command shown in Listing 7.5.

44 CHAPTER 7. EVALUATION

$ cd Experiment/Ransomwares/ransomware1

$./ransom.bin

Listing 7.5: Command to Run the Ransomware 1

The ransomware was executed 30 seconds after the start of the monitoring. As the ran-
somware encrypts some critical files needed for the correct operation of ElectroSense, the
platform automatically restarted the Raspberry, denoting the end of each run. In order
to correctly measure the detection rate, the samples collected before the ransomware was
executed were not considered.

The results are shown in Table 7.7.

Table 7.7: TPR, FPR and TNR of the Framework Policies When Detecting Ransomware
1 in the ElectroSense Sensor.

abnormal ransom1 (Ransomware-PoC) ransomware2 (DarkRadiation)
Run Samples Ev. TPR FNR Evaluation TPR FNR Evaluation FPR TNR

1 12 X 91.67% 8.33% X 91.67% 8.33% 7 0% 100%
2 11 X 100% 0% X 90.91% 9.09% 7 0% 100%
3 12 X 100% 0% X 100% 0% 7 0% 100%
4 12 X 91.67% 8.33% X 91.67% 8.33% 7 0% 100%
5 12 X 91.67% 8.33% X 91.67% 8.33% X 8.33% 91.66%

Total 59 94.91% 5.09% 93.22% 6.78% 1.70% 98.30%

All the runs were flagged as abnormal and correctly identified the ransomware. Only a
small number of predictions were incorrect, with the ransomware being detected between
10 and 20s from execution. The ransomware2 policy incorrectly identified a sample,
however the FPR is very low at only 1.70%.

7.2.5 Experiment 5

The goal of the fifth experiment was to correctly identify the DarkRadiation ransomware
when files were present in the /home/electrosense folder. On a fresh installation, the
/home directory and its sub-directories are empty.

As DarkRadiation has three targets: (1) file with .py, .txt and .sh extensions, (2) /home
directory and (3) database files, a scenario when files are present in the /home directory
was taken into consideration.

All runs in this experiment were launched after each run of the 3rd experiment. The same
files were present to evaluate the precision of the policy, with the exact same files being
compressed.

Only the measurement after the ransomware had already infected the system and before
starting the encryption until the ransomware exited (i.e. after receiving the message
”sensor: encrypt db files Done. Delete files.”) were taken into consideration. This is
defined as the next sample after receiving the ”sensor: encrypt grep files started.” from

7.2. EXPERIMENTS 45

the ransomware Telegram Bot. The installation of the dependencies of DarkRadiation
was therefore not taken into consideration in this evaluation.

The results are shown in Table 7.8.

Table 7.8: TPR, FPR and TNR of the Framework Policies When Detecting Ransomware
2 and Randomly Generated Files Are Present in the /home Directory in the ElectroSense
Sensor.

abnormal ransom1 (Ransomware-PoC) ransomware2 (DarkRadiation)
Run Samples Ev. TPR FNR Evaluation FPR TNR Evaluation TPR FNR

1 10 X 80% 20% 7 0% 100% X 60% 40%
2 7 X 85.71% 14.29% 7 0% 100% X 57.14% 42.86%
3 10 X 90% 10% 7 0% 100% X 50% 50%
4 12 X 91.67% 8.33% 7 0% 100% X 58.33% 41.67%
5 10 X 100% 0% 7 0% 100% X 50% 50%

Total 49 89.80% 10.20% 0% 100% 55.10% 44.90%

The ransomware was identified in all cases between 10s and 20s from execution, however,
with a poor TPR. As not many files are present in the device, the first and third encryption
phases of the ransomware are not correctly identified by the policy.

/usr/lib/python3/dist-packages/click/_compat.py (4)

real 0m10.098s

user 0m0.767s

sys 0m1.799s

Listing 7.6: Result of the Time Measurement of the grep Command Executed by
DarkRadiation for Phase 1

/var/log/boot.log (6.6K)

/var/lib/apt/listchanges.db (17K)

/var/lib/apt/listchanges-old.db (12K)

/usr/bin/traceproto.db (2.9K)

/usr/bin/traceroute.db (56K)

/usr/bin/lft.db (2.5K)

/usr/share/doc/python3.5/pybench.log (36)

/usr/sbin/tcptraceroute.db (1.6K)

/lib/firmware/regulatory.db (4.0K)

real 0m16.629s

user 0m15.829s

sys 0m0.582s

Listing 7.7: Result of the Time Measurement of the grep Command Executed by
DarkRadiation for Phase 2. In the brackets the file size was added for reference.

Given the low amount of files and their small size, specifically 11 files weighing 0.1MB
in total, the policy was not always able to detect those phases, hence the relatively high
FNR of 44.90% was observed.

46 CHAPTER 7. EVALUATION

7.2.6 Experiment 6

In the last experiment, it was again tested the framework capability of identifying the
DarkRadiation Ransomware, however in this experiment the /home directory was left as
is, without the file generation applied to experiments 5 and 3. The start and end of the
experiments, are defined as in experiment 5, i.e. only the encryption phase was taken into
consideration.

The results are shown in Table 7.9.

Table 7.9: TPR, FPR and TNR of the Framework Policies When Detecting Ransomware
2 And the /home Directory Is Empty in the ElectroSense Sensor.

abnormal ransom1 (Ransomware-PoC) ransomware2 (DarkRadiation)
Run Samples Ev. TPR FNR Evaluation FPR TNR Evaluation TPR FNR

1 4 X 75% 25% 7 0% 100% X 25% 75%
2 3 X 66.67% 33.33% 7 0% 100% X 33.33% 66.67%
3 4 X 50% 50% 7 0% 100% X 25% 75%
4 4 X 75% 25% 7 0% 100% X 25% 75%
5 3 X 100% 0% 7 0% 100% X 66.67% 33.33%

Total 18 72.22% 27.78% 0% 100% 33.33% 66.67%

In all the runs, the ransomware was correctly detected, but only on a single measurement.
As shown in Experiment 5, there is only a small amount of files in the system affected by
this ransomware when the /home directory is empty.

The policy was still able to detect the ransomware, and abnormal behaviour was also
detected, but with a shallow rate, indicating that the policy might be able to detect the
grep command traversing the directories.

7.3 Discussion & Limitations

It can be observed from the experimental results that the framework is capable of correctly
detect and identify the two ransomware taken into consideration by this Thesis and the
abnormal behaviour generated by installing a package and compressing a folder.

The most promising results are given by the ransomware 1 detection, with an FPR of 0%
and being able to always correctly identify the ransomware between 10 and 20 seconds after
execution. Although three false-negative predictions can be observed, the experimental
results show that the framework can identify the ransomware with high accuracy.

The DarkRadiation ransomware, although also correctly identified in all experiments, it
showed a 3-4% FPR on Experiment 2 and 4 and a small rate (55.10%) of correct predictions
during the encryption stage. As the normal usage of the device as part of ElectroSense
does not involve direct manipulation, the obtained results show promising results on the
ability of the framework to correctly identify a DarkRadiation infection of the device.
However, given the small number of files being encrypted with an empty /home directory,
it was necessary for the policy to have a high sensitivity on file manipulation actions.

7.3. DISCUSSION & LIMITATIONS 47

The Helper Tool was of great importance in the policy creation process, as creating the
policies manually was a time-consuming and error-prone task. The Tool has allowed a
quick generation of policies, then evaluated thanks to the Visualization provided by both
the front-end and the graphs generated by the Helper Tool.

48 CHAPTER 7. EVALUATION

Chapter 8

Summary and Conclusions

In this work, a policy-based framework considering behavioral fingerprinting was designed
and implemented to detect anomalies and ransomware affecting IoT devices. Heteroge-
neous data sources such as hardware metrics, kernel tracepoints and HPCs are monitored
to create device behavioural fingerprints. As a proof of concept, the framework has been
implemented and deployed in a crowdsensing platform called ElectroSense. In such a
scenario, a set of policies to detect anomalies and several ransomware behaviors where
designed and implemented as a proof-of-concept. After that, two ransomware belonging
to different families were executed on the device and the behavior device was collected.
The policies were finally evaluated in a series of experiments to measure their efficacy and
the capability of the framework in identifying the two malware samples.

The experiments showed promising results in the ability of the framework to detect the
malicious behaviour of the two ransomware, being able to correctly identify both between
10 and 20 seconds from execution even when only 0.1MB of files were encrypted. How-
ever, this solution efficacy is limited by the number of files (and their size) target by the
ransomware. Experimental results reveal a 3-4% false positive rate on the ransomware
affecting the lowest amount of files in the system. However, a low true positive rate
(55.10%) of the predictions was observed if randomly generated files were present in the
system and only a 33.33% TPR when the malware targeted a minimal amount of files.

Future work will focus on increasing the accuracy of the policies and decreasing the time
required for detection by limiting the number of metrics being monitored. An attempt to
automatically create the policies via machine learning techniques will also be attempted
to investigate if a higher accuracy can be achieved with less time effort when this process
is not done manually.

49

50 CHAPTER 8. SUMMARY AND CONCLUSIONS

Bibliography

[1] Zumwald, M., Knüsel, B., Bresch, D., & Knutti, R. (2021). Mapping urban tem-
perature using crowd-sensing data and machine learning. In Urban Climate, 35 (1),
100739.

[2] ElectroSense Website. https://electrosense.org/#!/. Last visit July 11, 2021.

[3] ElectroSense Github Repository. https://github.com/electrosense/es-sensor.
Last visit July 11, 2021.

[4] Rajendran, S., Calvo-Palomino, R., Fuchs, M., Van den Bergh, B., Cordob’es, H.,
Giustiniano, D., Pollin, S., & Lenders, V. (2018). ElectroSense: Open and Big Spec-
trum Data. IEEE Communications Magazine, 56 (1), 210–217.

[5] Rajendran, S., Calvo-Palomino, R., Fuchs, M., Van den Bergh, B., Cordobés, H.,
Engel, M., Giustiniano, D., Pollin, S., Jain, P., Liechti, M., Schäfer, M., & Lenders, V.
(2020). ElectroSense+: Crowdsourcing radio spectrum decoding using IoT receivers.
Computer Networks, 174, 107231.

[6] Jetvision Website. https://shop.jetvision.de/epages/64807909.sf/en_GB/

?ObjectPath=/Shops/64807909/Categories/ElectroSense_Kits. Last visit July
11, 2021.

[7] Raspberry Blog. https://www.raspberrypi.org/blog/raspberry-pi-silicon-

pico-now-on-sale/. Last visit July 11, 2021.

[8] Cisco Website. https://tools.cisco.com/security/center/resources/virus_

differences. Last visit July 11, 2021.

[9] HomeAssistant Website. https://www.home-assistant.io/ . Last visit July 11,
2021.

[10] Virustotal https://www.virustotal.com/gui/. Last visit July 17, 2021.

[11] Xu, T., Wendt, J., & Potkonjak, M. (2014). Security of IoT systems: Design chal-
lenges and opportunities. In Proceedings of the 2014 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), San Jose, USA, pp. 417–423.

[12] Wurm, J., Hoang, K., Arias, O., Sadeghi, A., & Jin Y. (2016). Security analysis on
consumer and industrial IoT devices. In Proceedings of the 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), Macao, China, pp. 519–524.

51

52 BIBLIOGRAPHY

[13] Meneghello, F., Calore, M., Zucchetto, D., Polese, M & Zanella, A. (2019). IoT:
Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT
Devices. IEEE Internet of Things Journal, 6 (5), 8182–8201.

[14] Reuters https://www.reuters.com/article/us-cyber-attack-europol-

idUSKCN18A0FX. Last visit July 11, 2021.

[15] The New York Times. https://www.nytimes.com/2020/09/18/world/europe/

cyber-attack-germany-ransomeware-death.html. Last visit July 11, 2021.

[16] Reuters. https://www.reuters.com/world/us/far-colonial-pipeline-panic-

buying-leaves-florida-cities-short-gas-2021-05-13/ Last visit July 11,
2021.

[17] The New York Times. https://www.nytimes.com/2021/05/11/business/

colonial-pipeline-shutdown-latest-news.html Last visit July 11, 2021.

[18] Forbes. https://www.forbes.com/sites/rrapier/2021/05/11/panic-buying-

is-causing-gas-shortages-along-the-colonial-pipeline-route/ Last visit
July 11, 2021.

[19] Fortune. https://fortune.com/2021/05/12/colonial-pipeline-back-panic-

buying-chaos-pump/ Last visit July 11, 2021.

[20] Ransomware PoC GitHub repository. https://github.com/jimmy-ly00/

Ransomware-PoC Last visit July 15, 2021.

[21] Nullaray’s Cypher Github Repository https://github.com/NullArray/Cypher

Last visit July 21, 2021.

[22] Trendmicro analysis of DarkRadiation. https://www.trendmicro.com/en_us/

research/21/f/bash-ransomware-darkradiation-targets-red-hat--and-

debian-based-linux-distributions.html Last visit July 15, 2021.

[23] Ferrante, A., Malek, M., Martinelli, F., & Milosevic, J. (2017). Extinguishing Ran-
somware - A Hybrid Approach to Android Ransomware Detection. In Imine A., Fer-
nandez J., Marion JY., Logrippo L., Garcia-Alfaro J. (eds) Foundations and Practice
of Security (pp. 242–258). Cham: Springer.

[24] Sgandurra, D., Muñoz-Gonzâlez, L., Mohsen, R., & Lupu, E. C. (2016). Automated
Dynamic Analysis of Ransomware: Benefits, Limitations and use for Detection.
CoRR:abs/1609.03020.

[25] Cabaj, K., Gregorczyk, M., & Mazurczyk, W., (2017). Software-Defined Networking-
based Crypto Ransomware Detection Using HTTP Traffic Characteristics. In Com-
puters & Electrical Engineering, 66, 353–368.

[26] Almashhadani, A. O., Kaiiali, M., Sezer, S., & O’Kane, P. (2019). A Multi-Classifier
Network-Based Crypto Ransomware Detection System: A Case Study of Locky Ran-
somware. In IEEE Access 7, 47053–47067.

BIBLIOGRAPHY 53

[27] Vinayakumar, R., Soman, K., Senthil Velan, K. K., & Ganorkar, S. (2017). Eval-
uating shallow and deep networks for ransomware detection and classification. In
Proceedings of the 2017 International Conference on Advances in Computing, Com-
munications and Informatics (ICACCI), Udupi, India, pp. 259-265.

[28] Bae, S. I., Bin, G. L., & Im, E. G. (2020). Ransomware detection using machine
learning algorithms. Concurrency and Computation: Practice and Experience. Con-
currency and Computation Practice and Experience 32 (18), e5422.

[29] Alhawi, O. M. K., Baldwin, J., & Dehghantanha, A. (2018). Leveraging Machine
Learning Techniques for Windows Ransomware Network Traffic Detection. In Conti,
M. Dargahi, T. (eds). Cyber Threat Intelligence(pp. 93–10). Cham: Springer.

[30] Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., & Kirda, E. (2016). UNVEIL:
a large-scale, automated approach to detecting ransomware. In Proceedings of the
25th USENIX Conference on Security Symposium (SEC’16), Austin, TX, USA, pp.
757–772.

[31] Maniath, S., Ashok, A., Poornachandran, P., Sujadevi, V.G., Sankar A.U. P., &
Jan, S. (2017). Deep learning LSTM based ransomware detection. In Proceedings of
the Recent Developments in Control, Automation & Power Engineering (RDCAPE),
Noida, India, pp. 442–446.

[32] Maiorca D., Mercaldo, F., Giacinto, G., Visaggio, C. A., & Martinelli, F. (2017). R-
PackDroid: API package-based characterization and detection of mobile ransomware.
In Proceedings of the Symposium on Applied Computing (SAC ’17), Marrakech, Mo-
rocco, pp. 1718–1723.

[33] Scaife, N., Carter,H., Traynor, P., & Butler, K. R. B. (2016) CryptoLock (and Drop
It): Stopping Ransomware Attacks on User Data. In Proceedings of the IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), Nara, Japan,
pp. 303–312.

[34] Cusack, G., Michel, O., & Keller, E. (2018). Machine Learning-Based Detection of
Ransomware Using SDN. In Proceedings of the ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization (SDN-
NFV Sec’18), Tempe, AZ, USA, pp. 1–6.

[35] Hwang, J., Kim, J., Lee, S., & Kim, K. (2020). Two-Stage Ransomware Detection
Using Dynamic Analysis and Machine Learning Techniques. Wireless Personal Com-
munication, 112, 1–13.

[36] Jung, S., & Won, Y. (2018). Ransomware detection method based on context-aware
entropy analysis. Soft Computing 22, 6731–6740.

[37] Morato, D., Berrueta, E., Magaña, E., & Izal, M. (2018). Ransomware early detection
by the analysis of file sharing traffic. Journal of Network and Computer Applications
124, 14–32.

54 BIBLIOGRAPHY

[38] Kharraz, A., Robertson, W. K., Balzarotti, D., Bilge, L., & Kirda, E. (2015). Cutting
the Gordian Knot: A Look Under the Hood of Ransomware Attacks. In Proceedings
of the International Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA), Milan, Italy, pp. 3–24.

[39] Alam, M., Bhattacharya, S., Mukhopadhyay, D., & Chattopadhyay, A., Sinha, S.,
Dutta, S. (2018). RAPPER: Ransomware Prevention via Performance Counters.
arXiv preprint, ArXiv:abs/1802.03909.

[40] Cloudflare. https://www.cloudflare.com/it-it/learning/ddos/glossary/

malware/ Last visit July 11, 2021.

[41] Chess, D. M., & White, S. R. (2000). An undetectable computer virus. In Proceedings
of the Virus Bulletin Conference, Orlando, FL, USA, 2000.

[42] Ömer, A., & Refik, S. (2020). A Comprehensive Review on Malware Detection Ap-
proaches. IEEE Access, 8, 6249–6271, 2020.

[43] Cohen, F. (1987). Computer viruses: Theory and experiments. Computers & Secu-
rity, (6)1, 22–35.

[44] Lysne, O. (2018). Static Detection of Malware. In (ed). The Huawei and Snowden
Questions (pp. 57–66). Cham: Springer.

[45] Sihwail, R., Omar, K., & Ariffin, K. A. Z. (2018). A Survey on Malware Analysis
Techniques: Static, Dynamic, Hybrid and Memory Analysis. International Journal
on Advanced Science Engineering and Information Technology 8 (4-2), 1662.

[46] Damodaran, A., Di Troia, F., Visaggi, C. A., & Austin, T. H. (2017). A comparison
of static, dynamic, and hybrid analysis for malware detection. Journal of Computer
Virology and Hacking Techniques 13 (1), 1–12.

[47] Souri, A., & Hosseini, R. (2018). A state-of-the-art survey of malware: detection ap-
proaches using data mining techniques. Human-centric Computing and Information
Sciences 8 (1), 1-22.

[48] Alazab, M., Venkatraman, S., & Watters, P. (2010). Towards understanding malware
behaviour by the extraction of API calls. In Proceedings of the 2nd Cybercrime and
Trustworthy Computing Workshop (CTC), Ballarat, VIC, Australia, pp. 52–59.

[49] Bazrafshan, Z., Hashemi, H., Fard, S.M.H. & Hamzeh, A. (2013). A survey on heuris-
tic malware detection techniques. In Information and Knowledge Technology, pages
113–120, 2013.

[50] Idika, N., & Mathur, A. P. (2007). A survey of malware detection techniques. Purdue
University, pp. 48.

[51] Sánchez Sánchez, P. M., Maŕıa Jorquera Valero, J., Huertas Celdrán, A., Bovet,
G., Gil Pérez, M., & Mart́ınez Pérez, G. (2020). A Survey on Device Behavior Fin-
gerprinting: Data Sources, Techniques, Application Scenarios, and Datasets. arXiv
e-prints, arXiv-2008.

BIBLIOGRAPHY 55

[52] Golomb, T., Mirsky, Y., Elovici, Y. (2018). CIoTA: Collaborative IoT Anomaly De-
tection via Blockchain. arXiv preprint ArXiv:abs/1803.03807.

[53] Wang, X., Konstantinou, C., Maniatakos, M., & Karri, R. (2015). ConFirm: De-
tecting firmware modifications in embedded systems using Hardware Performance
Counters. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Austin, TX, USA, pp. 544–551.

[54] Barbhuiya, S., Papazachos, Z., Kilpatrick, P., & Nikolopoulos, D. S. (2018). RADS:
Real-time Anomaly Detection System for Cloud Data Centres. arXiv preprint
ArXiv:abs/1811.04481 .

[55] Telegram Bots developer documentation. https://core.telegram.org/bots. Last
visit July 24, 2021.

[56] Openssl website. https://www.openssl.org/. Last visit July 24, 2021.

[57] RabbitMQ website. https://www.rabbitmq.com/. Last visit July 25, 2021.

[58] Perf tool wiki. https://perf.wiki.kernel.org/index.php/Main_Page. Last visit
July 25, 2021.

[59] Psutil tool wiki. https://github.com/giampaolo/psutil. Last visit July 25, 2021.

[60] VueJS Website. https://vuejs.org/. Last visit July 25, 2021.

[61] Grep Wikipedia Page. https://en.wikipedia.org/wiki/Grep. Last visit July 25,
2021.

[62] Malware Bazaar Website. https://bazaar.abuse.ch/ Last visit July 29, 2021.

[63] Hardare Performance Counter Wiki page. https://en.wikipedia.org/wiki/

Hardware_performance_counter Last visit July 29, 2021

[64] Cohen, F. (1986) Computer viruses. Ph.D. dissertation, Univ. Southern California,
Los Angeles, CA, USA.

[65] Kasperky. https://www.kaspersky.com/resource-center/threats/computer-

viruses-vs-worms Last visit July 31, 2021

[66] Cisco Ransomware Defense Validated Design Guide. https://www.eschoolnews.

com/files/2017/02/494454_Ransomware-Defense-Validated-Design-

Guide.pdf Last visit July 31, 2021

56 BIBLIOGRAPHY

Abbreviations

HPC Hardware Performance Counters
IoT Internet of Things
OS Operating System
HW Hardware
ML Machine Learning
C&C Command & Control
TP True Positive
FP False Positive
TN True Negative
FN False Negative
TPR True Positive Rate
FPR False Positive Rate
TNR True Negative Rate
FNR False Negative Rate
FNR False Negative Rate
Ev. Evaluation
Ex. Experiment
Pred. Prediction
WS Web Sockets
RF Radio Frequency
SDN Software-Defined Networking
DDoS Distributed Denial of Service
MBR Master Boot Record

57

58 ABBREVIATONS

Glossary

0–day 0–day malwares or vulnerabilities are novel malicious codes and exploits respec-
tively, which were unknown before.

Hardware Performance Counters are special registers built-in in the CPU which store
the count of hardware related events. [63]

59

60 GLOSSARY

List of Figures

2.1 Stages of a Ransomware Attack . 6

2.2 Malware Detection Methods [45] . 7

3.1 Analysis of Recent Ransowmare Detection Research: (a) Technique Used;
(b) OS Used; (c) Domains Analysed; and, (d) Type of Analysis. 11

4.1 ElectroSense architecture overview [5] . 13

4.2 Screenshot of the ElectroSense Spectrum Monitor UI [2] 14

4.3 Screenshot of the ElectroSense Decoder UI [2] 14

4.4 ElectroSense dipole kit [6] . 15

4.5 Ransom note left by DarkRadiation . 17

5.1 Framework Architecture . 22

5.2 Flowchart Displaying the Policy Evaluation Flow 23

6.1 Screenshot of the Ransomware Monitor . 26

6.2 Screenshot of the Charts Generated by the Helper Tool. The Red Bands
Indicate the Automatically Generated Policy for the Metric 34

6.3 Screenshot of the Device Selection . 36

6.4 Screenshot of the Device Page. The Policy Detection Timeline is Displayed
in the Upper Part. A Highlighted Metric Can Be Seen by the Red Shadow. 37

6.5 Screenshot of a Metric Chart. 37

6.6 Screenshot of the Device Configuration . 38

6.7 Screenshot of the Policy Editor . 38

7.1 Example of Policy Generated for a Metric to Detect the Ransomware in
Comparison Mode With the Abnormal Behaviour Policy. 40

61

62 LIST OF FIGURES

List of Tables

2.1 Malware Detection Methods . 8

3.1 Ransomware Detection in Recent Literature [37] 11

6.1 List of Commands Accepted by the Ransomware Monitor 31

6.2 API Endpoints Provided by the Back-end 31

7.1 Abnormal Policy Metrics and Weights . 40

7.2 Ransomware 1 Policy Metrics and Weights 40

7.3 Ransomware 2 Policy Metrics and Weights 41

7.4 FPR and TNR of the Framework Policies When Detecting Normal Be-
haviour in the ElectroSense Sensor. 42

7.5 TPR, FPR and TNR of the Framework Policies When Detecting Abnormal
Behaviour (Package Installation) in the ElectroSense Sensor. 42

7.6 TPR, FPR and TNR of the Framework Policies When Detecting Abnormal
Behaviour (Folder Compression) in the ElectroSense Sensor. 43

7.7 TPR, FPR and TNR of the Framework Policies When Detecting Ran-
somware 1 in the ElectroSense Sensor. 44

7.8 TPR, FPR and TNR of the Framework Policies When Detecting Ran-
somware 2 and Randomly Generated Files Are Present in the /home Di-
rectory in the ElectroSense Sensor. 45

7.9 TPR, FPR and TNR of the Framework Policies When Detecting Ran-
somware 2 And the /home Directory Is Empty in the ElectroSense Sensor. 46

63

64 LIST OF TABLES

Appendix A

Installation Guidelines

A.1 Ransomware Monitor

Prerequisites

1. Perf must be installed and present in the system. In the Raspberry used in this
Thesis, the following commands were used to install it.

$ sudo apt update

$ sudo apt install linux-tools-4.9

2. A directory named ”config”

3. Inside the ”config” directory a config.yaml file must be present and correctly setup
(as described in Chapter 6.4.3), and a ”policy” directory must also be present as
well.

4. (optional) Policies can be added in the ”policies” directory

5. (optional) RabbitMQ installed (please see the Back-end installation guideline).

It is assumed that the prerequisite are applied at the root in both the source and binary
version of the Ransomware Monitor.

A.1.1 Source

1. Python3 must be installed (https://www.python.org/downloads/)

2. Python3 Venv is used to facilitate the installation of dependencies

$ sudo apt install python3-venv

3. Create and activate the environment

65

66 APPENDIX A. INSTALLATION GUIDELINES

$ python3 -m venv monitor_env

$ source monitor_env/bin/activate

4. Install dependencies

$ pip install -r requirements.txt

5. Run the script

$ python main.py

6. (Optional) Create a binary. The binary will be available inside the dist directory.
The binary is tailored to the system used to create it and it is not cross-platform
compatible.

$ pyinstaller --onefile main.py

A.1.2 Binary

It is sufficient to execute the binary.

$./main

A.2 Back-end

A.2.1 Prerequisites

1. NodeJS: Node v12.13.0 or higher must be installed in the system (https://nodejs.org/it/).

2. RabbitMQ: It is suggested to install RabbitMQ via Docker (https://hub.docker.com/ /rabbitmq).
In this Thesis the rabbitmq:3.8.2-management image was used.

3. The .env file must be configured by modifiying the RABBITMQ URI variable with
the coordinates to the RabbitMQ instance. By default this variable assumes a local
RabbitMQ installation (i.e. amqp://guest:guest@localhost:5672)

4. (optional) Modify the other variables in the .env file. Please read the README.md
inside the backend directory for more information about the variables.

A.2.2 Running the backend

Inside the backend directory

$ yarn install

$ yarn start:dev

A.3. FRONT-END 67

A.3 Front-end

A.3.1 Prerequisites

1. NodeJS: Node v12.13.0 or higher must be installed in the system (https://nodejs.org/it/).

2. Backend setup and running

3. The .env file must be configured by modifiying the VUE APP API ENDPOINT
and VUE APP WS ENDPOINT variables. If the default values of the Back-end
were not modified and it is hosted on the same machine, the default values of the
.env file are already correct and are added here for reference.

VUE_APP_API_ENDPOINT=http://localhost:3000/api/v1

VUE_APP_WS_ENDPOINT=ws://localhost:81/websocket

A.3.2 Running the frontend

Inside the frontend directory.

$ yarn install

$ yarn serve

A.4 Ransomware 1: Ransomware PoC

The binary version is assumed. The source version provides a README.md file with
further details.

The ransomware consists of a directory containing:

1. boot.asm

2. boot.bin

3. ransom.bin

A.4.1 Execution

Execute the ransomware with:

Please ensure not to run the ransomware on a production machine, as it will encrypt
all the files.

$./ransom.bin

68 APPENDIX A. INSTALLATION GUIDELINES

A.5 Helper Tool

1. Python3 must be installed (https://www.python.org/downloads/)

2. Python3 Venv is used to facilitate the installation of dependencies

$ sudo apt install python3-venv

3. Create and activate the environment

$ python3 -m venv helper_tool_env

$ source helper_tool_env/bin/activate

4. Install dependencies

$ pip install -r requirements.txt

5. Run the script

$ python helperTool.py

A.6 Ransomware 2: DarkRadiation

The ransomware consists of a directory containing the following files:

1. bash.sh

2. bot.sh

3. supermicro cr.sh

A.6.1 Prerequisites

Edit all three files mentioned before by replacing the following placeholders with the
correct values.

1. <TELEGRAM_TOKEN>

2. <CHAT_ID>

For a Telegram Bot creation procedure, please refer to the Telegram documentation
(https://core.telegram.org/bots).

Lines 53 and 59 of supermicro cr.sh also need to be modified to represent the path where
the ransomware is present in the system.

A.6. RANSOMWARE 2: DARKRADIATION 69

A.6.2 Execution

Execute the ransomware with1:

Please ensure not to run the ransomware on a production machine, as it will encrypt
all the files.

$ nohup ./supermicro_cr.sh testpassword & exit

1this command is extracted from the real ransomware execution in the wild

70 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

1. This Thesis in PDF version

2. This Thesis as LATEXsource comprising the figures.

3. The mid-term presentation as a PowerPoint file.

4. A ”Sources” directory containing the source code of the Ransom Monitor, the Back-
end, Front-end and the Helper Tool. A compressed folder containing the source code
of both ransowmare (password of the folder is: infected).

5. An ”Experiment” directory containing

(a) A ”monitor-bin” directory with the binary of the Ransom Monitor. The in-
cluded config directory is already setup with the configuration and policies
mentioned in this Thesis; however the RabbitMQ configuration must be cor-
rectly defined as described in Appendix A.

(b) A ”Ransomware”compressed directory containing both ransomare in executable
form1. The password of the compressed folder is: infected.

(c) A setup.sh script to install perf on the Raspberry.

(d) A random file generator.sh script to generate random file in the /home direc-
tory.

6. A Data directory with the dataset generated during the evaluation.

1DarkRadiation being a bash script does not differ from the source version

71

