Communication Systems Group, Prof. Dr. Burkhard Stiller

MASTER THESIS

) University of

Z f.;.: :‘E o UZH
=w Zurich

Secure Deployment and
Configuration Management for a
Decentralized Remote Electronic

Voting System

Roger Staubli
Zurich, Switzerland
Student ID: 12-913-778

Supervisor: Christian Killer, Bruno Rodrigues
Date of Submission: July 09, 2021

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Master Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

The integrity and validity of elections are cornerstones in each modern democracy. With
the introduction of e-voting systems, and in particular, remote electronic voting (REV)
systems, completely new and unique challenges arise. REV systems allow citizen to cast
their votes from a remote, uncontrolled device. To securely provide such a system, high
privacy and verifiability requirements need to be fulfilled. As privacy and verifiability re-
quirements are in direct opposition, wide research has already been conducted to provide
cryptographic protocols in order to fulfill these requirements. However, as research mainly
focuses on theoretical protocols and on proving the fulfillment of these requirements, less
effort is made to provide implementations or productional deployments of such systems.
Since the security of an application is only as strong as its weakest component, all aspects
need to be carefully analyzed. In particular, a reproducible deployment of a REV sys-
tem can provide a starting point to test the security, scalability, and usability of voting
protocols in an end-to-end fashion.

This work focuses on the deployment of Provotum, a decentralized REV system. To
provide a reproducible and testable application, a modular deployment framework was
designed and implemented. This framework allows configuring and setting up the whole
infrastructure with infrastructure-as-a-code (IAAC) and consists of a continuous inte-
gration / continuous delivery (CI/CD) pipeline, a private Docker registry, a vulnerability
scanner, and a monitoring service. Within this infrastructure, it is possible to build Provo-
tum securely and deploy it in a decentralized environment. Finally, the infrastructure and
the deployed application are evaluated according to security, scalability, and usability. In
addition, a literature research was carried out to identify core privacy and verifiability
properties of REV systems.

1

Zusammenfassung

Die Integritdt und Giiltigkeit von Wahlen sind Eckpfeiler jeder modernen Demokratie.
Mit der Einfithrung von E-Voting-Systemen und insbesondere von Remote Electronic
Voting (REV) Systemen ergeben sich vollig neue und einzigartige Herausforderungen.
REV-Systeme ermoglichen es Biirgern, ihre Stimmen von einem unkontrollierten Gerét
aus abzugeben. Um ein solches System sicher bereitzustellen, miissen hohe Anforderungen
an Privatsphére und Verifizierbarkeit erfiillt werden. Da Privatsphére und Verifizierbar-
keitsanforderungen in direktem Widerspruch stehen, wurden bereits umfangreiche Studien
durchgefiihrt, welche probieren, mit kryptografischen Protokollen diese Anforderungen zu
erfiillen. Da sich die Forschung jedoch hauptséchlich auf theoretische Protokolle und den
Beweis der Erfiillung dieser Anforderungen konzentriert, werden weniger Anstrengungen
unternommen, um Implementierungen oder produktive Deployments solcher Systeme be-
reitzustellen. Da die Sicherheit einer Anwendung nur so stark ist wie ihre schwichste
Komponente, miissen alle Aspekte sorgfiltig analysiert werden. Insbesondere kann ein
reproduzierbares Deployment eines REV-Systems einen Ausgangspunkt bieten, um die
Sicherheit, Skalierbarkeit und Benutzerfreundlichkeit von Abstimmungsapplikationen zu
testen.

Diese Arbeit konzentriert sich auf das Deployment von Provotum, einem dezentralen REV-
System. Um eine reproduzierbare und testbare Anwendung bereitzustellen, wurde ein mo-
dulares Deployment Framework entworfen und implementiert. Dieses Framework ermog-
licht die Konfiguration und Einrichtung der gesamten Infrastruktur mit Infrastructure-
as-a-Code (IAAC) und besteht aus einer Continuous Integration / Continuous Delivery
(CI/CD)-Pipeline, einer privaten Docker-Registry, einem Schwachstellen-Scanner und ei-
ner Uberwachungsanwendung. Innerhalb dieser Infrastruktur ist es moglich, Provotum
sicher zu bauen und in einer dezentralen Umgebung zu deployen. Schliesslich werden
die Infrastruktur und die bereitgestellte Anwendung nach Sicherheit, Skalierbarkeit und
Benutzerfreundlichkeit bewertet. Dariiber hinaus wurde eine Literaturrecherche durch-
gefiithrt, um die wichtigsten Datenschutz- und Verifizierbarkeitsanforderungen von REV-
Systemen zu identifizieren.

iii

v

Acknowledgments

Hereby, I would like to express my gratitude to everyone who has supported me in achiev-
ing my academic goals during the last few years.

First of all, I would like to thank Christan Killer, who has guided me throughout my
thesis. Without his great feedback and valuable discussions, the thesis would not be at
the point where it is now. In addition, my thanks go to Prof. Dr. Burkhard Stiller for
offering me the possibility to write the thesis at the Communication Systems Group.

Moreover, my thanks go to my brother Cyrill, who encouraged me during my whole study
and always motivated me when I got tired.

Without their help, this achievement would not have been possible.

vi

Contents

Abstract
Zusammenfassung
Acknowledgments

1 Introduction
1.1 Description of Work

1.2 Thesis Outline

2 Property Analysis of REV Systems

2.1 Definitionso
2.1.1 Privacy
2.1.2 Verifiability

2.2 Relevant REV Systems oo
221 CGSI7 . . . o
222 JCJOS . .o
223 HRZO8
2.2.4 Unrelated Systems L

2.3 Comparison

vil

viii CONTENTS

3 Background 17
3.1 Continuous Integration / Continuous Delivery 17
3.2 Design Overview 17
3.3 Infrastructure-As-A-Code 18
3.4 Containerized Applications 19

3.4.1 Container vs. Virtual Machine 19
3.4.2 Container Security Lo 21
343 Docker 21
3.4.4 Docker-compose 22
3.5 Reproducibility 22
3.6 Distributed Ledger Technology 23

4 Related Work 25
4.1 System Architecture CHVote 25
4.2 System Architecture Swiss Post E-Voting 26

5 System Design 27
5.1 Container Security Threat Model 27

5.1.1 Dockerfile 28
5.1.2 Build Machine oo 29
5.1.3 Docker Registry 30
5.1.4 Container Deployment 31
5.2 CI/CD Infrastructure Design 32
5.2.1 Overview 33
5.2.2 Components 34
5.2.3 Deployment Pipeline 37
5.3 Provotum 3.0 Deployment Design 37
5.3.1 Protocol 38
5.3.2 Deployment o 38

5.3.3 Extensions 39

CONTENTS

6 Implementation

6.1 CI/CD Infrastructure Deployment
6.1.1 Technologies
6.1.2 Deployment Procedure
6.1.3 Technical Limitations
6.2 Provotum 3.0 Deployment
6.2.1 Building the Image
6.2.2 Provisioning
6.2.3 Configuration
6.2.4 The Command-Line Interface
6.2.5 Monitoring
6.2.6 Technical Limitations

7 Evaluation

7.1 Core Principles
7.1.1 TAAC and Containerization
7.1.2 Container Security
7.1.3 Secure Data Transfer
7.1.4 Extensibility

7.2 Provotum Deployment
7.2.1 Overview
7.2.2 Provotum 3.0 Deplyoment

8 Summary and Conclusions

81 Future Work

8.1.1
8.1.2

8.1.3

Abbreviations

Improve Provotum 3.0 Implementations
Improve the Security of the Deployment

Improve the Usability of the Deployment

ix
41
41
41
42
42
43
44
44
45
45
46
47

49
49
49
20
ol
52
52
52

53

57
o8
o8
o8
29

65

X CONTENTS

List of Figures 65
List of Tables 67
List of Listings 69
A Additional Provotum 3.0 Scalability Results 73
B Installation Guidelines 75

C Contents of the CD 77

Chapter 1

Introduction

"Is there a reproducibility crisis?”. The famous survey from Nature’s journal about the
reproducibility crisis started a broad discussion in all areas of science [2]. Can researchers
reproduce other scientist’s experiment results? Can they even produce their own results?
The survey showed that 70% could not reproduce other researchers’ results, and more
than half of them could not even reproduce their own experiments. In addition, the
majority of those surveyed answered that the replication of the lab environment is often
not possible, and most of them wish to have a more robust experimental design [2]. If
we apply those results to the field of computer science, many experimental setups within
integrated systems are challenging to reproduce. Although computer science experiments
are based on algorithms, reproducibility is often hard to achieve. These problems can
have many different causes. Researchers might not publish the source code. They might
not specify dependent software components, not providing well-documented code, or their
hardware setup might not be reproducible, to name some of them [31].

Much research in the field of Remote Electronic Voting (REV) systems is currently going
on [32]. These systems aim to allow citizens to vote from an electronic device in an
uncontrolled environment (e.q. voting with the mobile phone over the internet) [19]. Due
to the importance of fair elections in a democracy and the use of REV systems in an
uncontrolled environment, a high level of privacy and verifiability is essential within such
systems. As research often focuses on designing such voting protocols and on prooving
of privacy and verifiability properties, reproducible prototypes are difficult to find. Since
implementation details of such systems can significantly impact security, scalability, or
usability, a reproducible and testable application is essential for other researchers. With
that, they can repeat experiments, find implementation issues, improve the voting protocol
or compare implementations with each other. For these reasons, a reproducible and
configurable system is a small step forward in the challenging research of REV.

In this work, we aim to provide a prototype for the cloud deployment of a REV system.
The goal is that other scientists, voting authorities, or third parties can fastly deploy the
system in the cloud and test it without limitations.

2 CHAPTER 1. INTRODUCTION

1.1 Description of Work

The overarching goal of this thesis is to design and implement a reproducible deploy-
ment and configuration management system for Provotum 3.0 [19], a decentralized, REV
system. The system aims to provide a secure and straightforward way to deploy a de-
centralized application within a cloud infrastructure. To reach this goal, a continuous
integration/continuous delivery pipeline was designed and deployed, a container security
analysis was conducted, and a configuration management prototype was implemented for
Provotum 3.0. In addition to that, security, scalability, and usability for the deployed
application were evaluated and analyzed.

Moreover, a literature research was performed to analyze the core properties of relevant
centralized and decentralized remote electronic voting systems.

1.2 Thesis Outline

The thesis is structured as follows: Chapter 2 introduces the main properties of REV
systems and compares relevant REV systems according to these properties. Chapter 3
gives an overview of important deployment concepts that, later on, will be used to design
and deploy the infrastructure. Next, chapter 4 briefly presents system architectures of
other relevant REV systems. The following chapter 5 starts with a container security
threat model and continues with the CI/CD infrastructure design and the design of the
deployment of Provotum 3.0. Chapter 6 displays implementation details of the developed
prototype, which will be evaluated in chapter 7. Finally, chapter 8 summarizes the work
and gives suggestions for future work.

Chapter 2

Property Analysis of REV Systems

This chapter focuses on the main concepts and properties of REV. It defines central prop-
erties for REV systems and compares systems from academic, commercial, and country-
based implementations concerning these properties, domains, and underlying trust as-
sumptions.

2.1 Definitions

REV systems aim to automatize the whole voting process from election creation over
vote casting to votes tallying. Since elections are the cornerstone of many democracies,
companies, or organizations, fair elections are essential within these areas. Based on the
importance, many properties for REV systems have emerged intending to achieve a high
level of privacy (e.q. nobody can see for whom someone voted) and at the same time a
high level of verifiability (e.q. everybody can verify that the election outcome was counted
right), even with untrusted authorities.

As privacy and verifiability are conflicting requirements [11], REV systems need unique
characteristics to achieve the two at the same time. They mostly rely on cryptographic
primitives aiming to satisfy these two requirements [34]. The following subsections will
define the most critical properties used to compare REV systems afterward, separated
into privacy and verifiability.

2.1.1 Privacy
Definition 1. Ballot-secrecy: ”A wvoter’s vote is not revealed to anyone” [53]

The idea of Ballot-secrecy within electronic voting was firstly introduced by Chaum et
al. [10]. Their idea was to use anonymous channels in electronic voting, which led to
an increased research interest in the whole domain. The property expresses that anyone
(including the voting authority) must not see for whom a voter voted. Ballot-secrecy is
stated in the Universal Declaration of Human Rights [57] which builds a cornerstone of

3

4 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

each election.

Definition 2. Receipt-freeness: "A wvoter does not gain any information (a receipt) which
can be used to prove to a coercer that she voted in a certain way” [18]

Benaloh and Tuinstra [4] realized that all existing electronic voting systems up to this
time allowed voters to take away a receipt of how they voted. This receipt provides
vote-buying and coercion since the voter can prove how she voted. A receipt-free system
must ensure that any voter receives a receipt such that she can not prove to someone
how she voted. This property only arises within electronic voting, whereas in traditional
paper-based voting, the deniability of a vote is given by the ballot box. Ballot-secrecy is
a subset of receipt-freeness, meaning each receipt-free system also provides ballot-secrecy.

Definition 3. Coercion-resistance: ”A wvoter cannot cooperate with a coercer to prove to
him that she voted in a certain way.” [18]

Coercion-resistance is a stronger property than receipt-freeness (hence also stronger than
ballot-secrecy) [18]. It states that a voter can not prove to a coercer how she voted even
when they both cooperate. The main difference between coercion-resistance and receipt-
freeness lies in the proof generation at different voting phases. Receipt-freeness expects
that a voter does not get a receipt after the vote casting. In contrast, coercion-resistance
expects a voter to not prove to an adversary how she voted while executing the voting
protocol. Most coercion-resistant voting systems allow voters to cast indistinguishable
fake votes while they are coerced. Before tallying the votes, the voting system deletes
fake votes [12].

Definition 4. FEverlasting privacy: A wvoting protocol provides everlasting privacy if an
adversary using a computationally unbounded system can not gain information about for
whom a voter voted. [41]

Everlasting privacy removes the requirement of a computationally bounded system [41].
However, compared to ballot-secrecy it assumes a trusted voting authority [35]. REV
systems that rely on asymmetric cryptography can not achieve everlasting privacy since
computationally unbounded systems can break them. [11]

Definition 5. Unconditional privacy: A wvoting system with unconditional privacy does
not allow anyone, neither voters, outside observers nor voting authorities, be they com-
putationally unbounded or not, to determine for whom another voter voted” [35]

Additional to everlasting privacy, unconditional privacy does not require anybody to be
trusted within the system. It combines the property of ballot-secrecy with the property
of everlasting privacy [35]

2.1. DEFINITIONS)

Definition 6. Software independence: "A voting system is software independent if an (un-
detected) change or error in its software cannot cause an undetectable change or error in
an election outcome.” [50]

Within the domain of REV systems, software independence mainly rely on the crypto-
graphic primitives included. Due to cryptography, changes can be immediately detected
within the system. Let us assume a voter’s encrypted ballot (including a signature with
the voter’s private key) gets changed. If anyone else checks the ballot’s signature using
the voter’s public key, he immediately realizes an invalid certificate, independently of the
underlying system. The same holds if the final tallying was computed incorrectly [50].

2.1.2 Verifiability

Definition 7. Individual verifiability: “A wvoter can verify that the ballot containing her
vote is in the published set of "all” (as claimed by the system) votes.” [32]

Individual verifiability alone states that only a single voter can verify that his vote counts
correctly [32]. To guarantee verifiability for the whole election, everybody (observers, vot-
ers, voting authorities, etc.) should have the possibility to verify that votes were counted
correctly. For this reason, Sako and Kilian [52] introduced the property of universal veri-
fiability.

Definition 8. Universal verifiability: "Anyone can verify that the result corresponds with
the published set of "all” votes.” [32]

Cryptographic based REV systems often rely on the use of a public bulletin board (PBB)
as a published set of votes to ensure universal verifiability [1] [8] [12]. The PBB contains
all information (encrypted votes, public keys, cryptographic proofs, etc.) such that ev-
eryone has the information to calculate and verify the final tally.

Definition 9. FEligibility verifiability: “Anyone can check that each vote in the election
outcome was cast by a registered voter and there is at most one vote per voter.” [37]

An additional property to the verifiability properties is eligibility verifiability. A system
that aims to satisfy eligibility verifiability must allow anyone to check that all the votes
were cast and tallied by eligible voters.

Definition 10. End-to-end verifiability

Cast-as-intended: “A voter can verify that her choice was correctly denoted on the ballot
by the system” [32]

6 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

Recorded-as-cast: "A voter can verify that her ballot was received the way she cast it” [32]

Tallied-as-recorded: "A voter can verify that her ballot counts as received” [32]

End-to-end verifiability is a newer notion of verifiability, firstly introduced by Chaum [9]
and consists of three parts: cast-as-intended, recorded-as-cast, and tallied-as-recorded.
This property ensures that verifiability can be checked along the whole voting process
such that a voter can verify that her choice is represented in the final tally.

The first property is cast-as-intended. The system should allow the voter to verify that
his choice is represented on his ballot. In the domain of REV systems, voting clients (e.q.
mobile phones) might run malicious code that modifies the voter’s choice. REV systems
that satisfy the property cast-as-intended often use a challenge-or-cast mechanism [3].
The created ballot can be challenged such that the validity is audited. This ballot needs
to be discharged afterward, and a new ballot needs to be created not to violate receipt-
freeness. This procedure is repeated until the voter is sure that his choice is represented
on the ballot. He can then cast the ballot.

Another possibility to satisfy cast-as-intended is to send a code through a separate channel
(e.q. postal mail) to the voter for each possible choice. This code can then be compared
with the code that appears after the creation of the ballot. If it is correct, the ballot
contains the voter’s choice [25, 56].

The second property, recorded-as-cast, is fulfilled if the voter can verify that the cast
ballot was stored without modification.

The third property, tallied-as-recorded, is fulfilled when the voter can verify that a stored
ballot was counted without modification.

2.2 Relevant REV Systems

REV system implementations are often built upon well-known voting protocols. To get
indications on the fulfillment of privacy and verifiability properties, it is helpful to eval-
uate the implementation’s domain protocols. These domain protocols use cryptographic
building blocks and follow different approaches to satisfy various levels of privacy and ver-
ifiability. In this section, relevant REV systems are presented categorized in their domain
protocols.

2.2.1 CGS97

The protocol from Cramer, Gennaro, and Schoenmakers [17] was the first that introduced
an efficient distributed authority setting. This multi-authority setting reduces the trust
assumption since trust can be distributed among different authorities [32]. The protocol
uses a DKG (DKG) among all the authorities such that their public key shares could be
combined to an elections public key. The voter then uses this public key to encrypt her

2.2. RELEVANT REV SYSTEMS 7

ballot in the voting phase. During the validation phase, the encrypted ballots get summed
up using homomorphic encryption, and in the tallying stage, each authority decrypts his
partial sum [17]. The combination of the decrypted shares results in the number of yes
votes for the election. Due to the homomorphic operation and decryption of the sum, the
protocol only allows elections in a binary form (e.q. yes or no).

CGS97 is universally verifiable since all the validation and tallying operations are done
on the PBB, containing proofs of the operations (decryption proofs from the authorities)
and can be seen by anyone. Hence, anyone can verify that the result corresponds to
the set of published votes [32]. As long as not all authorities collude, the protocol also
fulfills ballot-secrecy since only the sum of the ballots gets decrypted and not each ballot
by itself. However, it is not receipt-free as each voter can reproduce the whole voting
process with her vote and therefore prove how she voted. Coercion resistance is neither
fulfilled. The protocol itself does not satisfy end-to-end verifiability, as it does not consider
compromised voting devices. Hence, cast-as-intended can not be fulfilled. In addition,
eligibility verifiability is also out of scope from the protocol.

Figure 2.1 displays an overview of different implementations from the base protocol
CGS97.

CGS97 [17]
Provotum 2.0 [20] Helios [1] CHVote [25]
ProvotumRF [30] Belenios [14] nVotes [44]

BeleniosRF [§]

Figure 2.1: CGS97 domain protocol and their dependent implementations

Helios [1]: Helios is an open-source, web-based REV system, which can be used by
anyone to run their election [1]. The protocol is heavily based on CGS97. It uses the DKG
for a multi-authority setting and homomorphic encryption in the style of CGS97. The
Helios authors do not claim to add new concepts to the base protocol rather implement a
practical system such that it can be used in real-world elections [32]. They also say that
Helios should be used in low-coercion environments, like in small university or association
elections [1].

As such, Helios does not fulfill receipt-freeness, coercion resistance and only partly fulfills
ballot-secrecy due to the famous replay attack [15].

Looking at verifiability properties, Helios implemented a challenge-or-cast mechanism
to fulfill the cast-as-intended property. Recorded-as-cast is fulfilled since the voter can
observe his encrypted ballot on the PBB, and tallied-as-recorded can be shown by the
distributed decryption of the sum of the votes (including right decryption proof from

8 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

the authorities). Moreover, Helios does not fulfill the property of eligibility verifiability.
Voters must trust the voting authority that only eligible voters are accepted [38].

Helios was already used in small but legally binding elections within academic contexts
like a presidential election at the Universite Catholique de Louvain in 2009 [34].

Belenios [14]: Belenios is a web-based, REV systems that aims to fulfill ballot-secrecy,
end-to-end verifiability and eligibility verifiability [14]. The protocol builds upon the
Helios protocol with minor differences.

Firstly, it adds a trusted registrar, which is responsible for distributing a private-public
key pair to all the eligible voters (using an authenticated or an off-line channel). The
voter then uses the private key to sign the ballot. All public keys are published on the
PBB such that everyone can verify that only eligible voters have cast ballots [16]. If the
registrar is trusted, Belenios additionally fulfills eligibility verifiability.

Secondly, since the ballot is signed by the voter, a replay attack with using the same ballot
as another voter is not possible anymore [14].

Thirdly, Belenios does not implement a challenge-or-cast functionality, compared to He-
lios, since the authors claim that the challenge functionality was not used often in practice
and voters that don’t do the challenge are easy targets for attacks [14].

BeleniosRF [8]: BeleniosRF builds on the protocol of Belenios. As the name already
indicates, BeleniosRF adds receipt-freeness to the protocol. The authors introduced the
functionality of a randomizer that re-encrypts the ballot before casting [8]. As long as the
voter and randomizer do not collude, the voter can not reproduce his encrypted ballot
anymore and, therefore, does not have a receipt for his voting decision.

Provotum 2.0 [20]: Provotum 2.0 is a web-based, REV system which is strongly based
on the domain protocol CGS97. The protocol uses a multi-authority scheme implementing
DKG, homomorphic tallying, and the Ethereum blockchain [21] as the PBB. In addition,
an identity provider and an access provider are implemented to distribute trust among
different authorities.

The protocol is built up in a registration, a pairing, a key generation, a voting, a tallying,
and a result stage. In the registration stage, sealers (signing authorities) generate their
Ethereum wallet and send the wallet address to the voting authority. In the pairing stage,
sealers start their node and start validating blocks in a proof-of-authority protocol. After
the protocol is running, the voting authority can deploy a smart contract containing the
election question. Next, in the key generation stage, the DKG is performed as sealers
submit their ElGamal public key to the smart contract. They are then combined to the
votes public key, which encrypts the voter’s ballots. During the voting phase, voters
can authenticate against the identity provider, generate an Ethereum wallet, and request
access from the access provider to cast a vote. After the voter expresses her choice,
the ballot is encrypted with the vote’s public key and submitted (along with a proof of

2.2. RELEVANT REV SYSTEMS 9

validity) to the smart contract. In the tallying phase, each sealer homomorphically sums
up the encrypted votes and decrypts its share. The combination of all decrypted shares
finally results in the sum of all yes votes.

The implementation of Provotum 2.0 fulfills similar properties to the domain protocol
CGS97. It fulfills ballot-secrecy as the ballots are always encrypted, and only the sum of
the votes gets decrypted. Hence, nobody can see which voter voted for whom or what.
Receipt-freeness is not fulfilled since the voter can reproduce his ballot in front of an
adversary or vote buyer and proof how she voted. Coercion-resistance is therefore not
fulfilled either.

End-to-end verifiability is not fully satisfied since cast-as-intended is violated for the same
reason as in CGS97. Recorded-as-cast is satisfied since the ballot can be found on the
smart contract (PBB) after casting. Tallied-as-recorded is also fulfilled due to the right
decryption proofs of the sealers. Eligibility verifiability is fulfilled (as long as the iden-
tity and access provider are trusted) because the access provider publishes the public
Ethereum address of an eligible voter on the smart contract [20)].

ProvotumRF [30]: ProvotumRF builds on the implementation of Provotum 2.0. The
protocol is extended with a randomizer that re-encrypts the voter’s encrypted ballots.
Similar to BeleniosRF, the voter then can not reproduce her ballot anymore. Assuming
the randomizer and the voter do not collude, ProvotumRF additionally fulfills receipt-
freeness.

CHVote [25]: CHVote 2.0 was started in 2016 by the Swiss state of Geneva with
cooperation with the Bern University of Applied Sciences. The goal was to introduce a
cryptographic REV system with maximum transparency and full verifiability that can be
used in public elections. Due to financial reasons, the cooperation came to an end, and
Bern University of Applied Science continued the project in 2019 with a new founding
partner [25]. Their requirements for the project are end-to-end verifiability, individual
verifiability, eligibility verifiability, and the distribution of trust (multi-authority) [25].

Likewise, in CGS97, the protocol uses DKG among different election authorities. The
combined election public key is then used to encrypt voters’ ballots. After the voting
phase, in contrast to CGS97, the votes are mixed in a mix-net to disconnect ballots from
voters. To tally the votes, the ballots can, in the end, be partly decrypted by the election
authorities.

To ensure end-to-end verifiability, the protocol uses verification, voting, confirmation,
finalization, and abstention codes, which are printed by a printing authority and are sent
over postal mail to the voter. The voter can then use the codes to check cast-as-intended,
recorded-as-cast, and tallied-as-recorded [25]. It is important to note that end-to-end
verifiability only holds if some trust assumptions are met. Mainly, the printing authority
needs to be trusted since they could see all the codes on the voting paper and, therefore,
behave as valid voters.

As CHVote uses a mix-net implementation, many different election styles can be per-
formed with the protocol. The authors cover all different election styles in Switzerland,

10 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

like a referendum, approval voting, or cumulative voting.

nVotes [44]: nVotes is a web-based REV system developed by the Spanish company
Agora Voting SL [44]. Since the protocol is not research standard, minimal information
about the protocol is publicly available. However, del Blanco et al. [5] had insights into
the protocol and could analyze some privacy and verifiability properties.

According to del Blanco et al. [5] the voting protocol is heavily based on Helios and starts
with a DKG among different authorities. A public key for the election is then generated.
Voters can afterward login to the web platform using an SMS code. After choosing the
answer and creating the encrypted ballot, a challenge-or-cast functionality is available to
ensure cast-as-intended. Before the tallying phase, the votes get mixed with a verificatum
mix-net [58]. In the last step, partial decryption is employed, and the votes are tallied.

The protocol is considered to fulfill end-to-end verifiability if many voters use the challenge-
or-cast functionality and if the authorities not collude [5]. Receipt-freeness and, therefore,
coercion-resistance is not given for the same reason as in the Helios case.

According to the website, more than 2 million votes have been cast in total, and they
performed more than 150’000 votes within one election [44]. Their clients range from
public administrations (Barcelona Provincial Council, Madrid City Council) to education
institutions (UNED) [5].

2.2.2 JCJO5

Jules, Catalano, and Jakobsson were the first that introduced a new privacy property,
namely coercion-resistance, and proposed a new protocol that satisfied the property [33].
The protocol uses a multi-authority scheme with DKG, a mix-net to disconnect ballots
from the voters, and private credentials generated by a registrar [33].

During the registration phase, the voter gets the private credentials from the registrar over
an untappable channel. The registrar stores the encrypted private credentials on the PBB
for verification later on. These credentials define an eligible voter. The voter can cast
the encrypted ballot, the encrypted credentials, and proof of validity in the voting phase.
During tallying, the authorities check the proofs, remove duplicates, mix the ballots and
then remove ballots with invalid private credentials. The removal is done with plain-text
equivalence tests such that the private credentials are never exposed to anyone. The
authorities can then decrypt the final list of ballots, and the result can be calculated.

The reason why this protocol is coercion-resistant lies in the fact that voter can submit
ballots with fake credentials. After the mixing (when ballots and voters can not be
mapped anymore), these fake ballots are removed by the protocol such that nobody can
realize anymore who cast the fake ballot [32]. With this functionality, the voter can use
fake credentials during coercion and repeat the voting with a valid ballot when she is
not coerced. Therefore, the voting protocol also fulfills receipt-freeness (the voter can not
prove if she used fake or valid credentials) and ballot-secrecy (the decrypted ballot is not

2.2. RELEVANT REV SYSTEMS 11

connected back to a voter). The protocol does not fulfill end-to-end verifiability since
cast-as-intended is not proved within an environment of compromised voting devices.

Figure 2.2 shows important dependent implementations from the base protocol JCJ05

JCJO5 [33]

~

Civitas [12]

~

Trivitas [7]

~

Selene [51]

Figure 2.2: JCJ05 domain protocol and their dependent implementations

Civitas [12]: Civitas is the first known implementation that fulfills the strong notion
of coercion resistance [32]. The project implemented the protocol JCJ05 but with some
differences. The authors implemented a registrar and different registration tellers to split
up trust over the distributor of private credentials. The registration tellers only generate
a share of the final voters’ private credentials. The voter then requests all shares from
the registration tellers and combines them with his full private credential. With this
functionality, only the voter owns the full plain-text of the private credentials (as long as
not all registration tellers do collude) [32].

One main disadvantage of the implementation is the fact that the removal of invalid
ballots with a plain-text equivalence test takes quadratic time in computation [43]. How-
ever, newer approaches for this problem have already reduced the computational time
complexity from quadratic time to linear time [61] [55].

Civitas also fulfills universal verifiability since all operations on the PBB can be verified
by anyone. Proofs for right mixing, for the plain-text equivalence test for removing invalid
votes, and for right decryption can be checked on the PBB [7].

Trivitas [7]: The authors of Trivitas aim to improve individual verifiability based on the
implementation of Civitas. The authors criticize the complex mathematical operations
required for a voter to verify that his ballot is included in the final published set of votes
within famous implementations like Civitas or Helios. Moreover, these implementations
normally require that a voter performs the verification on a trusted device.

Trivitas introduces the notion of a trial ballot. The trial ballot contains trial credentials
that can be cast like a valid or fake ballot but will not be counted in the final tally. A
flagged trial ballot can be used as an audit ballot in three different voting phases. Before
the mixing, trial ballots get decrypted and posted on the PBB such that the voter can
assure that the votes have correctly been encrypted and recorded on the PBB. Next, the
set of trial ballots also get mixed with the valid and fake ballots and afterward posted

12 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

on the PBB. The voter can assure that all his votes have been used as an input for the
mix-net. Finally, trial ballots get decrypted and posted on the PBB after the mixing. The
voter can assure that the vote occurs on the election outcome. With this functionality,
the voter can track the trial ballot along with the voting protocol and can ensure that
it works properly [7]. The idea of a trial ballot is similar to a challenge-or-cast ballot.
However, it does not get discharged after the ballot creation rather tracked during all
steps of the voting protocol.

As such, Trivitas adds the fulfillment of cast-as-intended to the base protocol of JCJ05
because the trial ballot can be audited in the decryption step before the mixing. Hence,
a voter can check on the PBB that a trial ballot correctly denoted his choice.

Selene [51]: Selene is a voting protocol based on JCJO05 but takes the approach of a
private tracking number for each voter. The intention is to make it easier for a voter to
check end-to-end verifiability. The main idea is that decrypted ballots are published on
the PBB along with a public tracking number. The voter can then easily check if her vote
and the corresponding tracking number are included in the published list. The protocol
implements the functionality using a private («) and a public () part of the tracking
number. The private part is transferred to the voter, and the public part is published on
the PBB. The voter can then combine these two parts and decrypt them using his private
key to get the public tracking number. It is also possible for the voter to fake a such that
her decryption results in another tracking number published along with the decrypted
ballots.

With this property, it is not possible for a voter to prove to someone how she voted.
Hence, the protocol fulfills receipt-freeness. It is not coercion-resistant since a coercer
could watch the voter casting his vote. However, it can reduce the coercion risk since the
voter can present a wrong tracking number to the coercer.

The protocol fulfills end-to-end verifiability since to voter can create his tracking number
from the true o and and check if the vote was correct in the final list of tallied ballots.
Eligibility verifiability was not considered in this protocol [51].

2.2.3 HRZ08

Hao, Ryan, and Zielinski proposed a self-tallying, two-round, distributed voting protocol
[27]. The idea is that no central authority is required for the protocol, and the tallying is
self-enforced by the protocol. All n voters first agree on (G, g) where G denotes a finite
cyclic group of prime order ¢ and g denotes the generator in G. Each voter generates a
secret x; € Zy and a public part g*i.

In the first round, the voter submits ¢g** and a zero-knowledge proof for x;. After every
voter has submitted the public part, each voter checks the others zero-knowledge proof

validity and computes
i—1 n
g =119/ I 9
j=1

j=i+1

2.2. RELEVANT REV SYSTEMS 13

In the second part each voter submits the ballot ¢*¥ g% and a zero knowledge proof
showing that v; is either 0 or 1 (binary election). If every voter has submitted the ballot,

every observer can compute
n

ngiyigvi — gZ?:o U
i=0

The term), v; reveals the number of yes votes of the election. n— "7 v; reveals the
number of no votes [27].

The protocol HRZ0S fulfills ballot-secrecy since nobody can decrypt a single vote. How-
ever, receipt-freeness and coercion resistance is not given. The voter can prove how she
voted by decrypting her vote. End-to-end verifiability is not given since cast-as-intended
can not be assured if a voting device is compromised. Eligibility verifiability was not
considered in this protocol. Moreover, the protocol assumes that every eligible voter that
performed the first round also needs to perform the second round. Otherwise, it is not
possible to calculate the final tally.

Figure 2.3 shows the dependent protocol on HRZ08 that will be analyzed in this thesis.

HRZ08 [27]

|

OVN McCorry [39]

Figure 2.3: HRZ08 domain protocol and their dependent implementation

OVN McCorry [39]: OVN McCorry is a direct implementation of the domain protocol
HRZ08. The implementation uses a smart contract on the Ethereum blockchain [21] as
the PBB. A central authority generates a smart contract, defines (G, g), and adds all the
eligible voters. The voters then perform the two-round protocol of HRZ08.

The implementation fulfills the same properties as the domain protocol but also adds
eligibility verifiability to some extent. If the central authority is trusted and only eligible
voters are included in the smart contract, everyone can check that only eligible voters cast
votes to the final tally.

The implementation, however, also generates some usability issues. The use of smart
contracts on the Ethereum blockchain only allows for approximately 60 votes. Otherwise,
the maximal transaction fee would be too high [39].

2.2.4 Unrelated Systems
The property analysis conducted in this thesis does also contain REV systems that can
not clearly be related to a domain protocol. This section presents these systems.

Voatz [54]: Voatz is the first REV system used in US federal elections. It is a smartphone
app that should provide a simple user interface to cast votes. Moreover, a blockchain is

14 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

used as a PBB. Since Voatz does not provide much information about their protocol, this
analysis is based on [54].

The authors of the work could not see the server infrastructure and therefore had to make
assumptions about the systems and reverse engineer the app. They found out that the
app had several security vulnerabilities and serious privacy issues. In addition, the server
had complete control over the protocol and did not include proofs. Hence, the voting
authority could potentially include fake votes or delete votes without detection. Privacy
and verifiability are therefore not given if the authority is not trusted. In addition, they
found vulnerabilities in the non-standard encryption scheme between the communication
of the app and the server. The encryption scheme has the property that the encrypted
ballot has a similar size to the ballot in plain text. Therefore, someone could guess the
plain text by just seeing the encrypted ballot.

Estonia [28]: The Estonian REV system used in public elections between 2005 and 2015
did not provide strong verifiability. [28] proposed improvements in verifiability to the base
protocol. The new protocol provides a PBB, homomorphic encryption, and a mix-net.
Voters can encrypt their ballots using the elections public key, sign them using their
private key, and send them to the PBB. To provide cast-as-intended and recorded-as-cast,
the voter can request his ballot from the system, locally generate the ballot for all options
again (with the same randomness), and compare these ballots with each other. When
the encrypted ballot is the same, she can assure cast-as-intended and recorded-as-cast.
However, receipt-freeness is therefore clearly violated. After the voting phase, the ballots
get mixed and decrypted. Decrypted votes, proofs of correct decryption and mixing, and
the eligible voter’s public keys are published on the PBB. This ensures tallied-as-recorded
and eligibility verifiability.

2.3 Comparison

Table 2.3 compares the discussed REV system base protocols and implementations. The
properties claimed in the table have defined underlying trust assumptions. For example,
if all authorities collude in a multi-authority protocol, they could decrypt all ballots and
see the vote in plain text, and ballot-secrecy would be violated. Hence, it is important to
define the underlying trust assumptions. The following list presents the trust assumptions
for table 2.3:

At least one authority in a multi-authority protocol is trusted.

The voting device is not trusted.

The PBB is trusted.

The voter and the randomizer do not collude.

Specific assumptions for a REV system are denoted as superscripts directly under the
table.

2.3. COMPARISON 15

A note on the everlasting and unconditional privacy: Since all REV systems compared
in this section are based on asymmetric cryptography, they can provide neither everlasting
nor unconditional privacy.

A note on software independence: JCJ05 and Civitas do not provide software indepen-
dence as they need to trust the private credentials creator in the deletion of fake votes
step. If the system deletes a valid vote, there does not appear a detectable change in the
voting outcome.

g & &I FF >
S L ST IFTIT > & ¥
8 SFEFTEFFF T £,
T v Fs A E FELE 5
S TS FTTSTre 7SS &
S ISy T s T ESFT F I N
S FTEFTTEs5FFTF TS ¢
FFC oIS TY T FITT &
Academic Protocols
CSG97[17 @ O O O O @ @ @ O O e @ NA NA
JCJ533) @ @ @ O O O @ @ @€ O e @ NA NA
HRZ0327] @ O O O O @ @ @ ©© O @ @ NA NA
Academic Implementations
Helios[1]] ©* O O O O @ @ @ O o e @ o @
Belenios [14] @ O O O O @ © @ @ O © © © ©
BeleniosRF[8) @ @ O O O @ © @ @ O © @ @ O
Civitas [12) @ @ @ O O O © @ @ O e @ @ @
Selene51] @ ® O O O © @ @ O @ @ @ NA NA
OVNMcCorry [39] @ O O O O © @ @ ¢ O © © @ @
Provotum20(200 @€ O O O O © @ @ @€ O © © & ©
ProvotumRF [30) @ @ O O O @ @ @ @ O e e ¢ ¢
Commercial Implementations
nVotes[44 @ O O O O @ @ @ O o e @ O O
Voatz[54] O O O O O O O O O O O O O O

Country Based Implementations

CHVote[25] @ O O O O © @ © @ @ o © © o
Estonia[28) @ O O O O © @ @ @ © @ @ ¢ O

! Needs trusted private credential creators * Challenge-or-cast 7 Postal mailed verification code
2 Needs trusted contract creator 5 Uses trusted registrar 8 Partly published code
3 Vote copying possible 6 Used e2e tracking number ° Not published yet

Table 2.1: Comparison of the properties of REV systems, based on [36]

By looking at the two last properties, open-source and installation guidelines, we can
see that commercial implementations lack to provide their source code. As a result,
commercial implementations do not provide any reproducibility and can not be verified
by third parties. On the other hand, academic implementations aim to provide their source
code and installation guides. This does, however, not directly imply reproducibility. To
provide reproducibility, other requirements like a buildable or executable application are
essential. With the use of unprovided or deprecated dependent software components, a
buildable or executable application would be impossible to provide [26]. Therefore, it

16 CHAPTER 2. PROPERTY ANALYSIS OF REV SYSTEMS

is essential to provide a reproducible infrastructure such that any other third party can
replicate the exact implementation and perform the same experiments.

Chapter 3

Background

A decentralized REV system usually contains a complex combination of multiple software
components (e.q. web-applications, server-applications, peer-to-peer-applications). More-
over, different developers or development teams are working on new versions of the proto-
col. To rapidly deploy new software components, great care needs to be taken to securely
integrate code, unify build processes and configure these components. To design such
an automated pipeline, many different I'T Infrastructure and DevOps approaches need to
be evaluated. This section gives an introduction to the main concepts of continuous in-
tegration (CI), continuous delivery (CD), infrastructure-as-a-code (IAAC), containerized
applications, reproducibility, and distributed ledger technology (DLT).

3.1 Continuous Integration / Continuous Delivery

Cl is a software development practice that aims to integrate code from different developers
frequently. The integration is done at a centralized point and is followed by an automated
build and automated tests. With the help of CI, problems and errors in the integration
of code can quickly be detected and resolved. This can lead to an overall more cohesive
software [23]. CD extends the idea of CI by automating the deployment process to test
and integrate environments but still requires a manual deployment on production servers.
Continuous deployment even automates the deployment to production environments [13].

3.2 Design Overview

A CI/CD design always starts with a single source code repository with a high-quality
source control management system (e.q. GIT). All developers working on the project
should checkout that repository using the same code-base. When a developer commits a
new feature, an automated build should be triggered, followed by automated tests. The
developer should then get immediate feedback if the build and test process was successful
or not [23].

17

18 CHAPTER 3. BACKGROUND

If the infrastructure does offer not only CI but also CD, after the build and test process,
the software gets automatically deployed on a test or integration environment. In the case
of a container environment (e.q. Docker) an intermediate binary registry is used to store
and version the processed build.

Figure 3.1 displays a high-level design of a CI and CD pipeline. The Binary Registry is
used to store the binary builds (e.q. Docker Images).

Continuous Delivery

Continuous Integration

Source Code Build and Test Binary Registry

Repository Pipeline
= o ©
A 4

Deployment Server

Y
Y

Figure 3.1: Overview of a CI/CD Infrastructure

As a CI/CD pipeline is the link between software development and the running code
on servers, it is a high-risk target for attackers. Therefore, much care should be taken
by deploying and configuring such a pipeline. Attacks to the pipeline are usually called
Software Supply Chain Attacks (SSCA) [29]. There are many different possibilities on
how a pipeline could be attacked and manipulated. Often adversaries gain access to the
build machine and inject malicious code during build time. This code then gets deployed
on test servers and, in the worst case, even on production servers [49]. Other attacks
could include stealing information from the build pipeline like signing certificates [29].

The attack surface can be reduced by eliminating unnecessary tools on the building ma-
chine and by restricting user access to the machine. Moreover, the pipeline should be run
protected from unauthorized network access using firewalls and be isolated from other
infrastructural components [49]. More details about the security of the build machine is
provided in section 5.1.2

3.3 Infrastructure-As-A-Code

Infrastructure-as-a-code (IAAC) is an approach to automate the deployment and config-
uration of infrastructure. It uses principles from the domain of Software Development to

3.4. CONTAINERIZED APPLICATIONS 19

automate repeated procedures in infrastructures [42].

To better understand TAAC, let us assume Alice wants to set up a server for her new
website. Without IAAC, she would connect to the server, set up users, set permissions,
and install software components like a web server or a database. If Alice wants to set up
another server for her second website, the whole process of the server configuration needs
to be repeated. Doing that manually is error-prone, time-consuming, and inconsistent.
The probability is high that she installs different versions of software components that
might behave differently.

This is where TAAC comes in. Alice could write a script describing all procedures that
need to be executed to set up the server completely. This script can then be run on
an arbitrary server to set up a web server for a website. Hence, with IAAC, a server
configuration can easily be reproduced.

Within a DevOps infrastructure, IJAAC can be used to set up all different components.
Such an approach enables the reproducibility of the whole infrastructure. For exam-
ple, source code management systems, CI/CD pipelines, and deployment servers can be
uniformly set up and configured. In addition, with the reproducibility of IAAC, the
components can easily be scaled according to the workload.

3.4 Containerized Applications

The famous tagline "Build Once, Deploy Anywhere” [45] already highlights one of the
greatest advantages of containerized applications. The idea is to bundle an application
containing all its dependencies centrally and then to run it isolated from other processes
on an arbitrary server [49]. With this approach, it is possible to run different isolated
applications on the same host server without interfering with each other.

Let us assume Bob wants to deploy his new web service. Without containerization, he
would set up a server by installing all needed dependencies like a database and a runtime
environment for his application. Bob needs to take care that he installs the right versions
of the dependencies on the server to run his application properly. If he wants to deploy
another application on the same server, he could potentially run into dependency problems
as both applications might use the same packages but different versions.

If Bob uses containerization, on the other hand, he will set up his own CI/CD server,
which is responsible for building his containerized applications containing all necessary
dependencies. His deployment server would then run the different isolated containers.
Thus, dependency problems are solved, and Bob can be sure that he will not run into
dependency version problems.

3.4.1 Container vs. Virtual Machine

Containers and Virtual Machines (VM) have one common property. They both try to
isolate processes from each other such that they do not interfere with each other [48].

20 CHAPTER 3. BACKGROUND

However, it is crucial to understand that they work differently to achieve a certain isolation
level. Containers offer weaker isolation than VMs by design [49]. To understand this
statement, let’s compare the two concepts.

Considering the right architecture on figure 3.2, VMs use a hypervisor on top of an
infrastructure (e.q. a physical server) which splits up hardware resources and provides
guest kernels to guest operating systems. These operating systems are run in isolated
environments, called VMs. Processes from App A are only visible on its underlying guest
operating system. The operating system where App B is running on can not see any
processes from App A.

In a containerized environment (left side of figure 3.2), the host operating system directly
runs on the infrastructure (e.q. physical server or VM). A container system (like Docker)
is installed on this operating system. The containerized applications are then run on the
container system. The container system is responsible for isolating running applications.
It uses Linux cgroups to control resources, Linux namespaces to limit the universe of
visible process ids for a container, and changing of the root to control the visibility of the
host file system for a container [49]. As such, a root user on the host operating system
can see all processes running on it. Hence, processes from App A or App B are visible for
this user.

-~

Virtual Machine Virtual Machine Virtual Machine
Containerized Applications

Guest
Operating
System

Docker

Figure 3.2: Container versus Virtual Machines [22]

Consequently, containerized applications share the same kernel in contrast to VMs. Since
a hypervisor has a much simpler job to do in separating virtual kernels than a kernel in
separating processes, the isolation in VMs is stronger than in containers [49].

Although containers provide weaker isolation than VMs, they also have important advan-
tages. Firstly, since containers share the same kernel, the overhead is less than in VMs.
Containers are therefore more efficient in using resources and performance. Secondly, VMs
have long start-up times compared to containers as they need to install a whole operating
system at start-up. Thirdly, VMs have fixed allocated resources where resources can be
dynamically allocated to containers [49)].

3.4. CONTAINERIZED APPLICATIONS 21

3.4.2 Container Security

Containers have less strong isolation between processes than VMs. However, to securely
run containerized applications, it is crucial that these applications can not influence each
other. For example, let us imagine a case where the isolation between two containerized
applications is weak. An adversary that gains control over the first application could
potentially attack the second application or even the host machine by breaking out of the
container. Therefore, it is of the utmost importance to take countermeasures to container
vulnerabilities when running a container environment. Section 5.1 provides a container
security analysis for a whole CI/CD environment.

3.4.3 Docker

Docker is an open-source project that provides a lightweight environment to deploy ap-
plications into containers [48]. For that, Docker runs a container system and provides all
the necessary tools to deploy containers easily. The following list summarizes the most
important concepts of Docker.

e Docker image: A docker image is similar to a VM’s image. It is a binary in which
all the necessary dependencies are already installed, configured, and tested [6]. A
docker image can then be shipped to a deployment server which can run a container
out of it.

e Dockerfile: A Dockerfile is a script file containing instructions on building a Docker
image. With the help of this file, it is easy to rebuild a Docker image from scratch

6].

e Docker registry: A Docker registry provides binary storage for Docker images. It
contains hash-based versioning for the images [6]. Deployment servers can pull
images from the Docker registry and deploy them as containers.

e Docker container: A Docker container is a deployed docker image. It is a running
container on the host operating system.

e Docker daemon: The Docker daemon is a process on the host operating system that
does all the work of Docker. It executes all docker processes like building an image
or running a container. The Docker daemon has root access on the host operating
system [49].

e Docker socket: The Docker socket is the interface to control the Docker daemon
[49]. Commands like building an image or running a container can be sent to the
socket. Whoever has access to the Docker socket can control the Docker daemon
and hence has root access to the host operating system [49].

e Docker CLI: The Docker CLI can be used to request the Docker socket. It provides
functionalities like building, running, or tagging images.

22 CHAPTER 3. BACKGROUND

3.4.4 Docker-compose

Docker-compose is a tool to deploy multi-container applications !. The different contain-
ers, including their configurations, are defined in a YAML? file. Important configurations
include the Docker image used, volume mounts, exposed ports, and definition of environ-
ment variables within the container. The multi-container application can then be run by
a single command using the YAML file.

3.5 Reproducibility

In science, it is essential that results from scientists can be validated, such that other
scientists can draw conclusions. In computer science, simulation experiments are run
on an information system (computer, server, etc.) and evaluated by the scientist. If
other researchers want to reproduce the same experiment, the same results should be
observed again later on. Since conditions like information systems and software depen-
dencies rapidly change over time, the probability is high that an experiment can not be
reproduced later. Therefore, scientists should take care of a good reproducibility of their
software package when providing them along with a research article [46].

As reproducibility is an important concept in science, a precise definition of it is crucial.
Within this thesis, the definition of Goodman et al. [24] is used:

e "Methods reproducibility: provide sufficient detail about procedures and data so
that the same procedures could be exactly repeated.”

e "Results reproducibility: obtain the same results from an independent study with
procedures as closely matched to the original study as possible.”

e "Inferential reproducibility: draw the same conclusions from either an independent
replication of a study or a reanalysis of the original study.”

Combining the sections before, a CI/CD infrastructure deployed by TAAC, including con-
tainerized applications, could provide a high level of methods, results, and inferential
reproducibility. With TAAC, procedures could be defined to duplicate a whole CI/CD
infrastructure. The CI/CD infrastructure can then build containerized applications that
contain all dependencies (including versions). As such, the provided code can indepen-
dently be run by anyone, reproducing the whole infrastructure. Hence, procedures can
exactly be repeated (methods reproducibility), independent studies have full documenta-
tion (code) on how to reproduce the original study (results reproducibility), and the same
conclusion can be drawn in independent replications or from a reanalysis (inferential re-
producibility).

Thttps://docs.docker.com/compose/
Zhttps://en.wikipedia.org/wiki/YAML

3.6. DISTRIBUTED LEDGER TECHNOLOGY 23

3.6 Distributed Ledger Technology

A distributed ledger (DL) is an append-only data structure that is shared among different
nodes in a network [40]. The ledger is a cryptographic backward linked list containing
information in the form of transactions in blocks from the network. Each block in a
DL contains a list of transactions and the hash value from the former block. Moreover,
blocks can only be appended to the ledger. Transactions can have arbitrary information
(e.q financial transactions, smart contracts, etc.). This ledger is then distributed and
duplicated among all the nodes in a peer-to-peer network. Nodes running the network
can sign new transactions, which will be included in a block and appended to the ledger.
As there is no central authority in place, nodes need to agree on the ledger’s state. To
come to such an agreement, a consensus mechanism within the network is used. The most
famous consensus mechanisms are: Proof of Work (PoW), Proof of Stake (PoS), Proof of
Authority (PoA), or Practical Byzantine Fault Tolerance (PBFT) [60].

The protocol of a DL can be run within a private or a public network and can be per-
missioned or permissionless. In a public permissionless DL, everyone can run a node that
can view the DL and write on it. Often PoW or PoS are used as a consensus mechanism
[60]. In a public permissioned DL, everyone can read the state of the DL, but only se-
lected nodes are allowed to write on it. In such a setting, mainly PoA or PBFT consensus

mechanisms are employed. In a private DL, only selected participants are allowed to view
and write on the DL [47].

Within the context of REV systems, a DL can be used as a decentralized PBB. The
properties of a PBB to be append-only, publicly viewable, and restricted write access can
be best provided by a public permissiond DL. By design, every DL provides an append-
only data structure. Everyone can view a public DB, hence, voters or external parties
can verify votes, proofs, and results on the PBB. As a centralized authority normally runs
an election, only selected nodes need to have write access to the DL, and a consensus
mechanism like PoA or PBFT can be used. In addition, a DL provides a high level of
resilience due to its decentralized nature and the use of a consensus mechanism.

24

CHAPTER 3. BACKGROUND

Chapter 4

Related Work

As current academic implementations about REV systems mostly focus on the crypto-
graphic voting protocol and trying to provide as much privacy and verifiability as pos-
sible, the secure and usable deployment of such a system is missed out often. However,
country-based or commercial implementations need to run a REV system in production
and therefore need to design a secure system architecture. As commercial implementa-
tions normally do not expose their system architecture, country-based implementations
normally publish their system architecture to provide a high level of transparency.

The following subsections provide an overview of the system architecture of two country-
based REV systems in Switzerland, namely the CHVote [25] and the Swiss Post E-Voting
system [56].

4.1 System Architecture CHVote

This description of the system architecture of CHVote is based on [59].

The CHVote architecture is built up as an online and an offline system. The online system
provides access for the voter to cast his votes. The offline system is used to decrypt ballots,
count the votes, and print the voting material used to provide verifiability over postal mail.

The online system is provided as a centralized deployment, meaning that each software
component is run in a classical client-server fashion. The voter can access the voting soft-
ware over the internet. A DDOS protection software checks the request and discharges
potential denial of service attacks in the first step. After that, a reverse-proxy redirects
requests to the right CHVote internal service. The reverse proxy also acts as a web ap-
plication firewall that analyzes HTTP packages and filters out vulnerable requests (like
cross-site scripting or SQL injection attacks). Each internal service provides a front-end
and back-end where the business logic is implemented (e.q. the PBB). The backend ser-
vices are connected to internal databases to persist data. In addition, control components
run the cryptographic voting protocol and are connected to the backend components
through an asynchronous centralized message broker.

25

26 CHAPTER 4. RELATED WORK

The online system infrastructure is based on the platform-as-a-service software OpenShift
L Tt provides a containerized environment including configuration management using
IAAC, performance monitoring, server logs, and load-balancing.

The offline components are installed on cantonal local computers. The first component is
used to decrypt ballots and to count them. The second component decrypts the printing
material and prints them. The voting material is then sent to the voter to provide end-
to-end verifiability.

4.2 System Architecture Swiss Post E-Voting

This description of the system architecture of the Swiss Post E-Voting is based on [56].

The Swiss Post E-Voting system is a centralized online voting system that provides access
for the voter and administrator over the internet. The deployment is fully separated for
each canton, meaning each canton has a redundant test and production environment.
Moreover, data centers are geographically distributed among Switzerland.

When voters or administrators access the voting application, their request passes a firewall,
a DDOS protection software, and finally reaches the physical reverse proxy. Depending
on if the request comes from a voter or an administrator, it gets redirected to the right
internal front-end or back-end. This connection is encrypted using SSL, likewise the
connection between the voters or administrators client and the reverse proxy. Internal
services provide the implementation of business logic and are connected to an internal
database. Cryptographic operations (like mixing, deception, etc.) are done using a secure
data manager on a local computer offline and disconnected from a network.

Thttps://www.openshift.com/

Chapter 5

System Design

This chapter starts with a container security threat model. The model is then used to
develop the CI/CD infrastructure design and the deployment of Provotum 3.0.

5.1 Container Security Threat Model

Containerized Applications gained high popularity in the last few years. It was the launch
of Dockers simple CLI, which boosted the adoption of the technology within the devel-
oper’s community [49]. With Docker, it was possible to build an image containing the
application and all its dependencies and run it as a container uniformly and isolated on
any infrastructure. Additional tools like the Docker registry made it possible to store
versioned images on a centralized server and provide them to deployment servers. De-
velopers realized that Docker could easily be included in their CI/CD infrastructure by
building Docker images on a centralized build server and store them on a Docker registry.
Deployment servers were able to pull these images and start them.

Because applications in a container run in a different way than in traditional deployment,
potential attack vectors do change from a security point of view. One example of that
shows the execution of processes within a container. If not specified, a process within
a container is by default run as a root user on the host machine. If an adversary takes
control over such a process, he might gain root access to the host machine and break the
isolation of the container. This example shows the importance of analyzing the potential
threats occurring in a containerized environment when designing such an infrastructure.
Focusing on deploying a REV system, it is indispensable to analyze these risks to provide
a secure deployment.

The analyzed threats in this section are divided into different steps of the supply chain
of an image and its container. Figure 5.1 shows the steps of the supply chain. It starts
with the Dockerfile, which defines how a Docker image is built. It is followed by the build
machine, which is responsible for building a Docker image with the instructions of the
Dockerfile. At the third step of the supply chain, the Docker registry is placed to version
and store the Docker images. The last step contains the deployment of a Docker container

27

28 CHAPTER 5. SYSTEM DESIGN

from a Docker image. The following threads and their mitigations are mainly adopted
from [49].

Dockerfile

funce()I

Docker build Docker registry Container deployment

O ®

Figure 5.1: Supply Chain of a Docker image

Y

Y

Y

5.1.1 Dockerfile

The Dockerfile builds the first step of the Docker supply chain. Within a Dockerfile,
commands are defined on how to build the Docker image. If not configured properly, the
resulting image could include malicious code, sensitive data could be exposed, or isolation
could be easily broken. Table 5.1 shows the identified Dockerfile threats and possible

mitigations.

ID Title Threat Mitigation
DF1 Malicious Every new Docker build ori- Only use official base im-
code in base gins from a base image. ages from trusted registries.
image Since foreign software is in- Use base images that are as
jected from that base image small as possible to reduce
to the project, malicious the surface of the attack.
code could be included in
the built image.
DF2 Unnecessary It often happens that too Consider using multi-stage
packages many unnecessary packages builds. In the first step

are installed through the
Dockerfile that are not nec-
essary to run the software.
These packages might have
been used to build the
project but are not neces-
sary at run-time. These
unnecessary packages could
have malicious or vulnera-

ble code.

build your applications with
all the necessary packages
and in the second stage only
copy the necessary packages
that are needed at run-time.

DF3 Root user ex-
ecution

When no specific USER in-
struction is defined in the
Dockerfile, the image is run
as root by default. This
user might have too much
right that is not necessary.

Define a wuser considering
the least privilege principle.

5.1.

CONTAINER SECURITY THREAT MODEL

DF4 Edit permis-
sions

If a Dockerfile does not have
clean access controls, mali-
cious code could be inserted
into it. A good example is
the RUN command in the
Dockerfile. It allows the
execution of arbitrary code
after the start of the con-
tainer.

Manage right accesses for
the Dockerfile in your code
repository

DF5 Mounting
volumes

If sensitive volumes are
mounted in the Dockerfile,
the container could gain ac-
cess to sensitive code on
the host machine. The
worst scenario is if the root
folder of the host machine
is mounted as a volume. In
this case, the container has
full access to the host ma-
chine’s file system.

Do not define mounts in the
Dockerfile. Define volume
mounts at runtime.

DF6 Sensitive
Data

When sensitive data is in-
cluded in the Dockerfile,
it might appear in the
source control, in the build
pipeline, or the image reg-
istry. An adversary could
easily gain access to these
sensitive data.

Never define sensitive data
in the Dockerfile. Use envi-
ronment variables on a run-
ning system to pass sensi-
tive data to a container.

5.1.2 Build Machine

Table 5.1: Dockerfile Threats

29

A containerized application is built within a build machine. If a build machine is compro-
mised, a different build could be executed, and malicious code could be included. Hence,
countermeasures must be taken to protect the build machine from adversaries. Table 5.2
presents the most important build machine threats and their mitigations.

ID Title

Threat

Mitigation

30

CHAPTER 5. SYSTEM DESIGN

BM1 Docker If an adversary receives ac- Consider using non-
Daemon cess to the build machine privileged builds (e.q.
privileges and the docker daemon using podman !)

(that is used to build im-
ages in the pipeline) has too
many privileges (e.q. root
access), the adversary au-
tomatically has the same
privileges as the docker dae-
mon (root) since he can exe-
cute arbitrary code over the
docker daemon

BM2 Manipulating The pipeline could include Harden the build machine.
the build malicious commands or Do not install unnecessary

build steps that would tools, keep components up-
result in a malicious image to-date and restrict the user
that might even be trusted access to the machine by
by other components like employing IP-Blocks and
the image registry or the firewalls.

deployment server.

BM3 Multiple When the build machine Run a build machine on a
components is hosted on the same server (bare metal or VM)

server as other infrastruc-
tural components (like the
image registry), the isola-
tion between the compo-
nents could be too weak. In
combination with BM1, an
adversary could even influ-
ence other infrastructural
components.

isolated from other infras-
tructural components.

Table 5.2: Build build Threats

5.1.3 Docker Registry

After building a Docker image at the build machine, it is stored in a Docker registry.
The registry provides a hub such that deployment servers can pull the images from it.
Moreover, the registry needs to control the permissions, the versioning of the images, and
check for vulnerabilities within an image. From a security perspective, the registry is
an integral part of ensuring image integrity. Countermeasures should be taken to ensure

Thttps://podman.io/

5.1.

CONTAINER SECURITY THREAT MODEL

31

that only trusted images can be stored and pulled from the registry. Table 5.3 shows the
Docker registry threats and their mitigations.

Threat

Mitigation

Image registries usually use
databases to store images
and their metadata. If these
databases are exposed to the
internet, an adversary could
gain access to it only with
credentials

Do not expose databases to
the internet. Only make im-
ages accessible through an
authenticated channel.

If the image registry does
not periodically scan the
stored images for recently
found vulnerabilities old im-
ages might include malicious
code that would not be dis-
covered

Run a vulnerability scan-
ner that periodically scans
your images and synchro-
nizes with a public vulner-

ability database like CVE 2.

ID Title

IS1 Database ex-
posure

IS2 New occur-
ring vulnera-
bilities

IS3 Unsigned Im-

ages

When images are not signed
during the build process, the
origin of the images can not
be assured in the image reg-
istry. Due to a man-in-the-
middle (MITM) attack, an
adversary could inject a ma-
licious image into the reg-
istry.

Sign images at the build ma-
chine and check the signa-
ture at the registry.

Table 5.3: Docker registry

5.1.4 Container Deployment

At the last step of the supply chain, the container gets deployed on a deployment server.
The deployment server should be properly configured, the right images should be pulled,
and admission controls should be enforced. Table 5.4 explains the threats and mitigations
for the container deployment.

ID Title

Threat

Mitigation

https://cve.mitre.org/

32

CHAPTER 5. SYSTEM DESIGN

CR1 Wrong Image
Deployment

Unsigned images and in-
sufficient tag policies could
lead to the deployment of
a wrong image. If the im-
age is not signed by the
pipeline, it can not be guar-
anteed that the image was
not modified by an adver-
sary after the pipeline. If
the tagging policy is weak
(e.q. no semantic tagging,
only using the latest tag,
etc.) it is not clear which
image gets deployed since
tags can be overwritten dur-
ing the build process.

Sign images at build time
and use the semantic ver-
sioning functionality of the
Docker registry to ensure
the right deployment of an
image.

CR2 Vulnerable

Configurations of container

Ensure to only use the priv-

Deployment orchestration tools like ileged flag in rare, special

Configuration docker-compose can con- cases. Care about the vol-
tain severe vulnerabilities. umes you mount from the
For example, unwanted file system. Try avoiding
host volumes could be mounting the Docker socket
mounted into the container into the container. Never
or the container could mount a file system from
be run with a privileged the host into the container
flag, which gives the con- that is not needed.
tainer access to all Linux
capabilities.

CR3 No Deploy- All vulnerability checks for Enforce deployment checks

ment Checks

the image are useless if they
are not checked before de-
ployment. If no admission
control is done before the
deployment, an image with
detected vulnerable proper-
ties could be deployed.

like checking the signa-
ture, check passed through
vulnerability scans, or re-
stricted container user per-
missions.

Table 5.4: Container deployment Threats

5.2 CI/CD Infrastructure Design

This section presents the CI/CD infrastructure design, which is used to deploy all different
components of Provotum 3.0. The design of the infrastructure was created with the

5.2. CI/CD INFRASTRUCTURE DESIGN

following core principles:

33

e The instances should be set up in cloud infrastructure and configured with TAAC.

should be implemented.

All infrastructural components should be uniformly deployed as Docker containers.

The threat model of section 5.1 should be considered, and the proposed mitigations

All connections between the instances should provide TLS for a secure data transfer.

The infrastructure should be used for future deployments of Provotum.

The core principles are essential to provide a secure and reproducible infrastructure for a
decentralized REV system. By having the whole configuration as code, an external party
should be able to deploy each component easily and use the code as a starting point for
deploying another REV system.

The rest of this section provides an overview of the CI/CD infrastructure, explains the
main components in detail, and presents the pipeline for deploying an application.

5.2.1 Overview

Cloud Instance i

Code repository

func()I

[€——1) Checkout——

—2) Transfer Code1|

Build machine (:8080)

O

3) Build Docker image

Cloud Instance i

4) Push Docker imaget>»|

Docker image registry
(:8080)

@

24h repeated vulnerability scan

5) Pull images

Provision and Configure Instances

Vulnerability scanner
(:6060)

N,

A

Local Computer

Infrastructure and
Server Config
Management

func()I

A 4 4

Deployment Instance 1

A 4 4 A 4

Deployment

Instance ... Cloud Instance

Application 1

[4

docker

Application 2

&

docker

Application 1

&

docker

Application 2

&

docker

Resource Monitoring
(:3000)

Application 3

docker

Application 3

docker

1 |

Monitor CPU / Memory usage

Figure 5.2: Overview of the whole CI/CD infrastructure and their components

Figure 5.2 presents the overview of the CI/CD infrastructure design. The documents
represent cloud instances or the local computer. The arrows with labels in blue represent

34 CHAPTER 5. SYSTEM DESIGN

a usual CD flow. The arrows with labels in black show the interactions between the
components which are not directly affected by the CD flow. Deployment instances have an
arbitrary number depending on the configuration of a specific deployment. For example, if
multiple sealers (authorities in the REV system) are deployed, a new deployment instance
is created for each sealer. The applications on the deployment instances also have an
arbitrary number depending on the use case.

The main concept behind the design is to build a Docker image from the code repository
and store it on a Docker registry. The deployment instances can then authenticate to the
Docker registry and pull the required image. Every component of the infrastructure can
be provisioned and configured with TAAC at a local computer. The computer can clone a
configuration code repository and has all the functionalities at hand to deploy the whole
infrastructure.

In addition to the pipeline, a vulnerability scanner and a resource monitoring system are
deployed. The vulnerability scanner periodically scans Docker images on the Docker reg-
istry, and the resource monitoring system stores CPU and memory usage of the deployed
containers. This monitoring can then be used to run different real-world experiments for
the deployed components.

5.2.2 Components
Code Repository

The code repository provides the source code for the build pipeline. All applications which
will go through the build pipeline are stored in the code repository. Each application
contains a Dockerfile with instructions on how to build itself. The Dockerfiles provide
multi-stage builds, custom user execution and do not contain any sensitive data. In the
first step of the multi-stage build, the application is built, and in the second step, the
build and only necessary dependencies are installed within a lightweight base image.

Build Machine

Cloud Instance

Reverse proxy (:443) Build machine (:8080)

Requests—»| B —Redirect—»{ o

Figure 5.3: Architecture of the build machine instance

The build machine is responsible for building selected code from the code repository and
storing them on a Docker registry. For security reasons, it was decided to deploy the build
machine on a separate instance. This is since the build machine has access to the Docker

5.2. CI/CD INFRASTRUCTURE DESIGN 35

daemon and could therefore potentially influence other docker containers on the same
instance. In addition, other software components were reduced to the bare minimum.
Figure 5.3 shows the components installed on the instance of the build machine. Only a
reverse proxy is used to secure the communication between the admin GUI and the build
machine. With the admin GUI, it is possible to set connections to the code repository,
configure the build pipeline, and deploy the resulting Docker image to the Docker registry.

Docker Registry and Vulnerability Scanner

Cloud Instance ll

Reverse proxy (:443) Docker image registry Relational database
(:8080) (:5432)

Requests—»| E —Redirect—»] @ —

In-memory database
(:6379)

24h repeated vulnerability scan CACHE

Vulnerability scanner Relational database
(:6060) (:5432)

Py =

A 4

Y

Y

Figure 5.4: Architecture of the docker registry instance

The Docker registry stores and versions Docker images. In addition, a vulnerability scan-
ner provides a periodic scan through all the Docker images stored in the registry. The
instance contains a reverse proxy that accepts connections from the outside and redirects
them to the right applications. The Docker registry exposes an admin GUI where infor-
mation about stored images can be retrieved like vulnerabilities, versions, or push/pull
histories. Moreover, the Docker registry can be accessed by the Docker CLI, with which
images can be pushed or pulled. The Docker registry connects to a relational and in-
memory database to store image information. The image binary is stored on the file
system of the server.

The vulnerability scanner is directly accessed by the Docker registry and scans requested
images. It synchronizes with the CVE database and indexes known published vulnerabil-
ities in its own relational database.

All databases can only be accessed internally through the applications such that no ex-
posures to the internet are provided.

Resource Monitoring

The resource monitoring intends to check CPU and memory usage of running Docker
containers of the REV system (deployment instances). The usages are directly monitored

36 CHAPTER 5. SYSTEM DESIGN

Cloud Instance

Reverse proxy (:443) Monitoring GUI (:3000)

Requests—» m —Redirect—»| m

Timeseries database
(:8086)

—
——

Figure 5.5: Architecture of the resource monitoring instance

at the deployment instances by accessing the Docker daemon and sent to the resource
monitoring instance. The data is stored in a time-series database and can directly be
accessed through a monitoring GUI.

Deployment Instance

The deployment instances can have a different system design depending on their use-
cases. Section 5.3 presents the system design of the deployment of Provotum 3.0. They
all have in common that they use a docker-compose file that defines the Docker containers
deployed within the instance. The right images get pulled from the Docker registry and
run with the defined configurations by running the docker-compose file.

Local Computer

The local computer is used to provision and configure the different infrastructural in-
stances. A configuration code repository can be cloned to the local computer, and scripts
can be run to set up all the different servers in the CI/CD infrastructure. The repository
is built up such that scripts can be reused for different deployments. For example, the
installation of Docker is defined just once and can be executed on different instances,
if needed. This principle ensures that the configuration code repository can be easily
extended later on if other instances need to be set up.

Every provisioning and configuration of a server is designed to execute the following steps:
1. Define the instances that should be provisioned by the cloud (type of server, re-
sources, operating systems, etc.).
2. Call the API of the cloud to set up the instances.
3. Run a procedural script to install necessary software packages.

4. Copy a docker-compose file and all configurations needed for the applications to run.

5.3. PROVOTUM 3.0 DEPLOYMENT DESIGN 37

5. Start the application by running the docker-compose file.

The first step defines the cloud instances that should be provisioned. The configuration of
such an instance is dependent on the cloud provider used. In general, CPU cores, memory
size, disk size, operating system, and location of the data center can be configured. In the
second step, the configuration is sent to the API of the cloud provider, and the requested
instance is provisioned. In the third step, the local computer connects to the provisioned
instance and runs a script to set up necessary software packages like Docker. As every
CI/CD infrastructure component is run within a Docker container (e.q. build machine or
Docker registry), the fourth step can be generalized to only provide a docker-compose file
to the instances. This docker-compose file can then be run in the fifth step. After all the
steps, the instance should be fully configured, and the applications should be accessible.

5.2.3 Deployment Pipeline

After designing the CI/CD infrastructure, the deployment pipeline can be defined. The
deployment pipeline builds a Docker image, stores it on a Docker registry, and deploys it
on a deployment instance. Figure 5.2 shows the phases of the pipeline such that source
code gets transformed into an executable binary. The following steps are passed:

1. Checkout code: The build pipeline clones the source code.

2. Transfer code: The source code is transferred from the code repository to the build
machine.

3. Build Docker image: A Docker image is built in the build machine according to the
Dockerfile provided.

4. Push Docker image: The Docker image is pushed onto the Docker registry.

5. Pull images: The Docker image can be pulled from the Docker registry to start a
new Docker container.

5.3 Provotum 3.0 Deployment Design

Provotum 3.0 is a decentralized REV system developed by the Communication Systems
Group (CSG) at the University of Zurich (UZH) [19]. The system supports a multi-
authority scheme using distributed key generation and a randomizer to provide receipt-
freeness. The PBB is provided by a Substrate® PoA DL. Moreover, a re-encryption mix-net
is employed to disconnect voters from their ballots. Hence, elections can be provided in
an arbitrary form.

This section focuses on the design of the distributed and configurable deployment of
Provotum 3.0. The first subsection briefly presents an overview of the voting protocol.

3https://substrate.de

38 CHAPTER 5. SYSTEM DESIGN

The second subsection explains the design of the deployment of the different application
components. Finally, the last subsection illustrates extensions applied to the base imple-
mentation of Provotum 3.0 that were needed to deploy the application in a decentralized
cloud environment.

5.3.1 Protocol

The protocol of Provotum 3.0 is divided into a setup, a voting, and a tallying phase. Before
the setup phase of an election can be started, all authorities need to connect themselves
in a peer-to-peer overlay network and start the DL. Different sealers are in charge of
validating blocks in the PoA DL. A voting authority also connects to the network but
only behaves as an observer of the DL.

Setup: After the protocol is started, the voting authority can set up a new vote providing
a vote name and an election question. All sealers then need to create an ElGamal keypair
and submit their public part and the proof of knowledge of the private part to the PBB.
Afterward, the voting authority can combine the public key shares into a single public
election key.

Voting: When the public election key is generated, voters can cast their votes. First,
the ballots are encrypted with the public election key. Then, the ballots are sent to the
randomizer, which re-encrypts the vote and creates proof of correct re-encryption. The
voter is then able to cast the ballot to the PBB.

Tallying: When the ballot box is closed, the sealers start a re-encryption mix-net to shuffle
the ballots. They also create a proof of correct shuffling and publish the proofs along with
the shuffled ballots on the PBB. These ballots are then partly decrypted by each sealer
and again stored on the PBB. The voting authority can finally combine the decrypted
shares and tally the votes.

5.3.2 Deployment

Figure 5.6 presents an overview of the different servers deployed for Provotum 3.0. There
exist two types of instances. One is a centralized server instance that runs the voting au-
thority and the randomizer. Sealer instances represent the second category of instances.
The server instance only exists once, whereas sealer instances can have an arbitrary num-
ber. They represent the multi-authority scheme and run a DL with a PoA consensus
mechanism. For that, the sealer nodes and the voting authority node connect over a peer-
to-peer network. The voting-authority node acts as a boot node, such that the sealers
can observe themselves.

In addition, on each instance, a voting CLI is installed to execute functions of the voting
protocol (e.q. start a new election).

5.3. PROVOTUM 3.0 DEPLOYMENT DESIGN

39

Provotum Server Instance

VA Node

docker

Randomizer

docker

VA CLI

docker

Provotum Sealer
Instance 1

Sealer Node Sealer CLI

docker docker

Provotum Sealer
Instance n

Sealer Node Sealer CLI

docker docker

Figure 5.6: Architecture of the deployment of Provotum 3.0

5.3.3 Extensions

As the initial version of Provotum 3.0 was not intended to be run in a realistic distributed
setting on different instances, some design changes had to be made. The design changes
compared to the original version are described in Table 5.5.

Original Version

Changes

It was assumed that only three well-known
accounts exist (Alice the voting authority,
Bob and Charlie the sealers).

The protocol had to be changed such that
multiple sealers could join the network and
that they (including the voting authority)
could create their own keys.

The test deployment started all applica-
tions on a single instance.

The test deployment was designed such
that the centralized applications (voting
authority and randomizer) were deployed
on a single instance, and each sealer was
deployed on its own instance.

The PoA DL was started in local mode.

The configuration of the DL had to be
changed such that sealers on different in-
stances could observe themselves.

The CLI to access the application only
used well-known accounts.

The CLI had to be changed such that self-
created accounts could be accessed with it.

The CLI was built as an executable binary.

The CLI binary was containerized that
it could be built and stored within the
CI/CD pipeline.

Table 5.5: Design changes compared to the original ver-
sion of Provotum 3.0

The most important design changes were made because well-known accounts were used
for the DL. Changes implied that each sealer could generate his own keys and connect
to the peer-to-peer network over a boot node. This change opened the possibility to
deploy multiple sealers in a decentralized architecture. The implementation details of the
decentralized deployment of Provotum 3.0 can be found in section 6.2.

40

CHAPTER 5. SYSTEM DESIGN

Chapter 6

Implementation

This chapter dives into the implementation of the deployment of the CI/CD infrastructure
and the deployment of Provotum 3.0. First, the technologies used for the overall infras-
tructure are presented. Second, an example of a typical deployment procedure is shown.
Third, the steps for the deployment of Provotum 3.0 are explained in detail. Additionally,
technical limitations for the CI/CD infrastructure and the deployment of Provotum 3.0
are listed.

6.1 CI/CD Infrastructure Deployment

6.1.1 Technologies

As section 5.2 defined the core design principles for the deployment of each component
of the CI/CD infrastructure, it is necessary to decide on an adequate technology stack
to implement such requirements. The decision for the following technology stack was
inspired by the related work on the architecture of the deployment of REV systems and
the background information from chapter 3. The following list presents the technologies
used for each component introduced in section 5.2.2:

e Code repository: GitHub!
¢ Build machine: Jenkins?

e Docker image registry: Project Quay?®

e Vulnerability scanner: Clair*

Thttps://github.com/
https://www.jenkins.io/
3https:/ /www.projectquay.io/
“https://github.com/quay /clair

41

42 CHAPTER 6. IMPLEMENTATION

Local computer (IAAC): Terraform® (instance provisioning), Ansible® (instance
configuration)

Resource monitoring: Grafana’, InfluxDB® Telegraf®

Reverse proxy: Traefik!'?

Container applications, container orchestration: Docker!'!, docker-compose!?

Cloud provider: DigitalOcean'?

6.1.2 Deployment Procedure

To deploy all components as IAAC in a cloud environment, the first step is always to
provision new server instances. A Terraform script was defined for each component con-
taining instructions for the cloud provider API to set up a new instance. Listing 1 shows
an example of a script that sets up the cloud instance for Jenkins on DigitalOcean. The
required resources are defined (lines 2-6), the ssh key to connect to the instance is set
(lines 8-10), and a first command is provided that will be executed after the provisioning
of the instance (lines 12-21). After the startup of the instance is done, an Ansible script is
executed (lines 23-25) to install the required software packages (in this example, Jenkins).

The second step contains the configuration of the instance. Listing 2 shows the Ansible
script that is executed right after the provisioning of the instance. The script executes
different roles that contain tasks that are executed directly on the instance. In this
example, Docker, docker-compose, Jenkins, and the reverse proxy are installed.

After these two steps, the instance is fully configured for the given use case. As every
software runs in a Docker container, the Ansible script always copies a docker-compose file
and necessary configuration files to the instance in the configuration phase. For example,
in the previous case of Jenkins, a docker-compose file defining multiple configurations for
Jenkins is copied to the instance and is run directly as a Docker container.

6.1.3 Technical Limitations

The deployment of the CI/CD infrastructure also led to some technical limitations. The
most important limitation is that build pipelines in Jenkins need to be configured man-
ually. In future work, this limitation could be resolved using Ansible to configure the

Shttps://www.terraform.io/
Shttps://www.ansible.com/
"https://grafana.com/
8https:/ /www.influxdata.com/
9https://www.influxdata.com /time-series-platform /telegraf/
Ohttps:/ /traefik.io/traefik /
Uhttps:/ /www.docker.com/
2https://docs.docker.com /compose/
Bhttps:/ /www.digitalocean.com/

16

17

18

19

20

21

22

24

25

26

6.2. PROVOTUM 3.0 DEPLOYMENT 43

resource "digitalocean_droplet" "jenkins" {

count =1

image = "ubuntu-20-04-x64"
name = "jenkins"

region = "fral"

size = "s-2vcpu-4gb"
ssh_keys = [

data.digitalocean_ssh_key.terraform.id

]

provisioner "remote-exec" {
inline = ["sudo apt update", "echo Done!"]

connection {

host = self.ipv4_address

type = "ssh"

user = "root"

private_key = file(var.pvt_key)
}

provisioner "local-exec" {
command = "ANSIBLE_HOST_KEY_CHECKING=False ansible-playbook -u root
— -i '${self.ipv4_address},' --private-key ${var.pvt_key}'
< ../../ansible/jenkins.yml"

Listing 1: Example of a Terraform script

different build pipelines fully. Another minor limitation presents the static task scripts
in Ansible for Ubuntu. All Ansible scripts only work on an Ubuntu 18.04+ distribu-
tion. These scripts could be executed dynamically dependent on the underlying operating
system.

6.2 Provotum 3.0 Deployment

The deployment of Provotum 3.0 followed the same principle as the deployment of other
components in the whole infrastructure (like Jenkins). However, some steps needed to be
added as server and sealer instances in the Provotum 3.0 design depend on each other.
To start the DL, the instances need to share a common custom chain specification file.
This file contains information about the initial block in the DL, configuration about the
consensus mechanism, the sealer’s public validation and finalization address, and the URL
for the boot node. For this reason, after the configuration of the different instances, this

10

11

12

13

14

15

44 CHAPTER 6. IMPLEMENTATION

- name: Set up a Jenkins CI server

hosts: all
become: yes
vars:

- update_apt_cache: yes

roles:
- docker
- docker-compose
- jenkins-inst
- role: reverse—proxy
vars:
network: files_provotum-jenkins

Listing 2: Example of an Ansible script

configuration file needed to be generated and shared among all instances before starting
up the peer-to-peer protocol.

This section gives a deeper view into the different steps of the deployment of Provotum
3.0.

6.2.1 Building the Image

Before Provotum 3.0 can be set up, the corresponding Docker images need to be available
on the Docker registry. For that, different Dockerfiles are defined within the project of
Provotum 3.0. There is a Dockerfile to build a node (voting-authority or sealer), build
the randomizer, and build the voting CLI. These components then get built on Jenkins,
and the resulting Docker image gets stored on Quay. When the Docker images are stored,
they periodically get scanned for vulnerabilities by Clair. After storing the Docker images,
they are ready to get pulled from deployment instances.

6.2.2 Provisioning

The provisioning of the different instances for Provotum 3.0 is done with Terraform. The
scripts look similar to the one that was used to provision Jenkins in listing 1. One Ter-
raform script is used to provision the server instance containing the voting-authority node,
the voting-authority CLI, and the randomizer. Another script provisions the instances of
the sealers. This script contains a counter to deploy as many sealer instances as wanted
parallelly. After the provisioning, an Ansible script is executed to configure the instances
and to generate the common custom chain specification file.

6.2. PROVOTUM 3.0 DEPLOYMENT 45

6.2.3 Configuration

When the instance is running, it gets automatically configured with an Ansible script.
Depending on if it is a server or a sealer instance, another script gets executed. Since all
components of Provotum 3.0 are run in Docker containers, Docker and docker-compose are
installed in the first step. Next, validation and finalization keys and addresses are directly
generated on the instances with a tool called subkey!* which is provided by Substrate.
Sealers need these keys to validate and finalize blocks in the DL. These keys must be
generated locally on the instances and not on the local machine, as they should never be
shared with anyone else.

After the key generation, the actual application is installed. For that, a docker-compose
file is copied to the instances. The docker-compose file configures the different container
applications. Listing 3 presents the docker-compose file for the sealer instance. All en-
vironment variables in the docker-compose file are defined in a separate .env file. Line
4-19 corresponds to the sealer application, and Line 21-26 corresponds to the CLI. By
looking at the sealer application, we can see the definition of the name of the Docker
image, which is stored on the Docker registry on line 6. Line 7-16 shows the command
which is executed after the creation of the Docker container. These options correspond
to the Substrate options which are needed to start the DL. Specifically, line 8 defines the
path to the custom chain specification file. This file is not generated at this point in time
as the local machine still needs to collect all public validation and finalization addresses
from the sealers and combine them in that file.

In the next step, all instances save their public addresses on the local machine. Then
they get centrally combined within the custom chain specification file. Afterward, the
file is sent to the instances. At this point, the configuration of the instance is done,
and the applications can be started. The sealers and the voting authority automatically
connect over a peer-to-peer overlay network. The voting authority acts as a boot node
such that the sealers have an entry point to the network. After the connection is made,
the validation and finalization key is stored on each node application. With the keys, the
sealers start to validate and finalize blocks. The DL is running and is waiting for incoming
transactions to record.

6.2.4 The Command-Line Interface

To access the voting protocol, each instance is provided with a CLI to execute commands
like generating a new election or casting new votes. The CLI differs between the server and
the sealer instance. As the CLI on the server instance can only execute voting authority
or voter-related commands, the CLI on the sealer instance can only provide sealer-related
commands. To provide an easily accessible interface for all the different CLIs on the
instances, an Ansible script is run on the local machine. If we want to start a new
election, the "start election script” can be executed, and Ansible automatically connects
to the right instance and runs the right CLI command. The same holds for the sealer

“https:/ /substrate.dev/docs/en/knowledgebase/integrate /subkey

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

46 CHAPTER 6. IMPLEMENTATION

version: "3.8"

services:
sealer:
container_name: sealer-${SEALER_NUMBER}
image: ${NODE_IMAGE}
command :
--chain=./customSpec. json
--bootnodes ${BOOTNODE}
--validator
--name sealer-${SEALER_NUMBER}
--base-path /tmp/sealer-${SEALER_NUMBER}
--port 30333
--ws—-port 9944
—--rpc-port 9933
—-—execution Native
network_mode: host
volumes:
- ./customSpec. json:/provotum/customSpec. json

client:
container_name: client
image: ${CLIENT_IMAGE}
environment :
- VA_URL=${VA_URL}
- SEALER_MNEMONIC=${SEALER_MNEMONIC}

Listing 3: docker-compose for a sealer instance

instances. When the ElGamal key pair needs to be generated for the election, Ansible
connects to all sealer instances and executes the CLI command for this functionality. With
these scripts, the whole election from setup over voting to tallying can be accessed and
tested.

6.2.5 Monitoring

To test runtimes on the distributed deployment of Provotum 3.0, a monitoring system
is used to track CPU and memory usages of the different Docker Containers. Telegraf
is used as a containerized application to track CPU and memory usages from Docker
stats. The data is then sent to the centralized monitoring instance. The influxDB saves
the data in time series, and Grafana provides a web application to present the data in a
human-readable way. Figure 6.1 shows an example of the CPU usage monitoring during
an election.

6.2. PROVOTUM 3.0 DEPLOYMENT 47

Docker CPU

|

|
[u

18:45 18:50 18:55 19:00 19:05 19:10 19:15

0 A T
1R

== randomizer == sealer-) == sealer-1 == sealer-2 sealer-3 sealer-4 sealer-5 sealer-6 sealer-7 == sealer-8

Figure 6.1: Grafana GUI to monitor CPU usages of Docker containers.

6.2.6 Technical Limitations

The deployment of Provotum 3.0 contains only minor technical limitations. However,
some aspects of the implementation could be improved. Firstly, the subkey binary is
stored in the code repository and then copied from the local machine to the instance.
This binary should be built in the CI/CD pipeline and stored on binary file storage. It
could then be downloaded directly from the instance. With this improvement, the subkey
binary can be easily updated, rebuilt, and deployed. Secondly, the additional step with
generating the custom chain specification file needs to be done by user interaction on the
local machine. If it were possible to wait until all instances would be provisioned and
configured, the custom chain specification file generation could be done automatically
after that.

48

CHAPTER 6. IMPLEMENTATION

Chapter 7

Evaluation

The evaluation of the whole CI/CD infrastructure and the deployment of the prototype
of Provotum 3.0 is divided into two parts. First, the defined core principles for the
infrastructure are evaluated. Second, the distributed deployment of Provotum 3.0 are
analyzed according to security, scalability, and usability properties.

7.1 Core Principles

As the overarching goal was to provide a modular, reproducible deployment and con-
figuration management system for Provotum 3.0, core principles were defined in section
5.2. As shown in figure 7.1, these principles should enforce a usable, reproducible, and
secure deployment for a REV system. Therefore, the subsequent evaluation focuses on
the fulfillment of these core principles.

Usability Security

ntainer
Extensibility ecurity Secure Data Transfer

Figure 7.1: Core principles for the CI/CD infrastructure

7.1.1 TIAAC and Containerization

According to TAAC and containerization, the following core principles were defined:

49

90 CHAPTER 7. EVALUATION

e The instances should be set up in cloud infrastructure and configured with TAAC.

e All infrastructural components should be uniformly deployed as Docker containers.

The implementation clearly shows that all components of the CI/CD infrastructure and
the deployment of Provotum 3.0 can all be provisioned with Terraform and configured
with Ansible. These frameworks provide modular scripts to automate the setup of all
software components. Hence, the prototype of deploying the whole infrastructure for a
REV system fulfills the first core principle.

By looking at the implementation of the prototype, all components are deployed as Docker
containers. For each component, the Ansible script copies a docker-compose file to the
instance, which defines a multi-container application. This file is then used to run all
applications on the instance. For this reason, the second core principle is also fulfilled.

7.1.2 Container Security

The third core principle emphasis the security of a containerized environment and states
the following:

e The threat model of section 5.1 should be considered and the proposed mitigations
should be implemented.

The threat model was divided into four important steps of the supply chain of an image
and its container. These steps were the Dockerfile, the build machine, the Docker registry,
and the container deployment.

Dockerfile

Starting with the Dockerfile, we can see that in Provotum 3.0 deployment, only small and
official base images were used, like the Ubuntu or the Debian base image. The Dockerfiles
also provide multi-stage builds. In the first step, the application’s binary is built and then
copied into a smaller image used during runtime. In addition, a user is defined to not
execute commands on behalf of the root user. Finally, no sensitive data is stored in the
Dockerfile. As Provotum is still in the development stage, all users from the Provotum
organization have access to the Dockerfile. Access control of the Dockerfile would only
make sense in a productional environment and was not considered in the prototype.

Build Machine

Next, by looking at the build machine, we realize that it is deployed on a cloud instance
isolated from other components. This is important because the range of influence of an
adversary is restricted if he gains access to the build machine. Moreover, only necessary

7.1. CORE PRINCIPLES 51

software to run the build machine is installed on this instance. The only Docker container
(next to the container of the build machine) that is run on the instance is a Traefik reverse
proxy to provide TLS and to redirect requests to the build machine. As the hardening of
the build machine is strong, non-privileged builds were not considered. The build machine
directly uses the Docker daemon to build images in the pipeline.

Docker Registry

The next step of the supply chain is the Docker registry. The Docker registry provides
an authenticated access over TLS. The databases are not exposed to the internet and
can only be requested from an internal network. Additionally, a vulnerability scanner is
installed to scan the Docker images periodically. It also synchronizes its database with
the CVE database. Due to the complexity of creating a signature for the image during the
build, this feature was not implemented. In a productional environment, the signature of
the image would be an important feature to enhance integrity.

Container Deployment

Lastly, the deployment of the container needs to be analyzed. Only necessary volumes were
mounted from the filesystem like the custom chain specification file for all the deployments.
For Jenkins and the reverse proxy, the Docker socket needed to be mounted to provide the
Docker build functionality (for Jenkins) and the observation of recently started containers
(reverse proxy). The privileged flag was only used for the Telegraf container such that it
can directly read Docker stats. This flag should be used carefully as it provides all Linux
capabilities to a container. In a productional environment, this should be analyzed and
perhaps not be used. As no signatures were created for the Docker images, no deployment
checks were employed. When providing signatures, it is also important to enforce these
deployment checks.

7.1.3 Secure Data Transfer

The fourth core principle was related to secure data transfer and was stated as follow:
e All connections between the instances should provide TLS for a secure data transfer.

To achieve end-to-end encryption between different components, a reverse proxy was used
on each instance. The reverse proxies listen to virtual hosts and redirect the requests
to the right internal application. Certificates for the virtual hosts are resolved using the
Let’s Encrypt certificate authority!. By using the certificates, a secure TLS connection
between components can be established. For that reason, the principle is fulfilled for the
CI/CD infrastructure and the deployed application. It is important to note that requests

Thttps://letsencrypt.org/

52 CHAPTER 7. EVALUATION

are only encrypted until reaching the reverse proxy. Internal encryption (i.e., redirects
from the reverse proxy to the application) is not considered and could be extended in a
productional environment using self-signed certificates.

7.1.4 Extensibility

The fifth and last core principle according to the extensibility of the infrastructure was
stated as follows:

e The infrastructure should be used for future deployments of Provotum.

As it is difficult to predict which direction future development will take, extensibility is
hard to evaluate. However, some important features were implemented to support the
future development of the infrastructure. Firstly, all deployment scripts are published on
a code repository and are documented in detail. Secondly, the scripts are modularly built
up to be reused for another deployment. For example, the installation of Docker or the
reverse proxy is defined in a script that can be used for any other deployment. These
scripts also allow for parametrization such that they can be reused more easily. Thirdly,
the structure of the deployment is the same for each component. Hence, this structure
could be reused as an example or a template for another deployment.

7.2 Provotum Deployment

7.2.1 Overview

Next to Provotum 3.0, two other versions, Provotum 2.0 and ProvotumRF, were deployed
using the same CI/CD infrastructure. The following table 7.1 presents the main de-
ployment status of all three applications. Provotum 2.0 [20] was deployed on one cloud
instance, using three fixed sealers, and is fully functional. This means that the application
can be set up such that the voting protocol works out of the box. Next, we have also tried
to deploy ProvotumRF [30] within the infrastructure. It provides a dynamic number of
sealers that are deployed on distributed instances. However, the protocol is not yet fully
functional as some implementation details are missing in the base protocol to provide
such a cloud deployment. Finally, Provotum 3.0 was deployed, which provides distributed
sealers on separate instances and is fully functional.

Protocol Decentralized Deployment Fully Functional
Provotum 2.0 [20] X v
ProvotumRF [30] v X
Provotum 3.0 [19] v v

Table 7.1: Deployed applications

7.2. PROVOTUM DEPLOYMENT 23

The remainder of this section presents the evaluation of the deployment of Provotum 3.0.

7.2.2 Provotum 3.0 Deplyoment

The cloud deployment of Provotum 3.0 was evaluated in three different dimensions, namely
security, scalability, and usability. The security evaluation was done according to possible
container security threats, best practices from reference deployments for REV systems,
implementation details of Provotum 3.0, and the underlying trust assumptions. Scala-
bility was tested by measuring the duration of election processes with different parame-
terizations. Finally, usability was evaluated by the level of possible parametrization, the
difficulty to set up such a cloud deployment, and consequently, the reproducibility of the
system.

Security

From a container security point of view, the core principle to consider the container secu-
rity threat model holds for the infrastructure and the Provotum 3.0 deployment. The rea-
son for that is that Provotum 3.0 is built within the CI/CD pipeline of the infrastructure,
and the Dockerfile was created regarding the Dockerfile container security mitigations.

By comparing the system design of other relevant REV systems like CHVote [59] or
the Swiss Post E-Voting system [56] with the deployment of Provotum 3.0, we can see
similarities but also differences. The most pertinent point is that in other REV systems,
all communication between the client and the server is encrypted using TLS. Provotum
3.0 uses secure WebSocket connections for CLI requests from one node to another. If, for
example, the CLI on the sealer instance requests the voting authority node, a WebSocket
connection is established using TLS. Hence, also the deployment of Provotum 3.0 provides
secure data transfer over the internet. Another interesting point to consider is the use of
DDOS protection or web-application firewalls (WAFSs) to filter malicious requests. The
deployment of Provotum 3.0 does not consider these components as they can be easily
added in a productional environment. For test purposes and the reproducibility of such a
distributed system, these components only added a level of complexity and were therefore
left out.

Provotum 3.0 uses a DL as the PBB, which specifically needs to be evaluated from a
security point of view. Since only selected sealers are allowed to run the protocol of
the distributed ledger, the system needs to ensure its integrity. The definition of the
authorized sealers is contained in the custom chain specification file. Therefore, the creator
of this file needs to be trusted that only valid sealers are allowed to run the protocol. From
the implementation of the deployment of Provotum 3.0, we can see that the file is created
on the local machine, which is responsible for the configuration of the infrastructure.
Hence, this entity needs to be trusted, and in a productional environment, the local
machine should therefore be run by a trusted voting authority.

o4 CHAPTER 7. EVALUATION

Scalability

To analyze the scalability of the cloud deployment of Provotum 3.0, we need first to
identify the bottlenecks of the voting protocol. As the original protocol [19] mainly iden-
tified the mixing (shuffle votes, generate and verify shuffle proofs) as the main stateful
bottleneck, this evaluation focuses on the mixing step of the distributed deployment.

Experimental Setup: The following runtime tests were conducted on the distributed
cloud deployment of Provotum 3.0. We have run tests with 2, 5, and 10 sealers in the
network. Fach instance was provisioned by DigitalOcean using 2 CPU cores and 2 GB
of RAM. Ubuntu 20.04 was chosen as the operating system. In addition, we have fixed
the block time to 6 seconds, the mixing batch size to 75, and the rounds of mixing to
3. The fixed block time describes the interval in which new blocks are generated in the
DL. The batch size describes how many ballots are shuffled by a sealer in one operation.
Each experiment was run 3 times, and the average runtime was calculated. The runtime
is measured by the monitoring system of the infrastructure and contains the time from
the start until the end of the mixing step. This means it is an end-to-end experiment
that includes all steps necessary to mix the ballots. These steps include the shuffling, the
generation, the verification of the shuffle proofs, and the complete interaction with the
DL (storing, reading ballots, etc.).

Results: The following table 7.2 and figure 7.2 show the results obtained from the scal-
ability experiment. The data is separated into series of 2, 5, and 10 sealers. The table
presents the average runtime in seconds for the mixing step for different numbers of cast
votes. The same data is plotted in figure 7.2. The axes are formatted in log scales.
Hence, a linear graph represents a linear growth in the runtime when the number of votes
increases.

Number of votes | 2 sealers | 5 sealers | 10 sealers
100 99s 91s 111s
1’000 1’280s 1’580s 1’750s
10’000 10’002s 11’535s 13’405s

Table 7.2: Mixing times in the distributed deployment

Firstly, we can see that the runtime grows linearly in the number of votes for each data
series. This is a good indication that the distributed system could be scaled for a large
election. However, we can also see that the mixing for one vote takes approximately 1
second. Secondly, the increase of the runtime with additional sealers is small. The increase
from 2 sealers to 5 sealers varies between -9% and 23%. The increase from 5 sealers to
10 sealers varies between 10% and 22%. These numbers, however, should be treated with
caution. As they are end-to-end tests, a high variance can occur, for example, due to
network delays. Additional results for the runtime of randomizing votes can be found in
the appendix.

Discussion: The scalability experiments show some unexpected results. When com-
paring these results from the decentralized deployment to benchmark results from the
original deployment of Provotum 3.0 [19], we can see that the mixing time in the cloud

7.2. PROVOTUM DEPLOYMENT 5}

10,000 |- .

= i |

=) | |
S

21,000 | .

[«D] []

k= i 1

= —o— 2 sealers ||

—=— 5 gealers
100 g —o—10 sealers |
| | I N =

100 1,000 10,000

Number of votes

Figure 7.2: Mixing times in the distributed deployment

deployment is around 16 to 26 times slower than the mixing in the original work. The
main reason for that lies in the end-to-end characteristics of this experiment. As the
original work only measured the runtime of the shuffling, proof generation, and proof
validation functions, the overhead from the DL was not considered. In this experiment,
as the block time of the DL is 6 seconds, the sealers need to wait until transactions of the
previous shuffling were committed. When the shuffling is fast, it will still take 6 seconds
until the next sealer can start shuffling. To mitigate this problem, the block time or the
batch size could be adjusted. A shorter block time would add transactions faster to the
DL, and a larger batch size would increase the number of votes shuffled by a sealer in
one transaction. We have tried to adjust those parameters to increase the performance of
the mixnet. However, the change of both parameters caused errors during the shuffling
process. Another surprising result is that the mixing runtime does not increase linearly
with the number of sealers. The sealers should sequentially (one after another) shuffle
the batch of ballots. This would implicate that a doubling of the sealers should cause
a doubling of the runtime. The reason for that behavior is still unknown and a good
starting point for future work.

The previous evaluation shows that the prototype is not ready yet to be tested in a
distributed deployment. Some implementation issues still need to be fixed such that a
realistic evaluation can be carried out.

Usablity

The usability aspect is evaluated according to the difficulty of how a user can achieve
his goal by deploying the REV system. In addition, it is important that the user can
parameterize the deployment such that she can adapt the application for a specific use
case. The user here is the system admin of the voting authority who controls the local
machine and deploys the whole application.

Starting with the principle of IAAC, we can see that all components are deployed using

96 CHAPTER 7. EVALUATION

pre-defined scripts. With that, installing different software components can be abstracted.
The user has a much simpler task to do compared to manual provisioning and configuration
of the server. With IAAC, it only takes a handful of commands to be executed until the
instances are provisioned and configured in the cloud. Next, the design of the deployment
focused on a high parametrization of the prototype. Many parameters were assigned with
a default value but can be changed in another environment. A good example of that is
the domain for the deployment. It is a variable that is predefined such that the whole
system can easily be deployed. However, if a user wants to change the domain, she can
change it at one point of the script, and all components get configurated with this new
domain (including generation of the DNS entries). The most important parameter in the
prototype of the deployment of Provotum 3.0, however, is the number of the sealers. This
is by default set to two but can be changed to another arbitrary number. The instances
are then dynamically set up according to this number. Finally, the different deployment
scripts were designed in a modular way. We have used Ansible roles which define tasks
to configure a defined software package. This modularity allows for a straightforward
analysis of how the prototype works and a good starting point if the user wants to add
new functionalities. All in all, the prototype for the distributed deployment of Provotum
3.0 achieves a high reproducibility, such that users can reproduce the exact infrastructure
to test the REV system.

Chapter 8

Summary and Conclusions

As the reproducibility crisis also affects domains in computer science and specifically in
the domain of remote electronic voting (REV) systems, the main goal of this thesis was to
develop and deploy a reproducible cloud infrastructure for such a REV system. In the first
step, a continuous integration/continuous delivery (CI/CD) infrastructure was set up to
securely build Docker images from the different components of the REV system. Then, a
configuration management system was used to automatically provision and configure the
deployment instances. As such, the whole deployment could be provided as infrastructure-
as-a-code (IAAC) and can therefore be used to reproduce the deployment of Provotum
3.0.

The prototype successfully fulfills the formal definition of reproducibility from section
3.5. The definition states methods, results, and inferential reproducibility. All of these
requirements can be fulfilled mainly due to two aspects of the infrastructure. Firstly, all
components (infrastructural and application) are defined in Docker images and deployed
as Docker containers. With that, dependent software can be installed within a container-
ized environment and can be run everywhere. Secondly, the whole infrastructure and
application are provided as IAAC. This allows to reproduce and configure each cloud in-
stance. With these ideas in mind, methods can be easily reproduced by just executing the
code to set up the infrastructure. Docker images can be pulled from a docker registry and
directly deployed. By having an identical infrastructure and application deployment, the
results of each experiment should also be reproducible. And, if the results are the same,
the inferential analysis would also draw the same conclusion.

Nonetheless, during the process to provide such a cloud deployment, also difficulties arose.
The many difficulties were to deploy the prototype of a decentralized REV system in a
distributed environment, which had not been intended by the prototype’s design. It led
to some detailed adjustments to the implementation of the REV system, which required
in-depth knowledge of the protocol. With this acquired knowledge, prototypes could
be designed with a distributed deployment in mind in the future. As such, it would
dramatically reduce the complexity of the deployment step. Another difficulty was to
design the deployment scripts modularly. However, the work was worth it, such that
anyone can reuse these scripts for future deployments.

57

58 CHAPTER 8. SUMMARY AND CONCLUSIONS

8.1 Future Work

This section suggests a starting point for future work in the field of the deployment
of a decentralized REV system. It provides possible improvements in the REV system
prototype, the security, and the usability of the deployment. These suggestions aim to
achieve a productional deployment of a decentralized REV system in the future.

8.1.1 Improve Provotum 3.0 Implementations

Section 7.2.2 identified some implementation issues with the prototype of Provotum 3.0
for the cloud deployment. These issues include the configuration of the block time and the
batch size for the mix-net. The block time represents the time interval to create new blocks
in the distributed ledger (DL), and the batch size defines the number of votes mixed by
a sealer in one off-chain operation. Since the mix-net creates the bottleneck concerning
the scalability of the prototype, a proper configuration of these two parameters could
drastically improve the runtime in such a distributed deployment. Finally, scalability
tests could be carried out again, and a more realistic conclusion could be drawn according
to a real-world deployment of such a REV system.

8.1.2 Improve the Security of the Deployment
CI/CD Security

Section 5.1 worked out a container security threat model, which was not fully applied to
the design of the CI/CD infrastructure. Two important points that we did not implement
yet are the signature of the Docker images and the enforcement of deployment checks. The
building machine should create the signature for the Docker image to verify the origin of
the image later on. Deployment checks can then enforce the verification of the signature.
Additional deployment checks (like the rejection of images with detected vulnerabilities)
can be also be applied.

Penetration Tests and Static Code Analysis

To ensure the security of the deployment, ethical hackers should execute penetration tests
for the whole CI/CD infrastructure and the deployment of the REV system. With the
mimic of an attacker, new unknown vulnerabilities could be identified in the running
systems. In addition, a static code analysis could also detect implementation weaknesses
within the system. With these methods, the distributed deployment could be tested from
a security point of view, with the goal of a productional deployment in the future.

8.1. FUTURE WORK 29

Add Aditional Security Components

By analyzing the infrastructure of two productional REV systems in section 4, we realize
that some additional components are required for a secure productional deployment. One
is DDOS protection to secure the backend components from cyber-attacks. In these
attacks, an adversary tries to overload the system with numerous requests. Another
component would be a web-application firewall (WAF). Such a firewall is located at the
application layer and analyzes HTTP packages from the clients and filters out vulnerable
requests. These two components are standard for a productional web application. As such,
by focusing on the goal of a REV system’s productional deployment, these components
are essential to be added.

8.1.3 Improve the Usability of the Deployment
Independent Operating System

Deployment scripts are all coded to configure the system within an Ubuntu 18.04+ op-
erating system. To make these scripts more universal, they should also provide imple-
mentations for other operating systems. Consequently, the infrastructure would be more
comprehensive and adaptable to other environments.

Automatic Configuration of the Build Machine

The system components of the build machine are deployed using TAAC. However, the
pipelines within the build machine need to be configured manually up until now. In the
future, these pipelines could automatically be set up when the build machine is deployed.
With this improvement, we could also outsource the configuration of the build pipeline to
configuration scripts.

60

CHAPTER 8. SUMMARY AND CONCLUSIONS

Bibliography

Ben Adida. “Helios: Web-based Open-Audit Voting.” In: USENIX security sympo-
sium. Vol. 17. 2008, pp. 335-348.

Monya Baker. “Reproducibility crisis”. In: Nature 533.26 (2016), pp. 353-66.

Josh Benaloh. “Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.”
In: EVT 7 (2007), pp. 14-14.

Josh Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot elections”. In: Pro-
ceedings of the twenty-sizth annual ACM symposium on Theory of computing. 1994,
pp- 544-553.

David Yeregui Marcos del Blanco, David Duenas-Cid, and Héctor Alaiz Moretén.
“E-Voting System evaluation based on the Council of Europe recommendations:
nVotes”. In: International Joint Conference on Electronic Voting. Springer. 2020,
pp. 147-166.

Carl Boettiger. “An introduction to Docker for reproducible research”. In: ACM
SIGOPS Operating Systems Review 49.1 (2015), pp. 71-79.

Sergiu Bursuc, Gurchetan S Grewal, and Mark D Ryan. “Trivitas: Voters directly
verifying votes”. In: International Conference on E-Voting and Identity. Springer.
2011, pp. 190-207.

Pyrros Chaidos et al. “Beleniosrf: A non-interactive receipt-free electronic voting
scheme”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 2016, pp. 1614—1625.

David Chaum. “Secret-ballot receipts: True voter-verifiable elections”. In: IEFE se-
curity & privacy 2.1 (2004), pp. 38-47.

David L Chaum. “Untraceable electronic mail, return addresses, and digital pseudonyms”.
In: Communications of the ACM 24.2 (1981), pp. 84-90.

Benoit Chevallier-Mames et al. “On some incompatible properties of voting schemes”.
In: Towards Trustworthy Elections. Springer, 2010, pp. 191-199.

Michael R Clarkson, Stephen Chong, and Andrew C Myers. “Civitas: Toward a
secure voting system”. In: 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE. 2008, pp. 354-368.

Continuous integration vs. continuous delivery vs. continuous deployment. https://
www.atlassian.com/continuous-delivery/principles/continuous-integration-
vs-delivery-vs-deployment. Accessed: 2021-06-01.

Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. “Belenios: a simple pri-
vate and verifiable electronic voting system”. In: Foundations of Security, Protocols,
and Equational Reasoning. Springer, 2019, pp. 214-238.

61

62
[15]

[16]

[25]

[26]

[27]

28]

BIBLIOGRAPHY

Véronique Cortier and Ben Smyth. “Attacking and fixing Helios: An analysis of
ballot secrecy”. In: Journal of Computer Security 21.1 (2013), pp. 89-148.
Véronique Cortier et al. “Election verifiability for helios under weaker trust assump-
tions”. In: Furopean Symposium on Research in Computer Security. Springer. 2014,
pp- 327-344.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A secure and optimally
efficient multi-authority election scheme”. In: Furopean transactions on Telecommu-
nications 8.5 (1997), pp. 481-490.

Stephanie Delaune, Steve Kremer, and Mark Ryan. “Coercion-resistance and receipt-
freeness in electronic voting”. In: 19th IEEE Computer Security Foundations Work-
shop (CSFW’06). IEEE. 2006, 12-pp.

Moritz Eck. “Mixnets in a Distributed Ledger Remote Electronic Voting System”.
MA thesis. 2021.

Moritz Eck, Alex Scheitlin, and Nik Zaugg. “Design and Implementation of Blockchain-
based E-Voting”. 2020.

Ethereum Blockchain whitepaper. https://ethereum. org/en/whitepaper/. Ac-
cessed: 2021-05-27.

Jenny Fong. Are Containers Replacing Virtual Machines? https://www.openshift.
com/blog/build-once-deploy-anywhere. Accessed: 2021-06-02.

Martin Fowler and Matthew Foemmel. “Continuous integration”. In: Thought- Works)
http://www. thoughtworks. com/Continuous Integration. pdf 122.14 (2006), pp. 1-7.
Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. “What does research
reproducibility mean?” In: Science translational medicine 8.341 (2016), 341ps12—-
341ps12.

Rolf Haenni et al. “CHVote System Specification.” In: TACR Cryptol. ePrint Arch.
2017 (2017), p. 325.

Thomas Haines and Peter B Rgnne. “New Standards for E-Voting Systems: Reflec-
tions on Source Code Examinations.” In: JACR Cryptol. ePrint Arch. 2021 (2021),
p. 391.

Feng Hao, Peter YA Ryan, and Piotr Zieliniski. “Anonymous voting by two-round
public discussion”. In: IET Information Security 4.2 (2010), pp. 62-67.

Sven Heiberg et al. “Improving the verifiability of the Estonian Internet Voting
scheme”. In: International Joint Conference on Electronic Voting. Springer. 2016,
pp. 92-107.

Trey Herr. “Breaking Trust — Shades of Crisis Across an Insecure Software Supply
Chain”. In: USENIX Association, Feb. 2021.

Alexander Hofmann. “Security Analysis and Improvements of a Blockchain-based
Remote Electronic Voting System”. MA thesis. 2020.

Matthew Hutson. Artificial intelligence faces reproducibility crisis. 2018.

Hugo Jonker, Sjouke Mauw, and Jun Pang. “Privacy and verifiability in voting sys-
tems: Methods, developments and trends”. In: Computer Science Review 10 (2013),
pp. 1-30.

Ari Juels, Dario Catalano, and Markus Jakobsson. “Coercion-Resistant Electronic
Elections”. In: (2005).

Fatih Karayumak et al. “Usability Analysis of Helios-An Open Source Verifiable
Remote Electronic Voting System.” In: EVT/WOTE 11.5 (2011).

BIBLIOGRAPHY 63

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

TN

[48]

[49]

Christian Killer et al. “Aternum: A Decentralized Voting System with Unconditional
Privacy”. In: May 2021.

Christian Killer et al. “From Centralized to Decentralized Remote Electronic Vot-

ing”. In: 2021.

Steve Kremer, Mark Ryan, and Ben Smyth. “Election verifiability in electronic
voting protocols”. In: Furopean Symposium on Research in Computer Security.

Springer. 2010, pp. 389-404.

Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. “Extending helios towards
private eligibility verifiability”. In: International Conference on E-Voting and Iden-
tity. Springer. 2015, pp. 57-73.

Patrick McCorry, Siamak F Shahandashti, and Feng Hao. “A smart contract for
boardroom voting with maximum voter privacy”. In: International Conference on
Financial Cryptography and Data Security. Springer. 2017, pp. 357-375.

David C Mills et al. “Distributed ledger technology in payments, clearing, and set-

tlement”. In: (2016).

Tal Moran and Moni Naor. “Receipt-free universally-verifiable voting with ever-

lasting privacy”. In: Annual International Cryptology Conference. Springer. 2006,

pp- 373-392.

K. Morris. Infrastructure as Code: Managing Servers in the Cloud. Safari Books
Online. O’Reilly Media, 2016. 1SBN: 9781491924396. URL: https://books.google.

ch/books?id=BThRDAAAQBAJ.

Stephan Neumann et al. “Towards a practical jcj/civitas implementation”. In: (2013).

nVotes. URL: https://nvotes.com/ (visited on 01/02/2021).

Kei Omizo. Build Once, Deploy Anywhere! https://www.openshift.com/blog/

build-once-deploy-anywhere. Accessed: 2021-06-02.

Hans E Plesser. “Reproducibility vs. replicability: a brief history of a confused ter-

minology”. In: Frontiers in neuroinformatics 11 (2018), p. 76.

Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Thajchayapong.
“Performance analysis of private blockchain platforms in varying workloads”. In:

2017 26th International Conference on Computer Communication and Networks
(ICCCN). IEEE. 2017, pp. 1-6.

Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. “An intro-

duction to docker and analysis of its performance”. In: International Journal of
Computer Science and Network Security (IJCSNS) 17.3 (2017), p. 228.

L. Rice. Container Security: Fundamental Technology Concepts that Protect Con-
tainerized Applications. O’Reilly Media, 2020. 1SBN: 9781492056713. URL: https:

//books.google.ch/books?id=J4fiDwAAQBAJ.

Ronald L Rivest. “On the notion of ’software independence’ in voting systems”.

In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366.1881 (2008), pp. 3759-3767.

Peter YA Ryan, Peter B Rgnne, and Vincenzo lovino. “Selene: Voting with transpar-

ent verifiability and coercion-mitigation”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2016, pp. 176-192.

Kazue Sako and Joe Kilian. “Receipt-free mix-type voting scheme”. In: International
Conference on the Theory and Applications of Cryptographic Techniques. Springer.

1995, pp. 393-403.

64

[53]

BIBLIOGRAPHY

Ben Smyth and David Bernhard. “Ballot secrecy and ballot independence coin-
cide”. In: Furopean Symposium on Research in Computer Security. Springer. 2013,
pp- 463-480.

Michael A Specter, James Koppel, and Daniel Weitzner. “The ballot is busted before
the blockchain: A security analysis of voatz, the first internet voting application
used in us federal elections”. In: 29th { USENIX} Security Symposium ({ USENIX}
Security 20). 2020, pp. 1535-1553.

Oliver Spycher et al. “A new approach towards coercion-resistant remote e-voting
in linear time”. In: International Conference on Financial Cryptography and Data
Security. Springer. 2011, pp. 182-1809.

Raffaele Stefanelli, Denis Morel, and Xavier Monnat. “A secure e-voting infrastruc-
ture. implementation by swiss post”. In: Second In (2017), p. 326.

Universal Declaration of Human Rights. https://www.un.org/en/about-us/
universal-declaration-of-human-rights. Accessed: 2021-05-21.

Verificatum Mix-Net. https://www.verificatum.org/. Accessed: 2021-05-27.
Christophe Vigouroux and Franck Ponchel. CHVote System Architecture. https :
//gitlab . com/chvote2/documentation/chvote-docs/builds/artifacts/
master /raw/design/target /generated-docs/pdf /architecture/system-
architecture.pdf?job=artifact:design-docs. Accessed: 2021-06-14.

Wenbo Wang et al. “A survey on consensus mechanisms and mining strategy man-
agement in blockchain networks”. In: IEEE Access 7 (2019), pp. 22328-22370.
Stefan G Weber, Roberto Araujo, and Johannes Buchmann. “On coercion-resistant
electronic elections with linear work”. In: The Second International Conference on
Awailability, Reliability and Security (ARES’07). IEEE. 2007, pp. 908-916.

Abbreviations

CD

CI
CLI
CPU
DDOS
DKG
DL
DLT
DNS
GB
GUI
HTTP
IAAC
MITM
PBB
PBFT
PoA
PoS
PoW
RAM
REV
SSCA
TLS
URL
VM
WAF

Continuous Delivery
Continuous Integration
Command-Line Interface
Central Processing Unit
Distributed Denial-of-Service
Distributed Key Generation
Distributed Ledger
Distributed Ledger Technology
Domain Name System
Gigabyte

Graphical User Interface
Hypertext Transfer Protocol
Infrastructure-as-a-Code
Man-in-the-middle

Public Bulletin Board
Practical Byzantine Fault Tolerance
Proof-of-Authority
Proof-of-Stake

Proof-of-Work

Random-Access Memory
Remote Electronic Voting
Software Supply Chain Attacks
Transport Layer Security
Uniform Resource Locator
Virtual Machine

Web Application Firewall

65

66

ABBREVIATONS

List of Figures

2.1 CGS97 domain protocol and their dependent implementations 7
2.2 JCJO5 domain protocol and their dependent implementations 11
2.3 HRZ08 domain protocol and their dependent implementation 13
3.1 Overview of a CI/CD Infrastructure, 18
3.2 Container versus Virtual Machines [22] 20
5.1 Supply Chain of a Docker image, 28
5.2 Overview of the whole CI/CD infrastructure and their components 33
5.3 Architecture of the build machine instance 34
5.4 Architecture of the docker registry instance 35
5.5 Architecture of the resource monitoring instance 36
5.6 Architecture of the deployment of Provotum 3.0 39
6.1 Grafana GUI to monitor CPU usages of Docker containers. 47
7.1 Core principles for the CI/CD infrastructure 49
7.2 Mixing times in the distributed deployment 55
A.1 Runtime for randomizing the ballots 73

67

68

LIST OF FIGURES

List of Tables

2.1 Comparison of the properties of REV systems, based on [36] 15
5.1 Dockerfile Threats 29
5.2 Build build Threats 30
5.3 Docker registry Lo 31
5.4 Container deployment Threats 32
5.5 Design changes compared to the original version of Provotum 3.0 39
7.1 Deployed applications Lo 52
7.2 Mixing times in the distributed deployment 54
A.1 Runtime for randomizing the ballots 73

69

70

LIST OF TABLES

List of Listings

1 Example of a Terraform script L.

2 Example of an Ansible script

3 docker-compose for a sealer instance

71

72

LIST OF LISTINGS

Appendix A

Additional Provotum 3.0 Scalability

Results

The following results show the average runtime for randomizing the ballots. The exper-
iments were run with 2, 5, and 10 sealers and are represented in absolute values. The

average runtime to randomize one ballot is on average ~ 0.2s.

Number of votes | 2 sealers | 5 sealers | 10 sealers
100 20s 19s 22s
1’000 130s 212s 175s
10’000 1’375s 2°019 1’976s

Table A.1: Runtime for randomizing the ballots

1,000

100

Time (seconds)
T T T T TTT]

—e— 2 sealers
—m— 5 sealers
—e— 10 sealers | |

100

1,000

Number of votes

710,000

Figure A.1: Runtime for randomizing the ballots

73

74 APPENDIX A. ADDITIONAL PROVOTUM 3.0 SCALABILITY RESULTS

Appendix B

Installation Guidelines

The whole source code of the prototype can be found here: https://github.com/provotum/
provotum-ci-cd.

The repository contains all necessary documentation to deploy the different components
of the CI/CD infrastructure and the applications. The README file at the root contains
prerequisites to set up the infrastructure. In addition, the README files in /terraform/
*/ contain specific installation guides for the chosen software component.

75

76

APPENDIX B. INSTALLATION GUIDELINES

Appendix C

Contents of the CD

The thesis is handed in with an archive containing the following items:

e The PDF file of this report.
e The source code of the report in KTEXformat.

e Images as source and PNG files.

The source code of the implemented prototype

Results of the scalability experiments

The scripts to reproduce the scalability experiments

77

