
Identity Management in a
Decentralized Remote Electronic

Voting System

Simon Bachmann
Zurich, Switzerland

Student ID: 14-709-893

Supervisor: Christian Killer, Eder John Scheid,
Prof. Dr. Burkhard Stiller

Date of Submission: June 18, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Remote Electronic Voting (REV) systems introduce new challenges that do not exist
in the in-person or postal voting process. The right of ballot secrecy poses one of its
core challenges. Identity verification is closely coupled with the voters’ privacy and plays
a crucial role in REV systems. However, the digital identities that are used for most
online services today, do not respect data protection. Most applications outsource identity
management to third parties such as Google and Facebook, allowing them to track their
users across many other services. The convenience of only having one account for most
online interactions comes at a price in the form of privacy intrusion. The problem is that
users do not own their digital identity but Identity Providers (IdPs) are responsible for
issuing, storing and verifying credentials. As a consequence of having a single entity in
charge of all three duties, IdPs aggregate vast amount of sensitive data and become a
popular target with cyber criminals.

Another challenge for a digital identity is that many credential are issued in the form of
physical documents. Analyzing, evaluating and verifying the security features of physical
credentials in the digital world results in a probabilistic outcome. Thus, physical creden-
tials are considered non-native to the web and require slow, expensive and error-prone
verification methods. Self-Sovereign Identity (SSI) is a form of digital identity that al-
lows users to regain control by maintaining the credentials and selectively disclose them
with trusted entities without the need of a Trusted Third Party (TTP) and without a
cumbersome certificate verification process.

This thesis focuses on Identity Management (IdM) systems of REV applications and
conducts a security analysis on Provotum’s authentication and authorization process.
The result of the audit discloses several vulnerabilities in terms of privacy and security
due to the trusted role of the IdP and the usage of email addresses as identifiers. An SSI-
based authentication and authorization system is designed and implemented addressing
the privacy and security concerns. The new design radically changes the processes of
credentials issuance, storage and disclosure which is crucial for providing privacy to voters.
Instead of using a predefined list of eligible identifiers from an internal IdM system, an
election is configured such that voters can only participate if the necessary credentials
are presented. The digital certificates used in the new architecture are cryptographically
linked to Decentralized Identifier (DID) which are maintained on a public permissionless
ledger. The combination of self-certifying, ledger-based identifiers and credentials that can
selectively be disclosed and verified by anyone without the need of a TTP, guarantees a
higher degree of privacy and security by design.

i

ii

Zusammenfassung

Systeme zur elektronischen Fernabstimmung (Remote Electronic Voting, REV) bringen
neue Herausforderungen mit sich, die es bei der persönlichen Stimmabgabe oder der Brief-
wahl nicht gibt. Das Wahlgeheimniss in einem elektronischen Prozess sicherzustellen, ist
eine der Kernherausforderungen. Die Identitätsprüfung ist eng mit der Privatsphäre der
Wähler verbunden und spielt in REV-Systemen eine entscheidende Rolle. Die digitalen
Identitäten, die heute für die meisten Online-Dienste verwendet werden, berücksichtigen
den Datenschutz jedoch nicht. Die meisten Anwendungen lagern das Identitätsmanage-
ment an Dritte wie Google und Facebook aus und ermöglichen es ihnen, ihre Nutzer über
viele andere Dienste hinweg zu verfolgen. Für den Komfort, nur ein Konto für alle Web-
Interaktionen zu besitzen, wird ein hoher Preis in Form von Eingriffen in die Privatsphäre
bezahlt. Das Problem besteht darin, dass die Benutzer nicht Eigentümer ihrer digitalen
Identität sind, sondern Identitätsanbieter (Identity Providers, IdPs) für die Ausstellung,
Speicherung und Verifizierung von Anmeldeinformationen verantwortlich sind. Als Folge
davon, dass eine einzige Instanz für alle drei Aufgaben zuständig ist, sammeln IdPs riesige
Mengen sensibler Daten und werden zu einem beliebten Ziel für Cyber-Kriminelle.

Eine weitere Herausforderung für eine digitale Identität ist, dass viele Zertifikate in Form
von physischen Dokumenten ausgestellt werden. Die Analyse, Bewertung und Verifizierung
der Sicherheitsmerkmale von physischen Ausweisen in der digitalen Welt führt zu einem
probabilistischen Ergebnis. Daher gelten physische Zertifikate als nicht webfähig und erfor-
dern langsame, teure und fehleranfällige Verifizierungsmethoden. Selbstbestimmte Identi-
ty (Self-Sovereign Identity, SSI) ist eine Form der digitalen Identität, die es dem Benutzer
ermöglicht, die Kontrolle über seine digital Identität wiederzuerlangen und Zertifikate se-
lektiv an vertrauenswürdige Instanzen weiterzugeben, ohne dass eine vertrauenswürdige
dritte Partei (Trusted Third Party, TTP) benötigt wird und ohne einen umständlichen
Zertifikatsverifizierungsprozess.

Diese Arbeit konzentriert sich auf das Identitätsmanagementsysteme in REV-Anwendung
und führt eine Sicherheitsanalyse des Authentifizierungs- und Autorisierungsprozesses von
Provotum durch. Das Ergebnis der Prüfung offenbart mehrere Schwachstellen in Bezug
auf Datenschutz und Sicherheit aufgrund der vertrauenswürdigen Rolle des IdP und der
Verwendung von Email-Adressen als Identifikatoren. Ein SSI-basiertes Authentifizierungs-
und Autorisierungssystem wird entworfen und implementiert, das die Datenschutz- und
Sicherheitsbedenken adressiert. Das neue Design ändert den Prozess der Ausgabe, Spei-
cherung und Offenlegung von Berechtigungsnachweisen, was für die Gewährleistung der
Privatsphäre der Wähler entscheidend ist. Anstatt eine vordefinierte Liste von berechtig-
ten Identifikatoren aus einem internen IdM-System zu verwenden, wird eine Abstimmung

iii

iv

so konfiguriert, dass Wähler nur dann teilnehmen können, wenn die erforderlichen Zer-
tifikate vorgelegt werden. Die digitalen Zertifikate, die in der neuen Architektur verwen-
det werden, sind kryptographisch verknüpft mit dezentrale Identifikatoren (Decentralized
Identifiers, DID), die in einem öffentlichen Register verwaltet werden. Die Kombination
aus öffentlichen, selbstzertifizierenden Identifikatoren und signierte Zertifikate, die selektiv
offengelegt und von jedem verifiziert werden können, ohne dass ein TTP erforderlich ist,
garantiert ein höheres Mass an Privatsphäre und Sicherheit.

Acknowledgments

I would like to express my sincere gratitude to my supervisor Christian Killer for the con-
tinuous support of my Master’s Thesis. His patience, motivation and profound knowledge
in the field of DLT and e-voting is inspiring.

Besides my supervisor, I would like to thank Prof. Dr. Burkhard Stiller, head of the
Communication Systems Research Group (CSG), for giving me the opportunity to work
on such interesting and currently relevant topics.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Description of Work . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Centralized Identity Model . 5

2.2 Federated Identity Model . 6

2.3 Decentralized Identity Model (Self-Sovereign) 7

3 Related Work 11

3.1 World Wide Web Consortium (W3C) . 11

3.2 Decentralized Identity Foundation (DIF) 11

3.3 JSON-LD Data Encoding Standard . 12

3.3.1 Schema.org . 13

3.4 Veramo . 14

vii

viii CONTENTS

4 Self Sovereign Identity (SSI) Primitives 15

4.1 Decentralised Identifier . 15

4.1.1 Binding Problem in PKI . 15

4.1.2 DIDs in the Context of Other Identifiers 17

4.1.3 The Scheme, DID Method and DID Method-Specific String 19

4.1.4 DID Document . 21

4.1.5 DID Resolution and DID Resolvers 21

4.1.6 DID Auth . 22

4.2 Verifiable Credential (VC) . 22

4.3 Selective Disclosure Request (SDR) . 23

4.4 Verifiable Presentation (VP) . 23

4.5 Fork of the Verifiable Registry . 23

4.6 Identity Contexts . 24

5 Provotum 3.0 Security Analysis 25

5.1 Provotum 3.0 Architecture . 25

5.2 Eligibility Verification Process . 27

5.2.1 Registration . 27

5.2.2 List Communication . 28

5.2.3 Authentication . 29

5.2.4 Authorization . 31

6 Design of an SSI-based IdM System for Provotum 33

6.1 Stakeholders . 33

6.2 Processes . 35

6.2.1 Identity Issuance . 35

6.2.2 Authentication Configuration . 36

6.2.3 Identity Verification . 37

CONTENTS ix

7 Implementation 39

7.1 DID Creation . 41

7.2 Credential Issuance . 41

7.3 Authentication Configuration . 42

7.4 Identity Verification . 45

8 Evaluation 49

8.1 Privacy . 50

8.1.1 IdP IA Collusion . 51

8.2 Security . 52

8.3 Infrastructure . 53

8.3.1 Veramo . 54

8.3.2 Risk of Centralization Due to Vast Amount of DID Methods 54

8.3.3 JSON-LD Encoding Schema . 54

8.3.4 Incomplete W3C Specification . 55

9 Summary and Conclusion 59

9.1 Future Work . 59

9.1.1 IdP as TTP . 60

9.1.2 IdP as SPOF . 61

9.1.3 ZKP-based Authentication Process 62

9.1.4 Mobile Client for DID and VC Maintenance 62

9.1.5 Credential Registries and Governance Frameworks 62

Abbreviations 67

Glossary 69

List of Figures 69

List of Tables 72

x CONTENTS

A Installation Guidelines 75

B Contents of the CD 77

Chapter 1

Introduction

”The chain is only as strong as its weakest link, for if that fails the chain fails and the
object that it has been holding up falls to the ground” [24]. This analogy closely relates to
the security of software applications. Each component of a systems has to be evaluated
separately and the overall security is defined by its weakest element. In the context of
ledger-based Remote Electronic Voting (REV) systems, it is necessary to also analyze
the Identity Management (IdM) system which defines the set of eligible voters. IdM
systems maintain highly sensitive data about their users and embodies some of the biggest
honeypots for cyber-criminals.

Bringing physical certificates into the digital space is a challenging task. Today, this is
solved by verifying physical security features with scanners, image recognition software
or in-person checks which is a slow, expensive and error-prone process. Whenever users
must provide proof of identity online, an onboarding procedure is required to validate
the physical certificates. After a successful onboarding process, the user account of that
person is considered as identified in the given context. However, the user account is loosely
coupled to the physical certificate and therefore, an early invalidation of the physical
document may not be noticed immediately within the application. This can create data
inconsistency between the IdM system and original identity context and poses a threat to
systems that depend on it. An IdM system that can digitally issue credentials and verify
them at all times improves this processes in all of those shortcomings.

Since its rise to popularity, Distributed Ledger Technology (DLT) has not only been
described as the missing part for a transparent, secure and tamper-proof REV system
but also for an open, self-governed and cryptographically provable identity system. While
DLT can guarantee many of these properties by design, empowering people to maintain
their own digital identity in the form of cryptographically signed credentials, managing
identities on a public registry introduces new challenges and attack vectors. The use of
a decentralized IdM system in combination with a ledger-based REV system has to be
assessed before it is deployed on a large scale.

The CSG@IFI studies, designs and implements different ledger-based REV architectures
[7]. Provotum 3.0, or ProvotumRF [3], uses the concept of a Public Bulletin Board (PBB)
[13] and addresses the architectural limitations of the Ethereum Blockchain (BC) such as

1

2 CHAPTER 1. INTRODUCTION

the hard key size limitation (256 bit) and the required account funding which is needed
to execute on-chain transactions. Furthermore, using a combination of cryptographic
principles, the system achieves receipt-freeness on a public permissioned network.

The voting authority (VA) is the entity in Provotum responsible for bootstrapping the
system. Provotum 3.0 splits the responsibility of operating an IdM system and access
control to the PBB between the VA and the Identity Provider (IdP). It is assumed that
the VA runs an IdM system that maintains a list of eligible voters identified by their
email address. At the start of a vote, the IdP receives the list from the VA and uses it
to authenticate and authorize voters to submit a ballot. The goal of this separation is
that the IdP cannot link registered users to the real identity of the voter. The issues and
possible attack vectors associated with this design, the use of a centralized IdM system
and the use of email addresses as identifiers are analyzed and an improved architecture is
proposed. The analysis shows that the need for a new form of digital identity reaches much
further than Provotum’s e-voting system. Account-based and federated identity models
raise concerns in terms of privacy and exhibit weak security promises for the systems that
depend on them.

Many security and privacy concerns rise from the usage of email addresses as identifiers
because email addresses often contain personal information or can be associated with
other online profiles such as a company website, social profile etc. Furthermore, email
communication is usually not E2E (end-to-end) encrypted, allowing the email provider to
learn when a voter registers on the platform. In addition, email providers often also act
as Single-Sign-On (SSO) providers, enabling them to aggregate meta information about
its users and create detailed user profiles. As seen in the past [5, 27], target advertising
alongside the intimate data about the users can be misused for voter manipulation.

To guarantee a higher level of security and privacy to its voters by design, a radically
different architecture for issuing, storing and verifying credentials is proposed. Therefore,
the responsibility for each of the three tasks is split among three independent entities.
Using randomized identifiers which are maintained on a decentralized registry and linked
to cryptographically verifiable credentials, results in more flexibility and a higher level of
privacy and security. These properties are enforced by design and align with Provotum’s
security requirements.

1.1 Description of Work

The goal of this thesis is to analyze Provotum 3.0 in terms of identity management and
access control. Potential security concerns are to declare and address. Furthermore, a
detailed analysis of the strengths and weaknesses of the different forms of today’s digital
identities is required. With the obtained knowledge about different identity management
(IdM) systems, the goal is to design and develop the best suitable architecture for Provo-
tum 3.0. The new architecture is evaluated in terms of privacy, verifiability and usability.

1.2. THESIS OUTLINE 3

1.2 Thesis Outline

This thesis is structured as follows. Chapter 2 evaluates the strengths and weaknesses
of existing forms of digital identities. Related work is discussed in Chapter 3. Chapter
4 introduces the fundamental building blocks for a decentralized IdM system. Chapter
5 evaluates Provotum 3.0 in regards to security and privacy. The processes around issu-
ing and maintaining credentials as well as authenticating and authorizing eligible voters
are investigated. Chapter 6 proposes a new architecture that addresses the issues iden-
tified in the current implementation. A prototype is developed and its implementation
details are stated in Chapter 7. Finally, the new architecture is reevaluated in Chapter 8,
improvements are highlighted and ongoing challenges are described for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The technological advances of the internet also introduced novel mechanisms for digital
authentication. In this chapter, three different models of digital identity are explained
and analyzed by evaluating their strengths and weaknesses. Since digital identities are
not limited to humans, the more generic term subject or resource is used for the person or
item which is to be identified. Three primary roles exist around the issuance, management
and verification of credentials:

• Issuers are the source of credentials. They underline a claim about the subject in
the form of a credential like a passport issuing authority issues a document with
multiple claims about the subject.

• The holder is responsible for storing the credentials privately and securely.

• Verifiers - or also referred to as the relying parties - check whether a credential is
valid and grant access to the requested service.

2.1 Centralized Identity Model

The centralized identity model is the form that appeared first on the internet. This form
of internet identity is created by registering an account directly with the requested service
or application. For this reason, it is also referred to as the account-based identity. The
application issues identifiers such as unique username. A username/password combination
is used to access the service.

As shown in Figure 2.1, a digital representation of the subject can only exist by creating
an account with the organization. The system acts as a TPP. The users trust the system
that sensitive information is not shared with other parties. The service provides identifiers
and credentials that represent subjects in the application context and enable interactions
between them. These credentials belong to the application and the system controls the
permissions associated with them as illustrated in Figure 2.3. Even after deleting the
account, the data may live on within the organization and is outside of the subject’s

5

6 CHAPTER 2. BACKGROUND

organizationorganization

creates account
subject

grant access
organization

1
2

Figure 2.1: Centralized identity model

control. Thus, in the centralized identity model, the application that is providing the
authentication service acts as the issuer, holder and verifier.

Problems that occur with an account-based identity model:

Data Breaches Centralized databases with aggregated personal information are popular
targets for attacks. As seen in the past [19], even the largest technology companies
have difficulties protecting their systems against data breaches.

Credential Management Creating multiple accounts for different services imposes a chal-
lenging task on the user of remembering many username/password combinations.
Some services enforce different rules about passwords such as special characters.
These organizations suggest not to use the same username/password combination
for other services.

Portability The identity created with the account cannot be reused for other services.
Although this is a desirable feature from a privacy point of view, the user experience
is directly affected by it.

2.2 Federated Identity Model

With the drawbacks of the account-based model (Section 2.1) in mind, a new form of
internet identity was invented. In the context of the federated identity model, a TTP -
also known as the Identity Provider (IdP) - is introduced. The responsibility of the IdP
is to issue identifiers and credentials that can be used across multiple services without
having to manage multiple username/password combinations. The IdP only shares data
with another organization after the subject grants permission to do so. However, it is out
of the subject’s control to monitor the data which is shared with other companies. Thus,
the IdP acts as the issuer, holder and verifier. The collection of all the services that use
the same IdP is called a federation and gives this form of digital identity its name.

To simplify the interoperability of online services three standards have evolved SAML
[22], OAuth [25] and OpenID Connect [21]. Social login buttons have become the de facto
standard for most internet services today. Figure 2.2 illustrates the role of the IdP in an
OAuth 2.0 authentication flow.

Although the end-user benefits from not having to remember an abundance of logins,
and the authentication and authorization process is simple to integrate for application
developers, this convenience has other disadvantages:

2.3. DECENTRALIZED IDENTITY MODEL (SELF-SOVEREIGN) 7

Data Breaches Compared to the centralized identity model, the data stored at the IdP
is even more attractive for an attacker. Large IdP such as Google and Facebook
represent some of the biggest honeypots for cyber-criminals since they create detailed
user profiles from the metadata generated from the authentication requests.

Credential Management The end-user has to remember fewer credentials. However,
when multiple IdPs are supported by the service, the end-user must remember which
IdP was used to initially sign up.

Portability Although there is only one credential necessary within a federation, there is
no IdP that is supported across all services. Credentials cannot be reused outside
of the federation. If the subject decides to leave an IdP, all the logins on other
applications associated with this credential are lost with it creating a lock-in effect.

Privacy The IdP can monitor the online behaviour across multiple services and create very
detailed user profiles from their online activity and the metadata that is attached
to it. This data can be used for target advertising and is often considered a win
for both parties. However, as seen in the past [5, 27], this data can also be used to
unknowingly manipulate people.

organizationorganization
request access

subject
grant access

organization

identity
provider

share user

data

auth requestau
tho

riz
e

org
an

iza
tio

n

for
ward

 au
th

req
ue

st

1

2

5

6

4

3

Figure 2.2: Federated identity model in the example of OAuth 2.0

In March 2021, the population of Switzerland voted against a national digital identity
that is issued and managed by private IdPs. Several architectural uncertainties lead to
a rejection. This form of identity does not enforce privacy by design. Instead privacy by
trust is applied where users rely on the promises of private institutions that sensitive data
is not shared with third parties. [6]

2.3 Decentralized Identity Model (Self-Sovereign)

This form of online identity is not account-based and addresses the issues with the fed-
erated identity model as highlighted in Section 2.2. The goal is to have an independent

8 CHAPTER 2. BACKGROUND

entity for each of the three different roles. This third iteration of digital identity is in-
spired by the identity system of the real world where an identity is based on a direct
relationship between the subject and its peers. The responsibility of issuing, holding and
verifying identities is no longer the duty of a single party. Figure 2.3 illustrates how
these responsibilities are distributed among the peers. This form of internet identity has
recently become more popular under the name of Self-Sovereign Identity (SSI).

The authentication flow is best described as part of a real-world example. For this scenario,
there is the government (issuer), Alice (holder) and a liquor store (verifier or relying party).
Alice wants to buy a bottle of wine. The liquor store must verify that Alice is eligible
by law to buy alcoholic beverages. Firstly, the government as well as Alice create a key
pair each. From this key pair, an identifier is derived and registered publicly. In a secure
channel or a public credential registry (Section 8.3.4), the government communicates this
identifier with the liquor store. Alice identifies herself to the government and in return, the
government issues a signed statement to Alice that contains her age. This claim is stored
locally in Alice’s wallet and is only known to the government and Alice. In the checkout
procedure at the liquor store, Alice can present this claim to the cashier. With the help
of the verifiable data registry, the liquor store can resolve the associated public keys from
the identifiers that are part of the signed claim. The liquor store can verify this claim
without the need of contacting the government. As a result, the government does not
learn when Alice uses the credential. Furthermore, with the help of a challenge-response
mechanism, Alice proves that she is in control of the private key that is associated with
the claim.

Additionally, it is possible to include biometrics within the claim. Alice would then have
to disclose the signed image to the cashier which then can be used by a face comparison
by the cashier. The entire process at the liquor store occurs without the issuer noticing
since the government is not involved in the disclosure process.

issuerissuer verifierverifier

re
gi

st
er

 is
su

er

id
en

tifi
er

issue credential
issuer

re
tri

ev
e/

ve
rif

y
id

en
tifi

er
s

an
d

as

so
ci

at
ed

si

gn
at

ur
e

verifier

re
gi

st
er

 v
er

ifi
er

id

en
tifi

er

present credential
holder

verifiable data registry

1 1

4

2 3

credentials

identifiers

Figure 2.3: The decentralized identity model splits the roles of issuing, holding and veri-
fying among three separate entities.

2.3. DECENTRALIZED IDENTITY MODEL (SELF-SOVEREIGN) 9

issuer verifieruser

verifiable data
registry

issuer verifier

user

account-based/federated model SSI-based model

Figure 2.4: The locus of control that happens in the transition from account-based identity
models to the self-sovereign identity model [2]

The decentralized identity model improves the account-based and federated identity model
in the following aspects:

Privacy Decentralized public key infrastructure (DPKI) enables the subject to create a
direct connection to its peers. Using DLT removes the need for a TTP to verify that
a claim about the subject is valid since the associated keys are publicly available.
There is no need for a connection between the issuer and the verifier. Therefore, no
other node in the network except the two connected peers learn about the authen-
tication request and the data that is shared in the process. Thus, a higher degree
of privacy is guaranteed in comparison to the centralized and federated identity
models. Figure 2.4 illustrates how the control shifts to the edges of the network by
putting the individual at the centre of the identity model. By design, the subject is
in control of storing and disclosing credentials.

Data Breaches IdPs only act as credential issuers and not verifiers and therefore, they
cannot track the online activity of a user. Since authentication requests are not
logged by the identity issuer, the system is less vulnerable to cyber attacks that
exploit large amounts of sensitive user data. To access a collection of credentials
about a subject, the attacker must be able bypass the security restrictions of a
voter’s wallet.

Credential Management Instead of username/password combinations for authentication,
DPKI is applied mitigating the risk of possible attacks such as phishing attacks [12],
dictionary attacks [20], credential stuffing [15]. Private keys are maintained in a
wallet. It is the wallets responsibility to enforce protection against the leakage of
cryptographic material.

Portability Similar to the federated identity model, the decentralized identity model al-
lows the subject to use the same form of identification across multiple applications.
It improves the authentication process since the user must not remember which IdP
was used to initially sign up for each application.

One of the challenges of a decentralized identity model is to create a user-friendly wallet
recovery mechanism. Even though physical identity cards cannot be restored, people are

10 CHAPTER 2. BACKGROUND

used to a simple restoring mechanism for their digital identities. Therefore, it is desirable
to have a recovery mechanism for decentralized identifiers with a similar degree of ease
of use. When a user loses the private key that corresponds to the digital identity and
no backup was created, the identity is lost and cannot be restored. However, there are
mechanisms developed that enable a recovery schema based on a group of trusted entities
which is often referred to as social recovery with Shamir Secret Sharing [35].

Chapter 3

Related Work

A standardized technology around decentralized identity is necessary such that compet-
ing and complementary implementations can emerge and communicate with each other.
Multiple organizations are working towards a common specification. Most of the specifi-
cations referenced in this section are ongoing and yet to be finalized. This chapter covers
relevant projects and standards in the SSI ecosystem.

3.1 World Wide Web Consortium (W3C)

The W3C is specifying international standards for the internet such as CSS, HTML, XML,
etc. The consortium is organized by working groups that develop, maintain and commu-
nicate the outcomes of their field of research. The W3C Credentials Community Group
(CCG) focuses on the creation, storage, presentation and verification of credentials includ-
ing SSI. The CCG has published a working draft [23] for Decentralized Identifiers (DIDs)
and Verifiable Credentials (VCs) which is the first iteration in a four-step maturation
process [36]. The goal of the specification is to develop a standard that is as independent
as possible of the under-laying infrastructure. Furthermore, the the data encoding format
JSON-LD [29] (Section 3.3) which is heavily used in SSI protocols is also specified and
maintained by the W3C.

3.2 Decentralized Identity Foundation (DIF)

The Decentralized Identity Foundation (DIF) is also divided up into working groups that
are scoped by functional areas in the scope of digital identity. Their contributions in the
area of the discovery and the registration of digital identities with the Universal Resolver1

[26] and the Universal Registrar2 provide implementations that allows the creation and
resolution of digital identities across multiple networks. Also, the DIDComm Messaging

1https://dev.uniresolver.io
2https://uniregistrar.io

11

12 CHAPTER 3. RELATED WORK

specification [10] is relevant in the context of a standardized means of authenticated mes-
sage passing between decentralized identities. Furthermore, the Authentication Working
Group created the Self-Issued OpenID Connect Provider (SIOP) specification [32] which
enables the usage of the SSI building blocks in the OpenID Connect authentication and
authorization process and thus being backwards compatible with most existing application
logins used today.

3.3 JSON-LD Data Encoding Standard

JSON-LD is a data encoding format that extends the JSON format. This standard is
also maintained by the W3C consortium [29]. The intended purpose of this extension is
the ability to represent digital objects and link these resources in a standardized man-
ner. In the context of data sharing, data vocabularies or schemas are necessary tools for
representing data accurately from the point of creation to sharing and verification. If
every application chooses to represent data differently, it creates incoherency between the
entities.

Furthermore, a JSON-LD document can be serialized in the same way as JSON documents
are parsed. The JSON-LD data format specifies a number of reserved keywords that are
part of the language3. The most relevant keywords for understanding the following sections
explained in Table 3.1.

A JSON-LD processor is a program that serialises JSON-LD documents and creates a
context across multiple documents. There exist multiple techniques on how the context
of a document can be communicated. The simplest form is to host the JSON-LD document
on the same link that is specified in the context property. However, more complex resolving
strategies exist and as explained in Section 8.3.3

Keyword Description

@id This reserved token indicates that the node that is described is uniquely identified
by this property.

@type Base on the properties of a document, the type can often be implied. However,
in order to mitigate ambiguity the type keyword can be incorporated as shown in
Listing 1 on line 9. An array of types indicate that a document is composed of
multiple types. Furthermore, this token is used to represent a typed value which is
a value with an associated data type.

3https://www.w3.org/TR/json-ld11/#syntax-tokens-and-keywords

3.3. JSON-LD DATA ENCODING STANDARD 13

@context This is a reserved keyword that defines a common vocabulary that is used to describe
the document. It maps terms to Internalized Resource Identifiers (IRIs) or nested
structures. Terms are non-reserved strings in the JSON-LD namespace while IRIs
identify resources. The context is used to serialize the rest of the document. Listing
1 illustrates how the context can be defined. Line 3 defines that name can be used as
a shorthand notation for the following IRI. The same applies for the property image.
Additionally, line 6 specifies that this property must be identifiable as an identifier
that is an IRI.
Alternatively, to the illustrated in-line context definition, which does not require a
connection to the internet to serialise the document, the context can referenced by
an URL which hosts the context definition. Furthermore, the context may contain
a list of context to indicate that document is composed of multiple external context
definitions.

Table 3.1: Reserved tokens in the JSON-LD namespace that are
relevant for this paper

1 {

2 "@context": {

3 "name": "http://schema.org/name",

4 "image": {

5 "@id": "http://schema.org/url",

6 "@type": "@id"

7 }

8 },

9 "@type": "http://schema.org/Person",

10 "name": "Alice Keller",

11 "image": "http://alice.keller.org/"

12 }

Listing 1: Example JSON-LD document with a in-line context definition

3.3.1 Schema.org

Schema.org is founded by Google, Microsoft, Yahoo and Yandex and its community is
working towards a unified set of schemas for structured data on the internet, web pages,
email messages and more. The vocabulary can be used with different encodings includ-
ing JSON-LD documents and covers entities, relationships between entities and actions.
Schema.org is a popular tool to improve the ranking of a website in terms of Search Engine
Results Pages (SERP). Adding metadata in the form of well-understood Schema.org vo-
cabulary to a website helps search engines to understand the content and its relationship
to other websites. In SSI, Schema.org is used to indicate the type of credentials that are
issued such that the issuer, holder and verifier understand the context.

14 CHAPTER 3. RELATED WORK

3.4 Veramo

Veramo is an open-source set of modular libraries and APIs for verifiable data and SSI.
At the time of writing this thesis, Veramo supports the creation of Ethereum-based and
web-based DIDs. Also, a library for issuing JWT-based VC is available. Furthermore, a
custom Selective Disclosure Request (SDR) with Verifiable Presentations (VP) workflow
is present. This process is custom to Veramo and uPort [17] and does not fully align with
the W3C specification. There are multiple ways to create and interact with a Veramo
agent: (i) CLI program, (ii) React Native for mobile clients, (iii) Nodejs client for backend
applications and (iv) a cloud-agent that is hosted on a server and exposes its functionality
through a RESTful API.

Chapter 4

Self Sovereign Identity (SSI) Primitives

SSI is built on two pillars of standardization. Decentralized Identifiers (DIDs, Section
4.1) and their cryptographic counterpart Verifiable Credentials (VCs, Section 4.2) enable
a decentralized and privacy-preserving form of digital identity. This section explains their
structure, function and application.

4.1 Decentralised Identifier

DIDs globally unique identifiers and are at the core of SSI. SSI introduces this new type of
identifier that exhibits two unique properties: (i) it can be created and managed without
a centralized certificate authority and (ii) is bound to PKI such that the ownership of
the identifier can be proven without a TTP. The binding problem of PKI illustrates in
Section 4.1.1 the need for a new type of identifier with the mentionned properties.

4.1.1 Binding Problem in PKI

DIDs solve the fundamental binding problem that exists in PKI. When creating a PKI key
pair, the private and public parts are cryptographically bound to each other. However, the
controller which maintains the key pair is often non-digital. As a consequence, non-digital
controllers are represented with an identifier in the digital world. Usually, this identifier
is not strongly bound to the key pair and thus, creating two fundamental challenges. (i)
The introduced identifier is not strongly bound to the public key and (ii) the identifier is
not strongly bound to the controller as illustrated in red in Figure 4.1.

As an example, these two binding problems also exist in SSL/TLS, where digital cer-
tificates bind an IP address to a public key. As a result, the controller is able to prove
ownership of the certificate and thus, a trusted connection to the IP address is established.
However, certificates are issued by a certificate authority that acts as a TTP. This solution
is centralized and embodies a SPOF.

15

16 CHAPTER 4. SELF SOVEREIGN IDENTITY (SSI) PRIMITIVES

controls

controller

private key public key

identifier

cryptographically bound

publishes

Figure 4.1: DIDs as self-certifying identifiers enable a strong binding between the public
key, identifier and controller

DIDs are self-certifying identifiers meaning that the ownership can be proven without
the need for a TTP. A self-certifying identifier is derived from the public key. Thus, the
binding between the identifier and the public key is as strong as the binding between
the public key and the private key solving the binding issue (i). Furthermore, since the
identifier correlates with the public key, the ownership over the identifier can be proven
with the private key. Therefore, only the controller can make this proof and thus, the
controller is strongly bound to the identifier soving the binding issue (ii).

By binding a persistent identifier to a public key, a key rotation for that identifier is not
possible. A new key pair would also result in a new identifier. However, key rotations
are desired as the controller may need to adapt to newer and more secure encryption
algorithms. This is solved by introducing the DID document (Section 4.1.4), which holds
meta-information about the identifier itself such as the controlling public key and encryp-
tion algorithm as illustrated in Figure 4.2. Updating the associated key in this document
requires the previous key to approve this change and does not modify the identifier itself.
All updates together form a chain of trust. If each change is recorded publicly on a de-
centralized data registry, anybody can verify if the associated key controls the identifier
and therefore, the need for a TTP is removed.

controls

publishescontroller

rotated
private key

rotated
public key

identifier

publishes

Figure 4.2: DID documents enable holders to execute a key rotation without changing
the identifier

4.1. DECENTRALISED IDENTIFIER 17

4.1.2 DIDs in the Context of Other Identifiers

To compare DIDs to other identifiers, the following description summarizes the difference
between existing types of digital identifiers.

Uniform Resource Identifier (URI) - Web Identifiers The W3C has adopted the IETF
standard (RFC 3986) [4] of URIs for identifying any type of resource on the internet.
A resource is any object from the real world that can be identified such as a person
or organization or from the digital world such as an image or a web page. A URI is
defined as a sequence of characters in a specific layout that makes the string globally
unique.

Uniform Resource Locator (URL) - Network Location A URL is a type of URI that
is used to locate a representation of the associated resource on the internet. A
representation is anything that describes the resource. In the example where a
person is the resource, only a representation of that person can exist on the internet.
Thus, the URL pointing to a web page, file, image is a location pointer to the resource
representation. A pointer to a resource is subject to change.

Uniform Resource Names (URN) - Persistent Name Since a URL for a resource repre-
sentation can change, a persistent identifier - also referred to as permanent identifier
- is used to identify the abstract resource itself. This kind of identifier is designed
to never change and in the context of the internet referred to as a URN. URNs and
URLs are both subclasses of URIs.

Like URNs, a DID is also globally unique and also identifies a resource. Additionally, a
DID is resolvable for meta-information associated with the subject similar URLs. The
resolved information conforms to a standardized document format such that the retrieved
information about the subject is understood. Thus, a DID combines characteristics of both
URLs and URNs. The design goals defined by the W3C CCG in the DID specification
[23] are summarized in Table 4.1.

Property Description

Persistance The identifier must never change.

Resolvablility The identifier must be resolvable in order to discover metadata about the
subject.

Verifiablility The identifier is controlled by DPKI. By including cryptography in the
generation process of the identifier, the ownership of the identifier can be
cryptographically verified by the holder of the associated key pair. The
associated public key is included in the resolvable metadata along with
metadata about the encryption algorithm used for generating the key pair.

Decentralization The cryptographic verifiability of the identifier removes the need for a
registration authority. Furthermore, the entire life-cycle from creating,
resolving, updating and disabling the metadata associated with the iden-
tifier can be managed without the need without requiring a centralized
entity.

18 CHAPTER 4. SELF SOVEREIGN IDENTITY (SSI) PRIMITIVES

Interoperability The identifier must be globally unique regardless of the under-laying net-
work that is used to manage the identifier. Thus, the namespace of DID
is shared across multiple networks.

Table 4.1: Design goals for decentralized gloabl identifier

To achieve the design goals from Table 4.1, the W3C standard proposes the architec-
ture shown in Figure 4.3. The fundamental building blocks in the DID architecture are
explained in the following sections and summarized in Table 4.2.

DID subject

DID controller DID document

did:method:1234

DID

can be the same entity

can update

identifies

verifiable credentials

stores

verifiable data registry

DID method
generates

instructs

recorded on

resolves to

DID resolverdescribes

instructs

Figure 4.3: Overview of the DID architecture proposed by the W3C CCG

Element Definition

DID A DID is the URI that identifies a resource (also called the DID
subject).

DID subject The subject or resource is the entity identified by the DID.

4.1. DECENTRALISED IDENTIFIER 19

DID controller The controller of a DID is the entity that is able to make changes
to the DID document. A DID document may have multiple DID
controllers. The DID subject may not always the part of the set of
DID controllers.
In the example of an infant (DID subject), it makes sense that the
parents (DID controllers) are in maintaining the DID and DID doc-
ument and not the infant itself. The parent can update the DID
document at any time to transfer the ownership of the DID.

DID document By resolving a DID, a DID document is discovered. This document
contains information associated with the DID subject such as veri-
fication methods and services that are relevant to interact with the
DID subject. The contents of the DID documents can be serialized
according to the definition found in the specification [23]. Every DID
resolves exactly to one DID document and can be updated by the
DID controller.

DID method A DID method defines how a particular type of DID and its asso-
ciated DID document can be created, resolved, updated and deacti-
vated. The DID method depends on the under-laying data registry
that is used (see Section 4.1.3).

DID resolution The process of resolving a DID document for a given DID is called
DID resolution.

DID resolvers A program that can find the DID document for a given DID.

Verifiable Data Registry A DID must be resolvable to a DID document. The verifiable data
registry is the system or network that supports a particular DID
method and connects the DID with the associated DID document.
The DID architecture is specified such that different types of reg-
istries are supported. Section 4.1.3 explains different kinds of net-
works used for registering DIDs.

Table 4.2: Components of DID architecture suggested by the W3C
CCG

4.1.3 The Scheme, DID Method and DID Method-Specific String

A DID consists of three parts separated by colons as shown in the example in 4.1: (i)
scheme, (ii) DID method and (iii) DID method-specific string. The scheme is the first
part and indicates that the URI is to be interpreted as a decentralized identifier.

DIDs are network independent. Therefore, the DID method indicates the underlying net-
work and makes DIDs unique across multiple networks. A standard specification is created
by the W3C Working Group for implementing a new DID method [30]. At the time of
writing this thesis, there are more than 70 DID method names registered in the DID Spec-
ification Registries [31]. Every DID method has its implementation of creating, reading,
updating and deactivating its identifiers. These are the so-called DID operations. Their
implementation depends on the underlying network. Thus, generic statements about the

20 CHAPTER 4. SELF SOVEREIGN IDENTITY (SSI) PRIMITIVES

implementation of the four operations cannot be made. For example, distributed ledger-
based DIDs usually require an on-chain transaction to update their DID document while
web-based DIDs can be updated by uploading a new DID document to the storage bucket
where the DID document is hosted. An overview of different types of DIDs is shown
in Table 4.3. As shown in the table, DLT is not required to build an SSI infrastruc-
ture. However, the benefits of registering DIDs on a public distributed ledger are the
data availability, immutability, security and trustless network assumptions given by the
characteristics of DLT.

The third part of a DID consists of the unique identifier in the namespace of the given
DID method and is called DID method-specific string. It is typically generated using
random numbers and cryptographic functions.

In the example 4.1, the DID method indicates that this DID must be resolved through
the Ethereum Rinkeby testnet. The DID method-specific string is an Ethereum address.
Table 4.3 highlights the different types of DIDs.

did︸︷︷︸
Scheme

: ethr:rinkeby︸ ︷︷ ︸
DID Method

: 0xa8b4d9327e0776ad3765fb3baf6811e6f1390271︸ ︷︷ ︸
DID Method Specific String

(4.1)

Type Description

Ledger Maintains DIDs on the main chain of a BC or DL.

did:ethr:0xb9c5714089478a327f09197987f16f9e5d936e8a

did:sov:2wJPyULfLLnYTEFYzByfUR

did:btc:12dRugNcdxK39288NjcDV4GX7rMsKCGn6B

Layer 2 With the increased transaction costs and slow execution, layer 2 solutions on top
of the base layer enable faster execution times at lower transaction costs or no
fees without sacrificing security. This can be achieved by bundling multiple DID
operation in batches and only store the proofs on the main chain. Crypto-economics
are also required such that network operators are not incentiviced to cheat.

did:ion:EiAnKD8jfdd0MDcZUjAbRgaThBrMxPTFOxcnfJhI7Ukaw

Peer Identifiers that are not recorded on a globally shared registry, can be established
directly within a small set of peers.

did:peer:EiAnKD8jfdd0MDcZUjAbRgaThBrMxPTFOxcnfJhI7Ukaw

Static Static identifiers can only be created and resolved, but not updated or deactivated.
They can be algorithmically be resolved without requiring any data other than the
DID itself. This is best described as a wrapper around a public key.

did:key:12dRugNcdxK39288NjcDV4GX7rMsKCGn6B

Others The DID specification is flexible enough such that other forms of DID methods can
be created. DIDs on other networks such as git, IPFS or web exist.

did:git:625557b5a9cdf399205820a2a716da897e2f9657

did:ipld:12D3KooWMHdrzcwpjbdrZs5GGqERAvcgqX3b5dpuPtPa9ot69yew

did:web:uport.me

4.1. DECENTRALISED IDENTIFIER 21

Table 4.3: Types of DIDs

4.1.4 DID Document

The DID document contains information about its associated subject. In theory, it is pos-
sible to attach arbitrary information about the subject to the DID document. However,
this document is publicly accessible and for privacy reasons, only the minimum necessary
information should be incorporated into the document. This includes one or more public
keys that are used to verify the ownership of DID during an authentication process. Fur-
thermore, services associated with the subject can be attached to the document. A wide
range of protocols can also be incorporated such as an HTTP endpoint to a cloud agent
which provides an interface for exchanging information directly between peers in a private
and secure channel (DIDComm Messaging [9]). The data format for DID documents is
JSON-LD (Section 3.3).

4.1.5 DID Resolution and DID Resolvers

The process of resolving a DID document for a given DID is called DID resolution. In
the context of the DID method, it represents the read operation. The DID resolver is a
program that fulfils such a request. Thus, the DID resolver must be able to connect to the
under-laying data registry in which the DID was created. Each new type of DID comes
with a new implementation of a DID method and a DID resolver.

The Universal Resolver [26] is a program that can resolve many different types of DIDs
from different underlying networks. It is open-source and available as a web application1

for testing but can also be deployed using docker-compose2.

DID document subject

did:example:123456789abcdefghi

DID

describes

controls

controls
identifies

resolves to

Figure 4.4: Relationship between identifier, metadata and the subject

1https://dev.uniresolver.io
2https://github.com/decentralized-identity/universal-resolver

22 CHAPTER 4. SELF SOVEREIGN IDENTITY (SSI) PRIMITIVES

4.1.6 DID Auth

The goal of DID Auth is to cryptographically authenticate the subject and create a trusted
connection between the holder and the verifier. This is achieved by proving control over a
DID. The verifier creates a challenge in the form of a random string that is subsequently
signed by the holder with the private key associated with the DID. This process can be
implemented with different protocols and architectures3. One of the preferred methods is
using Json Web Tokens (JWT). Other possible protocols include OpenID Connect [18],
TLS handshake or HTTP.

4.2 Verifiable Credential (VC)

VCs account for the second pillar in SSI besides DIDs. The goal of VCs is to create
a common interface for issuers, verifiers and holders to exchange privately and securely
verified claims about a subject.

A VC is used to assert personal information. It contains one or multiple attributes about
a subject and is usually issued in the form of a JSON-LD document (Section 3.3) whereas
the subject is commonly represented as DID. Other attributes of this document are the
issuer, the context and type of the credential as well as the signature and meta-information
about the proof itself. Such claims are signed by the private key that is attached to the
issuer’s DID. As explained in Section 4.1.1, a DID is bound to key pair allowing anyone
to verify the authenticity of the VC. The verification process only requires resolving the
issuer’s DID and validating the signature against the resolved public key.

Unlike DIDs, VCs are not stored on a public ledger. Instead, they are stored privately in
the holder’s wallet since they contain sensitive information.

There are many advantages of digitally signed claims over traditional physical credentials.
VCs cannot be cloned or counterfeit and can only be stolen if the attacker can access the
most sensitive information which is the private key in the holder’s wallet. Furthermore,
the holder of the credential has control over the disclosure of the credentials increasing
privacy protection. Also, they are more portable than bulky plastic cards, and cheaper
to produce.

Verifiers trust the issuer of VC and thus, together they form a so-called trust network.
To establish a trust relationship between entities, the DID must be exchanged in a secure
channel beforehand. Credential registries and governance frameworks can help communi-
cating trusted DIDs. However, these concepts are not part of the VC or DID specification
and are further discussed in Section 8.3.4.

3https://github.com/WebOfTrustInfo/rwot6-santabarbara/blob/master/final-documents/

did-auth.md#architectures

4.3. SELECTIVE DISCLOSURE REQUEST (SDR) 23

4.3 Selective Disclosure Request (SDR)

An SDR is issued when a verifier asks the holder to reveal a set of previously issued VCs.
This request is usually a JSON-LD encoded document or a JWT that contains information
about the credential context and the accepted issuers along with meta-information about
the request. An SDR can contain multiple credentials that need to be disclosed and the
holder has to approve each of the requested claims individually in the form of a Verifiable
Presentation (VP).

4.4 Verifiable Presentation (VP)

Upon receiving an SDR, the holder can either approve or discard the request. If the holder
is willing to disclose the requested information, another JSON-LD encoded document or
JWT is generated. It combines all the requested VCs into a single document. These VCs
can originate from different issuers. This document is signed and sent to the verifier.

To only disclose minimal information, there exist two strategies: (i) atomic issuance (ii)
Zero-Knowledge Proof (ZKP) enabled credentials. With atomic issuance, every VC only
contains a single claim. This guarantees that a VP can be constructed from multiple
atomic claims. For example, a passport has the following four properties: name, date
of birth, country, gender. Applying the atomic issuance strategy results in four separate
atomic VCs. When a verifier requests the disclosure of the holder’s age, only one of the
attributes is included in the VP which would not be possible if they were issued as one
VC.

Using ZKPs enables the holder to only reveal certain fields of the VC or to prove in-
formation about a claim without revealing all the attributes of the VC. This strategy is
more complex and does not work with every type of signature. Multi-message digital
signature schemes (such as BBS+ signatures) are used for creating ZKP in the context of
linked data such as JSON-LD. These signature schemes allow an issuer to sign an array
of messages, rather than a single string. This puts the holder in control of disclosing only
a subset of the values in a VC while maintaining verifiability over the VC. [2, 33, 34]

4.5 Fork of the Verifiable Registry

If a decentralized verifiable data registry faces a hard fork, registered identifiers exist on
both networks. This can lead to inconsistencies. The DID resolver has to decide which
chain is considered as the source of truth. In the case where no consensus exists as to
which fork is the mainnet, the DID resolver has to be adjusted accordingly. For example,
the Ethereum community solves this issue by having a DID resolver for each chain ID.
In the scenario of an Ethereum fork, the DID resolver4 would reject any DID that solely

4https://github.com/decentralized-identity/ethr-did-resolver

24 CHAPTER 4. SELF SOVEREIGN IDENTITY (SSI) PRIMITIVES

physical
credential

issuer

original context

student external
application B

onboarding
request

verificatione-learning
application A

proxy
identities

physical
credential

Figure 4.5: Original identity context ends whenever a proxy identity is created.

uses the ethr DID method (without a network identifier) as it is not up to the resolver
to decide on which chain is valid. Thus, it is recommended to use the chain identifier as
part of the DID to mitigate data inconsistencies as for the Ethereum Rinkeby testnet as
shown in Listing 4.2.

did:ethr:0x4:0xpubkey (4.2)

4.6 Identity Contexts

The following definition describes the concept of cloned identities (proxies) and the mean-
ing of the original identity context. These definitions are used throughout the thesis to
reason about the data dependency of credentials among different systems.

Identity Context The original identity context is defined by the issuer of a credential.
In Figure 4.5, application A can request a verification from the issuer directly. For
example the original identity context of a university student is defined as all the
systems that directly interact with the IdM system of the university. This can be
an e-learning platform from the university itself.

On the other hand, in the example where a student registers for an student dis-
counted licence at application B, the student card is shared or the student email
address is verified and in return a new user account is created within the applica-
tion B. This is also called an identification or onboarding process. This new user
account is loosely coupled to the original identity context meaning that a change in
the original context may not be noticed in application B.

Proxy Identity A proxy identity is an account with credentials that are loosely coupled to
other identity contexts. The verified claims associated with that account originate
from another identity context. In Figure 4.5, the newly created user account in
application B is the proxy identity.

Chapter 5

Provotum 3.0 Security Analysis

The security and the privacy of a REF system are crucial for a fair execution of the voting
process. There are several highly motivated adversaries with the intention to counterfeit
identities, tamper with the tally or cause system outages with DoS attacks. This chapter
explains the architecture of Provotum 3.0, its stakeholders and their responsibilities in the
system. Subsequently, a security analysis on the eligibility verification process of Provotum
3.0 [3] is conducted. Only the relevant components for IdM as well as the authentication
and authorization process are reviewed. In this context, the trust assumptions, threats
and vulnerabilities are evaluated in terms of security and privacy. The threat model is
summarized in Table 5.1.

5.1 Provotum 3.0 Architecture

Provotum 3.0 is the result of a third iteration of a fundamentally improved redesign of
the application. It is a Distributed Ledger (DL) based system that uses the concept
of a Public Bulletin Board (PBB) [13]. It addresses the architectural limitations of its
predecessor Provotum 2.0 [14] where the hard key size on the Ethereum BC is limited
to 256 bit and the voters’ accounts must be funded to execute an on-chain transaction.
Using a combination of cryptographic principles, Provotum 3.0 achieves receipt-freeness on
a public permissioned network. It continues to use a Proof-of-Authority (PoA) consensus
algorithm, however, the underlying DL infrastructure has been changed from Ethereum
to Substrate.

Figure 5.1 shows the components of the system and its stakeholders. The following list
explains each in more detail:

• The Substrate PoA DL is the system’s PBB and enforces the protocols security and
privacy rules. The exposed API enables all other stakeholders to read the state of
the PBB and send transactions to the network.

25

26 CHAPTER 5. PROVOTUM 3.0 SECURITY ANALYSIS

• Voters are qualified entities participating in the election. They interact with the
IdP during the authentication/authorization process and the randomizer to make
the vote receipt-free and submit the ballot directly to the PBB.

• The Identity Provider (IdP) is a TTP that is responsible for the eligibility verifi-
cation. Upon successful authentication, voters submit a blinded public address of
their wallet. The IdP signs the address without seeing it in plaintext and returns
it to the voter. The signature of the IdP allows anyone to verify that a ballot was
approved by the IdP. Thanks to the blind signatures, the IdP is not able to connect
any of the ballots to the real identity of the voters. This mechanism guarantees a
privacy-preserving authorization process.

• The randomizer is responsible for achieving receipt-freeness. This is a countermea-
sure against vote selling. By adding non-determinism to the process of creating a
ballot in the form of a blinding factor, the voter’s ballot is randomized (or blinded)
and therefore, a voter is unable to reproduce the same ballot which is published on
the PBB. The randomizer does not learn anything about the content of the ballot
since the blinding is performed without knowledge of the plaintext.

• The Voting Authority (VA) is responsible for bootstrapping and orchestrating the
Provotum system. It coordinates the distributed key generation (DKG) with the
sealers, creates the questions of the elections and closes the election by signalling
to the sealers to start tallying. Furthermore, the VA creates a list of eligible voters
and communicates it to the IdP during the bootstrapping phase. This part is not
implemented in Provotum 3.0 but in theory, the VA is responsible for maintaining
the set of entitled voters.

• Sealers are DL nodes validating and appending transactions to the Provotum chain.
During the bootstrapping phase (pre-voting), sealers also participate in the DKG
which is used to encrypt the ballots. In the tallying phase (post-voting), sealers will
collaboratively decrypt the final tally.

• The general public is interested in having fair elections. Since the DL is public,
anybody can verify the state of the PBB.

VA

Public Permissioned BC

IdP

Randomizer

Sealers

execute runtime &
sign blocks

generate config vote &
verify

randomize

Voters auth 1

32

Figure 5.1: Provotum 3.0 stakeholders

5.2. ELIGIBILITY VERIFICATION PROCESS 27

5.2 Eligibility Verification Process

Before being authorized to submit a ballot, a voter must go through the following sequen-
tial steps. Each step is analyzed in a separate section below and summarized in Table
5.1:

1. Registration

2. List Communication

3. Authentication

4. Authorization

The paper does not mention what type identifier is used to determine an eligible voter.
The identifier must have a property such that the voter can prove ownership of that
identifier. The prototype suggests to use email addresses as the decisive identifier. An
alternative to email addresses is to use phone numbers that work in a very similar way
since the ownership can also be proven with a One Time Password (OTP). But for the
rest of the thesis it is assumed that email addresses are used as designed in the Provotum
3.0 prototype.

Furthermore, it is unclear how the IdP knows the correct passwords of the users. It is
assumed that the VA does not share the list of passwords that are used to login to the
IdM system of the VA. As a consequence, the only factor of authentication is the email
address. It is assumed that a voter can use the registered email address to obtain a OTP
and set a password.

5.2.1 Registration

The VA defines and maintains a list of eligible voters, usually in the form of a centralized
database. The list of qualified voters is passed to the IdP in the bootstrapping phase.
Depending on the context of the identity management (IdM) system, an entry in that
system often requires the user to present several claims about themselves.

In Provotum 3.0 the means of authentication is defined as a user account in the form of
an email address and password. For opening such an account and becoming an eligible
voter, the user must undergo an onboarding procedure. Although this is conceptually not
defined in Provotum 3.0, a standard registration process at an administration office of a
Swiss canton is implied. In this process, users must present valid claims about themselves
and the identifying person must validate those claims.

For example, when registering at the municipal administration office of Zurich, several
documents must be presented such as the passport, certificate of residence, health insur-
ance card and rent contract for the apartment1. If all the documents are valid, a loosely

1https://www.stadt-zuerich.ch/prd/de/index/bevoelkerungsamt/umziehenmelden/zuzug.

html

28 CHAPTER 5. PROVOTUM 3.0 SECURITY ANALYSIS

coupled proxy identity is created. In the context of Zurich’s IdM system, this proxy
is considered a valid citizen until the earliest expiration date on any of the documents.
The proxy is represented in the form of a username/password combination that simplifies
online interactions with services within same context. Although the proxy inherits the
properties from the original identity, it is fundamentally different since it is a copy that
is only loosely coupled to the original identity context. This means that an update in the
original context may not be noticed in the context of the clone.

The following list describes the vulnerabilities in regards to the process of registering a
new identity with the IdM system of the VA:

T1 – IdM System Insider Attack The paper assumes that the IdM system can maintain
the set of eligible voters securely. However, these IdM systems are centralized and
vulnerable to insider attacks. An employee with the necessary system authorizations
can inject new entries into the system and bypass the IdP’s authentication process
multiple times. As long as the IdM system is not monitored properly, such an attack
could go through unnoticed.

T2 – Forged Identification Documents The employee at the administration office vali-
dates the documents on their security properties. Either specialized hardware is
used to scan these documents and algorithms analyze the security characteristics or
a trained person can identify the security features by eye. Either way, the output
of the analysis of these features is probabilistic. There is no 100% guarantee that
the documents are issued by the authority that they claim to be. The evaluation
of physical governmental certificates is slow, expensive, error-prone and the out-
come is not binary. There is a chance that forged identification documents pass the
verification of a scanner or the employee evaluating the document.

T3 – Loosely Coupled Identity Contexts If one of the documents becomes invalid before
the expiration date and the administration office is not notified immediately, the
proxy identity remains a valid citizen inside the context of the IdM system and
may still use the services as a valid citizen. This is the consequence of the chain of
loosely coupled dependencies and derived identities. Ideally, the user has to prove
the validity of these documents with every meaningful interaction. However, with
the current infrastructure of credential issuance, this is too cumbersome and as a
result, many systems have adapted to the proxy identity pattern. Creating new
identity contexts that are loosely coupled, inherits the risk of data inconsistency
where the same credential is valid and expired in two different contexts.

5.2.2 List Communication

The set of entitled voters is generated at the time of the election creation and passed
to the IdP in the form of a list of unique identifiers. The following list describes the
vulnerabilities in regards to the process of communicating the list of eligible voters to the
IdP:

5.2. ELIGIBILITY VERIFICATION PROCESS 29

T4 – Self-Explanatory Identifier Email addresses contain linkable data such as a name,
birth date, company name etc. This may enable the IdP to link a voter to the real
identity and the IdP can learn which voters have registered.

T5 – Reused Identifier Anonymized email addresses can be linked to a voter’s real iden-
tity if the same email address is also used for other services. It may be listed on a
company’s website, leaked from an online store alongside the name and address of a
user, published as part of a social profile, etc. Thus, the IdP may be able to link the
voter’s email address to the real identity and learns which voters have registered.
The content of the vote is unknown to the IdP. The risk of linkage can be minimized
by creating a new email that only interacts with the Provotum system. However,
it is out of Provotum’s control to make sure that the email is not used for other
services too.

T6 – Email Account Hijacking Any password-based authentication is vulnerable to dic-
tionary attacks [20] and credential stuffing [15]. The enforced security rules on the
voters’ email accounts is outside of Provotum’s control. However, the Provotum’s
security is only as strong as its weakest link. Using emails for the authentication
process creates a security dependency on the email provider and the email client. If
the email provider does not enforce strong passwords, the voter’s email account is
at risk and so the ballot. Such an attack would be noticed when the user attempts
to authenticate with the IdP.

T7 – Static List of Eligible Voters The paper does not describe how this list is exchanged.
Adding or removing a voter from the set of eligible voters after the election has been
created is not possible.

T8 – Limited Flexibility Requiring the VA to maintain an IdM system, restricts the
flexibility and complexity of authentication configurations. As stated in T3, incor-
porating new credentials into the IdM system is expensive, slow and susceptible
to errors. The following example illustrates this issue. The VA wants to make an
poll where only people can participate that are vaccinated against Covid19. There
are two options to verify if a voter is vaccinated. (i) If a digital vaccination card is
available from a TTP, the VA can verify the validity from this service. As previously
explained in Section 2.2, this raises privacy concerns since a third party is involved
in the process. (ii) If the vaccination card is also available as a physical certificate,
the VA must verify these documents in a error-prone verification process as further
explained in T2. Both solutions are not desirable and thus, the flexibility of the
election configuration is restrictive.

5.2.3 Authentication

The IdP acts as a TTP. Its role is to blindly sign the public key of entitled voters that
can later be used to cast a vote. The following list describes the vulnerabilities in regards
to the authentication process:

30 CHAPTER 5. PROVOTUM 3.0 SECURITY ANALYSIS

T9 – DoS Attack on IdP If the service of the IdP is not available, voters can no longer
request blind signatures and cannot cast a valid ballot. It represents a SPOF of the
system. If the service of the IdP is not available, voters can no longer request blind
signatures and cannot cast valid ballots. Attacking the webservers of the IdP can
make the system halt.

T10 – IdP Voting The IdP must not prove that the circulating signatures were only
issued upon successful authentication. No mechanism prevents the IdP from creating
new addresses, blindly signing them and casting valid ballots. Note that this would
only be noticed if the IdP casts more ballots than there are eligible voters defined
by the VA.

T11 – Target Advertising by SSO Provider The prototype suggests using SSO as an
alternative to an email address and password login. The incentives of many SSO
providers is to aggregate lots of metadata about their users and monetize these
detailed user profiles. Integrating a commercial SSO provider leaks information.
The provider learns if the user has already registered for a certain election alongside
metadata such as the location, time, web sites visited prior and after the registration,
etc. Depending on the size and reach of the provider, this information can be
connected and used for targeted and manipulated advertisement. [5, 27]

T12 – Email Provider Attack To prove ownership of the registered email address, the
IdP sends OTPs to the voter to prove ownership of the identifier. Although this
is not yet implemented, this is the assumed processes. Popular email clients such
as Gmail and Outlook do not enable end-to-end (E2E) encryption allowing them
to read the contents of your emails. If an OTP is leaked, the user would not
be able to authenticate with the IdP. This would be noticed. The same problem
occurs with ISPs and OTPs sent in SMS. This would be less problematic if the VA
communicates two authentication factors with the IdP such as a password or phone
number. However, this increases the chances of threat T4 and T5 where the IdP
can link a user to his real identity.

T13 – Email Provider Data Leak Due to the missing E2E encryption the email provider
learns which voters have registered for an election.

T14 – VA and IdP Collusion In most use cases, the VA has sensitive information about
its users and can identify them. Thus, Provotum 3.0 outsources the eligibility veri-
fication to an independent entity (IdP) that ideally cannot link the identifier to the
real identity. However, the IdP and an insider of the VA with reading access to the
IdM system can collide to find out which users have cast a ballot and which did not.

5.2. ELIGIBILITY VERIFICATION PROCESS 31

5.2.4 Authorization

After being successfully authenticated the voter can register on the PBB. This direct
interaction with the DL has to be made before any vote can be cast. To register, the
voter must submit a public key that is blindly signed by the IdP. Whenever a vote is
cast, the network validates if the transaction originates from a registered public key. The
following list describes the vulnerabilities in regards to the vote authorization process:

T15 – Binary Registration Provotum’s PBB distinguishes between registered and not
registered addresses. However, a registered voter may not be eligible for every
election that is made on the Provotum PBB. As a result, it is not possible to host
two elections in the same Provotum network for two different sets of eligible voters.

ID Title Threat

T1 IdM System Insider Attack An insider of the VA with the necessary credentials can in-
ject forged identities into the IdM system.

T2 Forged Identification
Documents

The process of evaluating physical identification documents
is error-prone since it relies on probabilistic evaluation meth-
ods.

T3 Loosely Coupled Identity
Contexts

Loosely coupled identity contexts and proxy identities result
in data inconsistency.

T4 Self-Explanatory Identifier Email addresses often contain personal information. This
may allow the IdP to link the voter’s email address to the
real identity.

T5 Reused Identifier Email addresses are reused among different services. This
may allow the IdP to link the voter’s email address to the
real identity.

T6 Email Account Hijacking Enforcing strong passwords on email accounts is out of
Provotum’s control.

T7 Static List of Eligible Voters A voter that loses the required credentials during election
runtime, can still cast a vote since the list is defined during
boostrapping

T8 Limited Flexibility Configuring complex authentication configurations is expen-
sive, slow and error-prone.

T9 DoS Attack on IdP A DoS attack on the IdP can make the entire system halt.

T10 IdP Voting The IdP can generate and sign public keys and use them to
submit a valid vote.

T11 Target Advertising by SSO
Provider

Election manipulation by targeted advertisement campaigns
enabled by the SSO provider.

T12 Email Provider Attack Email is the only authentication method and emails are not
E2E encrypted allowing an insider to use the OTPs to reg-
ister.

32 CHAPTER 5. PROVOTUM 3.0 SECURITY ANALYSIS

T13 Email Provider Data Leak Email provider learns which users have requested a registra-
tion OTP.

T14 VA and IdP Collusion Insider of VA and IdP can collide to find out which uses
have not registered.

T15 Binary Registration A voter is either registered for all or no election.

Table 5.1: Threat model of Provotum 3.0 in regards to IdM

Chapter 6

Design of an SSI-based IdM System for
Provotum

This chapter describes Provotum 3.0 with the extension of a decentralized IdM system.
The proposed architecture is illustrated in Figure 6.1. The issuance, storage and verifi-
cation of credentials align with the concepts of SSI described in Section 2.3. Thus, this
chapter makes use of the terminology and abbreviations explained in Chapter 4.

VA

Public Permissioned BC

IdP
(verifier)

Randomizer

Sealers

execute runtime &
sign blocks

generate config vote &
verify

randomize

Voters
(holder)

Public Verifiable Data Registry

verify register DID

present
verifiable

presentation

issue
verifiable
credential 1

register DID

1 234

65

Issuers

finalize

7

Figure 6.1: Provotum 3.0 extended with a decentralized IdM system

6.1 Stakeholders

All processes relevant to the correctness and the configuration of the Provotum voting
system are mostly unchanged. The focus of this thesis is on the authentication and
authorization process. The proposed design incorporates the concepts of an SSI-based

33

34 CHAPTER 6. DESIGN OF AN SSI-BASED IDM SYSTEM FOR PROVOTUM

IdM system to achieve a secure and privacy-preserving eligibility check. The new design
consists of the same entities as in Provotum 3.0 alongside Issuing Authorities (IAs) and
a public data registry which is a public permissionless BC that manages the lifecycle of
decentralized identifiers (DIDs).

• The Substrate PoA DL acts as the system’s Public Bulletin Board PBB. The DL
implements the Provotum protocols directly into its runtime, exposing an API with
which it is possible to submit transactions and read state tied to the voting process.
The PBB is also used as the communication channel for all entities.

• As with the previous iteration of Provotum, the Voting Authority (VA) is respon-
sible for bootstrapping and orchestrating the Provotum system. It coordinates the
distributed key generation (DKG) with the sealers, creates the election questions,
and closes the election by signalling the sealers to start tallying. In the previous
implementation, a list of eligible email addresses was passed to the IdP. This func-
tionality is replaced with an SSI-credential-based authentication process. Newly,
the VA must define authentication configuration specifying the claims that voters
must present to the IdP. As an example, this configuration may contain a claim such
as ”the voter must have a valid Swiss passport and the date of birth must be more
than 18 years ago”.

In the context of SSI, the classical role of the verifier is split among the IdP and the
VA which is unique to Provotum. While the VA defines the claims and trusted IAs,
the IdP executes and validates the received claims.

• An Issuing Authority (IA) is a TTPs that creates signed claims about a subject in
the form of VCs. These credentials must be disclosed to the IdP during the authen-
tication process. In SSI terminology, the IA has the role of this issuer. The VA,
IdP and the IA form a trust-network. The VA has to trust the IA that credentials
are issued truthfully and the IdP that the claims are validated veridically. The task
of the IA could be carried out by the administration office that also issues physical
passports and other identification cards. Furthermore, it is also possible to invali-
date credentials by maintaining a list of revoked DIDs [1]. Revocation lists are also
maintained publicly on the data registry enabling the IdP to check the validity of a
credential at runtime without contacting the IA.

• Voters are eligible people that participate in the election. They interact directly
with the PBB when casting their vote. To do so, they are responsible for the
private key management. With the integration of SSI concepts in the process, they
are in charge of managing DIDs and VCs. In the SSI context, the voter has the role
of the holder.

• The Identity Provider (IdP) receives instructions from VA in the form of the au-
thentication configuration on the task of access control to the election. Voters are
asked to disclose credentials about themselves in order to register on the PBB. The
IdP validates those credentials with the help of the data registry. Thus, in terms of
SSI, the IdP takes the role of the verifier.

Theoretically, it would be possible to validate VCs directly in the Provotum runtime.
However, the proposed design does not omit the IdP for privacy reasons. If VCs

6.2. PROCESSES 35

were evaluated directly on the PBB, the IAs of the VCs learn which users have
cast a vote. One can argue that with the proposed architecture, the IdP gains
this knowledge instead of the IA. However, the IA usually has detailed information
about the user. For example, the passport issuing authority controls very sensitive
information. During the Provotum authentication process with the IdP, voters may
only have to disclose the nationality and date of birth on the passport to prove the
nationality and adulthood. This limited information does not allow the IdP to link
a voter to his real identity.

• Sealers secure the network by running DL validator nodes. They also participate
in the DKG during the bootstrapping phase which is used for the vote encryption
process.

• The Randomizer blinds the voter’s ballot for achieving receipt-freeness. A blinding
factor is used to make it impossible for a voter to reproduce the same ballot, making
vote-buying much harder.

6.2 Processes

Mainly, there are three new processes introduced: (i) credential issuance by the IA to
the voter, (ii) the authentication configuration by the VA and (iii) the disclosure and
verification process between the voter and the IdP. Interactions such as bootstrapping the
system or casting a vote have not changed and are not covered. These workflows continue
to work as in Provotum 3.0 [3].

6.2.1 Identity Issuance

IAs act as TTPs besides the IdP and the randomizer. The difference between these
entities is that IAs also exist outside of Provotum’s context. Therefore, the registration
and maintenance of DIDs must not be recorded in the Provotum runtime. Instead, a
public permissionless BC is used to maintain DIDs since anybody has to be able to read
the registered DIDs. The network that maintains DIDs and resembles the foundation of
a digital identity should not be governed by a set of selected trustees and the network
should be as censorship-resistant as possible. Due to the available tools and libraries,
Ethereum as a public permissionless BC is chosen but can be replaced with any other
public permissionless BC.

Before a VC can be created, the IA and the voter must both first create a DID. Ethereum
uses the Elliptic Curve Digital Signature Algorithm (ECDSA) for deriving the public key
from a private key. With the generation of a key pair, a valid DID is created accordingly1

without the need of an on-chain transaction.

Usually, the IA requires an onboarding procedure where users must identify themselves
independent of physical or digital credentials. If the user passes the identity check, the

1Multiple DIDs are created since this key pair can also be used on Ethereum’s testnets.

36 CHAPTER 6. DESIGN OF AN SSI-BASED IDM SYSTEM FOR PROVOTUM

user’s newly created DID is communicated to the IA. The IA creates one or multiple
atomic VCs containing all the verified attributes, signs them and passes them on to the
voter. The voter stores the VCs locally in a secure wallet.

Ideally, an IA for commonly used identification documents such as passports, divers li-
cence, etc., uses the same DID for all VC of the same type to its customers. Since the
issuing DID on a VC substitutes all the security features of a physical passport, publicly
know DIDs of such an authorities enable the government to publicly maintain a curated
list of trusted issuing authorities2. On the other end, the voter is encouraged to use a
new DID for each VC that is issued. This guarantees a higher degree of privacy since a
verifier is not able to link multiple VCs to the same identity when they are disclosed in
independent authentication processes.

To create a common context for VCs among the issuer, verifier and the holder, Schema.org
is used to define the vocabulary used in the credential. Using Schema.org is not required
but is a recommended practice since it makes the credentials interoperable with other
systems. New schemas can be defined if needed.

6.2.2 Authentication Configuration

Defining the set of eligible voters is fundamentally different to Provotum 3.0. The VA is
not required to maintain the list of eligible voters. Instead, an authentication configuration
is created and published which consists of a list of tuples. Each tuple has two properties:

• A list of required credentials must be disclosed in the authentication process with
the IdP. Each claim itself contains a list of accepted IAs in the form of DIDs.
Furthermore, a reason can be stated to communicate to the voter why this claim
must be disclosed.

• The interpretation and evaluation of the disclosed value is not part of the SSI frame-
work. The standard does not incorporate rules or instructions on how the value of a
claim is to be analyzed. Thus, the configuration also instructs the IdP on how each
value of a claim must be evaluated.

As an example, the VA creates an election that only allows adult voters. The requested
credential is the date of birth. The list of accepted IAs could consist of all the passport
issuing authorities in Switzerland. The included reason could state that only adult people
can participate in this particular election. The constraint declaration would be defined
such that the disclosed value must be more than 18 years ago.

Note that the two-folded configuration also applies to the verification process of physi-
cal credentials. Even though the government defines how to identify the validity of the
physical credentials, applying access restriction rules is not within the same scope. It is
up to the verifier to analyze and compare the disclosed value. One verifier may do the
calculation of an age verification solely in the head, while others use a calculator.

2Ideally, this list is maintained as a credential registry as discussed in Section 8.3.4

6.2. PROCESSES 37

Complex authentication restrictions can be enforced by the VA by including multiple
claims into the authentication configuration. If the set of eligible voters is too complex
to define with existing VCs, the VA can also become an IA and issue custom VC to the
voters themselves. However, this requires the VA to maintain an IdM system.

6.2.3 Identity Verification

Although incorporating more trusted entities in the form of IAs seems to make the system
less decentralized at the first glance, this is not the case since in both architectures there
has to be one trusted source of truthful identification issuance. Either this role is assigned
to the VA or a trusted IA. Using a governmental IA benefits from the fact that the original
identity context is used. Thus, the risk of data inconsistency between the original identity
context and the internal IdM system is eliminated and it makes the system less error-
prone, more efficient and privacy-preserving. One might argue that the introduction of
IAs resurrects the Access Provider (AP) from Provotum 2.0 [14]. This entity acted as
a gatekeeper and increased privacy by decoupling the authentication process from the
election process. The key difference between the IA and the AP is that IAs also exist
outside of Provotum. SSI-based authentication enables Provotum and relying parties in
general to directly connect to IA’s IdM system without the need for cloning the identity
into a new context. The original credentials signed by the trusted authority are used as
a means of authentication.

User accounts do not exist in the proposed architecture. One can imagine the authenti-
cation process as if a voter has to disclose the real identification document when casting
a ballot. Since a digital version of the passport can easily be verified, the overhead of
disclosing and verifying the document is minimal.

The IdP reads the authentication configuration from the PBB and creates a Selective
Disclosure Request (SDR). The SDR contains the required claims with its accepted IAs
and a reason for each request. The SDR is signed by the IdP and sent to the voter. Since
the authentication configuration is stored publicly, the voter can verify that the IdP does
not ask for more credentials than defined by the VA. Also, the voter can verify that the
SDR was signed by the IdP as the DID of the IdP is also recorded on the PBB.

Upon receiving the SDR, the voter is in control of disclosing previously issued VCs and
must give permission to share them with the IdP. By doing so, a Verifiable Presentation
(VP) is constructed containing the signed credentials. By proving ownership across all
DIDs that are used in the VCs, the VP cannot maliciously reuse these VCs since the IdP
has no access to the associated private keys.

The signed VP undergoes a three-step verification process by the IdP. (i) The VP is
validated against the SDR to make sure that the VP contains all the necessary VCs and
are signed by the required IAs. The IdP does not have to contact the IAs to verify if the
credentials are valid. Instead, the DIDs of the IAs are resolved directly from the verifiable
data registry. This ensures that the IA is not involved in the authentication process. (ii)
The IdP checks its database if any of the VC was previously used for the same election.
(iii) The constraint declaration for each disclosed VC is evaluated. If all three checks

38 CHAPTER 6. DESIGN OF AN SSI-BASED IDM SYSTEM FOR PROVOTUM

are valid, the IdP stores the VCs locally and returns the blindly signed public key to the
voter.

The proposed IdM system requires a radical change in how credentials are issued and
stored. By not incorporating the IA in the authentication process, they do not learn
when their issued VCs are used and the voter’s privacy is protected. Since atomic VC are
used where only one claim is contained in a VC, the IdP only learns the minimal necessary
information about the voters.

Chapter 7

Implementation

Alongside this thesis, a prototype was developed implementing the proposed architecture.
The source code of all the packages is published in the Provotum Github organization1.
Figure 7.1 illustrates the relevant packages for the credential issuance and SSI authenti-
cation process.

agent-explorer identity-provider voter

ssi-utils

provotum-
infrastructure

ssi-react-
components

veramo-
cloud-agent

Deployment

Clients

Libraries

voting-authority

Figure 7.1: Overview of Provotum’s SSI repositories

Veramo (Section 3.3.1) currently only supports Ethereum-based and web-based DIDs.
However, Veramo can be replaced with any other SSI system as long as it supports the
W3C DID [23] and VC [28] specification. The reason for choosing Veramo for this thesis
is its modular structure. There is no lock-in effect as with other platforms where only one
type of Ledger is supported. It is open-source and new modules can be added to support
other types of DIDs or signature schemes in the future.

1https://github.com/provotum

39

40 CHAPTER 7. IMPLEMENTATION

veramo-cloud-agent

The Veramo framework (Section 3.3.1) is used for managing all SSI relevant processes.
Veramo provides interfaces for several clients. However, at the time of writing this thesis,
the Veramo cloud agent is the most complete and best-documented implementation due
to its OpenAPI2 specification. Thus, the implementation uses the veramo-cloud-agent
repository which was generated using the official Veramo template34. Every entity that
either issues, holds or verifies VCs runs an agent in the cloud. The service exposes all
its functionality in the form of a RESTful API. In the future, a dedicated mobile app for
managing DIDs and VCs locally could offer a simpler setup process for the voters.

agent-explorer

This implementation is a ReactJS web application enabling a GUI-based interaction with
the veramo-cloud-agent. It is used by the IAs to create DIDs and VCs. Voters also use it
to create DIDs, import VCs and selectively disclose VCs in the form of VPs. It is forked
from a core project by Veramo5. Many of the required features are missing at the time of
the fork, such as importing VCs, issuing VCs from predefined context templates, scanning
an SDR and responding with a VP. These features are added such that an E2E process
from issuing credentials to the the voter to casting a vote can be demonstrated.

ssi-utils

This TypeScript library shares common functionalities between the agent-explorer, iden-
tity provider and the voter and voting authority web application. It includes interfaces
and predefined schemas for VCs. It is available as a public NPM package under the name
provotum-ssi-utils.

ssi-react-components (voter, voting-authority)

Parallel to this thesis, the Provotum frontend applications are rewritten. For this reason,
a ReactJS component library is created that makes the integration of all the SSI func-
tionality into new projects easier. Storybook6 is integrated to showcase and document
the usage of the components. The library is available as a public NPM package under the
name provotum-ssi-components. Mainly the following two components are relevant for
integrating the SSI functionality:

2https://swagger.io/specification/
3https://github.com/uport-project/veramo-agent-deploy
4https://veramo.io/docs/deployment_tutorials/deployment_aws
5https://github.com/uport-project/veramo-agent-deploy
6https://storybook.js.org

7.1. DID CREATION 41

• The AuthConfigurator enables the voting-authority to generate an authentication
configuration for an election as described in Section 6.2.2. This component is in-
tended to be used in the VA frontend.

• The IdpButton targeted at the voter frontend that manages the authentication
process with the IdP is provided. It establishes a connection the the IdP and initiates
the authentication process.

To showcase the integration of the IdpButton, the voter frontend application was updated
such that an E2E process can be demonstrated including a credential-based authentication
process.

provotum-infrastructure

To build and deploy all the services with docker-compose, provotum-infrastructure was
updated with the new services. All the docker images are hosted on Docker Hub7.

7.1 DID Creation

As described in Section 4.1.1, DIDs are self-certifying identifiers whose ownership can
be proven by their controller. The Ethereum DID method8 using the DID registry9 has
the benefit that the creation of a DID does not require an on-chain transaction. This
is possible since the DID itself contains a public key as shown in Table 4.3. If the DID
resolver is not able to find any transaction associated with a particular DID on the ledger,
it implies that the controller is the same public key as illustrated in the Listing 2. Thus,
creating a new DID on Ethereum is fast and does not cost any network fees.

7.2 Credential Issuance

Issuing a VC requires a DID from the IA and the voter. The voter creates a new DID
for every new credential to preserve privacy, while the issuer’s DID is often required
be commonly known to simplify the verification process. Section 8.3.4 discusses how
publicly know DIDs can be maintained. The voter’s DIDs is released to the IA. Meaningful
credentials such as passports are often issued in a personal verification procedure. In this
scenario, the voter’s DID can be transferred offline by scanning a QR code on the spot.

Incorporating commonly used schemas such as those from Schema.org, makes VCs in-
teroperable and more likely to be accepted by other parties. However, the underlying

7https://hub.docker.com
8https://github.com/uport-project/ethr-did
9https://github.com/uport-project/ethr-did-registry

11DIDs are shortened for displaying reasons

42 CHAPTER 7. IMPLEMENTATION

1 {

2 "@context": [

3 "https://www.w3.org/ns/did/v1",

4 "https://identity.foundation/EcdsaSecp256k1RecoverySignature2020/lds-ecdsa

5 -secp256k1-recovery2020-0.0.jsonld"

6],

7 "id": "did:ethr:0xb9c...e8a",

8 "verificationMethod": [

9 {

10 "id": "did:ethr:0xb9c...e8a#controller",

11 "type": "EcdsaSecp256k1RecoveryMethod2020",

12 "controller": "did:ethr:0xb9c...e8a",

13 "blockchainAccountId": "0xb9c...e8a@eip155:1"

14 }

15],

16 "authentication": [

17 "did:ethr:0xb9c...e8a#controller"

18],

19 "assertionMethod": [

20 "did:ethr:0xb9c...e8a#controller"

21]

22 }

Listing 2: Default DID document from Ethereum DID-resolver when no transaction has
been recorded11

data structure of the JSON-LD encoding is a graph. Therefore, the schemas may contain
cycles. For example, person P may be part of an organization O and organization O
has a set of employees where person P is part of. Thus, programmatically extracting the
fields of a given schema type is expensive as it may result in an infinite loop [8]. As a
result, JSON-LD schemas as those from Schema.org are helpful for creating a common
vocabulary among two entities but not for instantiating new objects for a given schema
type. Creating a VC based on a given schema type, is achieved with the help of the NPM
package ssi-utils which contains a subset of the schema types from Schema.org without
cycles.

VCs are issued in the form of a JWT. Veramo uses a single message interface that pro-
cesses data from other agents. Any incoming message is processed by a chain of message
handlers. If any of the message handlers can successfully parse the message, it is further
processed by the agent. When the IA sends the VC in the form of a JWT, the did-jwt
message handler12 parses and validates the JWT. After that, the VC can be imported
into the agent.

7.3 Authentication Configuration

The VA creates a configuration that defines the set of eligible voters for a particular
election. This does not require any interaction with a Veramo agent. Every election is

12https://veramo.io/docs/api/did-jwt.jwtmessagehandler

7.3. AUTHENTICATION CONFIGURATION 43

Figure 7.2: UI for issuing an atomic VC that uses Schema.org vocabulary to define a
person’s postal code. As a result, a JWT is produced that can be displayed as a QR Code
and imported by the holder to its own agent.

configured with a separate authentication configuration. The configuration consists of a
list of two-folded tuples. (i) The claim defines which credentials must be disclosed in
the authentication process with the IdP. It defines the required context, accepted issuers
and reason why the claim must be disclosed. (ii) The constraint instructs the IdP with
additional restrictions on how to validate the disclosed values. This is achieved with a
JavaScript expression (js) stored as a raw string with a placeholder (${VALUE}) that is
replaced with the disclosed value. The JavaScript eval() function expects a string as
input and returns the result of the evaluated expression. Using raw JavaScript strings
makes it possible to define any constraint that can be captured with valid JavaScript
syntax. The description (desc) of the constraint has no functionality other than providing
a human-readable string of the constraint.

Listing 3 illustrates an authentication configuration where the voter must disclose a claim
that proves his postal address. This is defined by the claim object. Such a claim could
be issued by the cantonal residents registration administration. The constraint adds
further restrictions by only allowing certain postal codes to be accepted. To model an
election without access restrictions, the authentication configuration can be omitted by
submitting an empty array. This is useful for development and demo purposes.

The ssi-components-library currently supports the creation of the following constraints.

• Dates (ISO 8601 date format15)

– Exact date

– Before or after a given date

14DID is shortened for displaying reasons
15https://www.w3.org/TR/NOTE-datetime

44 CHAPTER 7. IMPLEMENTATION

1 [

2 {

3 "claim": {

4 "credentialContext": "https://schema.org",

5 "credentialType": "PostalAddress",

6 "claimType": "postalCode",

7 "essential": true,

8 "issuers": [

9 {

10 "did": "did:ethr:0x030...f2e",

11 "url": "https://www.stadt-zuerich.ch"

12 }

13],

14 "reason": "We need to know that you live in Zurich."

15 },

16 "constraint": {

17 "js": "['8005','8006','8007'].includes('${VALUE}')",
18 "desc": "The claim must exactly match any of the elements from '['8005',
19 '8006','8007']'"
20 }

21 }

22]

Listing 3: Example of an authentication configuration that requires a voter to disclose a
VC containing the postal code and the value is either 8005, 8006 or 8007.14

– Between two dates

– Any value

• Text

– Exact string

– Contains a specific substring

– Is one of many possible strings

– Any value

• Boolean

– True or false

– Any value

• Number

– Exact number

– Is greater (or equal) than

– Is smaller (or equal) than

– Any value

7.4. IDENTITY VERIFICATION 45

The authentication configuration should ideally be communicated through the PBB as
this does not require the VA to securely manage the configuration and also enables voters
to make sure that the IdP does not ask for more credentials than necessary. Due to
technical difficulties with Substrate, the configuration is currently communicated to the
IdP through a separate RESTful API endpoint. The entire configuration object can be
stored as a byte array since the Provotum runtime must not evaluate it and the PPB’s
sole purpose is for storage and communication.

Figure 7.3: UI for creating an authentication configuration for an election. This screenshot
shows how an authentication configuration tuple is added. With this credential and
constraint configured, the voter must disclose a VC issued by the city administration
office of Zurich and the value of this claim must be one of the defined postal codes. The
result of this form corresponds to the data shown in Figure 7.3.

7.4 Identity Verification

The authentication and identity verification process is illustrated in Figure 7.4. In this
process, the IdP only signs the public key of a voter if the three-step identification pro-
cedure is passed. To do so, the IdP connects to its Veramo cloud agent. With the
authentication configuration of the VA, an SDR in the form of a JWT is generated and
signed by the agent. The JWT is sent to the voter and is displayed as a QR code in the
voter frontend application. The component library (ssi-react-components) provides a
module for integrating this logic into any ReactJS application. It has to be configured
with the URL of the IdP and the election id. The component also expects the public key
that is to be signed. The blindly signed public key is accessible outside of the component

46 CHAPTER 7. IMPLEMENTATION

voter agent-explorer

generate &
sign VP

collect
relevant VCs

identity-providerVoter

select election
answer

request blind signature

show SDR as QR Code

SDR request

scan SDR QR Code

ask for permission on requested VCs

approve disclosure

signed VP

blinded public key + VP

blindly signed public key

validate VP
against SDR

validate VCs
against DB

validate VCs
against
constraints

store VCs
in DB

continue with randomizer

blindly sign
voter's public
key

VA's auth
configuration
(from PBB)

Figure 7.4: Sequence diagram for IdP authentication process

with a custom hook16. Storybook17 is integrated into the component library. It documents
the usage and demonstrates its functionality.

The agent-explorer supports the functionality to import an SDR by scanning a QR code.
Similar to the import of VCs, the JWT is processed by Veramo’s chain of message handlers.
The did-jwt message handler18 parses and validates the JWT. Each requested VC is listed
and the voter must give permission to each claim individually as shown in Figure 7.5. The
voter responds with a VP in the form of a JWT. It is recommended that a DID is used
for the signature of the VP that is not used in conjunction with any non-disclosed VC.
This guarantees more privacy to the voter. The IdP would be able to connect previous
authentication processes if the same DID was used across multiple processes. Note that
this is still possible if at least one of the VCs is the same in two authentication processes.
If no such DID is available, a new DID can be created. The agent-explorer is implemented

16https://reactjs.org/docs/hooks-intro.html
17https://storybook.js.org/
18https://veramo.io/docs/api/did-jwt.jwtmessagehandler

7.4. IDENTITY VERIFICATION 47

such that the DID of the first VC also signs the VP to align with this recommendation.

Figure 7.5: UI for selectively disclosing VCs. After scanning the SDR, the voter is pre-
sented with a list of required credentials that must be disclosed. Each credential must be
permitted to be disclosed.

The resulting VP in the form of a JWT is a new argument that must be sent to the IdP
when requesting the blind signature. Currently, the JWT has to be copied from the agent-
explorer into the voter application. The user experience could be improved using deep
links and a bridge server similar to what WalletConnect19 is providing as a communication
tool between decentralized applications and wallets.

The VP and the voter’s blinded public key are sent to the IdP. Veramo provides an
interface for checking a VP against an SDR. It checks whether all the VCs are disclosed
and issued by the correct IA. A lookup in the database makes sure that none of the
disclosed VC has been used for the same election. The constraint evaluation is performed
by replacing the ${VALUE} placeholder and calling JavaScript’s eval() function. If all
three verification steps are passed successfully, the blindly signed signature is returned
back to the voter. The rest of the voting process remains unchained compared to Provotum
3.0.

19https://docs.walletconnect.org/mobile-linking

48 CHAPTER 7. IMPLEMENTATION

Chapter 8

Evaluation

The main focus of this thesis is to enable an authentication process to Provotum that is
secure and privacy-preserving. Table 8.1 reevaluates the identified security issues from
Section 5.1 with respect to the new architecture.

ID Title Threat Mitigation

T1 IdM System
Insider Attack

An insider of the VA with the nec-
essary credentials can inject forged
identities into the IdM system.

The new architecture does not re-
quire the VA to maintain an IdM sys-
tem.

T2 Forged
Identification
Documents

The process of evaluating physi-
cal identification documents is error-
prone since it relies on probabilistic
evaluation methods.

VCs are native to the web. As a re-
sult, the outcome of their verification
is binary.

T3 Loosely
Coupled
Identity
Contexts

Loosely coupled identity contexts
and proxy identities result in data in-
consistency.

The original identity context is used.

T4 Self-
Explanatory

Identifier

Email addresses often contain per-
sonal information. This may allow
the IdP to link the voter’s email ad-
dress to the real identity.

DIDs combined with VCs replace
email addresses. Ledger-based DIDs
usually consist of a random sequence
of characters. DID documents do not
hold personal information.

T5 Reused
Identifier

Email addresses are reused among
different services. This may allow the
IdP to link the voter’s email address
to the real identity.

DIDs combined with VCs replace
email addresses. Ledger-based DIDs
usually consist of a random sequence
of characters. DID documents do not
hold personal information.

T6 Email Account
Hijacking

Enforcing strong passwords on email
accounts is out of Provotum’s con-
trol.

DIDs use DPKI.

49

50 CHAPTER 8. EVALUATION

T7 Static List of
Eligible Voters

A voter that loses the required cre-
dentials during election runtime, can
still cast a vote since the list is de-
fined during boostrapping

The authentication configuration is
flexible enough to support static and
dynamics sets. An invalidation of a
credential is immediately available to
the IdP due to the usage of the orig-
inal context. Invalidating an already
submitted vote is not possible.

T8 Limited
Flexibility

Configuring complex authentication
configurations is expensive, slow and
error-prone.

Validation of credentials is done in
the original context. This process is
cheap, fast and simple to verify.

T9 DoS Attack on
IdP

A DoS attack on the IdP can make
the entire system halt.

No mitigation implemented. Further
discussed in Section 9.1.2.

T10 IdP Voting The IdP can generate and sign public
keys and use them to submit a valid
vote.

No mitigation implemented. Further
discussed in Section 9.1.1

T11 Target
Advertising by
SSO Provider

Election manipulation by targeted
advertisement campaigns enabled by
the SSO provider.

No third party involved in authenti-
cation process.

T12 Email Provider
Attack

Email is the only authentication
method and emails are not E2E en-
crypted allowing an insider to use the
OTPs to register.

DIDs in combination with VCs re-
place email addresses and thus, no
email provider or TTP is involved.

T13 Email Provider
Data Leak

Email provider learns which users
have requested a registration OTP.

DIDs in combination with VCs re-
place email addresses and thus, no
email provider or TTP is involved.

T14 VA and IdP
Collusion

Insider of VA and IdP can collide to
find out which uses have not regis-
tered.

VA does not maintain an IdM sys-
tem.

T15 Binary
Registration

A voter is either registered for all or
no election.

IdP evaluates VCs per election.
(Functionality on PBB not yet im-
plemented)

Table 8.1: Threat model evaluation after the application of the new
design

8.1 Privacy

With the introduction of a decentralized IdM design, the credential-disclosure-based au-
thentication process is facilitated only between the IdP and the voter without the need of
the IA or any other TTP. This direct communication guarantees a higher level of privacy
compared to other standards such as SSO or OIDC (T13). As a result of the improved
privacy protection and the removal of TTPs from the authentication process, meta in-
formation about the voting behaviour is retained. Thus, voters are less likely to become

8.1. PRIVACY 51

targets of manipulating advertisements since less data is available to advertisement plat-
forms (T11).

The replacement of email addresses with DIDs as identifiers also improves the possible
threat of identity linkage (T4,T5). DIDs are randomized strings that do not reveal per-
sonal information. Also the creation of a new DID is fast and does not cost any network
fees, enabling the creation of a new identifier for every application. Manually creating
and maintaining new email addresses for every application is not feasible. Alternatively,
there are services that provide a workaround and forward emails from anonymized proxy
addresses to a main email address such as the ”Hide My Email” service from Apple [11].
However, these services are centralized, can track your online activity and create a depen-
dency relation since the proxy email addresses are managed outside of the user’s control.
Thus, DIDs are the superior identifiers in all of those regards.

Identity linkage is still possible with the proposed design. It is the VA’s responsibility to
create an authentication configuration that is generic enough such that the IdP is not able
to link the disclosed credentials to a real identity. The VA should always only incorporate
the minimal number of claims necessary to define the eligible set of voters. Incorporating
needless credentials into the authentication configuration increases the chance that the
IdP is able to uniquely identify a voter and thus, learns which voters have registered.
To minimize the risk of identity linkage, the implementation supports atomic credentials,
where only one claim is issued per VC. This enables voters to only disclose the credentials
which are requested. However, even with a minimized authentication configuration, the
IdP may still be able to link voters to their identity through the disclosed credentials. For
example, requesting a voter’s postal code and date of birth may already uniquely identify
a person from a sparsely populated area. Ideally, the voter only discloses a proof that
states that he lives in one of the accepted postal codes and that his date of birth was more
than 18 years ago. Thus, ZKPs can further improve privacy. The necessary infrastructure
and the appropriate type of ZKP has to be further investigated.

8.1.1 IdP IA Collusion

The IdP must protocol which credentials were used for every election to prevent double
voting. If the logged credentials leak, the IA can connect the credentials to additional
information within the IA’s IdM system and identify which voters have registered. Such
a data leak is illustrated in the following paragraph.

The Provotum architecture is not limited to national elections. For example, a student
association at the University of Zurich creates a Provotum election where voters must
prove their eligibility by disclosing a valid enrollment receipt. The University of Zurich
acts as a trusted IA and issues such enrollment receipts to its students in the form of VCs.
The IdP will only know that a voter is in possession of such a receipt but cannot link it
to any personal information. If the authentication logs of the IdP leak, the University
of Zurich would be able to reconstruct which students have registered since it stores
personal data about its students and knows which VC belongs to which user. However,
the university does not know for sure if the registered voters have effectively cast a vote
and also, their actual vote would remain private.

52 CHAPTER 8. EVALUATION

This challenge is introduced with the new architecture. One can argue that it replaces
Threat T14 where the same collusion was previously possible between an insider of the
VA and the IdP. However, an authentication configuration containing credentials from
multiple IAs increases the risk of such an attack. If any of the IAs is corrupt and collides
with the IdP the voter’s identity can be linked. The higher the number of IAs incorporated
in the authentication configuration, the higher is the chance of an insider attack between
the IdP and one of the IAs. However, the only information that can be extracted from
such an attack contains which voters have registered and which have not and not the
content of the actual vote itself.

8.2 Security

The introduced decentralized IdM system proposes that the necessary credentials are
issued outside of Provotum. The new Provotum system uses the original identity context
of each credential, eliminating the risk of data inconsistency (T3). As a result, the VA
must no longer maintain a database with proxy identities.

The previously used centralized IdM system enabled an adversary with the necessary cre-
dentials to inject new identities and bypass the authentication procedure multiple times.
The removal of the internal IdM system mitigates the risk of insider attacks. In the new
design, such an attack is still possible for an insider at the IdM system of the IA. However,
the authentication configuration can be constructed such that the claims of multiple IAs
is required. Therefore, an attacker would need to be able to create a forged credential in
the IdM systems of all the IAs making such an attack more difficult to execute.

Email accounts are subject to a wide range of attacks (T6). The replacement of email
addresses with DIDs as identifiers and their cryptographic properties eliminates the risk
of credential stuffing and dictionary attacks. Passwords are replaced with cryptographic
signatures guaranteeing a higher degree of security by design. Thus, the authentication
process with DIDs and VCs is based on the same cryptographic principles which are used
in the vote casting process.

In the previous architecture, OTPs were used to prove ownership of the identifier. The
missing E2E encryption in email communication and the use of a single factor of authen-
tication enables an insider of the email provider or the email client to leak OTPs (T12).
The introduction of DIDs and the direct interaction between the holder and the verifier
eliminates the threat of such attacks. Proving ownership of the identifier is facilitated
with cryptographic signatures without the need of a TTP. As a result of the removal of
email and SSO/OIDC providers, fewer trust assumptions have to be made in the E2E
process.

Proxy identities are created after a successful onboarding process in which credentials are
verified and allow users to act as identified users in a given context without having to
reveal physical credentials every time. However, the design pattern of proxy identities
results in loosely coupled identity contexts and data inconsistency between the original
and the derived context. The new architecture which is always operating in the original

8.3. INFRASTRUCTURE 53

identity context benefits from guaranteed data consistency that previously was susceptible
due to the use of proxy identities (T3).

Whenever a physical credential is verified and a new proxy identity is created, the system
becomes less efficient and error-prone since the validation of physical certificates relies on
a probabilistic evaluation of the security features (T2). The proposed architecture issues
credentials that are native to the digital world and always operates in the original identity
context of a credential. The validation of a VC evaluates cryptographic signatures which
is cheap, fast and results in a binary outcome.

Previously, every externally issued credential had to be verified by the VA and credited
to the proxy identity. This verification process is expensive and slow as it often relies
on human interaction. With the digitally native credentials and the usage of the original
identity context, complex authentication configuration can be constructed (T8). Cre-
dentials of different authorities can be aggregated into an authentication configuration
without any additional verification process needed.

The issuance of credentials follows an interoperable standard proposed by the W3C
[28, 23]. In combination with the use of a common data vocabulary of Schema.org,
the identifiers and credentials used in the proposed architecture and the prototype are
compatible with the credentials used in other SSI systems. However, the disclosure and
verification process of credentials is currently defined by the Veramo framework. This
process does not fully align with the W3C standard, making a disclosure procedure not
compatible with other SSI applications. As this is a know difference to the Veramo project,
it will be addressed in a future release1.

Due to technical difficulties with Substrate, the envisioned design could not fully be imple-
mented in the Provotum runtime. Thus, the registration process on the PBB remains the
same as in Provotum 3.0. In the previous design, voters only register once on the PBB. A
registered voter can participate in any election within the same runtime (T15). All ser-
vices except the Provotum chain support the new design. The new architecture proposes
an election-based authentication process where a voter must present the required creden-
tials per election. The implemented authentication process with IdP is election-based as
proposed in the design. To obtain a blind signature, a voter must present the required
claims for that election. This enables a registration on the PBB. Since the registration on
the PBB is runtime-based, a registered voter can participate in any other election. This
has to be address in future work and requires the IdP to attach the blind signature to the
election identifier.

8.3 Infrastructure

Some components used in the architecture are heavily influenced by other services, project
or standards. This section evaluates the technologies used for those components.

1https://github.com/uport-project/veramo/discussions/356

54 CHAPTER 8. EVALUATION

8.3.1 Veramo

Veramo was open-sourced in December 2020 as a public beta version. Although it covers
many SSI functionalities, some crucial features are still in development. For example, a
VP may contain multiple VC which are issued for different DIDs. During the disclosure,
the verifier must make sure that the holder is in control of the DID in each VC. Currently,
this controller check is in research and development2 and not yet integrated into the
prototype. Without this check, a holder can disclose a VC that is not under his control.

In the context of VPs, another crucial functionality is still missing. When a holder re-
sponds to an SDR with a VP, the VP does not contain information stating that it is
generated for that particular SDR. This is not a problem as long as the holder proves
ownership for all DIDs within the VCs. However, Veramo’s interface for SDRs contains
a significant field in the form of the tag which allows the IdP to incorporate an arbitrary
string. This becomes relevant in an architecture where the IdP must prove to the PBB
that it possesses a certain number of valid VCs that have been disclosed in the context of
a certain election as explained in Section9.1.1. The tag on the SDR can be used to link
the SDR and VP to an election by setting the tag to the election identifier. With such a
functionality in place, every VP is tagged with the election identifier.

8.3.2 Risk of Centralization Due to Vast Amount of DID Methods

At the time of writing this thesis, there are more than 70 DID method names registered
in the DID Specification Registries [31]. Running a resolver for each DID method requires
a connection to the underlying data registry. This task requires a large storage capacity,
fast network connection and computing power that is fast enough to update the state for
all the underlying networks. There are approaches to streamline the setup of a Universal
Resolver3 [26]. However, if the number of DID methods expands further, an IdP needs
to rely on third-party services to resolve DIDs. This leads to an undesired trend for
centralization. A possible solution to that problem is to restrict the allowed DIDs on
the issuer level and maintain a list of supported DID methods. For example, a passport
issuing authority could only issue VCs to people that use a particular DID method. The
list of supported DID methods could be incorporated in the DID document of the issuing
authority or the governance framework (Section 8.3.4). This list is publicly available and
the IdP would only need to host DID resolvers for those networks.

8.3.3 JSON-LD Encoding Schema

Working with the JSON-LD encoding schema is cumbersome for several reasons:

• Multiple serialization strategies exist, even within the same network. For example,
a JSON-LD processor can retrieve a schema for a given URL by making an HTTP

2https://github.com/uport-project/veramo/issues/375
3https://github.com/decentralized-identity/universal-resolver/

8.3. INFRASTRUCTURE 55

GET request to the given URL. Schemas as those on Schmema.org are retrieved dif-
ferently and the resolver must know which strategy must be applied. The resolution
process of the context of a Schema.org document requires the processor to query the
JSON-LD document on a different URL. In order to discover this URL, a HTTP
HEAD request to https://schema.org has to be made. The header of the response
indicates where the JSON-LD schema definition is located. The processor can find
the JSON-LD document that contains the entire Schema.org collection in this lo-
cation. As shown in this example, the JSON-LD processor must maintain a list
of URLs and a strategy on how they can be resolved or it must attempt multiple
strategies before successfully retrieving the JSON-LD document. Thus, the process
of retrieving JSON-LD documents is either inefficient or cumbersome to maintain.

• Schemas contain cycles and make canonicalization difficult and inefficient. [8]

• Different notations exist with the same meaning as illustrated in Listings 4 and
5. There exist even more notations such as the flattened or framed notation. The
JSON-LD playground4 illustrates all different notations.

1 {

2 "http://schema.org/familyName": [{"@value": "Obama"}],

3 "http://schema.org/givenName": [{"@value": "Barack"}],

4 "http://schema.org/jobTitle": [{"@value": "44th President"}],

5 "http://schema.org/name": [{"@value": "Barack Obama"}]

6 }

Listing 4: Compacted JSON-LD notation for a person

1 {

2 "@context": "http://schema.org",

3 "type": "Person",

4 "name": "Barack Obama",

5 "givenName": "Barack",

6 "familyName": "Obama",

7 "jobTitle": "44th President"

8 }

Listing 5: Expanded JSON-LD notation for a person

Despite these reasons, JSON-LD is the standard encoding scheme in the SSI ecosystem.
Interoperability is crucial for the success of SSI and thus, no other encoding scheme was
considered to be used and integrated.

8.3.4 Incomplete W3C Specification

Although the DID specification [23] is currently still declared as a working draft, some
crucial components are missing. As suggested in Self Sovereign Identity (Chapter 11.3.3)

4https://json-ld.org/playground/

56 CHAPTER 8. EVALUATION

[2], a public credential registry allows issuers to publicly register VCs to enable a wider
application of DIDs and VCs. The entity maintaining such a list of public VCs is called
the governance authority and publishes a governance framework. It defines the rules and
policies on how an issuer can become part of that registry. Figure 8.1 illustrates how
credential registries fit into the SSI architecture. The same VC that is issued to the
holder, is also publicly registered such that it can be searched, discovered and verified.
Such credentials are not meant for sensitive data like passports. However, they can be
used for registering businesses alongside their licenses and certificates. In the Provotum
context, the Swiss government can publicly maintain the list of certified passport issuing
authorities in the form of a credential registry. During the creation of the election, using
a credential registry instead of a manually registered list of DIDs of all the trusted IAs is
less error-prone. Figure 8.2 illustrates how the governance authority makes sure that only
certified issuers are part of the credential registry. With such an architecture in place,
Provotum’s IdP could directly get the DIDs of all certified passport issuing authorities
from the credential registry.

Proof

Holder

VC

VC

Issuer
Trust

Trust

Verifier

Credential
Registry

Figure 8.1: Credential registry for public VCs

8.3. INFRASTRUCTURE 57

Publish IA Certificate
VC

Governance
Authority

Proof

Holder

Passport
VC

Issuer

Trust
Trust

Verifier

Governance
Framework

IA Certificate
VC

Holder

Swiss Government

Passport IA
Canon Zurich

Passport
Holder

Provotum IdP

Credential
Registry

Figure 8.2: A governance framework defines the rules and policies to become a verified
issuer for a given context. The example shows that the Swiss government could publicly
maintain a list of verified passport IAs in the form of a credential registry. Thus, the
list of eligible IAs can be discovered and verified by only knowing the DID of the Swiss
government.

58 CHAPTER 8. EVALUATION

Chapter 9

Summary and Conclusion

This thesis sets out with the goal of analysing and improving the existing Provotum
architecture in terms of IdM. The threat analysis pinpoints the vulnerabilities, which are
addressed with a decentralized IdM system that enforces voters’ privacy by design. The
analysis shows that the process of credential issuance, maintenance and verification is as
important as the REV system itself. The security of a REV system is tightly bound to
the IdM system which defines the set of eligible voters.

The architecture proposed in this thesis implements an authentication process according to
the W3C principles of SSI. Thus, voters benefit from (i) not relying on TTPs for securing
their digital identity, (ii) selectively approving and disclosing credentials every time they
are requested, (iii) having the assurance that credentials are only shared with their consent
and (iv) an overall more secure authentication due to the removal of email accounts in
the process. The architecture provides a new interface for configuring an election that
enables the VA to configure a credential-based authentication process. Furthermore, the
prototype provides an application for issuing credentials for the VA as well as storing and
disclosing credentials for the voters. The IdP can verify the credentials without connecting
to the credential issuer, making the verification process exclusively between the voter and
the IdP.

Introducing a radically different mechanism for issuing credentials has much greater effects
on our governmental system than e-voting alone. It affects most interactions with digital
services and the footprint that users leave behind. As the urge of users for a privacy-
preserving digital identity interferes with the business model of many large corporations,
building a decentralized, interoperable identity infrastructure has to be developed as open-
source platforms by government funded developers.

9.1 Future Work

Inputs for future work mainly focus on the IdP’s role as a TTP and a SPOF. Having
a decentralized IdM system offers new possibilities that may solve the dilemma between
being trustless while guaranteeing privacy.

59

60 CHAPTER 9. SUMMARY AND CONCLUSION

9.1.1 IdP as TTP

The IdP remains a TTP. Since a public permissioned network is used to manage DIDs
and the authentication configuration is publicly available, the public can verify if a given
VP makes a voter eligible or not. In comparison to Provotum 3.0, a list of eligible voters
is secretly passed as a set of email addresses making the verification process only available
to the IdP. Email addresses do not allow a cryptographic proof of ownership. Thus, it is
very difficult for the IdP to prove that only honest signatures were created. Using DIDs
and a public data registry lifts this limitation. There are two possible solutions that can
make the role of the IdP trustless. Both of them are explained in more detail in the
following two sections.

Single IdP Generates a Large ZKP

Voters can blindly sign a public key with the IdP if they can disclose the requested
credentials. These VCs are bundled and presented in the form of a VP. At the end of an
election, the IdP has a valid VP for every participating voter. To finalize an election with
N votes, the IdP must generate a proof that states that it possesses N valid VPs and
submit it to the PBB. An election is only considered valid if the IdP can generate such
a proof. If the IdP is not able to provide this proof, the public knows that the IdP has
blindly signed public keys to itself or a vote-buying party.

The finalization process on the PBB requires the IdP to prove that each VP contains
(i) the election identifier and that (ii) the list of credentials is valid. Thus, the proof
must state that each credential in the VP is issued from one of the trusted IA and that
the claim meets the claim constraints. The proof must be constructed as a ZKP since
the actual VPs must not be disclosed. Otherwise, the voters’ privacy is endangered as
explained in Section 8.1.1. Such a design solves the trust assumption since the IdP is
not able to arbitrarily generate valid VPs since they must be signed by the IA defined
in the authentication configuration. However, the feasibility of such a complex proof and
the associated computing power needed to generate and validate has to be evaluated in a
future project.

Generating the ZKP requires that each VP is tagged with the election identifier, otherwise,
the IdP can reuse VPs from previous elections. As further explained in Section 8.3.1, this
is not yet possible with the Veramo framework.

N out of M IdP Signatures

Another possible solution to the TTP vulnerability is to split the responsibility of a single
IdP to a group of IdPs. To cast a valid vote, a voter must obtain blind signatures from
multiple IdPs. The threshold of minimal signatures needed must be chosen accordingly. If
it is a minority, a voter can obtain valid signatures twice. Thus, the number of signature
must be a majority of all IdPs. As illustrated in Figure 9.1, if the threshold is set to
3 in a set of 5 IdPs, a voter is not able to get 3 valid signatures twice as long as all

9.1. FUTURE WORK 61

IdPs are honest. However, if only one of the IdPs is malicious or compromised and the
IdPs do not communicate the used VCs with each other, the system can be attacked.
This would allow a voter to request a valid set of signatures twice. However, if the IdPs
collaboratively maintain a list of used VCs, such an attack of a minority of dishonest
nodes can be mitigated. How such a list can be maintained privately among multiple
IdPs is further discussed in Section 9.1.2. A similar problem occurs in a system where 5
out of 5 signatures are required as shown in Figure 9.2. If only one of the IdPs is refusing
to authenticate voters, a voter is not able to obtain the required signatures and cannot
cast a vote. This problem is related to the Byzantine General Problem [16] which states
that more than 2/3 of the IdP must be honest. Analysing a suitable threshold has to be
further investigated.

😈

Figure 9.1: SPOF remains in a 3 out of 5 signature scheme as long as IdP do not maintain
a common state of which VCs have been used

Figure 9.2: SPOF remains in a 5 out of 5 signature scheme

9.1.2 IdP as SPOF

The IdP remains a Single Point of Failure (SPOF) in the implemented prototype. If
the IdP is not available, voters can no longer request the necessary blind signature and
therefore, they cannot cast a valid vote. Different solutions were investigated to solve this
vulnerability. The key finding of the analysis is that the architecture around the role of
the IdP has to make a trade-off between decentralization and potential privacy leaks.

Single IdP There are fewer people involved that may execute an insider attack and collide
with one of the IA to learn which voters have registered.

Multiple IdP A private permissioned DL can be implemented to create a consensus
among multiple IdPs for maintaining the list of used VCs. It has to be private
and the IA can not be part of it since the IAs must not learn which credentials have
been used. Each IdP in that network provides an authentication service where vot-
ers can obtain a blinded signature removing the SPOF and the threat of censorship.
Using a shared state among all IdPs makes sure that a VC can only be used once

62 CHAPTER 9. SUMMARY AND CONCLUSION

per election and previously used VC cannot be altered at any time. As explained
in Section 9.1.1, a VC would not only have to be signed by a single IdP and instead
by a majority of the IdPs. Such a design benefits from being more DoS resilient as
more authentication services are available and the threat of censorship is lowered.
The disadvantage is that the privately managed list of used VCs may be leaked due
to the higher number of services and interfaces involved.

9.1.3 ZKP-based Authentication Process

As described in the Section 8.1, depending on the defined authentication configuration,
the IdP may be able to uniquely identify a voter based on the disclosed credentials.
Incorporating ZKPs for the disclosed values in the authentication process helps to further
reduce this risk. For example, it would be sufficient if a voter provides proof that his
birthday is more than 18 years ago without revealing the actual date of birth. The
necessary infrastructure and the appropriate type of ZKP has to be further investigated.

Note that other projects such as Mattr Global use ZKPs for selectively disclose claims
from VCs that contain multiple credentials1. These proofs make sure that unneeded claims
within the same VC are not revealed during the disclosure of a VC with multiple claims.
The use of ZKPs only guarantees that the minimal number of claims can be disclosed
even if VCs contain multiple claims. The current implementation uses atomic credentials
which achieves the same. However, both strategies still reveal the actual value.

9.1.4 Mobile Client for DID and VC Maintenance

Currently, Veramo cloud agents are used to store DIDs and VCs. This is not practical
and user-friendly for voters as they must deploy an agent. A mobile client with storing
the DIDs and VCs locally on the device would not require a cloud setup.

9.1.5 Credential Registries and Governance Frameworks

When creating an authentication configuration, the DIDs of the IAs must be known to
the VA. This list of trusted IA is difficult to maintain and a change may not be noticed
immediately. This is a missing component and an ongoing challenge in SSI. As explained
in Section 8.3.4, public credential registries and governance frameworks can address this
issue.

1https://learn.mattr.global/tutorials/verify/zkp-enabled/zkp-intro

Bibliography

[1] Andreas Abraham, Stefan More, Christof Rabensteiner, and Felix Hörandner. Re-
vocable and offline-verifiable self-sovereign identities. https://www.republik.ch/

2021/01/28/die-probleme-mit-der-schweizer-e-identitaet, 2020. (Accessed
on 14.5.2021).

[2] Drummond Reed Alex Preukschat. Self-sovereign identity. https://www.manning.

com/books/self-sovereign-identity, December 2020. (Accessed on 7.2.2021).

[3] Bruno Rodrigues Alexander Hofmann, Christian Killer. Security analysis and im-
provements of a blockchain-based remote electronic voting system. https://www.

merlin.uzh.ch/contributionDocument/download/14015, November 2020. (Ac-
cessed on 9.5.2021).

[4] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier (uri):
Generic syntax. https://tools.ietf.org/html/rfc3986, January 2005. (Accessed
on 7.2.2021).

[5] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50
million facebook profiles harvested for cambridge analytica in ma-
jor data breach. https://www.theguardian.com/news/2018/mar/17/

cambridge-analytica-facebook-influence-us-election, 2018. (Accessed
on 9.5.2021).

[6] Adrienne Fichter. Die probleme mit der schweizer e-identität. https://www.

republik.ch/2021/01/28/die-probleme-mit-der-schweizer-e-identitaet,
January 2021. (Accessed on 14.5.2021).

[7] Communication Systems Group. E-voting: Blockchain-based remote electronic vot-
ing. http://www.csg.uzh.ch/csg/en/research/evoting.html, 2020. (Accessed
on 9.5.2021).

[8] Harry Halpin. A critique of immunity passports and w3c decentralized identi-
fiers. https://arxiv.org/pdf/2012.00136.pdf, November 2020. (Accessed on
14.5.2021).

[9] Daniel Hardman. Didcomm messaging. https://identity.foundation/

didcomm-messaging/spec/. (Accessed on 9.5.2021).

[10] Daniel Hardman. Didcomm messaging. https://identity.foundation/

did-siop/, January 2021. (Accessed on 12.2.2021).

63

64 BIBLIOGRAPHY

[11] Rae Hodge. Apple: 1, spam: 0? how a new email feature aims
to keep spammers off your trail. https://www.cnet.com/how-to/

apple-1-spam-0-how-a-new-email-feature-aims-to-keep-spammers-off-your-trail/,
June 2021. (Accessed on 14.6.2021).

[12] Lance James. Phishing exposed. https://dl.acm.org/doi/book/10.5555/

1121597#secAbs, 2005. (Accessed on 14.5.2021).

[13] Hugo Junker and Jun Pang. Bulletin boards in voting systems: Modelling and
measuring privacy. https://ieeexplore.ieee.org/abstract/document/6045953/
metrics#metrics, August 2011. (Accessed on 14.5.2021).

[14] Christian Killer, Bruno Rodrigues, Eder John Scheid, Muriel Franco, Moritz
Eck, Nik Zaugg, Alex Scheitlin, and Burkhard Stiller. Provotum: A
blockchain-based and end-to-end verifiable remote electronic voting system.
https://www.researchgate.net/profile/Christian_Killer/publication/

345319094_Provotum_A_Blockchain-based_and_End-to-end_Verifiable_

Remote_Electronic_Voting_System/links/5fa3ae75299bf10f73250fe3/

Provotum-A-Blockchain-based-and-End-to-end-Verifiable-Remote-Electronic-Voting-System.

pdf, November 2020. (Accessed on 27.12.2021).

[15] Thomas Kurt, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage
Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from credential stuffing with password breach
alerting. https://dl.acm.org/doi/10.1145/1102120.1102168, 2019. (Accessed on
14.5.2021).

[16] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. https://lamport.azurewebsites.net/pubs/byz.pdf. (Accessed on
14.5.2021).

[17] Dr. Christian Lundkvist, Rouven Heck, Joel Torstensson, Zac Mitton, and Michael
Sena. Uport: A platform for self-sovereign identity. https://blockchainlab.

com/pdf/uPort_whitepaper_DRAFT20161020.pdf, October 2016. (Accessed on
14.5.2021).

[18] Zoltan Andras Lux, Dirk Thatmann, Sebastian Zickau, and Felix Beierle. Distributed-
ledger-based authentication with decentralized identifiers and verifiable credentials.
https://arxiv.org/pdf/2006.04754.pdf, June 2020. (Accessed on 28.3.2021).

[19] Sheera Frenkel Mike Isaac. Facebook security breach exposes accounts
of 50 million users. https://www.nytimes.com/2018/09/28/technology/

facebook-hack-data-breach.html, September 2018. (Accessed on 7.2.2021).

[20] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords
using time-space tradeoff. https://dl.acm.org/doi/10.1145/1102120.1102168,
November 2005. (Accessed on 14.5.2021).

[21] David Neal. An illustrated guide to oauth and openid connect. https://developer.
okta.com/blog/2019/10/21/illustrated-guide-to-oauth-and-oidc, October
2019. (Accessed on 7.2.2021).

BIBLIOGRAPHY 65

[22] Jeff Peters. What is saml and how does it work? https://www.varonis.com/blog/

what-is-saml/, March 2020. (Accessed on 7.2.2021).

[23] Drummond Reed, Manu Sporny, Dave Longley, Christopher Allen, and Ryan
Grantand Markus Sabadello. Decentralized identifiers (dids) v1.0. https://www.

w3.org/TR/did-core/, November 2021. (Accessed on 12.2.2021).

[24] Thomas Reid. Essays on the intellectual powers of man. https://www.

cambridge.org/core/books/essays-on-the-intellectual-powers-of-man/

CE5992C23D18DA1E9ABD8842D1E91BC0, 1786. (Accessed on 14.5.2021).

[25] Josh Fruhlinger Roger A. Grimes. What is oauth? how the open au-
thorization framework works. https://www.csoonline.com/article/3216404/

what-is-oauth-how-the-open-authorization-framework-works.html, Septem-
ber 2020. (Accessed on 7.2.2021).

[26] Markus Sabadello. A universal resolver for self-sovereign
identifiers. https://medium.com/decentralized-identity/

a-universal-resolver-for-self-sovereign-identifiers-48e6b4a5cc3c,
November 2017. (Accessed on 14.5.2021).

[27] James Sanders and Dan Patterson. Facebook data privacy scan-
dal: A cheat sheet. https://www.techrepublic.com/article/

facebook-data-privacy-scandal-a-cheat-sheet/. (Accessed on 9.5.2021).

[28] Manu Sporny, Dave Longley, and David Chadwick. Verifiable credentials data model
1.0. https://www.w3.org/TR/vc-data-model/, November 2019. (Accessed on
12.2.2021).

[29] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Pierre-Antoine
Champin, and Niklas Lindström. Json-ld 1.1 - a json-based serialization for linked
data. https://www.w3.org/TR/json-ld11/, July 2020. (Accessed on 12.2.2021).

[30] Orie Steele and Manu Sporny. Did specification registries. https://www.w3.org/

TR/did-spec-registries/. (Accessed on 9.5.2021).

[31] Orie Steele and Manu Sporny. Did specification registries. https://www.w3.org/

TR/did-spec-registries/#did-methods. (Accessed on 9.5.2021).

[32] Oliver Terbu, Ivan Basart, Kyle Den Hartog, Christian Lundkvist, David Stark,
Dmitri Zagidulin, Danny Strockis, and Orie Steele. Self-issued openid connect
provider did profile v0.1. https://identity.foundation/did-siop/, November
2020. (Accessed on 12.2.2021).

[33] unknown. Using privacy-preserving zkp creden-
tials on the mattr platform. https://mattr.global/

using-privacy-preserving-zkp-credentials-on-the-mattr-platform/,
September 2020. (Accessed on 9.5.2021).

[34] unknown. Bbs+ signatures 2020. https://w3c-ccg.github.io/ldp-bbs2020/, Mai
2021. (Accessed on 14.5.2021).

66 BIBLIOGRAPHY

[35] Lane Wagner. Shamir’s secret sharing step-by-step. https://qvault.io/2020/08/

18/very-basic-shamirs-secret-sharing/, August 2001. (Accessed on 12.2.2021).

[36] World wide web consortium (w3c). http://webdiy.org/w3c/. (Accessed on
7.2.2021).

Abbreviations

IdP Identity Provider
IdM Identity Management
DL Distributed Ledger
DLT Distributed Ledger Technology
VA Voting Authority
SSO Single Sign-On
OTP One Time Password
TTP Trusted Third Party
BC Blockchain
PBB Public Bulletin Board
DKG Distributed Key Generation
PoA Proof-of-Authority
DoS Denial-of-Service
REV Remote Election Voting
RF Receipt-Freeness
ZKP Zero Knowledge Proof
DID Decentralized Identifier
VC Verifiable Credential
VP Verifiable Presentation
SDR Selective Disclosure Request
SSI Self Sovereign Identity
SIOP Self Issued OpenID Connect Provider

67

68 ABBREVIATONS

Glossary

Identity Context The original identity context is defined by the issuer of a credential. For
example the original identity context of a student card is defined as all the systems
that directly interact with the application that issued the card and can access the
source of truth of that credential. When a student registers for an student discounted
application X, the student card is shared and in return a user account is created
within the application X. This new user account is loosely coupled to the original
identity context meaning that a change in the original context may not be noticed.

Proxy Identity A proxy identity is an account with credentials that are loosely coupled
to other identity contexts. The credentials associated with that account originate
from another identity context.

DID A DID is a type of identifier that is resolvable and globally unique across multiple
networks.

DID subject The metadata information stored in a DID document represents the DID
subject.

DID controller The DID controller can verify the ownership of a DID. In many cases
the DID subject is the same as the DID controller. However, in the example of an
infant, it makes sense that the DID controller is the parent until the child becomes
mature. At this point the control of the DID can be changed to a new key pair. The
actual DID does not change in the process and all the associated metadata must
not be updated.

DID resolver A program that retrieves a DID document for a given DID. A resolver
may support one or multiple networks. For example a id resolver for the Ethereum
blockchain is able to construct a DID document from a DID registry in the form of
a Smart Contract on the Ethereum blockchain.

DID resolution The process of resolving a DID document for a given DID.

DID document A DID is associated with exactly one DID document that contains the
metadata about the resource.

69

70 GLOSSARY

List of Figures

2.1 Centralized identity model . 6

2.2 Federated identity model in the example of OAuth 2.0 7

2.3 The decentralized identity model splits the roles of issuing, holding and
verifying among three separate entities. 8

2.4 The locus of control that happens in the transition from account-based
identity models to the self-sovereign identity model [2] 9

4.1 DIDs as self-certifying identifiers enable a strong binding between the public
key, identifier and controller . 16

4.2 DID documents enable holders to execute a key rotation without changing
the identifier . 16

4.3 Overview of the DID architecture proposed by the W3C CCG 18

4.4 Relationship between identifier, metadata and the subject 21

4.5 Original identity context ends whenever a proxy identity is created. 24

5.1 Provotum 3.0 stakeholders . 26

6.1 Provotum 3.0 extended with a decentralized IdM system 33

7.1 Overview of Provotum’s SSI repositories 39

7.2 UI for issuing an atomic VC that uses Schema.org vocabulary to define a
person’s postal code. As a result, a JWT is produced that can be displayed
as a QR Code and imported by the holder to its own agent. 43

7.3 UI for creating an authentication configuration for an election. This screen-
shot shows how an authentication configuration tuple is added. With this
credential and constraint configured, the voter must disclose a VC issued
by the city administration office of Zurich and the value of this claim must
be one of the defined postal codes. The result of this form corresponds to
the data shown in Figure 7.3. 45

71

72 LIST OF FIGURES

7.4 Sequence diagram for IdP authentication process 46

7.5 UI for selectively disclosing VCs. After scanning the SDR, the voter is
presented with a list of required credentials that must be disclosed. Each
credential must be permitted to be disclosed. 47

8.1 Credential registry for public VCs . 56

8.2 A governance framework defines the rules and policies to become a verified
issuer for a given context. The example shows that the Swiss government
could publicly maintain a list of verified passport IAs in the form of a
credential registry. Thus, the list of eligible IAs can be discovered and
verified by only knowing the DID of the Swiss government. 57

9.1 SPOF remains in a 3 out of 5 signature scheme as long as IdP do not
maintain a common state of which VCs have been used 61

9.2 SPOF remains in a 5 out of 5 signature scheme 61

List of Tables

3.1 Reserved tokens in the JSON-LD namespace that are relevant for this paper 13

4.1 Design goals for decentralized gloabl identifier 18

4.2 Components of DID architecture suggested by the W3C CCG 19

4.3 Types of DIDs . 21

5.1 Threat model of Provotum 3.0 in regards to IdM 32

8.1 Threat model evaluation after the application of the new design 50

73

74 LIST OF TABLES

Appendix A

Installation Guidelines

The source code for Provotum 3.0 with the integrated SSI-based authentication process
can be found in the Provotum Github organization1. All repositories that affected by the
SSI-based authentication process are available in a branch called vSSI.

To simplify running Provotum 3.0 with the SSI-based authetication process, a docker
compose2 manifest accompanies the project, ensure Docker version 19.03.13 and Docker
Compose are installed 1.27.4 or higher. For local development, NodeJs3 12.18.03 and
Rust4 1.46.0 or higher are required.

There are two demos available on the infrastructure repository5. One is illustrating the
E2E voting process including a credential-based authentication process. The other demo is
independent of Provotum and illustrates the issuance, storage and disclosure of credentials.
Follow the instructions in the README to run the demos.

1https://github.com/provotum
2https://docs.docker.com/compose/
3https://nodejs.org/en/
4https://www.rust-lang.org/
5https://github.com/provotum/provotum-infrastructure/tree/vSSI

75

76 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

This thesis is accompanied by an archive of the following items:

• A PDF file of this report

• The LATEXsource code of this report.

• The diagrams of this report.

• The editable source files of the diagrams used in the report which can be opened
with Draw.io1.

• The source code of the implemented prototype.

1https://app.diagrams.net

77

