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Abstract

Die ständig ansteigende Nachfrage nach IoT Geräten und Services führt zu einer wach-
senden Zahl von IoT Plattformen und Konzepten, wie Crowdsensing. IoT Plattformen
und Netwerke sind oft verwundbar gegenüber Cyber Attacken. Solche Attacken werden in
vielen Fällen mit zwei der gefährlichsten Malware Familien ausgeführt, Spyware und Back-
doors. Das Ziel diser Cyber Attacken ist oft, Zugriff auf Daten, die auf den IoT Geräten
verwaltet werden, zu erlangen. Da die Malware Entwicklung ebenso voranschreitet, sind
traditionelle Erkennungssysteme oft nicht in der Lage, Zero-Day Attacken zu erkennen.
Der momentane Trend, um diese Herausforderung zu addressieren, besteht darin, dyna-
mische Analysemethoden mit Machine Learning Modellen einzusetzen. Um diese Modelle
effizient einzusetzen, müssen sie trainiert werden. Dazu braucht es Datensätze, welche
normales und infiziertes Geräteverhalten enthalten. Existierende Datensätze haben aber
diverse Schwächen. Viele davon enthalten keine Daten über Ressourcen-eingeschränkten
Geräte oder sind zu alt, um den heutigen Malwarestandard darzustellen. Den Hauptbei-
trag dieser Arbeit stellt demnach die Erstellung von FabIoT dar, ein Datensatz der das
interne Verhalten eines Ressourcen-eingeschränkten Gerätes während verschiedener Back-
door Attacken modeliert. Zusätzlich ist auch das normale Geräteverhalten Teil des Daten-
satzes. Das in dieser Arbeit verwendete Test Gerät ist Teil einer echten IoT Crowdsensing
Plattform, ElectroSense. Drei reale Backdoors mit verschiedenen Angriffsmöglichkeiten
führen die Angriffe aus. Der Prozess um die Daten zu sammlen enthält das Design und
die Entwicklung einer massgenscheiderten Überwachungssoftware um das Geräteverhal-
ten aufzuzeichnen. Nach statistischer Analyse der gesammelten Daten ist ersichtlich, dass
Unterschiede zwischen dem normalen und infizierten Verhalten festzustellen sind, was den
Wert, den FabIoT bietet, bestätigt. Der Datensatz ist frei verfügbar für Forschungszwecke.

The increasing demand for IoT devices and services leads to an ever growing number of
IoT concepts, platforms and networks, such as crowdsensing. IoT platforms are often
vulnerable to cyber attacks due to their exposition to the internet and their resource-
constrained capabilities. Cyber attacks can be conducted by different malware families,
being spyware and backdoors two of the most dangerous ones. The goal of backdoors
and spyware is in many cases the data being stored on and handled by IoT devices.
Since backdoor development is evolving, traditional detection solutions are often not able
to detect zero-day attacks. Nowadays, the trend to address this challenge is to apply
behavioral fingerprinting analysis in combination with machine and deep learning models.
In order to apply machine and deep learning models effectively, datasets containing clean
and infected device behavior are required. However, there are open challenges regarding
existing datasets. In many cases, these datasets do not concern themselves with resource-
constrained devices. Also, many existing datasets are too old and do not focus on the
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internal behavior. Thus, the present thesis’ main contribution is the creation of FabIoT,
a dataset modeling the internal behavior of a resource-constrained device while being
infected by backdoors as well as the normal behavior. The test device is part of a real-world
IoT crowdsensing platform, ElectroSense. Three real-world backdoors exhibiting a wide
variety of attack behaviors were used to conduct the attacks. The data collection process
involves the design and implementation of a custom monitoring software to examine and
record the internal device behavior. After performing statistical analysis on the collected
data, we were able to detect differences between the normal behavior and the behavior
under attack and therefore, illustrate the value that FabIoT provides. Finally, we make
the dataset freely available for research purposes.
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Chapter 1

Introduction

1.1 Motivation

Over the last decade, there has been a steadily increasing demand for Internet of Things
(IoT) devices and services. The combination of a large number of resource-constrained
devices enables many scenarios such as smart cars and homes. Other possible large scale
applications include smart cities or fully automated factories. One promising IoT concept
that has gained in popularity is crowdsensing. Crowdsensing is a concept where a large
amount of individuals contribute small amounts of data to a larger collection. The goal
of such a platform could for example be the monitoring of the whole radio spectrum.
ElectroSense, a real IoT platform, does exactly that and was created with the goal of
monitoring the whole radio frequency spectrum using cheap and affordable hardware on
a global scale.

As the application of IoT devices gains in popularity, there are also rising cyber security
concerns [38]. Cyber attacks against IoT networks or platforms have been becoming
increasingly common [60]. Among these attacks are not seldom spyware and backdoor
attacks [3]. Data is in many cases the goal of cyber attacks against crowdsensing or
IoT platforms in general. While the data handled by IoT devices should be protected
and confidential, with every passing year, attackers launch more and more spyware and
backdoor attacks [3]. One possible reason for the increasing number of attacks is that
IoT devices can be used as a gateway to attack other possibly more critical devices in the
same network [20].

Traditional malware detection systems often apply static analysis. That means that these
systems rely on a previously known trace or signature in order to detect malware [15].
Attackers can exploit this fact and use evasion techniques such as packing or obfuscation
to change its signature and therefore, make it harder to detect again [41]. Furthermore,
that would imply that traditional systems are not capable of detecting new malware that
has never been seen before, so called zero-day attacks [16, 51]. Opposed to static analysis,
there is dynamic analysis, also called behavior fingerprinting[51]. The goal of dynamic
analysis is to model the behavior of a device and to use that model in order to detect
malware. The primary advantage of dynamic analysis is that while it is easy for attackers
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2 CHAPTER 1. INTRODUCTION

to change the malware’s signature, the behavior that the malware exhibits itself and causes
on the device cannot be changed that easily. That also implies that it is possible to detect
and mitigate zero-day attacks in certain circumstances [16].

Nowadays, solutions based on Machine and Deep Learning (ML/DL) are the most promis-
ing to apply dynamic analysis [51]. However, ML/DL models require datasets in order
to be applied successfully and efficiently. These datasets model the normal behavior of
devices, and/or the devices behavior when they are affected by cyber attacks. However,
there are three main open challenges in terms of existing datasets. Firstly, the majority of
existing datasets do not concern themselves with resource-constrained devices but rather
with other types of architectures such as cloud data centres or client-server structures.
Another issue is that many datasets are too old and do not accurately display the state
of the art malware that is being used today. Also, newer concepts such as crowdsensing
are often not considered in existing datasets. Lastly, most datasets fail to capture the
devices’ internal behavior and instead focus on network related activities.

1.2 Description of Work

To improve the previous challenges, the main goal of this thesis is to create FabIoT, a
dataset modeling the behavior of a resource-constrained device while being infected by
spyware and backdoors as well as the normal behavior. The test device, a Raspberry Pi,
is part of ElectroSense, a real-world IoT crowdsensing platform. While under attack from
three concrete implementations of backdoors, the internal behavior is being monitored.
As a comparison, the device is monitored while being completely free of any malware
to create a baseline. To choose three suitable backdoor implementations, an analysis
regarding the recent trends in malware development was conducted. Also, the evaluation
includes possible impacts a real-world attack would have on the actual IoT platform used
in the data collection phase. The main contributions of this work are:

• An analysis of backdoors affecting IoT devices.

• The selection and execution of three of the most dangerous backdoors affecting IoT
devices.

• The analysis of events monitoring the internal behavior of IoT devices such as the
Raspberry Pi test device.

• The creation of a dataset modeling the behavior while being under attack from
backdoors as well as the normal behavior and a script to monitor said behavior.

1.3 Thesis Outline

In the next chapter the reader will find an overview of previous work done related to the
thesis. Both, existing datasets and attack detection solutions, are explored. Then, Chap-
ter three outlines the data collection process and approach. It explains the monitoring



1.3. THESIS OUTLINE 3

process and illustrates the architecture of the monitoring software as well as the whole
data collection setup. Chapter four evaluates and discusses the collected results. The
presented Bachelor Thesis ends with the conclusions and future work in Chapter five.
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Chapter 2

Related Work

This chapter contains the existing works related to this thesis. It starts by presenting
spyware and backdoors. Subsequently, there is an analysis of existing datasets modeling
malware behavior. Finally, the section closes with an examination of the current state of
malware detection solutions.

2.1 Backdoor and Spyware Background

Backdoors are an access point to a system for third party members without proper authen-
tication. The general conception is that backdoors are mostly implemented with malicious
purpose but that is not quite the truth. Many software companies include backdoors in
their products to make troubleshooting and maintenance easier [23]. However, if the in-
tent behind the implementation of a backdoor is malicious, there are certain traits that
the majority of backdoors share. One of those traits is stealth [49]. Backdoors should
remain undetected by the user in order to be useful. The user should remain completely
unaware that his system is compromised. Additionally, backdoors do not attack the sys-
tem directly but act more like a gateway for other malicious activity. It is not rare for
backdoors to be combined with other types of malware. A typical example would be the
combination of a trojan and a backdoor. As soon as the trojan is activated, e.g. executed
by the victim, it installs a backdoor for the attacker to perhaps return at a later point in
time. In general, it is rare that a piece of malware can be clearly categorized in a single
family of malware. Often, malware implementations exhibit and combine attributes from
many different malware types.

Spyware, also called info stealers, steal sensitive information from the victim and send that
data to the attacker [47]. Among the most common stolen information are credit card
details and passwords. Spyware is often found on personal computers or mobile phones.
As it is often the case in the context of malware, the motivation behind the development
and application of spyware is mostly of financial nature. Web hooks, screen recorders
and keyloggers are popular implementations of this type of malware [28]. Due to its
stealthy nature, spyware often conceals itself as part of a regular download or installation,
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6 CHAPTER 2. RELATED WORK

similar to adware. On the mobile platform, devices often get infected with spyware if any
applications are downloaded from non-official app stores. Because of these facts, very few
spyware implementations for IoT devices are freely available since most target personal
computers.

2.2 Datasets Modeling Malware Behavior

This section analyzes datasets containing abnormal device behavior caused by some sort
of attack. Most datasets contain normal as well as abnormal behavior and therefore, allow
to identify and differentiate normal and abnormal behavior.

The literature on datasets modeling device behavior by collecting network related activity
is considerable. LITNET-2020 [13] is the first dataset in this review. It contains normal
network flows and while under 12 different attacks. The attacks include DDoS, port
scanning and smurf attacks among others. In total, 85 different types of network flows were
captured. The data was collected in an academic network setting on general computer
systems over a time period of ten months. In [20], the authors collected data on IoT
devices while conducting similar attacks. As an addition to the IoT devices, the authors
also included regular PC systems in the data collection setup. The reason for that is that
IoT datasets often ignore traffic between IoT devices and regular computer systems [20].

The authors of [2] created a dataset where they focused their efforts on creating an IoT
dataset but also including Industrial Internet of Things (IIoT) devices. The dataset con-
sists of telemetry data of IoT and IIoT devices as well as operating system logs and
network data of the IoT network itself. The eight attack scenarios included DDoS, ran-
somware and backdoor attacks among others. Another dataset containing similar malware
attacks is the IoT-23 dataset [17]. The authors captured 23 scenarios, 20 of which are
from infected Raspberry Pis. In each scenario, a different type of malware attack was
executed using different botnets. During the attack, the authors captured network data
as raw network packet (pcap) files. For the additional three uninfected scenarios, real-
world IoT devices were used. An important aspect of this dataset is the contrast between
malicious and benign network traffic. Also working with botnets, in [29], the authors cre-
ated a dataset where a typical home IoT environment was monitored while being under
simulated and real attacks. The simulated attacks consisted of port scanning, spoofing
and brute force attacks among others while the real attacks were conducted by the Mirai
botnet. While the attacks took place, the authors captured pcap files. In total, 42 pcap
files were collected.

In [22], Hamza et al. created the ACM SOSR 2019 dataset [61] using a rather novel
approach. The detailed approach is explained in section 2.3. The dataset contains network
flow counters while the devices were functioning normally and while under attack. The
attacks consisted of network attacks such as DoS, flooding and ARP spoofing. The authors
of [45] collected traces from simulated IoT devices and created the DS2OS dataset. Among
the simulated IoT devices were movement sensors, thermostats, smartphones, etc. The
focus in this work and dataset lies on the micro services the IoT devices offer. N-BaIoT was
created in a very similar manner [40]. The network traffic of nine commercial IoT devices
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was collected while being under attack from two different botnets, Mirai and BASHLITE,
similar to [17, 29]. Each measurement contains 11 labels, ten of which were collected
while being under attack from the aforementioned botnets and one label modeling benign
behavior.

In 2018, the CIC (Canadian Institute fore Cyber Security) published [55] and with it
two datasets, the CIC-IDS 2017 [55] and the CIC-IDS 2018 [54]. Both datasets contain
raw network traffic captures collected during cyber attacks as well as benign samples.
The seven attack scenarios include Brute Force, Heartbleed, Botnet, DoS, DDoS, Web
attacks, and Infiltration attacks. The difference between the two datasets is that in the
2017 version the network traffic was collected from 25 users whereas in the 2018 version
the data was collected from 500 devices in total.

As more and more people use the Android operating system, there are also more and
more devices being infected by malware. To combat this growing threat, there are also
Android based datasets to detect malware such as the Android Malware Dataset (CIC-
AndMal2017) [35]. The dataset was produced in [36], where the authors monitored 80
different network traffic features of Android devices. The data was collected on real
smart phones with 426 malicious and 5’065 benign applications being installed. In 2019,
the second part of this dataset, CIC-InvesAndMal2019 [33], was published in [62] and
contains additional data such as API calls and system log files. The malware samples
were categorized in either adware, ransomware, scareware or SMS malware. Also in the
context of Android malware, there is the Android Adware and General Malware Dataset
(CIC-AAGM 2017) [32]. That dataset was produced as a result of [34]. Many of the
authors were also involved with [33], since both datasets were published by the CIC. The
difference between the two datasets is that CIC-AAGM 2017 puts its focus on adware
and general malware and it only contains network traffic captures. It contains raw and
processed network captures of 1900 applications, 400 of which are considered malware.
The malicious applications were installed on real smart phones like in [33].

NGIDS-DS [21] is another relevant dataset that contains network traffic captures and
system logs of enterprise-critical infrastructure, such as storage, web or email servers. The
authors collected data in a normal scenario and under seven common network attacks,
Exploits, DoS, Worms, Generic, Reconnaissance, Shellcode, and backdoors. As a test
platform, the IXIA Perfect Storm tool, a commercial-scale security test hardware platform,
was used.

Finally, the remaining three datasets contain system calls data. The two ADFA (Australia
Defense Force Academy) datasets are similar in many regards, they both contain system
calls of a system in a normal state and while under attack from various attacks. The
attacks include brute force attacks, webshells, poisoned executable and exploits among
others. The main difference is that ADFA-LD [11] is based on Linux systems and ADFA-
WD [10] on Windows systems. The University of New Mexico (UNM) dataset [9] was
created in 1999 and contains roughly 500 kB of system call data. In comparison, ADFA-
WD contains 13.6 GB of system call data. As do the ADFA datasets, the UNM dataset
also contains normal behavior and attack behavior. Among the attacks were at the time
modern attack sets such as trojans and buffer overflows [9]. Due to the technological



8 CHAPTER 2. RELATED WORK

Table 2.1: The reviewed datasets modeling malware behavior (datasets are grouped by
behavior source, using double horizontal lines to seperate them, and sorted by year)

Name Year Device Type Behavior Source Behavior Data Tested Malware

LITNET-2020 [13] 2020
General
purpose

computers
Network

Processed
network flows

Network
attacks

IoT-Keeper [20] 2020 IoT Network
Raw network

flows
Network
attacks

TON IoT [2] 2020 IoT
Network /

System Logs

Telemetry data,
OS logs &

network traffic

9 different
attack

scenarios

IoT-23 [17] 2020 IoT Network
Raw network

capture
Botnets

IoT network
intrusion dataset [29]

2019 IoT Network
Raw network

capture
Botnets

ACM SOSR 2019 [61] 2019 IoT Network
Network flow

counters
Network
attacks

CIC-InvesAndMal2019 [33] 2019 Android
Network /

System Logs

Network
traffic features,

API calls &
system logs

Adware,
Ransomware,
Scareware &

SMS Malware

N-BaIoT [40] 2018 IoT Network
Processed

network flows
Botnets

DS2OS [45] 2018 IoT Network
Application layer

traces
Network
attacks

CIC-IDS 2018 [54] 2018
General
purpose

computers
Network

Raw and
processed

network capture

Network
attacks

CIC-IDS 2017 [55] 2018
General
purpose

computers
Network

Raw and
processed

network capture

Network
attacks

CIC-AAGM [32] 2017 Android Network
Raw and
processed

network capture

Adware &
general
malware

NGIDS-DS [21] 2017
Critical
Cyber

Infrastructure

Network /
System Logs

Raw network
capture / OS logs

Network
attacks

ADFA-WD [10] 2014
General
purpose

computers
System Calls DLL traces

60 different
attack sets

ADFA-LD [11] 2013
General
purpose

computers
System Calls System Logs

60 different
attack sets

UNM Dataset [9] 1999
General
purpose

computers
System Calls

System call
identifiers

Trojans, buffer
overflows &

symbolic link
attacks

advancements made during the last 22 years and its substantial age, the UNM dataset is
now considered outdated.

Table 2.1 gives an overview of public datasets that try to model device behavior while
being under attack. It can be observed that the great majority of datasets are focused on
network related metrics. It is a common occurrence for datasets to model botnets such
as Mirai or BASHLITE since they are among the most prominent and dangerous IoT
malware. Also, as stated in [51], other metrics such as system calls or resource usage are
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under-used. The network based datasets fail to capture the internal behavior of a device
and only focus on communication. However, information about the internal behavior
would be immensely useful to understand how malware works and what it causes inside
of the infected device.

2.3 Malware Detection Solutions

The internal behavior of devices is a topic that has attracted more and more interest
from the research community in recent years. Device fingerprinting has the goal to de-
scribe and model the internal behavior of a device. In [51] the authors summarize the
recent research in device fingerprinting. They came to the conclusion that the majority
of approaches use network related activity to model the behavior of a device in terms
of anomaly/attack detection. However, other promising dimensions such as system calls,
the usage of resources, and HPCs were also researched and show potential. Additionally,
most solutions only consider relatively sophisticated attacks. While highly sophisticated
attacks do happen, they are rare and are in many cases extremely situationally specific
and customized for the target [10]. Thus, they are not considered in many solutions and
those solutions may not provide protection from highly sophisticated attacks.

The section starts by looking at works about detection solutions using network related
activity. The authors of [57] proposed an approach where a combination of network
activities and system calls was used in order to detect malware. Using this combination of
behavior dimensions, the authors were able to achieve a detection rate of 99.54% utilizing
ML algorithms. In [1], a solution using blockchain and ML in the context of IoT devices
was developed. A ML algorithm is used to monitor and analyze the behavior of all devices
in the network. The N-BaIoT dataset [40] was used in this work. Another solution
considering botnets was presented in [19]. The idea was to detect an attack based on
a trust score calculated for all traffic flows in an IoT network. The experiment was
conducted in a software-defined networking (SDN) environment. Also in the context of
SDN, the authors of [8] presented a system that monitors network traffic. Due to its
nature, SDN is arguably more susceptible to DDoS or Man in the Middle attacks [31, 37].
The multi-stage system managed to detect and diminish DDoS and port scan attacks.

Hamza et al. proposed a system in [22] where the goal is to identify abnormal behavior
in IoT devices using the manufacturer usage description (MUD). The MUD essentially
defines the normal behavior of a device and is provided by the devices’ manufacturer. ML
algorithms then analyze the collected data compared to the specifications of the MUD
and try to detect any attacks. The considered attacks consist of spoofing, flooding and
DDoS attacks. With a true positive rate of 89.7% at its highest, the authors mention that
this might not be enough for a large scale deployment on real IoT networks. This work
produced the ACM SOSR 2019 dataset [61].

In [65], the authors tasked themselves with the creation of an anomaly detection system
in the context of enterprise IoT devices. A key point in their contribution is the fact
that the learning data for the ML model may be polluted since the system is located in a
real-world environment. The result of their research was RADAR, a ML-based detection
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system capable of detecting attacks on IoT networks using network traces. The system
proved to be robust with an F-Score > 0.9 with up to 15% polluted data [65].

System calls are requests or commands which are sent from a process or a program to
the operating system. Such calls are in most cases regarding access to the memory or file
system [7]. The authors of [24] used an interesting and rather novel approach in using
blockchain technology. The system takes a snapshot of the target software and compares
it with a trusted and verified snapshot which is acquired from the blockchain. While
acquiring the trusted snapshot, the monitoring system also generates a white list of files
which the software is allowed to access. The second control mechanism is the monitoring
of file system calls made by the target software and comparing them to its whitelist.

Another system was created by Mishra et. al called VMGuard [42]. In the context
of cloud computing, the authors used Virtual Machine Introspection (VMI) to monitor
system call traces made by programs. Using the bag-of-n-grams technique, features of
normal and attack traces are extracted. Subsequently, a ML classifier, which has been
trained on an existing data set [9], is then used to detect any malicious behavior. During
their experiments, the authors achieved a detection rate of 94%, up to 100%.

Javaheri et al. proposed a specific framework to detect and neutralize three different types
of spyware on Windows [28]. Their approach was to use statistical analysis techniques on
kernel-level system calls to classify three types of spyware, keyloggers, screen recorders and
blockers. Their results show that their method had a high accuracy of detecting malware
with a 93% detection rate. On the same platform, Canzanese et al. developed another
system that uses system call analysis to detect malware [7]. After collecting all the system
calls, a bag-of-n-grams model was used to extract certain features. The authors showed
that they were able to detect unknown malware, similar to a zero-day attack.

In [52] the authors provided an interesting approach where they created MADAM (Multi-
Level Anomaly Detector for Android Malware). A system which analyzes the behavior
of Android devices on multiple levels. On the kernel level, system calls were used to
see whether the application in question causes any unexpected or irregular increase of
activity [52]. Similar to [24], file system calls were used in particular. Using this approach,
the authors managed to detect 96% of malicious applications from a dataset containing
botnets, ransomware, rootkits, and trojans among others. In a very similar manner, [39]
also uses a multi-level approach, using static and dynamic analysis on the device, user
and application behavior. The result is BRIDEMAID (Behavior-based Rapid Identifier
Detector and Eliminator of Malware for AndroID) [39]. In general, this paper uses a very
similar approach as [52] and is also written by the same authors. BRIDEMAID seems
like a more lightweight solution.

Another technique of detecting malware analyzes the usage of resources. Bridges et al.
proposed a system using CPU power profiles to detect malware, namely rootkits [6].
The authors defined a series of tasks to be executed on the machine while continuously
monitoring the machines power consumption. Using ML and statistical analysis, the
authors were able to differentiate between infected and clean systems.

Barbhuiya et al. proposed the Real-time Anomaly Detection System (RADS) for Cloud
Data Centres [4]. RADS monitors and learns the behavior of a virtual machine in a cloud
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network by analyzing the CPU usage pattern and network traffic usage. In the context of
cloud based computing, there are additional challenges the authors faced while creating
the system. One such challenge would be that in cloud computing systems there may be
actual workload spikes (e.g. during extremely busy hours) which result in higher CPU
usage and could potentially lead to false positives. Cloud data centers are especially
vulnerable to DDoS and cryptomining attacks [4] which is why RADS is focusing on these
attacks. Also in the context of cloud systems, another interesting approach was taken by
the authors of [48]. They proposed a system to detect anomalies by looking at the resource
behavior. The motivation behind the idea is that many cloud systems are autoscaling.
That means that any additionally required resources are provided by the system. The
problem is that these additional resources can be requested by a workload created by
malware. The behavior model consisted of CPU usage metrics which was used to train
an AutoRegressive (AR) model. The model was successfully tested by trying to detect
Denial-of-Service (DoS) and stress attacks.

HPCs are special counters built into computer processors with the task of tracking and
counting hardware-related events [53]. Such events can be clock cycles, cache hits/misses,
branch behavior, memory access patterns etc. [56]. This can slightly vary depending on
the processor model. Even though HPCs give a deep insight into system performance,
only a limited number of them can be tracked simultaneously [5]. The authors of [53]
proposed a system to detect malware using HPCs that consists of two parts and is called
2SMaRT. In a first step, 2SMaRT tries to predict if an application is either benignware
or part of one of the four defined malware classes, virus, rootkit, backdoor, or trojan.
Then, depending on the malware class, a different ML model is deployed to ensure a high
detection rate. By using that two-stage model, the authors were able to achieve an F-score
of 92% on average.

Similar to [24], the authors of [18] also proposed a detection system using blockchain
technology, named CIoTA. Each device of the network trains their detection model lo-
cally. Those locally trained models are then merged and validated by the other devices.
Opposed to [24], the CIoTA systems uses HPCs instead of system calls. The control
flow is monitored by creating an Extended Markov Model (EMM) using HPCs. In a
testing environment of 48 Raspberry Pis, CIoTA was able to detect malicious activities
successfully.

Interestingly, [66] raised the question whether malicious behavior actually has an impact
on HPC values and therefore, questioning HPC-based malware detection in general. The
authors argue that previous work concerning themselves with HPC-based malware de-
tection presume unrealistic circumstances and assumptions [66]. Mainly the correlation
of high-level software behavior, benignware versus malware, and low-level events such as
HPCs is questioned. In their experiments, the authors were able to achieve an F1-score
of 80.78% at best. Additionally, the authors conducted another experiment where they
would induce ransomware into beningware and then see whether ML algorithms could
detect said malware using HPCs. No ML model was able to detect the ransomware suc-
cessfully. Also working on a Windows system, Singh et al. proposed another solution
using HPCs in [56]. In their research, the authors identified 16 promising HPCs to detect
kernel rootkits specifically using ML algorithms. On a Windows based testing platform,
the system achieved a high detection rate with 99%.
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Table 2.2: The reviewed attack detection solutions (works are grouped by behavior source,
using double horizontal lines to seperate them, and sorted by year)

Work Year Device Type Behavior Source Approach Tested Malware Performance

[57] 2020 Windows PC
Network /

System calls
ML -

99.54%
Detection rate

[1] 2020 IoT Devices Network
ML /

Blockchain
Botnets [40]

99.2% True
positive rate

[19] 2019
IoT Devices /

SDN
Network ML

DDoS /
Botnets

-

[22] 2019 IoT Devices Network ML
Network

attacks [61]
89.7% True
positive rate

[65] 2019 IoT Devices Network ML - F-Score > 0.9

[8] 2018 SDN Network ML
DDoS and

portscan attacks
Attacks detected
and diminished

[24] 2020 IoT Devices
Software

Snapshot /
System Calls

Blockchain Intrusions Attacks detected

[42] 2020
Cloud

Systems
System Calls ML -

94 - 100%
Detection rate

[28] 2018 Windows PC System Calls ML
Spyware /

Ransomware
93%

Detection rate

[52] 2018 Android System Calls ML
125 Malware

families
96%

Detection rate

[39] 2017 Android System Calls ML
123 Malware

families
99.7%

Detection rate

[7] 2015 Windows PC System Calls
ML /

Statistical
Analysis

Trojans, viruses
and sub-
categories

92% True
positive rate

[6] 2018 Windows PC
Resources

Usage

ML /
Statistical
Analysis

Rootkits
93 - 100%

Detection rate

[4] 2018
Cloud Data

Centres

Resource
Usage /
Network

ML /
Time series

DDoS /
Crypotminers

90-95%
F1-score

[48] 2018
Cloud

Systems
Resources

Usage
Statistical
Analysis

DoS /
Stress Attacks

All attacks
detected

[53] 2019 Linux PC HPC ML
Backdoor, Rootkit,

Trojan, Virus
92% F-score
on average

[18] 2018 IoT Devices HPC Blockchain Exploits
Attacks
detected

[66] 2018 Windows PC HPC ML
35 different

malware families
80.78% F1-

score at best

[56] 2017 Windows PC HPC ML Rootkits
99%

Detection rate

As can be observed, there is a similar distribution of behavior sources as it is the case in
the previous section regarding datasets also shown in Table 2.2. Network is the most used
source but other metrics such as system calls or HPCs are also promising. Additionally,
the majority of the reviewed papers used a ML-based approach. It is also worthy to
note that many solutions achieved quite a high detection rate for their respective attack
type. However, technological advancements and advancements in malware development
will further increase the need for newer solutions.



Chapter 3

Creation of the FabIoT dataset

3.1 Scenario: ElectroSense

To capture and make the radio spectrum data available efficiently, the ElectroSense plat-
form consists of three main components: the sensors, the backend, and the web services
(see Figure 3.2). The ElectroSense sensors include a single circuit board computer, a
Raspberry Pi for example, a radio frontend, and an antenna as can be seen in Figure
3.1. The sensor used in this work is a Raspberry Pi 4 having an ARMv8 processor with
4 cores and 4GB of RAM. The antenna collects radio signals which are processed by the
RTL-SDR Silver V3 radio frontend and sent to the server by the Raspberry Pi. The radio
frontend monitors the frequency range between 20MHz and 1.8GHz. The Raspberry Pi
needs to be connected to the internet using either an Ethernet cable or a WiFi dongle. In
this thesis, an Ethernet cable was used. Since the project is an open initiative [44], the
software running on the Raspberry Pi is freely available on GitHub [14].

The ElectroSense backend handles all the data sent by all sensors. Furthermore, it offers
an API which makes it possible to receive raw or aggregated data on every single sensor
via HTTP request. However, certain information like the exact location of a sensor is
not available for privacy reasons. The API uses basic authentication and an ElectroSense
account with a username and a password is required to access the API.

Lastly, the web services offer direct access to the sensors on the ElectroSense website.
Each sensor can be accessed and its live data can be observed through these services. It
is also visible where the sensors are located on a map, whether it is inside or outside and
if any other users are currently accessing the sensor. Privacy settings, such as making the
exact location of the sensor accessible to other users, can be changed during the setup
process of the sensor. Only one user can access one sensor at a time. While accessing a
sensor, the user then has the choice between different types of data to view.

13
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Figure 3.1: ElectroSense sensor parts Figure 3.2: ElectroSense architecture
during the creation of FabIoT

3.2 Backdoors affecting ElectroSense

This section illustrates the three chosen backdoor implementations. For each implemen-
tation, the focus lies on its features, deployment and execution. The section closes with
a comparison regarding the most important aspects. In a cyber attack setting, the Elec-
troSense Raspberry Pi is considered the client whereas the system which sends the at-
tacking commands is referenced as the server or attacker side.

3.2.1 httpBackdoor

Features

”httpBackdoor” is arguably the purest form of backdoor of the selected backdoors. It
creates a web server on the Raspberry Pi to which the attacker can send HTTP requests,
hence the name ”httpBackdoor” [59]. The general architecture of the setup in this work is
depicted in Figure 3.3. This very simple backdoor has two basic functionalities. Firstly,
the attacker can extract basic system information such as OS version and name or saved
SSH keys by sending a GET request. Secondly, by sending a POST request, the attacker
can execute command line commands on the Raspberry Pi as indicated in Figure 3.3.

Figure 3.3: ”httpBackdoor” architecture
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Deployment

The deployment of ”httpBackdoor” is rather simple. On the Raspberry Pi, also called
the client, a Python file needs to be executed. It requires Python to be installed on the
Raspberry Pi. However, there is an alternative option which does not require Python
being installed. It is possible to create a binary using pyinstaller [63] on another machine.
Instead of running the Python file on the target machine, which in this setting is the
Raspberry Pi, the created binary needs to be executed. Additionally, the binary can be
encrypted and thus, making it more difficult to decompile. On the server side, there is no
installation required which is very convenient.

Execution

The attacker needs to include the IP address and port that the Raspberry Pi listens on
in the code. To execute the attack the attacker sends HTTP requests to the specified
IP address and port while the Python file or the binary is running on the Raspberry Pi
acting as an ElectroSense sensor.

The following commands are examples of how to make use of both functionalities offered
by the malware using the software curl [12]. Generally, every tool that is able to send
HTTP requests can be used, other examples include Insomnia [25] or Postman [26].

• Basic system information extraction

curl --location --head IP:PORT -H "Content-Type: text"

The first example is used to extract the basic system information. In the malware
code, this functionality is hard coded and can potentially lead to errors if certain
information the backdoor is looking for is not present on the Raspberry Pi. Since
this is the case for the test device, the functionality was not working in its original
state and had to be altered in the code for the purpose of the thesis.

• Command execution

curl --location -X POST IP:PORT -H "pwd:password" --data-raw "ls" -i

The second example is used to send the ”ls” command to the Raspberry Pi in order
to receive information about the current directory. Generally, the format ”data-
raw” is used. The attentive reader also notices that another header with the content
”pwd:password” is also sent as part of the request. ”httpBackdoor” offers the pos-
sibility for the attacker to set a password, in this case ”password”, to ensure that
only commands sent by the attacker are executed. Lastly, the additional option ”-i”
is included so that the response headers which contain the information the attacker
is after are displayed.
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3.2.2 backdoor

Features

”backdoor” by ”jakoritarleite” consists of two parts, the client and the server side [30].
The server side sends commands to a specified IP address and port on which the malware
on the Raspberry Pi listens, as illustrated in Figure 3.4. In other words, the malware
on the ElectroSense sensor listens for commmands from the attacker. The most notable
feature is that the backdoor can enable the attacker to open a shell on the Raspberry
Pi and therefore give the attacker complete access. Additionally, the backdoor offers the
functionality to pull the contents of a file on the Raspberry Pi onto the attackers’ machine.

Figure 3.4: ”backdoor” architecture

Deployment

The deployment is very similar to ”httpBackdoor” since the client-side malware is writ-
ten in Python. Generating a binary and then deploying the malware is not mentioned
specifically in the instructions but should also work. Depending on the target platform,
generating a binary can be easier and prove as more effective.

Execution

The specified IP address and port need to be included in both, the server and client
Python file. The connection is then established automatically, if everything has been set
up correctly. If the connection has been established successfully, the attacker has the
opportunity to execute the following commands on the server side.

• shell

Allows the attacker to open a shell on the Raspberry Pi.

• recv archive

Pulls a file from the Raspberry Pi to the attacker machine.

• help

Outputs information about the usage of the backdoor.

• exit

Terminates the connection and ends the process on the Raspberry Pi and the at-
tacker machine.
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3.2.3 thetick

Features

”thetick” is the most complex of the selected backdoors. Similar to ”backdoor”, ”thetick”
resembles a Command & Control (C&C) server structure [43] with the difference that
”thetick” can have multiple clients connected at the same time and switch between them
seamlessly. In other words, several ElectroSense sensors could potentially be infected
and act as a clients simultaneously. The attacker can send commands to each client
individually, as shown in Fig. 3.5. In the context of ”thetick”, the terms, client and bot,
are to be understood synonymously.

Figure 3.5: ”thetick” architecture

Deployment

The advanced applicability comes at a price, however. The building and deploying process
is more complicated and requires more dependencies compared to the other two backdoors.
On the client side, a Linux executable needs to be built. Depending on the hardware,
the process could possibly take some time. To avoid that, the executable can be built
beforehand on similar hardware and then shipped to the client. On the test Raspberry
Pi, the build was negligible, however.

Execution

As soon as the executable has been built, it can be executed with the designated IP
address and port passed as arguments. On the server side, a Python file is executed and
the connection should be established automatically. If any other clients are started with
same designated IP address and port passed as arguments, they also connect automatically
which causes a notification on the server interface. With 18 different commands that can
be issued in the C&C server, ”thetick” provides extensive possibilities for an attacker to
use which go beyond the traditional definition of a backdoor. The commands have been
grouped into either administrative commands or executable commands.

Administrative commands are used to organize different settings on the server side.
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• bots

Returns a list of all connected clients at this point of time with the status either
”live”, ”busy”or ”gone”. The status ”live”means that the client is available and ready
while ”busy” means that the client is currently executing a task. Finally, ”gone”
means that the client has disconnected. There can be any number of reason for
that. Additionally, the IP address, number and UUID for each client are displayed.
The UUID is a unique ID created by the server after the client has connected to
it. The number signifies in what order the clients connected and the IP address is
where the client connected from.

• clear

Clears the screen. The usage is similar to the ”cls” command on a Windows shell or
”clear” on a Linux shell.

• current

Shows the currently selected client. Displays the same information as in the ”bots”
command, just for the currently selected client.

• exit

Exits the program and terminates all connections to clients.

• use <IP address> <number> <UUID>

With this command, the attacker can select a new client using one of the three
options to identify the bot. Only one of the three arguments is required since every
one of them uniquely identifies a client. If the command is executed without any
arguments, the currently selected client is deselected.

Executable commands are used to do interact with the client.

• chmod <file> <access mode>

Alters the access mode flag of a file on the Raspberry Pi.

• dig <domain name>

Resolvs a domain name at the client.

• download <url>

With this command, the attacker can download a file onto the Raspberry Pi via
HTTP. It can potentially be used to download any further malicious software.

• exec

Executes a single non-interactive command (e.g. ”ls” or ”pwd”) and returns the
output of the command. It is possible to chain commands together using a semicolon,
e.g. ”cd;ls”.

• fork

Creates a new instance of a client connection with a new UUID.
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• help * <command>

Shows additional information in general or per command.

• kill

Terminates the connection to the currently selected client and sets its status to
”gone”.

• pivot <listen on port> <connect to IP address> <connect to port>

Used to create a one-shot TCP tunnel. According to the authors, this is rather
useful to launch exploits since the tunnel is only available to localhost and is closed
once a client has connected [43].

• – proxy [ls]

Lists all active proxies at the moment.

– proxy [add] <port> [bind address] [username] [password]

Adds a new proxy.

– proxy [rm] <port>

Removes an active proxy.

• pull <remote file> <local file>

Pulls the content of a remote file (located on the Raspberry Pi) to a local file.

• push <local file> <remote file>

Does the exact opposite of ”pull”. The contents of a local file can be pushed into a
remote file located on the Raspberry Pi.

• rm <remote file>

Used to delete a file on the client.

• shell

This command is used to open an interactive shell of the Raspberry Pi and give the
attacker full control.

3.2.4 Comparison

Each implementation has its advantages and disadvantages as illustrated in table 3.1.
”httpBackdoor” is very lightweight and its code can easily be altered and customized.
That means that the limited functionality can be extended in any way one deems fit
or necessary. Basic knowledge of Python is required, however. The term ”limited” is
relative to the other backdoors in this comparison. While not being able to open a
shell, ”httpBackdoor” still enables the attacker to issue commands and therefore, have
control of the Raspberry Pi. The architecture of ”backdoor” is also rather simple with
the additional requirement of needing Python on the server side in order to establish a
connection between client and server. The added necessity rewards the attacker with the
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Table 3.1: Backdoor Comparison

httpBackdoor backdoor thetick

Functionality Limited Simple but powerful Various

Deployment
No installation

on server side
Written in pure Python

Executable on client,

Python on server

Architecture Lightweight Few dependencies Complex

ability to pull files from the Raspberry Pi, however. It uses very few dependencies which
makes the installation rather straightforward. Again, basic Python knowledge is required
as well. Lastly, ”thetick” offers a wide variety of available commands and functionalities
which go beyond a regular backdoor. Not only does it provide access to a system, but
it also offers options on what to do with that kind of access. It exhibits aspects of a
botnet which makes it difficult to categorize it into a single malware family. Nevertheless,
these similarities are still limited. While it is possible to connect multiple clients to a
C&C server and switch between them, it is not possible to issue a simultaneous command
to all or multiple clients. There is also one thing that all of the implementations have
in common. While they are classified as backdoors, all of them can also act as spyware
in their own way. Since all of them can access the command line in some form, they
can provide information about the Raspberry Pi to the attacker which further shows the
problem with categorizing malware strictly into one category.

3.3 Malware Attack Behavior

To fully capture and compare all three backdoors, this work defines six different attack
behaviors. Naturally, because of their differences in complexity, not all backdoors are
able to exhibit all behaviors, only behavior1-3 can be exhibited by all three implementa-
tions. The behaviors themselves also differ in complexity and therefore, cause different
processes on the Raspberry Pi. Each implementation achieves the result of each behavior
a bit differently. For example, ”httpBackdoor” needs to send single commands to achieve
behavior3 whereas ”backdoor” and ”thetick” open up a shell on the Raspberry Pi. During
the monitoring process, the attacks are repeated every few seconds throughout the spec-
ified monitoring time period using either batch or UI Path [64] automation scripts. The
behaviors are defined as follows:

The goal of behavior1 is to retrieve some basic system information. To do that simple
non-interactive commands susch as ”pwd” are executed through the respective backdoor.
It returns information about where the backdoor execution file is located on the Raspberry
Pi. In behavior2, a more complex chain of commands is executed. First a new directory is
created and subsequently entered. Next, a repository is cloned into the new directory. In a
real-world setting, that could be used to bring further malware onto the device. behavior3
focuses on deleting files on the target system. To make sure that there are enough files to
be deleted, there were roughly 2000 files created before starting the monitoring process.
After completing the measurements, the remaining files were deleted before capturing
the next behavior. behavior4 aims to pull a file from the Raspberry Pi to the attacker.
In a real-world scenario, that could potentially be used to steal confidential or critical
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Table 3.2: Attack Behaviors

Name Description

behavior1
Execute a simple non-interactive command (”pwd”)

and returning its ouput to the attacker

behavior2
Execute a more complex chain of commands

(creating a new directory and cloning a repository)

behavior3 Deleting a file.

behavior4 Pulling a file from the Raspberry Pi.

behavior5 Resolving a domain name at the Raspberry Pi.

behavior6 Changing an access flag for a file on the Raspberry Pi.

information. In behavior5, the goal is to resolve a domain name at the Raspberry Pi. It
is especially useful to resolve local domains at at the target network. Finally, in behavior6,
the malware should change access flags for files on the Raspberry Pi. Similar to behavior3,
a large number of files was prepared so that the malware would not run out of files to
change. Table 3.2 gives a general overview of the different behaviors.

3.4 Behavioral Monitoring Process

3.4.1 Events

As pointed out in the related work chapter, system calls, HPCs, and resource usage
were among the most promising parameters to model the internal behavior of a resource
constrained device. This work focuses on HPCs and the usage of resources. Unfortunately,
the literature fails to mention concrete HPCs for Raspberry Pis. In [53], the authors
mention concrete HPCs used to detect backdoors on Linux systems but said HPCs are not
supported on the Raspberry Pi test device. Therefore, this work monitors a large amount
of different available performance events. The monitoring script collects the amount of
occurrences of 72 different performance events during a specified time period. Table 3.3
gives on overview of the different events and what information they contain.

The authors of [66] argue that detection of malware using HPCs is not possible. How-
ever, in their arguments they assumed that an algorithm is not capable of distinguishing
between benevolent and malevolent behavior by using HPCs. For example, encrypting a
file can be interpreted as a hostile action by ransomware or as a security measure taken
by the user. The mentioned problem is the difficulty to link high level malware behavior
to low level information such as HPCs [66]. They argue that it is difficult to capture the
whole behavior of a device which has such wide variety of possible and potentially very
complex behaviors. A similar observation was made by the authors of [19] where they
compared the network behavior of a MacBook Pro and a Philips Hue light bulb. Both
are part of an IoT network but their possible behavior is vastly different. To justify the
chosen approach and collecting HPCs, we argue that in our setup the test device operates
inside known parameters and every deviation from the normal behavior is considered an
anomaly and possibly caused by malware.
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Table 3.3: Monitoring Events

Events Information

cpu usage pct, ram usage pct, network in, network out Usage of Resources

block bio backmerge, block bio remap, block dirty buffer,

block getrq, block touch buffer, block unplug
I/O Block Devices

clk set rate Clock Framework

cpu-migrations CPU Migrations

cs Context Switches

fib table lookup Packet Forwarding

mm filemap add to page cache File System

gpio value GPIO Signals

ipi raise Inter-Processor Interrupts

irq enable, irq handler entry, softirq entry
Interruption Request

Handling

jbd2 handle start, jbd2 start commit
Journaling Block

Device Activity

kfree, kmalloc, kmem cache alloc,

kmem cache free, mm page alloc,

mm page alloc zone locked, mm page free,

mm page pcpu drain

Kernel memory

mmc request start
Block Devices of

MMC (Multi Media Card)

net dev queue, net dev xmit, netif rx Networking

mm lru insertion
Kernel Interfaces

of Page Tables

qdisc dequeue Queuing Disciplines

get random bytes, mix pool bytes nolock, urandom read
Kernel Random

Number Generator

sys enter, sys exit Quantity of System Calls

rpm resume, rpm suspend Runtime Power Management

sched process exec, sched process free, sched process wait,

sched switch, sched wakeup
CPU Scheduler

signal deliver, signal generate Signals between Processes

consume skb, kfree skb, skb copy datagram iovec Socket Buffers

inet sock set state Sockets

task newtask Task Creation

tcp destroy sock, tcp probe TCP Protocol

hrtimer start, timer start Internal Timer

workqueue activate work Work Queue

global dirty state, sb clear inode writeback, wbc writepage,

writeback dirty inode, writeback dirty inode enqueue,

writeback dirty page, writeback mark inode dirty,

writeback pages written, writeback single inode,

writeback write inode, writeback written

System Writeback

3.4.2 Monitoring

Architecture

Although the monitoring script is straightforward, there was still a need to organize it in
different code blocks. These blocks are described as follows:
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• Setup

In this step, any given argument is assigned to a variable. If no argument was given
for a variable, the variable is assigned the default value. Additionally, the respective
file is created if does not exist yet. If the file does not exist however, any new
monitored data would simply be appended to the existing file. The performance
events that are to be captured are also defined in a string in this section.

• Output Formatting

These lines are responsible for the headers of the data file. The perf command needs
to be executed because perf does not necessarily output the events in the order that
were specified earlier in the code. Therefore, the order is extracted from the first
execution.

• Monitoring Loop

The monitoring loop consists of two parts, data collection and output. It runs until
the desired amount of samples has been reached. Each loop, the data collection
process is executed.

• Data Collection

The main aspect of the monitoring process is being conducted in this section. All
the specified data is collected using different commands. The output of the perf
command is being extracted from a temporary file.

• Output

Lastly, the collected data needs to be added to the final output file as a new sample.
If the number of samples has reached its goal, the script terminates at this point.

Execution

For the monitoring script, a bash shell script is used because of its ease of use. The script is
specifically designed to be executed on a Raspberry Pi but is compatible with any machine
running a Linux OS. There are two prerequisites that need to be installed, however. To
capture the performance events the correct kernel-compatible version of the perf tool [46]
needs to be installed as well as the ifstat tool [50] for collecting network measurements.
The output will be a csv file. The script is executed by issuing the following command:

$ bash script.sh [-a] [-f] [-t]

In order to make the script versatile and perhaps even useful beyond the thesis, the script
has been designed with certain parameters being customizable. That way, the user can
easily decide for how long the script should run and how many samples should be taken.
There are several arguments that can be passed to customize the output.

• [-a]

Defines the amount of samples that are to be taken. The default amount is 10
samples.
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• [-f ]

Defines the name of the data file. The default value is ”data”.

• [-t]

Defines the time between measurements. The default value is 10. Note that this
argument is in seconds.

The list of monitored performance events is also customizable. However, it needs to be
altered directly in the code of the script. In order to add another event that should
be monitored, the event in question just needs to be added to the list, duplicate events
are possible but could potentially induce performance issues. The same process can be
applied for removing a certain event. If the list is empty, an error occurs and the script
terminates.

Another argument that has been implemented is the [-h] argument. It is common for
most command line tools to have such a feature to help the user and give an overview of
the capabilities of the tool.

bash script.sh [-h]

This command displays the aforementioned information about usage and the available
arguments. If the [-h] argument is issued, all other given arguments are ignored and the
script terminates after outputting the information.



Chapter 4

Evaluation

4.1 Results

In this section, the results of the data collection process described in the previous chapter
are discussed. For the sake of simplicity, not all results of all 72 events are presented. This
work only demonstrates the relevance of the selected events when comparing normal and
under attack behavior. Table 4.1 indicates what behaviors have been considered for which
backdoor. For every attack behavior, one file was generated. Each file contains a total
of 300 samples with ten second intervals. All behaviors were recorded sequentially. After
finishing the data collection process for a backdoor implementation, the Raspberry Pi
would be flashed with a new, clean operating system and thus, any traces of the previous
backdoor would be erased. Each subsection contains one of the malware implementations
and analyzes each of the possible behaviors of the respective malware. Additionally, every
subsection includes a table containing statistical information like the standard deviation
and mean. In said table the events are grouped by attack behavior and for each event
there is statistical information for the clean, labeled as ”clean”, and infected behavior
displayed. A complete version of the dataset is freely available on GitHub [58].

4.1.1 httpBackdoor

For ”httpBackdoor”, behavior1-3 were considered. In this section, two events are presented
per behavior. Figure 4.1 and Figure 4.2 depict behavior1, whereas Figure 4.3 and Figure

Table 4.1: Attack Behaviors per Backdoor

Backdoor Implementation Considered Behaviors

httpBackdoor behavior1, behavior2, behavior3

backdoor behavior1, behavior2, behavior3, behavior4

thetick
behavior1, behavior2, behavior3,

behavior4, behavior5, behavior6
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4.4 illustrate events under attack behavior2. Finally, 4.5 and Figure 4.6 show events while
under attack behavior3.

In Figure 4.1 it can be observed, that the RAM usage is significantly higher while the
devices is experiencing attack behavior1 than during the normal behavior. The numerical
data of this event is also presented in Table 4.2. A possible explanation for that could be
the additionally required resources by the running ”httpBackdoor” Python file. On the
other hand, there are also events that do not offer such a clear picture. In the case of
”httpBackdoor” exhibiting behavior1, an examples is presented in Figure 4.2.

Figure 4.1: RAM usage in % for ”http-
Backdoor” during behavior1

Figure 4.2: mm page free event for
”httpBackdoor” during behavior1

Opposed to Figure 4.2, in both figures, Figure 4.3 and Figure 4.4, the events under attack
behavior2 are vastly different from the clean behavior. What is most striking is the much
greater variation in both events. That is supported by the greater standard deviation
visible in Table 4.2 in the behavior2 column. It is logical for behavior2 to cause a lot of
activity in the device since it is among the more complex of attack behaviors.

Figure 4.3: block unplug event for
”httpBackdoor” during behavior2

Figure 4.4: softirq entry event for
”httpBackdoor” during behavior2

Another clear contrast is presented in Figure 4.5. The figure clearly shows the event
being different while under attack behavior3. For this event, the standard deviation of
the infected behavior is almost eight times as high. Also, the green line is barely visible
since there is little activity in the clean behavior as 75% of the values are equal to 0.
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Figure 4.6 does not provide any clear indication of any unambiguous differences between
the clean behavior and under attack behavior3.

Figure 4.5: block bio backmerge event
for ”httpBackdoor” during behavior3

Figure 4.6: cpu-migrations event for
”httpBackdoor” during behavior3

Table 4.2: Statistical information of ”httpBackdoor”

behavior1 behavior2 behavior3

RAM usage % block unplug block bio backmerge

clean http clean http clean http

mean 1.96 2.08 0.12 5.41 0.07 2.89

std 0.01 0.02 0.35 4.46 0.67 4.79

min 1.92 2.04 0.00 0.00 0.00 0.00

25% 1.95 2.07 0.00 1.00 0.00 0.00

50% 1.96 2.08 0.00 5.00 0.00 0.00

75% 1.97 2.09 0.00 8.25 0.00 9.25

max 2.00 2.12 2.00 22.00 7.00 16.00

4.1.2 backdoor

For ”backdoor”, behavior1-4 were considered. For each behavior, two events are presented
in this section. For behavior1, the qdisc dequeue event in Figure 4.7 and the network in
metric in Figure 4.8 are described. Figure 4.10 and Figure 4.9 follow and decribe behav-
ior2. Next, behavior3 is illustrated in Figure 4.11 and Figure 4.12. Finally, Figure 4.13
and Figure 4.14 represent behavior.

There are small but notable differences between the clean and under attack behavior1 as
can be observed by investigating Figure 4.7. The suspicion is confirmed in Table 4.3 since
both, mean and standard deviation, are higher during the attack. However, in Figure 4.8,
these differences are not as clear if outliers are ignored. It seems that in the clean and
attack behavior1, the events are fairly consistent and do not indicate any special activity.
Since behavior1 is rather simple and does not cause a lot of network traffic, it is logical
that the network in metric is not very different compared to the clean behavior.

However, by looking at Figure 4.9, depicting the incoming network traffic during attack
behavior2, it is evident that the attack behaviors cause different device behavior. The
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Figure 4.7: qdisc dequeue event for
”backdoor” during behavior1

Figure 4.8: network in in kBit/s for
”backdoor” during behavior1

traffic is substantially higher compared to Figure 4.8. That phenomenon can be explained
due to the repository cloning that is being caused by attack behavior2. While the clean
behavior is very stable and consistent, the infected behavior seems to have higher variation,
as confirmed by Table 4.3. Figure 4.10 illustrates the mm page alloc event, a memory
allocation metric. It is clear that during attack behavior2 there is more activity in the
memory allocation system.

Figure 4.9: network in in kBit/s for
”backdoor” during behavior2

Figure 4.10: mm page alloc event for
”backdoor” during behavior2

Two further events that may indicate the presence backdoor under attack behavior3 are
illustrated in Figure 4.11 and Figure 4.12. Both events show vast differences compared to
the normal behavior. While the writeback dirty inode event has a similar pattern in both
the clear and attack behavior3, the level of the attack data is generally higher. From a
statistical view, there are significant differences in both, mean and standard deviation for
the mm page pcpu drain event, as it is observable in Table 4.3.

In Figure 4.13, the difference between the clean and attack behavior4 is quite large. The
kfree metric describes memory that was being used and has been freed. It seems that
while the device is under attack a lot less memory is being freed, possibly due to the fact
that this memory is occupied by the backdoor implementation itself or by the processes
the attack behavior has caused. The differences are even clearer in numerical form as
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Figure 4.11: mm page pcpu drain
event for ”backdoor” during behavior3

Figure 4.12: writeback dirty inode
event for ”backdoor” during behavior3

can be observed in Table 4.3 in the behavior4 column. further On the other hand, the
sys enter event offers a less clear picture which is further illustrated in Figure 4.14.

Figure 4.13: kfree event for ”backdoor”
during behavior4

Figure 4.14: sys enter event for ”back-
door” during behavior4

Table 4.3: Statistical information of ”backdoor”

behavior1 behavior2 behavior3 behavior4

qdisc dequeue network in mm page pcpu drain kfree

clean backdoor clean backdoor clean backdoor clean backdoor

mean 90.80 94.14 1.78 3.16 66.23 218.89 7369.33 491.72

std 4.69 5.16 0.13 6.56 78.94 446.69 280.77 266.24

min 83.00 81.00 1.52 0.43 0.00 0.00 6986.00 213.00

25% 89.00 89.00 1.70 0.54 0.00 0.00 7109.00 247.25

50% 89.00 94.00 1.76 0.66 63.00 63.00 7313.00 370.00

75% 93.00 97.00 1.85 1.02 126.00 133.75 7524.25 677.25

max 135.00 109.00 2.43 28.23 409.00 1764.00 8573.00 1254.00
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4.1.3 thetick

Since ”thetick” can exhibit all six different attack behaviors, only one event is presented
per behavior. Figure 4.15 presents the mm page alloc zone locked during behavior1. For
behavior2, Figure 4.16 describes the incoming network traffic. In Figure 4.17 and Figure
4.19, the same event describes behavior3 and behavior5 and their differences. For behav-
ior4, the fib table lookup event is illustrated in fib table lookup 4.18. Finally, in Figure
4.20 behavior6 is represented.

In Figure 4.15, there is another memory allocation related event illustrated under attack
behavior1. There are clear variations visible in the figure as well as the data itself in Table
4.4. Figure 4.16 displays the same event, also during attack behavior2, as in Figure 4.9
with a similar result. It can be observed that although the attacks were conducted using
different backdoors, the caused device behavior is very similar. That shows the integrity
of the defined attack behaviors across different backdoor implementations.

Figure 4.15: mm page alloc zone locked
event for ”thetick” during behavior1

Figure 4.16: network in in kBit/s for
”thetick” during behavior2

Another interesting observation is to be made regarding Figure 4.17 and 4.19. Although
it is the same performance event, in the latter figure there is no discernible difference
between the two behaviors. The explanation for the differences lies in the different attack
behaviors. While behavior3 deletes files on the Raspberry Pi, behavior5 simply resolves
domains at the Raspberry Pi and therefore, does not interact with the file system. These
fundamental differences are clearly visible. It is important to see that certain events can be
more or less efficient to detect certain attack behaviors than others. In Figure 4.18, similar
to Figure 4.3, there is a striking contrast in terms of standard deviation between the clean
and attack behavior4. Additionally, Table 4.4 shows significant numerical differences in
the aforementioned statistics for the fib table lookup event under attack behavior4.

The results of the workqueue activate work event are presented Figure 4.20. It seems that
this event might also be a suitable candidate to detect attacks. In the Linux architecture,
work queues are a system to manage and distribute the workload to different kernel
threads. The workqueue activate work event is triggered every time a task is assigned
to a thread and subsequently activated. This event seems to have been triggered more
during the attacks than during the normal behavior as can be observed in Table 4.4. A



4.1. RESULTS 31

Figure 4.17: block dirty buffer event
for ”thetick” during behavior3

Figure 4.18: fib table lookup event for
”thetick” during behavior4

possible reason for the difference is the additional actions that are caused by the backdoor
during attack behavior6.

Figure 4.19: block dirty buffer event
for ”thetick” during behavior5

Figure 4.20: workqueue activate work
event for ”thetick” during behavior6

Table 4.4: Statistical information of ”thetick”

behavior1 behavior2 behavior4 behavior6

mm page alloc zone locked network in fib table lookup workqueue activate work

clean tick clean tick clean tick clean tick

mean 69.67 253.81 1.78 3.15 7.87 12.79 33.13 44.08

std 92.24 560.89 0.13 6.71 2.07 19.62 16.85 18.56

min 3.00 0.00 1.52 0.43 5.00 4.00 24.00 33.00

25% 4.00 2.00 1.70 0.54 7.00 7.00 28.00 37.00

50% 10.00 33.00 1.76 0.60 7.00 8.00 30.00 40.00

75% 80.25 130.25 1.85 0.80 9.00 10.00 32.00 43.00

max 459.00 2312.00 2.43 26.49 25.00 251.00 151.00 162.00
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4.2 Discussion

This work focuses on modeling the internal behavior of resource-constrained devices while
being under several attack behaviors from backdoors. In the literature, there are currently
very few datasets of this kind and none of them regarding IoT devices and backdoors.
Most malware detection approaches and datasets follow the approach of modeling device
behavior using network related metrics. Promising dimensions such as system calls, re-
source usage and HPCs do exist and are being considered more and more. The results
in the previous subsection do support that claim and are promising in general. In many
cases, there were notable and significant differences between the clean and the infected
behavior, as can be observed in Figure 4.1 or Figure 4.13. Often, the standard deviation
seems to be an indicator. The greater variation is visible in many figures presented in the
previous section. It has been established that certain events are more suitable to detect
certain attack behaviors than others. As seen in Figure 4.9, Figure 4.16 and Figure 4.16,
the network in metric seems a valuable indicator to detect behavior2, regardless which
backdoor was used to conduct the attack. It is intuitive since behavior2 includes the
cloning of repositories and therefore, downloading potentially a large amount of data. By
comparing Figure 4.17 and Figure 4.19, it also becomes evident that the used event is
more suited to detect behavior3 rather than behavior5.

FabIoT was produced using three real-world backdoor implementations found on GitHub.
While they do serve their purpose, one could argue that they are not highly sophisti-
cated malware which is true. One limitation of the dataset is that highly sophisticated
implementations are not considered. The reason for that is that these implementations
are in many cases highly specific to the target platform and extremely complex. Another
limitation is that only backdoors were considered. Other types of malware were not used
in this dataset, meaning that its results may not applicable for the detection of other mal-
ware since other malware may exhibit vastly different behavior. However, these backdoors
do share some traits with other malware families as has been discussed in the previous
chapter. Since most real-world malware attacks consist of multiple malware families, an
interesting extension of this dataset and perhaps even a future approach would be the
combination of multiple malware implementations. Also, since many HPCs were not sup-
ported by the test devices’ kernel, the inclusion of these additional events to the dataset
could prove a valuable extension.



Chapter 5

Summary and Conclusions

The increasing demand for IoT devices and services leads to an ever growing number of
IoT concepts, platforms and networks, such as crowdsensing. The test device used in the
present work is part of a real-world IoT crowdsensing platform, ElectroSense [44], which
has the goal to monitor the radio frequency spectrum on a global scale. IoT platforms
and networks, such as ElectroSense, are often vulnerable to cyber attacks by spyware and
backdoors [3]. A promising approach to mitigate cyber attacks and also zero-day attacks
is the application of device behavior fingerprinting and ML models. Recent works have
identified the usage of resources and HPCs as promising metrics to model the internal
behavior of a device [51]. The present thesis proposes FabIoT, a novel dataset modeling
the internal behavior of a Raspberry Pi acting as an ElectroSense sensor while being
attacked by backdoors with different behaviors. Building upon previous research, the
present work shows that detecting backdoors by monitoring the internal behavior of a
device is feasible [6, 24, 53]. A script to monitor the internal device behavior while
the device is under attack from three real-world backdoors is developed as part of the
present work. The backdoors exhibit up to six different attack behaviors to capture a
wide variety of independent attacks. The monitoring script outputs a file containing 300
samples of 72 performance events for each possible combination of backdoor and attack
behavior. The interval between samples is ten seconds. Then, is was presented that there
are significant differences in the collected data and therefore, illustrated the value FabIoT
provides. Preliminary results indicate that depending on the behavior different events are
more suited to detect attacks than others.

Aligned with the current trend, future work in this field contains most likely the creation
and development of further datasets. Building upon FabIoT future datasets could include
device fingerprinting while under attack from other types of malware dangerous to IoT
networks and platforms, such as botnets and ransomware. Another interesting approach
would be to monitor several devices in a real-world IoT platform and also conduct attacks
on a larger scale compared to the present thesis where the focus was on a single device.
Moreover, researchers could consider combinations of several malware families as this is
often the case in the wild. Another promising avenue to explore is the applicability of
HPCs for resource-constrained devices such as the Raspberry Pi used in the present thesis.
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Glossary

Autoscaling Autoscaling is a concept where a system provides more resources if indicated
by the user. The system basically scales the amount of available resources to the
needs of the user.

Behavior Fingerprinting Behavior Fingerprinting is the process of modeling the internal
behavior of a device by monitoring different metrics of the device [51]. Possible
metrics include network related activities, system calls, the usage of resources and
HPCs among others.

Blockchain A blockchain is a digital, public and decentralized ledger, first introduced to
be used in the context of crypto currencies [24]. The foundation for a blockchain
network is a peer-to-peer network [1].

Brute Force In a Brute Force attack, the attacker tries to guess a password or pass code
using a computer program. The program works in trial-and-error fashion, trying all
possibilities until it found the correct one.

Crowd Sensing A concept where a large amount of individuals contribute small measure-
ments to create a big collection of data.

Dynamic Analysis See Behavior Fingerprinting.

Flooding Flooding is a type of DDoS Attack where the goal is to overwhelm the target
servers with a large amount of sent requests.

Heartbleed Heartbleed is a vulnerability in the cryptographic software OpenSSL. Under
certain circumstances, this bug allowed attackers to steal information that should
have been secured [27].

pcap Files These files contain network packet data and can be used to analyze network
traffic.

Spoofing In a Spoofing attack a piece of software or a person identifies itself as a benev-
olent identity but has malicious intents. It can also reroute network traffic to mali-
cious web sites and/or steal information and distribute malware in the process.

Static Analysis Static Analysis attempts to identify possibly malicious software by in-
specting the code of said software without running it. In many cases, any found
signature is compared to a database of known malware signatures.
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Zero-Day Attacks Attacks that are conducted by malware that has never been seen be-
fore.
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Appendix A

Installation Guidelines

A.1 Backdoors

The same installation instructions can be found on the GitHub page of the respective
backdoor.

A.1.1 httpBackdoor

First of all, the repository needs to be clone onto the machine with the following command:

$ git clone https://github.com/SkryptKiddie/httpBackdoor.git

To execute this backdoor, Python needs to be installed. In the thesis, Python 3.5 was
used but there is no minimal version mentioned by the author. Python can be installed
using the following command:

$ sudo apt install python3

After installing python, the IP address of the Raspberry Pi needs to be inserted in the
file httpBackdoor.py in line 5. Then, you should be able to execute the backdoor using
the following command:

$ python3 httpBackdoor.py

It is possible that certain packages are not yet installed. This can be done with the
following command.

$ pip3 install "package-name"
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A.1.2 backdoor

Both on server and the client, the repository needs to be cloned using the following
command:

$ git clone https://github.com/jakoritarleite/backdoor.git

Client

Again, Python needs to be installed for this backdoor. The installation process is the
same as it is in the previous section.

There are 5 packages that need to be installed in order to run this backdoor. These are
socket, os, subprocess, time and sleep.

As described in the previous section, the packages can be installed using the following
command:

$ pip3 install "package-name"

The IP address of the Raspberry Pi also needs to be entered in the code in the file client.py
on line 10.

After these steps, the client can be executed on the Raspberry Pi with the following
command:

$ python3 client.py

Server

The same Python packages, socket, os, subprocess, time and sleep, need to be installed for
the server as well.

Also, the IP address of the Raspberry Pi needs to be entered in the file server.py on line
7.

The server is started with the following command:

$ python3 server.py

A.1.3 thetick

Again, on server and the client, the repository needs to be cloned using the following
command:

$ git clone https://github.com/nccgroup/thetick.git
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Client

To compile the client executable the following commands needs to be executed in order
to install the necessary dependencies.

$ sudo apt-get install libcurl-dev

After that, the makefile needs to be run using the following commands:

$ cd src

$ make clean

$ make

Once this process is finished, in the bin folder of the repository, there is an executable.
The client is started by executing this command:

$ ./ticksvc ADDR PORT

ADDR and PORT refer to the IP address and port of the machine running the server is
running.

Server

On the server side Python is required. In this thesis, Python 2.7 was used since 3.5 caused
errors. To install the necessary dependencies, simply navigate to the repository folder and
execute the following command:

$ pip install --upgrade -r requirements.txt

The requirements.txt contains all necessary packages for the server which can then be
started by executing the following command:

$ python server.py -b ADDR -p PORT

Again, ADDR and PORT refer to the IP address and port of the machine running the
server.

A.2 Monitoring Script

As mentioned in section 3.4.2, the monitoring script is executed using the following com-
mand:
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$ bash script.sh [-a] [-f] [-t]

There are two requirements that need to be installed on the system in order to run the
script, ifstat and perf. The ifstat tool can be installed using the following command:

$ sudo apt-get install ifstat

While in many cases it is already installed on the device, the installation of the perf
tool can be a bit more tedious. Since the tool is part of the linux-tools package, the
package should be installed. Also, since perf interacts with certain kernel modules, linux-
tools-generic and linux-tools-common should also be installed. The three packages can be
installed using the following command:

$ sudo apt-get install "package-name"

However, it is possible that a kernel specific version of perf needs to be installed. That
can be achieved using the following command:

$ sudo apt-get install linux-tools-‘uname -r‘

A.3 Attack Scripts

In order to repeat the attacks continuously, automated attack scripts were created. Since
sending attack commands to ”httpBackdoor” can be done using the curl [12] tool, we have
decided to write batch scripts to automate the attacking process for this backdoor. For
behavior3 an additional preparation script was written in order to create a large amount
of files which then could be deleted by the attack.

Since the server side of the other two backdoors consist of command line tools, a Robotic
Process Automation (RPA) software was used to interact with the command line tools
and continuously send attack commands. The software, UI Path [64], can be downloaded
from the website specified in the reference. A free account is required, however. After
an account has been created, the UI Path Studio can be downloaded. Using the IDE-like
software, the scripts can be openend and executed.



Appendix B

Contents of the zip File

This section describes and names the content of the zip file.

BA Fabio Sisi.pdf A PDF version of the final report.

BA Fabio Sisi.zip The LaTeX source code of the final report. It includes all used figures.

Midterm Presentation revised.pptx The PowerPoint slides used in the midterm presen-
tation.

source code This folder includes all software components that were created during the
present thesis. It contains the following:

• attack scripts A folder containing the attack scripts. In order to execute the scripts
for the ”backdoor” and ”thetick”, the software UI Path [64] is necessary. The scripts
are grouped by backdoor, and the further sorted by attack behavior.

• FabIoT-Dataset.zip A zip file containing the repository of the collected dataset.

• Monitoring-Script.zip A zip file containing the repository of the created monitoring
script.
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