
Reconstructing Office
Environments in VR from Point

Cloud Data Sets

Bachelor Thesis
1st December 2020 - 1st June 2021

by Moritz Jenny, 15-931-306

Supervisors:
Prof. Dr. Renato Pajarola
Prof. Dr. Thomas Fritz
Lizeth J. Fuentes Perez

Visualization and MultiMedia Lab
Department of Informatics

University of Zürich

Cover Image:
Visualized segment of point cloud data.

Excerpt from the Stanford S3DIS dataset [Arm+16].

Zusammenfassung

Die virtuelle Realität ermöglicht ein weitaus immersiveres Erlebnis als eine Visual-

isierung auf einem 2D-Bildschirm. Darüber hinaus kann die Darstellung von Daten,

die über die drei räumlichen Dimensionen verteilt wurden, auf eine sehr intuitive

Art und Weise wahrgenommen werden. Ziel dieser Arbeit ist es, die Darstellung

von segmentierten Punktwolken zu veranschaulichen sowie Möglichkeiten zur Inter-

aktion in VR zu präsentieren. Zudem soll der Prozess, welcher die Rohdaten eines

3D Scans in eine VR Applikation integriert, automatisiert werden. Das immersive

Erlebnis wird insbesondere dadurch verstärkt, indem der Benutzer sich physisch im

entsprechenden Raum befindet, von dem aus dessen gescannte Daten betrachtet wer-

den. Das Endergebnis wird erreicht, indem ein neuronales Netzwerk mit einem Daten-

satz trainiert wird, der Scans von Büroräumlichkeiten beinhaltet. Nachdem weitere

Daten eines Punktwolken-Scans aus einem Büro vorverarbeitet wurden, können sie mit

Hilfe des trainierten Netzwerks segmentiert werden. Schließlich werden die segmen-

tierten Daten in einer Game-Engine gerendert, damit diese in der virtuellen Realität

betrachtet werden können und mit ihnen interagiert werden kann. Somit kann die Seg-

mentierung visualisiert werden und dient als Grundlage für interaktive Elemente, die

eine inspirierende oder spielerische Erfahrung schaffen.

iii

Abstract

Virtual reality enables a far more immersive experience than a visualization on a 2D

screen. Moreover, the representation of data distributed over the three spatial dimen-

sions can be perceived in a very intuitive way. The goal of this work is to illustrate the

representation of segmented point clouds as well as to present possibilities for interac-

tions with point clouds in VR. Furthermore, the process which integrates the raw data

of a 3D scan into a VR application shall be automated. In particular, the immersive ex-

perience is enhanced by having the user physically located in the corresponding space

from which their scanned data is viewed. The final result is achieved by training a

neural network with a dataset that includes scans of office spaces. After preprocessing

the data from a point cloud scan of an office, it can be segmented using the trained

network. Finally, the segmented data is rendered in a game engine so that it can be

viewed and interacted with in virtual reality. Thus, the segmentation can be visualized

and serves as the basis for interactive elements that creates an inspiring or game-like

experience.

iv

Contents

Zusammenfassung iii

Abstract iv

1 Introduction 1
1.1 Outline . 2

2 Related Work 3
2.1 Aiming for an Enhanced Experience 3

2.2 Point Cloud (Semantic) Segmentation 5

2.2.1 Point Cloud Datasets . 6

2.2.2 Traditional Methods . 7

2.2.3 Deep Learning Methods . 8

2.2.4 Data Driven Understanding 9

2.3 Point Cloud Visualization in Virtual Reality 10

2.3.1 Standalone Applications . 11

2.3.2 Use of Game Engines . 12

3 Approach 13
3.1 Technical Context . 15

3.2 Preprocessing . 15

3.2.1 File Processing . 16

3.2.2 Patch Extraction . 16

3.2.3 Patch processing in Practice 17

3.3 Segmentation . 19

3.3.1 PGCNet . 19

3.3.2 Subsequent Postprocessing 19

3.3.3 Polygonial Surface Reconstruction 19

3.4 Unity Integration . 20

3.4.1 Point Cloud Handling . 21

3.4.2 Creating the VR application 21

3.4.3 Room Alignment . 24

3.4.4 Interactive Elements . 27

3.5 Implementation . 35

3.5.1 Project Setup . 35

3.5.2 Procedure . 36

4 Results 38
4.1 RQ1: What are the challenges to realistically recreate a physical en-

vironment from point cloud data in a virtual setting with interactive

elements? . 38

4.1.1 Segmentation Challenges . 39

v

Contents

4.1.2 Unity Challenges . 40

4.2 RQ2: To what extent and how can the implementation of a VR appli-

cation be automated? . 41

4.2.1 Automation Challenges . 41

5 Discussion and Conclusion 44
5.1 Limitations . 44

5.2 Future work . 45

6 Acknowledgement 46

vi

List of Figures

2.1 PointNet segmentation . 3

2.2 “Transport Me Away” - Beachscene 4

2.3 Patch extraction . 7

2.4 PGCNet pipeline . 9

2.5 Search-Classify Approach for Cluttered Indoor Scene Understanding . 10

2.6 Point clouds in VR . 11

3.1 The pipeline . 13

3.2 The patch features . 17

3.3 Patch segmentation . 17

3.4 Surface reconstruction . 20

3.5 The hand model . 22

3.6 The controller . 23

3.7 The pointer gesture . 24

3.8 Reference points for the alignment 25

3.9 The interaction panel . 28

3.10 Changing the point size . 29

3.11 Table and chairs as mesh . 29

3.12 Finding valid points on object . 30

3.13 Object colliders . 31

3.14 Surface reconstructed rooms . 32

3.15 The panel with the throwing objects 32

3.16 The throwable objects . 33

3.17 The panel with the themes . 33

3.18 Water theme . 34

3.19 Nature theme . 35

4.1 The colored room . 39

4.2 Rotation issue of the chairs . 42

vii

1 Introduction

In the last decades a subfield of visualization methods in computer graphics called

virtual reality (VR) has emerged and gained popularity. On the one hand, VR is char-

acterized by the immersive stereoscopic visualization of virtual environments and on

the other hand by the multitude of interaction possibilities [TH20].

VR technology is a specific form of visualization that focuses on immersion and influ-

encing the perceived environment. Bryson [Bry96] explains the use with “We want to

create the effect of interacting with things, not with pictures of things”.

One way to represent the real world in VR is to visualize scanned point cloud data.

A 3D scanner scans an object or an environment and generates data that represents

the space in points with corresponding positions. The ability to then interact with the

scanned data in VR while physically being in the same space opens up new interesting

ways to perceive a space or an environment. Especially in these times of a pandemic,

when people spend a lot of time at home, such excursions into other worlds are wel-

come. The project described here is intended to fulfill this notion.

The immersive aspect of virtual reality can be used to create simulations, represent

art or architecture, or engage users in games. Finally, there are also scientific visual-

izations, which can be realized with the help of VR. This work does not target exactly

one category, but rather points to some aspects of the scientific category and other as-

pects of the entertaining segment.

One idea that inspired the project was the concept of an enhanced desktop environ-

ment, which offers the viewer the possibility to step into a customized workplace and

operate from there. Another inspiring idea was the notion of a work oasis that resem-

bles some of the real physical properties of an environment the user is located in. A

work oasis describes a creatively inspired place, in which workers could take a break

and go after some easy tasks in order to be able to focus later on. A project that incor-

porated this idea was Jan Gugler’s master thesis [Gug21], that translated a living room

into VR, where several interactions could be performed.

Many of the existing approaches require a large amount of manual labor to create

the virtual environment. Therefore the ultimate goal of this project is to start off with

a LIDAR scan and end up with a VR application, where the manual steps during the

implementation of the VR application have been minimized. The final application in-

cludes interactive elements that allow the user to visualize segments of the point cloud,

interact with the environment in a playful manner and to activate different themes.

1

1 Introduction

In order to develop this project, I am looking at the following two research questions:

• RQ1: What are the challenges to realistically recreate a physical environment

from point cloud data in a virtual setting with interactive elements?

• RQ2: To what extent and how can the implementation of a VR application be

automated?

The structure of the milestones that led to the final product of this work is listed below.

• Plan out the project and get familiarized with the existing work. From there, the

possible options of the end product are analyzed and elaborated.

• Set up environments in order to use Object Detection [Mat+14] and PGCNet

[Sun+20] for the segmentation and also get familiar with the implementation of

the polygonial surface reconstruction.

• Create a Unity scene and integrate the VR HMD HTC Vive Pro in the scene.

• Train and test the PGCNet with data to calculate the segmentation and then pre-

pare the processed data for Unity.

• Elaborate the complete pipeline to integrate the raw data into the Unity Scene

after the segmentation.

• Implement interactive elements in Unity such as controls to change the appear-

ance of the data.

1.1 Outline

Based on the mentioned aspects and the given requirements, the structure of this docu-

ment is built as follows. Chapter 2 is dedicated to the related work concerning the data

processing part and also the virtual reality relevant aspect of the work. The end prod-

uct is categorized and justified based on existing solutions in this chapter as well. In

chapter 3 the components of the utilized methods of other work are discussed. It also

describes the technical solution which allowed to achieve the end result, including data

processing procedures for the realization of the pipeline of this work. In section 3.4,

the VR and data integration as well as the design of the Unity application is described.

Chapter 4 shows the achieved results and illustrates the challenges in context with the

research questions stated in the introduction. The results are then further discussed

regarding their limitations and concluded in chapter 5 including possible future ap-

proaches. Finally chapter 6 concludes this thesis with acknowledgements.

2

2 Related Work

Figure 2.1: The PointNet segmentation process described by Qi et al. [Qi+17a]. Left:
Object classification. Middle: Part segmentation. Right: Semantic seg-
mentation.

This chapter deals with related work in the context of this thesis and shows the current

state of knowledge regarding the segmentation of point cloud data and the visualization

part. The first section 2.1 shows a few examples of how virtual worlds can affect us and

what methods have been used to produce positive effects. The section about the point

cloud segmentation 2.2 gives a brief overview of different state of the art segmentation

methods. In section 2.3, technical work of point cloud visualizations is cited, but

also work that looks into the effects on the well-being and the performance of VR

application users in general. The methods that are specifically used in this work are

then transitionally explained within the next chapter.

2.1 Aiming for an Enhanced Experience

A very interesting aspect of virtual reality is the strong immersion and thus the asso-

ciated power over the affected perceptions. This makes it possible to create a work

oasis or to distract oneself briefly with playful activities. This is well demonstrated in

Jan Gugler’s [Gug21] work, in which the application “Holoft” was developed. With

Holoft, virtual work oases can be created which can be put together by the user. Studies

conducted with Holoft have shown that users enjoyed engaging with the VR applica-

tion during breaks and after work and that similar effects as seen in traditional work

oases could be evoked.

This positive effect on the well-being of a person has been generally used for relaxation

or in office environments. Ruvimova et al. [Ruv+20] studied the effect of VR environ-

ments in different office situations on people’s performance. They tried to use VR to

prevent the distractions that can happen in an open office situation and help people to

stay in flow. A study was conducted with subjects in which they compared open and

closed office situations with VR situations. The virtual settings consisted of a scene on

the beach or a virtual office. The results showed that while subjects in a closed office

preferred to work without VR, in an open office they favored the virtual environment

3

2 Related Work

Figure 2.2: A beach scene of the work of Ruvimova et al. [Ruv+20] that shows a work-
ing environment embedded in an exotic surrounding.

in all respects examined. The implementation of the beach scene can be seen in Figure

2.2. The notion of transforming an environment into a themed virtual environment, in

which some elements remain familiar had an inspiring effect for this project. This ul-

timately also led, together with other examples, to the decision to implement different

themes in this work.

Berki [Ber19] examined the advantages of a desktop environment that is supported

with VR. A number of test participants were provided with an ordinary desktop envi-

ronment and another group was provided with a VR desktop setup with a permanent

display of additional information in order to solve tasks. As the experiments showed,

the test candidates with the VR headset and the additional information were able to

achieve better performance than the users with the conventional setup. That a demand

for such types of applications exists is evident in the success of the commercially

available “Virtual Desktop” software. Virtual Desktop allows users to create different

environments around their own desktop. There are themes that still display the screen

on a monitor, localized in a tidy room. However, there are also themes that project

the desktop without borders in an outdoor location such as grassland or a forest for

example.

But there are also applications that are not meant to only be used in an office to enhance

work performance, but rather serve simply to relax. Soyka et al. [Soy+16] investigated

a VR application designed to alleviate stress and improve stress management. They

combined known breathing techniques with an underwater scene and studied the effect

of the environment on its own and in combination with the known breathing techniques

on the stress behaviour of the participants. For example, jellyfish helped to guide the

breaths with rhythmic movements. Soyka et al. [Soy+16] showed in interviews that

subjects found the VR-assisted methods more enjoyable and that they were more likely

to use them when doing the exercise at home.

4

2 Related Work

In conclusion, these methods all try to bring the user into a new world in which his en-

vironment is generously replaced or significantly changed. A significant reason seems

to be the change or the reorientation in a clearly structured environment that motivates

for users to move into a VR landscape. Especially in times like these, when a pan-

demic brings drastic restrictions to everyday life, a switch into a completely new world

might be very welcome. This work was inspired by the aforementioned creations of

different atmospheres and I tried to follow the feeling of diving into another world with

sceneries like the underwater world.

2.2 Point Cloud (Semantic) Segmentation

There is currently a great increase in the possibilities to scan objects from the real world

in three dimensions. It is possible to capture objects with laser-based, structured light,

contact-based scanners or even with an image only based method called photogramme-

try. Therefore, it is possible to scan objects with a smart phone camera. Smart phones

nowadays are also capable of displaying them as well as share them, which is shown

with the attempted creation of the social network named “Display.Land” for example.

Display.Land lets users scan and share 3D objects or environments. However, raw

point cloud data is unstructured, making it difficult to implement interactive elements

due to the lack of specific object references.

Interactions with point clouds greatly enrich the application potential for this type of

data. A key aspect of preparing this data for use, whether for interaction or for analysis,

is the segmentation of the data. This means that a point cloud scan can be divided into

areas according to certain characteristics, for example to isolate objects. In computer

graphics the general problem to segment meshes and point clouds in a logical way has

been thoroughly researched. The segmentation of a mesh resembles very similar meth-

ods like the segmentation for a point cloud and can therefore be considered as well.

Nguyen and Le [NL13] describe how the general approach to segment meshes is to

build a graph from the input mesh, and cluster the graph to produce a segmentation.

They point out Shamirs [Sha06] work which lists several methods that have been pro-

posed to approach the problem of partitioning techniques used on boundary meshes:

convex decomposition, watershed analysis, hierarchical clustering, region growing,

and spectral clustering. Nguyen and Le mention that many of those methods have also

been used to segment point cloud data. The region growing approach has been the most

widely used method. However, certain methods have particular limitations with respect

to different types of point clouds. As Zhang et al. [Zha+19] states, the traditional meth-

ods for point cloud segmentation are limited by the prior assumed knowledge and the

parameter adjustment is very difficult.

With the rise of deep learning in the field of semantic segmentation of data in general,

the results of meaningful segmentations have been strikingly improved. The following

part describes prominent types of point cloud datasets and point cloud segmentation

methods with regard to the work at hand.

5

2 Related Work

2.2.1 Point Cloud Datasets

Point cloud datasets typically consist of a certain set of points in space which represent

an unorganized ”cloud” like structure. Each point has at least one set of x, y, and z co-

ordinates and can optionally have other properties such as color, orientation, or label.

However, many other features can also additionally describe a point. The raw data of

a 3D scan are point clouds and have different structured characteristics depending on

the acquisition method.

Therefore, scans taken by a fixed 360 degree laser scanner may show “star-like” struc-

tures, since only the parts visible to the scanner could be imaged. However, a point

cloud generated with photogrammetry and pictured from different sides can be more

detailed in angular parts of an object due to the many view directions and thus is a

topologically more accurate representation of the original object. It is common for

scanned point clouds to be disorganized, chaotic and incomplete. This means there

are usually regions where the data is missing, which is also called undersampling or

occlusion artifacts. This problem can be solved in with different methods [Qui+15]

[WO07] [Jun05], but is computationally expensive and is not considered for the scope

of this work.

For this work, indoor scans of a laser scanner are used, which also contain color infor-

mation. Since the scans are only indoor scans in simple rooms and the scan is taken

approximately from where the viewer is located, the incomplete parts are rather poorly

visible in the representation of the scan.

The Polygon File Format (.ply) used for this project was developed at Stanford Univer-

sity and its flexibility makes it a suitable 3D scanner format. The file can be saved in

binary or ASCII format, which is quite advantageous to read and debug the files with

a text editor, but also to use them efficiently in the binary format, which can be read in

significantly faster.

There are some public datasets that have different properties, such as indoor and out-

door scans with different labels. Depending on the purpose of a project, the charac-

teristics of a dataset play an essential role. Some datasets might be suitable for the

training of self driving cars and others may be used for architectural studies. Since this

project makes use of a semantic segmentation of an indoor scene, some indoor datasats

would have been eligible. The Cornell RGBD dataset [Ana+11] has 52 indoor scenes

with 27 labeled object classes. Also the ScanNet dataset [Dai+17] consisting of a large

amount of 1513 reconstructed indoor scenes was considered. For this project, which

is ultimately consisting of indoor office spaces, the Stanford S3DIS dataset was used,

which contains 272 room scans and has 13 labeled object classes. It’s focus is mainly

on office spaces with similar character.

It is common for these datasets to contain several million points and therefore they

can take up a large amount of storage space.

6

2 Related Work

2.2.2 Traditional Methods

Figure 2.3: The method presented by Mattausch et al. [Mat+14]. The extracted pla-
nar patches with the seeded region growing method are colored in differ-
ent color tones to visualize the segmentation of the patches throughout the
whole scene.

Many traditional methods that derived from image segmentation and mesh segmen-

tation are used for point cloud segmentation with several variations. Prominent tra-

ditional methods like edge based, region based and attribute based segmentations are

described as follows. Edge based segmentation methods are used for images as well

as for point cloud data. The basic idea is that edges are assumed for nearby points

that show large differences in defined features. This then serves as the basis for the

segmentation. However, these approaches are very prone to errors with uneven and

noisy point clouds [NL13].

Region based methods inspect information from adjacent points. As Nguyen and Le

[NL13] describe how these methods are more accurate than edge based approaches,

but the definition of the number of segments or the determinations of region board-

ers can cause problems. They distinguish between seeded-region and unseeded-region

methods. In seeded-region methods, a certain set of seed points is selected and then

neighboring points are connected based on specific features in an iterative manner. The

connected points then represent a segment. Tóvári and Pfeifer [TP05] describe the

possibility to connect the neighboring points based on normals and to generate fitting

planes. Seed points can be chosen randomly or according to certain criteria. However,

they mention that the choice of points can determine the quality of the segmentation

and that this may be a laborious task in order to achieve good results. The methods

that are used to generate the patches in the preprocessing of this work are using region

growing as well. They are a part of the implementation of the work of Mattausch et

al. [Mat+14] and the results are presented in the Figure 2.3. The process of the patch

extraction is addressed in detail in subsection 3.2.2.

7

2 Related Work

The unseeded-region methods work without selected points and start with a large seg-

ment containing all points. The segment is then subdivided until the criteria for further

division are no longer present. Chen [CC08] describes this method on an architectural

object where different planar regions are segmented and then reconstructed. The dif-

ficulty with this method is to define the criteria for a subdivision and to choose the

correct weighting so that no over or under segmentation takes place.

Attribute based methods are founded on the similarity of computed attributes on points.

Basically, two steps are necessary. Filin and Pfeifer [FP06] describe how certain at-

tributes are calculated in the first step, such as normal vectors of the points. After that,

the segmentation based on certain similarity criteria can take place. Consequently, a

disadvantage of this method is the high computational intensity with a large number of

points.

Despite all the possibilities to segment data, the method used for this project [Mat+14]

was suitable in particular, because it is optimized for indoor scenes. The environments,

that contain man-made objects tend to have many flat surfaces. This helps to find pla-

nar patches with the region growing method.

2.2.3 Deep Learning Methods

Semantic point cloud segmentation was originally achieved via adapted general ma-

chine learning methods and has been advanced with specific deep learning for a few

years now as shown in the review by Zhang et al. [Zha+19]. It points out that deep

learning methods can be divided into two different categories. One category is called

indirect and the other category is called direct point cloud segmentation methods.

Indirect methods are based on a simplification or a transformation of the point cloud

raw data to then apply an appropriate deep learning method to the processed data and

to draw conclusions about the composition of the original raw data from the resulting

information of the corresponding networks. Most of the work on indirect methods de-

scribe using voxels [MS15] or multi view images [Su+15] as the input for the network.

The work of Su et al. [Su+15] demonstrates how the multi view method can be used

to assign points to a class. The idea is that several 2D images of the scanned object

from different perspectives are given into a convolution network. The classifications

are then made based on the images and then used for the 3D data. It is mentioned that

this method is only useful for single objects and is not suitable for large scenes, such

as a complete indoor scan of a room would be.

The direct methods describe the process where the point cloud data is given directly

to the network and thus the segmentation is done. The foundation for this approach

was laid with the PointNet proposed by Qi et al. [Qi+17a], which takes unordered

point cloud data as direct input. Figure 2.1 illustrates intermediate and end results of

PointNet. While PointNet manages to obtain global features of the data, which has a

beneficial effect on the classifications, it fails to process local information or to pro-

cess relationships between neighboring points. This can lead to information loss when

dealing with large amounts of data.

8

2 Related Work

Figure 2.4: The pipline that allows PGCNet [Sun+20] to segment point clouds. From
left to right: The raw input data, patch segmentation, PGCNet training and
testing, the segmented output.

There are several subcategories of methods based on PointNet that attempt to incor-

porate local features of points and their neighbors. For example, PointNet++ [Qi+17b]

includes several local features, but fails to consider relationships between sampling

points. Promising results have been obtained with graph convolutional neural network

(GCNN), which can give a graph with dependency information into a network. Wang

et al. [Wan+19] show how GCNN in combination with PointNet manages to incorpo-

rate local neighborhood information. A disadvantage of this method is, however, that

the scalability is not very good due to the many relationships between points involved.

Thus, many methods are limited to more local point clouds due to their computational

intensity.

This problem is addressed by PGCNet [Sun+20] in order not to have any losses in

this respect for large indoor scans as it is the case for example with the S3DIS dataset.

Generally, PGCNet treats pre-processed patches that combine points in a plane as in-

put graph nodes. This process is visualized on Figure 2.4. PGCNet can be trained

efficiently and perform good semantic segmentations. Since PGCNet is used in this

thesis, it is explained in more detail in section 3.3.

2.2.4 Data Driven Understanding

An interesting extension of segmentation is shown by Nan, Xie and Sharf [NXS12],

who present an algorithm for segmentation and subsequent reconstruction. They try

to solve the problem of incomplete and noisy scans by reconstructing the scene with

a template fitting step. The segmentation is based on iterative region growing and in-

creasing classification of likelihood. The templates represent previously made meshes

that correspond to the classifications appearing the scene. Therefore, a scene with

whole objects drawn as meshes is produced. The result of their method is seen in Fig-

ure 2.5 This method yields interesting results, but does not yet take into account the

contextual information of the surrounding objects and could thus be improved in the

future.

9

2 Related Work

Figure 2.5: The method presented by Nan, Xie and Sharf [NXS12]. Left: The raw scan
of an indoor scene, Middle: The segmentation of the scene into meaningful
objects, Right: The reconstruction achieved with templates.

Shi et al.[Shi+16] present another method for semantic classification of objects by

combining several methods and dividing the segmentation into two phases. In the first

phase, the objects are segmented using traditional methods. Primitive fitting is used to

divide the objects. A second phase then allows the semantic segmentation of the ob-

jects through the classification by a network trained on a database containing manually

built and labeled meshes.

These approaches show how diverse the segmentation methods can actually be and

what can be done with segmentation information. The method presented by Nan, Xie

and Sharf [NXS12] is interesting in particular for this project, because it would solve

many occurring problems with point cloud data. The complete replacement of point

cloud data with objects would solve problems by closing holes in scans, provide a mesh

based basis for the physics engine in Unity and decrease the size of the data. I tried to

incorporate the notion of replacing point clouds with objects in the final application as

an experimental feature. The corresponding method is described in chapter 3.

2.3 Point Cloud Visualization in Virtual Reality

Due to the large increase of 3D scans and the option to display point cloud data, i.e. 3D

scans, the opportunities to integrate these into a wide variety of applications have in-

creased. This increase was made possible by the improved computing power of various

devices in the mobile and desktop area in recent years. It has driven the development

of systems that support the management and visualization of large datasets of this type.

Considering some of the challenges associated with these types of data, such as the

relatively high demands of graphical processing power as well as the required stor-

age capacities, developers are challenged to create optimized applications on which

the data can be managed and visualized. Thus, possibilities were investigated to im-

plement web applications [DAD19], server systems [CPP17] or database structures

[EVH20], which are specialized to handle point cloud data.

One way to experience 3D scans in an intuitive way is by viewing the point clouds in

virtual reality. The implementation of an application that can be used with a VR HMD

in conjunction with a point cloud rendering capability must therefore be reconciled.

Figure 2.6 shows a human model inside a point cloud environment [Ado21][mar17].

10

2 Related Work

Figure 2.6: A representation of how a user might feel being inside a point cloud envi-
ronment.

There is of course the possibility to implement such applications from scratch by incor-

porating the head tracking of the HMD with a rendered virtual environment [BSN14]

to then experience a 3D scan visualized as a point cloud in VR. However, game engines

are very suitable for such tasks, as they generously support the rendering of virtual en-

vironments and the use of virtual reality with plugins and additional available systems

as Virtanen et al. show [Vir+20]. Game engines are additionally designed to create

heavily interactive applications, be it in the entertainment or professional field. As a

result, it is possible to create games and even working environments in VR.

The following two subsections 2.3.1 and 2.3.2 address the technical properties of

different types of applications. They list exemplary realized point cloud projects in

VR either utilizing game engines or other frameworks and show what purpose they

serve. They also show where the difficulties and challenges are situated regarding

interactability, usability and implementation.

2.3.1 Standalone Applications

Bruder, Steinecke and Nüchter [BSN14] present a project in which they scan a room

with a robot and then render it using the 3DTK point cloud library. Challenges are

mentioned which concern performance, since no continuous rendering was provided

by 3DTK directly. This can lead to points not being represented dense enough due to

their quantity and their constant size. This leads to representations that appear very

sparse and leaky upon closer inspection. Additionally, it mentions how interactability

cannot only be achieved using the same methods as in polygonial based environments

because there are many voids between the points. This prevents, for example, interac-

tions where objects are selected by ray intuitively.

11

2 Related Work

Bonato et al. [Bon+16] show how the problem of the lightness and noisiness of the

dots could be tackled on closer inspection and how an immersive experience can be

recreated from a scan. Among other methods, they use so-called splats, which repre-

sent the dots as round disks with an orientation, and can thus fill the gaps between the

dots and blend the colors in between. The render engine was implemented in C++ and

shaders were implemented with GLSL 4.

Standalone applications give the developers a lot of freedom in representing the virtual

environment. However, it also requires much more effort to include interactive ele-

ments without an underlying physics engine or an input manager, for example, as they

would be provided by a game engine.

2.3.2 Use of Game Engines

Due to the large communities around game engines like Unity and Unreal Engine,

there are several tools that provide support for specific problems like performance is-

sues in connection with point cloud data. Much of the literature dealing with point

cloud applications in conjunction with VR uses Unity as the underlying engine.

Thus, in Wirth et al. [Wir+19] work reports on PointAtMe, a labeling tool they de-

veloped. It is possible to annotate certain points by sophisticated use of the controllers.

The use of Unity makes sense in this work, because it is a very interactive application,

which itself acts as a tool. Therefore it is very dependent on the ease of use and the

interaction possibilities.

PointXR toolbox proposed by Alexiou, Yang, and Ebrahami [AYE20] is a set of Unity

applications that can host experiments in association with point clouds which can as-

sess the performance of the state of the art MPEG compression. It also allows the user

to configure different visual appearances of the point cloud with the included software

package. This example shows how applications with very specific uses in this area

can still use a game engine as a foundation and then devote themselves fully to their

requirements.

The very popular Unreal Engine is also used for various projects for the implemen-

tation of virtual reality applications. The example of Hilfert and König [HK16] shows

how the Unreal Engine is used for the implementation of an immersive system to sup-

port engineering and construction. They mention that Unity is more mature, but that

Unreal Engine provides more detailed graphics.

Ultimately, there are many arguments in favor of both engines, but in practice for

projects involving point clouds and VR, Unity tends to be used more often. Further-

more with the requirements of this work not being aimed specifically at graphical ele-

gance the decision for Unity was reasonable. A significant reason for this choice was

also my prior experience I had with the Unity game engine.

12

3 Approach

Figure 3.1: The way the data gets processed in this project. From top to bottom: The
first two sections are described in section 3.2. The next two parts include
the segmentation processes and are described in 3.3. The last part regarding
the Unity integration is described in section 3.4.

13

3 Approach

The introduction states that the goal of this project is to implement an optimized

pipeline starting from a 3D scan and ending in a VR application. The VR applica-

tion itself should provide a specific set of features, which include the ability for the

user to align a room, walk around freely and interact in different manners with the

room. This means that the project consists of multiple parts that compose the final

product.

Some decisions about what the pipeline should be consisting of were made right at the

start of the project. Regarding the data processing from the raw data, I had to define

methods that support the process of taking a 3D scan and putting it into a VR appli-

cation. In order to make use of the unordered point cloud data, it has to be segmented

semantically, so that physical bounding boxes can be generated, or that a distinction

between different objects can be made. Therefore, to achieve the final result of this

project, diverse processes of other work were used.

Basically, the procedures for the patch extraction and the patch adjacency detection

of the data are adopted from the work of Mattausch et al. [Mat+14]. This can be seen

on figure 3.1 in the second box ”Patch Processing”. The resulting patches with the

adjacency information are then used in Sun et al. PGCNet [Sun+20] to train a model

that can then be used to semantically segment other unknown data. This is illustrated

in the third box in figure 3.1 as well. The next part of the project included the imple-

mentation of the VR application that should be easy to use and that includes interactive

elements. Over the course of the project, I decided which interactive concepts should

be implemented. Those requirements can be summed up to the following points:

• Alignment of a point cloud to a real physical room.

• Activating and deactivating as well as coloring different labeled elements.

• Replacing some objects with a mesh automatically.

• Placing preset objects onto specific labeled objects.

• Replacing walls, floor and ceiling with a mesh and apply a preset texture to them.

• Throwing different objects at the objects in the room.

• Transforming the room into a set of preset environments.

In the following part, these processes are illustrated. The work steps are thus explained

with the sequence how the data is processed through the pipeline in high detail.

The first section 3.1 explains the choice of the hardware and software as well as the

used frameworks and languages. The first part of the implementation pipeline de-

scribes preprocessing 3.2, which explains how the files were processed and how the

initial patch extraction took place. The next part describes the segmentation of the data

3.3, which contains the use of the PGCNet and the subsequent postprocessing as well

as the polygonial surface reconstruction. In the following part the integration of the

data in Unity and the implementation of the Unity application are described 3.4. The

last section 3.5 reiterates over the whole implementation of the project in chronological

order and points out special events in general.

14

3 Approach

3.1 Technical Context

This project is based on the use of different components which contribute to achieve

the final result. The development and rendering took place on a Windows 10 operating

system with an NVIDIA RTX 2080 GPU, 16GB DDR4 RAM and a 3.7GHz i7-8700K

CPU. I chose Windows as the operating system, because I am used to it and also be-

cause Unity’s most recent releases are available for Windows.

The work on ”Object Detection and Classification from Large-Scale Cluttered Indoor

Scans” [Mat+14], which is used for the patch extraction, is written in C++ and config-

ured in a CMake environment. The polygonial surface reconstruction component in-

cludes implementations of a CGAL package written in C++ and works with the CMake

build system. The subsequent implementation of PGCNet [Sun+20] for semantic seg-

mentation was implemented using PyTorch. Between processing operations, Python

scripts are used to summarize, split and transform the data into the appropriate for-

mats.

I used Visual Studio for the maintenance and the development of the parts written in

C++. The development of the Python scripts and the edits in the PGCNet were made

with PyCharm. Unity was chosen as the game engine to build the VR application.

In Unity, the OpenVR Unity XR plugin is used, which provides the necessary sdk

libraries for users to build VR applications and which are also specifically optimized

for the HTC Vive Pro, which is used in this project as well. The implementations in

Unity are written in C# using Visual Studio as well.

The HTC Vive Pro was used, because it has the ability to use a GPU of an external

system. Therefore it is able to process demanding tasks, which consist of rendering

multiple hundred thousand points. The HMD was provided by the University of Zurich

for the time of the development.

3.2 Preprocessing

The starting point for this work is point cloud data from a dataset or raw data from a

3D scan. The data is either already labeled in order to train the network or it comes

unlabeled in order to be segmented. Since the preprocessing hardly differs for both

data types, the respective processes are described in parallel. The preprocessing in-

cludes the formatting of the file types and the extraction of the patches as well as the

adjacency information. The section is describing the operations and methods that are

performed on the data.

15

3 Approach

3.2.1 File Processing

The Stanford S3DIS [Arm+16] dataset used is an indoorscan consisting of 695 million

points. It is divided into six areas which are divided into different rooms. The rooms

are divided per object into .txt files which store the data in the form xyzrgb. A distinc-

tion is made between 13 different object types, which are as follows: bookcase, board,

clutter, window, door, table, chair, sofa, ceiling, floor, wall, beam, column.

Because of this division of the data, the files are processed and grouped into larger

files for later calculation, which represent whole rooms and not just individual objects.

Thereby a further feature is added, which represents the label of the object.

This process is done with a python script, which was provided as part of the PGC-

Net [Sun+20]. The new files, of which each file represents a room, now have 7 fields

and contain the positions, colors and the corresponding label of the room. For the up-

coming process of extracting the patches, normal information of all points is necessary

and therefore must be calculated for each point. The normal information represents an

orientation of a point and should preferably be similar for points lying in a plane.

However, in order for the files to be processed efficiently, they are first converted to

.ply format and stored in binary encoding. The conversion is also done with a python

script and the module plyfile, which makes the handling and parsing of .ply files very

user friendly.

The normals are generated from this step on with a Matlab script, that makes use

of the Matlab add-on Computer Vision Toolbox. In this case, six surrounding points

were taken as reference to calculate the normal direction of each vertex with a plane

fitting method. The method used for the plane fitting was introduced by Hoppe et al.

[Hop+92]. The method is divided into two substeps, in which the first step defines a

local area to be observed and a second step in which a contouring algorithm is used to

approximate a simplical surface.

As a last step before reading the data for patch processing, the .ply files are manipu-

lated again in such a way that the field naming and structure matches the one expected

by the patch processing code. Thus an alpha value is added to the color with a python

script, so that the colors are stored in the format rgba.

For data that does not originate from the dataset and directly represents a roomscan, the

process is the same from the generation of the normals onwards, since laser scanners

do not normally perceive normal information precisely.

3.2.2 Patch Extraction

The original work presented by Mattausch et al. [Mat+14] is segmenting indoor scenes

by detecting repeated objects. They describe a process by which objects can be seg-

mented from scans, which is achieved by finding similarities between different scans

of similar structure. Previous approaches [Kim+12] use reference data, from which

similarities are then compared with the scans, but this is prevented in the case of the

16

3 Approach

work described here. In order to massively optimize the process, the data is simpli-

fied and points that lie in roughly the same plane are grouped as patches and from it

fitting rectangles can be obtained. These rectangles are much more efficient to handle

and have certain features. The patches from this first step are then further used for the

approximation process according to certain features in a high-dimensional Euclidian

space. This is done in order to perform the similarity finding. After that, the patches

are clustered to perform object-based segmentation, but it is mainly the first step that

is most relevant for this work. Namely the patch generation with the different features

together with a function that calculates the adjacency information of the patches.

The patches are generated with a greedy region growing algorithm, in which the nor-

mals and the position of the points are considered. The features are then calculated

from the resulting fitting rectangle. The image 3.2 illustrates a patch with it’s fea-

ture descriptors in the form it was originally used. All of the features except F6 are

later used to derive the patch features for the patches used in PGCNet. Directly af-

ter the patch creation process, the adjacent patches are searched per defined distance.

The adjacency information is also saved in a separate file, because it is then used by

the PGCNet afterwards. The input of PGCNet is a scene graph, in which the patches

represent the nodes and the adjacency data is building the edges,

Figure 3.2: The patch features of the original method in the patch processing intro-
duced by Mattausch et al. [Mat+14]

3.2.3 Patch processing in Practice

Figure 3.3: Left: The point cloud with original colors. Right: the same point cloud
with randomly applied colors per patch in order to visualize the patch seg-
mentation. This scene consists of 355 patches.

In order to utilize this method the prepared .ply files are read into the code, which is re-

sponsible for the patch processing. The patches were originally stored in .patches files

and must now be stored in .txt files, so that they can be used correctly later. A total of

17

3 Approach

17 features are stored per patch, which are derived from the original patch features and

point features. The 17 required features of the patches are the following: x, y, z, n1,

n2, n3, height, length, ratio, area, fillratio, borderarea, width, r, g, b and label.

For example, the colors are average values of the points that make up the patches.

This means that each patch has a uniform color. The code has been slightly adapted

for this purpose.

Also the labels were not included in the original code from the patch processing

method, so a majority voting function was implemented, which assigned the label that

occurred the most in the contained points of a patch. An alternative method would

have been to take the label of the seed points of the patches, however majority voting

proved to provide accurate results.

Originally, only the patches that did not belong to the wall, the ceiling or the floor

were used after patch processing. For this work, however, these are also important and

must therefore be taken into account. For this purpose, the parameter which defines

the room height, was increased to the complete room height. Thus, all patches have

been used as can be seen in the Figure 3.3. Different patches are drawn in different

colors so that they can be distinguished here.

The adjacency information, which is derived immediately after generating the patches,

is also stored in a separate file. They are based on the evaluation of a measured dis-

tance value between patches. All adjacent patches are noted in the form of two tuples

in another .txt file.

Thus all data needed for the network is available. Practice shows that a point cloud

file of about 30MB can be reduced to a patch file of about 28KB. However, since the

point clouds should be completely reconstructed after the segmentation process, the

references of all points to their generated patches must be maintained. Therefore a

third file is created, which has a patch index for each point index. The visualisation of

the reconstructed patches can be seen on Figure 3.3, where all the patches are colored

in a random color.

The values x, y, z as well as the length of the normal vector must be normalized for

the following step, so that the spaces have a uniform structure. This is done with the

help of a Python script, which reads the written patch files and sets all position data be-

tween 0 and 1 and sets the normal vectors to length 1. Therefore all files are correctly

formatted and the data can be transferred to the network. In order to get a normalized

value z the following formula 3.1 was used. The value x represents the value of a given

dimension.

z =
x−min(x)

max(x)−min(x)
(3.1)

18

3 Approach

3.3 Segmentation

After the preprocessing step, the data can be used to train the network and also to be

tested by the trained network. This testing step is then responsible for the segmentation

determined by the network. Therefore, the training takes place on the labeled data and

the testing can take place on unlabeled data. The following section describes how the

segmentation was realized and how the method of the segmentation works.

3.3.1 PGCNet

The PGCNet, proposed by Yuliang et al. [Sun+20], embodies the core processes of the

semantic segmentation of data presented in this thesis. It tries to tackle the computa-

tionally time-consuming issues of other deep learning based methods for indoor point

cloud segmentation. This is basically done by treating the generated surface patches

as nodes in a graph structure of which the geometric properties of the patches can be

used as node features. With the help of the adjacency information the concept of the

graph structure is realized by creating a Scene Patch Graph (SPG). In order to create

hierarchical edge features from the created SPG, a module called dynamic graph U-

Net (DGU) was utilized.

To train the network, the patches and adjacency data processed from the S3DIS [Arm+16]

database were read in and trained over 200 epochs and a batch size of 8 was used. Ar-

eas two to six were used for training and area one was used as the initial testing area.

The training of the models with these settings and the use of the GPU with CUDA

took about an hour. The testing itself took only a fraction of that and was completed

in approximately a second. The output of the testing was provided as a list of labels

belonging to the tested files, determined by the network.

3.3.2 Subsequent Postprocessing

After the labeling of the patches, the point clouds need to be reconstructed. Due to the

strong simplification of the data, the original points must be reassigned to the newly

labeled patches. This is where the stored points-to-patches relations from the patch

processing step come into play. This step is done using a Python script. Here all points

of an assigned label are collected in a file and then again saved as a binary .ply file.

This means that after the postprocessing step one file per patch is generated, which

then carries the label in its name. The .ply files from this step can then be used in

Unity.

3.3.3 Polygonial Surface Reconstruction

Another step is the rough reconstruction of the room boundaries as a mesh. The mesh

is used directly in Unity and can be used as an alternative representation of the scanned

points representing the floor, walls and ceiling. For this purpose, a polygonal surface

reconstruction algorithm is applied, which is provided by the CGAL library [Nan21].

19

3 Approach

Figure 3.4: The surface reconstruction of a room after taking only the floor, walls and
ceiling and downsampling to about 5% of its size.

This algorithm takes planes from the input point cloud model in a first step. In a next

step candidate faces are determined, which are located between the intersections of the

planar primitives of the planes. After optimizations, a subset of candidate faces is cho-

sen that reflect the topological properties of the scan and a new mesh is formed. This

basically means that from an input of floor, wall, and ceiling point clouds, a simple

and watertight mesh can be generated whose topological properties are derived from

the original conditions.

The semantic segmentation process takes care of extracting these components needed

for the reconstruction. In order to start the process only a conversion of the neces-

sary .ply files into a unified .pwn file is necessary, which again is done with the help

of a Python script. For performance reasons, the point clouds are reduced to 5% of

the number of points beforehand. This is done by clustering decimation in meshlab.

Hereby details are lost, but they are completely irrelevant for the surface reconstruction

as long as the decimation keeps points in an evenly distributed fashion.

As an output a mesh file is saved in .ply format and is converted to .blend format

using Blender in order to be treated as a mesh file in Unity. In Blender the object is

also UV unwrapped with a cubic projection and three materials are separately applied.

This helps to distinguish the ceiling, wall and floor materials later in Unity.

3.4 Unity Integration

Different plugins for well-known game engines in connection with VR are currently

under discussion, because different frameworks are compatible with different manu-

facturers and platforms. The long-term support of the various frameworks has also to

be considered by the developers. For this project, OpenXR, developed by Khronos,

was chosen because it has unrestricted access to different platforms and devices and

because it allows Unity’s new input system to be connected to it. Specifically, OpenXR

was connected to the input system using the new XR Interaction Toolkit, which was

still available as a preview package in the package manager at the time this work was

developed. Thus, various inputs can be kept in general and changed very easily. De-

ployments to devices like Facebook’s Occulus should also be possible. This generally

gives the project scalable and modular properties.

20

3 Approach

The basic framework of the VR application consists of a Unity scene in which the

viewer can move freely with an HMD. Inputs are given with the help of two con-

trollers in their hands. The following subsections explain how the VR application is

built and how the point clouds are handled.

3.4.1 Point Cloud Handling

The point cloud data is imported in the .ply format for the use in Unity. The files that

are isolated by label are used. These files are then dragged into the scene and oriented

correctly. Since the coordinate system of Unity uses a different vertical axis, a rotation

of 90 degrees around the x axis is necessary. In the scene the files are basically not

changed anymore, because this process should be as automated as possible. The editor

is then used to pass the references to the individual labeled files to a defined point cloud

manager class object, which acts as a singleton.

In order to render the point clouds, a custom importer and renderer from a third party

is required, as Unity does not support this feature directly. For this purpose the Pcx

importer and renderer was used [Tak21]. The Pcx importer and renderer allows to ren-

der the point cloud using different container types. There is the mesh container, which

is rendering with a standard Unity mesh renderer and there is the ComputeBuffer con-

tainer, which renders the data using a custom PointCloudRenderer component pro-

vided by the Pcx package. The ComputeBuffer container was also used in this project

for rendering.

The mesh container is needed by Unity, in order for it to treat the point cloud like

a mesh and that a convex mesh collider could be applied. This allows a user to inter-

act physically with the object for example. The ComputeBuffer container stores point

data and therefore the points can be contained in a PointCloudData object. With this

component I had the possibility to change the color tint of the point cloud and also to

change the size of the points. The points are rendered as disks and their orientation is

looking towards the camera.

The mesh from the surface reconstruction 3.3.3 is taken into the scene and aligned

with the point cloud manually. It embodies the walls, the floor and the ceiling as mesh.

A specific reference to this mesh is also included in the point cloud manager class.

In this case the traditional Unity mesh renderer components can be used with simple

materials.

3.4.2 Creating the VR application

With OpenXR, Unity provides an environment where the tracking of the HMD and

the controllers work pretty much out of the box. However, the hand models are not

included by default. This meant that I had to implement a system to control the VR

application as a user. My idea was to use hands at the place of the controllers, which

can be pointed at a panel that displays the current options a user has.

21

3 Approach

Figure 3.5: Left: The hand model [Tec17] with its rig. Middle: The “pinch” keyframe
applied on the mesh. Right: The same pose of the hand during utilization.

In order to use hands as controllers I needed a mesh of a hand and the adequate Occulus

hand models [Tec17] were used. These came originally in the .mb Maya format and

had to be converted to the .fbx format for proper use in Unity. The rig of the models

was already available and so keyframes for the gestures “pinch”, “point” and “throw”

could be set with the animation tool integrated in Unity.

A rig basically represents the bone structure of a model. In this case, the hand and

finger bones are represented in a simplified hierarchical structure of bones being inter-

connected. The mesh, which is located around the bones, adapts to the transformations

of the bones and therefore different poses can be represented by putting the hand skele-

ton into specific shapes. The keyframes store the changed positions of the bones in the

rig and can then be referenced in the context of Unity blend trees.

The blend trees are components that can be used as keyframe managers in Unity’s

animator system. They allow the conversion of keyframes to a model in runtime and

allow smooth blending between different frames. Thus it is possible to determine with

a value from 0 to 1 how much a keyframe, respectively how much the ”point” gesture

for example should be applied to a hand model. As a reference for this value, the value

of the trigger button is read out via the input system and the hand gesture is adjusted

depending on how hard the button is pressed. This gives the user intuitive control over

the hand, as the finger movement on the trigger button is directly transferred to the

hand in VR.

The hand models were then each assigned to a controller, which created the interaction

basis. In order for the interface, between the user and the controller, to be designed

as simple and intuitive as possible, most actions are activated with the trigger button.

Likewise, it does not matter whether the user uses the right or the left hand for the

interactions.

22

3 Approach

These measures contribute to the fact that the user does not have to think unneces-

sarily about which button she has to press and contributes to the maintenance of the

immersion. To enable more than one action to be performed with the same button,

I have designed the application in such a way that it can adopt different states with

different modes in which specific actions can be performed with the same inputs. For

example, there is the pinch or the point mode in the main menu state, which determines

which current action should be executed with the trigger button.

Figure 3.6: The controller of the HTC Vive Pro with the trigger button and the touchpad
button marked in yellow.

One other action has been implemented separately from the trigger button. Namely,

the activation and deactivation of the panel through which most interactions with the

application can be controlled. This action can be performed at any time and takes

place via the touchpad button. Again, it does not matter which hand is used to perform

the action. The touchpad button and the trigger button are marked yellow in Figure 3.6.

When activated, the panel is placed at face level, one meter away and facing the user.

Buttons are displayed on the panel, which offer the user options that can be selected at

that particular moment. This is controlled by the state, in which the application is in at

any given time.

23

3 Approach

Figure 3.7: The selection of a button on the panel by pointing at it and pressing the
trigger button. This is the panel the user will see in the beginning after
launching the application.

As shown in Figure 3.7, a ray appears on the hand that is currently triggered. If both

hands are triggered, then the beam appears only on the hand that was activated last.

This gives intuitive and unambiguous control. When the ray is pointed at a button, it

is indicated by color shift whether a button is selected or activated. The distance from

the player to the button does not matter in this case, because a ray from the hand with

the same direction as the visual ray is cast and checked for collisions with a button.

The activation takes place by pressing the trigger button completely.

3.4.3 Room Alignment

In order for the scanned data to be displayed correctly in the virtual environment, the

data must be aligned properly. This process ensures that users have the ability to move

freely in the virtual space without running into walls or other obstacles. This means

that the size, orientation and position of the point cloud in the virtual environment cor-

respond to the dimensions of the real environment. The handling of the orientation is

designed to be as simple as possible and should not be too complicated for the user

to use. Therefore, when loading a new point cloud in the application, it is always

necessary to realign the area. Certain operations can automatically be adjusted, con-

tributing to more consistent alignments. Specifically, these are the adjustment of the

size and the adjustment of the position on the height axis of the point cloud. Because

of the intrinsic size of the scan, the dimensions already match those of the virtual envi-

ronment, and I could assume that this would not need to be changed for the alignment.

The adjustment of the height position can also be neglected because the points of the

scan representing the ground are set to height 0. Since the floor of the virtual environ-

ment is also known, these floor points can be set to the virtual floor and thus all point

data can be positioned correctly along the height axis.

24

3 Approach

I decided that the user is free to choose whether they want to do the size and height

orientation automatically or manually. However, by default they are set to automatic.

By setting the height and scale manually, it is possible to scale an position a room in

any size at any position. These adjustments can be made in the settings at the begin-

ning after the application start.

Figure 3.8: Left: The reference points are marked in the real world. Right: The points
have to be adjusted in the Unity scene on the scan at the same position like
the real world markings. This process is done before launching the appli-
cation in order to have references to then align the point cloud at runtime.

The first thing the user sees after starting the application is a black room with a wire-

frame background [Lab14]. He can move around freely in it and set the aforementioned

settings. It is the lobby, so to speak, in which the application can be closed, or a point

cloud can be loaded. In order to load a point cloud, the user must click on the ”Align

Point Cloud” button after activating the panel at his position by clicking on the touch-

pad button as shown in Figure 3.7. When the user selects this option, a text appears

on the panel describing what to do to perform the alignment. “Drag the line from your

preset from the marked starting point to the endpoint”. The application is now in pinch

state and allows the user to drag a line. The hand movement changes from pointing to

pinching.

To perform a proper alignment, one of the hands must now be moved to the posi-

tion of the green marker in the real world. Once this position is reached, the user can

trigger the controller to perform a pinch movement. This sets the green marker in the

virtual environment when the trigger button is fully pressed. This process can be seen

in the Figure 3.5 on the right. Then the hand should be pulled in the direction of the

red marker and then release the trigger button at the red marker in the real world in

order to set the red marker in the virtual environment.

The point cloud is then aligned according to the line drawn and the settings made.

If the size and height positioning is set to be aligned automatically, then only the hori-

zontal position and the horizontal orientation are adjusted.

25

3 Approach

The rotations around the two horizontal axes x and z do not need to be taken into

account, since the scan is already correctly aligned. In order for the transformations to

be performed on a single object, all objects associated with the point cloud are struc-

tured as children of a point cloud parent. All the transformations that are then applied

on the parent, are directly transmitted on the children. Additionally the position of

the point cloud parent is set onto the green reference point set in the scene before. The

first transformation is the adjustment of the position of the point cloud. The green point

previously set in the Unity scene is used as the reference point for the new center. The

point cloud is moved, so that this point coincides with the green point set when the line

was drawn.

Next, the direction of the vector between the points set in the scene is compared to

the same measured direction of the vector from the points set in runtime. For the com-

parison, the vectors are projected onto the horizontal plane, since the height axis is not

relevant for the reorientation of the point cloud. The comparison results in an angle

that describes the necessary rotation needed to align the point cloud to the drawn line.

In C# an angle of two vectors can be measured using Unity’s built in Vector3.Angle()

function. However, this angle is always positive and at most 180 degrees. This leads

to problems with the reorientation of the point cloud, since there are ultimately two

possible initial situations for each angle. In order to distinguish between positive and

negative angles, I have made the cross product of the two vectors to find out the angle

polarity. This creates a new vector that is perpendicular to the two others and whose

orientation provides information about the constellation of the measured vectors. This

is shown in the following code Listing 3.1.

If the size and height are not automatically adjusted, the size ratio between the set

points is measured and thus applied on the point cloud origin. When positioning, the

height is also adjusted in comparison to before and not set to 0, so that this is not nec-

essarily set on the floor. The non-automatic height or size adjustment allows users to

view the point clouds in custom scenarios.

26

3 Approach

Listing 3.1: Aligning the point cloud in Unity

1 public void AlignPointCloud()

2 {

3 Vector3 oldDistance = Vector3.Distance(oldGreenPosition,

oldRedPosition);

4 Vector3 newDistance = Vector3.Distance(newGreenPosition,

newRedPosition);

5 Vector3 oldDirection = Vector3.ProjectOnPlane(

oldRedPosition - oldGreenPosition, Vector3.up);

6 Vector3 newDirection = Vector3.ProjectOnPlane(

newRedPosition - newGreenPosition, Vector3.up);

7

8 // Adjust position (the pointCloudOrigin is set to the

oldGreenPosition)

9 pointCloudOrigin.transform.position = newGreen.transform.

position;

10

11 // Adjust scale

12 float scaleProportion = oldDistance / newDistance;

13 pointCloudOrigin.transform.localScale = pointCloudOrigin.

transform.localScale / scaleProportion;

14

15 // Adjust orientation according to vertical axis

16 // Obtain the directions by projecting the measured vectors

on horizontal planes

17 float angle = Vector3.Angle(oldDirection, newDirection);

18 // Get cross product in order to determine angle polarity

19 Vector3 cross = Vector3.Cross(oldDirection, newDirection);

20 if (cross.y < 0) angle = -angle;

21 pointCloudOrigin.transform.RotateAround(pointCloudOrigin.

transform.position, Vector3.up, angle);

22 }

3.4.4 Interactive Elements

In order to actively interact with the point cloud, I tried to make use of segmentation.

The interactive elements give new properties to the space, by allowing it to be per-

ceived and experienced differently than just being there, without VR. I inspired myself

with Holoft [Gug21] and tried to implement various elements in order to enhance the

experience besides being able to see the room as a point cloud. In this subsection I

explain how the different interaction possibilities work. The first subsection describes

what measures help to allow a user to manipulate the scene. The next sections explain

the interactions and the themes that were implemented.

Scene Manipulation

In order to interact, the panel can be used again. For this, however, the buttons change,

since the application is now in a new state and new modes can be activated. In order to

use the panel, the user can place it in a suitable location and operate it from there. All

possible interactions are divided on several pages and can be accessed by the pointer.

The first page shows the buttons to activate and deactivate the labeled segments. It also

allows changing the colors of the different elements and it allows the user to adjust the

disk size of the points. The first page of the panel can be seen in Figure 3.9.

27

3 Approach

Figure 3.9: The first page of the interaction panel in order to change the appearance of
the scene.

The first two interactions that I describe here are additionally used to also visualize

the point cloud segmentation and do not only serve the purpose of changing the look

of the space.

The simplest interaction lets you activate and deactivate the individual segments sep-

arated by labels. These labels can also be seen on the panel in the figure 3.9 and so,

for example, you can hide tables and chairs in a room to see how the room would look

without them. An additional ”toggle all” button helps to switch all objects on or off

together, so that the original situation can be restored.

The other interaction which also helps to visualize the segmentation is the assignment

of color tones for the different segments. This way, the boundaries of the segments can

be seen at a glance. For this purpose, a set of 13 colors was defined as a color palette

and then assigned to the segments. The user can use the “toggle color mode” button

on the first page of the panel, which activates or deactivates all colors. The execution

of this mode can be seen on Figure 4.1.

Another adjustment of the scene on the first panel is the adjustment of the size of

the disks representing the points. This allows gaps in the scan to be filled in and makes

the appearance of the scan a bit more realistic. The resizing of the dots remains during

the navigation across all panels. The difference that the size of the points makes can

be seen on Figure 3.10.

28

3 Approach

Figure 3.10: Left: A wall segment with a rather small point size. The wall looks very
sparse and the color of the points is not expressive. Right: Increasing the
size of the points fills up the thin look and creates a dense looking surface
with color.

On the next page of the panel there are more options that allow the user to change

the appearance of the scene. There are the following six options:

• Replace chairs with mesh

• Replace table with mesh

• Replace walls, floor and ceiling with mesh

• Put plants on the tables

• Put plants on the bookshelves

• Change wall textures

Similar to the method presented by Nan, Xie and Sharf [NXS12] I wanted to exchange

certain segments with a mesh. With the information given by the segmentation, it was

possible to identify where tables or chairs were located. I assume that there is only one

table in the room and that the room is displayed in real size. The chairs and the table,

which are instantiated as a prefab, have a fixed shape and size. This limits the accurate

representation to the initial situation of the scenes.

Figure 3.11: Left: The table and the chairs have been replaced with a mesh object.
Right: Plants have been placed on all surfaces labeled as a table.

29

3 Approach

To get the center point for the placement of the table, rays are cast down over the

whole scene from above the point cloud. The rays are arranged in a grid and close to

each other. As soon as a ray collides with a searched object, this point is saved. From

all the points saved after all the rays are cast, an average point is calculated to get the

placement point for the table. The height of the point does not matter, because the table

is placed on the ground anyway.

The same method is used for the placement of the chairs. However, instead of choos-

ing a center point, a subset of all collisions is chosen where the points have a certain

minimum distance. This prevents two chairs from being placed inside each other. In

comparison to the table, the chairs are additionally rotated towards the table. This

action is based on the assumption that chairs in a room are basically rotated towards

tables. Thus, I am carrying out the assumption made by Nan, Xie and Sharf [NXS12]

and make use of contextual information.

For the placement of the plants on the table and on the bookcases I use the same

process as for the placement of the chairs. Here the collisions are chosen as placement

points and random plants are set as prefab. The process is explained in the Figure 3.12.

The result of the chair and table replacement as well as the positioning of the plants

can be seen on Figure 3.11.

Figure 3.12: A grid (green) casts rays downwards in order to detect valid objects. From
all the rays that collide with the specific label (red rays), a random sub-
set of the ray collisions having a specific minimal distance between each
other is chosen (red crosses) as possible points to place objects.

30

3 Approach

In order for the collisions to be detected correctly, the objects must be provided with a

mesh collider component in Unity. Since Unity can only use these colliders in convex

form for performance reasons, there is a problem with complicated and scattered ob-

jects. If the labeled segments are considered as whole objects and one mesh collider

component is used per object, then concave topological properties are ignored and the

colliders span the object as a whole. This is very unfavorable for certain interactions

and for the exact detection of collisions with rays. The problem can be seen on the left

side of the figure 3.13.

I have solved the problem by taking the separated patches as objects for the collision

detection. They can still be assigned to a label and are placed at the same position as

the rendered points, but are not rendered themselves. Due to their simple topology, the

mesh colliders can be applied more precisely. The application of the mesh collider can

be seen on the right side on figure 3.13 and shows how the collider (green bounding

box) fits much more accurately around the chairs.

Figure 3.13: Left: The convex bounds of the mesh collider applied on all the points
together labeled as chairs, Right: The convex bounds of the mesh collider
applied on all the patches separately labeled as chairs.

The walls, floor and ceiling can also be replaced. The corresponding point clouds

are hidden and the mesh is loaded from the surface reconstruction 3.3.3. This mesh

also has the point cloud origin as parent and is therefore in the correct position. The

“Change Texture” button randomly activates wall and floor textures from a set of pre-

defined textures. In addition, when activating the mesh, the lighting must also be set

from the directional light to a point light, because otherwise the room is not lit from

the inside. The position is placed 1m above the table.

The Figure 3.14 shows the effects of the materials used. The parquet floor, for ex-

ample, has a high smoothness value given from the used the Unity standard shader,

and therefore looks shiny.

31

3 Approach

Figure 3.14: The replacement of the walls, floor and ceiling with a mesh from the
surface reconstruction. The textures on the walls and on the floor are
chosen at random from a selected set of textures.

Figure 3.15: The three throwing objects, which can be chosen and thrown from both
hands. Basketball: Very bouncy. Soccer ball: Less bouncy. Vase: Break-
able

Scene Interactions

In order to interact directly with the scene, and to take advantage of the patch segmen-

tation, I decided to use the throwable objects. On the third page of the panel, the user

can choose between the three throwable objects as shown in the figure 3.15.

The objects have four different properties that are noticeable when thrown. The bas-

ketball has a so-called physics material with a high bouncyness and bounces off all

objects. The football, on the other hand, has no bouncyness. The vase breaks and

shatters into many pieces in a collision with another object, if the speed at the impact

was high enough. A small cloud of dust is created to enhance the effect. These objects

32

3 Approach

are assets from the Unity Asset Store [Ism15], [JN319]. An example of this feature in

action can be seen on Figure 3.16, where jars are shattered by throwing them at other

objects.

Figure 3.16: Demonstration of the throwable objects thrown from both hands. On the
ground many basketballs soccer balls and fragments from the jar are visi-
ble

Scene Themes

Figure 3.17: Left: Under water theme. Right: Nature theme.

I was inspired by the work presented in section 2.1 and came up with two possible

themes that could work well in this VR application. The user is immersed in a new

world and experiences the space in a completely new environment.

33

3 Approach

For the underwater theme, all elements except the ceiling, floor, chairs, table and

columns are removed. This opens the space enormously and allows the fish to swim

through the space. Fish look for random points within a defined bounding box and then

check if a possible aiming point is behind an obstacle. If this is the case, they look for

new points. The fish have an animation and play it in a loop. There is also a humpback

whale [Jan12], but it does not get too close to the user. The two sharks [Jan18] will

choose random points like the fish, but they are very calm and won’t attack at any time.

The caustics [Ait14], which can be seen on the ground, were projected onto the ground

plane with a projector component and an additive shader. The water surface is another

shader [Ves21] from the Asset Store. A screenshot from the under water scene can be

seen in figure 3.18. An enhanced underwater effect is also underlined with a matching

soundscape and supported with a dense ambient fog as well as with a specific visual

post processing profile.

The nature theme uses a completely different post processing profile, and I try to em-

phasize the atmosphere a bit with a bloom effect. In order to have a vivid sky, I added

a dynamic skybox with a sun disk provided by Unity to the scene. Also an adjusted

soundscape and specific lighting conditions give the scene a believable look [War15]

and [Pol15]. Two deer [Jan18] target random points around the user and then go there

to eat for between 5 and 15 seconds before targeting new points. They use the Unity

navigation mesh in order to navigate on the terrain mesh. This way they are avoiding

the objects like the point clouds or the rocks [K418] in the distance. If the player gets

too close and within a certain radius to the deer, they look for a new point in the ap-

proximate opposite direction and a certain distance and run towards it until they return

to their normal activity. This effect as well as the clouds [Wor17] add depth to the

scene and put the player in this world. Figure 3.19 shows how the nature theme looks

in combination with the point cloud.

Figure 3.18: A glimpse of the underwater world with a humpback whale and sharks in
the background.

34

3 Approach

Figure 3.19: A frame of the nature scene with the deer in the background and the iso-
lated table and chairs in the foreground.

3.5 Implementation

Although the previous sections deal with various implementation processes, I would

like to take a general approach to the workflow and methods in the following section. I

show how I proceeded with the implementation and what problems I encountered. The

section covers the code structure and the methods used to test the system. The events

are explained here in chronological order.

3.5.1 Project Setup

At the very beginning of the project Prof. Dr. Thomas Fritz, Prof. Dr. Renato Pajarola,

Lizeth F. Perez and I set the goal to create a VR application that displays a room scan

in real dimensions and in which a user has the ability to interact in various ways with

the environment. Additionally the goal was to automate the process of taking a scan

and using it in the mentioned interactive application. First, based on this goal, a rough

outline was laid out and methods were discussed to achieve this project. The HTC Vive

Pro was then provided by the University of Zurich and from there on regular meetings

were held with the leading professors and the assistants at 2-week intervals to discuss

the state of progress and immediate goals. The code of the different parts was shared

within a repository over GitLab.

35

3 Approach

3.5.2 Procedure

The source code for the PGCNet was provided by Prof. Dr. Pajarola and studied

with the paper [Sun+20] released in the visual computer journal. For this purpose, the

S3DIS dataset [Arm+16] was downloaded and with some consultation with Dr. Yu-

liang Sun, Prof. Dr. Renato Pajarola and Lizeth F. Perez we were able to configure

the code in such a way that it was possible to read the data correctly but not to train it

yet. This process proved to be particularly difficult, as some components in the code

had to be changed or added in order to work. Additionally, the code for the surface

reconstruction [Nan21] was also brought in and studied, with the runtime environment

set up using cmake and Visual Studio 2019. For this purpose, an example cube object

was read in with the help of Lizeth F. Perez and set aside after successful processing.

In a next step, the code for patch processing was obtained to meet the requirements to

train the network. Due to certain characteristics, the patch processing code [Mat+14]

could not be compiled in Visual Studio 2019 because the automatic reformatting would

have changed essential parts of the code in such a way, that the application would no

longer work correctly. Therefore, Visual Studio 2010 had to be installed, with which I

managed to compile the code correctly. The patch processing code was then adapted

directly as it was needed for the project. This means that the application, which was ul-

timately responsible for these processes, carried out further calculations after the patch

processing and saving the files needed. These other processes were not isolated, as

they did not have a large impact on the performance of the calculation and were there-

fore not considered disruptive.

For the pre- and postprocessing steps of the data I first tried to integrate these pro-

cesses into the given code too, but this turned out to be rather complex and difficult.

Therefore I wrote specific python scripts for the individual data processing steps, which

processed the data accordingly. This meant that some steps in the pipeline, especially

between the calculations, had to be done manually from the beginning to the end. This

included transferring data and running scripts by hand, which took some more time,

but allowed for more transparency during development.

After training the network with the generated patches, the test accuracy was in an

inaccurate range below 50% at first. Further discussions with Dr. Yuliang Sun have

revealed that the data of the patches need to be normalized to obtain more consistent

results. In addition, various parameters such as the batch size or the choice of CPU or

GPU were adjusted until the results were sufficiently good.

I tried to generate meshes from the point clouds, however there was no quality im-

provement of the appearance of the data. I then decided to keep the point clouds as

they are and with the ability of changing the size of the points the appearance could

have been enhanced enough to look convincing in Unity. This effect is demonstrated

in Figure 3.10.

36

3 Approach

In Unity, I started looking for frameworks and plugins that are suitable for this project

and first came across the SteamVR plugin under the XR plugin management, which

was standard before Unity version 2020.2. However, this was partially replaced by the

OpenXR plugin at the beginning of 2021 and so I decided to build the Unity applica-

tion with the new plugin at a later date.

In addition to the main project, 2 other Unity related projects were created, in which

the concepts mentioned were used as a mockup and for testing.

In order to test the proposed ideas and features and to show them well, an environment

was created in the testing project, in which the same mechanisms could be viewed

traditionally on a screen without VR. Testing and debugging the project in VR was

rather straight forward because the application did not need to be built and could be

run and inspected directly within editor with the HMD. For the final product, the VR

application was then built and made available as an .exe for Windows.

37

4 Results

In this chapter I present the challenges with the corresponding justified solutions that

occurred during the development of this project. The consequent main contributions

are answering the two research questions that were presented in the introduction first:

• What are the challenges to realistically recreate a physical environment from

point cloud data in a virtual setting with interactive elements?

• To what extent and how can the implementation of a VR application be auto-

mated?

The following two sections 4.1 and 4.2 will discuss the corresponding research ques-

tions in detail.

4.1 RQ1: What are the challenges to realistically
recreate a physical environment from point cloud
data in a virtual setting with interactive elements?

The question of how the pipeline for this project should look like had to be asked at the

very beginning of this work. A big challenge in using point cloud data for a VR ap-

plication like I did in this project, is that the data does not have the same structure like

mesh data. This means primarily that the data consists only of vertices and not out of

planes, edges and vertices as it would be the case in a mesh. I addressed this problem

by using the game engine Unity and a custom renderer, which is able to display point

clouds. Unity provides many tools that help to implement interactive environments in

various settings.

In addition, the unstructured nature also means that it is not possible to differenti-

ate between objects. The separation of the different elements is an essential basis for

the interactions to be implemented. This is because in most cases the interactions are

related to specific objects or areas of a room. This enriches the types of interactions

and thus brings depth to the application.

It can be concluded that the use of point cloud data requires a special set of meth-

ods to transform the data into a VR application. Therefore, an essential processing

part of the data is a semantic segmentation before the integration into a virtual envi-

ronment. The specific challenges regarding the segmentation are described in section

4.1.1. The challenges of the handling of the data must also be addressed in the in-

tegration in Unity, which follows after the segmentation and is described in section

4.1.2.

38

4 Results

Figure 4.1: The visualisation of the semantic segmentation in VR. The labeled seg-
ments of a room are colored after toggling the color mode.

4.1.1 Segmentation Challenges

The semantic segmentation of data is a very complex task. Although segmentation can

be carried out very precisely by hand, it is a very tedious task and, in the case of large

data volumes, it is not always feasible. For larger amounts of data, neural networks are

suitable, which, once trained, can evaluate or label large amounts of data in a relatively

short amount of time. In this project, the PGCNet [Sun+20] was used, which is spe-

cially optimized for indoor environments. It uses planar input patches, that represent

planar segments of the raw data, which I also generate [Mat+14]. These methods allow

efficient fine-grained segmentation and semantic segmentation of the data. On the one

hand, this has advantages because large amounts of data can be processed in a short

amount of time. On the other hand, however, there are also challenges caused by the

use of these methods. Nevertheless, when extracting patches, care must be taken to

ensure that the raw data does not contain details that are too finely granulated, as these

could not be captured as planes and would then be lost.

Patch Segmentation

The segmentation of patches, which is based on a seeded region growing method,

extracts planar planes from a scan. This means that the raw data should preferably

contain many flat areas so that as many points as possible can be assigned to a patch.

Such requirements can be well met by indoor scans, especially from offices, as they

fulfill these characteristics. On average, about 90% of the points could be assigned to

specific patches from the data used in this project. This is a small loss of information

and mainly concerns data that could be considered noise or insignificant anyway.

Semantic Segmentation

The next segmentation, the semantic segmentation, is then done using a convolutional

neural network called PGCNet. The challenges in relation with the network in this

project consisted on the one hand in the correct adaptation of the code, so that the

patches could be read in correctly. On the other hand, however, the composition of

39

4 Results

the data with which the network has to be trained and also tested with, has a major

impact on the quality of the segmentation. The network was trained with batchsize 4

using Areas 2 to 6 from the S3DIS dataset within 56 minutes and was able to test Area

1 under one second. The test accuracy of epoch 200 amounted to 70.35%. However

the quality of the segmentation was not as good with tests from a scan of a University

of Zurich office. The UZH scan contains slightly different colors and different types

of furniture, which makes the recognition of the trained labels more difficult. It is

important to note that semantic segmentation should be based on a relatively similar

data set with a ground truth to be trained on as the set to be tested.

4.1.2 Unity Challenges

Because point cloud data really differs from the usually used mesh data in VR appli-

cations, it comes with some specific advantages and disadvantages. An advantage that

I was able to use for this project for example, is the correct proportions of the scan.

This made it easy to scale the scene in Unity later on, as it could be taken directly from

the original data. A mesh does not necessarily have the correct proportions when it is

created by an artist for example.

Unity enables a simple implementation of interactive applications in VR. Nevertheless,

implementing interactions with point clouds yields some additional challenges. Point

clouds do not directly represent a mesh as Unity would use it, because it just represents

a collection of points. This also means that the point cloud basically cannot be ren-

dered and that Unity cannot add colliding bounds as it would with traditional meshes.

The collider components, which are provided by the Unity engine, are components

that can be put on a mesh object. Whenever this is done, Unity creates an enclosing

mesh that represents the colliding borders of an object for the physics system of Unity.

However, because the point cloud does not represent a real mesh, a specific importer

and renderer [Tak21] was used as a plugin to allow Unity to use the point clouds as

meshes. With this plugin it was possible to treat the data as a normal mesh and so

also so-called colliders could be added, which can then be used in the Unity physics

engine and form the basis of many interactive elements. A problem that arises here,

however, is the generation of convex collider bounding meshes for the corresponding

point clouds. This would mean that for large and complex point clouds many details

would be lost. The problem was solved by applying these bounding meshes to the sep-

arate individual patches from the patch extraction. This process is illustrated in Figure

3.13 and explained in section 3.4.4.

40

4 Results

4.2 RQ2: To what extent and how can the
implementation of a VR application be automated?

Another goal of this work is to automate the process, which starts from a 3D scan and

ends with an interactive VR application. In practice, it would mean that a user can con-

vert a scan into an interactive environment with little manual effort. Manual modeling,

manual alignment or manual segmentation should be eliminated or minimized. In gen-

eral, seamless data processing contributes to the automation of this process, which in

this project takes place with the help of python scripts in the preprocessing and post-

processing phases. Although some steps in this project still need to be done manually,

they could be optimized for future projects.

The main approach to address the question of automation can basically be answered

with a method to segment the data like it is used in this project. However, since the re-

sults of the segmentation are then used to implement interactive elements directly, the

question can be taken further and should be answered with the interaction possibilities

that arise from the segmentation. In the following section 4.2.1, I am discussing the

challenges that I have encountered during the implementation of different interactive

elements.

4.2.1 Automation Challenges

While iterating over the interactions that relied on the segmentation I am addressing

the challenges and the findings that I encountered during the implementation. In order

to answer this question I assume that the measures of RQ1 have been realized, so that

further implementations can be built upon the mentioned fundamental solutions.

Visualizing the Segmentation

The first interaction that is described in the section 3.4.4 is concerning the activation

and deactivation of different labeled elements as well as the coloring of the correspond-

ing labeled objects. This is the most basic interaction that I came up with, that is based

on segmentation. It demonstrates how the segmentation actually labeled the points

and could act as a simple visualization of the segmentation as well. The challenge

in regards to this interaction are the logical references in Unity to the corresponding

labeled segments. This problem is solved by referencing the separate files, of which

each file represents a single segment, by their filenames. The filenames contain the

information about the label and they are created during the reconstruction phase in the

postprocessing 3.3.2 after being tested in PGCNet. Therefore, if files can be referenced

automatically, they can be easily be altered by changing the color or deactivating their

rendering component.

Replacement of Point Clouds with Meshes

The next panel is providing interactions that utilize the segmentation to alter the ap-

pearance of the scene in a more complex way. The option that replaces certain labeled

elements with meshes could be very useful for a wide variety of applications. A scene

based on meshes uses less memory, is easier to render in different lighting conditions

and ideally has no noisy appearances. These are only a few advantages, however the

41

4 Results

usability of such scenes is very dependent on the quality of the replacement. The ap-

proach that is used in this project is described in section 3.4.4, however the challenges

that I had were to find the precise boundaries of an object and to orient an object cor-

rectly. Due to the methods I used to place and orient the objects, the reconstruction

is not flawless in some situations. All the chairs will be facing the midpoint of the

table that is detected, and therefore they might be oriented the wrong way 4.2. Nan,

Figure 4.2: The rotation of the chairs is only guided by the position of the table. This
leads to chairs being rotated in the wrong direction as can be seen on the
right border.

Xie and Sharf [NXS12] solved the problem of fitting objects by starting out with a

highly accurate detection of different objects and boundaries in a scene. From there

on a fitting mesh object is chosen from a corresponding set of objects representing

the detected label. The template objects are then fitted via deformation methods and

structure-preserving optimizations over several iterations. This approach yields good

results as it can be seen on Figure 2.5, but it was out of the scope of this project.

Placement of Objects

The next challenge that I encountered is concerning the placement of the plants on

different surfaces of labeled segments. This process is described in Figure 3.12 and

illustrates a solution that searches for surfaces. Another way to approach this problem

would have been to search the upper bounds of the corresponding segments directly,

but then contextual information could not have been included directly. This means that

for example a placement of a plant across the floor would not have considered tables

or chairs that stood in the way of the plant.

Replacement of Walls, Floor and Ceiling

The process that enables the user to swap the walls with a mesh model and then change

the textures was automated in such a way, that those walls are generated with the help

of a surface reconstruction algorithm. This process makes use of the segmentation, be-

cause only the walls, floor and ceiling can be taken as an input. This would replace the

manual labor of modelling a room confining box, but yields some further challenges

like the correct UV unwrapping and application of the correct textures. This step is

done manually in this project, because it causes very little effort. However this could

be improved in further automated applications.

42

4 Results

Throwable Objects

In order to implement throwable objects in Unity, the used components should be able

to work with an underlying physics system. Point clouds do not resemble meshes as

Unity uses them by default, which yields further challenges to implement an interactive

system that works with the physics system. However those challenges are addressed

and explained in RQ1.

Themed Environments

An apparent challenge regarding the themes was to activate or deactivate correspond-

ing elements in such a way that the scene seems to fit in with the background. This

means that I chose to leave the ceiling and floor on for the water scene, but i chose to

leave everything out except table and chairs for the nature scene. This helps to embed

the point cloud elements into their surroundings in a seamless way.

Another challenge was the adjustment of the size of the theme. In the nature theme the

size of the bounding box of the room could have been taken into account in order to

adjust the shape of the terrain, so that the terrain fits to the room. The water theme was

a bit more open for such problems, because there were no apparent boundaries that

should have been moved dynamically. For the scope of this project this problem was

solved by setting the size of the base of the terrain to a standard sized square, which

should fit most of the rooms in normal size.

An additional problem would have been the disabled walls or other objects, that are not

perceived anymore by a user whenever they are deactivated. This could mean that a

user walks into something, because he does not see the real boundaries of his walking

perimeter anymore. This problem is partially solved by the underlying Vive engine

that provides a user with a grid and warning whenever a border of the preset perime-

ter is reached. The VR application could have implemented further warn signals that

show the user when she gets too close to a certain object that is not rendered at a given

moment. However this was not implemented due to the scope of the project and also

because the user will be warned by the underlying system provided by Vive.

43

5 Discussion and Conclusion

A virtual reality application has been implemented using semantic segmentation of

point cloud data. I specifically mapped an office space to a virtual environment and

was able to automate various integration processes by segmenting the data. The trans-

formation of a room into an interactive virtual environment opens up many new appli-

cation possibilities.

In order to implement various interactive elements, I used the segmentation in dif-

ferent ways. The segmentation allowed me to define precise physical bounds, replace

certain elements, or reconfigure the space. The implemented interactions, as shown in

chapter 3 and 4, would require significantly more manual effort without the segmenta-

tion.

These were inspired by various approaches mentioned in related work from chapter

2. For example, one idea of swapping point clouds with meshes comes from Nan,

Xie and Sharf [NXS12], who show how the quality of patchy scans can be greatly im-

proved. The interactive elements, which include throwing objects, were inspired by J.

Gugler’s work [Gug21], among others. They bring a certain gamification to the space

and have an entertaining effect.The implementation of the themes was inspired by the

work of Ruvimova et al. [Ruv+20] and Soyka et al. [Soy+16] and uses segmentation

by allowing walls or other obstacles to be selectively hidden, to open up the space and

allow objects to fit into the environment in a more or less seamingless manner.

The following section explains an outlook on how the work can be taken further and

where it could be used. I thus showed that many concepts previously shown in other

work can be well implemented with the process presented in this work. The following

sections address limitations of this work and explain possible future extensions.

5.1 Limitations

The quality of the VR application depends strongly on the accuracy of the segmen-

tation. This means that if the segmentation is poor, it is difficult to benefit from the

labeled segments used in this work.I also found that it was difficult to perform a good

segmentation on scans that were not part of the trained dataset. It is difficult to place

tables and chairs at the correct positions, if the point cloud is inaccurately labeled. In

any case, the walls, ceiling, and floor were more consistently classified. Therefore, the

surface reconstruction, for example, is less likely to fail.

44

5 Discussion and Conclusion

For the point cloud alignment, it would have been useful if the built-in camera of the

HTC Vive Pro could have been addressed. However, implementing an interface that

would show the user a live feed of the camera proved to be particularly complex and,

in this case, beyond the scope of this work. In order to correctly align the room, users

will most likely have to peak under the HMD to correctly align the marked points.

A technical limitation of VR is the computing power required to display the virtual

environment with sufficient frames per second. The representation of several hundred

thousand points in a scene, as implemented in this project, is not possible for mobile

systems. This means that only HMDs with powerful computing resources can be used

for this purpose.

A requirement for using the application in a custom environment would mean that a

3D scanner would be needed to scan a room in the first place. In any case, smartphones

are becoming more powerful and even have built-in LIDAR scanners that would over-

come this hurdle. Therefore, in transition, I would lay out the projections for future

work of this kind.

5.2 Future work

Due to the increasing computational and hardware requirements in mobile devices,

especially in smart phones, fundamental new possibilities for mobile applications are

constantly opening up. The ability to scan rooms and then also view them would

specifically enable projects of this type for mobile devices in the future. It would

therefore be possible for anyone, who owns such a device in combination with a VR

system, to transform their own space into an interactive environment using the meth-

ods described here. This would be a continuation of the work that has addressed the

topic of the work oasis [Ruv+20], [Soy+16], [Gug21].

An important point that could be improved is the accurate exchange of point cloud

objects with meshes. The version in this work is still very dependent on the character-

istics of the rooms and not so consistent. With a good implementation of this process,

interactions could then be performed with individual objects rather than individual

groups of objects. Implementations of gamification elements would then be evident

and better realizable due to the higher granularity of the interactive components.

An interesting continuation of this work would be to make an evaluative study of the

results of this project. This would mean, for example, comparing the advantages of a

work oasis scanned from a real environment with an artificially built work oasis.

All in all virtual reality applications are on the rise, and with 3D scans rapidly becom-

ing easier to handle, I am very firmly convinced that applications of the kind suggested

in this thesis will have an upswing in the gaming industry. This also includes applica-

tions in connection with enhanced office environments and visualization possibilities

for various new data types.

45

6 Acknowledgement

I would like to thank all the people who supported me with technical and moral help

during this work. A big thanks goes to Dr. Prof. Thomas Fritz, Dr. Prof. Renato

Pajarola, Lizeth F. Perez and Jan Gugler, who advised me at any time, supported me

in case of problems and searched for solutions together. The freedom I was given to

design this work made it an exciting project. I would also like to thank Dr. Yuliang

Sun, who was very helpful with technical questions regarding the code of the network.

Finally, I am also very grateful to my family, who supported me throughout the process

of the whole thesis.

46

Bibliography

[Ado21] Adobe. Mixamo Brian. Copyright © 2021 Adobe. All rights reserved.

2021. URL: https://www.mixamo.com/. (Accessed on 05/28/2021).

[Ait14] Alastair Aitchison. Caustics shader. 2014. URL: https://alastaira.

wordpress.com/2014/10/07/underwater-effects/. (Ac-

cessed on 05/03/2021).

[Ana+11] Abhishek Anand, Hema Swetha Koppula, Thorsten Joachims, and Ashutosh

Saxena. “Contextually guided semantic labeling and search for 3d point

clouds”. In: arXiv preprint arXiv:1111.5358 (2011).

[Arm+16] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis,

Martin Fischer, and Silvio Savarese. “3D Semantic Parsing of Large-Scale

Indoor Spaces”. In: Proceedings of the IEEE International Conference on

Computer Vision and Pattern Recognition. 2016.

[AYE20] Evangelos Alexiou, Nanyang Yang, and Touradj Ebrahimi. “PointXR: A

toolbox for visualization and subjective evaluation of point clouds in vir-

tual reality”. In: 2020 Twelfth International Conference on Quality of Mul-

timedia Experience (QoMEX). 2020, pp. 1–6.

[Ber19] Borbála Berki. “Desktop VR as a virtual workspace: a cognitive aspect”.

In: Acta Polytechnica Hungarica 16.2 (2019), pp. 219–231.

[Bon+16] Daniele Bonatto, Ségolène Rogge, Arnaud Schenkel, Rudy Ercek, and

Gauthier Lafruit. “Explorations for real-time point cloud rendering of nat-

ural scenes in virtual reality”. In: 2016 International Conference on 3D

Imaging (IC3D). 2016, pp. 1–7.

[Bry96] Steve Bryson. “Virtual reality in scientific visualization”. In: Communica-

tions of the ACM 39.5 (1996), pp. 62–71.

[BSN14] Gerd Bruder, Frank Steinicke, and Andreas Nüchter. “Poster: Immersive

point cloud virtual environments”. In: 2014 IEEE Symposium on 3D User

Interfaces (3DUI). 2014, pp. 161–162.

[CC08] Jie Chen and Baoquan Chen. “Architectural modeling from sparsely scanned

range data”. In: International Journal of Computer Vision 78.2-3 (2008),

pp. 223–236.

[CPP17] Rémi Cura, Julien Perret, and Nicolas Paparoditis. “A scalable and multi-

purpose point cloud server (PCS) for easier and faster point cloud data

management and processing”. In: ISPRS Journal of Photogrammetry and

Remote Sensing 127 (2017), pp. 39–56.

[DAD19] David Deibe, Margarita Amor, and Ramón Doallo. “Supporting multi-

resolution out-of-core rendering of massive LiDAR point clouds through

non-redundant data structures”. In: International Journal of Geographical

Information Science 33.3 (2019), pp. 593–617.

47

https://www.mixamo.com/
https://alastaira.wordpress.com/2014/10/07/underwater-effects/
https://alastaira.wordpress.com/2014/10/07/underwater-effects/

Bibliography

[Dai+17] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas

Funkhouser, and Matthias Nießner. “Scannet: Richly-annotated 3d recon-

structions of indoor scenes”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2017, pp. 5828–5839.

[EVH20] Sami El-Mahgary, Juho-Pekka Virtanen, and Hannu Hyyppä. “A Simple

Semantic-Based Data Storage Layout for Querying Point Clouds”. In: IS-

PRS International Journal of Geo-Information 9.2 (2020), p. 72.

[FP06] Sagi Filin and Norbert Pfeifer. “Segmentation of airborne laser scanning

data using a slope adaptive neighborhood”. In: ISPRS journal of Pho-

togrammetry and Remote Sensing 60.2 (2006), pp. 71–80.

[Gug21] Jan Gugler. Augmenting working and living spaces into virtual work oases.

2021.

[HK16] Thomas Hilfert and Markus König. “Low-cost virtual reality environment

for engineering and construction”. In: Visualization in Engineering 4.1

(2016), pp. 1–18.

[Hop+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner

Stuetzle. “Surface reconstruction from unorganized points”. In: Proceed-

ings of the 19th annual conference on computer graphics and interactive

techniques. 1992, pp. 71–78.

[Ism15] Asgar Ismayilov. Balls Free low-poly 3D model. 2015. URL: https:

//www.cgtrader.com/free-3d-models/sports/game/

balls- 7e4f2c46- 0a99- 4e68- a2a4- 73e5f5e93a0b. (Ac-

cessed on 04/29/2021).

[Jan12] Janpec. Humpback Whale. 2012. URL: https://assetstore.unity.

com/packages/3d/characters/animals/fish/humpback-

whale-3547. (Accessed on 05/02/2021).

[Jan18] Janpec. Animal pack deluxe. 2018. URL: https://assetstore.

unity.com/packages/3d/characters/animals/animal-

pack-deluxe-99702. (Accessed on 05/02/2021).

[JN319] JN3D. Medieval destructible props. 2019. URL: https://assetstore.

unity.com/packages/3d/props/medieval-destructible-

props-141203. (Accessed on 04/29/2021).

[Jun05] Yongtae Jun. “A piecewise hole filling algorithm in reverse engineering”.

In: Computer-aided design 37.2 (2005), pp. 263–270.

[K418] Manufactura K4. Rock and Boulders 2. 2018. URL: https://assetstore.

unity.com/packages/3d/props/exterior/rock-and-

boulders-2-6947. (Accessed on 05/05/2021).

[Kim+12] Young Min Kim, Niloy J Mitra, Dong-Ming Yan, and Leonidas Guibas.

“Acquiring 3d indoor environments with variability and repetition”. In:

ACM Transactions on Graphics (TOG) 31.6 (2012), pp. 1–11.

[Lab14] UCLA Game Lab. UCLA Wireframe Shader. 2014. URL: https://

assetstore.unity.com/packages/vfx/shaders/directx-

11/ucla-wireframe-shader-21897. (Accessed on 04/22/2021).

48

https://www.cgtrader.com/free-3d-models/sports/game/balls-7e4f2c46-0a99-4e68-a2a4-73e5f5e93a0b
https://www.cgtrader.com/free-3d-models/sports/game/balls-7e4f2c46-0a99-4e68-a2a4-73e5f5e93a0b
https://www.cgtrader.com/free-3d-models/sports/game/balls-7e4f2c46-0a99-4e68-a2a4-73e5f5e93a0b
https://assetstore.unity.com/packages/3d/characters/animals/fish/humpback-whale-3547
https://assetstore.unity.com/packages/3d/characters/animals/fish/humpback-whale-3547
https://assetstore.unity.com/packages/3d/characters/animals/fish/humpback-whale-3547
https://assetstore.unity.com/packages/3d/characters/animals/animal-pack-deluxe-99702
https://assetstore.unity.com/packages/3d/characters/animals/animal-pack-deluxe-99702
https://assetstore.unity.com/packages/3d/characters/animals/animal-pack-deluxe-99702
https://assetstore.unity.com/packages/3d/props/medieval-destructible-props-141203
https://assetstore.unity.com/packages/3d/props/medieval-destructible-props-141203
https://assetstore.unity.com/packages/3d/props/medieval-destructible-props-141203
https://assetstore.unity.com/packages/3d/props/exterior/rock-and-boulders-2-6947
https://assetstore.unity.com/packages/3d/props/exterior/rock-and-boulders-2-6947
https://assetstore.unity.com/packages/3d/props/exterior/rock-and-boulders-2-6947
https://assetstore.unity.com/packages/vfx/shaders/directx-11/ucla-wireframe-shader-21897
https://assetstore.unity.com/packages/vfx/shaders/directx-11/ucla-wireframe-shader-21897
https://assetstore.unity.com/packages/vfx/shaders/directx-11/ucla-wireframe-shader-21897

Bibliography

[mar17] maromero. HTC Vive Headset Free low-poly 3D model. 2017. URL: https:

//www.cgtrader.com/free-3d-models/electronics/

other/htc-vive-headset-a6d928d6-a3a9-4c3e-8217-

b275afc8585e. (Accessed on 05/28/2021).

[Mat+14] Oliver Mattausch, Daniele Panozzo, Claudio Mura, Olga Sorkine-Hornung,

and Renato Pajarola. “Object Detection and Classification from Large-

Scale Cluttered Indoor Scans”. In: Computer Graphics Forum 33.2 (2014),

pp. 11–21.

[MS15] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neu-

ral network for real-time object recognition”. In: 2015 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). 2015, pp. 922–

928.

[Nan21] Liangliang Nan. “Polygonal Surface Reconstruction”. In: CGAL User and

Reference Manual. 5.2.1. 2021. URL: https://doc.cgal.org/5.

2.1/Manual/packages.html.

[NL13] Anh Nguyen and Bac Le. “3D point cloud segmentation: A survey”. In:

2013 6th IEEE Conference on Robotics, Automation and Mechatronics

(RAM). 2013, pp. 225–230. DOI: 10.1109/RAM.2013.6758588.

[NXS12] Liangliang Nan, Ke Xie, and Andrei Sharf. “A search-classify approach

for cluttered indoor scene understanding”. In: ACM Transactions on Graph-

ics (TOG) 31.6 (2012), pp. 1–10.

[Pol15] PolyFix. Realistic Tree Pack Vol.1. 2015. URL: https://assetstore.

unity.com/packages/3d/vegetation/trees/realistic-

tree-pack-vol-1-50418. (Accessed on 05/05/2021).

[Qi+17a] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet:

Deep learning on point sets for 3d classification and segmentation”. In:

Proceedings of the IEEE conference on computer vision and pattern recog-

nition. 2017, pp. 652–660.

[Qi+17b] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. “Pointnet++: Deep

hierarchical feature learning on point sets in a metric space”. In: arXiv

preprint arXiv:1706.02413 (2017).

[Qui+15] Yann Quinsat et al. “Filling holes in digitized point cloud using a morphing-

based approach to preserve volume characteristics”. In: The International

Journal of Advanced Manufacturing Technology 81.1 (2015), pp. 411–

421.

[Ruv+20] Anastasia Ruvimova, Junhyeok Kim, Thomas Fritz, Mark Hancock, and

David C Shepherd. “Transport Me Away: Fostering Flow in Open Offices

through Virtual Reality”. In: Proceedings of the 2020 CHI Conference on

Human Factors in Computing Systems. 2020, pp. 1–14.

[Sha06] Ariel Shamir. “Segmentation and Shape Extraction of 3D Boundary Meshes.”

In: Eurographics (STARs). 2006, pp. 137–149.

[Shi+16] Yifei Shi, Pinxin Long, Kai Xu, Hui Huang, and Yueshan Xiong. “Data-

driven contextual modeling for 3d scene understanding”. In: Computers

& Graphics 55 (2016), pp. 55–67.

49

https://www.cgtrader.com/free-3d-models/electronics/other/htc-vive-headset-a6d928d6-a3a9-4c3e-8217-b275afc8585e
https://www.cgtrader.com/free-3d-models/electronics/other/htc-vive-headset-a6d928d6-a3a9-4c3e-8217-b275afc8585e
https://www.cgtrader.com/free-3d-models/electronics/other/htc-vive-headset-a6d928d6-a3a9-4c3e-8217-b275afc8585e
https://www.cgtrader.com/free-3d-models/electronics/other/htc-vive-headset-a6d928d6-a3a9-4c3e-8217-b275afc8585e
https://doc.cgal.org/5.2.1/Manual/packages.html
https://doc.cgal.org/5.2.1/Manual/packages.html
https://doi.org/10.1109/RAM.2013.6758588
https://assetstore.unity.com/packages/3d/vegetation/trees/realistic-tree-pack-vol-1-50418
https://assetstore.unity.com/packages/3d/vegetation/trees/realistic-tree-pack-vol-1-50418
https://assetstore.unity.com/packages/3d/vegetation/trees/realistic-tree-pack-vol-1-50418

Bibliography

[Soy+16] Florian Soyka, Markus Leyrer, Joe Smallwood, Chris Ferguson, Bernhard

E Riecke, and Betty J Mohler. “Enhancing stress management techniques

using virtual reality”. In: Proceedings of the ACM symposium on applied

perception. 2016, pp. 85–88.

[Su+15] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-

Miller. “Multi-view convolutional neural networks for 3d shape recogni-

tion”. In: Proceedings of the IEEE international conference on computer

vision. 2015, pp. 945–953.

[Sun+20] Yuliang Sun, Yongwei Miao, Jiazhou Chen, and Renato Pajarola. “PGC-

Net: patch graph convolutional network for point cloud segmentation of

indoor scenes”. eng. In: The Visual computer 36.10-12 (2020), pp. 2407–

2418. ISSN: 0178-2789.

[Tak21] Keijiro Takahashi. Pcx - Point Cloud Importer/Renderer for Unity. 2021.

URL: https://github.com/keijiro/Pcx. (Accessed on 02/22/2021).

[Tec17] Facebook Technologies. Oculus Hand Models 1.0. Copyright © Face-

book Technologies, LLC and its affiliates. All rights reserved. 2017. URL:

https://developer.oculus.com/downloads/package/

oculus-hand-models/. (Accessed on 05/01/2021).

[TH20] Yuk Ming Tang and Ho Lun Ho. “3D Modeling and Computer Graphics

in Virtual Reality”. In: Mixed Reality and Three-Dimensional Computer

Graphics. 2020.

[TP05] Daniel Tóvári and Norbert Pfeifer. “Segmentation based robust interpolation-

a new approach to laser data filtering”. In: International Archives of Pho-

togrammetry, Remote Sensing and Spatial Information Sciences 36.3/19

(2005), pp. 79–84.

[Ves21] Nicholas Veselov. NVJOB Water Shaders V2.x. 2021. URL: https://

assetstore.unity.com/packages/vfx/shaders/nvjob-

water-shaders-v2-x-149916. (Accessed on 05/03/2021).

[Vir+20] Juho-Pekka Virtanen, Sylvie Daniel, Tuomas Turppa, Lingli Zhu, Arttu

Julin, Hannu Hyyppä, and Juha Hyyppä. “Interactive dense point clouds

in a game engine”. In: ISPRS Journal of Photogrammetry and Remote

Sensing 163 (2020), pp. 375–389.

[Wan+19] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bron-

stein, and Justin M Solomon. “Dynamic graph cnn for learning on point

clouds”. In: Acm Transactions On Graphics (tog) 38.5 (2019), pp. 1–12.

[War15] Scott Ward. Grass Png Image Green. 2015. URL: https://freepngimg.

com/png/4791-grass-png-image-green-grass-png-

picture. (Accessed on 05/05/2021).

[Wir+19] Florian Wirth, Jannik Quehl, Jeffrey Ota, and Christoph Stiller. “Pointatme:

efficient 3d point cloud labeling in virtual reality”. In: 2019 IEEE Intelli-

gent Vehicles Symposium (IV). 2019, pp. 1693–1698.

[WO07] Jianning Wang and Manuel M Oliveira. “Filling holes on locally smooth

surfaces reconstructed from point clouds”. In: Image and Vision Comput-

ing 25.1 (2007), pp. 103–113.

50

https://github.com/keijiro/Pcx
https://developer.oculus.com/downloads/package/oculus-hand-models/
https://developer.oculus.com/downloads/package/oculus-hand-models/
https://assetstore.unity.com/packages/vfx/shaders/nvjob-water-shaders-v2-x-149916
https://assetstore.unity.com/packages/vfx/shaders/nvjob-water-shaders-v2-x-149916
https://assetstore.unity.com/packages/vfx/shaders/nvjob-water-shaders-v2-x-149916
https://freepngimg.com/png/4791-grass-png-image-green-grass-png-picture
https://freepngimg.com/png/4791-grass-png-image-green-grass-png-picture
https://freepngimg.com/png/4791-grass-png-image-green-grass-png-picture

Bibliography

[Wor17] Butterfly World. BFW Simple Dynamic Clouds. 2017. URL: https://

assetstore.unity.com/packages/tools/particles-

effects/bfw-simple-dynamic-clouds-85665. (Accessed

on 05/05/2021).

[Zha+19] Jiaying Zhang, Xiaoli Zhao, Zheng Chen, and Zhejun Lu. “A review of

deep learning-based semantic segmentation for point cloud”. In: IEEE Ac-

cess 7 (2019), pp. 179118–179133.

51

https://assetstore.unity.com/packages/tools/particles-effects/bfw-simple-dynamic-clouds-85665
https://assetstore.unity.com/packages/tools/particles-effects/bfw-simple-dynamic-clouds-85665
https://assetstore.unity.com/packages/tools/particles-effects/bfw-simple-dynamic-clouds-85665

	Zusammenfassung
	Abstract
	Introduction
	Outline

	Related Work
	Aiming for an Enhanced Experience
	Point Cloud (Semantic) Segmentation
	Point Cloud Datasets
	Traditional Methods
	Deep Learning Methods
	Data Driven Understanding

	Point Cloud Visualization in Virtual Reality
	Standalone Applications
	Use of Game Engines

	Approach
	Technical Context
	Preprocessing
	File Processing
	Patch Extraction
	Patch processing in Practice

	Segmentation
	PGCNet
	Subsequent Postprocessing
	Polygonial Surface Reconstruction

	Unity Integration
	Point Cloud Handling
	Creating the VR application
	Room Alignment
	Interactive Elements

	Implementation
	Project Setup
	Procedure

	Results
	RQ1: What are the challenges to realistically recreate a physical environment from point cloud data in a virtual setting with interactive elements?
	Segmentation Challenges
	Unity Challenges

	RQ2: To what extent and how can the implementation of a VR application be automated?
	Automation Challenges

	Discussion and Conclusion
	Limitations
	Future work

	Acknowledgement

