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Abstract

Fair, secure and trustworthy voting processes and elections are a cornerstone of any func-
tioning democracy. Caused by the ongoing digitalization and digitization, new ways of
voting are emerging. A highly discussed and promising topic is remote electrical voting,
which allows users to cast their votes independent of the location and additionally (partly)
independent of the used device. The combination of this would bring more flexibility to
voters since they must not be present at a poll station at a particular time. For countries
already allowing voting by mail, remote electronic voting is an evolution of this known
practice.

As with every new technology, also with remote electrical voting, many obstacles must
be conquered before it will be secure and reliable enough to be rolled out to the public.
Especially in the scenario of electronic voting, cryptographic operations and encryption
must be applied to guarantee features like vote secrecy, the resistance against coercion, or
prevention against vote selling. Nevertheless, a voter must be confident that the indeed
selected voting option is encrypted, transferred to the ballot box, and later counted in
the tally. Proving this to the voter is not trivially since most electrical and cryptographic
operations performed on data are not comprehensible and not verifiable without proper
auxiliary tools.

This work focuses on the verification of the encryption of a selected voting option. The
verification allows voters to verify if a ballot contains the chosen voting option or if the
voting device tampers the selection before encrypting it. This will enable voters to ver-
ify whether their voting setup encrypts the selection trustworthy or if the voting device
is cheating and altering the selection. Hence, voting with an unknown, unfamiliar, or
not trusted device is possible. The thesis shows how to successfully implement the cast-
as-intended property with the help of the challenge-or-cast mechanism into an existing
remote electronic voting system. The challenge-or-cast mechanism allows voters to either
challenge the encryption of a ballot or cast it. For the verification, a second device is
needed such that the encryption can be repeated in an air-gapped environment. Further-
more, the challenge-or-cast approach is compared to other mechanisms having the same
goal. Towards the end, the selected method is analyzed and discussed, revealing strengths,
weaknesses, chances, and concerns.
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Zusammenfassung

Faire, sicherer und vertrauenswiirdige Abstimmung und Wahlen sind ein Eckpfeiler von
funktionierenden Demkokratien. Aufgrund der Digitalisierung kommen verschiedene neue
Abstimmungsprozesse und -moglichkeiten auf. Remote Electrical Voting, was mit “elek-
tronische Fernabstimmung® ins Deutsche iibersetzt werden kann, wird in diesem Zusam-
menhang oft diskutiert und als vielversprechend angeschaut. Dies da es neben der Orts-
unabhéngigkeit auch unabhéngig vom Gerét ist, welches verwendet werden kann. Beides
bringt Felxibilitét fiir die Wahler, da diese nicht mehr in ein Wahlbiiro gehen miissen, um
ihre Stimme abzugeben. Fiir Léander, welche die Briefwahl bereits verwenden, ist es eine
Evolution der bestehenden Moglichkeit.

Wie mit praktisch jeder neuen Technologie gibt es beim Remote Electronic Voting auch
zahlreiche Hiirden und Hindernisse, welche iiberwunden werden miissen, bevor die Mog-
lichkeit von der Bevolkerung gebraucht werden kann. Speziell bei der elektronischen
Stimmabgabe werden viele kryptografische Verschliisselungen angewendet, um Eigenschaf-
ten wie das Wahlgeheimins zu halten, N6tigung zu verhindern oder de Moglichkeit zum
Verkaufen der Wahlstimme einzugrenzen. Trotzdem muss ein Wihler sicher sein, dass die
wirklich ausgewéhlte Wahloption verschliisselt, verschickt und gezéhlt wird. Dies zu be-
weisen ist nicht trivial, da die meisten elektronischen und kryptografischen Operationen
ohne Hilfsmittel weder nachvollziehbar noch iiberpriifbar sind.

Der Fokus dieser Arbeit liegt auf der Verifizierung der Verschliisselung der ausgewéhlten
Wahloption. Diese Uberpriifung erlaubt es einem Wiéhler/einer Wihlerin sicherzustel-
len, dass die benutzten Gerite vertauenswiirdig sind und wirklich die gewiinschte Option
verschliisseln. Dies erlaubt die Stimmabgabe mit unfamilidren, unbekannten oder nicht
vertrauenswiirdigen Geréaten. Diese Arbeit zeigt wie die Cast-as-Intended Eigenschaft mit
der challenge-or-cast Methode erfolgreich in ein bestehendes Remote Electronic Voting
System implementiert werden kann. Die challenge-or-cast Methode erlaubt es Wéhlern
entweder die Verschliisselung ihrer Stimme zu iiberpriifen oder der verschliisselte Stimm-
zettel einzureichen. Ein zweites unabhéingiges Gerdt wird verwedent, um die Verschliis-
selung zu iiberpriifen. Im Weiteren wurde die challenge-or-cast Methode mit dhnlichen
Ideen verglichen und eine Analyse der Stéarken und Schwichen sowie der Moglichkeiten
und Hindernissen durchgefiihrt.
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Chapter 1

Introduction

Voting, elections, and polls are often applied when multiple people have to decide among
a limited number of possibilities belonging to a particular topic. They are a widely used
tool used to find consensus between individuals. Voting has many different faces, and its
outcomes are of varying importance depending on the topic and the number of people
it influences. In democracies, the power to determine legislation and rules is given to
the people who are eligible to vote since they (e.g.) have reached a certain age or are
native to a specific country, canton, or municipality. This results in many people being
able to use their voice to vouch for their will and convenience. To ensure that there will
be no fraud and make it possible for everybody to use their suffrage, there needs to be
fair, secure, and trustworthy voting and processes to be established. Guaranteeing this is
arguably the most crucial point of democracy, and as soon as this is not given anymore,
this governmental form stops working as intended.

With the ongoing digitalization, new possibilities for voting polls arose. These opportuni-
ties range from machines scanning and counting handwritten ballots over computers used
for casting votes in specific locations to truly remote electronic voting systems in which
the location and device of the voter do not play a role anymore [25,45,74]. Since the
circumstances between these techniques are different also the challenges, properties, and
requirements are different [45]. As soon as the voting truly happens electronically, cryp-
tographic operations are performed on the voting data. For most people, these operations
make it impossible to trace the handling of a chosen voting option and the creation of a
ballot. Therefore, mechanisms providing surveillance of the voting devices and the overall
voting process are needed.

Many different steps and devices influence the surveillance of the voting process. Espe-
cially in the remote electronic voting setup, various devices, trustworthy and potentially
malfunctioning ones, are part of the process. Since some of the devices, especially those
where voters cast their ballot, are often not controlled by a reliable party or government
but instead managed and owned by the voters themselves, these devices can be malicious
and untrustworthy. In addition to the cryptographic processes in the ballot creation,
voter-managed devices pose the problem of an unsupervised, insecure, untrustworthy,
and potentially malfunctioning voting setup. This is a contradiction to the intention of
secure and trustworthy voting processes that are a cornerstone of democracies.
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1.1 Motivation & Description of Work

Resolving the previously described contradiction is one of the critical elements to make
remote electronic voting available to the population. A system in which malfunctioning
devices are not detected can lead to distorted and fraudulent results. Malfunctioning
appliances could, besides other things, alter selected votes before encryption, not deliver
ballots to the counting entity, or not count well-formed ballots at all. Every single option
can cause tremendous changes in the result if conducted often enough. To prevent this, it is
essential that the voting processes are transparent and voters can trust the devices they use
to cast a vote. The fact that Switzerland started its (remote) electronic voting project Vote
électronique in the year 2000 with three pilot cantons and still does not have established a
country wide (remote) eVoting system, shows impressively how complex such systems are
and how intricate their development is [18]. Thus, the Communication Systems Research
Group (CSG) from the Department of Informatics (IfI) at the University of Zurich (UZH)
started working on their Remote Electronic Voting system called Provotum in 2018 [59].
Provotum is still under development, and at the time of writing, the CSG is working on
version 3.0 of it.

An essential point of electronic voting is the encryption process to create a ballot that a
voter can cast. If the voting device alters the selected option at this step, an unselected
voting option will be encrypted and counted in the tallying of the election or poll. The
overwhelming majority of voters cannot comprehend the encryption, so that they would
detect fraud only by looking at an encrypted ballot. Therefore, it is indispensable that
there is an easy and straightforward process to verify the encryption that reveals whether
an encrypted ballot indeed contains the selected voting option or if the voting device
altered the selection before encryption.

This thesis is a contribution to the creation of a trustworthy and secure voting setup
with devices not managed by a trusted entity. In detail, it covers the verification of the
encryption such that every voter can easily verify if the device used for voting encrypted
the indeed selected voting option. This is especially important if a voter does not use a
device that they trust. However, even a trusted device can be malfunctioning or malicious
due to malware or simple programming errors. Ensuring that the indeed selected option is
encrypted and ready to be sent to the ballot box is a tremendously important step towards
trustworthy remote electronic voting systems. This mainly because if a counterfeit ballot
is cast, all following process steps can be correct and verified, but the result will still be
fraudulent. Additionally, this step can only be detected by a voter personally, while other
steps can also be verified by the broad public.

1.2 Thesis Outline

This thesis starts with a short introduction of cryptographic methods necessary for this
work. Following is a chapter about related work, including the theory of vote verification
and mechanisms thereof (Chapter 3). In the chapter called Design, the architecture of
the chosen verification mechanism is illustrated, and in the following chapter the real
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implementation to the Provotum environment is explained. In chapter 6, the comparison,
discussion, and evaluation of the implemented solution is stated. The thesis closes with a
summary and some words about future work.
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Chapter 2

Cryptographic Methods

In this chapter cryptographic methods relevant for this work are shortly described. Namely
the methods are the ElGamal encryption theory, zero-knowledge proofs (ZKP) includ-
ing the Fiat-Shamir heuristic, Y-protocols and Schnorr proofs, designated verifier proofs,
chameleon hashes and trapdoor commitments.

2.1 ElGamal

ElGamal (1985) brought up the asymmetric ElGamal encryption scheme which is based on
the difficulty to calculate discrete logarithms [23,29,68]. It can be used for key generation
and thus also for encryption and decryption of ciphertexts [29, 68].

Domain Parameter

Domain parameters can be shared by numerous users and include p which is a large
prime having the nature that p — 1 is divisible by another prime ¢ [68]. Furthermore, the
generator g is defined as g = r®~Y/ (mod p) with r as an element of a finite field [68].
This creates the abelian Group G of order ¢ with generator g [29,68|.

Key Generation

The secret key sk is an integer chosen in the interval [0, ..., p — 1] and must be known only
by the intended user itself [68]. The inherent public key pk is a modular exponentiation
of the generator pk = ¢g** (mod p) [68]. This is formally summarized in equation 2.1.

sk = random integer from [0,...,p — 1] 2.1)
pk = g°k (modp) '
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Encryption

The encryption creates the ciphertext pair (ci,c2) for the message m [68]. Since the
ephemeral key k is chosen randomly from the range [0, ..., p— 1] for every encryption round,
encrypting the same message will result in different ciphertexts [68]. The message m as
well as the resulting ciphertexts are assumed to be in group G [68]. The encryption process
is listed in equation 2.2 and based on the book Cryptography Made Simple (2016) [68].

k = random integer from [0, ...,p — 1]
c; = ¢ (mod p) (2.2)
co = m * pk* (mod p)

Decryption

To decrypt the ciphertext pair (¢, c2) the secret key sk must be known. Then the de-
cryption can be done according to equation 2.3 [68].

Co m* pk*  m x g=F
= = =m (mod p (2.3)
Clsk gsk*k gsk*k ( )

2.2 Zero-Knowledge Proofs

In this section, zero-knowledge proofs (ZKP) are explained. Zero-knowledge proofs are
proofs which reveal nothing except the validity of the statement in question [27]. Fur-
thermore, the Fiat-Shamir heuristic is stated and interactive as well as non-interactive
Schnorr proofs are listed.

Zero-knowledge Proofs were introduced by Goldwasser et al. (1985) and have the feature
that a prover can proof that he/she has knowledge about something without revealing the
secret itself [27]. They defined ZKPs as proofs which do not provide additional knowledge
beside the correctness of the assertion in question [27].

According to De Santis et al. (1987), zero-knowledge proofs must satisfy three properties,
assuming honest entities included [22,68]:

1. Completeness: The likeliness of successfully proving a true theorem to a honest
verifier is overwhelming. If the prover knows the statement, the verifier should
accept.

2. Soundness: The probability of successfully proving a false theorem is negligible.
Here a probabilistic guarantee is provided meaning there is an insignificant possibil-
ity of accepting a false statement. If the prover does not know the statement, the
likeliness of a verifier accepting the proof should be extraordinary small.
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3. Zero-knowledge: The only information a proof reveals is the validity of the theorem
in question.

Furthermore, ZKPs are only possible if the prover and the verifier are not completely
independent [22]. De Santis et al. (1987) state that the simplest way to achieve this is
when the prover and verifier share a random string [22].

zero-knowledge proofs can be of interactive or non-interactive type [22]. In an interactive
setting, usually Y-protocols are used where a verifier challenges the prover at the time of
action [16,22]. -protocols are a special form of three-move protocol in which a prover first
sends a commitment, then a verifier responses with a challenge which will be answered
by the prover with an appropriate response [16,68]. It is assumed that the verifier is
honest and sticks with the protocol [68]. With he help of the Fiat-Shamir heuristic, an
interactive ZKP can become a non-interactive zero knowledge proof (NIZKP) [22,24].

2.2.1 Fiat-Shamir Heurisitc

The Fiat-Shamir heurisitc can turn an interactive zero-knowledge proof into a non-interactive
one [16,24]. Therefore, the challenge of the verifier to the prover gets replaced by the result
of a cryptographic hash function hashing certain previously defined parameters [24]. If
only the commitment of the prover is hashed in the hashing step, Bernhard et al. (2012)
speak about the weak form while the strong form includes the statement to be proven
additionally to the commitment [16]. The weak form can lead to unsound proofs since a
malicious prover can adaptively select the statements to proof (i.e. the malicious prover
can generate proofs which do not prove the expected statement but an adaptively chosen
one) [16].

Independent of what is included in the hashing process, based on this transformation,
a proof can be published and verified whenever needed [24]. It still does not leak any
additional information [24].

2.2.2 Schnorr Proof

A Schnorr proof is a ZKP making use of the knowledge about a discrete logarithm [64,68].
Thus it can be used to prove knowledge about a secret value a such that A = ¢ mod p (e.g.

a private-key belonging to a public-key or knowledge about the encryption randomness)
(28,30, 64].

The process of an interactive Schnorr proof over a finite filed is based on the ¥-protocol
structure known for three-move schemes and illustrated in figure 2.1. In this illustration
the knowledge of a is proven to the verifier with the help of the public known parameters
p (large prime), q (large prime divisor of p-1), t (bit length of challenge) and g (generator)
of the subgroup G, of Zp* of prime order q [30]. In figures 2.1 and 2.2, the commitment
known from the YX-protocol is denoted as K, the challenge is ¢ and the response is listed
as 1.
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Prover knows(a, A, g, p, q) Verifier knows(4, g, p, q)

random k € [1,p — 1]
K = ¢* (mod p)

random c € [0,2" — 1]

r=k+axc (mod q)

g = K A (mod p)

Figure 2.1: Interactive Schnorr proof to prove the knowledge of a [30,68].

To make the Schnorr proof illustrated in figure 2.1 non-interactive, the Fiat-Shamir trans-
formation is applied and thus the challenge c is replaced with a secure cryptographic hash
created with hash function H [24,30]. This is listed in figure 2.2.

Equation 2.4 illustrates the completeness property and thus the knowledge of a [68].

q" = K A° (mod p)

g = g+ (") (mod p) (2.4)

]
gk—i-a*c = gk—i-a*c (HlOd p)

2.3 Designated Verifier Proofs

Designated verifier proofs have the feature that only a verifier designated by the prover
can verify a proof [29,36]. Jakobsson et al. (1996) state that with three involved parties
Alice (prover), Bob (designated verifier) and Cindy (verifier), instead of proofing a proof
p, Alice proofs the statement "either p is true or I am Bob” [36]. This statement can be
created either by the prover or the designated verifier [46]. Thus, the statement can e.g.
be constructed as a OR-combination of a given proof and the knowledge about the certain
private key [36,46].

Under honest assumptions Bob is convinced by the statement and thus that p is true
since he knows that Alice is not Bob (expect his private key is known by Alice) [36].
However, if Cindy receives the same statement, she will not be convinced since she cannot
determine whether the prover is Bob or not [36]. If Bob forwards the poof, Cindy cannot
be convinced of p since Bob can fully authenticate himself such that the second part of
the statement holds [36]. If the latter part of the statement holds, the first one must not
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Prover knows(a, A, g, p, q) Verifier knows(4, g, p, q)

random k € [1,p — 1]
K = ¢* (mod p)
c=H(g,K,A)
r=k+ax*c (mod q)

c= H(g, K, A)
g = K A° (mod p)

Figure 2.2: Non-Interactive Schnorr proof to prove the knowledge of
a [30,68].

hold and thus can be simulated by the designated verifier [46]. The scheme of Jakobsson
et al. (1996) makes use of trapdoor commitment schemes (details in section 2.4) which
allow Bob to simulate proofs [29, 36].

2.4 Trapdoor Commitments & Chameleon Hashes

Trapdoor commitments (also called chameleon commitments) are proof functions mainly
used in interactive settings while chameleon hashes are rather used in non-interactive
settings [17,28]. With the help of these schemes, it is possible to create simulated lookalike
proofs of input statements such that only a designated verifier can be convinced [17,39].
Other verifiers cannot distinguish whether the proof is generated with the help of the
trapdoor or not and thus cannot be convinced if the asserted pre-image is truly proofed
[10,39].

With the knowledge of a trapdoor, chameleon hash functions can easily find collisions
while without knowledge of the trapdoor they look like normal one-way hash functions
with characteristics such as pre-image resistance and collision resistance [10, 28, 39, 68].
This means, that with the knowledge of the trapdoor value it is possible to generate
collisions for different input values resulting in uncertainty about the value pre-image [28,
39]. Without the knowledge of the trapdoor metrics finding similar results (i.e. collisions)
is negligible [28,39]. Khalili et al. (2019) defined four characteristics of chameleon hash
functions: (i) for each chameleon hash function a key pair consisting of hashing key and
trapdoor key exists, (i) anyone knowing the hashing key can generate the hash result,
(111) anyone knowing the trapdoor key can find collisions in the function’s domain and
(iv) the function’s collision resistance remains for everyone without knowledge of the
trapdoor key and its value [39]. Especially point dii illustrates the problem when the
trapdoor information is available to multiple entities since in this case, all of them can
create collisions [39].
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Chapter 3

Related Work

In this chapter related work and ideas are listed and discussed. It starts with a short
overview of voting forms and the history of eVoting and then the focus is laid on vote
verification. In section 3.3, the in section 3.2 discussed approaches are summarized.

3.1 Different Forms of Voting & History of eVoting

According to Krimmer et al. (2007), there are three main mediums of voting: hand, paper
and electronic [45]. Furthermore, the location can be divided into two categories: onsite,
where a voter votes at a specific place or remote which is (partially) location independent
[45]. Krimmer et al. (2007) named the onsite location also controlled environment and
consequently the remote one is also labeled wuncontrolled environment [45]. Table 3.1
visualizes the different mediums and forms.

Table 3.1: Voting forms and mediums based on [45]

Hand based Paper based Electronic
Onsite | In-person Specific polling place or vot- | Voting machine
ing booth
Remote | Not possible Postal voting Device with Internet connec-
tion

Voting by hand is only possible onsite, and thus there is no possibility to vote remotely via
this medium [45]. Furthermore, onsite hand based voting is only applicable for a limited
number of people because otherwise it becomes cumbersome [45].

Using the medium paper as a carrier for votes allows polls in onsite and remote environ-
ments [45]. Thus voting can either be done in the onsite environment, where voters insert
their ballots in a ballot box at a particular location, or in a remote environment, where
especially postal voting is widely used [45,72]. According to estimates, in the year 2020,
about 90% of ballots counted in Switzerland were handed in via postal voting [61].

When voting electronically in an onsite environment, voters usually use a voting machine
to cast their vote [45]. On the other hand, voting is categorized as remote electronic voting

11
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if there is no specific voting location, and thus the completion of a vote can theoretically
be done on any electronic device connected to the Internet [45,72].

Krimmer et al. (2007) also explicitly state that there can be combinations of the previ-
ously described mediums [45]. The combination of postal voting with polling places and
voting machines is probably the most common, and for example, used in Switzerland or
the United States of America [4,61]

Remote electronic voting has a long journey behind it. Switzerland started its project
Vote électronique in the year 2000 [18]. In 2004, the first trials in the canton of Geneva
were executed [18]. In the following years, further test runs were made, and in 2015 the
first system with individual verifiability was introduced [18]. A year later, the Swiss Post
system was used for the first time [18]. Back at this time, it was planned that this system
would be used for federal voting in 2019 [18]. This never happened due to failings in the
individual verifiability [18]. These failures were that severe that the Swiss Post decided
that their system will no longer be available starting July 2019 [18].

The situation looks different in Estonia, a country where about 99% of all public services
are possible to be done online since late 2020 [2]. In 2005, Estonia was the first country
to hold national wide elections, and two years later, in 2007, parliamentary elections were
conducted successfully [2,70]. In the 2019 parliamentary elections, about 247’232 of all
valid ballots, which is about 44%, were cast via the Internet [6]. It is also interesting
that 2’107 of these votes were handed in from a foreign country what shows the location
independence of remote electronic voting nicely [6].

Brazil, Canada, Germany, or the United States of America, use voting machines for elec-
tronic voting [45,62,72,74]. Since this technique cannot be realized remotely, this work
will not cover it.

3.2 Vote Verification

When voting on paper, the process is (typically) completely transparent and comprehen-
sible [44]. Transparency is given by the voting medium’s physical properties and how it is
handled [44]. A voter using a permanent pen (which is mandatory in most cases) can be
sure that the selected option cannot be changed on the paper neither in an envelop nor
in a locked ballot box. However, as soon as electronic devices are included in the voting
process, the transparency of applied processes shrinks tremendously since operations (es-
pecially encryption steps) executed on data cannot be observed easily and without extra
effort [44]. Therefore, new mechanisms and auxiliary equipment are needed.

At the beginning of this section, the main features and properties that an electronic voting
system should have are discussed in subsection 3.2.1. Then the focus is laid on verifia-
bility and its mechanisms and schemes starting with subsection 3.2.2. In this work only
approaches without specific voting hardware are considered. Hardware-based verification
or verifiable optical scanning, as listed in Guasch (2016) are not discussed in detail. For
hardware-based verification voters must have access to trusted hardware such as smart
cards with embedded keyboards or hardware tokens which run the encryption process [29].



3.2. VOTE VERIFICATION 13

This has the advantage that neither the voting device nor the voting server has knowl-
edge of neither the selected voting option nor the used randomness for the encryption [29].
Verifiable optical scanning is mainly used to automate the counting process of a paper
based voting process [29].

3.2.1 Receipt-Freeness, Coercion-Resistance & Privacy

In Switzerland vote secrecy must be granted [5]. Vote secrecy defines the fact that nobody
is allowed to find out who voted for what by any unlawful means [5]. Privacy goes even
further since a voter must be able to decide freely whether they go voting or not and
also for whom or what they vote [5]. According to Kisters et al. (2017), privacy ensures
that nobody expect the voter himself/herself, has knowledge about what he/she voted
for by any means [53]. Thus, privacy is a stronger form of vote secrecy since it does not
only prohibit unlawful means [53]. In literature, vote secrecy and privacy often are used
indifferent.

e Receipt-freeness ensures that a voting system must not provide a valid receipt of a
vote selection and that a voter cannot gain any information he/she can use in any
form for vote selling [8,15,53].

e Coercion-resistant describes the state, that a voter cannot use any information to
prove the voting decision to a coercer [37,50,53]. In the definition of Kiisters et al.
(2010) a voting protocol can become coercion-resistant in an honest environment if
there is a process-step that cannot be conducted by the coercer itself (e.g. regis-
tration, vote in a voting booth, operations with private security parameters) [9,50].
Furthermore, there must exist a counter-strategy which a victim can apply to achieve
his/her goals without the coercer knowing it (e.g. voting multiple times and only
count the last ballot) [9,50]. Coercion-resistance only holds if honest voters not
misbehaving on purpose are assumed, and it is a stronger form of receipt-freeness
which protects voters actively against vote-buying and coercion [14,53,53].

e Privacy & Vote Secrecy ensures that no one should find out whether a voter went
voting or not and how he/she voted by any means [5,51,53]. Hence, for an observer
who may control certain steps/parties of the voting process, there is no possibility
(under probabilistic polynomial-time assumptions) to distinguish how a voter voted
if the voter is honest, meaning that the voter does not reveal the selected voting
option on purpose [51,53].

It is commonly believed and expected that coercion-resistance implies privacy, which is,
according to Kiisters et al. (2017), not true [53]. The connection between them is subtle,
since improving the level of privacy can lead to a lower level of coercion-resistance [53].
However, the privacy level can also be much lower than the level of coercion-resistance [53].
It becomes problematic if a (coerced) voter applying a counter-strategy can hide his/her
behavior and vote selection better than with the honest voting process [53]. This occurs
if the honest receipt unveils more information than necessary [53].

An example thereof would be a poll where half of the voters must reveal how they voted
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and where coerced voters can lie about it [53]. This results in a low privacy level (i.e. 3
of the votes are known) but a high coercion-resistance due to the counter-strategy (i.e.
lying about the selected vote) [53]. This hides the true vote selection in a better way than
revealing the vote [53]. If the counter-strategy does not outperform the honest process, a
coercion-resistance protocol brings at least the same level of privacy [53].

3.2.2 Verification & Accountability

When voting with an electronic medium (as visible in table 3.1), a voter cannot observe
all steps done by an electronic device since operations on data will not be detected by a
voter [44]. According to Benaloh (2017), voters using their own devices can be targets of
coercion and malware or other risks of viruses and integrity violation [14]. Voters using
devices managed by entities of their choosing and trust face fewer problems and threats
regarding integrity and malware infections but still face the problem with coercion [14].
To prevent coercion, voters should use devices provided and controlled by the voting
authority [14]. But even then, and especially if the voting authority is not trustworthy and
fair, voters still cannot be ensured that their vote is encrypted and cast as intended [14].
Thus vote verification is an important part of electronic voting [44]. It allows voters to
verify the electronic voting process and therefore ensure that a ballot is not altered by
a malfunctioning voting device [44]. Kiisters et al. (2017) list programming errors and
manipulated or malware-infected voting systems, or certain parts of it, as the reason why
verifiability is needed in eVoting [53].

e Verifiability & Verification allows detection if something went wrong during the
voting process [51,53]. Furthermore, the verification will only succeed if everything
worked out correctly and the verifier is assumed to be honest and unbiased, which
means that this entity will not accept a voting step if it is not conducted correctly
or does not result in the theoretically expected output [51]. Hence, a verification
entity accepts the process if it is conducted correctly, honestly, and trustworthy [51].

e Accountability is the possibility to detect malfunctioning parties and devices by a
user [53]. Kiisters et al. (2017) list accountability as a stronger form of verifiability
since it allows not only the detection of an incorrect state but also what, who,
or which device caused it [53]. Furthermore, eVoting systems should be designed
for accountability, and not only end-to-end verifiability since the latter one is not
sufficient [53].

There is a conflict between werifiability & verification and privacy (details in 3.2.1) [8].
On one side, a voter should have as much information as needed to verify that the vote
was cast correctly [8]. On the other side, privacy, vote-selling, and coercion become a
problem if too much information is provided and a voter can persuade another person
about a personal voting selection [8].

Verification & verifiability is in literature also referenced as wvoting verifiability, election
verifiability or end-to-end (E2E) verifiability [8,41,44]. Based on Kiisters et al. (2017),
E2E verifiability ensures that the result of a voting round not representing the actually
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cast votes is negligible [53]. The definition of Kiayias et al. (2015) goes into the same
direction since they define E2E verifiability as the ability a voter has to verify that a
vote was cast, recorded, and tallied properly in the standard model [40]. Adida (2006)
stated that end-to-end vote verification does not verify the voting equipment but rather
the voting results since it does not check the source code but the output thereof [8]. In
general one can say that with vote verification a voter can verify that his/her intentions are
(a) properly encrypted by the voting machine, (b) delivered to a voting system unaltered
and (c) counted correctly in an evaluation phase [8,44,53]. Verifiability is a combination
of Cast-as-Intended, Recorded-as-Cast and Counted-as-Recorded [28,41].

e Cast-as-Intended ensures that encrypted ballot indeed contains intended voting
selections, and thus a ballot is cast as the voter intended [8, 28,29, 57]. If this
property is met, a corrupt/malfunctioning voting device is unable to cast a vote
containing a different voting option without being detected by the voter [29,58].

e Recorded-as-Cast allows voters to verify whether their vote is recorded in the ballot
box correctly or not [8,29].

e Counted-as-Recorded ensures that previously received and recorded ballots are
counted correctly [8]. Furthermore, it ensures that no accepted ballot is uncounted
or unaccepted ones are counted [53].

Furthermore, end-to-end verifiability often gets divided into individual verifiability and
universal verifiability [8,13,41,44).

Individual verifiability ensures that a voter can check that the vote is counted correctly
and as intended [13,26,44,69]. Thus, individual verifiability is also a combination of Cast-
as-Intended and Recorded-as-Cast [26,28,29,60]. Kazue et al. (1995) defined individual
verifiability as the possibility a voter has to check if the ballot reached the voting server
and was counted correctly [63]. In some literature (e.g. Kazue et al. (1995), Kiisters
et al. (2011) or Smyth et al. (2015)) individual verifiability does not cover the Cast-as-
Intended property [51,63,69]. The disadvantage of individual verifiability is that a voter
has to trust other voters that they also verified their vote since a voter cannot check the
correct handling of a ballot for others [63].

Universal verifiability ensures the possibility of publicly verifying that the election outcome
coincides with the published ballots [28,41,44]. This is basically the same as Counted-
as-Recorded [28,41,44]. It is important that this can be performed by any voter or an
interested third party at a later time [63].

Cortier et al. (2015) prove that individual and universal verifiability combined imply
end-to-end verifiability under certain assumptions [21]. However, Kisters et al. (2017)
state that the combination of individual and universal verifiability is neither sufficient nor
necessary to achieve end-to-end verifiability [53]. Since these are opposite statements, the
assumptions made by Cortier et al. (2015) are essential to look at. They assume that
ballots cannot be confused what means that there is a no-clash property [21]. The no-
clash property ensures that a voting machine cannot provide the same receipt of a ballot to
different voters [52]. The possibility to do exactly this is called a clash attack [52]. Kiisters
et al. (2017) do not rely on this assumption [53]. According to them, the combination
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of individual and universal verifiability is not sufficient if dishonest voters team up with
malfunctioning authorities or devices and cast malformed ballots or if so-called clash
attacks are conducted [53]. Clash attacks are possible when the no-clash property is not
assumed, or some entities behave dishonestly and use the applied protocol’s weaknesses.
The weaknesses are described in the listing below:

e Devices working together: Suppose voters do not have to prove that the ballot is of
correct form, meaning there is an ability to cast malformed or invalid ballots, voters
can fiddle the voting result dramatically [53]. In this case, dishonest voters can e.g.
cast ballots containing negative or multiple votes of a certain voting option [53].
That will not be detected since only they can individually verify their ballot while
it is still possible to tally the ballots stored on the bulletin board in an universal,
verifiable manner [53]. This means that malformed ballots counted since they can
only be detected by the voters handing them in [53]. However, the overall verifiability
is not valid since the malicious ballots are not detected, and thus, the voting result is
not achieved correctly [53]. Overall, individual and universal verifiability combined
does not correctly work if the voter and the voting device are dishonest and work
together [53].

e Clash attack: A clash attack is an attack where malfunctioning voting devices or
dishonest authorities can cast manipulated ballots since the same receipt is shown to
different voters who selected the same voting options [52,53]. Thus, malfunctioning
devices can deliver the same receipt to similar voters who voted for the same options
[52]. An example of a clash attack would be a voting system where the ballots are
published on a bulletin board without voter names or pseudonyms attached to it [53].
If in this system malfunctioning devices are present, identical ballots can be created
if n voters vote for the same options and the same randomness is used to encrypt
those [53]. The voting device now only must publish one correct ballot and can
manipulate n - 1 ones at the same time [53]. All voters will verify one single valid
ballot (i.e. individual verifiability since each voter can validate "his/her” ballot)
while not realizing that all of them are verifying the same one [53]. Universal
verifiability is also met because the voting system does not count more ballots than
allowed and it is expected that all ballots in the bulletin board are verified by the
voters [53]. Thus, the vote of an honest voter was replaced undetectable [53].

Also, the E2E verifiability definitions of Kiayias et al (2015) and Smyth et al. (2019)
are critical since they do not address the voter’s intent (i.e. Cast-as-Intended is not
ensured) [69]. If Cast-as-Intended is not taken into account, there is no guarantee of
correct encryption [53]. Therefore, certain attack vectors are possible what results in
individual verifiability, defined as in Kazue et al. (1995), Kiisters et al. (2011) or Smyth
et al. (2015), is not sufficient for E2E verifiability [51,53,63,69].

Kiisters et al. (2017) show that there are forms of Helios (details about Helios in section
3.4) where individual and universal verifiability are given but E2E verifiability is not
[53]. Other voting systems (e.g. sElect - details in section 3.4) provide E2E verifiability
but universal verifiability is not met [53]. The combination of individual and universal
verifiability is not necessary to achieve E2E verifiability since such a system can provide
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E2E verifiability under reasonable assumptions but without being universal verifiable [53].
Kiisters et al. (2016) formally proved that sElect provides a prudent level of End-to-End
verifiability without offering universal verifiability [49,53]. It is extraordinarily risky for an
attacker to manipulate votes in sElect due to voting protocol structure where the voting
device can determine which mix net server is malfunctioning [49,53]. This can easily be
reported, which reduces the servers’ incentives to betray [49,53]. However, the mix net
cannot be publicly verified such that universal verifiability is not given in this case [53].

Overall, Kiisters et al. (2017) state that E2E verifiability is typically insufficient for
practical tasks when applied alone, and it would be best if eVoting systems are designed
in regards to accountability [53]. Accountability has the advantage of strengthening the
incentives of being honest and not misbehave for all parties involved in the voting process
since it is visible which entity misbehaves or is not trustworthy [53]. The feature that
makes it impossible to misbehave and deny it later increases the system’s robustness [53].
Because it is known which parts are not trustworthy, they can be picked out and excluded
from another protocol run [53].

3.2.3 Challenge-or-Cast Verification Scheme

Here the challenge-or-cast verification mechanism is described in detail. The most famous
approach of challenge-or-cast makes use of the Benaloh-challenge [48]. The structure of
this subchapter and the following three is the same. All start with the description of the
Idea, which is followed by an illustration of the process. The subchapters are closed with
opportunities and obstacles emerging from the discussed verification scheme.

Idea

The idea of challenge-or-cast verification is that voters either can cast their ballot or
challenge the encryption mechanisms to test if the voting client is honest and trustworthy
[13,48]. Tt is not possible to cast a ballot and challenge the encryption of the same
ballot [13,28,31,48]. This characteristic leads to the fact that all ballots counted in the
tally phase are never audited [13,20]. If a cast ballot is also audited, receipt-freeness and
coercion-resistance will not hold [48]. To ensure receipt-freeness and coercion-resistance, a
voter needs to restart from the beginning after he/she challenged the encryption, and the
voting device must not recognize a restart after challenging a ballot [20,28,48]. There is
also the possibility of re-encrypting the vote with a newly generated randomness instead
of starting from scratch again [13,28]. Re-encrypting ballots after verification is less
preferred since it does not compromise vote secrecy [48]. The process of gaining trust
now lies in the number of vote-iterations done by a voter [14,31,38,48]. As previously
described, already cast ballots cannot be audited. Trust must be established by revealing
correct encryption of ballots encrypted and processes before the final vote iteration, which
results in casting the ballot [14,48].

In this approach, the critical point is that the voting client and the voting system must
not know if a voter is challenging the system or casting the ballot when creating the
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commitment [14,31,48]. A voting device will always generate an immutable commitment
of the encrypted ballot before knowing whether this ballot will be cast or challenged
[14,31,48]. This commitment includes the encrypted ballot, which consists of the selected
option in an encrypted form [14,31]. So the commitment contains the selected options
but does not reveal their values resulting in no knowledge about the encrypted voting
option [14,31,48]. Suppose the voting device does not include the selected voting option
in the commitment. The commitment cannot be changed anymore as soon as the voting
device knows whether it will be challenged or not [14,31,48]. Thus a malicious voting
system will be caught if an unselected option is included [14,31,48].

If the voting device knows about the voter’s challenge-or-cast decision a priori, it can
generate a misleading commitment leading to cheating options [14,14]. In theory, a voter
can store the commitment somehow (e.g. write it down on paper, copy it to a separate
window, scan it with a verifier application) without letting the voting device know where
the commitment is stored [14,31,48]. Since this commitment is immutable and potentially
stored somewhere else, the voting device cannot change it anymore when receiving the
voter’s intention of challenging or casting the ballot [14,31,48]. Thus, if a voter selects
challenge, a commitment with a not-intended voting option will be challenged, revealing
that the voting device cheated and is not trustworthy [14,31,48]. This makes it very risky
to manipulate a vote and, therefore, become busted since an unbiased voter will challenge
the encryption in 50% of the vote-iterations [14,48].

As described previously, a voter must have the possibility to interact with the commitment
in a way that allows storing it independently of the voting device or at least the voting
application. In Kulyk et al. (2019), and in Patrick Hayes’s implementation, two systems,
voting client and verifier, are used [31,48]. Since there are two different devices, they are
physically air-gapped and if implemented properly the devices do not know which other
device is used [48]. As a result of this, the verifier-system does not need an active Internet
connection at the time of voting [48]. Nevertheless, if only two devices are used, it needs
to be assumed that either the voting client or the verifier is trustworthy by nature [48]. If
they collaborate in some way, they can manipulate the factors in the same manner what
will not be visible to a voter [48].

Challenge-or-cast verification can ensure that a voting client is trustworthy and does not
manipulate the selected options [48]. However, above described version does not ensure
that the communication between the voting client and the voting system is honest [48].

Process

In figure 3.1, the process of the challenge-or-cast approach is illustrated. The listing below
describes the steps in more detail (based on [31] and [48]):

e After a voter successfully logged in, he/she selects the voting options and then
initiates the encryption of the chosen voting option. Once the encrypted ballot
is created, the voting device constructs the commitment. The commitment must
include the encrypted ballot, which contains the encrypted voting selections.



3.2. VOTE VERIFICATION 19

e Once the commitment is created, it will be displayed to the voter. He/she then
should store the commitment somewhere independent and out-of-reach of the voting
device. Once this is done, he/she can either select Challenge (to challenge the
encryption and thus the trustworthiness of the device) or Cast (to cast the ballot
and finalize voting).

e If Cast is selected, the encrypted ballot will be sent to the voting system and counted
in the tally phase. The voter finished voting.

o If Challenge is selected, the voting device must display the used randomness data
in a form a voter can use it for further calculations.

e Once the voter received all the randomness data used in the encryption, he/she
encrypts the vote on a verification device. This will result in another encrypted
ballot, of which again a commitment is created. In theory the two commitments
should be exactly the same since the same intended voting options are encrypted,
and also the same randomness data is used for the same encryption algorithms.

e The second commitment can be compared to the first one. If they are similar, the
voting device is honest since it encrypted the selected voting options and used them
in the commitment. The voter gained trust in the voting device and must restart
the process to cast a vote. If the commitment is not similar, the voting device or
the verifier device is not trustworthy, and a voter should not vote with this device
combination. The commitment can be different if the voting device or the verifier
application encrypted not the selected voting options, used wrong randomness data
or an error occurred.

Opportunities & Obstacles

This verification approach’s most significant opportunity is that a voter can challenge the
system as often as he/she wants and until enough trust is gained [48]. Hence, the voters
can decide by themselves if they trust the used devices or if they want to challenge it once
more [48].

One problem the challenge-or-cast approach suffers is that the challenge of a ballot takes
extra effort by the voter because, after the challenging process, the voting process needs
to be started again [48,73]. This becomes problematic since the possibility to detect
a untrustworthy voting devices is only given when voters challenge the voting device,
meaning, willing to take extra effort [48]. If a voter does not challenge the system, he/she
will not detect fraud [48].

People may take the extra effort if they do not know a voting system or if they are
suspicious about the devices they use [48]. But after multiple successful verifications, the
interest in rechallenging the same setup, with all extra effort, may decrease [48]. This
potentially results in many people challenging the system in the beginning, but fewer
challenges after some votes are already conducted via the system [48]. Since trust is only
generated if voters challenge the system this can become problematic [48]. Making the
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verification mandatory for every new vote would be problematic since the voting device
then knows whether a voter has to challenge the ballot or not [48].

Furthermore, proper vote secrecy depends on the implementation since re-encrypting a
challenged vote violates vote secrecy [48]. Thus realizations of this approach should, after
the challenge process, always restart the complete voting process [48,73].

Depending on the implementation two devices are needed for the challenge-or-cast ap-
proach [73]. The two devices are preferably in different trust domains, meaning at least
one device is trusted [48]. If the voting device and the verification application/device are
both untrustworthy, the devices can fake correct encryption and make fraud detection for
a user impossible [48,73]. Thus, one of the devices must be trustworthy and encrypt the
selected option honestly or more than two devices must be used [48,73].

Lastly, it is counter-intuitive to discard a challenged and potentially successful encrypted
vote while casting a ballot not challenged and not verified [48]. Gaining trust via previ-
ously challenged ballots can confuse voters, especially if there is not enough context and
explanation provided [48].

3.2.4 Challenge-and-Cast Verification Scheme

In this subchapter, the challenge-and-cast approach developed by Sandra Guasch and
Paz Morillo in 2017 is described in-depth following the structure introduced in the last
subsection.
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Idea

Guasch et al. (2017) have proposed a verification mechanism that they named challenge-
and-cast verification with the goal to avoid some drawbacks of the challenge-or-cast veri-
fication approach [28,29]. This approach’s critical point is that a voter always verifies the
encryption and simultaneously generates various simulated receipts [29]. Only the voter
can be convinced about the correctness of this proof [29]. People different than the voter
cannot distinguish whether the correct proof or a simulated one is shown to them [29].
This verification approach circumvents the fact that a challenged vote should be discarded
to ensure vote secrecy and coercion resistance when applying the challenge-or-cast veri-
fication [28,29]. Thus this approach should be more intuitive than the challenge-or-cast
version since the votes challenged are also the cast ones [28,29,48]. Their approach pro-
vides Cast-as-Intended verifiability, and voters can challenge the same encrypted ballots
as they will cast later and ensures that voters will not receive a receipt that can be used
to sell their vote [28,29].

The scheme described by Guasch et al. (2017) makes use of designated verifier proofs
(details in section 2.3) [28,29]. Designated verifier proofs are proofs in which only the
designated, chosen verifier can be convinced [36]. With the challenge-and-cast technique,
the designated verifier can simulate proofs about arbitrary statements (i.e. unselected
voting options) for other verifiers while the designated verifier itself can be convinced of
a particular statement (i.e. the selected voting option) [28,29,36]. Since the voter is
the designated verifier while the voting client is the prover and coercers/buyers are other
verifiers, only the voter can be convinced that the voting client knows the encryption
randomness (since the prover is proving this) [10,28,29]. At the same time, the voter can
create faked proofs with the help of the voting device and a private trapdoor key such
that the coercers/buyers cannot be convinced about a proofs content [10,28,29]. Because
buyers and coercers cannot be convinced if a proof is counterfeit or not, receipt-freeness
and coercion-resistance are achieved [10,28,29]. Buyers and coercers can only ensure that
one possible voting option is included, but they cannot ensure that the proof consists of
the voting option the voter claims [10].

The designated verifier proofs used in this approach make use of trapdoor commitments
(also known as chameleon hashes) [28]. A detailed description of the trapdoor com-
mitments can be found in section 2.4. In this setting, it is crucial that the trapdoor
information (i.e. knowledge about the trapdoor key) is only available and known by the
voter (i.e. the designated verifier) [28]. He/She can use this information to generate the
simulated proofs proving unselected voting options [28].

Process

The process of the challenge-and-cast approach is illustrated in figure 3.2. Furthermore,
it is based on Guasch (2016) and Guasch et al. (2017) [28,29].

e The challenge-and-cast verification starts similarly to the challenge-or-cast approach.
First, a voter authenticates himself /herself successfully, then he/she selects a voting
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option on the voting client which will become encrypted, including some randomness
value.

After this, the encrypted ballot and a generated non-interactive zero-knowledge
proof of knowledge (NIZKPK) of the used randomness are shown to the voter. In
the challenge-or-cast approach, plain values of the used randomness are shown such
that a verifier application can recalculate the encryption [48].

The proof then needs to be verified by the designated verifier (i.e. the voter), which
only will be successful if the voting device (i.e. the prover) is honest, meaning
the voting client indeed encrypts the selected value. This can be ensured since the
probability of successfully verifying a manipulated proof is negligible for a dishonest
device. If a voter disagrees with the proof since it is not valid, an untrustworthy
voting device is detected, and it should not be used to vote.

After the voter agrees on the proof, the same ballot is cast and in a further step
published on the public bulletin board. Simultaneously, a voter needs to insert the
trapdoor key such that the voting device can create simulated NIZKPs for unselected
voting options. These simulated proofs will always succeed in the verification phase.

¢

s N

Select voting option

!

'd N\
Encrypt voting option
Create NIZKP of
L randomness data )

A

Agree on

Voting device
Proof

untrustworthy

v v

f N\
Cast vote In_sert trapdgor key_ &

different voting option

~ J

Generate simulated
NIZKP of
randomnedss data
with trapdoor key

' N
Verification will
always succeed

A

Figure 3.2: The challenge-and-cast process (based on [28,29])
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Using NIZKPKs for the randomness instead of the plain value, and therefore applying
the advantage of the possibility to simulate NIZKPKs brings protection against vote
selling and coercion [28]. This advantage allows voters to create faked real-looking proofs,
representing any voting option [28,29]. These simulated proofs cannot be used for vote-
selling since the buyer/coercer cannot distinguish between a genuine and counterfeit proof
[28,29].

In the paper of Guasch et al. (2017), this process makes use of designated verifier proofs
with trapdoor hashes in combination with ElGamal encryption and non-interactive zero-
knowledge proofs (cryptographic primitives are described in section 2) [28]. Their cal-
culations are divided into three main stages: NIZKProve, NIZK Verify and NIZKSim-
ulate [28]. Additionally RSA Full Domain Hash algorithms are used for the signature
scheme, Chaum-Pedersen proofs of correct decryption are applied, and a common refer-
ence string was used in the previously described stages [28].

The theoretical formula they used for collision finding is listed in equation 3.1, where m is
the indeed selected message, and m’ is the one for which the proof will be simulated [28].
While the trapdoor key used is denoted as tk, the honest proof’s randomness is listed as
T'ch [28]

ri = (m—m') x th™ + g, (3.1)

Equation 3.1 results in the randomness r/, which can be used in the hashing process
(equation 3.2) together with the message m’ to create the hash value ¢, (¢, analogous)
[28]. The value of ¢, is used in the proof for message m while ¢, is used in the proof for
message m’ [28]. This allows simulated proofs with different input messages if the value
of ., and ¢, are the same [28]. In equation 3.2, g is a generator and h an ElGamal public
key [28]. All values are in previously defined message and randomness spaces [28].

Con = g™ % W'en = g™ % BTon = cy (3.2)

Opportunities & Obstacles

In this approach, verifying the ballot and challenging the voting device’s trustworthiness is
mandatory since, otherwise, creating simulated proofs is impossible [29]. Furthermore, it
does not depend on gaining trust in the voting setup via previously challenged ballots [29].
Trust is generated by challenging the ballots indeed handed in [29]. This is more intuitive
regarding the flow of how voting is done and brings less extra effort compared to the
challenge-or-cast approach since there is no fresh start needed after challenging [29, 48].

It is essential that simulated and real NIZKPs look exactly the same since otherwise,
coercers or buyers can ascertain whether a simulated or valid proof is shown to them
[28,29]. If distinguishing the proofs would be possible, the system would not be coercion-
resistant anymore [28,29]. The same problem occurs if a voter does not know or does not
have access to his/her trapdoor key [28,29]. Suppose a voter does not know the trapdoor
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key or does not have access to it, he/she is not able to produce simulated NIKZPs resulting
in the problem, that he/she receives a meaningful receipt and the system is not receipt-
free and coercion-resistant anymore [28,29]. Overall this approach is not receipt-free in
the sense of there is no receipt, but since all the receipts cannot be distinguished and
only the designated verifier can be sure which receipt is the correct one, a single receipt
is vacuous [28,29].

Besides the fact that the trapdoor key must only be known by the voter, it is also important
that the voting device has no knowledge about it until the immutable honest proof is
generated [28]. This is crucial [28]. Otherwise, the voting device can generate a dishonest
proof before the honest one what results in not even the designated verifier being able to
distinguish between an honest and simulated proof [28].

In this approach, the administrative effort is slightly higher than with the challenge-
or-cast one since the trapdoor key must be handed over to the voter before the voting
starts [28,29]. However, in this approach only one device is needed [29]. Therefore, this
device better is a trusted one [29].

3.2.5 Partial-Audit Verification Scheme

In this subsection, the partial-audit verification mechanism brought up by Cortier et
al. (2019) is described based on the three sections idea, process, and opportunities €
obstacles [20].

Idea

This approach’s main idea is that each ballot is partially audited and verified before being
counted in the tally phase of a voting scheme [20]. This allows voters to cast and verify the
same ballot [20]. Therefore, Cortier et al. (2019) make use of a shift and a masked vote
which both are included in a ballot next to the encrypted selected voting option [20]. The
shift is a random value in the range from 0 to the number of possible voting options [20].
The masked vote is the subtraction of the shift from the selected voting option and can
therefore be seen as one-time-padded encryption of the chosen voting option [20]. Thus
the knowledge of either of these two values does not leak any information about the indeed
voting option selected [20].

The scheme uses zero-knowledge proofs to ensure well-formed ballots and, even more
importantly, that the addition of the shift and the masked vote result in the selected
voting option [20]. Additionally, a voter can check if the decrypted value of the shift or the
masked vote corresponds to the value he/she remembers from the encryption process [20].
If these checks succeed, there is no evidence of a malfunctioning voting device [20].

Process

The process of the partial-audit approach is illustrated in figure 3.3. It is based on the
work of Cortier et al. (2019) [20].



3.2. VOTE VERIFICATION 25

e In the beginning, an authorized voter must select a voting option on the voting
device.

e In the next step, the voting device creates the ballot. To do so, the voting device
encrypts the previously selected voting option. Furthermore, it encrypts the shift
and the masked vote. Lastly, the voting device creates a zero-knowledge proof to
prove that the encryption is well-formed and that the sum of the shift and the
masked vote corresponds to the selected voting option.

e A voter then checks that the sum of the shift and masked vote truly corresponds
to the chosen option. If they match, the voter stores the ballot, shift, and masked
vote.

e In the next step, the voter either freely selects 0 or 1 and inserts this into the voting
device. The device then recovers the random value used to encrypt the shift or the
masked vote. If a voter selected 0, the shift would be decrypted with the help of
the random values, while the masked vote will be decrypted if a voter chose 1.

e A voter then checks whether the published value of the shift or the masked vote
corresponds to the value he/she remembers from the previous step. If the value
is similar, the voting device encrypted its input correctly and can be considered as
honest. Otherwise, the voting device probably encrypted and included an unselected
value in the ballot.

Opportunities & Obstacles

The biggest opportunity of this approach is that all votes counted in the tally phase are
partially audited [20]. Hence, trust is not generated based on experience or auditing mock
ballots but on actual auditing of indeed cast ballots [20].

However, this also nicely shows a drawback because the ballots are only partially audited
and not thoroughly since only the shift or the masked vote are checked but never the
actually selected voting option [20]. Therefore, it is not the encryption of the selected
voting option which is verified directly. Hence, a malfunctioning voting device may simply
fake the zero-knowledge proof and select the values in a way such that the voter’s checks
will always succeed. This would result in the problem that a voter audited the ballot and
despite successfully validating the checks, the counted vote is not the indeed selected one.

This process is, compared to the challenge-or-cast approach, not counter-intuitive [20].
Furthermore, only one device is needed to cast a ballot [20]. Hence, it may be easier and
also faster to use this approach in certain use-cases since no extra effort is needed [20].
However, the voters must perform some modular addition when checking if the shift and
the masked vote correspond to the selected voting option [20]. If the broad public is able
to execute this without explanation must be taken into account [20].
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Figure 3.3: The partial-audit process (based on [20])

3.2.6 Code-Based Verification Scheme

In this subsection, the code-based verification mechanism is described in detail. Like the
previous subchapters, the idea is stated initially, then the process is illustrated, and the
opportunities and obstacles are listed.

Idea

The idea of code-based verification is that a voter can verify the ballot with the help
of previously defined codes which can be compared to codes computed by the voting
system during the voting process [29,48,73]. The codes received on a personalized code
sheet represent all possible voting options, and differ from voter to voter, meaning every
voter has its own codes for all possible voting options [29, 48, 73]. During voting, a
voter can compare the codes displayed by the voting device with the ones listed on the
code sheet [29,48,73]. If the codes match for the selected option, the voting device
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is trustworthy, and the chosen option was encrypted correctly [29,48,73]. Thus, not
matching codes are an indicator of untrustworthy devices [29,48, 73].

Therefore, the code-based verification approach’s essential point is that every eligible voter
is provided with an individualized code sheet before the election starts [28,29,48]. The
voting device does not know about the codes a voter receives but has to calculate them
once the encryption is finished [48,73]. Therefore, the codes need to be calculated with
a deterministic function since they need to match the previously calculated ones [29].
Optimally the receiving of the code sheet is done via a secondary channel [2§].

Process

The process illustrated in figure 3.4 and explained in the listing below is based on the

work of Kulyk et al. (2019) and Scytl (2017) [48,73].

e Before the voting starts, each eligible voter receives a personalized code sheet that
contains all relevant codes for a particular vote or election. The codes must be
received before the voting starts and generated in the configuration phase of a vote.

e After voting started, an authorized voter selects the intended voting options on the
voting device. The voting device then encrypts the vote and displays the check code.

e If the check code is correct, meaning if the on the voting device displayed code
matches the code belonging to the selected option listed on the code sheet, the
device encrypted the selected voting option honestly. If the codes do not coincide,
the voting device is not trustworthy, and it should not be used for voting.

e If the correct code was displayed in the previous step, a voter inserts the confirmation
code belonging to the selected option. The voting device checks this code against
the known confirmation code, and if these are concurring, it casts the ballot.

e Once the ballot is received at the voting system’s servers (i.e. the servers or
blockchain where the ballot box is located) and if it passes the previous checks,
the voter’s finalization code belonging to the selected voting option is generated.
Then the finalization code is sent back and again displayed to the voter.

e If the displayed finalization code matches the corresponding code on the code sheet,
the ballot was received and stored correctly in the ballot box. Thus, voting is
finalized. If the codes do not agree, evidence for untrustworthy devices is found.
Hence, the voter should not vote with this device combination.

The process above is specialized for countries where only casting a vote once is allowed
(e.g. France or Switzerland) since it includes a confirmation phase (i.e. inserting the
confirmation code and receiving the finalization code) [73]. This is needed to protect voters
against malfunctioning voting devices [73]. Countries allowing voters to cast multiple
ballots and invalidating previously handed-in ones do not need the confirmation phase
since voters can cast another ballot if the verification codes are not matching [73].
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Figure 3.4: The code-based process (based on [48,73])

Opportunities & Obstacles

The advantage of this approach is that the connection between the voting device and the
system running the ballot box is checked with the help of the confirmation and finalization
codes [48,73]. Code-based verification can ensure that the voting client encrypts and
forwards the ballot as intended and also that the voting system receives it unchanged [48].
Thus, there is the possibility to combine Cast-as-Intended with Recorded-as-Cast since
the voting server returns the finalization code belonging to the received voting option
28,48, 73]. Furthermore, only ballots with a valid confirmation code are counted [73].

The second advantage is that the challenge of the encryption is mandatory since otherwise,
a voter cannot insert the correct confirmation code [48,73]. Thus the potential problem of
people getting used to eVoting and therefore challenging the encryption and system less
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often is mitigated by design [48].

A drawback of this approach is that the codes should be received on a different channel
(e.g. via letter or e-mail) than the voting takes place [48]. In Switzerland, this was
solved in a way that voters receive their codes via snail mail [3]. Receiving the codes
physically on paper is kind of a contradiction to remote electronic voting, especially in a
country like Switzerland where postal voting is widely deployed, accepted and used [3,61].
Furthermore, it can also happen that there is no second channel available [28].

The codes must be created before the voting starts [48]. Furthermore, they must be
created by a trusted entity, which likely is not in the voter’s trust domain, which can
become problematic [48]. Basically, a voter must trust the received codes, and hence the
entity creating these codes, without having the ability to challenge the trustworthiness of
this entity [48].

Furthermore, if the check code and the finalization code are individualized for every voting
option, meaning that one of these codes refers to exactly one voting option, the receipt-
freeness property is not completely met [29]. This because in combination with the code
sheet, a voter can generate a receipt based on the codes he/she receives from the voting
system [29].

As conducted in the study of Kulyk et al. (2019) and Guasch (2016), one issue was
the characteristics of the codes [29,48]. On one side, certain characteristics (i.e. length,
complexity, character range) of the codes are crucial regarding security specifications
[29,48]. Still, on the other side, the codes need to be compared easily and inserted
effortlessly such that everybody can use the system without difficulty [29,48].

Lastly, there is more administrative effort than with the challenge-or-cast approach since
the second channel, meaning how to deliver the codes, needs to be maintained as well [48].

3.3 Comparison of Verification Mechanisms

In table 3.2, an overview of the challenge-or-cast, challenge-and-cast, partial-audit and
code-based verification mechanisms is given. The details, process illustrations, and dis-
cussions of the mechanisms are handled in sections 3.2.3, 3.2.4, 3.2.5 and 3.2.6. The table
is heavily related to these chapters and basically, summarizes them. Hence, the sources
of the ideas listed in table 3.2 can be found in the chapter belonging to the examined
verification mechanism.

One potential general problem Kulyk et al. (2019) list is that the voters gain trust in
a system as they become more experienced and thus may not take extra effort to verify
a ballot despite it belongs to a new poll [48]. This means that voters gained trust in a
system over several elections and not in challenging the current voting setup resulting in
potentially higher success rates for malicious devices which cast counterfeit ballots [48].
All verification mechanisms which do not implement mandatory verification may suffer
from this issue. However, Kulyk et al. (2019) stated that this would be an interesting
point for further investigation, and at the time of writing, no result to this question was

found [48].
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3.4 eVoting Systems & their Verification Mechanisms

As described in chapter 3.1, there are currently some remote electronic voting systems
in use or at least in development. In this section, voting systems applying a verification
mechanism are shortly discussed.

The Estonian Internet Voting System allows users to verify their votes using a smartphone
app [70]. To verify the vote, a voter scans a displayed QR code with a smartphone [70].
The smartphone app sends a specific part of the contained data to the election server and
receives the encrypted ballot [70]. The app then encrypts votes for all possible options
using the encryption data and compares it to the received one [70]. If there is a match
between a simulated and the inherent ballot, the app displays the correct voting option,
which a voter can check against his/her voting intention [70]. Furthermore, this system
allows voters to vote multiple times to prevent coercion [70]. Allowing this makes it
impossible for a coercer to distinguish if a voter indeed voted the last time or if he/she
will vote later again [70]. This prevention mechanism is extended such that a voter can
even override online submitted votes by voting in person on the voting day [70]. However,
if the verified vote is the last one handed in, it will be counted, although the randomness
data used for the encryption is revealed previously [70].

In Switzerland, the Swiss Post system developed by Scytl makes use of code-based veri-
fication of votes [73]. In Switzerland, the confirmation phase, in which a voter confirms
receiving correct return codes (in detail in section 3.2.6), is used because each voter can
only cast one ballot per vote [73].

Helios is a web-based electronic voting system which was mainly developed by Ben Adida
in 2008 [54]. It is open-audit and uses ElGamal encryption and re-encryption as well as
mixnet [54]. Helios makes use of a challenge-or-cast approach, but with weaker coercion-
resistance, which is applicable since it is not planned to use Helios in elections with high
coercion risks [28,38,73]. As stated in Karayumak et al. (2011), in the version of Helios
they looked at, a user has to copy the mathematical proofs and used data to a second
window on the same machine [38]. This means that the verifier and voting device is not
air-gapped in this vote setting. Furthermore, the partial-audit method was developed as
an extension to the existing Helios system [20].

sElect is a remote electronic voting system designed for low-risk elections with lightweight
and simple structures including basic cryptographic primitives and voting processes [49].
Therefore, it is not constructed to protect voters from coercion or protect them from so-
phisticated attacks against their private voting devices, but it is rather designed to fight
against malfunctioning or manipulated voting servers, programming errors, or untrust-
worthy authorities [49]. Furthermore, it makes use of return codes and Chaumian mix
nets [49]. However, since these mix nets are not universally verifiable, due to the lack of
zero-knowledge proofs of correct shuffling, sElect is only individually verifiable [53]. Since
the voter must check if a personalized nonce is displayed next to the selected voting option
once the servers are finished with the tallying phase, it is impossible to check this for other
voters [53]. The voting devices are able to detect which mix servers are dishonest, and
thus, accountability is met [53].
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Table 3.2: Comparison of the previously described vote verification

mechanisms
Challenge-or-cast Challenge-and-cast | Partial-audit Code-based
Idea Voter can challenge | Voter must chal- | Voter verifies cer- | Voter must chal-
or cast the ballot | lenge and cast the | tain values (shift or | lenge the ballots
with the help of a | ballot and gen- | masked vote), but | with the help of
verifier application | erate simulated | not the vote directly | return codes
proofs to achieve
coercion-resistance
Process After  encryption, | After encryption, a | After encryption, a | After encryption, a
a voter can either | voter must insert | voter verifies the | voter must compare
challenge or cast | the trapdoor key | shift or masked vote | and insert certain
the ballot and thus | such that coercion | to reveal the trust- | predefined codes to
verify the voting | resistant simulated | worthiness of the | continue and cast
device proofs can be gener- | voting device the vote
ated
Needs Verifier application | Trapdoor key Basic knowledge in | Individualized code
modular arithmetic | sheet
Key Point | Voting does mnot | Voting device can | The voter can verify | Codes must be
know whether it | create simulated | parts of the ballot | created and dis-
will be challenged | proofs  once it | which do not reveal | tributed before the
or not knows the trapdoor | the selected voting | voting starts
key option
Advantages | Every voter can cre- | Challenging and | Partial verification | Verification of con-
ate an own level of | casting of the same | of the counted bal- | nection between
trust ballot lot voting device and
server included
Dis- Verification is | Key management | Only partial verifi- | Need for second
advantages | optional, counter- | for trapdoor key cation, selected vot- | channel and man-
intuitive, need for ing option not veri- | agement  thereof,
verifier application fied directly management, of
code creation &
distribution
Potential Experienced users | Voting devices | Modular arithmetic | Second channel for
problems may not challenge | knowing the trap- | needs explanation the distribution of
the voting setup | door key before the codes may not
every time generating the hon- be existent or ap-

est proof can work
maliciously

propriate
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Chapter 4

Design

In this chapter, design decisions and the applied architecture of the system are discussed
in detail. Furthermore, the decisions made about the verification method as well as how
to exchange data are founded. Theoretical models of the verifier and the voter front end
are given, and their interaction is explained on a high level. In the last section, trust
boundaries present in Provotum are demonstrated.

4.1 The Decision about the Verification Scheme

The decision to apply the challenge-or-cast approach is founded on the following points.
During the decision process, the applicability in the Provotum scenario was also taken
into account.

e As visible in subsection 3.3, code-based verification has the significant advantage
that the connection between the voting device and the back end (e.g. voting server,
distributed ledger, blockchain) is verified. However, the disadvantages of it, namely
the management and distribution of the codes as well as the maintenance of the
second channel, are tremendous, especially in regard to the Provotum environment.
As in Provotum, at the time of writing, no proper access- and identity-management
is established, the creation and distribution of individualized codes would be cum-
bersome. Simulating all of this was not an option since it would be too far from
reality and thus not bring an actual added value in neither the research process nor
a potential real live application. Furthermore, a voter must blindly trust the entity
generating the codes for the code sheet, what can be problematic.

e The challenge-and-cast approach looked quite promising initially, especially since
the handling is not counter-intuitive and easier usage is expected. However, espe-
cially the handling (i.e. creation and storing) of the trapdoor key is not trivial and
not applicable to the current Provotum scenario. Another point against challenge-
and-cast is that the paper of Guasch (2017) is somewhat inconsistent regarding
notation. Examples thereof are in section Concrete instantiation where they use

33
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the tuple (ai, as) as the commitment and hashing a without defining it before,
inconvenient naming for ElGamal cipher text (ci, ¢;) and hash value ¢, missing
modular operations in all formulas or mathematically unclear formulations of the
common reference string crs and the trapdoor key tk [28].

e The partial-audit approach described in section 3.2.5 has advantages like more intu-
itive handling compared to the challenge-or-cast version or verification of the actual
cast ballot. However, the disadvantages that the ballot is only verified partially
and the need of modular arithmetic calculations conducted by the voter lead to the
decision against this approach.

e Challenge-or-cast has drawbacks in regards to the handling (i.e. counter-intuitive
and optional verification) but also advantages since it can be established without
any management of keys or access codes needed. Due to the advantages, challenge-
or-cast fits into the Provotum environment. Furthermore, it can be implemented in
an air-gapped manner such that the voting device and verifier are independent from
each other.

4.2 Provotum’s Overall Design

Provotum is a Remote Electronic Voting system based on a distributed ledger using a
proof-of-authority method to ensure integrity and immutability of the inserted data [42].
This results in a public permissioned distributed ledger in which only authorized entities
can validate blocks, and at the same time, every participant can verify all blocks in the
ledger [59]. Provotum, as in version 2.0, used Smart Contracts, Distributed Key Gener-
ation (DKG), Homomorphic Encryption and Cooperative Decryption [42]. Furthermore,
the ledger creates an immutable audit record and voter-side encryption of the vote enables
ballot secrecy [42].

With Provotum 3.0, which is at the time of writing under development, the research
focus is laid on receipt-freeness as well as vote verification. Furthermore, Provotum 3.0
makes use of a Substrate distributed ledger, which works as a public bulletin board. This
distributed ledger must not make use of smart contracts any more since the protocol is
directly implemented in Substrate’s runtime.

Provotum’s stakeholders, based on the thesis of Hofmann (2020), are listed below [34]:

e Sealer: The sealers are distributed location-independent entities running nodes re-
sponsible for the validation of blocks of the distributed ledger. Additionally, the
sealers are involved in the DKG process since their public-key shares are used for
the production of the elections public-key. This key will then be used for the encryp-
tion of the votes. Lastly, the sealers will run the tallying together since decrypting
the votes is only possible collaboratively.

e Voting Authority: The voting authority is the administration entity of the votes
since it starts, conducts, and closes the voting process.
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e Voter: A voter is an eligible citizen participating in the voting.

e Identity Provider: The identity provider is a trusted third party allowed to authorize
voters to participate in the voting.

e Public Bulletin Board: The public bulletin board (PBB) is the Substrate proof-
of-authority distributed ledger with the Provotum protocol directly implemented
into its runtime. It shares an API that allows interaction with the PBB that trans-
actions containing encrypted ballots can be submitted to the distributed ledger.
Furthermore, the API also provides read possibilities.

e Community: The community is a combination of all entities interested.

e Randomizer: The randomizer is an entity implemented to blind voter’s ballots to
achieve receipt-freeness. Due to the blinding factors that are unknown by the voter,
an honest voter cannot reproduce the same ballot such that the producing of receipts
is impossible.

e Verifier: The verifier is the new part of the system allowing voters to verify their
voting setup in terms of trustworthiness. Hence, they can determine if a voting
device is trustworthy and not malware-infected. This is done with the challenge-or-
cast approach.

4.3 Verifier

In this section, the design for the verifier application is described based on the process
illustrated in subsection 3.2.3. First, the theoretical needs and ideas are presented, and
then a more technical view is given on what truly is needed.

Since the challenge-or-cast approach’s key point is that the voting device must never
know if it will be challenged or not before generating the commitment, an air-gapped
solution makes sense [48]. In this scenario, air-gapped means that the actual voting and
the verification are not done on the same device. Furthermore, the voting device should
not know which device is used as a verifier so that they cannot communicate before the
voting starts. Hence, it would be best if the verifier device can work without an Internet
connection such that a voter can decide by himself/herself whether he/she wants to use
the device offline. A smartphone application or a Progressive Web App (PWA) can be
used to make this work.

PWASs are basically enriched web applications that take advantages of new features and
technologies into account [65]. They combine multiple advantages of native apps with the
ones from websites as they adapt to the given device or browser such that they are almost
completely platform-independent [47,65]. This can be achieved due to the service-worker
possibility, which allows native-app-like functionalities and can work as a proxy [65].
Progressive Web Apps have multiple further advantages such as possible installability,
offline usage, search engine optimizations, reduced costs, higher speed, smaller size, and
no need for a distribution channel such as Apples App Store or Googles Play Store since it
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can be installed directly through the device’s browser [47,65]. Due to this advantages, in
2017, Gartner listed that in 2020 about half of all native apps were replaced by PWAs [47].

Thus, the decision made was to create a PWA because of the offline usage possibility,
platform independence, and easy distribution. Not using an electronic device at all would
be very unhandy or even impossible since all the encryption calculations must be done by
hand in this case.

Since the verifier should not be connected to the Internet, a way of transferring the data
without an Internet connection is needed. Furthermore, the voting device should not
know anything about the verifier. Therefore, the following possibilities can be applied:

e Bluetooth: Sending data via Bluetooth between devices would have been a pretty
obvious choice. However, with his technique, the communication between the voting
device and the verifier would not be solely in one direction (voting device — verifier)
but bidirectional due to the connection establishing process. This harms the feature
that the voting device should not know which device is used for verification. A
further problem is that voters disabling the Internet connection probably also disable
Bluetooth connections simultaneously since they select a smartphone’s or tablet’s
flight mode instead of disabling WLAN and cellular Internet solely. Furthermore,
both devices need Bluetooth capability.

e Near Field Communication: Basically the same as with Bluetooth, but the un-
knownness of Near Filed Communication (NFC), as well as the even smaller avail-
ability, made an application thereof even less practical. Furthermore, the distance
between the voting device and verifier is smaller than with Bluetooth what can
become unpractical.

e Typing by Hand: This approach would make sense since all communication con-
nections can be disabled on the verifier application. However, typing cryptographic
codes and hashes by hand is extraordinarily cumbersome.

e Camera: Making use of a camera and some scanning software (e.g. to scan Quick-
Response (QR) codes or plain text) has the same advantage as typing by hand
since it does not need electronic connections at all. Furthermore, if appropriately
implemented, only one device needs a camera. The drawback of this approach is
that the camera needs a resolution sufficient to scan displayed data. Scanning QR-
Codes is already prevailing in different application areas what simplifies the usage
for the voters due to experience.

e Sound: Transmitting data by sound waves would need loudspeakers on one device
and a microphone on the other. This approach has drawbacks of privacy in regards
to other devices listening at the same time. While it is visible which device scans
some data with the camera (due to the position in front of the point of interest),
it is not possible to easily recognize whether multiple devices listen to sound at the
same time or not. Also, there is potentially more noise compared to scanning with
the camera. Encrypting the data before sending via sound would bring extra effort
and additional complexity.
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Since in Switzerland only 2.8% of the population has no smartphone or tablet, the decision
was made to use these devices’ camera to scan the data in the form of Quick-Response
(QR) codes [1]. Furthermore, a tablet could also be used as a voting device especially since
the screen of it is large enough to display the QR-code in a sufficient size. Additionally,
this technique would allow a complete offline usage with communication only from the
voting device to the verifier and not bidirectional.

The QR-codes will contain the data needed for the verification. The content of the QR-
codes, based on Patrick Hayes implementation in the programming language Rust, is
described in the listing below and illustrated in figure 4.1 [31]:

e Commitment: The QR-code for the commitment contains an immutable identifier of
the encrypted ballot containing the encryption of the selected voting option. This
can be achieved with the usage of a secure cryptographic hash of the encrypted
ballot. It is essential that the selected option is included since otherwise, the voting
device can change it later, and also that the choice is encrypted because otherwise
the voter would receive a receipt of the selected voting option. If the selected option
is included in the encrypted ballot, creating the hash of a ballot not containing the
selected option would end in a different cryptographic hash. Because an honest
verifier does not know the randomness data used for encryption at this point, there
is no possibility to generate a receipt or try to figure out the input in polynomial
time.

e Challenge: The challenge, which will only be displayed if the voter wants to chal-
lenge the encryption (details in 3.2.3), contains all used data for encryption and
the creation of the ballot. This means, the selected options are sent to the verifier
as well as the randomness used for encryption. There is also the possibility of not
sending the chosen options to the verifier but letting the user select or insert the
voting options again in the verifier. However, especially if polls need text input,
such as elections of people, inserting text on the smartphone may be cumbersome
for certain people. Thus, it may be more user-friendly to display the received voting
option and let a user confirm those. Furthermore, when verifying the same device
multiple times to establish a higher trust level, it is easier to confirm the displayed
options than inserting them in every round. This probably raises the likeliness of
a verification round due to smaller extra effort. By receiving the commitment, the
user gets a fully transparent receipt of the selected voting options what results in
the fact that the ballot belonging to the received commitment must never be cast.
However, ensuring that there is no possibility to challenge and cast the same ballot
must be ensured by the voting device. Also, publicly known data (such as public
keys or general data) can be sent with the challenge.

Both QR-codes should contain an ID such that the verifier can quickly determine which
QR code is scanned and thus also in which step the voter currently is. This can also help
to prevent wrong order scanning since the verifier can give a warning if the challenge is
scanned without the commitment scanned before.

As soon as the voter scanned the commitment QR code with the verifier application,
the verification begins. The scanned commitment must somehow be visible for the voter
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Figure 4.1: The theoretical content of the QR-codes used for the com-
mitment and the challenge (based on [31]).

such that he/she can compare it to the one shown on the voting device. Comparing a
cryptographic hash by eye is not done effortlessly. Thus when displaying the hash to
the user, an easily readable format (e.g. space after every second character such that
tuples emerge) should be chosen. Furthermore, items like cryptographic hash icons can
be added to simplify the comparison (details in chapter 5). However, as soon as some color
combinations are used, comparison solely on icons can become impossible for color-blind
people. Lastly, the hash (and if used the hash icon) must always be visible during the
verification process such that small exchanges of them are easily visible.

When the voter scanned the challenge, he/she needs to confirm the selected voting options.
If a voter does not confirm the selected voting options, the verification process must be
stopped immediately. This because there could be a malfunctioning voting device sending
unselected voting options. If the user confirms the shown selections, the verifier encrypts
the options with the same encryption algorithms and also the same encryption data. If
everything was conducted honestly, this should result in the same encrypted ballot, which
can be hashed by the same cryptographic hash function to create the commitment. Once
the second commitment is created, the previously received one and the freshly computed
one should be displayed to the voter next to each other. Here the same displaying style
should be used as before, and maybe even an alert should appear if the two hashes are not
similar. However, only displaying that the hashes are similar (or not) without displaying
the underlying data is insufficient since then a voter cannot compare the commitments
by himself/herself.

Independent of the result of the comparison, the user should be redirected to the same
landing page as if starting the verification the first time. This indicates to the user that
the verifier application does not know whether the voter verified a vote before or not.

4.4 Voter Front End

In this section, the additions needed for the verification steps are provided. The exact
implementation and the adjustment done to Provotum’s voter front end are described in
chapter 5.

As stated at the beginning of section 4.3, the voter front end running on the voting device
and the verifier must not know about each other in terms of which device is used for which
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step. However, it is necessary that the two entities are aligned in terms of needed actions,
data format, and exchange interface. This means it is unlikely that a different verifier
application not designed for a certain voter front end can be used for verification.

The voter front end must store specific data during its encryption process. Namely, all the
information contained in the QR-codes (figure 4.1) must be recorded during encryption
and ballot generation. However, it is important that there is no way an honest voter can
reach the data when not selecting challenge due to the receipt-freeness property.

When no challenge-or-cast verification mechanism is implemented, the voter could cast a
vote directly after selecting the desired properties. However, as the verification gets added,
the voter must confirm the selected options such that the voting device knows when to
create the commitment. Before this, the encrypted ballot must be created such that the
commitment (i.e. cryptographic hash of the ballot) can be prepared as well. The selection
of an appropriate secure hash function is a trade-off between usability and security. If the
hash is too long, it becomes cumbersome to compare them, while it becomes risky if a
collision is found too quickly or for too many pre-images the same hash exists. However,
the ballot is already encrypted for the hash creating, meaning there is no data leak when
using a weaker hash function.

As soon as the hashing is completed, the hash should be presented to the voter. This must
be done in the same way as in the verifier such that the comparison effort is minimized.
This means if spaces are inserted after every second character of the displayed hash and
a hash icon is used, it must be similarly displayed in the voting system.

While the commitment is shown to the voter, he/she must have the possibility to either
select challenge or cast. 1f cast is selected, the previously encrypted ballot gets sent to
the voting servers and if it passes all tests there, it will be put in the ballot box such that
it will be counted in the tallying phase. At the same time, the stored data used during
encryption gets discarded unrecoverable. If the user selects challenge, the information
used for encryption is shown. Here it must be ensured that the ballot cannot be cast
as well. There must be no way of doing both, challenge and cast, at the same time or
consecutively.

After a successful round of verification, the voter should be returned to the first seen
landing page to illustrate that the voter front end does not know the number of verifi-
cations done previously. This simply because the voter front end is not allowed to know
how many times a voter verified the device since it could make probabilistic assumptions
whether it will be challenged again or not.

4.5 Trust Boundaries of the Provotum System

A trust boundary is an edge where a user’s level of trust in an application, a system,
or hardware changes [35]. The trust boundaries are mainly existent since specific data
is exchanged between different devices, probably not in the voter’s custody [35]. There-
fore, the level of trust a voter expresses towards an entity differs, resulting in various
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trust boundaries [35]. In Provotum, four different trust boundaries are present, namely
Distributed Ledger, Voting Device, Randomizer, and Verifier Device.

The trust boundaries are illustrated in figure 4.2 as light grey boxes with dotted borders
and explained in the listing below. The white boxes represent the software part included
in the Provotum system, while the arrows amongst them are an abstract representation of
data exchanged between the entities. This also indicates the one-way connection and data
exchange between the voting front end and the verifier application. Hence the impossibility
of a verifier transferring data to the voting software is shown.

Encryption Data & Re-
encrypted Ballot

i Re-encrypted

N ; Ballot i
[ Voting Software J< ] i :{ Provotum ]

x Voting N
Information
Re-encrypted Encrypted
Ballot Ballot
A4
[ Randomizer ]
I‘\\ Randomizer

Figure 4.2: Illustration of the trust boundaries in Provotum including
the verifier application.

e Distributed Ledger The Distributed Ledger trust boundary contains the Provotum
chain, which is distributed over sealers participating in the current vote. Hence, the
trust is not centralized on one entity but distributed over the sealers. This reveals
classical blockchain advantages like no need to trust a single entity, immutability,
and coercion-resistance.

e Voting Device The voting device can be in the voter’s trust domain but can also be
outside of it. This weakens the restriction of using a voting device that is trusted.
If the voting software is not running on a device not trusted by the voter, the trust
domain voting device is not trustworthy.

e Randomizer The Randomizer can be operated by different entities which are not
in control of the voter. Hence, the voter may not trust this entity resulting in a
different level of trust for this entity compared to others.
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e Verifier Device The voter should theoretically trust the verifier device. Therefore, it
is the only device trusted by the voter. However, it is also possible to use unknown
and potentially untrustworthy devices as a verifier.

As visible in figure 4.2, the verifier and the voting software are not in the same trust
boundary. The rigid separation of these trust domains allows the usage of devices that
the voter may not trust. Since the verifier is used to verify the voting front end’s honesty
and trustworthiness, especially the latter mentioned can be running in an untrustworthy
environment. This allows voters to use devices that are not controlled by a trustworthy
organization or not their property. However, it is also possible that the verifier is running
in an untrustworthy trust area. In this scenario, multiple devices must be used as a
verifier, and the verification process must be conducted with every verifier for the same
input data. A voter can trust the most occurring device assuming the majority is honest
and not malfunctioning.
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Chapter 5

Implementation

The implementation consists of two major parts: the additions made to the voter front
end originally created by Alexander Hofmann and an all-new verifier application. The
additions to the voter front end are described in section 5.1 and contain the creation of
QR-codes containing the commitment and the data stored during encryption. The verifier
application is explained in section 5.2.

The detailed process is visible in figure 5.1. It is also visible that the verifier application
must not be used for a successful handing-in of a ballot. As in figure 4.2 illustrated,
the voting system and the verifier application have different trust domains and thus a
trust boundary between them exist. With regards to figure 5.1, it becomes visible the
encryption and commitment creation is done on different devices and thus also in different
trust domains.

5.1 Addition to the Voter Front End

In this section, the additions to the existing React front end will be explained. The
starting point, meaning the front end developed by Alexander Hofmann, can be found in
a private GitHub repository, precisely: https://github.com/provotum/voter (Accessed:
13.03.2021)

As described in section 4.4, when applying the challenge-or-cast verification mechanism,
the voter must confirm the selection such that the encryption process can start. To achieve
this, an additional step must be implemented such that the creation of the ballot is not
bound to the cast mechanism. Therefore, the initial encryption process is outsourced
to an own function (i.e. export const createEncryptedBallot = (vote, keyring)
=> async (dispatch) => {...} in wvoter/src/reduz/action.js). Consequently, there are
two additional functions called castBallot and challengeBallot to hand-in a ballot and to
challenge the encryption. This minor change allowed the division between the encryption
of a ballot and the casting or challenging thereof. Furthermore, it brings the possibility
to create the commitment hash of the encrypted ballot. In Provotum, the encryption of a
ballot is based on the encryption of the given answer to a certain voting subject (i.e. the

43
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Figure 5.1: The Challenge-Or-Cast process in detail
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answer to a specific voting question). Hence the handed-in ballot is a combination of the
encrypted ones for every vote subject.

The voter front end must store specific data during encryption such that this can be
transferred to the verifier with the help of the QR-codes. The data used to verify the
encryption in Provotum is listed below:

e publicKey contains the publicKeyH as well as the parameters g (generator), p
(prime number) and q (prime number).

e voterPublicKey.h is the voter’s specific public key.

e answerBin representing the selected answer in binary form (i.e 1 for YES and 0 if
the user selected NO).

e Nonce is a random integer in the range of the parameter q defined in the publicKey’s
parameters.

e reEncryptedBallot represents the ballot after it is randomized with the help of the
randomizer.

e reEncryptionProof is the proof used to witness that the re-encryption by the ran-
domizer is done correctly.

Figure 5.2 illustrates Provotum specific adaptions to the content the QR-code must contain
according to figure 4.1. The commitment includes the actual voting questions in plain
text since they must be transferred to the verifier device as well. The publicKey and
the voterPublicKey.h, summarized as General Data in figure 5.2, are similar for all
voting subjects. Hence, they will not alter during the encryption of different subjects. On
the other side, the remaining variables are different for every subject, meaning if multiple
voting subjects are included, multiple (e.g) answerBin are included in the QR-codes. This
means, the points Vote Selection and Data used for encryption in figure 5.2 are included
multiple times when multiple voting questions are present.

The above-listed data is stored in JavaScript objects during the encryption process because
this allows easy generating of structures and dependencies. Furthermore, it will enable
straightforward parsing to the JSON format to generate the commitment and the QR-
codes. To simplify the exchange between different React views, the data is stored in a
Reduzx store.

The hash of the ballot (i.e. the commitment) is created with a SHA-256 hash of the
JSON-element preparedBallotsForHash as visible in listing 5.1. Creating the hash in an
isolated step allows simple security enhancements since exchanging the SHA-256 algorithm
with a more secure one does not influence other parts of the code. The JSON-element
used contains the subjectID (i.e. the ID of the vote question, represented as sID), the
encrypted ballot (i.e. the encrypted ballot, which can be accessed through the encrypt-
edBallotArchive[index]) and the cipherToSubstrate (i.e. the data sent to substrate and
thus revealed on the bulletin board, represented as ¢T'S)). An explanation of why this is
enough is given in section 5.2.
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Commitment Challenge
-1D -1D
- Counter - Counter
- Total - Total
- Cryptographic Hash - General Data
- Voting Questions - publicKey

- VoterPublicKey.H
- Vote Selection
- answerBin
- Data used for encryption
- Nonce
- reEncryptedBallot
- reEncryptionProof

Figure 5.2: The content of the QR-codes used for the commitment and
the challenge in Provotum.

Once the cryptographic hash is created (i.e. after the voter selected Encrypt Ballot on
the voting device and thus confirmed the selected voting options), the commitment must
be shown to the voter immediately. This is done in wvoter/src/router/ScreenBallot.jsz,
where the cryptographic hash is fetched from the Redux store. For the commitment, this
is shown in listing 5.2.

var preparedBallotsForHash = encryptedBallots.map(([sID, cTS], index) => {
return [sID, cTS, encryptedBallotArchive[index]]
b;

const ballotHash = sha256(JSON.stringify(preparedBallotsForHash)).toString();

Listing 5.1: Creation of the commitment

To create the QR-code the npm-package qrcode.react (https://www.npmjs.com/package/
grcode.react, accessed: 16.03.2021) is used. The hash icon is created with the npm-
package @emeraldpay/hashicon-react (https://www.npmjs.com/package/@emeraldpay/
hashicon-react, accessed: 16.03.2021). Nevertheless, the cryptographic hash is also
displayed in plain text with blanks after every second character such that it is possible to
verify the characters of the code one by one easily.

The raw data of the qrData used as data input for the QR~code (line 6 of listing 5.2)
is shown in listing 5.3. It contains the id, the ballot hash BH, a Counter, and a Total
to ensure all QR-codes are received. Furthermore the VotingQuestions containing the
subjectID as well as the plain text voting question are also added. The plaintext questions
with the inherent voting question ID are already included in this QR-code due to easier
handling of the received data in the verifier. When parsing the challenge QR-codes, the
data can be allocated to a subject ID already received in the commitment.


https://www.npmjs.com/package/qrcode.react
https://www.npmjs.com/package/qrcode.react
https://www.npmjs.com/package/@emeraldpay/hashicon-react
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<h1>Commitment</h1>
<div>
{grCodeReady &&
<div className="qgrFlexBox">
<div className="qrCode">
<QRCode value={qgrDatal} size={600} includeMargin={true} />
</div>
<div className="item">
<div className="cardDivSmall">
<h3>Commitment</h3>
<div>{ballotsHash.match(/.{1,2}/g) .join(' ') }</div>
<div className="centerHorizontally">
<Hashicon value="ballotsHash.match(/.{1,2}/g).join(' )" />
</div>
<div className="buttonDiv">

</div>
</div>
</div>
</div>
}
</div>

Listing 5.2: HTML code for QR-code creation

The screen presented to the voter after the ballot creation phase is shown in figure 5.3.
As it is visible, at this point, the user can either select cast or challenge but not both.
Furthermore, a voter should scan the QR-code independent of the next step. A pop-up
message to summon the user to scan the commitment is excluded on purpose since it is an
extra effort for an experienced user to close this message. Allowing the selection between
cast or challenge only after the user scanned the commitment is technically impossible
since the voting device has no knowledge about the scanning progress. If the voter selects
cast, the ballot gets cast to the bulletin board and, if all proofs are correct, gets counted
in the tally. If the voter selects challenge, the previously stored encryption data must be
presented to the voter such that it is possible to scan it with the verifier.

In theory, the challenge’s content is similar to the one of the commitment shown in listing
5.3. The id is exchanged with Challenge and there is no ballot hash included but a Key
property. This key contains either the value GeneralData, as visible in listing 5.4, or the
subjectID, as visible in the code snippets 5.5 and 5.6. The verifier assorts the received
data according to this key. The Counter is needed for the challenge since the data needed
for verification exceeds the maximum size of a QR-code.

A QR-Code with an error correction level low and 177 % 177 modules can maximally
contain 4296 alphanumeric characters [7]. Additionally, huge QR~codes are less handy to
scan since it needs a better camera resolution as well as a display with higher resolution
to display them. Thus, the challenge data is divided into several QR-codes, where the
total amount of QR-codes is denoted with the Total property and the current QR-code
is labeled with the Counter. In the current implementation, the first QR-code (i.e. the
QR-code with Counter 0 - listing 5.4) is always used for the general data. Each subject-
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{
"id":"Commitment",
"BH":"3a965d1d44ef07c16904e9e09014100a27c3eee5e03a952f1065e5ea0dbalb79" ,
"Counter":0,
"Total":1,
"VotingQuestions":{
"0x8d00badf7491ac322cd7969ab37e9b44632babfa7d47868fal13a128b6d440291" : "Popular
— initiative 'For responsible businesses - protecting human rights and the
< environment'",
"0xd386c£8378309431a880a92e0£c59339¢331b802d7£a2409b90994a8689f16¢cc" : "Popular
— initiative 'For a ban on financing war material manufacturers'"
}
}

Listing 5.3: Commitment QR-code content

specific question needs two additional QR-codes (i.e. the QR-codes with Counter 1 &
2 - listing 5.5 & 5.6) containing all the voting question specific information. As listed
above, this is the answerBin, Nonce, reEncryptedBallot and the reEncryptionProof. In
the listings 5.4 to 5.6, long cryptographic hashes are shortened, which is indicated by
ellipses, due to readability reasons.

"id":"Challenge",
"Key":"GeneralData",
"Counter":0,

"Total":5,

"publicKey":{
"h":"cb882ce4f7...",
"parameters" :{

"p":"fEfELEEFEL. LY,
"g":"o2",
gt "TEEEEEEEEE . LY

+s
"voterPublicKeyH":"6ae48794de..."

Listing 5.4: Challenge QR-code content 1

The QR-codes for the challenge are displayed in the same manner as the QR-code for
the commitment, as visible in figure 5.4. The difference is that every second one of the
challenge QR-codes is shown in a round-robin fashion. This rotation will be stopped once
the voter selected Back to Start since the voting device has again no knowledge whether
the voter scanned all QR~codes or not. This means that for a total of 5 QR-codes, the
voter must, with an optimal scanning success rate, at least scan QR codes for 5 seconds.
Besides that, the commitment and the cryptographic hash icon must be displayed all the
time such that a voter can recognize potential changes immediately.
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Provotum 3.0

POPULAR VOTE ON 29 NOVEMBER 2020 PROVOTUM VOTE VERIFIER APP

Popular initiative 'For responsible businesses - protecting human rights and the environment'

Popular initiative 'For a ban on financing war material manufacturers’

COMMITMENT

E H - mC : E gOMMITMENT

- 3a 96 5d 1d 44 ef 07 c1 69 04 €9 0 90 14 10 0a 27 c3 ee e5 €0 3a 95 2f 10 65
e5ea0dba 1579

CHALLENGE

Figure 5.3: The commitment is shown to the voter in the voting front end

5.2 Provotum-Vote-Verifier-App

As described in the Design chapter 4, the challenge-or-cast approach with the help of
QR-codes for the data exchange was selected. Furthermore, the verifier application must
be able to run offline, which can be achieved by a Progressive Web App. There should be
no knowledge of what device is challenging which voting device.

The PWA is created with the create-react-app cra-template-pwa-typescript tem-
plate, which can be found on the Create React App website https://create-react-
app.dev/docs/making-a-progressive-web-app/ (Accessed: 14. March 2021). This
template provides offline and cache-first behaviour, what enables offline usage, out of the
box [71]. Furthermore, Google’s Material-UT is used for styling of the application and
Redux as store.

The app itself is divided into an intro, scanning, confirmation, and result page. These
are accompanied with a 404 - Not Found page for invalid URLs despite this page should
never be reached if installing the verifier as an application on the smartphone. This simply
because then the address line is inaccessible, and there are no routes towards an invalid
URL in the application.
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"id":"Challenge",
"Key" :"0x8d00badf7491ac322cd7969ab37e9b44632babfa7d47868fal113a128b6d440291",
"Counter":1,
"Total":5,
"answerBin":O0,
"Nonce":"3df6999519...",
"reEncryptedBallot":{
"c":"7094363b10...",
"d":"a78b74de67..."

Listing 5.5: Challenge QR~code content 2

"id":"Challenge",
"Key" :"0x8d00badf7491ac322cd7969ab37e9b44632babfa7d47868fa113a128b6d40291",
"Counter":2,
"Total":5,
"reEncryptionProof":{
"ePrime" :{
"c":"770e7752cT. .. ",
"d":"2545a2c685. . .e"
1,
"t2":"e1ald01700...",
"c1":"7£0127be2b...",
"c2":"fed841d420...",
"beta":"5bc5291701...",
"s2":"9914178faa..."

Listing 5.6: Challenge QR-code content 3

The app has help buttons on every page where the content alone is not sufficient as
instruction, such that the user can gather additional information if wanted. The additional
information is shown as an overlay view. The help button is visible in figure 5.5 and how
it looks when the help view is open is shown in figure 5.6. The text will adapt to the
current process step that a voter is facing. It was designed that way since a user probably
does not need any additional information when he/she has done the verification already
more than once. Thus, for an experienced user, it would be cumbersome if additional help
pops up automatically every time and needs to be closed before it is possible to continue.

For the scanner, the react-qr-reader component is used (Accessed: 14.03.2021 via https:
//www.npmjs.com/package/react-qr-reader). Furthermore, an own overlay is made
such that the users know where the scanning area is located. This is visible in screen
5.7, which is accessible once the voter selected verify on the intro screen. As soon as
the voter scanned the commitment successfully, the QR-code will be parsed, the content
stored to the Redux store and the screen shown in figure 5.8 will be displayed. At this
point, the voter can compare the cryptographic hash and the hash icon thereof with the


https://www.npmjs.com/package/react-qr-reader
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Provotum 3.0

POPULAR VOTE ON 29 NOVEMBER 2020 PROVOTUM VOTE VERIFIER APP

Popular initiative 'For responsible businesses - protecting human rights and the environment'

Popular initiative 'For a ban on financing war material manufacturers'

e
COMMITMENT

3296 5d 1d 44 ef 07 c1 69 04 €9 €0 90 14 10 0a 27 c3 ee e5 0 3a 95 2f 10 65
e5ealdba1579

BACK TO START

Figure 5.4: The challenge is shown to the voter in the voting front end

corresponding ones shown on the voting front end (figure 5.3).

Similar to the voting front end, the user must either select cast or challenge. If the
user selects cast, an information is shown, that he/she must select cast on the voting
device as well since otherwise, the ballot will not be cast. Selecting challenge will start
the verification process. Thus, the scanner will open again, and once the user selected
challenge on the voting device, he/she must scan all QR-codes displayed by the front end.
The scanning progress is indicated next above the scanner, and once all QR-codes are
scanned successfully, the application will continue automatically. For simplicity, a user
cannot select which QR~code to scan but has to scan them in the given order. This means,
that if one QR~code could not be scanned initially, a user has to wait until the missed
QR-code is displayed again. This occurrence is visible in figure 5.9 where the QR~codes
with Counter 0, 1 and & are already scanned while the ones with Counter 2 and 4 are
not done yet.

Scanning a QR-code not of the correct form, scanning the commitment after the challenge,
or scanning the challenge before the commitment will result in error messages as visible
in figure 5.10. The error messages are individual to match the fault as close as possible.

Once the challenge is scanned successfully, the application will automatically proceed to
the confirmation step. In this step, the user must confirm if the displayed selections
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13:41 0 0P T75%E 0 0P T75%E
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( Provotum Vote Verifier

{ Provotum Vote Verifier

Scan Commitment

Welcome

This application is used for vote verification in
the provotum environment. For information
about vote verification press on the Help Button
in the top right corner.
To verify your vote follow the steps below:
1. Encrypt the vote on the voting device.
2. Select VERIFY on this device and then scan
the displayed QR-codes displayed on the
voting device.

Important

The device you want to use to verify the vote
must have a camera and must be different from
the device you are voting on.

It is suggested to vote on a computer and verify
he vote with a smartphone or tablet.

@ Her

Vote verification is an important tool in
eVoting to ensure correct encryption of a ballot
by the voting device. With the help of vote
verification, it is possible to detect
untrustworthy voting devices. You should
never vote with untrustworthy devices.

This application helps you to verify your ballot
and the encryption thereof. Whenever you have
questions, click on the question mark in the
top right corner.

Figure 5.5: Verifier Figure 5.6: Verifier Figure 5.7: Commit-
intro page intro page with help ment scanner

represent the ones he/she chose during voting on the voting device. If confirmed, the vote
gets encrypted on the verifier device, and the cryptographic hash gets created such that it
can be compared against the one shown on the voting device. The voter can compare the
received commitment with the one calculated on the verifier device, as they are displayed
next to each other. For simplicity, the verifier application shows the success depending
on the result (visible in figures 5.12 and 5.13). Furthermore, a voter should compare the
commitment displayed on the voting device with the calculated hash. However, when
this is already done in the step illustrated in figure 5.8 and no change in either the
cryptographic hash or the hash icon is detected during the process, comparing to the
voting device is already done.

The encryption and verification on the verifier device are done with the same cryptographic
library used in the voter front end since the verification needs the same parameters. The
node module used can be found here: https://www.npmjs.com/package/@hoal/evote-
crypto-ts (accessed: 14.03.2021). The complete encryption and verification process is
shown in listing 5.7. This function takes the array votingQuestions, the publicKey
and the voterPublicKeyH as input and returns the encrypted ballots, and a boolean
verifies, which indicate if all votes are verified or not. The votingQuestions array
contains all the data received via QR-code.

The verification is also done on a voting-question level. Hence an encrypted ballot is
created based on the encrypt(...) function implemented in the library @hoal/evote-
crypto-ts. This encrypted value is then compared against the value of the re-encrypted
ballot, meaning the randomized ballot. The verification is only successful if the values of
encryptedBallot and reEncryptedBallot match each other. While the voting device
encrypts the vote, then randomizes and re-encrypts it with the help of the randomizer and
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then compares the re-encryption with the initially encrypted ballot, the verifier compares
the received re-encrypted ballot with the self-encrypted ballot. Since this verification will
only succeed if the encrypted Ballot created on the verifier and the corresponding one
created on the voting device are similar, it can be verified that the encryption was honest
and also that the re-encryption matches the encrypted Ballot. Suppose the verification is
successful verifies will be true.

The value of allVerified (listing 5.7) will only become true if, in all verification rounds,
the value of verifies is true. Once one value is false, it will be false for all remaining
rounds of encryption.

With this approach, the randomizer gets verified indirectly since if the randomizer re-
turned wrong values, they will be detected at this point. This allows the verification of
the randomizer without receiving random values used for the re-encryption or communi-
cating to the randomizer during the verification process, what allows the verifier to stay
completely offline while verifying not only the voting device but also the randomizer.

The creation of the calculated hash, which must be similar to the received commitment to
verify the voting setup’s trustworthiness, must be calculated with the same cryptographic
hash function. Since a SHA-256 hash was used on the voter front end, this must also be
used in the verifier. Furthermore, the same input in the same format must be hashed
but with the difference that the ballot encrypted on the verifier must be used. If this is
different, the verification of the re-encrypted ballot fails and it will result in a different
cryptographic hash.
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function CreateEncryptedBallot(votingQuestions: Array<any>, publicKey:
— ElGamalPublicKey, voterPublicKeyH: BN) {

var allVerified: any = null

var verifies: Boolean = false

const encryptedBallots: Array<any> = []

Object.entries(votingQuestions) .forEach(([key, value]) => {
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if (value.answerBin === undefined) {
return
}

const encryptedVote: Array<any> = []

const encryptedBallot = encrypt(value.answerBin, publicKey, value.nonce);

var verifies = verifyReEncryptionProof (
value.reEncryptionProof,
value.reEncryptedBallot,
encryptedBallot,
publicKey,
voterPublicKeyH,

)3

allVerified = allVerified !== null ? (verifies && allVerified 7 (true)
— : (verifies)

const cipherToSubstrate = {

c: bnToHex(value.reEncryptedBallot.c),
d: bnToHex(value.reEncryptedBallot.d),
3

encryptedVote.push(key) ;
encryptedVote.push(cipherToSubstrate) ;
encryptedVote.push(encryptedBallot) ;
encryptedBallots.push(encryptedVote) ;

verifies = allVerified !== null ? (allVerified) : (false);
return [encryptedBallots, verifies]

(false))

Listing 5.7: Encryption process for the verifier
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Chapter 6

Comparison, Discussion & Evaluation

In this chapter, the analysis, comparison discussion and evaluation of the implemented
verification mechanism are delineated. Furthermore, an analysis including security and
handling aspects is conducted in subchapter 6.1. The comparison showing the additional
value generated for Provotum listed in section 6.2. The chapter closes with a comparison of
selected other implementations using the challenge-or-cast verification approach in section
6.3.

6.1 Analysis, Discussion & Evaluation

The analysis, discussion and evaluation of the verification approach can be looked at from
different viewpoints. First, a technical perspective is taken, then a process-related one,
and lastly, an environmental considering the periphery and situation the Provotum system
runs in. In table 6.1, an overview of various threats, including a STRIDE classification
is provided. The mitigation strategies against those threats are summarized in table 6.2.
The ID refers to the inherent threat, meaning threat 77 can be mitigated with mitigation
strategy M1. The problems and mitigation strategies are discussed in further detail in
sections 6.1.1 to 6.1.3.

The in table 6.1 introduced STRIDE approach was brought up by Loren Kohnfelder and
Praerit Garg in 1999 [43]. The name STRIDE stands for and is an abbreviation of Spoof-
ing, Tampering, Repudiation, Information Disclosure, Denial-of-Service, and Elevation of
Privilege [67]. A short description of the threats based on the book Threat Modeling:
Designing for Security is listed below [67]:

e Spoofing describes the threat of pretending to be somebody or something else.
e Tampering is the threat of altering source code, input data or process flows.

¢ Repudiation pictures the state where some entity claims that something was not in
its responsibility or that something was not done by this entity.

o7
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Table 6.1: Summary of the security threats including STRIDE catego-
rization
ID | Title Threat STRIDE
T1 | Untrustworthy voting | The voting device is not trusted. Therefore, | Spoofing, Tampering
setup voting with it is risky.
T2 | Insecure connection Insecure connections such as HTTP allow | Spoofing, Tampering
man-in-the-middle attacks.
T3 | Cross-Site-Scripting Classic cross-site-scripting attacks to get | Tampering
sensible data.
T4 | Malicious service work- | The injection of malicious service workers | Tampering
ers can be achieved on the localhost develop-
ment environment and with the help of so-
cial engineering.
T5 | Entry point to local | The PWA, especially when installed, can | Tampering
data be used by attackers to reach data stored
on the verifier device.
T6 | Denial-of-Service DoS attacks can target entities providing | Denial-of-Service
attacks the verification application such that voters
cannot verify their ballots. In combination
with malfunctioning voting devices this can
facilitate counterfeit ballots.
T7 | Coercion-resistance Voters can become victims of coercion. Information Disclosure
T8 | Deployment of the ver- | The deployment of the verifier can be prob- | Tampering, Elevation
ifier lematic, if it is only done by a malicious | of Privilege, Repudia-
entity. tion
T9 | Leak sensitive data Attackers try to receive sensitive data. Tampering, Informa-
tion Disclosure
T10 | Collusion between de- | Voting device and verifier arrange the cre- | Tampering, Informa-
vices ation of counterfeit ballots. tion Disclosure
T11 | Social engineering at- | Attackers influence voters not to use the | Tampering
tacks verifier and at the same time provide mali-
cious voting devices.
e Information Disclosure reveals information to entities which are not allowed to see
it.
e Denial-of-Service threats attack resources needed to provide specific services such
that some services are not reachable.
e Elevation of Privilege attacks allow an entity to do something they are not allowed

to do.

What holds true for all aspects is that with the introduction of the second device, the
verifier, the encryption of the ballot, and thus also the trustworthiness can be challenged.
Therefore, it is not mandatory to trust the voting device blindly but challenge it to
establish trust on experience (threat 77 in table 6.1). This introduction mitigates the
threat of voting with a malfunctioning or dishonest voting device (mitigation strategy M1
in table 6.2). It is classified as Spoofing and Tampering since specific devices or parts
of the system can be manipulated, malware could be inserted or devices could fake their
identity.
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Table 6.2: Summary of the mitigation strategies according to the threats
defined in table 6.1

ID Mitigation

M1 Due to the challenge-and-cast setup, two or more devices can be used. This allows to challenge
the voting device which can be caught cheating this way.

M2 PWASs enforce the use of HT'TPS. Furthermore, there is no communication from the verifier
application with a external server containing sensitive data.

M3 Since the data received by the verifier is not sensitive, the intention of an attack is not truly
given.

M4 This occurs on localhost only. Hence, not using localhost for verification and an official version
of the verifier instead mitigates this threat.

M5 PWAs run in a browser sandbox even when they are installed on the device. Furthermore,

service workers only have access to the cache storage and not to the local or session storage.
M6 There are three main methods against this threat which are preferably combined: (i) DoS
mitigation tools should be applied at the entity providing the verifier application, (ii) the
users should install the PWA on their device such that offline usage is possible, and (%) the
verifier application should be hosted by multiple entities.

M7 This is only partly mitigated. An honest voter will not receive a receipt, but a dishonest
voter can generate a receipt by reading out data at runtime. Furthermore, a coercer observing
a voter will see the same information as a voter. This could be fought by allowing to cast
multiple ballots and only count the last one.

M8 Multiple deployments or deployment by a Trusted Third Party can mitigate this.

M9 This is mitigated since the verifier does not handle sensitive data since the received data is
never cast. Furthermore, offline usage can help against this threat.

M10 | This theoretically is possible, but since the voting device and the verifier must communicate,
it becomes problematic when using the verifier offline. The unawareness about which device
is used as a verifier complicates communication even more.

M11 | This can be mitigated technically and processual when making verification mandatory. With
challenge-or-cast, this is not reachable. Therefore, active campaigns motivating voters to use
the verifier should be applied.

If the user uses a dishonest verifier, he/she will likely never cast a ballot, although the
voting device is encrypting the ballot correctly. Having an untrustworthy voting device
can simply be detected when exchanging the verifier application. If the verification then
fails, the voting device is dishonest with a high probability.

It is essential to state that this technique does not ensure that there is never an unselected
voting option reaching the tallying phase since it depends on the user’s decision whether
to challenge the device or not. Suppose the device, respectively, the ballot it creates, is
not challenged. In that case, there is no hedge against casting a counterfeit ballot since
it is technically and procedurally impossible to detect a malicious one. Therefore, it is
the voter’s responsibility to challenge and verify their voting setup before casting a valid
ballot. Motivating users to verify their voting setup every time they use it is crucial.

6.1.1 Technical

From a technical perspective, a PWA is basically enriched web applications. Therefore,
attack scenarios and vectors known for web applications are also applicable for PWAs [65].
However, since PWAs use new technologies and features, some attack vectors can be



60 CHAPTER 6. COMPARISON, DISCUSSION & EVALUATION

mitigated before becoming a threat. As described in section 4.3, service-workers are a
crucial point of a PWA since they allow app-like functionalities. These service-workers
only work via an HTTPS connection [65]. This type of connection is important since
otherwise man-in-the-middle attacks targeting the service-workers can occur [65]. With a
HTTPS connection it can be ensured, that the service-workers are not tampered on the
way from the hosting server to the verifier device [65]. Hence the STRIDE categorization is
Spoofing for man-in-the-middle attacks and Tampering due to the possibility of inserting
malicious service workers. This threat is summarized as 72 in table 6.1 and can be
mitigated with the strategy M2.

However, even with HTTPS enabled, there are attack vectors with which attackers can
install malicious service-workers [65]. In the first one, cross-site-scripting and the upload
of a use case-specific file are needed, and in the second one, a victim gets forced to install
malicious service-workers on localhost with the help of a social engineering attack [65].
To prevent damage, service workers only have access to the cache storage but not to
the local or session storage [65]. Since the user cannot upload a file within the PWA,
the first attack vector cannot be applied by an attacker. The second one does affect
only the localhost since localhost is excluded from the HTTPS service-worker installation
policy due to simpler development of PWAs. Consequently, not running the verifier in
production over localhost will resolve this threat. Furthermore, PWAs always run in the
browser-sandbox even if installed on a device [65].

A native app would be verified by the respective App Store reducing the possibility of a
malware-infected application [65]. This is not the case with PWAs since they are hosted
like normal web sites. However, PWAs have the advantage that the updating is more
straightforward, since the only thing needed is to host a newer version of the application.

Denial-of-Service (DoS) attacks against the entity providing the verification application
such that the voters cannot access the verifier and thus cannot verify their votes can
occur (threat 76). However, if the voting device is trustworthy and not malfunctioning,
the result will not be influenced when a voter cannot verify the ballot. Here, common
DoS mitigation techniques need to be applied by the provider, or the application must
be provided by various entities. Distributing the provisioning of the verifier would make
it more difficult for the verifier and voting device to work together since there are more
possibilities of combinations (further details in section 6.1.3).

The coercion-resistance property (as defined in section 3.2.1) and, as a consequence, also
receipt-freeness only holds when an honest voter is assumed (threat 77). It is classified
as Information Disclosure because this threat would harm the vote secrecy property. Due
to the nature of Provotum, a technically adept dishonest user can readout the encryption
values at runtime without much effort. This would allow generating a receipt in the way
of re-encrypting all possible voting options with the same randomness and then compare
it against the re-encrypted ballot received from the randomizer. If this comparison reveals
that the re-encrypted ballot and the newly created one belong together, a dishonest voter
has created a receipt. This can not be mitigated with the current setup of Provotum.

For the implementation, described in chapter 5, open-source libraries used for the gen-
eration of the QR-codes and the scanning of those are applied. Furthermore, a library
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containing all the cryptographic functions tailored for Provotum, the popular Redux li-
brary, and public frameworks and templates are applied in the code (details in chapter
5). Since about 7 out of 10 applications face security risks emerging from open source li-
braries, selecting these libraries must be conducted carefully [66]. The most crucial point
here is that the cryptographic library gets adapted in the voting front end and in the
verifier once it gets updated. Otherwise, the encryption may result in different results.
Furthermore, the hashing with SHA-256 to create the commitment is currently considered
secure enough, but it may must be replaced in the future. However, it should be kept in
mind that the hash must be easily comparable by eye what is a limiting factor in regards
to its length. Also, an already encrypted ballot is hashed. Regarding the hash icons, it
could become problematic if the hash icons representing the commitment are not differ-
ent enough. But as they are only additional to the alphanumeric hash values presented,
comparing the character strings instead of solely comparing the hash icons is the user’s
responsibility as soon as the comparison is intricate.

Overall the PWA is technically implemented in a way that it does not use any sensitive
data for verification (threat 79 in table 6.1). The threat of revealing sensitive data would
be classified as Information Disclosure since it reveals data to somebody not allowed
to see it and Tampering since the source code or data storage needs to be manipulated
beforehand. Technically, malfunctioning PWAs need an untrustworthy companion voter
front end such that they can successfully create and verify malicious ballots. This gets
hampered tremendously due to the offline usage possibility and due to the fact that the
voting device has no knowledge of which device will be used as a verifier. Due to the fact
that the verification is optional, a dishonest voter will simply not verify the vote. This is
the case because the verifier is not needed to cast a ballot.

6.1.2 Process-related

In this subsection, The process of the challenge-or-cast verification is analyzed and dis-
cussed with a process-related focus. As a challenged ballot can never be cast, the verifi-
cation will not reveal a meaningful receipt since the receipt an honest voter can use for
vote selling or coercion is from a ballot that is not cast. Hence, a coercer cannot receive
a ballot from an actual cast ballot. This is even strengthened because of the randomizer,
which will blind the votes. Therefore, the process does not leak any unwanted information
revealing the vote selection if honest participants are assumed. Furthermore, the random-
izer also gets verified with the Provotum-Vote-Verifier-App which will increase security.
Thus, the process becomes more secure, bringing less possibility for malicious devices or
entities to alter ballots.

However, if dishonest voters are assumed and if additional tools such as screen recorders
are applied, the voter can record the complete voting process and use this material for
vote selling. Here tools against screen recording can be integrated into the voting front
end to try fighting against it. Nevertheless, as soon as a voter is recording the screen
with an additional camera or voting with a coercer/vote buyer next to him/her, tools are
helpless. This can only be fought if voters are not allowed to vote remotely or if a voter
can hand in multiple ballots while only the last one counts. A potential coercer can never
be sure if the voter does not cast a ballot after providing the receipt.
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The process can become safer when voters challenge the voting device with multiple verifier
devices. This is the case because the possibility that numerous devices are malware-
infected and work together is smaller than with only two devices. Using multiple verifier
devices to verify the same ballot would voters allow to use verifiers from an untrustworthy
domain. However, this also raises the extra effort a user must take to establish trust.

The extra effort a user must invest in generating trust is also criticised by Kulyk et al.
(2019). They state that the verification is used to remove voters’ concerns about the
voting system’s integrity [48]. At the time of writing, it is not apparent how voters will
behave once their initial concerns have vanished. This could result in the problem that
experienced users will not challenge the votes since they already trusted the system the
last time they used it [48]. Stating that this behaviour must be studied further in the
future, it theoretically would result in less verification and, therefore, higher chances of
malfunctioning devices succeeding in casting malicious ballots [48]. Preventing this would
probably only be possible in making the verification mandatory, which is not possible with
the challenge-or-cast mechanism since the voting device is not allowed to know how often
the verification is done.

In Estonia, where people have some experience with Internet voting, in 2013 only 3.43%
and in 2014, about 4.04% of the electronically cast ballots were verified with the provided
verification system (described in section 6.3) [33]. Another study found that approxi-
mately between 26% and 31% of all verified ballots belonged to women, while slightly
more than half of the electronically cast ballots were handed in by women [32]. Unfor-
tunately it is not stated why these numbers are achieved, but they could, with care, be
used as an indicator for the willingness or assumed verification necessity by voters. Also,
it illustrates the need to motivate all genders of voters to verify their ballots.

Technically and processual, it is significant that there is enough easily accessible guid-
ance during the process, especially since the challenge-or-cast approach is rather counter
intuitive. The instructions on the next step must be clearly visible because they will be
overlooked otherwise [48]. One common problem occurring is, that the voters do not scan
the challenge since the commitment on the voting device and the verifier looks similar
after scanning it [48,56]. Voters mistakenly believe that they already verified the ballot
correctly at this point [48,56]. Based on the process, this is not the case since the encryp-
tion has not proceeded on the verifier. Another common problem is the counter-intuitive
handling since the voters are surprised that a challenged vote cannot be cast and a cast
one is not challenged [56]. Here detailed descriptions or an approach where the challenged
ballot can be cast would be beneficial [56].

In the challenge-or-cast approach, the verification device gets to know the selected option.
This because the verifier needs the information about the selected option to encrypt the
ballot locally again. However, due to the process design, the voting device does not know
the actual cast ballot’s included chosen voting option. The maximum the verifier knows
is the intention a voter probably has, but it cannot be sure that a voter indeed voted for
the same option with which the encryption is challenged.

The code-based approach has an advantage compared to the challenge-or-cast approach
since it also verifies the connection to the voting server. This would raise the security level
even more since, despite the Cast-as-Intended property, the Recorded-as-Cast feature is
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verified as well. On the other side, the challenge-or-cast approach has advantages since
no codes created by a single entity are needed.

6.1.3 Environment-related

In this subsection, the challenge-or-cast method is examined regarding the environment,
including Provotum specific topics and involving the stakeholders defined in section 4.2.
The verification possibility has a significant influence on voters and their behavior. Fur-
thermore, there are points that should be considered for providing and hosting the Pro-
gressive Web App.

The voters can verify their ballots such that they can challenge the voting setup to prevent
maliciously encrypted ballots. This increases the security for a voter since he/she must
not rely on unsubstantiated trust. Hence the voting becomes more secure from a voter’s
perspective.

Making the PWA accessible for all voters is not as trivially as assumed, since if it is
only provided by one entity, this entity must be a trusted one. Hence, the voters must,
similar to the case with the voting authority, trust a Trusted Third Party. This trust
can be avoided if various different entities host the verification application (threat 78
and mitigation strategy M8). This could be achieved if the sealers, which are already
distributed in a location-independent manner, furnish the application in addition to the
validation of the blocks. Therefore, the need for a single TTP providing the verifier
application is negligible since a user can select the sealer hosting the verifier independently.
Giving the voters the opportunity to choose which provider they want to use reduces the
possibility of the verifier and voting front end working together. Furthermore, it may
be helpful if the voting authority provides a test environment where a voter can test the
verifier before interacting with the real system. This would allow the verification of the
verifier application if not provided by a T'TP.

Not relying on one single randomizer entity would also enhance security. However, since
the verifier application can verify the randomizer as well, the added value of multiple
randomizers is not that big as the one given through multiple verifier applications.

Social engineering attacks with the objective to discourage voters from using the verifier
and at the same time providing malfunctioning voting front ends can not be fought with
the current setup. This is especially true because the verification is entirely optional, and
there is no need to verify the voting front end at least once before voting. Hence, it is
essential to mobilize voters to use the verifier application. This is classified as Tampering
in the STRIDE scheme because it is a modification of the designed voting process.

Accountability, as described in section 3.2.2; is only partly met, since if the verification
fails, the user does not know directly whether the voting device or the verifier is untrust-
worthy. To determine which device is untrustworthy, a second verifier device needs to be
used. This would allow cross-checking of the commitment generated and clearly indicate
whether the voting device is malicious or not. If both verifiers result in the same com-
mitment, it is likely that the voting device is not trustworthy. On the other side, it is an
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indicator of an untrustworthy verifier if the voting device and one verifier result in the
same commitment.

Furthermore, voters must have a trustworthy way to report and announce malicious de-
vices. This is currently neither implemented in the verifier nor in the voting front end.
Doing so would be trivial and straightforward since it is only displaying contact informa-
tion. This cannot be automated because the voting device does not know if the verification
succeeded, and it is the user’s decision to report malfunctioning devices. The possibility
to report malfunctioning devices would increase the overall security and trustworthiness.

6.2 Comparison with Provotum Before - After

Vote verification adds the possibility to verify the encryption solely generated on the
voting device and thus allows the determining whether the voting device is honest or not.
This possibility is the primary added value for a voter since it will enable voters to use a
voting device they do not trust. This is definitely an advantage since trust in the voting
setup can be established even in a remote environment. It allows users to verify that their
vote was Cast-as-Intended which is one of the three pillars a voting system should serve.

With Provotum 2.0, as described in Hofmann (2020), a voter did not have the verification
possibility, and there was also no Cast-as-Intended feature implemented. So basically, a
voter must trust the voting client but had no evidence of whether their trust is appropriate
or not. With the addition of vote verification in Provotum, this trust can now be founded
on experience since the voter can determine if a voting device is trustworthy. This results
in a higher overall trust level what theoretically will reduce insecurity about electronic
voting systems. In Hofmann (2020) this threat is listed with ID T in the analysis of
attack vectors and limitations. It is remedied with this work.

Besides the newly added Cast-as-Intended feature, Provotum already features Recorded-
as-Cast and Counted-as-Recorded. Furthermore, an honest voter will still not receive a
valid receipt of an indeed cast ballot and cannot transfer the re-encryption proof to a
third party due to the usage of designated verifier proofs. Therefore, the receipt-freeness
property holds for honest voters.

6.3 Comparison with other Implementations

In Adida (2008), the Helios system is targeted for elections with a low coercion risk [9].
In their approach, a voter can challenge as many ballots as wished, and once the voter
is convinced, he/she must authenticate himself/herself and cast the ballot then [9]. They
state that all vote selections are only recorded in the browser without any network calls [9].
Only if the ballot is encrypted and the plaintext is discarded, network calls occur [9]. In
Provotum, this is different since there are network calls to the randomizer entity after the
ballot is encrypted but before the plaintext selection is discarded. This is partly caused
by the nature of Provotum’s encryption process and partly by storing the selection for
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a possible challenge of the ballot. Furthermore, in the Helios version created by Adida
(2008), the auditing of the encrypted ballot is done in a ballot encryption verification
program which takes the used randomness as input [9]. Exchanging the randomness is
done via downloading the randomness and importing it into the verifier software [9]. Ad-
ditionally, the voter gets redirected to the selection screen once he/she finished challenging
the encryption [9].

In Provotum or the work described by Kulyk et al. (2019), the verification is air-gapped,
which may not be the case with the above-introduced Helios version since there the verifi-
cation program can run on the same device. Furthermore, in Helios the voter is bound to
a computer since the downloading and importing of the used randomness into a specific
Python program is needed. Probably voters will use the same computer they voted with,
which can become problematic if this device is in the same trust domain, which may be
untrustworthy.

Other systems, such as the one described in Bell (2013) or Ben-Nun (2012), which are not
for remote voting, includes paper as a physical medium to transfer specific data [11,12].
The latter makes use of dual voting, including electronic and paper-based voting for the
same election [12]. Since these mechanisms are used onsite, they will not be discussed
further here.

In the Estonian electronic voting system, a smartphone app is used for vote verification [33,
75]. The fundamental difference in the Estonian voting system is that voters are allowed
to cast multiple ballots, and only the last one is counted [70]. This brings the possibility
to verify a ballot after it is cast [33]. In their approach, an active Internet connection is
needed since the verifier application needs to communicate with the vote collection [33,75].
For the verification, the cast ballot is downloaded to a voter’s smartphone, which compares
it to the encryption of all possible voting options [33,75]. If there is a match between the
received ballot and a newly encrypted one, the voter has an indication that the ballot was
Cast-as-Intended if the match occurs for the indeed selected voting option [33,75]. If the
ballot matches with an undesired voting option, a cheating malfunctioning voting device
is detected. While with this approach, a voter gets a receipt, the nature of the voting
process prevents coercion since a coercer cannot be convinced that the presented ballot
was the last one cast.

Furthermore, Yilmaz et al. (2020) bring up the possibility of visual comparison of the
matching vote selection with the help of a color representation consisting of 32 colored cells
[75]. Whether this or the in Provotum implemented hash icons are more straightforward
for comparison is depending on the personal preference. The possibility to compare the
values in an alphanumeric form is missing in the Estonian verification application in the
form presented by Yilmaz et al. (2020). This may become problematic for color blind
people.
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Chapter 7

Summary, Conclusions & Future Work

This chapter summarizes the most essential points of this thesis. Furthermore, a short
conclusion and some future work suggestions are given.

7.1 Summary & Conclusion

This thesis aims to introduce vote verification such that the Cast-as-Intended feature is
present in Provotum. This is achieved with the implementation of the challenge-or-cast
method, including a second device running the verifier application. The challenge-or-cast
property of either challenging or casting a ballot makes use of the circumstance that
the voting device does not know whether it will be challenged or not while creating the
commitment. The commitment must contain the selected voting option, and it must be
ensured that it is impossible to challenge and cast the same ballot. Since the commitment
is immutable, the voting device cannot alter the selected voting option once it learns the
voter’s challenge-or-cast decision. As this commitment is scanned with the voter’s verifier
device independent of the planned decision (challenge-or-cast) and the selected option is
included in encrypted form, the voting device cannot manipulate the commitment later.
Since the implementation of the verifier application is done with a Progressive Web App,
which can be used offline, the potential agreement on manipulating a ballot between the
voting device and the verifier becomes more complex than it would be when only an
air-gap exists.

Having a second air-gapped device that is solely used for verification allows a voter to
verify whether the voting device is trustworthy or not. This allows voting in an unfamiliar,
potentially insecure environment where the voting device could be in an untrustworthy
trust domain. This thesis shows that trust can be established with the challenge-or-cast
approach and that counterfeit ballots can be detected with the help of a separate verifica-
tion device. The additional value generated allows voters to remotely and electronically
cast their votes while still being sure that the selected option is encrypted and thus in-
cluded in the ballot. The air-gapped verifier device functioning in offline mode combined
with a communication flow only from the voting device to the verifier minimizes the
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possibility of the two devices communicating with each other. This enhances the com-
plete voting and tallying process’s security and verifiability tremendously since it detects
malicious input and malfunctioning devices at the first stage of the voting process.

7.2 Future Work

Future work on this topic, the Cast-as-Intended property, is possible in multiple directions.
Overall, future work on Provotum could focus on getting away from the honest voter
assumption. This assumption should be attenuated since it sadly does not perfectly
coincide with reality. This would have a significant influence to topics like coercion-
resistance and receipt-freeness since, at the time of writing, a dishonest voter can generate
receipts.

Usability & Verification Willingness

While this thesis focuses more on the technical aspects of Cast-as-Intended and the imple-
mentation of a method to achieve it, further studies about usability are needed. Especially
since the current process is somewhat counter-intuitive. Usability studies could be real-
ized in an observed setting such that the bystander directly sees where voters get stuck
or struggle. In a second phase, studies about the number of verifications performed in a
vote would be fascinating. This could only be achieved once proper identity management
is available since it must result in a quantitative result which is only achieved through
observing many participants.

In terms of user studies, it is also important to detect and define how much information and
help needs to be given to the voters. The current implementation’s handling instructions
need to be actively opened. The reason for this is that a voter familiar with the verification
process does not need to be informed all time. However, this is only based on assumptions,
and it is probably better to display visual aids every time a voter verifies a ballot.

It needs future work in the direction of verification willingness, especially once voters are
used to voting with a remote electrical voting system. At the time of writing, it is unknown
what will happen once users gained trust in the voting system. Because the challenge-
or-cast approach brings extra effort, users who have gained trust through verification
during a previous election may not challenge the voting setup again, even though it can
be malfunctioning this time. This is also mentioned by Kulyk et al. (2019) [48].

Other Verification Approaches

Once studies about usability and willingness to verify the vote are conducted, it would
be interesting to see if another method (e.g. code-based or challenge-and-cast) would
achieve other scores and results. This would allow to identify the most suitable verification
technique for the broad population.
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Identity Management

Identity management matching the intention of a remote electrical voting system is crucial
for the long-term success of Provotum. Without this, it will probably not get further than
a research project. This, because it is not possible to manage access privileges for a large
number of voters by hand. Probably it would be a good idea to think of a decentralized
identity management system that matches the intention of Provotum. This minimizes the
need for a trusted third party as an identity management entity which would increase the
application area’s scope.
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CSG Communication Systems Research Group
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E2E End-to-End

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS  Hypertext Transfer Protocol Secure

IfI Institut fiir Informatik, Departement of Informatics
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NIZKP Non-interactive zero knowledge proof

NIZKPK  Non-interactive zero-knowledge proof of knowledge
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STRIDE  Spoofing, Tampering, Repudiation, Information Disclosure, Denial-of-
Service, and Elevation of Privilege

TTP Trusted Third Party
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QR-Code Quick-Response-Code
ZKP Zero-Knowledge Proof
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Glossary

Air-gap An air-gap occurs when two devices are physically and logically separated [55].
It satisfies the highest safety and security requirements [55].

Cast-as-Intended Cast-as-Intended ensures that encrypted ballot truly contains intended
voting selections, and thus, a ballot is cast as the voter intended [8,28,29]. If this
property is met, a corrupt/malfunctioning voting device is unable to cast a vote
containing a different voting option without being detected by the voter [29,58].

Clash Attack A clash attack is an attack where malfunctioning voting devices or dishonest
authorities can cast manipulated ballots since the same receipt is shown to different
voters who selected the same voting options [53]. Thus, clash attacks are attacks
where malfunctioning devices provide different voters with the same receipt [52].

Countes-as-Recorded Counted-as-Recorded ensures that previously received and recorded
ballots are counted correctly [8]. Furthermore, it ensures that no accepted ballot is
uncounted or unaccepted ballots are counted [53].

Counter-strategy A counter-strategy is a strategy that can be applied by a coerced voter
to defend himself/herself against coercion [51]. The goal of such a strategy is that
the coerced voter can vote for the intended choice instead of the one ordered by a
coercer [51].

Designated Verifier Proof A Designated Verifier Proof is a proof where only the desig-
nated, selected verifier can verify the proof [36]. Thus, only the specified, designated
verifier can be convinced of a proof [36].

Digitalisation Digitalisation is the process used to enhance business processes with the
help of digitisation [19].

Digitisation Digitisation is the process of converting physical, analog data and informa-
tion to digital one [19].

Localhost Localhost is a domain name used for the local development of web-based ap-
plications and websites. Usually, it is accessible on the IPv4-Address 127.0.0.1.

Public Bulletin Board A Public Bulletin Board (PBB) is an authenticated immutable
append-only channel that provides transparency and verifiability in eVoting systems

[34]. Furthermore, it is public and provides a consistent view to all entities looking
at it [34].
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Recorded-as-Cast Recorded-as-Cast allows voters to verify whether their vote is recorded
in the ballot box correctly or not [8,29].

Randomizer Entity which randomizes and thus blinds encrypted ballots [34]. This entity
is used in Provotum 3.0 [34].

STRIDE The STRIDE threat modeling approach was brought up in 1999 by Loren Kohn-
felder and Praerit Garg to model specific threats [43]. STRIDE stands for Spoofing,
Tampering, Repudiation, Information Disclosure, Denial-of-Service, and Elevation
of Privilege [43].

Trust Boundary A trust boundary is a boundary, where a user’s level of trust in an
application, a system or hardware changes [35].

Trust Domain A trust domain is an abstract area with the same level of trust or a col-
lection of devices a voter has equal confidence.



List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
2.3
5.4
9.9
2.6
2.7
5.8
5.9
5.10
5.11
5.12
5.13

Interactive Schnorr Proof . . . . . . . . .. ..o 8
Non-Interactive Schnorr Proof . . . . . . . ... ... .. ... ... .... 9
Challenge-or-Cast Process . . . . . . . . . . . . .. ... ... .. ..... 20
Challenge-and-Cast Process . . . . . . . . .. .. ... ... .. ...... 22
Partial-audit Process . . . . . . . . .. . o 26
Code-based Process . . . . . . . . . .. 28
Theoretical QR-Code content for commitment and challenge . . . . . . . . 38
Provotum Trust Boundaries . . . . . . .. .. .. .. ... ... ..., 40
Challenge-or-Cast Process in detail . . . . .. ... ... ... ... ..., 44
Provotum QR-Code content for commitment and challenge . . . . . . . .. 46
Commitment displayed in voting frontend . . . . . . . . . ... ... ... 49
Challenge displayed in voting front end . . . . . . . . . . . ... ... ... 51
Verifier intro page . . . . . . . . .. 52
Verifier intro page with help . . . . . . .. .. ... ... ... ... ... 52
Commitment scanner . . . . . . . . . ... 52
Successful commitment scan . . . . .. ..o 53
Scanning of the challenge . . . . . . . . .. ... ... ... ... ... 53
SCANNING €ITOT . . . . . . . v v v e e 53
Confirmation of selection . . . . . . . . . ... ... 0L 53
Successful verification . . . . . . . ..o 53
Unsuccessful verification . . . . . . . . . . ... L 53



82

LIST OF FIGURES



List of Tables

3.1

3.2

6.1

6.2

Different voting forms and mediums . . . . . . . . ... ... L. 11
Verification mechanisms comparison . . . . . . . . . .. .. ... ... ... 31
Security threats analysis . . . . . . . . . . ... .. ... ... ... 58
Mitigation strategies . . . . . . . . ... Lo o 59

83



84

LIST OF TABLES



List of Listings

5.1
5.2
9.3
5.4
2.5
5.6
2.7

Creation of the commitment . . . . . . . . ... . ... ... ... ..... 46
HTML code for QR-code creation . . . . . . . . . ... ... ... ..... 47
Commitment QR-code content . . . . . . . . . .. ... ... .. ... ... 48
Challenge QR-code content 1 . . . . . .. .. .. ... ... ... ... .. 48
Challenge QR-code content 2 . . . . . . . .. .. ... ... ... ..., 50
Challenge QR~code content 3 . . . . . . . ... ... ... ... 50
Encryption process for the verifier . . . . . . . ... ... L. 55

85



86

LIST OF LISTINGS



Appendix A

Installation Guidelines

The easiest possibility to run and test the verification mechanism is to follow the instruc-
tions listed under Infrastructure. How the source code can be accessed is listed in the
Source Code section.

Infrastructure

Installing the components in a working environment can be done with the help of the
Infrastructure repository in GitHub. This contains all needed docker containers, settings,
and instructions such that straightforward installation and usage are possible.

Infrastructure: https://github.com/provotum/Provotum-Infrastructure-Fabio

This repository contains two voter front ends. These run on localhost:9000 and local-
host:9001 if set up with the infrastructure repository. The one running at port 9000 is
trustworthy, meaning it encrypts the vote indeed selected by the voter, while the one
running on port 9001 is malfunctioning. The second one is only for demonstration pur-
poses and should never be used in a production environment since this front end alters
the selected vote to the opposite.

Since the verifier application must be running on a second device, it is hosted on Firebase
at the time of writing. Alternatively, the Docker-Compose fires up the verifier application
at port localhost:9002, despite scanning the QR-codes is not possible due to the verifier
and the voting front end running on the same device.

Verifier application: https://provotum-vote-verifier-app.web.app/

Source Code

The implementation was done with the usage of GitHub. Therefore, accessing the source
code is most straightforward with the below-presented URLs. Also, there are instructions
on how to install the specific part of the system.

Voting front end: https://github.com/febel9/voter

Verifier application: https://github.com/febel9/provotum-vote-verifier-app

87


https://github.com/provotum/Provotum-Infrastructure-Fabio
https://provotum-vote-verifier-app.web.app/
https://github.com/febe19/voter
https://github.com/febe19/provotum-vote-verifier-app

88

APPENDIX A. INSTALLATION GUIDELINES



Appendix B

Contents of the CD

Thesis:
Voting- Verification- Mechanism-for-a-Distributed- Ledger-based- Remote-
Electronic- Voting-System_Fabio-Maddaloni. pdf

Thesis Latex source code folder:
Voting- Verification- Mechanism-for-a-Distributed- Ledger-based- Remote-
Electronic- Voting-System_Fabio-Maddaloni. zip

Mid-Term Presentation:
MuidTermPresentation_Fabio-Maddaloni.pptz

Folder with figures used in thesis:
Figures

Source Code:

— Provotum-Vote-Verifier-App:
provotum-vote-verifier-app

— Voter:
voter

— Infrastructure:
Provotum-Infrastructure- Fabio

e Abstract and Zusammenfassung
Abstract.tat & Zusfsg.txt
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