Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

7

Extension and Standardization of a
Blockchain Interoperability API

Pascal Kiechl
Zlrich, Switzerland
Student ID: 16-927-998

Supervisor: Eder Scheid, Christian Killer
Date of Submission: April 12, 2021

University of Zurich
Department of Informatics (IFI)
Binzmuhlestrasse 14, CH-8050 Zirich, Switzerland —

Bachelor Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Mit der Einfithrung des Konzepts der Blockchain (BC) und der anschliessenden Griindung
von Bitcoin im Jahre 2009 hat ein Trend einer schnell wachsenden Anzahl alternativer BC-
Implementierungen und -Plattformen begonnen. Aufgrund ihrer inhédrenten Unterschiede
sind verschiedene BCs in der Regel nicht in der Lage, weder ihre nativen Wahrungen
noch die auf ihnen gespeicherten Daten auszutauschen. Daher wurden zahlreiche Inter-
operabilitdtslosungen enworfen, darunter Bifrost, eine auf einem Notarschema basierende
Interoperabilitéits-API. Die Prototyp-Implementierung von Bifrost funktionierte wie vor-
gesehen, wies jedoch eine Reihe von Schliisselbereichen auf, in denen Verbesserungen mog-
lich waren. In dieser Arbeit wurden neue Funktionalitdten hinzugefiigt, um die an Bifrost
gestellten Kernanforderungen verstéarkt zu erreichen. Optionale Datenverschliisselung wur-
de integriert, um den Benutzern mehr Kontrolle zu geben und die Sicherheit gespeicherter
vertraulicher Informationen zu erhéhen, allerdings auf Kosten erhohter Datengrosse, so-
bald Verschliisselung angewendet wird. Die Moglichkeit, iibergrosse Daten aufzuteilen,
mit mehreren Transaktionen zu speichern und fiir die Rekonstruktion beim Abruf die ein-
zelnen Teile ordnungsgemiéss zu verfolgen, wurde implementiert, was die Flexibilitdt der
speicherbaren Daten erhoht. Ausserdem wurde die Benutzerfreundlichkeit durch generi-
sche Fehlerbehandlung verbessert, was in Verbindung mit der Redundanz-Funktion die
Robustheit von Bifrost erhoht. Es wurden Untersuchungen zu standardisierten Interope-
rabilitdtsformaten durchgefiihrt, die als Inspiration fiir ein neues JSON-Schema dienten,
welches Interaktion mit BC Interoperabilitéits-APIs wie Bifrost standardisiert. Schliesslich
wurden Mittel zur sicheren Verwahrung privater Schliissel untersucht, und obwohl letzt-
lich keine sofort umsetzbare Losung gefunden wurde, wurden die Optionen fiir zukiinftige
Entwicklungen von Bifrost in diesem Bereich geklart.

With the introduction of the concept of blockchain (BC) and the subsequent launch
of Bitcoin in 2009, a trend of rapidly increasing numbers of alternative BC implemen-
tations and platforms has begun. Due to their inherent differences, different BCs are
generally incapable of exchanging neither their native currencies nor the data stored on
them. Thus, numerous interoperability solutions have been envisioned, with Bifrost, a
notary-scheme based interoperability API, being one of them. Bifrost’s prototype imple-
mentation, though working as intended, had a number of key-areas where improvements
were possible, thus, in this thesis, new features have been added to strengthen the core
requirements imposed on Bifrost. Optional data encryption has been incorporated to give
users more control and to increase the security of stored confidential information, at the
cost of increased data sizes when encrypted. The capability to have oversized data split,
stored with multiple transactions and tracked properly for reassembly on retrieval has
been included, increasing the flexibility of the data that can be stored. Furthermore, ease

1

of use has been improved with the addition of generic error handling, whilst at the same
time, in conjunction with redundancy, increasing the robustness of Bifrost. Research on
standardized interoperability formats has been conducted and has served as inspiration
for a new JSON scheme for interacting with BC interoperability APIs such as Bifrost.
Finally, means to securely manage private keys have been investigated, and although ulti-
mately no immediately actionable solution was found, the options for future developments
of Bifrost in that area have been clarified.

Acknowledgments

I want to express my gratitude towards my supervisors, Eder Scheid and Christian Killer,
for their agreement to act as such for this thesis. Eder Scheid in particular has been
instrumental throughout the entire duration of this project, from defining the initial spec-
ification of the thesis all the way to the final presentation, providing insight and feedback
along the way.

In addition to that, I want to thank Timo Hegnauer, for the excellent prototype imple-
mentation of Bifrést on which this work fundamentally relied on, as well as Fabian Kiiffer
for proofreading parts of the thesis.

Finally, a big thank you to Prof. Dr. Burkhard Stiller and the Communication Systems
Group (CSG) at the University of Zurich for providing me with the opportunity to write
my thesis at their research group.

iii

v

Contents

Abstract

Acknowledgments

1 Introduction

1.1

1.2

Motivation

Thesis Outline

2 Background

2.1

2.2

2.3

Blockchaino
2.1.1 Blockchain Technology
2.1.2 Types of Blockchains
2.1.3 Smart Contracts
2.1.4 Applications of Blockchain Technology
Blockchain Interoperability L.
2.2.1 Notary Scheme
2.2.2 Sidechains
2.2.3 Hash-Locking
Bifrost
2.3.1 API Objectives
2.3.2 Architectureo
2.3.3 Prototype Evaluation

iii

vi CONTENTS

3 Related Work 15
3.1 Hash-Locking Projects 15
3.1.1 Komodo 15
3.1.2 Imterledger 15
3.1.3 Wanchain 16

3.2 Notary Scheme Projects 0. 16
3.2.1 Herdius 16
3.2.2 Accenture 16

3.3 Sidechain Projects oo 17
3.3.1 Alon 17
3.3.2 ARK 17
333 BTCRelay 17
3.34 Cosmos 18
3.3.5 Polkadot 18
3.3.6 Rootstock 18

3.4 Discussion 19
4 Extending and Standardizing Bifrost 21
4.1 Bifrost Standardization and Documentation L. 21
4.1.1 Standardization of Interaction 21
4.1.2 Architectural Standardization 26
4.1.3 Documentation 0oL 29

4.2 New Features Design 32
4.2.1 Encryption Feature 33
4.2.2 String Splitting Featureo 38
4.2.3 Error Handling Feature 42
4.2.4 Redundancy Feature 44

4.3 Implementation 45

CONTENTS

4.3.1 General Refactoring L.

4.3.2 Encryption Featureo

4.3.3 String Splitting Featureo

4.3.4 Error Handling Feature

4.3.5 Redundancy Feature

5 Evaluation

0.1

5.2

2.3

5.4

2.5

2.6

Evaluation Setup

Encryption Size Overhead,

5.2.1 Format-Preserving Encryption

Encryption Performance

5.3.1 Performance Impact of Password Choice

5.3.2 Encryption Performance L.

String Splitting Evaluationo

5.4.1 Evaluation of Splitting Feature for store

5.4.2 Evaluation of Splitting Feature for retrieve

5.4.3 Evaluation of Splitting Feature for migrate

Secure Private Key Management

Discussion

6 Summary and Future Work

Bibliography

Abbreviations

List of Figures

List of Tables

vii

45

46

23

99

60

63

63

63

64

66

66

69

70

71

71

72

73

75

7

78

85

85

87

viil

A Installation Guidelines

A1.1 Imstall Docker

A.1.2 Setup virtual environment (venv)

A.1.3 Install dependencies
A.1.4 Database Setup

A.1.5 Blockchain Setup

B Contents of the CD

CONTENTS

Chapter 1

Introduction

The world was first introduced to the concept of a blockchain (BC) in 2008 when the Bit-
coin white paper was anonymously published under the pseudonym “Satoshi Nakamoto”,
which subsequently led to the creation of the Bitcoin “Genesis block” in early 2009 [15].
The launch of Bitcoin inspired the creation of numerous other BC platforms, some of
which expanded the scope of their platforms beyond that of cryptocurrencies to enabling
features such as e.g., support for Smart Contracts (SC) [48].

With different BC platforms following different BC protocols and carrying different cryp-
tocurrencies, the result are BC platforms whose respective cryptocurrencies and stored
data cannot be exchanged directly [48]. BC interoperability is the area of research that
deals with this issue, by enabling connections between different BCs in order for them to
be able to access or modify the state of the connected BCs [48].

One such interoperability project is the interoperability Application Programming In-
terface (API) called “Bifrost”, which aims to present users (developers) with a flexible,
modular and easy to use interface, enabling them to store and retrieve data on a number of
different BCs, without the need for them to be aware of the implementation details of the
underlying BCs [48]. The Bifrost prototype has been developed by the Communication
Systems Group (CSG) at the University of Zurich.

1.1 Motivation

Whilst the Bifrost prototype is functional as-is, there are a number of aspects that can
be improved upon:

e All data is currently stored unencrypted on the selected BC. Giving users the option
to instead have their data be encrypted first before it is stored on the BC would
increase the privacy of the data.

e At current, the API does not verify whether the data a user wants to store on a
BC can be stored within a single transaction (TX) or exceeds the maximal size and
thus needs to be split over multiple TXs.

1

2 CHAPTER 1. INTRODUCTION

e The API at current is missing generic error handling.

e The management of addresses and private keys.

Additionally, there are more research-intensive aspects that also pose interesting research
challenges:

e Identifying the necessary functions a BC interoperability API like Bifrost has to
provide to handle all identifiable use-cases of the API in a BC platform agnostic
fashion. In conjunction, a standard format (e.g., in JSON) should be proposed,
defining how data is sent to and received from Bifrost.

e Currently, private keys are stored in plain-text, rendering them vulnerable to at-
tacks. Here, research can be conducted to identify ways to improve the security of
the private key management.

Thus, this thesis presents the improvements performed in the existing Bifrést prototype
implementation to tackle the aforementioned issues. Specifically, this thesis details the
design and implementation of features for (i) user data encryption to ensure the pri-
vacy of their information, (i) splitting data up onto multiple transactions to circumvent
transaction data size limits, (ii7) generic error handling and (iv) redundancy.

Furthermore, the thesis presents the insights gained from the research conducted into
existing standardization efforts with regards to interactions with BC interoperability APIs
and then proposes a JSON scheme for such interactions that is valid for both Bifrost as
well as other similar APIs.

In addition, the thesis outlines the findings stemming from research into secure private
key storage and explains how the different approaches are or are not applicable to Bifrost’s
current credentials architecture, as well as how a change in credentials architecture might
help improving the private key security.

An evaluation of the implemented features is put forth, highlighting the impact they
present on Bifrost’s key requirements, as well as the practical validity of the chosen sym-
metric encryption scheme with regard to its performance, whilst exploring a solution for
its impact on data size.

1.2 Thesis Outline

After the introductory chapter, the needed theoretical background information about BCs,
BC interoperability and Bifrost is presented in Chapter 2. This is followed by Chapter 3,
which discusses related work in form of other projects that deal with BC interoperability.
Chapter 4 outlines both the changes made to the Bifrost prototype during the thesis,
as well as the research conducted on the topic of standardisation. In Chapter 5, the
evaluation procedure of the newly implemented or improved features are documented,
alongside the evaluation results. Additionally, the findings regarding secure private key
management are discussed. Finally, in Chapter 6, a summary of the thesis and possible
directions for future work are presented.

Chapter 2

Background

In this part of the thesis, the theoretical background material necessary to understand
Bifrost, BC and BC interoperability is discussed. The aim of this section is not to be
exhaustive, but rather to provide the context within which this thesis is situated.

2.1 Blockchain

Fundamentally speaking, a BC is a so-called “distributed ledger” that, due to its nature,
has certain properties, notably immutability, meaning any data stored on the BC is quasi-
impossible to be mutated [5]. Additionally, BCs are decentralized, meaning they do not
rely on a central authority to establish a “single version of truth” [5]. Consequently,
BCs are also-called “trustless”, which alludes to the fact that as a participant in a BC,
neither trust in any other single participant, nor in a central entity, is required to trust
the information held on a BC [60].

The concept of a BC first appeared in 2008, when an anonymous author under the
pseudonym of “Satoshi Nakamoto” published the Bitcoin white paper with the title “Bit-
coin: A Peer-To-Peer Electronic Cash System” [40, 15]. The “Genesis block” of Bitcoin
was created a few months later [15]. Since then, BCs have become a subject of research
for numerous companies [5].

2.1.1 Blockchain Technology

In [8], BC is defined as a “Peer-to-Peer” (P2P) distributed ledger in form of a chain of
blocks, with a consensus mechanism deciding which blocks are to be appended. In order
for this definition to make sense, a number of fundamental concepts and mechanics need
to be introduced, which is the main focus of this section.

3

4 CHAPTER 2. BACKGROUND
Peer-to-Peer (P2P) Network

The term P2P refers to the fact that in such a network, the peers, i.e., the individual
computers participating in the network can communicate directly with each other, without
requiring specialized servers [45]. Such a network topology comes with a number of
benefits like increased network connectivity, large amounts of easily available computing
power and storage capacity as well as low costs [45]. In the context of BCs, the terms “peer”
and “node” can be used interchangeably [8]. For the rest of this document, computers
participating in a BC network will be referred to as “nodes”.

Blocks and Transactions

Each block in a BC consists of a number of components: a number of transactions, a
timestamp, a nonce, which is a random number used for the purpose of hash verification,
as well as the hash of the previous block [41]. This results in each block being connected
to the previous one, resulting in the chain of blocks mentioned at the start of this section
[41]. Figure 2.1 illustrates how such blocks are connected [41]. Any changes to any of the
blocks result in the hash of that block changing [41]. By appending new blocks to the BC,
the already present blocks get more secure, resulting in them being “tamper resistant” [80].

I Hash of block 0 I I Hash of block i-1 I I Hash of block i I I Hash of block i+1 I

lTimestampI I Nonce .o lTimestampI I Nonce fe—] lTimestampI I Nonce fe— lTimestampI I Nonce I

ITXlIITXZI---ITXnI ITXlIITXZI---ITXnI ITXlIITXZI---ITXnI ITXlIITXZI---ITXnI

Genesis block Block i Block i+1 Block i+2

Figure 2.1: Chain of blocks [41]

A transaction is an operation on a digital asset which is included on the BC [8]. A
digital asset can be different information, ranging from funds over information to services
[8]. Generally speaking, a transaction results in data flow in the BC [8]. Constructing a
transaction requires the specification of a number of properties, notably the destination
of the operation, such that the aforementioned data flow can reach its destination [§].

Finally, before the transaction can be propagated across the BC network, it needs to
be signed by the sender [8]. The signatures are created using asymmetric cryptography,
meaning a pair of keys is used, with one being private to the signer, used to create the
signature and with the other key being publicly available, used to verify the signature,
which in turn allows the BC network to verify the authenticity of the transaction [76].
Such transactions are then propagated across the BC network and included in blocks by
miners [8].

Nodes and Mining

Nodes are computers storing and maintaining a copy of the distributed ledger [8]. Nodes
that, in addition to simply interacting with the BC network, are also involved in the

2.1. BLOCKCHAIN)

creation and validation of new blocks are called “mining nodes” or “miners” [1]. New blocks
are created by miners by aggregating valid, yet currently unconfirmed, transactions into
a “candidate block” [1]. After a candidate block has been created by a miner, it needs to
be validated according to the consensus mechanism of the given BC [§]. Only once the
candidate block has been validated can it be considered a valid block and can now be
appended to the BC [8].

The validated block then needs to be propagated across the BC network, such that the
other nodes in the BC network can update their respective copies of the BC [8]. Finally,
the block needs to be confirmed, meaning all the nodes in the BC network have agreed on
including it in the final version of the BC [8]. Once the block is confirmed, the transactions
in the block are confirmed for a second time (the first time was when they were declared
valid and included in the block by miner) [5].

Each time a new block is appended, the previous blocks, as well as the transactions
contained within are reconfirmed [5]. Figure 2.2 depicts illustrates the sequence of stages
that a transaction must traverse until it is confirmed, from its creation to the confirmation
of a block.

Tx Tx Block Block Block
Creation Propagation Validation Propagation Confirmation

Figure 2.2: Transaction processing stages. Adapted from [§]

Transactions require a given number of accumulated confirmations before they can be
considered final because the transaction might be included in a BC fork that will be
pruned. For example, in the case of Bitcoin, a transaction needs to be confirmed 6 times
to be seen as final [5]. Ethereum transactions meanwhile require 12 such confirmations
[78]. The higher this number is, the less likely it is that a transaction will be reverted.
The incentives for miners to partake in the mining process can differ from BC to BC, with
public BCs often relying on a combination of block rewards and transaction fees [49].

Forks

Due to the decentralized nature of BCs, the copies held at the different nodes participating
in the BC network may not always be equal [1]. For example, during the process of
propagating a block across the BC network, it may be received by different nodes at
different times [1]. Furthermore, multiple miners may broadcast blocks holding different
transactions at almost the same time, resulting in a so-called “fork” [74].

This inconsistency between the different copies of the BC is then resolved by reaching a
consensus among the nodes in the network on which version of the chain is the correct one
[74]. The other versions that resulted from the fork are declared invalid [74]. An example
of a BC with forks can be seen in Figure 2.3, where blue-filled squares means the BC and
orange-filled squares represent the BC forks.

6 CHAPTER 2. BACKGROUND
Block - Block

Block |‘_
4a

Block Block Block Block |, | Block Block Block Block
1 s 1

Figure 2.3: Blockchain with forks [1].

In the example of Bitcoin, the consensus on which version of the BC is valid, is reached
based on which version is the longest, meaning it has the most amount of Proof-of-Work
(PoW) put into it [1]. Assuming all nodes perform the selection according to this criterion,
then there will ultimately be a globally consistent BC [1].

Consensus Mechanisms

At its core, a consensus mechanism is responsible for ensuring that each node participating
in a BC network maintains the state of its copy of the BC correctly [49]. There exist a
variety of consensus mechanisms, employed by different BCs [49]. The type of consensus
mechanism running on a particular BC has a number of implications for the performance
of that BC regarding scalability, speed of consensus finality, data consistency, latency for
transaction confirmation, processing throughput, as well as computing power [76]. The
next paragraphs provide an overview over two examples of such consensus mechanisms,
Proof-of-Work (Pow) and Proof-of-Stake (PoS).

Proof-of-Work (PoW), originally introduced by Bitcoin, is the most widely used con-
sensus mechanism. The idea is that each node uses its computing power to solve PoW
puzzles, in order to construct blocks and participate in the mining process [22]. In [22]
this is referred to as nodes essentially voting with their computing power. Notably, such
a PoW puzzle is designed such that it is difficult to solve, yet once solved the result is
easy to verify [37].

When a miner manages to solve such a PoW puzzle, he can then create a new block
and forward it to the BC network, whilst the other nodes receiving the new block verify
whether the included PoW fulfils the conditions imposed by the PoW puzzle [22]. If the
PoW included in the block is valid, and the block itself is valid as well according to the
criteria imposed by the BC in question, then the block is accepted and propagated further
across the BC network [1]. Otherwise it is rejected and not forwarded further, ensuring
that only valid blocks, including a valid PoW, are propagated [1].

With PoW, nodes vote with their computing power, whereas with Proof-of-Stake (PoS)
their voting power is dictated by how much stake they own on the BC [22]. In effect, this
means that a miner holding X% of coins on a BC with PoS can mine X% of the blocks
on that BC [37]. As such, PoS can alleviate some of the issues that come with PoW, e.g.,
the high power consumption resulting from the computing power required to solve PoW

2.1. BLOCKCHAIN 7

puzzles [37]. Furthermore, as [8] show, PoS remains functional with a higher amount of
all nodes controlled by an adversary than PoW and boasts better transaction throughput.

PoS does suffer from the “nothing at stake” problem, where miners are incentivized to
mine on both forks, should a fork occur [11]. There exist however variants of PoS that
are able to mitigate that issue [§].

2.1.2 Types of Blockchains

BCs can be categorized according to their “deployment type”, which characterizes the
read /write-permissions of a given BC. In this sense, the deployment type captures differ-
ences along these two dimensions, with the options “public” and “private” relating to the
read-dimension and dictating which nodes have access to which information. Similarly,
the options “permissionless” and “permissioned” indicate which nodes have which write-
permissions, and therefore have the rights to append to the BC [49]. All in all, this leads
to four possible combinations as indicated below:

e Public permissionless BC': Each node participating in such a BC has read /write
access [49]. Sometimes also referred to as “classical” BC [8].

e Public permissioned BC': Each node in the BC network has reading access, but
the ability to write to the BC is only granted to selected nodes [49].

e Private permissionless BC': Read/write capabilities are given to selected nodes
in a closed network [49].

e Private permissioned BC': Read/write capabilities are granted by a central au-
thority [49].

For example, Bitcoin is a “classical” BC, meaning it is categorized as a public permission-
less BC in terms of its deployment type [8]. Hyperledger Fabric in contrast is an example
for a private permissioned BC [31]

2.1.3 Smart Contracts

A Smart Contract (SC) is a computer program that executes a set of predefined actions,
once a set of predefined conditions are met [8]. In the context of BCs, a SC is a transaction
that holds instructions, which execute automatically given the necessary conditions are
fulfilled [60]. Note that the decision whether or not a given condition is met may also be
based on information from outside the BC, which the SC may access through the use of
an “oracle” [60].

What sets a SC apart from a traditional contract is that it does not require the involved
parties to trust that the other parties will uphold their part of the bargain [60]. SCs remove
the need for such trust, since the code of the SC both defines the terms of the agreement

8 CHAPTER 2. BACKGROUND

between the parties, as well as enforces the agreement by executing automatically in an
autonomous fashion [60].

SCs are characterized by three properties [60]:

1. Autonomy: Once a SC is deployed, there is no further interaction required between
the SC and its initiator [60].

2. Self-sufficiency: A SC can manage its own resources by providing services against
payment in funds and by expending funds on needed resources like processing
power [60].

3. Decentralization: A SC is deployed on a BC and as such does not run an a central
server, but instead are distributed on the nodes of the BC network [60].

An example for a SC might be an automatic payment for a specific good at a predefined
price, such that the SC would automatically perform the payment once the good reaches
the desired price [60].

2.1.4 Applications of Blockchain Technology

[60] draws a distinction between three different categories of BCs. The distinction is
made according to the type of activities supported by the different categories of BCs,
with “Blockchain 1.0” being focused on applications of the BC technology related to cryp-
tocurrencies, “Blockchain 2.0” relating to contracts and “Blockchain 3.0” encompassing
applications that go beyond finance and contracts, thus relate for example to the areas of
government or culture [60].

Blockchain 1.0

BC 1.0 refers to the applications of the BC technology which relate to the concept of
cryptocurrency [60]. This includes the decentralization of digital payment systems, which
enable transactions that can be made with greatly reduced payment fees and can be
received faster compared to traditional payment systems such as credit cards [60].

Blockchain 2.0

BC 2.0 according to [60] extends the the principle of decentralization from cryptocurrencies
to markets in a more broad sense. Some of the areas of application in BC 2.0 include
the interfacing of cryptocurrencies into the traditional banking and financial services,
decentralized crowdfunding platforms, SCs and smart property, the concept of keeping a
register and facilitating exchange of all sorts of assets, from information over health data
to physical property [60].

2.2. BLOCKCHAIN INTEROPERABILITY 9

Blockchain 3.0

With the internet creating connections between all humans, and serving as the underlying
network for BC technology, BC 3.0 aims to take the model of decentralization yet another
step further than BC 2.0 by applying advantages and possibilities of the BC technology
to any kind of industry [60]. BC 3.0 could be used to facilitate transactions, resistance
to censorship and transparency in politically restrictive countries [60]. On the issue of
censorship, an exemplary project is “Namecoin”, a decentralized domain name system
with the aim to prevent centralized authorities, such as countries, to assume control
of top level domains, thus preventing such authorities from seizing and redirecting URLs
controlling the dissemination of information [60]. Namecoin essentially uses BC technology
to implement a mechanism for free speech [60]. Further examples of BC 3.0 applications
include decentralized digital identify verification services and decentralized governance
services [60].

2.2 Blockchain Interoperability

As the number of BC implementations increases, the need for communication between
them becomes crucial to avoid the creation of BC islands (i.e., BC-based applications not
exchanging data), as the technologies, protocols and functionalities of different BCs tend
to not be implemented with such communication in mind [50]. Thus, BC interoperability is
needed to facilitate communication between BCs for actions such as e.g., cross-BC token
transfers [50]. There exist three main methods of achieving such BC interoperability,
namely notary schemes, sidechains and hash-locking [12].

2.2.1 Notary Scheme

In notary schemes, a entity or set of entities, trusted by all involved BCs, assumes the
responsibility of verifying whether a given event happened on BC A or whether a given
statement about BC A holds true and to then forward this information to BC B. The
nature of such trusted entities may be active, meaning that they act automatically based
on events happening on the involved BCs, or alternatively reactive, forwarding information
only when requested [12].

The strength of notary schemes lies in the fact that they do not need any changes to the
implementations of the underlying BCs, between which they facilitate communication,
and as such, are technically simple to implement [12, 44, 48]. The disadvantage of using
notary schemes is that they rely on the involvement of trusted third parties [44, 48].

2.2.2 Sidechains

In [4], it is defined sidechains as a BC that validates data from other BCs. This is achieved
by using so-called Simplified Payment Verification (SPV), which allows for the verification

10 CHAPTER 2. BACKGROUND

of whether a given transaction has occurred on a BC, without being required to download
the entire BC.

To allow for the exchange of assets between BCs, the so-called “two-way peg mechanism”
is used, pegging one sidechain to another one, resulting in a parent chain and a sidechain.
This then allows one of the BCs to lock assets in a special output, resulting in an SPV
proof, which allows for the creation of assets on the other BC according to some exchange
rate [4]. Tt is worth noting that this two-way peg commonly allows for asset transfers in
both directions [44].

Sidechains, in contrast to notary schemes, do not rely on trusted entities and as such enable
trustless interoperability between BCs [44]. However, sidechains increase complexity and
are required to support SCs, in order to process SPV proofs [44, 4]. Furthermore, there is
high latency associated with asset transfers via sidechains, as there are both a confirmation
period, as well as a contest period required to ensure resistance against denial of service
attacks and to prevent double-spending [44].

2.2.3 Hash-Locking

The technique of hash-locking allows for cross-chain atomic operations, enabling exchanges
between BCs [12]. Atomic in this context means that either the exchange happens in both
directions or none of them [48]. Assuming a situation where two parties A and B want
to make an exchange of assets from different BCs, the mechanism can be divided into the
following five steps [48]:

1. Party A generates a key s, computes the hash of the key (hash(s) = h) and sends
h to B

2. Both parties lock their assets in a SC on the respective BCs. The SCs have the
ability to verify whether a given value v belongs to hash(v).

3. A has 2 % X seconds to provide the key s to the SC that holds Bs locked assets,
unlocking it in the process, resulting in a transfer of the assets to A. Should the key
s not be provided within time, the SC returns the assets to B.

4. B has X seconds to provide key s to the SC holding A’s locked assets, leading to
the assets being transferred to B. Should the key s not be provided within time, the
SC returns the assets to A.

5. A has X seconds to reveal the key s, leading to B learning s, enabling him to claim
As items as described in the third step.

The hash-locking mechanism ultimately hinges on A to reveal the key s, meaning that
B enables A to only reveal s if the exchange-rate between the different asset tokens has
changed favorably within the time A has to reveal s [12]. Additionally, the involved BCs
need to be capable of running the hash-timelock type of SC to implement the hash-locking
mechanism [48].

2.3. BIFROST 11

2.3 Bifrost

Bifrost is a BC interoperability Application Programming Interface (API) that aims to
provide users (i.e., developers of BC applications) with a way to interact with a variety of
different BCs without having to deal with the individual implementations of those BCs, by
abstracting away the BC specific implementation details [48]. By eliminating the require-
ment for users to acquire knowledge of the respective underlying BC implementations,
Bifrost removes restrictions standing in the way of innovative BC applications that rely
on the interoperability of different BCs [48].

2.3.1 API Objectives

The primary objective of the Bifrost API is, as already alluded to, the creation of an
interface that enables users to interact with a range of different BCs, whilst not being
required to have knowledge of how the underlying BCs are implemented [48].

— ©bitcoin

‘ ethereum
. 9
= [€—Retrieve—
®_ g ., — & Stellar
\41| g 0
p“' <« < v
- - &
5]
m= | : E
rm =
/TX’:‘ o Store—>
Developer m

> & MultiChain
Figure 2.4: Using the Bifrost API [48]

Furthermore, a number of requirements were imposed on the design of Bifrost API, namely
flexibility, allowing users to store any arbitrary data on the supported BCs, provided
it is formatted correctly, modularity, enabling easier implementation of adapters for
additional BCs, as well as ease of use, which reflects part of the main goal of exposing
simple API functions and abstracting the complexity of the underlying technical workings
[48]. Additionally, the nodes are executed on BC Remote Procedure Call (RPC) servers,
which provide an isolated an reproducible environment; thus, further increasing ease of
use [48]. Figure 2.4 illustrates how BC applications interact with the Bifrost API [48].

12 CHAPTER 2. BACKGROUND

2.3.2 Architecture

The architecture of Bifrost consists of three main components: (i) the API itself, (i) the
adapters to the different BCs, and (ii7) a database [48]. Note that Bifrost uses a notary
scheme to facilitate interactions with multiple BCs [48].

Figure 2.5 depicts an overview of the Bifroost API, as well as the function flow for “store”,
one of the exposed API functions [48]. The rest of this section serves the purpose of
providing a description of Bifrost’s architecture.

n
store(BC_ID,"data")
API
— Credentials
o
< A
Z store(’data” : insert(BC_ID,TXHash
= () TXHash insert(BC_ID.)
[pTTTTTTTI T <address, key, username, password>
é’- \ 2
@ -
= Blockchain A Blockchain B R Blockchain n TXs
Adapter Adapter Adapter Datab
atabase
A
Signed TX ‘TXHash
\ 4 :) 4 \ 4
3
3 RPC Server A RPC ServerB\ " " " /RPC Servern
z
» b4 b4 Y
c
<
[&] "]
X
3
m Blockchain A Blockchain B Blockchain n

Figure 2.5: Bifrost architecture and store function [48]

Blockchain Adapters

The adapters have the task of converting the supplied user input to a format which
conforms with the required format of the respective underlying BC, meaning that they
create a transaction and forward it to the respective BC network [48]. In this sense, the
adapters perform the first two stages of transaction processing shown in Figure 2.2. When
the retrieve function is called, the adapter will not create a transaction but instead is
responsible for retrieving the data from the BC [48].

Currently, Bifrost supports adapters for seven different BCs, as can be seen in Figure 2.4,
meaning each supported BC has its own adapter and consequently, adding support for a
new BC requires writing a new adapter [48]. Note that besides the different BC adapters
there is also a PostgreSQL adapter, which can connect to a traditional database instead

of to a BC [48].

2.3. BIFROST 13

Database

The role of the database is three-fold [48]: Firstly, it manages a list of the BCs that are
supported by an adapter [48]. Secondly, it is responsible for storing the credentials of
different users [48]. Note that this table may hold multiple credentials for each users, as
the credentials are not universal to all BCs, due to their different credentials requirements

[48]. Lastly, the database maintains a list of all transactions that have been completed
on any of the BCs [48].

API

The API is responsible for exposing functions to the user and as such serves as the point
of entry for interactions with Bifrost [48]. A total of three functions are accessible to
users [48]:

e The function store(text, blockchain) allows the users to store data in string
form on a BC. The first argument receives the data, whilst the second argument is
used to specify the BC on which the data is to be stored. The function returns the
transaction hash, once the data is stored on the desired BC and the transaction has
been confirmed.

e With retrieve(transaction_hash) users can retrieve data which they stored in
the transaction specified by the transaction hash. Note that it is not necessary to
specify the BC on which the data was originally stored, since the API uses the
database to automatically identify the corresponding BC.

e Finally, migrate(transaction_hash, blockchain) allows users to migrate data
stored in the specified transaction to a different BC. Note that data existing on the
BC can not be deleted. Thus, this function simply creates a copy of the data and
stores it on the specified BC. The data which is to be copied is retrieved by using
the retrieve function listed above.

2.3.3 Prototype Evaluation

For a detailed evaluation of the Bifrost prototype with regard to performance, security and
supported data size, the respective sections in [48] can be consulted. This section simply
aims to quickly illustrate the issue of how private keys are managed in the prototype, as
it is of high importance to this thesis and then mention a number of functionalities that
form a set of features that could potentially be added in later iterations of Bifrost.

The private keys used to sign transactions are stored on the database of the Bifrost
prototype in a plain text format [48]. This means that should a hypothetical attacker
gain access to the server, he would immediately have access to the credentials of all users.
Thus, the way the private keys are handled currently poses a security risk [48].

14 CHAPTER 2. BACKGROUND

As for potential features to be added, they include the handling of generic errors, the
capability to compare the size of the data to be stored with transaction size limits and
splitting the data up into multiple transactions if needed, as well as the option to have
data be encrypted before it is stored on a given BC.

Chapter 3

Related Work

Given the growing importance of BC interoperability, caused by the increasing number
of BCs - as of March 2021, [13] lists close to 9’000 different cryptocurrencies - numerous
projects have sprung up that have their own approach to providing BC interoperability.
The aim of this chapter is to give an overview over a range of different interoparability
projects from all three of the different interoparability schemes mentioned in Section 2.2.

3.1 Hash-Locking Projects

3.1.1 Komodo

Komodo’s AtomicDEX aims to enable cross-chain exchanges of cryptocurrencies via atomic
cross-chain swaps [6]. Komodo uses so called “liquidity provider nodes” to improve lig-
uidity by actively trading in cryptocurrencies [6]. Notably, Komodo enables anyone to
become such a “liquidity provider” through providing an extensive setup tutorial [33].

3.1.2 Interledger

Interledger is designed to facilitate “secure payments across multiple asssets on different
ledgers” [28]. Notably, Interledger is neither a BC, nor a token, nor a centralized service,
but rather a “standard way of bridging financial systems” drawing inspiration from the
architecture of the internet [28].

Interledger’s architecture description uses the metaphor of a graph, where each node par-
ticipating in the Interledger network is a vertex in the graph and each edge between two
vertices are “accounts” between two parties [28]. This then enables the classification of
parties into two types, (i) those with only one account, able to trade funds with other
parties to which they have a connecting vertex, and (i) parties with multiple accounts,

15

16 CHAPTER 3. RELATED WORK

called “connectors” that enable trades between any paries they connect to [28]. The incen-
tive structure for connectors is built on fees for facilitating such trades, with competition
between connectors balancing out the fees charged by the connectors [28].

As a side-note; Interledger used to initially implement a notary scheme to enable interop-
erability, but due to notary schemes requiring trust in the notary, thus posing a potential
security risk, the project has moved over to a hash-locking scheme [30].

3.1.3 Wanchain

Wanchain enables cross-chain transactions between popular public chains, such as Ethereum
and Bitcoin, as well as between different private BCs or even between private and public
BCs [75].

Wanchain enables the registration of assets from other BCs through their built in asset
template resulting in a new type of asset associated with the respective foreign asset [75].
This new type of asset is then used to facilitate exchanges between Wanchains original
token and the registered foreign asset [6]. The exchange itself happens via a “Locked
Account” scheme, which locks the assets in place during the transfer [48].

3.2 Notary Scheme Projects

3.2.1 Herdius

Herdius at its core is a decentralized exchange platform [26]. Notably, Herdius aims to
achieve its vision of a “truly decentralized exchange” via a concept they call “Distributed
Virtual Wallet Network” (DIVIWA), a distributed, virtual wallet that can store private

keys in a convenient, yet secure way [26].

This is done by introducing for each user a single “Herdius key” that is used to secure
the keys used to access BCs [26]. The Herdius key itself is secured by splitting it and
encrypting its parts, subsequently distributing it across the Herdius network [26]. Once
the key is needed, it is reassembled via a multi-signatory threshold signature scheme [26].

3.2.2 Accenture

Accenture’s approach to BC interoperability follows a notary scheme approach, where a
trusted node, a so called “interoperability node” connects to “gateway nodes” of different
BCs [64]. This interoperabilty node is then tasked with taking the necessary steps to
facilitate (i) “Value transfer”, meaning the transfer of assets from one BC to another whilst
maintaining protection against double spending and (7i) “Active state”, which refers to a
piece of data existing on both BCs and being fully synchronized between the BCs [64].

3.3. SIDECHAIN PROJECTS 17

Note that Accenture’s interoperability approach targets permissioned BCs, but there are
mentions that a similar approach may be derived that is applicable to permissionless
BCs [64].

3.3 Sidechain Projects

3.3.1 Aion

Aion positions itself as a “multi-tier blockchain network” that enable BCs that participate
in the network to perform transactions amongst each other [52]. As such, Aion removes
the need for a participating BC to establish a sidechain for all other connected BCs by
acting as a central hub through which these transactions are routed [48]. Note that the
Aion hub is a BC, called “Aion-1” and is the base implementation of the “Connecting
network” [52].

Aion’s architecture differentiates between “Connecting networks” and “Participating net-
works” [52]. Participating networks are networks that fulfill a set of requirements, which
make them eligible for integration with a connecting network [52]. Notably, these partici-
pating networks are not limited to being BCs, as e.g., oracles may also act as participating
networks [52]. Connecting networks then use communication protocols, so called “Bridges”
to communicate with participating networks, and in turn enable communication between
different participating networks [52].

3.3.2 ARK

The ARK Platform uses so called “SmartBridges” to enable interoperability between a
given BC and Ark [36, 2]. Furthermore, ARK provides for users to create a new BC
with a token as a push-button solution, with the newly created BCs being automatically
SmartBridge compatible [36]. There are two kinds of SmartBridges, “Protocol-Specific
SmartBridges”, which enable communication between BCs that utilize ARK Core Tech-
nology, and “Protocol-Agnostic SmartBridges”, facilitating communication with BCs that
rely on a different set of underlying technologies [2].

Note however, that in order for a BC to make use of SmartBridges, it needs to be contain
certain computer code in its source code [67]. This means that for BCs not built via the
push-button tools provided by ARK, modifications to their source-code are required [48].

3.3.3 BTC Relay

BTC Relay is considered to have been the first Bitcoin sidechain [30]. BTC Relay is an
Ethereum SC which implements a Bitcoin SPV light wallet method, storing Bitcoin block
headers, consequently enabling the verification of payments done on the Bitcoin BC [20].

18 CHAPTER 3. RELATED WORK

So called “Relayers” submit Bitcoin block headers to the BTC Relay SC, which earns
them a fee whenever one of their submitted headers is used to verify a payment [20]. This
is the incentive-structure that enables the BTC Relay to be autonomous [20]. Note that
the interoperability provided by BTC Relay is one-way, meaning that whilst it allows
Ethereum to process Bitcoin block headers, it does not provide Bitcoin with the ability
to process Ethereum block headers [48].

3.3.4 Cosmos

Cosmos is in essence a “network of many independent blockchains” that run in parallel
[34]. These BCs are also called “zones”, with the first BC in the network being the so called
“Cosmos Hub” [34]. The Cosmos Hub has connections to other zones and is responsible
for tracking different token types in the connected zones as well as keeping score of the
totals of the different tokens, which it does by being constantly updated with recent block
commits from the connected zones [34].

This way, two zones that are both connected to the Cosmos Hub can transfer tokens
amongst each other in a secure and fast way, with all the transfer going through the
Cosmos Hub, thus not requiring any liquid exchange having to occur directly between the
two zones [34].

3.3.5 Polkadot

Polkadot in its approach to BC interoperability is similar to Cosmos [48]. Polkadot calls
itself a “true multi-chain application environment”, where not only tokens, but any kind of
data can be communicated between participating BCs and even between BCs of different
deplyoment types (as discussed in chapter 2.1.2) [77].

In Polkadot the hub to which the participating BCs, called “Parachains” or “Parathreads”
depending on their payment model, is called “Relay chain” [77]. The payment model is the
aspect where Polkadot differs from Cosmos in its approach, then whereas Cosmos does
not place any costs on BCs wanting to join the Cosmos network, joining the Polkadot
network requires the joining BCs to stake a large amount of their respective tokens [48].
This gives Polkadot leverage to exert more authority over the connected BCs in order to
e.g., punish misbehaviour [48].

3.3.6 Rootstock

Rootstock aims to complement the Bitcoin platfrom by provding a SC platfrom which
supports turing-complete SCs, giving Bitcoin miners access to the SC market [35]. Fur-
thermore, since Rootstock is also “compatible with Ethereum standards”, Ethereum users
are granted access to a SC platform compatible with their own, where the native currency
is Bitcoin, which comes with beneftis such as e.g., a larger user-base [35].

3.4. DISCUSSION 19

From the perspective of BC interoperability, Rootstock is a two-way pegged Bitcoin
sidechain [35]. Since two BC platforms that support turing-complete SCs are required
to form a trustless two-way peg, Rootstock uses what they call a collection of “Semi-
Trusted Third Parties” (STTP), which are tasked with validating SPVs, as the Bitcoin
platform cannot do so itself since it does not support turing-complete SCs [35].

3.4 Discussion

Given the collection of related works, a number of conclusions can be drawn. First, these
related works tend to stem from the industry rather than academia, or at the very least
there are no peer-reviewed papers that focus on them. Table 3.1 shows which works have
a peer-reviewed scientific paper directly associated with them and which ones publish a
white paper. Papers that mention a given work without an in-depth discussion of the
theoretical underpinnings and technical specification are not seen as associated directly
with the work in the context of this categorization.

To determine the publication type, Google search was used. The search inputs where “X”
as well as “X white paper”, where X is to be substituted for the respective work’s name.
If the search result shows e.g., a conference paper or an article released in a scientific
journal, then an examination is done on whether work X is discussed in depth in said
publication. If so, it is considered peer-reviewed for the purpose of this categorization. If
not, then based on whether a white paper is found or not, the publication type is set to
“n.a” or “White Paper”. The exception to this would be a work that presents extensive
information on a business / marketing level which does not qualify as a white paper. For
such works the publication type is set to “Business Paper”.

Table 3.1: Comparison of Related Work

Work Interoperability Scheme Publication Type
Komodo Hash-Locking White Paper [32]
Interledger Hash-Locking White Paper [63]
Wanchain Hash-Locking White Paper [75]
Herdius Notary Scheme White Paper [26]
Accenture Notary Scheme Business Paper [64]
Bifrost Notary Scheme Peer Reviewed [48]
Aion Sidechain White Paper [52]
ARK Sidechain White Paper [2]
BTCRelay Sidechain n.a
Cosmos Sidechain White Paper [34]
Polkadot Sidechain White Paper [79]
Rootstock Sidechain White Paper [35]

Second, though anecdotal, the author has noticed a seeming lack of interest in notary
scheme based solutions. This does seem to align with the fact that Interledger has aban-
doned its initial notary scheme approach for a hash-locking scheme due to security con-
cerns [30].

20 CHAPTER 3. RELATED WORK

If this holds generally and is not simply due to a sampling bias, then this could be seen as
an indicator that notary schemes, due to requiring a trusted third party, thus introducing
a security risk, are not seen as sustainable long term solutions for BC interoperability
when compared to the other available interoperability schemes.

Chapter 4

Extending and Standardizing Bifrost

This chapter serves as a report for all of the work done on Bifrést by the author, both in
terms of code and research. As such in Section 4.1 will contain information on how the
interaction with Bifrost is standardized, how the architecture of Bifrost allows for stan-
dardization of BC adapters and a documentation explaining how adapters for additional
BCs can be added. Section 4.2 outlines the design decisions and challenges faced when
adding the new features to Bifrost, whilst Section 4.3 details the Python implementation
for each of the added features.

4.1 Bifrost Standardization and Documentation

4.1.1 Standardization of Interaction

This section revolves around the standardization of how data is sent to and received from a
BC interoperability API such as Bifrost. This includes both researching already existing
standardization efforts, as well as proposing an actual JSON format which, wherever
possible, is based on said efforts.

Existing Standardization Efforts

[27] draw a distinction between two kinds of standards. “Backward-looking standards”
are standards that concern themselves with existing implementations and make an effort
to extract a formal standard from them [27]. “Forward-looking standards” on the other
hand do not make the attempt to deal with specific existing implementations, but rather
treat BCs as “black-box implementations” and focus on standardizing interactions between
different black-box implementations, which includes interoperability [27].

Furthermore, [27] establish that the time is not yet ripe for creating backward-looking
standards, as there still are disagreements within the BC community about fundamental

21

22 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

aspects, such as what exactly constitutes a BC and what features a BC needs to have.
Instead, focus should be put on forward-looking standards [27].

[23] draws a similar conclusion by pointing out that the BC technology has not matured
enough to be standardized and that standards may act prohibitively against further devel-
opments of the technology. [16] meanwhile caution particularly against standards related
to the technical aspects of BCs. In the author’s view this aligns with the suggestion by
[27], as standardization of the technology, as well as standardization of the technical as-
pects of BCs both do not align with the “black-box implementation” approach and hence
would fall into the category of backward-looking standards.

A number of sources appeared to be promising leads regarding insights that might inform a
JSON format for interacting with BC interoperability APIs. [25] propose the introduction
of a common standardized “minimal operations set” that should be implemented by all
BCs. Such a minimal set of operations could then be compared against the API functions
exposed by Bifrost e.g., with regard to the goal of the operation or the parameters it
permits. This then could yield information about further functions that could be added
in future iterations of Bifrost or parameters that allow for the introduction of additional
features. [25] unfortunately do not present a concrete minimal set of operations, meaning
such a comparison is not possible.

[6] name the Ethereum ERC’s as “de facto standard” for standards concerning general
interoperability. However, at the time of writing this, most proposals are still in their
draft phase [73]. More importantly, they are intrinsically tied to the Ethereum BC,
making them not that useful as Bifrost explicitly has the goal of abstracting away from
underlying BC implementations.

[6] furthermore mention the programming languages “HSL” and “DAML”, which abstract
away from specific BCs by providing a generic BC model, as well as ledger protocols
“Interledger Protocol” and “Web Ledger Protocol” which aim to enable common BC inter-
actions. However, the inspection of their respective documentations ([24], [17], [29] and
[53]) did not yield any information that was directly applicable to Bifrost.

The Web Ledger Protocol documentation comes closest to what is needed by providing a
number of examples for how requests for storage events are structured in JSON format
[54]. Inspection of these provide insight into how requests could be structured for the
construction of specific supported object types with the setObject field as visible in the
first example listed in [54]. This is not directly applicable to Bifrost in its current state,
but might potentially be of interest for future versions.

In conclusion, to the author’s knowledge, there is no project that has proposed a JSON
format for request and response bodies of calls to BC interoperability APIs. Furthermore,
according to the author’s research detailed here, there is no existing BC standardization
effort which could directly inform how such JSON formats should be structured, besides
what is generic to requests and responses for all types of applications. The research did
however yield an approach to specifying object types (see Web Ledger Protocol storage
examples [54]) which is incorporated into a new JSON format proposed in this thesis.

4.1. BIFROST STANDARDIZATION AND DOCUMENTATION 23

Proposal of a JSON Format for Interoperability APIs

The JSON formats themselves are relatively simplistic, as not a lot of data and parameters
have to be communicated. A format for both request and response in case of success will
be shown for each of the three currently available API functions (store, retrieve and
migrate). Finally, a format common for all API functions for responses in case of errors
is shown and the errors that may occur are listed with their respective status code.

The JSON format for the store operation is shown in Listing 4.1. The overall structure
of the request is identical for all three API functions, with the requests at the highest
nesting-level consisting of the same two fields, parameters and data.

The parameter nesting (lines 3 - 8) contains fields for all those parameters that are of a
generic type, such as e.g., the blockchain identifier which is an integer or the password
which simply is a string.

The data (lines 9 - 16) field meanwhile is responsible for housing those elements of the
request which do not fulfill the necessary criterion to be stored as a field in the parameter
nesting. The data field holds an array into which an arbitrary number of objects may
be written. The structure of those objects is the aspect that gives this JSON format its
flexibility.

Each of those object has to define two fields, type and fields, with the former indicating
the type of the object, and the latter holding all the fields which the object type specified
in type requires.

With this format then any kind of data can be transmitted whilst adhering to a well-
defined but generic overarching nesting-structure. This then means that should Bifrost
in the future e.g., accept different data types besides a generic string for storage, the way
the data field is structured will allow those data types to be passed without changes to
the JSON format being required.

Imagine for example a future iteration of Bifrost that allows users to store phone contacts.
The object in the data array then could have its type set to “phone_contact”, with fields
containing a number of predefined fields such as name, last_name, phone_number and
country for the respective country prefix.

Additionally, the specified type tells the API which entries it should expect within a data
object’s field nesting, allowing for potentially different procedures based on the type of
object received.

Finally, as the format is generic, it is not only usable in the context of Bifrost but it may
potentially be adapted to other interoperability APIs too, no matter what kind of data
or parameters the require users to send to their API.

Listing 4.1: JSON for store request and success response
REQUEST

1 #
2 {
3 "parameters" : {

© 00 N O Ut

10
11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

24 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

"blockchain" 1,
"redundancy" . "True",
"password" : "password as string",
"multiple_tx" : "False"
3,
"data" : [
{
"type" : "string",
"fields" : {
"value" : "data in string format"
}
b
]
b
RESPONSE SUCCESS
{
"status_code" : 200,
"data" @ [
{
"type" : "transaction_hashes",
"fields" : {
"value" : [
"0xb2057d719cc25b46886d3e274b385e ..."
]
}
b
]
b

As for the response, the philosophy is the same, with a response in case of a successful
operation always returning both the status_code (line 21) and a data array (lines 22 -
31) that adheres to the same structure already outlined when discussing the request.

Note that in the case of the request shown here, the object held in the data array is a
normal string and could potentially also be put into the parameters nesting, but for the
sake of illustrating the format has been put into the data array. One could potentially
make an argument that it should be stored in the data array in any case, as it is the “main
input” for the store API function, but that is something which ultimately boils down to
the personal preferences of the developer(s) of a given API and is ultimately irrelevant to
how the format functions, hence the argument will not be discussed further.

Furthermore, Note that this setup with the data array is inspired by the storage examples
shown in the Web Ledger Protocol documentation [54], as it is essentially a simplified
variant of their setObject structure, and forms the main take-away from the research
conducted into existing standardization efforts.

Moving on to retrieve, the JSON format for its request and success response are shown

© 00 N O Ut s W N =

NN NN NN N = e e e e e e
Ut R W NN RO O 0O Ut W NN = O

27

1
2
3

4.1. BIFROST STANDARDIZATION AND DOCUMENTATION

25

in Listing 4.2. The structure of the request is identical to the one discussed for the store
operation. Instead of a string it now takes a transaction hash as its data input, hence the

different type specification (line 8).

Listing 4.2: JSON for retrieve request and success response

REQUEST
{
"parameters" : {
"password" : "password as string"
3,
"data" @ [
{
"type" : "transaction_hash",
"fields" : {
"value" : "0xb2057d719cc25b46886d3e274b385be
+
+
]
X
RESPONSE SUCCESS
{
"status_code" : 200,
"data" : [
{
"type" : "string",
"fields" : {
"value" : "data in string format"
}
+
]
+

In the response meanwhile the status code is returned as is the case for all responses. The
data field once again adheres to the structure discussed previously and in the case of the

retrieve API function simply returns a data object of type string.

The structure of the JSON format for the migrate function can be seen in Listing 4.3. The
migration process internally functions as a retrieve process followed up by a store process.
The JSON format reflects that by consisting of a request body whose type specification
of the data is equal to the one for the retrieve function and a response that is equal to

that of a store function.

Listing 4.3: JSON for migrate request and success response

REQUEST
{

"parameters" : {

© 00 N O Ut

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Tt W N =

26 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

"multiple_tx" : "False",
"blockchain" : 2
+,
"data" : [
{
"type" : "transaction_hash",
"fields" : {
"value" : "0xb2057d719cc25b46886d3e274b385e ...""
+
}
]
b
RESPONSE SUCCESS
{
"status_code" : 200,
"data" : [
{
"type" : "transaction_hashes",
"fields" : {
"value" : [
"0xb2057d719cc25b46886d3e274b385e ..."
]
b
}
]
b

Finally, the structure of a response in case of an error is displayed in Listing 4.4. Note
that the format is equal for all three API functions. To get an overview over the possible
error messages that may occur for each of the individual functions, consult Table 4.1.

Listing 4.4: JSON for error response

RESPONSE ERROR
{

"status_code" : 404,

"error_message" : "error message text"
b

The list of status codes and error messages may easily be extended in the future. For
more on how generic error handling is done, refer to Section 4.2.3.

4.1.2 Architectural Standardization

Whilst previously the focus was on how interactions with a BC interoperability API
such as Bifrost might be standardized, there is another form of standardization embedded

4.1. BIFROST STANDARDIZATION AND DOCUMENTATION 27

Table 4.1: Status Code and meaning per API function

Status Operation Error Message
404 store The specified Blockchain has not been found.
. . The specified Transaction does not exist.

404 retrieve, migrate . .
Verify your Transaction Hash.
Cannot perform operation due to tramsaction

413 store, migrate size limit! Consider enabling multiple
transactions.

500 all Oops, Something went wrong! If this behaviour

persists, please contact Bifrdst support staff.

within the architecture of Bifrost. Namely the standardization of how adapters for specific
BCs are constructed and thus, by extension, the standardization of the high-level process
for each of the three exposed API methods (store, retrieve and migrate).

To understand how this standardization is built into the architecture of Bifrost, a closer
look at how the adapters are structured is required. Note at this point, that what is
discussed here relies on insights that can be gained from inspecting the code-base of the
Bifrost project. The code is publicly available at [47]. Upon inspection of the code, it can
be observed that the adapters make use of a principle called inheritance.

Inheritance, a concept which is part of object-oriented software engineering, describes
the fact that classes, such as the adapters used in Bifrost, can be put into a hierarchical
relationship of “superclass” and “subclass” [38]. For the purpose of understanding how
Bifrost standardizes its adapters, it is sufficient to understand that such a subclass inherits
the structure of the superclass, meaning it by default comes with the features (properties
and operations), which are defined on the superclass, already built in [38].

Within the subclass, additional features may be added on top of the ones inherited from
the superclass and inherited features may be redefined, thus overriding the behaviour of
that feature as inherited from the superclass with their own behaviour, with the superclass
being agnostic to the overrides [38]. Such inheritance hierarchies can be seen as a hierarchy
of increasing specialization, with the uppermost superclass being the most abstract and
generic class in the hierarchy and each subclass being more specialized than its direct
superclass [38].

Figure 4.1 illustrates this within the context of Bifrost. Note that all the classes displayed
within the figure have been simplified and do not display their entire list of features, as
this is not meant to be an exhaustive discussion of all the classes’ features involved in the
inheritance hierarchy, but rather a simplified example to elaborate how the mechanics of
inheritance come into play with regard to the API function store and adapter standard-
ization, with the same principles applying analogously to retrieve and migrate. Those
interested in inspecting all the classes’ features may refer to the Bifrost codebase [47].

Within Figure 4.1, a number of classes are displayed. The generic Adapter class in terms of
inheritance is the superclass in the adapter class hierarchy, whilst the BC-specific adapters

28 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

API Adapter

bc_adapter: Adapter store(...): string

store(...): string create_transaction(...): transaction

sign_transaction(...): signed_transaction

send_raw_transaction(...): hash

U;SE LP

Ethereum Adapter Bitcoin Adapter
create_transaction(...): transaction create_transaction(...): transaction
sign_transaction(...): signed_transaction sign_transaction(...): signed_transaction
send_raw_transaction(...): hash send_raw_transaction(...): hash |

Figure 4.1: Bifrost adapter architecture, based on [48] and code insights

such as the Ethereum Adapter (EthAdapter)and Bitcoin Adapter (BTCAdapter) are its
subclasses. In the Adapter class, a number of operations are defined, namely store, which
defines the generic, high-level structure of the process of storing data on a BC, as well as
create_transaction, sign_transaction and send_raw_transaction, which are called
from within the Adapter’s store method and thus can be seen as sub-processes of the
store process.

In the subclasses, these three operations are listed again, indicating that they are rede-
fined, thus overriding their respective implementation in the superclass. It is important
to note here that the store operation is not redefined in the subclasses, meaning the
implementation of the operation as it is present in the superclass remains unchanged in
the subclasses.

As indicated previously, the store operation represents the high-level process of storing
data on a given BC, whilst the operations create_transaction, sign_transaction and
send_raw_transaction are sub-processes within the high-level store process. By enabling
the redefinition of the sub-processes in every subclasses, each of which is responsible
for a different BC, whilst simultaneously maintaining the high-level process, inheritance
provides a mechanism to achieve standardization of the adapter architecture.

BC-specific aspects e.g., how a transaction has to be constructed, are resolved at the
subclass level for each adapter and thus for each BC individually. Since these BC-specific
aspects are resolved in the subclasses, the superclass is left agnostic to anything con-
cerning individual BCs, leaving the high-level process of storing data on an arbitrary BC
generic and standardized. The same logic applies to the process of retrieving data from
an arbitrary BC, as well as migrating data from and to an arbitrary BC.

This is where the API class in Figure 4.1 comes into play (note that technically speaking
the API is not actually a class, but for the purpose of simplicity it is treated as such
here). The store operation listed here is the one exposed to users of the Bifrost API.

4.1. BIFROST STANDARDIZATION AND DOCUMENTATION 29

Therein the store operation of an adapter is called, with which adapter is to be used
being determined based on the user input the API receives. Since the store operation
the API calls is agnostic to anything BC-specific as previously established, the store
operation of the API is agnostic to that as well. Again, the same logic applies to the API
operations retrieve and migrate, which are not listed here.

As a result, all of the three methods the API exposes to its users are generic, meaning
they are always the same, no matter which BC is specified by the user and thus the overall
processes of store, retrieve and migrate are standardized.

The standardized architecture of the adapters comes with a number of important benefits.
First of all, any changes to something BC-specific e.g., changes to any of the libraries
used to interact with the different BCs can be resolved completely within the adapter of
whichever BC that is affected, meaning no changes to the API, the generic adapter or any
of the other BC-specific adapters are required.

Second, changes which are not BC-specific can be resolved entirely within the generic parts
of the architecture, the API and/or the generic adapter. As such new generic elements
within the high-level processes, such as data encryption (see Section 4.2.1), can be added
without having to revisit each BC-specific adapter and without increasing the amount of
work which needs to be done when constructing a new BC-specific adapter. Essentially,
the first two points indicate that Bifrosts architecture achieves good modularity.

Finally, it results in what can be seen as three distinct levels of abstraction, with each of
them having a set of responsibilities. In case of the API these are facilitating interaction
with its users, initiating the needed high-level processes and bookkeeping of the transac-
tions that have been made. The generic adapter meanwhile is responsible for structuring
the high-level processes and for any generic operations not covered by the responsibilities
of the API, whilst the BC-specific adapters are responsible for anything that has to do
with the individual BCs. This distribution of responsibilities is valuable, as it allows quick
identification of the level at which changes should to be made e.g., when introducing a
new feature.

4.1.3 Documentation

Given the architectural standardization discussed in the Section 4.1.2, the process of
adding support for additional BCs by adding new adapters is clearly defined. This part
of the thesis shall serve as a documentation on how a new adapter is to be created, which
operations inherited from the generic adapter superclass are to be overriden and in which
locations in the Bifrost codebase outside of the adapter classes changes have to be made.

Note at this point that the word “operation” is synonymous for “method” or whichever
term is used to describe an operation defined within a class in a given programming
language. In the case of Bifrost the implementation at hand is written in Python, so
the term “method” shall be used throughout the rest of the thesis. Although Bifrost is
implemented in Python and thus any files mentioned will be Python files, the general
approach should translate to other programming languages as well. Any files mentioned
are referenced by their file path relative to the root folder of the project.

30 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

Minimal Setup for Implementation

The first thing that needs to be done when getting ready to implement a new adapter is
to create the respective adapter class, such that it is a subclass of the generic Adapter
class found in adapters/adapter.py. Once that it is done, any new libraries that add
support for the new BC as well as their respective dependencies need to be installed. The
newly supported BC then will have to be entered in the enum called Blockchain within
blockchain.py. In addition to that, within db/config.py the confirmation times for
transactions made on the new BC need to be specified within the variable CONFIRMA-
TION_WAITING_TIMES and the size limits for the transactions will have to be registered in
the variable TRANSACTION_SIZE_LIMITS.

Furthermore, the credentials with which the API will authorize transactions on the newly
supported BC need to be created and specified in db/config.py within the CREDENTIALS
variable. How theses credentials are obtained will differ from BC to BC and is best
looked up in the technical documentations or tutorials of any given BC. Note that if the
BC you are adding support for uses an UTXO-model for its funds handling, you will
need to create a seed transaction which simulates such an unspent transaction output, so
that any transactions made for that BC has an UTXO it can use as input. Such seed
transactions can be specified within the TRANSACTIONS variable in db/config.py.

Finally, in the file api.py, the variable Adapter will have to be extended with an entry
where the name is the enum entry created previously and the assigned value is the newly
created adapter class. With that the setup is ready such that implementation of the new
adapter class can begin.

Note that if the terminal interface is to be used to interact with the API, then one further
modification is required. In the file cli.py in the functions caseStore and caseMigrate
one of the objects defined in the questions array is responsible for presenting the user with
a list of BCs to chose for their respective operation. The possible choices are specified as
objects within the choices array. In both cases, the variable bc_choices is used, where
all the different BCs are defined in an array. To have the new BC be available as a choice
it consequently needs to be added there. Once that is done the terminal interface is set
up to support the new adapter.

Implementing the new Adapter

The actual implementation of the new adapter then starts by assigning values to a number
of properties within the new adapter class.

Table 4.2 lists properties which have been defined within the generic adapter. Since the
new adapter class inherits from the generic adapter, it has the option to override these
properties by assigning values to them. Inspection of the code shows that the properties
are abstract, meaning they have not actually been implemented in the superclass, hence
they need to have a value assigned if they are to be used anywhere in the new adapter
class.

4.1. BIFROST STANDARDIZATION AND DOCUMENTATION 31

Table 4.2: Bifrost adapter class properties structure. Based on code insights

‘ Generic Adapter BC-Specific Adapter (Potential) Additional Attributesf

»| chain chain web3

-&| credentials credentials*® ENDPOINT_URI
g address address™

2| key key*

A client client™

* Optional override, T Examples from Ethereum adapter

Further inspection shows that not necessarily all of these properties have to be used in
each adapter and that, more importantly, with the exception of chain they are never used
explicitly anywhere in the superclass. The reason for that is that the other properties
are set up to be used in those methods that have been categorized as “sub-processes”
(e.g., create_transaction) in Section 4.1.2 which the superclass only defines but never
implements itself.

What this means is that it is left to the implementation of the BC-specific adapters to
decide whether to use the properties or not. As such the only property that has to have a
value assigned to it in every BC-specific adapter is the property chain. The value assigned
to it is the enum entry created earlier on in blockchain.py. As for credentials, address
and key, their respective values are meant to be those that have been entered previously
in the CREDENTIALS variable in db/config.py, with credentials holding the entire entry
and address and key being assigned their respective counterparts from that entry, such
that they can be accessed more conveniently. Finally, client is meant to be used when
access to an external client is required for some action, such as e.g., signing a transaction
in the Ethereum adapter.

Should there be the need for additional properties, then these should be added in the new
adapter class and not in the generic adapter class. For an example of such additional
properties, refer to the Ethereum adapter examples given in Table 4.2, where there are
two such properties, web3 and ENDPOINT_URI.

Moving on to the methods, Table 4.3 shows for each of the three high-level processes
(store, retrieve and migrate) which methods are defined at the level of the generic adapter,
which of those have to be overridden at the level of the BC-specific adapter and, at the
example of the already implemented Ethereum adapter, what kind of methods may be
newly introduced within a BC-specific adapter. Note that there are no methods associated
with the process of migration, as migrate internally uses both the store and the retrieve
process to achieve its goal.

As is shown in Table 4.3, unlike the properties, the methods are defined clearly with
respect to which methods from the generic adapter have to be overridden. Each of the
methods listed in column “BC-specific Adapter” has to be implemented in every BC-
specific adapter, whilst each method not listed in that column should not be overridden
in any BC-specific adapter.

The names of the methods are self-explanatory in terms of what the methods wants to

32 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

Table 4.3: Bifrost adapter class methods structure. Based on code insights

‘ Generic Adapter BC-Specific Adapter Helper Methodst
store_wrapper estimate_gas
store

Sé confirmation_check
| create_transaction create_transaction
sign_transaction sign_transaction

send_raw_transaction send_raw_transaction

retrieve_wrapper

g| retrieve

= get_transaction get_transaction

§ extract_data extract_data
to_text to_text

1 Examples from Ethereum adapter

achieve. How the method is implemented depends entirely on the BC for which the adapter
is being created, as the different BCs, as well as the interfaces provided by potential
libraries to facilitate interaction with the respective BCs, may vary. Here it is necessary
to work with the technical documentations of the BC in question and of any libraries that
are being used.

Analogous to the properties, here too additional methods may be defined, should they
be of help when implementing the methods specified in column 2 of Table 4.3. Such
additional methods should not be added to the generic adapter, but rather implemented
directly within the BC-specific adapter. For an example of such a method, refer once
again to the Ethereum adapter, where the method estimate_gas has been added as an
additional method.

4.2 New Features Design

This section serves as a high-level outline of the designs produced and choices made with
respect to the new features. The focus is put primarily on information flow and how
the introduced changes affect the initial Bifrost prototype with regard to the three key
requirements for Bifrost (flexibility, modularity and ease of use) put forth in [48].

To quickly recapitulate, flexibility means users can store arbitrary data on the supported
BCs, given proper formatting, modularity relates to the architecture of Bifrost and means
enabling a simple way to add support for additional BCs [48] and ease of use refers to
the Bifrost API exposing simple functions to users and abstracting away the complexity
of interacting with the supported BCs.

The main goal pursued during the design-phase was to introduce the changes necessitated
by the new features in such a way that any negative effects on these key requirements are
kept to a minimum.

4.2. NEW FEATURES DESIGN 33

4.2.1 Encryption Feature
Introduction and Potential Impact

This feature gives users of Bifrost the ability to have the data they want to store on a given
BC to be encrypted. To this end, they are given the opportunity to provide a password
of their choice alongside the data, which is then used by the API to encrypt the data
with the specified password. The same password then has to be provided in the retrieval
process, when the users want their data to be decrypted before it is returned to them.

Looking at the three key requirements, modularity is the only one of them that is of some
concern, as depending on where the encryption takes place within Bifrost, the individual
BC-specific adapters, each responsible for interacting with a given BC may be affected.
If this were to be the case, then the act of adding support for a new BC would now also
have to concern itself with encryption, in addition to what already needed to be done in
the initial version of Bifrost, resulting in poorer modularity. Furthermore, each already
existing adapter would have to be modified. This is to be avoided.

There is no effect on flexibility, since the API expects to receive data in string format
and stores the data in string format on the specified BC [48]. Encryption simply speaking
turns plain-text, whose information content is open to be read by anyone, into cipher-text
where the information content is not derivable [59]. In the context of Bifrost, both plain-
text and cipher-text can be represented in string format, hence the kind of data that can
be stored is not affected.

As for ease of use, the only change is that the exposed API functions store and re-
trieve now allow for an additional parameter, the password. This parameter is optional,
meaning no input for the password parameter has to be supplied. Hence the effect on
ease of use is minimally impacted by the introduction of this feature.

Choice Of Encryption Scheme

There are two distinct encryption schemes that were considered for the data encryption
feature, i.e., symmetric and asymmetric encryption. In symmetric encryption the key
used to decrypt a piece of data is the same key that was initially used to encrypt it, or
it is at least easily derivable from it [51]. This means that in order to establish secure
communication using symmetric encryption, that key must be shared between the parties
in such a way that is not leaked to outsiders and thus gets compromised [51].

In asymmetric encryption schemes this is not the case, as the key used for decryption is
not the same as the key used for encryption [51]. Instead, each participant in such an
encryption scheme holds a pair of keys, one of which is secret and shall be called “secret
key”, with the other key being publicly available hence being called “public key” [51]. A
participants public key is then used to encrypt a message sent to them and only that
participant is able to decrypt the message, since the participants never share their secret
keys and thus the participant is the only one who knows the secret key needed to decrypt
the message again [51].

34 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

This scenario is depicted in Figure 4.2 on the left side, where Alice sends an encrypted
message to Bob using an asymmetric encryption scheme. The crucial difference between
symmetric and asymmetric encryption then is that in asymmetric encryption there is never
the need to exchange a secret key, whilst symmetric encryption entirely relies on such
an exchange [51]. This advantage comes at a cost however, with symmetric encryption
algorithms being significantly faster than their asymmetric counterparts [81].

Scenario: Secure Communication Scenario: Bifrost Data Encryption
Using Asymmetric Encryption Using Asymmetric Encryption

» public key public key
| Using

)

Using
> Encrypt
_|
Decrypt
message
. Decrypt .
Alice Bob User data Blockchain
Using A
Using
secret key

Bifrost

Figure 4.2: Comparison of encryption scenarios. Left side based on [51]

Looking at the scenario of Bifrost, as depicted in Figure 4.2 on the right-hand side, one
can identify that there is only one entity, Bifrost, involved in encrypting and decrypting
data, meaning the scenario of secure communication with two or more parties as outlined
above and shown schematically in Figure 4.2 on the left, does not apply. Since only
Bifrost partakes in the encryption and decryption of data, it would use its own public key
to encrypt data and its own secret key to decrypt it again. Because only Bifrost uses its
own public key it removes the necessity to make the public key public entirely.

Thus, Bifrést not having to share any key information with an other entity means that key-
exchanges are not a factor that needs to be considered. As such the advantage asymmetric
encryption has in scenarios where key-exchanges are necessary does not apply to the
Bifrost scenario. Choosing an asymmetric encryption scheme for Bifrosts data encryption
feature then would mean to not benefit from the advantages asymmetric encryption has
to offer, whilst suffering the drawbacks of its comparatively poor performance. As such,
the encryption scheme of choice for Bifrost is symmetric encryption.

Design

There are three distinct locations where encryption and decryption can take place, at
the level of the API, at the level of the generic adapter or at the level of the BC-specific
adapters. Doing so at the level of the API would dilute its tasks, which are allowing
user interaction with Bifrost and keeping track of any transactions that have been made.

4.2. NEW FEATURES DESIGN 35

Doing so at the level of the BC-specific adapter is what has been identified at the start
of Section 4.2.1 as leading to poor modularity, as it would affect each individual adapter
separately. This leaves the generic adapter, which happens to be a good fit.

The reason the generic adapter is a good fit is that since the procedure and mechanisms
for encryption and decryption are identical no matter what BC the data ultimately has
to be stored on, there is no need to ever override any of the methods used to perform
encryption and decryption within the subclasses, meaning the BC-specific adapters. As
a result, the BC-specific adapters remain completely agnostic to the existence of the
encryption feature, resulting in modularity not being affected at all by the introduction
of this feature. For more details on the class hierarchy of the adapters and how the
BC-specific adapters relate to the generic adapter, refer to Section 4.1.2.

Whilst there is no effect on the BC-specific adapters, there is an effect on the API.
The reason for that being that if a piece of data for a given transaction is encrypted,
information about that encryption, namely the “salt” and the “verification key”, has to
be stored for each transaction in the database, otherwise it cannot be decrypted again.
Since the API is responsible for tracking the transactions that were made, it therefore
needs to be changed, such that it can make the entry for the encryption information in
the database. Alongside that the transactions table in the database needs to be expanded
to accommodate the additional information.

Cryptographic Discussion of the Encryption Scheme

Understanding why salt is used in cryptography, requires a high-level introduction to
how passwords are stored. Commonly, passwords are not stored in plain-text, but rather
the cryptographic hash of a password is stored instead, such that access to whatever
medium the passwords are stored on does not immediately compromise the passwords
[21]. However, simply hashing the passwords with a cryptographic hash function does not
render them secure against all forms of attacks though [21].

In particular a “birthday attack” or its more sophisticated version, the “dictionary attack”,
can be used to deduce the original password based on its stored hash [21]. These attacks
consist of an attacker comparing a precomputed table of inputs and their respective pre-
computed output, given a cryptographic hash function, against the present collection of
password hashes, with any matches between the precomputed outputs and the stored
password hashes resulting in those passwords being compromised [21].

To combat this, salt, a randomly generated value, is hashed alongside the password, thus
randomizing the password [21]. Since a given salt is at most used for a small number
of passwords, an attacker that managed to guess a given salt correctly would end up
comparing a large precomputed table of hashes against only a small subset of the stored
password hashes, essentially making this type of attack not worth the effort [21].

The reason then why the Bifrst API has to store the salt value used in the process
of encrypting the data for any given transaction, is that in order to decrypt a piece of
encrypted data again, the same key used to encrypt it has to be reconstructed again.
Since that key in part is based on the salt value, the salt needs to be stored.

36 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

As for the aforementioned verification key, it essentially corresponds to the result of hash-
ing password and salt. Storing salt and verification key then allows for the verification of
a given password input [21]. The new password input is hashed alongside the salt which
was used in the encryption process for a given transaction. Should the resulting hash
equal the stored verification key, the password that was provided is the same as the one
used in the initial encryption process [21].

Hence, storing salt and verification key for each transaction that holds encrypted data is
essential to be able to verify, whether the password provided when the decryption of a
given transactions data is requested matches the password used to initially encrypt the
data.

However, the the goal ultimately is not just to verify passwords, and thus decide whether
or not decryption should be attempted, but also to actually encrypt and decrypt data in
a secure way. Since the verification key is stored in plaintext in the Bifrost database, it
is not safe to use for encryption, as any attacker with access to the database then could
use the unsecured verification keys to decrypt any piece of encrypted data.

Therefore a secondary key is derived in, which is based on the salt, password and verifi-
cation key. Unlike the verification key, this secondary key is never stored and has to be
reproduced each time it has to be used for either encryption or decryption. Any attacker
with access to the Bifrost database has access to the salt and verification key used in
the encryption process for a given piece of data. However, they do not have access to
any of the passwords. Furthermore, the passwords can not be derived from the salt and
verification key, as outlined earlier.

This means that the secondary key can only be reconstructed upon provision of the correct
password, which can not be done by an attacker, unless the password was compromised in
a way outside of the control of the Bifrost system. This then renders any data encrypted
with such a secondary key secure.

The entire encryption scheme is rather complex if only elaborated in words without ac-
companying illustrations. Hence in the following section provides a graphical rundown of
the encryption scheme.

Ilustration of the Encryption Scheme

Throughout this section, the encryption scheme will be explained via the use of Figure 4.3.
Furthermore, numbers in brackets, e.g., (3), unless stated otherwise, are used to indicate
certain aspects / sub-processes within that Figure. The explanation is based on a scenario
where a user first requests to have some data encrypted and stored on a BC and later on
retrieves that data again, after having it decrypted by the API.

4.2. NEW FEATURES DESIGN

Store request

User Input

v Encryption

pw) Salt

Generat
Key 2

/ User
Input
Text

-

Retrieve request

with
Password

Operation
System

- (QH
§(4) T :

Bifrost
Database

Blockchain
specified
by User

Cryptographic .,_
Library

Decryption

LK ey,‘

Salt

crypted
Text

Generate
Key 2
@)

J

37

Figure 4.3: Bifrost encryption scheme

Upon providing the API with all the necessary data for a store procedure, the encryption
process works as follows: First, the password is read from the user input (1). After that,
). Together, password and salt are used to derive the
first key, which is the “verification key” (3). Both salt and verification key are stored in

the salt is generated randomly (2

the Bifrost database (4).

A secondary key (5) is then derived from password, salt and verification key, making it
only reproducible when all three of these components are available. This secondary key
is then used to perform the actual encryption of the data (6). Once encrypted, the data
is then stored with a transaction on whatever BC the user specified (7).

38 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

To briefly summarize the state after encryption; the API stored salt and verification
key for this particular transaction. Since the secondary key however also requires the
password to be reconstructed, the data is secure, even if the Bifrost database should be
compromosied, as the password is never stored.

To retrieve the data again and have it decrypted, the user must provide the API with the
transaction hash he received, indicating the specific transaction on which the data was
stored, as well as the same password used to initially encrypt the data. Given those inputs,
Bifrost uses the transaction hash to identify the transaction and receive the encrypted
data from it (8). Furthermore, knowing the transaction hash, the salt and verification key
associated with that transaction are retrieved from the database (9).

Given the retrieved salt and the password, the same procedure as in (3) is used to recon-
struct the verification key (10). The resulting key is then compared against the retrieved
verification key (11). Should the keys not be equal, then verification fails, meaning an
incorrect password was provided. In this case, the data is returned still encrypted to
the user (12). Should the keys match however, then the correct password was provided.
In this case the verification key, salt and correct password are present, allowing for the
reconstruction of the secondary key (13). This key equals the secondary key used during
encryption (5). Given that, the data can now be decrypted (14) and returned to the user
in its decrypted form (15).

4.2.2 String Splitting Feature
Introduction and Potential Impact

The role of the string splitting feature is to ensure that a piece of data that is to be stored
on any given BC does not supersede the maximal amount of bytes that is permitted to
be stored with a single transaction. See Table 4.4 for a list of BCs currently supported by
Bifrost with their respective transaction size limits. The size limit listed there corresponds
to the number of bytes of “arbitrary data” that can be attached to a transaction on the
given BC and not e.g., the maximal size of a smart contract.

Table 4.4: Transaction Size Limit for Supported Blockchains. Adapted from [48]

Blockchain ~ Transaction size limit (in Bytes)

Bitcoin 80
Ethereum 46’000
Stellar 28
EOS 256
I0OTA 1’300
Hyperledger 20
Multichain 80

Note furthermore that some of these limits are not necessarily clearly defined, such as in
the case of Ethereum, whose transaction size limit is only limited indirectly by the block

4.2. NEW FEATURES DESIGN 39

size limit, which in turn is limited by the block gas limit [46]. That block gas limit is not
necessarily static and may change over time, as miners have the capability of raising or
lowering the gas limit for each block by approximately 0.1% [61].

Given the fact that such size limits exist, it must be ensured that users of Bifrost have
a way of navigating the issue of potentially superseding the imposed size limit resulting
in the transaction attempting to store their data being rejected. As such, Bifrést must
be capable of recognizing data that is too large for a given BC, have a way of splitting
that data up into multiple pieces that then are storable using multiple transactions, as
well as a mechanism to reconstruct the complete data when retrieving it again, which
furthermore requires a mechanism to track transactions that hold parts of a given piece of
data. Finally, as multiple transactions lead to increases in factors such as e.g., transaction
fees, the user must be given control over whether his/her data should be allowed to be
split or just rejected should it supersede the given size limit.

Looking at the key requirements of Bifrost (flexibility, modularity and ease of use),
the potential impacts the introduction of the string splitting feature may have, are very
similar to those of the encryption feature discussed in Section 4.2.1:

e Flexibility is not impacted, since whether the string representing the data is split or
not does not alter the kind of data that is ultimately storable on a given BC.

e Ease of use is minimally impacted, as the user only has to deal with an additional
parameter in the store and migrate functions of the API. The fact that splitting
may have to be done in the author’s view does not affect ease of use, as it is due to
limitations of the underlying technology and not due to implementation choices. It
is also not possible to resolve the issue silently behind the scenes, as the user needs
to be aware of the effects splitting can have, such as e.g., increased transaction fees.

e Modularity is the main concern, as depending where splitting is built into the ex-
isting system, changes to the individual BC-specific adapters may be needed, which
would result in reduced modularity. Once again, this is to be avoided.

Design

Similar to encryption, the mechanics used for splitting and reconstruction of the data
are ultimately independent of any specific BC. The only aspect that changes based on
the BC the user specified is the size limit. Given a way to access the needed size limit
outside of the BC-specific adapter, the same wrapper method as was used to introduce
the encryption feature could be used to also introduce splitting and reconstruction.

Note at this point, that encryption would have to be performed first, as it does have an
effect on data size. Otherwise, the splitting would have parts of the data at the maximal
permissible size, but subsequent encryption would push the size over the limit once again.
For more on how encryption affects data size see Section 5.2.

Since users of Bifrost explicitly have to specify the BC on which they want their data to
be stored, that information is present from the very beginning of the store process and

40 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

can then be used to look up the size limit for the specified BC before the process reaches
the BC-specific adapter. Hence the scenario outlined above where the wrapper method
introduced with the encryption feature is used to also perform splitting and reconstruction
is feasible and is the approach pursued during the implementation phase.

Splitting and Reconstruction Mechanics

The way splitting of over-sized data is done is simple. The data Bifrost receives is always
formatted as a string. A string can be seen as a sequence of characters ([42] states Python
itself does technically not have a built-in character type, but instead a string of length 1.
For the sake of simplicity, the term character will still be used to refer to strings of length
1 in this context), with each character having a size of 1 byte, meaning the number of
bytes used to represent a given string is the number of characters contained within that
string [57].

With that splitting is simple, as it only requires comparing the number of characters in
the string specified by the user with the given BCs size limit. Should the string exceed the
limit, then the limit marks the splitting point, meaning that, e.g., in the case of Stellar
with a data size limit of 28 bytes, a string of length 100 would have to split into four
parts, three of length 28 and one of length 16. This is done using a ceiling function to
round up the result.

Before discussing the reconstruction of split data, it must be established how Bifrost
tracks which transactions contain data that belongs together. Not only is it important
to know which transaction’s data together form a larger piece of data, but also the order
in which the data needs to be concatenated to reconstruct the data. To do so the fact
that splitting and reconstruction happens in the wrapper methods can be used, because
the wrappers themselves do not actually perform the actions of creating and retrieving
transactions, that is still done by the original store and retrieve methods called from
within the wrappers.

This means that when splitting data for storage, the store_wrapper method has both
access to the transaction hashes of all the transactions that were performed during that
particular store process, as well as the order of the transactions, given by the order in
which the hashes are returned by store.

With that information present, when storing the information for a given transaction in
Bifrost’s database, a new column called next is used to specify the transaction hash of
the transaction that was made after it with the next part of the data. In case of the
last transaction in a given store process, the field will contain the transaction hash of the
first transaction made in the same process, thus creating a loop of pointers between the
transactions involved in storing a given piece of data.

4.2. NEW FEATURES DESIGN 41

I’
transaction 1 transactions
v hash issued_at hash_next
transaction 2 1 2021-02-08 16:05:17.122901 2
v 2 2021-02-08 16:05:17.127952 3
transaction 3 3 2021-02-08 16:05:17.128919 1
R

Figure 4.4: Bifrost Data Split Tracking

This loop of pointer enables Bifrost to track down all transactions used in a given store
process based on any single transaction hash that belongs to that group of transactions.
Due to that, both the retrieve and migrate have access to the entire group with the user
only having to specify a single transaction hash, meaning no changes to those functions’
signatures are required with regard to how the users delivers information to identify the
data that needs to be treated.

The order of the transactions meanwhile can be established based on the entries of the
issued_at column in the database’s transaction table, which holds the timestamp of when
the entry was created.

Figure 4.4 illustrates this on an example where data is split up into three parts. On the
left side, the loop of pointers that is kept via entries in the database is shown. On the
right, a simplified excerpt from the database’s transaction table is displayed to illustrate
how this loop of pointers and the timestamps is stored.

Given the data stored to track data splitting, reconstructing of the original, non-split data
is simple. In the example shown in Figure 4.4, if the user calls the API’s retrieve function
and specifies the hash 2, then first the transaction data for transaction 2 is retrieved. The
hash_next entry indicates that there was another transaction involved, leading to the
retrieval of transaction 3 and in the same vein to the retrieval of transaction 1. Once
transaction 1 is retrieved, its hash_next entry is evaluated and since it is already present
in the retrieved collection of transaction, Bifrost knows that all required transactions
have been retrieved. Now the order can be established using the issued_at entries of the
retrieved transactions.

Once that is done the strings can be concatenated and the data is completely recon-
structed. In contrast to the store process, where encryption has to be dealt with before
splitting, when retrieving data the reconstruction has to occur before decryption.

Finally, for the migration process, the only change is an additional parameter in the
function signature, to enable / disable data splitting. This is due to migrate internally
using a retrieve process, followed by a store process. Since store has been changed
to receive an additional parameter, the value that parameter must also be present in
migrate.

42 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

4.2.3 Error Handling Feature
Introduction and Potential Impact

Generic error handling in the case of Bifrost means introducing a means (7) to catch errors
that may occur during the execution of the code, as well as (i) doing so with a setup that
is generic enough that it can easily be extended to catch additional errors.

The latter point refers to the fact that error handling, i.e., the catching of errors can
both target specific errors, as well as just any non-explicitly caught error that happens
in general. Extending the error handling then does not refer to catching additional non-
explicitly targeted errors, as there any error is caught anyway, but rather creating a setup
where it is easy to add additional specifically targeted errors, which then can be treated
separately.

It may be tempting to assume that such error handling is of little relevance for users and
that it is mainly something the developers will benefit from, but that is not the case.
It is important for any program to have well defined behaviours in case of something
going wrong, even if it is just something simple like displaying an error message, such
that the users at least receive confirmation that indeed something has gone wrong during
the execution and are not left wondering whether e.g., their connection is faulty or they
simply experience long delays.

The aforementioned assumption is correct however with regards to how users interact
with Bifrost, as the introduction of generic error handling does neither negatively affect
flexibility, meaning the kind of data the users can store, nor ease of use, as interacting
with the API has not become more complex. If anything, ease of use is impacted positively,
as the behaviour in case of errors is both more robust, due to being clearly defined, as
well more transparent towards the users.

Once again, the main concern is with modularity, as errors may occur anywhere in
the code, thus, overzealous application of error handling mechanics may unnecessarily
overcomplicate interactions between API, generic adapter and BC-specific adapters, thus
making the introduction of support for additional BCs more complex.

Thankfully, due to the fact that the API functions are essentially the coordinating entities
for the entire process that happens within Bifrost for any of the three exposed actions
(store, retrieve and migrate), this can be avoided quite easily.

High-level Introduction to Error Handling

Because the design relies heavily on the principles of how errors are handled in code, first
a brief high-level outline of how those mechanics function is given. Note, that there may
well be differences in how those mechanics work in languages other than Python, but
the general approach is likely the same. The terminology will differ too, but since the
implementation at hand is written in Python, its terminology is used here.

4.2. NEW FEATURES DESIGN 43

Fundamentally, error handling relies on the principle of “try-except”, meaning some part
of code is executed, essentially “tried out” and if errors occur within that section of the
code, there is the opportunity to prescribe how the program is to proceed if “exceptional
behaviour” occurs, i.e., an error happens, even if it is just simply telling it to terminate
in a controlled fashion.

Error handling can be targeted towards specific errors as well as towards a generic ex-
ception that simply will catch any error that occurs. Ideally, a combination of both is
used, where first specific errors are handled and thus can be treated separately, and where
afterwards a generic except will universally treat all the errors that do not fall into the
first category.

Finally, there is the capability of writing code that even if it does not run into any of
the numerous errors that are built into a given programming language can still “raise” an
error by itself if certain conditions are met. This includes raising custom errors that a
developer can define. Such manually raised errors, no matter whether they are built in
errors or custom errors will also be caught by a generic except clause and can be treated
separately with targeted except clauses.

Design

Due to the facts that (i) a try-except setup will allow the code to detect any errors that
happen within the encapsulated code and that (i7) the API functions exposed by Bifrost
each encapsulate the entire code related to their respective process, the addition of such
a try-except scheme at the level of the API function is capable of comfortably handling
any errors that happen during the execution of any of the three main processes (store,
retrieve and migrate).

Furthermore, with such a setup, anywhere in the process errors may be raised and no
matter whether they are raised in the generic adapter or in the BC-specific adapters, they
will be caught at the same place in the code.

This means that modularity is ultimately not affected at all, as the only changes within
the generic adapter or BC-specific adapters are the potential additions of code statements
that programmatically raise errors, if certain conditions are met. Should such a condition
apply to all supported BCs, it is checked for and raised in the generic adapter. If that is
not the case it can simply be raised within the BC-specific adapter in question without
affecting any of the other BC-speficic adapters.

One thing that needs to be pointed out is that the migrate API function does not actually
need a try-except scheme, as it simply concatenates a retrieve with a store process,
meaning if both of those implement a try-except scheme, error handling is automatically
covered in migrate as well.

44 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

4.2.4 Redundancy Feature
Introduction and Potential Impact

The goal of the redundancy feature is simple; give users of Bifrost the ability to decide
for each transaction made through the API whether it should not only be made on the
specified BC, but also be submitted a second time on the PostreSQL database present
within the Bifrost architecture.

This feature then would allow for the retrieval of transaction data that may no longer be
obtainable from the BC it was initially stored on. One scenario this could be useful for is
when the transaction was stored on a fork of the BC that was abandoned or rolled back.

As for how this feature should be implemented within the existing codebase of Bifrost, the
philosophy is the same as with the other features. Implement it in such a way that it min-
imally impacts the three key requirements imposed on Bifrost (flexibility, modularity
and ease of use).

Starting with ease of use, the potential impact at its worst is the introduction of one
additional parameter that is to be supplied to the store function exposed by the API, as
the user only needs to indicate that not only one specific BC adapter but also a second
adapter, the PostgreSQL adapter, is to be used. Since this parameter can be assigned a
default value, it can even be made optional. As such, the impact on ease of use is minimal.

Flexibility is not affected. The reasoning here being that since the PostgreSQL adapter
is used to facilitate the redundancy, and it is also available as an adapter during the
standard store process, where it functions with all the types of data supported by other
adapters, the type of data that can be stored with and without redundancy enabled does
not change.

Modularity on the other hand, could potentially be an issue, depending on where within
the Bifrost architecture the redundancy is taken care of. Should redundancy e.g., be
implemented at the level of the BC-specific adapters, then each adapter would have to
have the ability to initiate a store process for another adapter, namely the PostgreSQL
adapter.

The initiation of such a process has thus far however been reserved to the API func-
tions, whilst the adapters simply execute whatever commands they receive from hose API
functions. Allowing such a decision to be delegated to the BC-specific adapters means
that any changes to how redundancy is initiated would have to be made for each existing
adapter on an individual level as well. This would lead to poorer modularity.

Design

As established in the previous section, modularity is the main concern when implementing
this feature. Thankfully, there is a simple way to design redundancy in such a way that
it only affects the API function store, such that modularity is not affected at all.

0O Ui Wi+

==
o= OO

13
14
15

4.3. IMPLEMENTATION 45

This can be achieved with the use of recursion. In the context of Bifrosts redundancy
feature this means that if the store function of the API is called with redundancy enabled,
then the store function calls itself a second time, this time with the BC of choice being
hard-coded to the PostgreSQL, such that that particular adapter is used for the second
store process. This then results in the data being stored not only on the initially specified
BC but also in the PostgreSQL database, which is exactly the goal the redundancy feature.
To prevent infinite loops, the redundancy parameter is set such that redundancy is disabled
for the recursive call.

4.3 Implementation

Whilst Section 4.2 serves the discussion of design decisions made on how the given features
are to be implemented schematically, it does not comment about any aspects related to
the code produced during the actual implementation of the features. As such it can be
seen as generic in the sense that it does not take into consideration the properties of any
given programming language with which a Bifrost implementation might be produced.

In contrast, this section focuses on the code written during the production of this thesis;
thus, is intrinsically tied to the mechanics of the Python programming language. That
is not to say that potential implementations of Bifrost in other programming languages
are necessarily structured differently and that no parallels may be drawn, but rather that
this section does not attempt to make such considerations in the first place.

4.3.1 General Refactoring

Before the new features were implemented, some minor refactoring took place with regard
to where entries into the transactions table of the database are made. So far, the store
method of the generic adapter had the task of making that entry, as can be seen in
Listing 4.5 on line 8. Note that the store method has been heavily reduced to just the
relevant lines of code.

Listing 4.5: Transactions Entry Location So Far

class Adapter (ABC):
o

@classmethod

def store(cls, text):

...
cls.add_transaction_to_database(transaction_hash)
return transaction_hash

class EthAdapter(Adapter):
...

17

16
17
18
19
20

O W N

o

46 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

@staticmethod
def add_transaction_to_database(transaction_hash):
database.add_transaction (transaction_hash , Blockchain .ETHEREUM)

This add_transaction_to_database method was then implemented by each BC-specific
adapter separately, with the only difference between the implementations in the different
adapters being the second argument, which specified which BC the transaction was made
on (line 18).

This has the disadvantage of each BC-specific adapter having to provide an implementa-
tion of add_transaction_to_database, as well as mixing up the responsibilities of the
API and the adapters. Recall Figure 2.5 from Section 2.3. The figure indicates that it
should be the API which creates the entry, and not any of the adapters.

Hence, the implementation of Bifrost was changed, such that the API now creates those
entries. Refer to Listing 4.6, line 6 to see the new implementation. The database’s
add_transaction method that was previously called from within the BC-specific adapter,
is now called by the API’s store function directly. Note that the number of parameters
for the add_transaction method have changed in the meantime, hence the additional
arguments in the refactored code, but it is still the same method.

Listing 4.6: Transactions Entry Location Refactored

def store(text, blockchain, pw=None, mlutiple_tx=False, redundancy=False):
/l}/’
for i in range(len(transaction_hashes)):

database.add_transaction (transaction_hashes[i], blockchain, salt,
key, next_transaction)

o

return transaction_hashes

This change brings the implementation in line with what is shown in the architecture de-
sign depicted in Figure 2.5. Furthermore, the responsibilities of the API and the adapters
are more clearly divided. The adapters are responsible for interacting with the BCs, hence
what happens with the information gathered during such a store process (salt and hashes)
is not relevant to the adapters, once those interactions are over. The API on the other
hand is responsible for facilitating interactions with users and coordinating the required
actions based on user input. In the author’s view, tracking information about transac-
tions by creating database entries is a coordination task and hence the responsibility of
the API.

4.3.2 Encryption Feature

There are two distinct parts of the code that are discussed regarding the implementation of
the data encryption feature. First, the implementation of the encryption and decryption

0O Ui Wi+

I I N R R T el e S I S S S Sy
N — O O 00O Uik WNhF— OO

N DN DN
T W

4.3. IMPLEMENTATION 47

methods as well as the choice of cryptographic library used to do so is explored. Second,
the way the aforementioned encryption and decryption methods are introduced into the
existing adapters is explained for each of the three processes available through the API
(store, retrieve and migrate).

Encryption and Decryption Methods

The cryptographic library chosen for this feature is called “cryptography” [71]. A number
of reason led to this library being chosen; it is actively maintained, with the latest release at
the time of writing this only being a number of days old, it provides a solid documentation
[69] and it is used for a large number of encryption related Python tutorials, thus plenty
of resources are available. On top of that, the stated goal of the developers is to make the
cryptography the de facto standard library for Python [71].

The method of the generic adapter class used to perform encryption is shown in Listing 4.7.
Note that compared to the code present in the Bifrost code-base, most of the comments
have been removed in the code shown below. Note furthermore that the parameters used
with regard to anything cryptography related, such as the generation of the salt or the
Key Derivation Functions (KDFs), are those that have been used in examples from the
library’s documentation (which can be found in [69]). The general code structure is based
on an example in the documentation that shows how passwords are to be used with this
library [70].

Listing 4.7: Encryption Method

class Adapter (ABC):

T
Qstaticmethod
def encrypt(text, pw):
generate salt, build kdf, generate keys
pw = pw.encode ()
salt = os.urandom(16)
kdf = PBKDF2HMAC(algorithm=hashes.SHA256() ,
length=32,

salt=salt ,
iterations=100000,
backend=default_backend ())
kdf_2 = PBKDF2HMAC(algorithm=hashes.SHA256() ,
length=32, salt=salt ,
iterations=100000,
backend=default_backend ())
key_1 = base64.urlsafe_b64encode (kdf. derive (pw))
key_2 = base64.urlsafe_b64encode (kdf_2.derive (pw + key_1))
f = Fernet(key_2)
text_encrypted = f.encrypt(text.encode())
return data, text_encrypted as string, salt and key_1 in byte—

format

return text_encrypted.decode (ENCODING), salt , key_1

—_

— O © 00 3O Uik Wi —

48 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

The encryption function takes two parameters, text, the data that is to be encrypted and
pw, the password with which a key for encryption is to be built.

The task of the encryption method presented in Listing 4.7 is divided into three subtasks,
(i) salt generation, (77) KDF building, and (i) key generation.

First, a salt needs to be generated. This is accomplished on line 8. Second, a KDF needs
to be built, with which a key can be derived from the password and the generated salt.
Note that the salt is built into the KDF, hence it needs to be passed as a parameter when
constructing the KDF and is not used as a parameter on line 18 and 19 when the keys
are being generated. Note furthermore that such a KDF can only be used for a single
key-derivation, hence two KDFs.

Normally, a so called “deep copy” of the first KDF object would be created to create a
new separate KDF object [43]. This however is not supported by the KDF object and will
result in an error. Thus, a second KDF object has to be created from scratch, as shown in
lines 14 - 17. Though speculation on the author’s part, it is likely that this is due to the
library not implementing a __deepcopy__() method itself for the KDF object, as that is
required to add deep copy support to classes according to [43].

Third, two keys need to be generated, key_1, which will end up being stored and used for
password verification, and key_2, which is used for encryption and decryption. Lines 18
and 19 show how the two keys are generated.

Finally, a fernet object £ is built. This object then can be used to perform cryptographic
operations such encrypting and decrypting data. It is then used to encrypt the data
received in the text parameter of the encrypt method.

Once all that is done, the encrypt method returns three objects; the encrypted data in
string format, using the ‘utf-8 encoding, as well as the salt and key_1, the “verification
key” discussed in Section 4.2.1 in byte format. The reason why the last two objects are
passed in byte format is that the cryptography library requires the use of the byte format
and will not work with strings. This is also the reason why the password is converted to
byte format in line 7 and why the data is converted to byte format before encryption in
line 21.

Moving on to the decryption method used in the generic adapter class, its implementation
is shown in Listing 4.8.

Listing 4.8: Decryption Method

class Adapter (ABC):
T

@staticmethod
def decrypt(text, pw, salt, key_1):
given received pw and stored salt & key, build key_2 to decrypt
pw = pw.encode ()
kdf = PBKDF2HMAC(algorithm=hashes.SHA256() ,
length=32,
salt=salt ,
iterations=100000,

12
13
14
15
16
17
18

O U W N

4.3. IMPLEMENTATION 49

backend=default_backend ())
key_2 = base64.urlsafe_b64encode (kdf.derive (pw + key_1))
f = Fernet (key_2)
text_decrypted = f.decrypt(text.encode())
return text_decrypted.decode (ENCODING)

As already established when discussing the encryption method, the library requires all
the data to be in byte-format, hence the conversions on lines 7 and 15, as well as the
conversion back into a string format for the decrypted text on line 16.

The decrypt method takes four arguments, text, the data retrieved from the transaction
specified by the user, pw the password provided by the user, as well as salt and key_1
which are retrieved from the database, where they have been stored when initially per-
forming the encryption. Note that the method assumes the password to be the correct
one. Password verification is not its responsibility and is performed before this method is

called.

The decryption method has two tasks. First, based on password, salt and key_1, key_2,
the key which is used for encryption and decryption, is to be reconstructed (line 13). This
also requires the reconstruction of the KDF (line 8 - 12). Second, the fernet object f
needs to be built (line 14) and used to decrypt the encrypted data as seen on line 15.
Once done, the decrypted data is returned in string format.

Integration into the Adapters

The encryption and decryption method of the generic adapter are integrated into the
already existing processes for storing, retrieving and migrating data via the use of two
wrapper methods, one for the store and one for the retrieve method of the generic
adapter class. These wrappers are then called from the respective API function instead
of the original store and retrieve method.

This enables the integration of new features via the use of the wrappers, whilst leaving
the original methods unchanged. Whilst the processes of storing and retrieving data each
require a wrapper method, the migrate process does not, as it internally consists of a
combination of a retrieve and store process.

The code for the store_wrapper method is shown in Listing 4.9. Note that most func-
tionality pertaining to other features such as e.g., string splitting have been removed from
the wrapper to allow closer focus on the data encryption feature.

Listing 4.9: store_wrapper Method

class Adapter (ABC):

@classmethod
def store_wrapper (cls, text, pw=None, multiple_tx=False):
salt = None

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

T W N =

[0l R}

11
12
13
14
15

20 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

key = None
if pw:
text , salt, key = cls.encrypt(text, pw)

oo
size—checking , splitting if needed, collecting transaction_hashes
...
for i in range(nr_of_transactions):
call original store method for each required tx separately
subtext = text[i*limit:(i+1)xlimit]
transaction_hashes[i] = cls.store(subtext)

return transaction_hashes, salt , key

@classmethod
def store(cls, text):
4.

T

There are two things that need to be highlighted with respect to the implementation of
the store_wrapper method. The first thing to note is that the the data is encrypted,
provided the user specified a password, before any other operations are done. This ensures
that all subsequent operations already use the encrypted text and don’t have to worry
about e.g., splitting the text and then having to use multiple calls to the encryption
method.

The second aspect worth highlighting is that the wrapper allows for an additional pa-
rameter pw when compared to the original store method. This means that the original
method is agnostic to encryption when it is called on line 17 from within its wrapper
method.

The retrieve_wrapper method is similar in its approach. Its code can be seen in List-
ing 4.10. In addition, the helper method verify_password is also displayed, as it is used
in the wrapper to verify passwords.

Listing 4.10: retrieve_wrapper Method

class Adapter (ABC):

4.
@classmethod
def retrieve_wrapper(cls, transaction_hashes, pw=None, salt=None, key=
Noune) :
text = 77
for i in range(len(transaction_hashes)):
text += cls.retrieve(transaction_hashes[i])
if pw and cls.verify_password (pw, salt, key):
text = cls.decrypt(text, pw, salt, key)
return text
@classmethod

def retrieve(cls, transaction_hash):

16
17
18
19
20
21
22
23
24
25
26
27
28

4.3. IMPLEMENTATION o1

@staticmethod
def verify_password (pw, salt, key):
if salt is None or key is None:
return False
kdf = PBKDF2HMAC(algorithm=hashes.SHA256() ,
length=32,
salt=salt ,
iterations=100000,
backend=default_backend ())
key_attempt = base64.urlsafe_b64encode (kdf.derive (pw.encode()))
return key = key_attempt

T

Notice first that as with the methods used for storing data, the wrapper method allows
for additional parameters, whilst the original method is left agnostic to the new features.
The wrapper uses the original retrieve method on line 8 when retrieving the text as it
is stored on a given BC.

Should the text have been encrypted, the wrapper will have received the necessary values
for pw, salt and key when called, and thus can make use of the decrypt method discussed
previously.

Note that before performing the decryption, any password is verified using the method
verify_password. That method builds a key given the password specified by the user
during the retrieval process, analogous to the encrypt and decrypt methods discussed
earlier.

The resulting key is then compared against the verification key (key). Should they be
equal, then the password is the same as the one that was used when initially encrypting the
data and is considered verified. Should the password fail the verification, then decryption
is not attempted but instead the encrypted text is returned, as the value assigned to the
text variable remains unmodified by line 8.

Finally, a look at how the encryption feature is integrated into the migration process is
required. It might be tempting to assume that encryption and decryption is not relevant
for the migration process. After all, migration first uses the retrieval process and then the
store process to create a copy of a given piece of data on another BC.

However, if the data is retrieved from its new location was encrypted it still has to be able
to be decrypted. This means that the encryption information stored for each transaction,
namely the salt used for key generation and the “verification key” used for password
verification need to be available.

To achieve that, one could simply use the normal procedures for retrieving and storing
data. In the case of encrypted data, this would then require the user initiating the
migration process to provide the password, as otherwise during the retrieval the data
would not be decrypted and not re-encrypted again during the subsequent storing process.
This approach then would entail allowing for an additional parameter, pw to be provided
when making a call to the APIs migrate method.

[IENEGCR N

= O © 0 o Ot

—_

13
14
15
16

17
18
19
20
21
22
23

52 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

There are two drawbacks with this approach. First, it lessens the ease of use of Bifrost
as the user is required to provide more information in the form of a password, which he
should not have to provide. Migrating data in the context of Bifrost, whether encrypted
or not, is understood by the user as simply copying it in whatever form it is stored to
a new location. There is no clear reason why this should require a password from user’s
perspective. Given the transaction hash required to specify which data to move, anyone
could perform that migration outside of the API, so requiring a password when doing so
through the API does also not provide any security benefits.

Second, the data ends up in its encrypted form at the new location, making both the
decryption and subsequent encryption that would occur with this approach redundant
and operations that unnecessarily increase the computational complexity of the migration
process.

Thus a different approach is taken. No password is provided by the user, meaning the data
does not get decrypted and encrypted again during the migration procedure, eliminating
unnecessary cryptographic operations. If the data is in fact encrypted, the required en-
cryption information is read from the database for the data which is retrieved during the
migration procedure and added after the fact to the new transaction entry in the database
that was created as per normal procedure when the data was stored on the new BC.

Listing 4.11 shows some code snippets that illustrate this approach. Note that the func-
tions shown here are not methods belonging to any of the adapter classes. Rather these
are excerpts from the three API functions exposed to users. They can be found in the file
api.py in the Bifrést code-base [47].

Listing 4.11: Encryption Compatible Approach To Migration

def migrate(transaction_hash , blockchain, multiple_tx=False):

value = retrieve (transaction_hash)
new_hashes = store(value, blockchain, multiple_tx=multiple_tx)
_, salt, key, _, _ = database.find_transaction_information (

transaction_hash)
for i in range(len(new_hashes)):
database.add_encryption_info (new_hashes[i], salt, key)
return new_hashes

def store(text, blockchain, pw=None, multiple_tx=False, redundancy=False):
H# o

transaction_hashes, salt, key = adapter.store_wrapper(text, pw,
multiple_tx=multiple_tx)

salt = salt if salt is not None else

key = key if key is not None else "7

for i in range(len(transaction_hashes)):

M

SIS

1

database.add_transaction (transaction_hashes[i], blockchain, salt ,
key, next_transaction)

T

return transaction_hashes

def retrieve (transaction_hash , pw=None):

...
if pw:

24
25
26
27
28

0O Ui Wi

4.3. IMPLEMENTATION 23

text = adapter.retrieve_wrapper (transaction_hashes, pw, salt, key)
else:
text = adapter.retrieve_wrapper (transaction_hashes)

return text

The API functions for the store and retrieve procedures are defined on lines 9 and 21
respectively. In both of the functions most of the code has been removed, but the calls to
the respective wrapper methods of a given adapter can still be seen.

Migrate itself calls the API functions retrieve and store on lines 2 and 3 respectively,
which then results in those functions making calls to their respective wrappers. Since the
function for the migration procedure does not accept a password parameter, retrieve
ends up being called without a password (line 26), thus not decrypting data, even if it
is encrypted. The data is then stored as it was received from the retrieve call, again
without a password (line 11), thus no encryption operations are performed.

As no encryption was performed, the values for salt (line 12) and key (line 13) are set
to the empty string, which in Bifrést’s database results in them having no value assigned
to them, once the entry for the new transaction is made (line 16).

If the migrated data was encrypted, then the values for salt and key need thus to be added
after the fact, which happens on line 4, where they are retrieved from the information
stored about the initial transaction and on line 6, where the entry for the new transaction
is enriched with the necessary salt and key values.

4.3.3 String Splitting Feature

In this part of the thesis, insight is provided into how string splitting is integrated into
the store process, how string reconstruction is implemented in the retrieve process and
finally how the migrate process makes use of both splitting and reconstruction.

Splitting During Store Process

Listing 4.12 shows an excerpt of the generic adapter class. More precisely, two helper
methods (get_text_size and determine_nr_of_tx) are shown which are used in the
store process which is performed by the store and store_wrapper methods.

Listing 4.12: String Splitting Implementation in Adapter

class Adapter (ABC):
...

7

@classmethod
def get_text_size(cls, text):
return len (text.encode(utf—8’))

@classmethod

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

o4 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

def determine_nr_of_tx(cls, text, limit):
size = cls.get_text_size (text)
return math. ceil (size/limit)

@classmethod
def store_wrapper(cls, text, pw=None, multiple_tx=False):
encryption takes place if needed

limit = TRANSACTION_SIZE_LIMITS[cls . chain . value]

nr_of_transactions = cls.determine_nr_of_tx (text, limit)
transaction_hashes = [?”]xnr_of_transactions

if multiple transactions disabled

if nr_of_transactions != 1 and not multiple_tx:

raise TransactionSizeError
for i in range(nr_of_transactions):

call original store method for each required tx separately
subtext = text [ixlimit:(i+1)*limit]
transaction_hashes[i] = cls.store(subtext)

return transaction_hashes, salt, key

@classmethod

def store(cls, text):
perform transaction
return transaction_hash

T

The entry point into the process within the adapter is the wrapper method, which is called
by the API’s store function as shown in Listing 4.13. For now however let the focus be
on what happens in the adapter class.

Lines 16 to 17 show how the size limit is retrieved and passed alongside the text the
helper method determine_nr_of_tx, whose task is to determine how many transactions
are needed for a given BC limit and the size of the supplied text. The size of the supplied
text is calculated at line 10, where the other helper method, get_text_size is used to
essentially just count the number of characters contained within the given text (credit
for the code of the method get_text_size goes to [55]). With both sizes present, the
number of needed transactions is calculated and returned on line 11.

With both the data size limit as well as the number of needed transactions known within
the wrapper method, an array is constructed to hold the hashes that will be returned
from the individually submitted transactions (line 18).

If the user did not enable data splitting, by overwriting the default value of multiple_tx,
if multiple transactions are needed, the process is aborted and an error is raised (line 21),
displaying to the user that the data supersede the capacity of a single transaction.

If data splitting is enabled, or no slitting is needed, for each needed transaction, the
subtext is defined, as shown in line 24. For this, string indexing is used with the BC-
specific transaction size limit being the demarcation for which parts of the text are to be
extracted for each transaction.

Once the a subtext is extracted, the original store method of the adapter is called, which
creates the actual transaction and sends it to the specified BC (line 25). The returned

w N

00 N O Ut~

10
11
12
13

4.3. IMPLEMENTATION 5}

hash is stored into the array prepared on line 18. Since the text is split from front to
back and the transactions are done sequentially, the order of the hashes stored in the
transaction_hashes array is the same order in which the subtext can be concatenated
to reconstruct the original text.

This array of hashes is returned to the caller (API store function), alongside information
which was used during a potential encryption process (line 26).

Having now established, how the string splitting works in the adapter class, a look at how
the presence of multiple transaction hashes and the respective tracking of which transac-
tions together belong to a given piece of data are implemented is required. Listing 4.13
shows parts of the APIs store function found in api.py.

Listing 4.13: String Splitting Tracking in API
def store(text, blockchain, pw=None, multiple_tx=False, redundancy=False):
adapter = Adapter [blockchain]
transaction_hashes, salt, key = adapter.store_wrapper(text, pw,
multiple_tx)

4 ..
for i in range(len(transaction_hashes)):
next_transaction = transaction_hashes[i+1] if i < (len(
transaction_hashes)—1) else transaction_hashes[0]
database.add_transaction (transaction_hashes[i], blockchain, salt,

key, next_transaction)

return transaction_hashes

Of note is primarily what happens on lines 7 to 9. A loop is constructed, which for each
of the hashes returned on line 3 from the wrapper method of the adapter performs two
distinct actions.

First, on line &, it is established what should be specified in the next_hash field of the
database when creating the entry for a given transaction. Should the current iteration
index of the loop be smaller than the total number of hashes contained in the array (-1
due to indexing starting at 0), then the current iteration index does not yet point to the
last hash in the array. Thus, the value for next_transaction which will be stored in the
database table’s next_hash field is set to next hash in the array.

Should that condition evaluate to false instead, then the value is set to the first hash in
the array. In case of the call on line 3 returning multiple hashes in the array, this would
lead to the “loop of pointers” being closed. Why this is important is explained in detail
in Section 4.3.3, but to quickly reiterate, it allows for the identification of all transactions
involved in a given store process based on any single transaction hash.

Alternatively, if only one transaction was needed to store the data, then the transaction
essentially points to itself, making it clear that no other transactions were involved. Hav-
ing established the value to be used to indicate the next transaction, the entry for the
transaction is made in Bifrost’s database (line 9).

1

o6 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

Reconstruction During Retrieve Process

Reconstruction of a split string is also an act that is shared between the API and the
adapter class, with the task of the adapter being comparatively simple. Listing 4.14
shows the section of code from the generic adapter class where reconstruction happens on
the level of the adapter.

Listing 4.14: String Reconstruction in Adapter
class Adapter (ABC):

/]
77

@Qclassmethod
def retrieve_wrapper(cls, transaction_hashes, pw=None, salt=None, key=
Nomne) :
text =
for i in range(len(transaction_hashes)):
text += cls.retrieve (transaction_hashes[i])

”

... potential decryption
return text

@classmethod
def retrieve(cls, transaction_hash):
retrieve data from transaction

Given an array of transaction hashes, which the adapter can take for granted to be (i)
a group of transactions that belong together in forming a string from their respective
substrings and (i) to be provided in the correct order, the retrieve_wrapper method
runs a loop (line 7) where for each of the hashes the original retrieve method is called
(line 8), which in turn retrieves the string stored on the specified transaction.

Since the hashes are provided in the correct order to the adapter, reconstruction simply is
a matter of concatenating the retrieved substrings in the order in which they are retrieved,
as can be seen on line 8. Once done, the now reconstructed string may potentially have to
be decrypted and is then returned to the API function retrieve from where the wrapper
method was originally called.

Having established how the substrings are used to reconstruct the complete string within
the adapter, it must now be shown how the group of transaction hashes is (i) identified
based on user input and (i) how those transaction hashes are put into the correct order,
such that the adapter can blindly concatenate the retrieved substrings.

Listing 4.15 shows parts of the code of the retrieve API function. The user input used
to identify the transaction(s) needed to retrieve a string is a single transaction hash, as
can be seen in the function signature (line 1).

Listing 4.15: String Reconstruction in API

def retrieve (transaction_hash , pw=None):

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

4.3. IMPLEMENTATION 57

blockchain , salt , key, time_stamp, next_transaction = database.
find_transaction_information (transaction_hash)
adapter = Adapter[blockchain |

... handle potential encryption

retrieve all needed hashes

transaction_hashes = [transaction_hash|

time_stamps = [time_stamp |

earliest_time_stamp = time_stamp

while next_transaction != transaction_hashes[0]:
transaction_hashes.append(next_transaction)
_, _, _, next_stamp, next_transaction = database.

find_transaction_information (next_transaction)
time_stamps . append (next_stamp)
if next_stamp < earliest_time_stamp:

earliest_time_stamp = next_stamp
reorganization of retrieved hashes according to time_stamps
while time_stamps[0] != earliest_time_stamp:

transaction_hashes.append(transaction_hashes.pop(0))
time_stamps.append (time_stamps.pop (0))

call wrapper with needed parameters

if pw:

text = adapter.retrieve_wrapper (transaction_hashes, pw, salt, key)
else:

text = adapter.retrieve_wrapper (transaction_hashes)
#

return text

The function then first retrieves the data associated with the transaction associated with
the hash specified the user from the database (line 2). After that a number of vari-
ables are set up: transaction_hashes, initialized with the hash specified by the user,
will be used to store the hashes of all transactions involved when originally storing the
data. time_stamps will hold the time stamps for each of the transactions and earli-
est_time_stamp will be used to establish which of the transactions happened first, such
that the proper order can be reproduced.

Now, the “loop of pointers”, constructed previously when creating the next_hash entries
in the database, is unravelled. Recall, that each transaction entry in the database carries
a pointer to the next transaction, with the last transaction closing the loop by pointing
to the first one.

Since it is not clear, where in that loop the transaction the user specified with trans-
action_hash lies, the hashes retrieved in line 13 are in the correct order relative to each
other, but not necessarily in the absolute correct order, as the user may have specified
e.g., the second to last transaction out of a group of e.g., 5 transactions.

To solve that problem, the time stamps retrieved on line 13 are stored on line 14, whilst the
earliest_time_stamp is continuously updated on line 16. Given the time stamps, with

[IENEGCR O

N

o8 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

the respective index of a given time stamp being equal to the index of the corresponding
transaction hash in transaction_hashes, the transactions are reorganized in the while-
loop on line 19.

Simply put, if the first time stamp entry in the time_stamps array does not correspond
to the earliest stamp out of the group of retrieved time stamps, then the elements at the
first index of both the transaction_hashes and time_stamps arrays are moved to the
back of the array, leading to a new set of first elements. This rotation happens until the
time stamps align according to the condition in line 19, which in turn guarantees that the
hashes in transaction_hashes are in the correct order in an absolute sense.

Once that order is established, the retrieve_wrapper method of the adapter is called,
initiating the process discussed previously, leading to the substrings being concatenated,
potentially decrypted and returned to the APIs retrieve function.

String Splitting and Reconstruction During Migration

The API’s migrate function is not actively involved in either splitting nor reconstruction,
as it internally uses the API functions retrieve to retrieve data from its origin and
store to store it in the new location. Seeing as splitting is taken care of during the store
process and reconstruction is taken care of when retrieving data, migrate does not have
to perform any logic itself to directly facilitate splitting, it simply must forward whether
or not splitting is allowed to the store function via the parameter multiple_tx, as seen
on line 3.

Listing 4.16: String Splitting During Migration

def migrate(transaction_hash , blockchain, multiple_tx=False):

value = retrieve (transaction_hash)

new_hashes = store(value, blockchain, multiple_tx=multiple_tx)

handle potential encryption —> store salt & key in DB for the new
transaction as well

_, salt, key, _, _ = database.find_transaction_information (

transaction_hash)
for i in range(len(new_hashes)):
database.add_encryption_info (new_hashes[i], salt, key)
return new_hashes

Furthermore, since the transaction size limits for different BCs are different, meaning that
e.g., the data may have been sufficiently small to be stored using one transaction on the
original BC, but requires multiple transactions on the new BC, migrate must take care
to now add encryption information (salt and key) to all of the potentially numerous
transactions created on the BC the data is migrated to. As such, when receiving the
array of new hashes from store (shown in Listing 4.16 on line 3), a loop must now be
used to modify the database entires (lines 6 and 7).

DN

00 N O Uk W

0O Ui Wi

4.3. IMPLEMENTATION 29

4.3.4 Error Handling Feature

First, Listing 4.17 shows an example of how custom errors have been implemented in
Bifrost. A separate file (custom_errors/custom_errors.py) has been created to house
them separately from the rest of the code.

Listing 4.17: Custom Error Implementation

error_messages = {
CustomErrors .BCNOT_FOUND_ERROR: ”\tBlockchainNotFoundError: The
specified Blockchain has not been found.”
}
#
class BlockchainNotFoundError (Exception):
def __init__(self, msg=error_messages|[CustomErrors.BCNOT_FOUND_ERROR] ,

kargs , kxkwargs):
super (). __init__ (msg, xargs, sxkwargs)

Lines 7 to 9 show how such a custom error is defined, by inheriting form the built-in
Exception type. The code is adapted from [58]. The constructor is set up such that it
uses a default error message, which is passed into the msg parameter. If no argument is
given when the error is actually raised within the code, the default message is used, if an
argument is given, e.g., the string “Error 123” then that is used as error message instead.

The default messages for the different custom errors are defined within the error_messages
object on line 1, such that the constructor on line 8 is kept more tidy. Note the use of an
enum (CustomErrors) to where each new custom error has to be defined initially.

Listing 4.18 then shows how the error handling setup looks like at the example of the
store API function, and how custom errors can be raised within the code.

Listing 4.18: Error Handling Scheme

def store(text, blockchain, pw=None, multiple_tx=False, redundancy=False):

try:
... perform store process
except BlockchainNotFoundError as error:
sys.tracebacklimit = 0
logging .error (error)
exit ()

except Exception as error:
treat any non—specified errors here
sys.tracebacklimit = 1000 +# default
logging . exception(error, exc_info=True)
exit ()

def __identify_blockchain (blockchain):
try:
adapter = Adapter[blockchain]
return adapter
except:
raise BlockchainNotFoundError

O O Ui W N+

11
12

60 CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

Line 4 shows how the error Handling for a specific error is set up. Note that the stack-
trace is essentially removed on line 5 to keep the display for the error message simple.
Furthermore, the logging.error option is chosen to display the error as it, in contrast
to the logging.exception option only outputs the string of the error message.

For each error that is known to potentially occur, such an except block may be written
to target it specifically. Here, since Bifrost in its current iteration does not actually
return a HTTP-response to its users, the error message is simply logged and the program
terminated (line 7).

To ensure that errors that are not targeted specifically such as the BlockchainNot-
FoundError on line 4, a generic except clause is defined on line 8 that will catch them.
There, the stack-trace has not been shortened, since it is not clear which error occurred,
hence the full output of the trace is desirable. To facilitate this, logging.exception is
used here.

Finally, __identify_blockchain on line 14 is a helper-function called within the try
block of the store function (line 2). If anything within that try block raises an error it
will either be caught by an error-specific except clause or by the generic one. In the case
of the helper-function, it uses a try-except scheme itself to detect invalid blockchain
identifiers and ultimately raise the error (line 19), although errors may also be raised
programmatically by other means, e.g., by checking for conditions in an if statement.

4.3.5 Redundancy Feature

The code showing how redundancy is implemented is shown in Listing 4.19. As discussed
in the design section about the redundancy feature (Section 4.2.4), the feature is imple-
mented solely within the store function of the API. Note that only those parts of the
store functions are shown here that pertain to the redundancy feature.

Listing 4.19: Redundancy Implementation

def store(text, blockchain, pw=None, multiple_tx=False, redundancy=False):
adapter = Adapter[blockchain]
transaction_hashes , salt, key = adapter.store_wrapper(text, pw)

//
71

if redundancy:
transaction_hashes.append(store (text, Blockchain .POSTGRES, pw=pw,
multiple_tx=multiple_tx , redundancy=False) [0])
1L

77

return transaction_hashes

On line 1, the signature of the store function can be seen. The default value for redun-
dancy is set to False, meaning redundancy has to be explicitly enabled by users. Lines
7 and 8 show what happens if redundancy is enabled. The store function calls itself

4.3. IMPLEMENTATION 61

a second time after having run through the normal store procedure (line 3) for the BC
specified by the user.

The blockchain parameter is hard-coded to hold the enum value that specifies the Post-
greSQL adapter, whilst the redundancy parameter is set to False to prevent infinite
loops. The text, pw and multiple_tx parameters meanwhile are left as they were when
the function was initially called by the user, such that the data and encryption password

are the same for the redundancy transaction as for the initial transaction on the specified
BC.

This results in an entirely new store process being initiated and the data within text
being stored as a backup of sorts in Bifrosts database. Once that process has run its
course, it returns the resulting transaction hash to the original store process, where it is
integrated into the already present array of transaction hashes that resulted from storing
the data on the specified BC. The array holding these transaction hashes then is returned
to the user.

62

CHAPTER 4. EXTENDING AND STANDARDIZING BIFROST

Chapter 5

Evaluation

5.1 Evaluation Setup

The performance and size evaluations of the encryption feature described in this chapter
were done on a MacBook Pro (2017) with a QuadCore Intel Core i7 CPU at 2.8 GHz
and 16 GB of RAM. The extended version of Bifrost [47], which includes all the features

discussed in Chapter 3, was used to perform the operations.

Unless stated otherwise, randomly generated passwords of string length 10 were used,
with data being collected and aggregated over 30 runs for each of the evaluations. All
Evaluations were performed on a randomly generated strings of Byte sizes 1, 2, 4, 8, 16,

32, 64, 128, 256, 512, 1014, 2048 and 4096.

Note at this point, that any Byte sizes mentioned refer to the Byte size of only the sequence
of characters and not of the respective Python string objects. The Python string objects
store a number of additional information and thus consuming more memory [55].

For the performance evaluations, a system warm-up was done, which was achieved by
essentially running each evaluation twice in a directly subsequent fashion, with the first
pass being the warm-up and the second pass being the actual evaluation which led to the
data presented in this chapter.

5.2 Encryption Size Overhead

The encryption method chosen to implement the encryption feature leads to an increase
of the data size for the encrypted strings. Figure 5.1 shows the size of the strings before
and after encryption.

Notably, the increase in size after encryption gets more significant in absolute terms the
larger the initial string gets, whilst the smaller strings experience a more drastic relative
increase in size.

63

64 CHAPTER 5. EVALUATION

3P
B8 Unencrypted D
Encrypted
5000
4000 A
m
g
>
=)
£ 3000
n
o
>3
g
>3
© 2000
1000 1
o
! f ' I ! o gl Ae°
9900 A‘BQQ 7}00 ‘\\56 &0 ks 7
04 7 77 7, 77 . T . B

- 2 % % Xy /
1 2 4 8 16 32 64 128 256 512 1024 2048 4096
String Size [Bytes]

Figure 5.1: Bifrost Encryption Size Overhead

This increase in size is undesirable, as all of the supported BCs, with the exception of
Ethereum and perhaps IOTA impose prohibitively small transaction size limits, as shown
in Table 4.4 in Section 4.2.2. Under those restrictions all but a handful of BCs require
multiple transactions to be able to store a single encrypted character. Thus, in particular
the size-increase for the small string sizes is problematic, as for larger strings the use of
multiple transactions is required for most BCs anyway.

There is a potential way to mitigate this issue, by using so called “format-preserving
encryption” and it can quite easily be integrated into the existing encryption process.
Section 5.2.1 gives an overview over what format-preserving encryption is, as well as the
reasoning for why it was not selected for implementation.

5.2.1 Format-Preserving Encryption

As the name might suggest, format-preserving encryption produces ciphertext that main-
tains the format of the plaintext [7]. [7] give the example of encrypting a 16 digit credit
card number which results in a 16 digit ciphertext. This would lend itself nicely to the
scenario of Bifrost, where it is critical to maintain string sizes as small as possible due to
the transaction size limits.

There exists a Python library, “pyffx” [19], which provides an implementation of the
format-preserving, Feistel-based encryption mechanism discussed in [7]. It can be inte-

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17

18
19
20
21

5.2. ENCRYPTION SIZE OVERHEAD 65

grated without many changes into the existing encryption feature of the extended Bifrost
[47]. Listing 5.1 shows how that integration can be achieved.

Listing 5.1: Incorporating pyffx

class Adapter (ABC):

4.
@staticmethod
def encrypt(text, pw):
generate key_1 as in current scheme
pw = pw.encode ()
salt = os.urandom(16)
kdf = PBKDF2HMAC(algorithm=hashes.SHA256() ,
length=32,
salt=salt ,
iterations=100000,
backend=default_backend ())
key_1 = base64.urlsafe_b64encode (kdf.derive (pw))
use key_1 as password for pyffx scheme
alphabet_props = ascii_letters + whitespace + digits
e = pyffx.String ((key_14pw), alphabet=alphabet_props, length=len (
text))
encrypted = e.encrypt (text)
return encrypted, salt , key_1

The encryption scheme would remain unchanged up to and including the generation of
key_1, which is the “verification key” used for password verification. Once key_1 is gen-
erated, instead of deriving key_2 and building a fernet object, a pyffr object is generated
based on the concatenation of key_1 and the password, a given alphabet and the length
of the plaintext (line 17). This object then is used to encrypt the plaintext string in text.

Such a scheme maintains the security by requiring salt, pw and key_1 as input for the
pyffx object and thus an adversary that manages to get access to Bifrost’s database, hence
has access to the stored salt and key_1, still requires the password which is never stored.
This is in line with the way encryption is currently implemented in Bifrost, thus would
not require any changes to what information is stored and how it is stored and mechanics
such as password verification can be modified to remain functional.

The definition of the alphabet here includes all ASCII letters, possible whitespaces as well
as digits. This does not have to be the case, but it does at a minimum have to include all
characters used in the plaintext string within text.

There are two reasons why the decision was made against the addition of format-preserving
encryption to the extended Bifrost. First, format-preserving encryption does leak some
information about the plaintext through its cyphertext, such as the length of the plaintext
(since it is maintained in the cyphertext), as well as the alphabet (meaning the set of
characters used) of the plaintext, if the most minimal alphabet is used when building
the pyffx object on line 17. The most minimal alphabet being the exact alphabet of the
plaintext.

66 CHAPTER 5. EVALUATION

This does relate to the concept of “semantic security” which roughly speaking states that
a piece of cyphertext is semantically secure if an adversary can not learn any information
from it [56]. There is a caveat with the definition of security as it assumes the length of
the plaintext to be public knowledge [56]. Hence the fact that the pyffx encryption scheme
as shown above leaks the length of the plaintext is not seen as a violation of semantic
security.

This leaves the issue that an adversary might derive the alphabet of the plaintext from
the ciphertext and hence could conclude that e.g., a purely numerical cyphertext of length
16 is likely an encrypted credit card number. In the author’s view this can be mitigated
by simply using a generic alphabet as is done in Listing 5.1 on line 17. However, the
author has not been able to procure any sources for this and lacks himself the theoretical
background knowledge to make such a claim, hence this is to be seen as an educated guess.

The second problem with the pyffx approach is that the library itself (i) seems to no longer
be kept up to date (latest release on May 12, 2019) and (7i) has seen very little adoption,
based on its GitHub statistics [19]. This is in sharp contrast with the “cryptography”
library used for the current encryption scheme, which, at the time of writing this, has had
its latest update on February 16, 2021 and has seen much wider adoption [69].

It is that second issue that really prevents the adoption of the encryption scheme shown in
Listing 5.1, as in the author’s opinion the issue of semantic security can be circumvented
with the choice of a generic-enough alphabet. Should there at some point be a Python
library for format-preserving encryption that is kept up to date and sees wider adoption,
then in the author’s view a switch to a scheme as shown in Listing 5.1 is advisable.

5.3 Encryption Performance

This section serves the evaluation of how encryption affects the performance of storing a
piece of data on a BC. For all evaluations in this section that include making transactions,
Ganache [14] running in a Docker [18] container was used to simulate an Ethereum BC.

First, in Section 5.3.1 the impact of password choices on encryption performance are
explored. Note that here purely the performance of the encrypt method provided by the
generic adapter is measured, no transactions were made.

After that, Section 5.3.2 highlights the relative performance of storing data with and
without encryption. For this the simulated Ethereum BC that was described previously
was used to perform transactions on.

5.3.1 Performance Impact of Password Choice

Four different configurations were evaluated with respect to their performance, each on
strings of the same set of predefined lengths as discussed in Section 5.1. The configurations
were as follows:

5.3.

ENCRYPTION PERFORMANCE 67

. A set of 10 randomly generated passwords of a fixed length were evaluated as to

their average performance on a fixed set of strings (the same strings were used for
all passwords and for all runs). The results are displayed in Figure 5.2a

A set of 10 randomly generated passwords of random lengths between 4 and 20
characters were evaluated as to their average performance on a fixed set of strings.
The results are displayed in Figure 5.2b

A single password of fixed length was evaluated as to its average performance on a
fixed set of strings. The results are displayed in Figure 5.2¢

A single password of fixed length was evaluated as to its average performance on a
set of strings of default predefined lengths that was generated on a per-run basis.
The results are displayed in Figure 5.2d

All Figures of the individual configurations were plotted on the same Y-axis range to allow
for direct comparison. Figure 5.3 meanwhile display all of the four configurations side by

side,

195
190

185

Runtime [ms]
-
~ o
w o

-
~
o

165

160

155

195

190

185

Runtime [ms]
[T S
(=)} o ~ ~ o]
o v o (%] o

-
v
v

with outliers being shown, hence the somewhat drastic change on the Y-axis range.

195
[Average Fixed Length Password - Encryption Performance [Average Random Length Password - Encryption Performance

190

185

Runtime [ms]
[
~ (e}
w o

-
~
o

TR R

165

160

155

1 2 4 8 16 32 64 128 256 512 10242048 4096 1 2 4 8 16 32 64 128 256 512 102420484096
Input Size [Bytes] Input Size [Bytes]
(a) (b)
195
[Single Fixed Length Password - Encryption Performance Single Fixed Length Password,
190 Varying Strings - Encryption Performance

185

i
®
o

—
I
Runtime [ms]
S09
o %
I
T

=
o
v

—
o
o

-
v
v

1 2 4 8 16 32 64 128 256 512 10242048 4096 1 2 4 8 16 32 64 128 256 512 102420484096
Input Size [Bytes] Input Size [Bytes]
(c) (d)

Figure 5.2: Comparison of the Performance Impacts of different password configurations,
with configuration (a) being randomly chosen passwords of fixed lengths, (b) being ran-
domly chosen passwords of random length, (c) a single fixed length password and (d) also
a single fixed length password but with new strings to be encrypted for each run.

68 CHAPTER 5. EVALUATION

[Single Fixed Length Password o
Il Single Fixed Length Password, Varying Strings
4001 [Random Fixed Length Password (avg) 5
3 Random Random Length Password (avg)
3501
E
o 300+
£ °
c
=} (o)
e« 8
2501
8
200 1 . o §
LR R RN R
150 8

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Input Size [Bytes]

Figure 5.3: Bifrost Encryption Performance: Comparison of Password Configurations

A number of observations can be made when comparing the different configurations
amongst each other.

e The choice of the underlying strings does not seem to markedly impact performance,
even as they increase in size (comparing configurations 3. and 4.). This can also
be seen in Figure 5.4 in Section 5.3.2 when comparing the performance of store
processes with and without encryption.

e Disregarding outliers, the length of the passwords does not seem to have a significant
impact on encryption performance (comparing configurations 1. and 2.).

e Not disregarding outliers, varying the size of the passwords does lead to a marked
increase in the amount of outliers on the top end, leading to potentially significantly
slower encryption times (comparing configurations 1. and 2.), see Figure 5.3.

e Disregarding outliers, the choice of password across all four configurations leads to
remarkably consistent encryption performance.

This all means that encryption performance is essentially constant, regardless of the pass-
word configuration. Therefore, for the comparison of store processes with and without
encryption there is no need to account for different password configurations.

5.3. ENCRYPTION PERFORMANCE 69

5.3.2 Encryption Performance

In this section, the performance of storing data on a simulated Ethereum BC with and
without encryption is compared. As Section 5.3.1 has shown that the choice of password
is essentially inconsequential, the default evaluation setup described in Section 5.1 is used.

Figure 5.4 shows the comparative performance of storing data via Bifrost with and without
encryption. Figures 5.5a and 5.5b meanwhile show the performance of store processes only
with respectively without encryption.

3001
[Unencrypted

IFSSPEFSFSFELE:

Runtime [ms]
N
o
o

=
Ul
o

1001

L T

ok oo e g = T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Input Size [Bytes]

Figure 5.4: Bifrost Encryption Performance Comparison

The take-away of the performance analysis is that the cost for performing encryption is
more or less constant, regardless of the size of the string that is encrypted. The increase in
performance cost with larger string sizes is largely due to the an increase in performance
cost of the store action itself, rather than due to an increase in performance cost of
encrypting the data.

This is shown by the relatively consistent absolute distances between data points for the
process with and without encryption in Figure 5.4 across all sizes of the input strings.

70 CHAPTER 5. EVALUATION

N
©
o

3 Encrypted 95 3 Unencrypted

N

®

o
©
o

N
~
o

Runtime [ms]
N
o
o
Runtime [ms]
~ [o]
w o

: LITILTILL

1 2 4 8 16 32 64 128 256 512 102420484096 1 2 4 8 16 32 64 128 256 512 102420484096
Input Size [Bytes] Input Size [Bytes]
(a) (b)

Figure 5.5: Performance of the Bifrost store process with encryption in (a) and without
encryption in (b).

5.4 String Splitting Evaluation

The evaluation of the string splitting feature is done by showing a how information about
a split piece of data is stored in Bifrost’s database during a store action, how that data
is used during a retrieve action and how migrating a split data to a BC which has a
different transaction size limit works.

The example scenario is as follows:

1. A user wants to store a string of size 65 on a BC with a transaction size limit of 28
Bytes. The user allows Bifrést to perform multiple transactions by enabling string
splitting. Due to the transaction size limit a total of 3 transactions will be required
to perform the store operation.

2. The same user wants to retrieve the stored data some time later, which requires that
Bifrost reconstruct the entire string based on a single transaction hash as input.

3. Later, the user wishes for the data to also be stored on a different BC, triggering a
migration process. This BC has a transaction size limit of 40 Bytes. With this size
limit, the data will have to be split differently.

This scenario leads to a number of critical situations (i) splitting the string for a given size
limit, (7) reconstructing the entire string based on partial information and (%iz) performing
a migration onto a BC with a different transaction size limit.

For the sake of simplicity, in all three sub-scenarios a docker container [18] running
Ganache [14] was used to simulate an Ethereum BC. The different transaction size limits
of 28 respectively 40 Bytes do not reflect any limits imposed by Ethereum, but are super-
imposed by settings within Bifrost to artificially create different limits that will actually
be exceeded with the example input.

The following subsections (5.4.1, 5.4.2, 5.4.3) are each dedicated to one of the three sub-
scenarios enumerated above.

5.4. STRING SPLITTING EVALUATION 71

5.4.1 Evaluation of Splitting Feature for store

Let the string the user wants to store be “Lorem ipsum dolor sit amet, consectetur adip-
iscing elit volutpat.”. No encryption is requested by the user and the target BC has a
transaction size limit of 28 Bytes.

After a successful store operation, the three new entries have been added to Bifrost’s
database. Table 5.1 shows those new entries.

Table 5.1: Bifrost database entries after store process.

hash ‘ blockchain_id ‘ issued_at ‘ salt ‘ key ‘ hash_next
0x79619f0c63228bb Oxaeefl72d4f4f2d1
4bb8bcc93266d0078 1 2021-03-21 10d8cadfcab6b858b
588785342bbff03e0 14:37:47.198485 61508eeceaab07618e
783e079bde34157 b33df5be006b30a
Oxaeefl72d4f4f2d1 Oxec222{f24808219
10d8cadfcab6b858b 1 2021-03-21 ade21f42faa2508ab
6£508eeceaab07618e 14:37:47.205058 5345373dad9fcad4c
b33df5be006b30a f1ffa68e439f57d
Oxec222{124808219 0x79619f0c63228bb
ade21f42faa2508ab 1 2021-03-21 4bb8bcc93266d0078
5345373dad9fcad4c 14:37:47.205903 588785342bbff03e0
f1ffa68e439f57d 783e079bde34157

The columns salt and key are empty, as no encryption was performed. Note how the
hash_next entry for a given entry equals the hash of the subsequent transaction, with
the last one’s hash_next equaling the hash of the first transaction, resulting in a closed
loop of “pointers”.

The timestamps in issued_at relate to the point in time in which the transaction hash
was returned to Bifrost’s Ethereum adapter, hence also indicate the order in which they
were performed. The small gaps between the timestamps is due to the simulated Ethereum
BC running locally, hence processing transactions quickly.

5.4.2 Evaluation of Splitting Feature for retrieve

Retrieving the data can be initiated with a retrieve request by the user, in which the
only input needed to identify the set of transactions, into which the data was split, is any
single one of the transaction hashes produced in Section 5.4.1.

Assuming the user supplies e.g., the second hash as argument, Bifrost will use the closed
loop of pointers implemented via the hash and hash_next entries in the database to
identify all the involved transactions and retrieve the data stored therein.

72 CHAPTER 5. EVALUATION

Table 5.2: Unordered retrieved data, based on second transaction hash as input.

hash issued_at data
Oxaeef172d4f4f2d110d8cadfc 9021-03.21
ab6b858b6£508eecaab07618eb 14:37- 4_7 2(_)5058 consectetur adipiscing elit
33df5be006b30a D
Oxec222{t24808219ade2142f 9021-03-21
aa2508a55345373dad9fcad4ct 14:37-47 205903 volutpat.
1ffa68e439f57d D
0x79619f0c63228bb4bb8bcc93 9021-03-91
266d0078588785342bbff03e07 14:37-47 198485 Lorem ipsum dolor sit amet,
83e079bde34157 o

Using the data stored in the database which has been shown in Table 5.1, the retrieved
data takes the form shown in Table 5.2. Notice that it is not yet in its correct order, but
with the help of the timestamps, the order can easily be reinstated to produce the initially
stored text of “Lorem ipsum dolor sit amet, consectetur adipiscing elit volutpat.”.

5.4.3 Evaluation of Splitting Feature for migrate

The migrate action internally consists of a retrieve process followed by a store process.
Thus it can be initiated by the user by supplying any of the three transaction hashes. The
way the data is returned has been discussed in Section 5.4.2. After ordering the data is
in its initial form.

The subsequent store action then happens again on the simulated Ethereum BC but with
a different superimposed transaction size limit of 40 Bytes. Given the 65 Byte length of
the initial text, only two transactions are required this time around. After a successful
migrate action the database thus holds two new entries. They can be seen in Table 5.3.

Table 5.3: Bifrost database entries after migrate process.

hash ‘ blockchain_id ‘ issued_at ‘ salt ‘ key ‘ hash_next

0x36841aa03bc8c6b 0x3901c881c6df818
badc4d1f4b30aadcd 2021-03-21 delad68043b1l4bacO
303fcf2c67233b6c0 15:38:41.447688 29957e15b7541d6e9
635695084cd0328 cbeb8ac9chH9b2a
0x3901¢c881c6df818 0x36841aa03bc8c6b
delad68043b14bac0 2021-03-21 badc4d1f4b30aa9cd
29957e15b7541d6e9 15:38:41.454191 303fcf2c¢67233b6c0
cbeb8ac9chb9b2a 635695084cd0328

5.5. SECURE PRIVATE KEY MANAGEMENT 73

Should a retrieve action be requested for the newly migrated data, the data splits would
read as “Lorem ipsum dolor sit amet, consectetur ” and “adipiscing elit volutpat.”, both
adhering to the new size limit of 40 Bytes.

5.5 Secure Private Key Management

Regarding the topic of the private keys, the research conducted during this thesis has found
a number of ways how such private keys might be securely stored. Approaches range from
key protection servers [10] where a part of the private key is stored on a separate server
where it is protected by a password, over biometric solutions [3] to smart-card based
security using physically unclonable functions [65].

What all of these approaches have in common is that they rely on the active provision of a
secret or unfalsifiable property (such as in the case of e.g., biometrics based approaches).
For the sake of simplicity, the term “secret” shall cover both secrets and unfalsifiable
properties such as fingerprints for the rest of this discussion.

The issue with these approaches is that they rely on (i) the secret being kept separate
from the secured key, meaning should an adversary get access to the secured key they
would still need to somehow procure the secret to access the private key and (i) the
secret being provided actively.

This poses a problem in the case of Bifrost in its current form, where Bifrost itself would
have to actively provide the secret to unlock its secured private keys, hence would have to
store both the secret and the secured private keys, thus rendering any such approach to
secure private key storage obsolete as an adversary with access to Bifrost has immediate
access to the secret as well.

Attempting to secure the secret itself requires the application of yet another secure key
storage approach where that secret also has to be kept on Bifrost, thus achieving no
progress in making the system more secure.

Furthermore, Bifrést cannot rely on secrets being provided actively by other parties, which
would be the users of Bifrost, as a single set of credentials is used to make transactions
on behalf of all users, hence the secret would have to be universally known for all users,
making it inherently non-secret.

Multisignature schemes [9], where a transaction needs to be signed by multiple parties,
provide additional security by requiring a valid signature from either all or a pre-defined
number of all signatories to allow for transactions being made from a given address. This
is also not applicable to Bifrost’s current private key setup, as signatories would need to
decide in an automated fashion whether or not to sign a given requested transaction.

However, there is no real way to evaluate whether or not a given transaction that is
requested through Bifrost is legitimate, as users simply send their requests and have
Bifrost use its own addresses to perform the transactions from, meaning that ultimately
all requested transaction using any of Bifrost’s addresses are legitimate.

74 CHAPTER 5. EVALUATION

Thus an adversary with access to Bifrost automatically has access to all of Bifrost’s ad-
dresses (Bifrost does have to store these locally, else it cannot facilitate any transactions),
and thus will be able to get valid signatures from the required signatories.

There may potentially be a multisignature setup where the signatories decide whether
or not to sign a transaction based on the type of transaction at hand. Should it be a
transaction that simply stores data, it is automatically signed, should it be a transaction
that aims to transfer funds to a different address, then it is automatically rejected.

This would work, as Bifrost is not intended for facilitating anything but interoperability
in terms of arbitrary data storage. However, it still would not prevent an adversary from
completely draining the funds on Bifrost’s addresses by spamming data-storage transac-
tions without being accountable for it.

This is due to the fact that even if Bifrost does some sort of accounting for performed
transactions, since the addresses are known to an adversary with access to Bifrost, he
could circumvent Bifrost entirely by sending requests to the signatories directly. Security
measures such as Cross-Origin Ressource Sharing (CORS) policies on the side of the
signatories could then be used to restrict where requests are accepted from [39].

The feasibility of such a setup, which (i) is compatible with all supported BCs, (7i)
properly blocks requests from undesired locations and (i) does not accidentally, through
its complexity, introduce additional security risks, has not been verified in this thesis due
to time-restrictions.

Existing Python libraries such as “pymusig” [72] or “multi-party-schnorr” [68] which both
implement the “Schnorr signature scheme”, or “multisig-hmac” [66] which does not declare
the underlying signature scheme, do in the author’s view not show the necessary degree
of maturity or upkeep to be used for such security critical aspect of Bifrost, but may
potentially serve as inspiration for a bespoke multisignature solution, specifically designed
for Bifrost, should this be the avenue pursued in future work.

A different solution would be the introduction of user-specific credentials, meaning Bifrost
would require users to register with a password and for each user creates a set of credentials
for each supported BC in an automated fashion. The respective private keys would then
be encrypted with the user’s password, which he then would have to supply for each
transaction such that the private keys can be used.

This would solve both the issue the active provision of the secret, as well as keeping the
secret separate from the secured private keys as discussed earlier in this Section. How-
ever, it would require an extensive rework of Bifrost’s architecture in terms of credential
handling, as well as the addition for user registration, user account handling (e.g., compli-
ance with General Data Protection Regulation (GDPR) [62]) and automated credentials
generation, which put this solution outside of what is feasible within the timeframe of
the thesis.

5.6. DISCUSSION 75

5.6 Discussion

To summarize, the extension of Bifrost has produced benefits in a number of areas, ranging
from flexibility to security, whilst maintaining the original functionality and keeping the
impact on the original architecture as minimal as possible.

Flezibility has been enhanced with the introduction of the string splitting feature, as
users now have the capability of storing data split over multiple transactions, hence no
longer being restricted by the respective BC’s transaction data size limit. This allows for
a potentially larger set of use-cases for which Bifrost is now usable.

Standardization efforts have been undertaken to make interactions with Bifrost more
structured. Although ultimately, there was no existing standard to directly rely on, the
proposed format has been set up to not only facilitate interactions with Bifrost as it is
now, but also with similar APIs and potential future versions of Bifrost.

For example, with the format’s support for specifying the type and fields of the data that
are sent with the requests, Bifrost could set up custom data types which it expects to be
used in requests. Received requests could then have their data’s type specification and
fields compared against one or multiple data types that are allowed for a given type of
request. This would allow for (i) easy validation of the completeness of the received data
as well as for (i) the distinction of potentially different use-cases based on the received
data types. Ultimately, this standard allows any API to use customisable data types as
inputs, whilst still remaining within the same standard.

In terms of security there are two aspects that Bifrost has to deal with, the security of
the private keys, as well as the security of the user’s data. Unfortunately there has not
been any tangible progress regarding the former during this thesis, besides reaffirming
the conclusions drawn by Timo Hegnauer in his Master thesis when implementing the
Bifrost prototye, by providing a more thorough examination of available options. Both
the introduction of a multisignature scheme or the use of user-specific credentials tied to
user-accounts, require changes, that are not feasible within the available timeframe.

However, the security concerning user’s data has been improved significantly through the
introduction of the data encryption feature, which allows users to have their data en-
crypted with a password of their choice on a per-request basis. The performance impact
of the encryption, though noticable, in the author’s opinion is still within reason. Impor-
tantly, it is more or less constant regardless of both the length of the user’s password as
well as the length of the data that is to be encrypted. As such, the performance impact
of encryption is expected be constant across all use-cases and hence, does not introduce
an unwanted specialization of Bifrost towards certain scenarios.

The fact that encryption leads to increased data sizes must be mentioned here as a draw-
back, as it prevents even minuscule data to be stored with a single transaction for a
large number of supported BCs, once encrypted. For this, a solution in the form of
format-preserving encryption has been explored both in theory and implementation and
is easily feasible but from the author’s point of view not currently recommended due to
the out-of-date library which implements it.

76 CHAPTER 5. EVALUATION

Until a more established library for format-preserving encryption is available, the size-
impact of data encryption significantly hampers use-cases where very small amounts of
private data are to be stored. Here, an informed choice of the BC on which the data
is stored would be beneficial, since BCs such as e.g., Ethereum have sufficiently large
transaction data size limits as to not require splitting for even data in the lower two-digit
Kilobyte range, whereas Stellar will require a minimum of four transaction for even the
most minuscule amount of encrypted data. As such, Bifrést could include use-case specific
BC recommendations in its documentation for when it sees its full release.

Finally, the robustness of Bifrost has been improved by introducing a form of generic
error handling and via the introduction of the redundancy feature, which creates an opt-
in backup of data which users store via Bifrost.

Chapter 6

Summary and Future Work

Ever since the introduction of the blockchain (BC) technology in late 2008, when the
Bitcoin white paper was published under the pseudonym “Satoshi Nakamoto”, both the
number of BC implementations, as well as the scopes of those implementations keep
growing. At the time of writing this summary, coinmarketcap [13] lists close to 9’000
cryptocurrencies, which nicely illustrates the growth the BC technology has experienced.

With both the number of BC implementations and the number of scopes and visions for
what might be achieved with the BC technology increasing, the result ultimately is a
large amount of fundamentally incompatible BC platforms that cannot natively exchange
their respective currencies or the data they store [48]. Thus, the need for interoperability
solutions is strong.

Bifrost is one such interoperability solution, which takes a novel approach to facilitating
data exchanges between different BC platforms by implementing a notary scheme and
presenting an API which acts as a layer of absctraction between its users and the complex
implementations of the underlying BCs which it connects to [48]. Thus, the users are
presented with an easy to use, flexible and modular interface that is common for all the
supported BCs [48].

The prototype implementation had potential for improvements in a number of areas by
adding features or updating the existing code. During the duration of this thesis, the
flexibility of Bifrost was increased by introducing data splitting which allows user to store
data that exceeds the given BCs transaction data size limit by dividing it up onto multiple
transactions and implementing the necessary tracking mechanism to reassemble it once
needed.

Furthermore, the security of user data was strengthened via the introduction of an en-
cryption scheme, that enables users to have their data encrypted on a per-request basis.
This is critical, due to the immutable nature of BCs, where any private information, once
stored on a BC, can neither be changed nor removed. Having the option to encrypt the
data before storing it, thus, opens up new use-cases for which Bifrést can be used.

Performance evaluations have shown that the impact of encryption data, whilst noticeable,
remains constant, regardless of the length of the password chosen by the user and the size

7

78 CHAPTER 6. SUMMARY AND FUTURE WORK

of the data which needs to be encrypted. Whilst the way encryption impacts performance
can be seen as positive, the way it affects data size must be seen as a drawback. Data
size increases significantly, in particular for very small data, which on most BCs can no
longer be stored with a single transaction, once encrypted.

An exploratory alternative implementation using so called “format-preserving encryption”
has been tested for feasibility and has shown that that type of encryption can easily be
incorporated into the existing encryption feature, whilst not affecting data size at all,
hence solving this particular issue. However, the author cautions against the use of this
encryption until a more mature library implementation is present.

Additionally, two features, namely generic error handling and redundancy were imple-
mented to increase the robustness of Bifrost in case of errors and data loss, which can
also be seen as an improvement to ease of use.

Two more research-intensive tasks have been performed alongside that, with the first ex-
ploring standardized interaction formats for interoperability APIs such as Bifrost. The
research done has found numerous standardization efforts, but ultimately none were di-
rectly applicable to a notary scheme, thus the findings simply served as inspiration for
the creation of a JSON scheme that can be used to facilitate interactions with Bifrést and
that is generic enough to be applicable to similar interoperability solutions. The resulting
JSON scheme introduces a generic way to transmit data of arbitrary types, thus allowing
Bifrost to potentially further enhance its flexibility by allowing for the storage of data
other than generic strings.

The second research topic was the investigation of secure private key management schemes
which are applicable to Bifrost’ s non-user specific credentials setup. Ultimately, that
investigation ended up not providing any immediately actionable solutions, but rather
resulted in two conceptual approaches, one of which may be applied to the current cre-
dentials setup, with the other one requiring a complete redesign of how private keys are
managed.

THus, both approaches pose important options for future work with regard to the Bifrost’s
private key management. Furthermore, an actual incorporation of the JSON format into
a future version of Bifrost, that is deployed as a server with its API open to receiving
HTTP-requests, also offers opportunities for future work.

Bibliography

1]

2]

[12]

Andreas M. Antonopoulos. Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly Media, Inc., 2017.

ARK Ecosystem SCIC. ARK Ecosystem Whitepaper, 2019. https://ark.io/
Whitepaper.pdf, Last visit January 12, 2021.

Mehmet Aydar, Salih Cemil Cetin, Serkan Ayvaz, and Betul Aygun. Private Key
Encryption and Recovery in Blockchain. arXiv preprint arXiw:1907.04156, 2, 2019.

Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, An-
drew Miller, Andrew Poelstra, Jorge Timén, and Pieter Wuille. Enabling Blockchain
Innovations with Pegged Sidechains. 2014.

Imran Bashir. Mastering Blockchain. Packt Publishing Ltd, 2017.

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. A Survey
on Blockchain Interoperability: Past, Present, and Future Trends. arXww preprint
arXiv:2005.14282, 2, 2020.

Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX Mode of Operation for
Format-Preserving Encryption. NIST submission, 20:19, 2010.

Marianna Belotti, Nikola Bozi¢, Guy Pujolle, and Stefano Secci. A Vademecum on
Blockchain Technologies: When, Which, and How. IEEE Communications Surveys
€ Tutorials, 21(4):3796-3838, 2019.

Dan Boneh, Manu Drijvers, and Gregory Neven. Compact Multi-Signatures for
Smaller Blockchains. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 435-464. Springer, 2018.

Ernie Brickell and Matthew D. Wood. Secure storage of private keys, September 27
2005. US Patent 6,950,523.

Vitalik Buterin. Slasher: A Punitive Proof-of-stake Algo-
rithm, January 2014. https://blog.ethereum.org/2014/01/15/

slasher-a-punitive-proof-of-stake-algorithm/, Last visit February 2,
2021.

Vitalik Buterin. Chain Interoperability, September 2016. https://allquantor.at/
blockchainbib/pdf/vitalik2016chain.pdf, Last visit November 2, 2020.

79

80

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

CoinMarketCap. Cryptocurrency Prices, Charts and Market Capitalizations, 20009.
https://coinmarketcap.com, Last visit March 29, 2021.

ConsenSys Software Inc. Truffle Suite - Ganache, 2021. https://www.
trufflesuite.com/ganache, Last visit March 16, 2021.

Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh Kalyanaraman, and
Nachiappan. Blockchain Technology: Beyond Bitcoin. Applied Innovation Review,
2(6-10):71, June 2016.

Advait Deshpande, Katherine Stewart, Louise Lepetit, and Salil Gunashekar.
Distributed Ledger Technologies/Blockchain: Challenges, Opportunities and the
Prospects for Standards. Ouverview Report The British Standards Institution (BSI),
40:40, 2017.

Digital Asset Holdings, LLC. Daml Documentation, 2021. https://docs.daml.
com/index.html, Last visit February 23, 2021.

Docker. Docker Homepage, 2021. https://www.docker.com/, Last visit March 16,
2021.

Johannes Dollinger. Python Library “pyftx”, 2019. https://pypi.org/project/
pyffx/, Last visit March 16, 2021.

Ethereum. BTC Relay Documentation, 2016. https://btc-relay.readthedocs.
io/en/latest/, Last visit January 12, 2021.

Praveen Gauravaram. Security Analysis of Salt || Password Hashes. In 2012 Inter-

national Conference on Advanced Computer Science Applications and Technologies
(ACSAT), pages 25-30. IEEE, November 2012.

Arthur Gervais, Ghassan O. Karame, Karl Wiist, Vasileios Glykantzis, Hubert Ritz-
dorf, and Srdjan Capkun. On the Security and Performance of Proof of Work
Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 3—16, Vienna, Austria, 2016. Association for
Computing Machinery.

Vincent Gramoli and Mark Staples. Blockchain Standard: Can We Reach Consensus?
IEEE Communications Standards Magazine, 2(3):16-21, 2018.

Halon Security AB. Halon Scripting Language, 2020. https://docs.halon.io/hsl/
about.html, Last visit February 23, 2021.

Thomas Hardjono, Alexander Lipton, and Alex Pentland. Toward an Interoperability
Architecture for Blockchain Autonomous Systems. IEEE Transactions on Engineer-
ing Management, 67(4):1298-1309, 2019.

Herdius GmbH. Herdius Next Generation Decentralized Blockchain Financial In-
frastructure, 2017. https://herdius.com/whitepaper/Herdius_Whitepaper_1.1.
pdf, Last visit January 12, 2021.

BIBLIOGRAPHY 81

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

David Hyland-Wood and Shahan Khatchadourian. A Future History of International
Blockchain Standards. The Journal of the British Blockchain Association, 1(1):3724,
2018.

Interledger Project. Interledger Architecture, 2021. https://interledger.org/
rfcs/0001-interledger-architecture/, Last visit January 12, 2021.

Interledger Project. Interledger Protocol V4 (ILPv4), 2021. https://interledger.
org/rfcs/0027-interledger-protocol-4/, Last visit February 23, 2021.

Hai Jin, Xiaohai Dai, and Jiang Xiao. Towards a Novel Architecture for Enabling
Interoperability Amongst Multiple Blockchains. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), pages 1203-1211. IEEE,
2018.

Will Kenton. Hyperledger Fabric, 2020. https://www.investopedia.com/terms/
h/hyperledger-fabric.asp, Last visit February 2, 2021.

KomodoPlatform.com. Komodo Whitepaper, 2018. https://whitepaper.io/
document/34/komodo-whitepaper, Last visit March 9, 2021.

KomodoPlatform.com. How To Become a Liquidity Provider on Atom-
icDEX, 2021. https://developers.komodoplatform.com/basic-docs/
atomicdex/atomicdex-tutorials/how-to-become-a-liquidity-provider.
html#requirements, Last visit January 11, 2021.

Jae Kwon and Ethan Buchman. Cosmos Whitepaper, 2021. https://cosmos.
network/resources/whitepaper, Last visit January 12, 2021.

Sergio Demian Lerner. RSK Bitcoin Powered Smart Contracts White Paper
Overview, 2019. https://www.rsk.co/Whitepapers/RSK-White-Paper-Updated.
pdf, Last visit January 12, 2021.

Noam Levenson. Why Ark Deserves Your Attention, 2017. https://medium.com/

hackernoon/why-ark-deserves-your-attention-c57acd51846a, Last visit Jan-
uary 12, 2021.

Iuon-Chang Lin and Tzu-Chun Liao. A Survey of Blockchain Security Issues and
Challenges. IJ Network Security, 19(5):653-659, 2017.

Bertrand Meyer. Object-Oriented Software Construction, volume 2. Prentice Hall
PTR, 1997.

Mozilla. Cross-Origin Resource Sharing (CORS), 2021. https://developer.
mozilla.org/en-US/docs/Web/HTTP/CORS, Last visit March 30, 2021.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009. https:
//bitcoin.org/bitcoin.pdf, Last visit November 24, 2020.

Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain. Business
& Information Systems Engineering, 59(3):183-187, 2017.

82

[42]

[43]

[44]

[45]

[46]

[47]

[48]

BIBLIOGRAPHY

Python Software Foundation. Built-in Types: Text Sequence Type, 2020. https://
docs.python.org/3.7/1library/stdtypes.html#text-sequence-type-str, Last
visit February 28, 2021.

Python Software Foundation. Copy - Shallow and Deep Copy Operations, 2021.
https://docs.python.org/3/library/copy.html, Last visit February 16, 2021.

Kaihua Qin and Arthur Gervais. An Overview of Blockchain Scalability, Interop-
erability and Sustainability. Hochschule Luzern Imperial College London Liquidity
Network, 2018.

Matei Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Network. In Pro-
ceedings First International Conference on Peer-to-Peer Computing, pages 99-100,
Linkoping, Sweden, 2001. IEEE.

Sara Rouhani and Ralph Deters. Performance Analysis of Ethereum Transactions in
Private Blockchain. In 2017 8th IEEE International Conference on Software Engi-
neering and Service Science (ICSESS), pages 70-74. IEEE, 2017.

Eder John Scheid. Bifrost Gitlab Repository, 2019. https://gitlab.ifi.uzh.ch/
scheid/bifrost, Last visit January 12, 2021.

Eder John Scheid, Timo Hegnauer, Bruno Rodrigues, and Burkhard Stiller. Bifrost:
a Modular Blockchain Interoperability API. In IEEE Conference on Local Computer
Networks (LCN 2019), pages 332-339, Osnabriick, Germany, October 2019. IEEE.

Eder John Scheid, Daniel Lakic, Bruno B. Rodrigues, and Burkhard Stiller. PleBeusS:
a Policy-based Blockchain Selection Framework. In NOMS 2020-2020 IEEE/IFIP

Network Operations and Management Symposium, pages 1-8, Budapest, Hungary,
2020. IEEE.

Stefan Schulte, Marten Sigwart, Philipp Frauenthaler, and Michael Borkowski. To-
wards Blockchain Interoperability. In International Conference on Business Process
Management, pages 3—10. Springer, 2019.

Gustavus J. Simmons. Symmetric and Asymmetric Encryption. ACM Computing
Surveys (CSUR), 11(4):305-330, December 1979.

Matthew Spoke and Nuco Engineering Team. Aion White Paper, 2017. https:
//whitepaper.io/document/31/aion-whitepaper, Last visit January 12, 2021.

Manu Sporny and Dave Longley. The Web Ledger Protocol, 2019. https://w3c.
github.io/web-ledger/, Last visit February 23, 2021.

Manu Sporny and Dave Longley. The Web Ledger Protocol - Examples, 2019. https:
//w3c.github.io/web-ledger/#storing, Last visit February 23, 2021.

Stack Exchange Inc. Accepted Answer to Stackoverflow: "Python : Get size of string
in bytes”, 2015. https://stackoverflow.com/a/30686735, Last visit March 15,
2021.

BIBLIOGRAPHY 83

[56]

[62]

[63]

[64]

[66]

[67]

Stack Exchange Inc. Cryptography Stack Exchange:
"Why is ‘semantically secure’ important for cryptosystems?”,
2015. https://crypto.stackexchange.com/questions/30130/

why-is-semantically-secure-important-for-cryptosystems/30138#30138,
Last visit March 16, 2021.

Stack Exchange Inc. Python: Get Size of String in
Bytes, 2015. https://stackoverflow.com/questions/30686701/
python-get-size-of-string-in-bytes, Last visit February 28, 2021.

Stack Exchange Inc. Default Message in Custom Exception - Python, 2019. https:
//stackoverflow.com/a/56967197, Last visit March 31, 2021.

Kevin Stine and Quynh Dang. Encryption Basics. Journal of AHIMA, 82(5):44-46,
2011.

Melanie Swan. Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc.,
2015.

The Block. Ethereum Miners Are Increasing The Network’s Gas
Limit by 25%, 2020. https://www.theblockcrypto.com/linked/69053/
ethereum-miners-vote-for-25-gas-limit-increase, Last visit February
28, 2021.

The European Parliament and the Council of the European Union. General Data Pro-
tection Regulation, 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/7uri=CELEX:32016R0679, Last visit March 30, 2021.

Stefan Thomas and Evan Schwartz. Interledger White Paper, 2014. https:
//interledger.org/interledger.pdf, Last visit March 9, 2021.

Treat, David and Giordano, Giuseppe and Schiatti, Luca and
Borne-Pons, Hugo. Connecting Ecosystems: Blockchain Inte-
gration, 2018. https://www.accenture.com/_acnmedia/PDF-88/
Accenture-20180514-Blockchain-Interoperability-P0OV.pdf, Last visit March
2, 2021.

Pim Tuyls, Boris Skoric, and Tom Kevenaar. Security with Noisy Data: on Private
Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer Science & Business
Media, 2007.

User “AmalieDue” on GitHub.com. Python Library “multisig-hmac” Repository, 2020.
https://github.com/AmalieDue/py-multisig-hmac, Last visit March 30, 2021.

User “MintDice” on Medium.com. A Guide to Ark Cryptocurrency,
2019. https://medium.com/bitcoin-news-today-gambling-news/
a-guide-to-ark-cryptocurrency-505dc8bdc7b6, Last visit January 12, 2021.

User “namuyan” on GitHub.com. Multi Party Schnorr Signatures (python extension),
2020. https://github.com/namuyan/multi-party-schnorr, Last visit March 30,
2021.

84

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[80]

[81]

BIBLIOGRAPHY

User “pyca” on GitHub.com. Cryptography Library Documentation, 2021. https:
//cryptography.io/en/latest/, Last visit February 16, 2021.

User “pyca” on GitHub.com. Cryptography Library Documentation - Example for
Encryption with Password, 2021. https://cryptography.io/en/latest/fernet.
html#using-passwords-with-fernet, Last visit February 16, 2021.

User “pyca” on GitHub.com. Python Cryptography Library, 2021. https://pypi.
org/project/cryptography/, Last visit February 16, 2021.

User “rage-proof” on PyPl.org. MuSig multisignatures for Python, 2020. https:
//pypi.org/project/pymusig/, Last visit March 30, 2021.

Various Community Contributors. ERC | Ethereum Improvement Proposals, 2021.
https://eips.ethereum.org/erc, Last visit February 23, 2021.

and Ethereum: A Brief Overview. In 2018 17th international symposium infoteh-
jahorina (infoteh), pages 1-6, East Sarajevo, Bosnia and Herzegovina, 2018. IEEE.

Wanchain Foundation LTD. Building Super Financial Markets for
the New Digital Economy, 2017. https://wanchain.org/files/
Wanchain-Whitepaper-EN-version.pdf, Last visit January 11, 2021.

Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang,
Yonggang Wen, and Dong In Kim. A Survey on Consensus Mechanisms and Mining
Strategy Management in Blockchain Networks. IEEE Access, 7:22328-22370, 2019.

Web 3 Foundation. A Scalable, Interoperable & Secure Network Protocol for the
Next Web, 2021. https://polkadot.network/technology/, Last visit January 12,
2021.

Ingo Weber, Vincent Gramoli, Alex Ponomarev, Mark Staples, Ralph Holz, An Binh
Tran, and Paul Rimba. On Availability for Blockchain-Based Systems. In 2017 IEEE
36th Symposium on Reliable Distributed Systems (SRDS), pages 6473, Hong Kong,
China, 2017. IEEE.

Gavin Wood. Polkadot: Vision for a Heterogeneous Multi-Chain Framework, 2016.
https://polkadot.network/PolkaDotPaper.pdf, Last visit March 10, 2021.

Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain Technology
Overview. arXiv preprint arXiw:1906.11078, 1, 2019.

Muneer Bani Yassein, Shadi Aljawarneh, Ethar Qawasmeh, Wail Mardini, and Yaser
Khamayseh. Comprehensive Study of Symmetric Key and Asymmetric Key Encryp-
tion Algorithms. In 2017 International Conference on Engineering and Technology
(ICET), pages 1-7, Antalya, Turkey, 2017. IEEE.

Abbreviations

API
BC
CORS
GDPR
KDF
P2P
PoW
PoS
RPC
SC
TX

Application Programming Interface
Blockchain

Cross-Origin Resource Sharing
General Data Protection Regulation
Key Derivation Function
Peer-to-Peer

Proof-of-Work

Proof-of-Stake

Remote Procedure Call

Smart Contract

Transaction

85

86

ABBREVIATONS

List of Figures

2.1
2.2
2.3
24

2.5

4.1
4.2
4.3

4.4

5.1

5.2

5.3
5.4
2.9

Chain of blocks [41] 4
Transaction processing stages. Adapted from [8] 5
Blockchain with forks [1]. oo 6
Using the Bifrost APT [48] 11
Bifrost architecture and store function [48] L. 12
Bifrost adapter architecture, based on [48] and code insights 28
Comparison of encryption scenarios. Left side based on [51] 34
Bifrést encryption schemeo 0oL 37
Bifrost Data Split Tracking 41
Bifrost Encryption Size Overhead 64
Comparison of the Performance Impacts of different password configura-

tions, with configuration (a) being randomly chosen passwords of fixed
lengths, (b) being randomly chosen passwords of random length, (c) a sin-
gle fixed length password and (d) also a single fixed length password but
with new strings to be encrypted for each run. 67

Bifrost Encryption Performance: Comparison of Password Configurations . 68
Bifrost Encryption Performance Comparison 69

Performance of the Bifrost store process with encryption in (a) and with-
out encryptionin (b). 70

87

88

LIST OF FIGURES

List of Tables

3.1

4.1

4.2

4.3

4.4

5.1

5.2

5.3

Comparison of Related Work 19
Status Code and meaning per API function 27
Bifrost adapter class properties structure. Based on code insights 31
Bifrost adapter class methods structure. Based on code insights 32
Transaction Size Limit for Supported Blockchains. Adapted from [48] . . . 38
Bifrost database entries after store process. 71
Unordered retrieved data, based on second transaction hash as input. . . . 72
Bifrost database entries after migrate process. 72

89

90

LIST OF TABLES

Appendix A

Installation Guidelines

The installation guidelines in their entirety as seen here can also be found in the README . md
of the Bifrost GitLab project [47].

A.1 Setup

Python 3.7.1 (also tested with 3.8.3) was used for this project. It was tested on MacOS.

Previous versions of the project were also tested on Ubuntu 18, hence the Linux specific
installation instructions. These have not been re-tested but should still be valid.

A.1.1 Install Docker

(Linux) Follow this or this manual and then do sudo apt-get install docker-compose

(Mac) Install from https://docs.docker.com/docker-for-mac/install /

A.1.2 Setup virtual environment (venv)

Linux Only
Install venv:
sudo apt—get install python3—venv

all Platforms

Create environment :

python3 —m venv myNewVenv

Activate environment :

source myNewVenv/bin/activate

The python version of the environment will be the one with which the
environment is created.

Don'’t forget to add the name of your new environment in the .gitignore under the
Environments header to prevent installed packages from being tracked by git.

91

92 APPENDIX A. INSTALLATION GUIDELINES

A.1.3 Install dependencies
Preparation

First, upgrade pip:

pip install —upgrade pip
(Linux only)
sudo apt—get install build—essential libssl—dev libffi —dev python3—dev

Upgrade pip on <3.6:

(Mac only) Use this command if upgrading upgrading pip fails due to SSL
cert error:
curl https://bootstrap.pypa.io/get—pip.py | python

Important Notice

Note that there are two files that carry information about the dependencies and their
respective versions, requirements.txt and requirements_unresolved.txt.

The normal requirements.txt has specific version information for each dependency, as
resolved by pip. The unresolved requirements file has no specific version set for packages
that caused issues when performing the initial setup for the development.

Thus, use requirements_unresolved.txt in case you get incompatible sub-dependency
versions in the next step with the normal requirements.txt. This will let pip resolve
the versioning on its own.

Install/Export Dependencies

Import/Install depenencies:
myNewVenv/bin/pip install —r requirements. txt
Export:

myNewVenv/bin/pip freeze > requirements.txt

(In case of errors, read the Important Notice under the previous header.)

A.1.4 Database Setup

(Mac Only) Install sqlite:
brew install sqlite3

Then import and setup the DB:
import db.database
db.database.setup ()

A.1. SETUP 93

Calling the setup function of the database module will:

e drop credentials and transactions tables if they already exist

create tables for storing credentials and transactions

seed the credentials table with credentials

seed the transactions table with input transactions

Seed values are read from the config module.

A.1.5 Blockchain Setup

See descriptions in SETUP.md on Bifrést’s GitLab [47] for instruction to setup the local
nodes. This goes beyond the basic setup, hence is not shown here.

94

APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

The data for this thesis has not been submitted in form of a CD, but rather as a .zip
file in accordance with what was agreed upon during supervisor meetings. The content
consists of the following items:

e thesis.zip, a .zip file containing the LaTeX source code for the thesis.

e P-Kiechl-BA-Thesis-Final.pdf, a .pdf export of the final version of the thesis.

e bifrost-v2.zip, a .zip file holding the entire source-code for the extended Bifrést
implementation. Local-only files excluded from version control via .gitignore con-
figurations are included here.

e midterm.pptx, the slides for the midterm presentation held on January 12, 2021

Notably, the slides of the final presentation are not included. As per agreement with the
supervisor, these are to be supplied at a later date, once the presentation has been held.
The presentation is scheduled for April 16, 2021.

95

