
LaFlector: Passive Tracking based
on LiDAR

Lukas Mueller
Zurich, Switzerland

Student ID: 15-929-821

Supervisor: Bruno Rodrigues, Eder Scheid, Prof. Dr. Burkhard
Stiller

Date of Submission: March 21, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Die zuverlässige Messung von Objekten in Zeit und Raum ist die Voraussetzung für viele
zukunftsweisende Technologien wie zum Beispiel autonomes Fahren. Es gibt verschiede-
ne Methoden, die auf unterschiedlichen Messinstrumenten basieren. Eine dieser Messme-
thoden zur Distanzmessung und Objekterfassung ist Light detection and ranging, kurz
LiDAR, genannt. So setzt beispielsweise Volvo, bekannt für hohe Fahrzeugsicherheit, bei
der nächsten Fahrzeuggeneration auf LiDAR Sensoren [5]. Aber nicht nur Bewegungen
von Verkehrsteilnehmern auf der Strasse sind interessant, sondern auch Bewegungen in
einem Raum, beispielsweise um die Besucherfrequenz an einem Messestand zu ermitteln.

Diese Bachelorarbeit befasst sich mit dem Entwurf eines Systems zum Tracken von stati-
schen und bewegten Objekten, in diesem Fall Menschen, in einem geschlossenen Raum mit
Hilfe eines LiDAR Sensors. Hierzu wird eine Schnittstelle zwischen einem LiDAR Scanner
und einer Datenbank entwickelt. In der unabhängigen, nachfolgenden Datenverarbeitung
werden die Daten auf Objekte überprüft. Das entwickelte System namens LaFlector kann
mehrere Objekte gleichzeitig erkennen, klassifizieren und verfolgen. Die erkannten Objekte
werden aufgezeichnet und dem Anwender in einem Kordinatensystem dynamisch ange-
zeigt. Die Auswertung zeigt, dass das System unter Berücksichtigung der Eigenschaften
eines LiDAR Scanners Objekte zuverlässig erkennt, klassifiziert und verfolgen kann.

i

ii

The reliable measurement of objects in time and space is a prerequisite for many future
technologies such as autonomous driving. There are various methods based on different
measuring instruments. One of these measurement methods for distance measurement and
object gathering is called light detection and ranging, or LiDAR for short. For example,
Volvo, known for its high vehicle safety, is using LiDAR sensors in its next generation of
vehicles [5]. But not only movements of road users are interesting but also movements in
a room, for example to determine the visitor frequency at an exhibition.

This bachelor thesis is about the design of a system for tracking static and moving objects,
in this case people, in a closed room with the help of a LiDAR sensor. For this purpose
an interface between a LiDAR scanner and a database is developed. In the independent,
subsequent data processing the data is checked for objects. The developed system called
LaFlector can detect, classify and track several objects simultaneously. The detected
objects are recorded and dynamically displayed to the user in a coordinate system. The
evaluation shows that the system can reliably detect, classify and track objects, taking
into account the limitations of a single LiDAR scanner.

Acknowledgments

I would like to thank the supervisors of this work Bruno Rodrigues, Eder Scheid and Prof.
Burkhard Stiller. In particular, I would like to mention Bruno Rodrigues, who supported
me with frequent inputs and assistance. I would also like to thank the Communication
Systems Group for providing the LiDAR scanner for this thesis.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Goals . 2

1.3 Thesis Outline . 2

2 Background 3

2.1 Passive Tracking . 3

2.2 LiDAR . 3

2.2.1 Background . 3

2.2.2 Properties . 4

2.2.3 Legal situation . 5

2.3 Object Tracking . 5

2.3.1 Data Read . 5

2.3.2 Segmentation . 5

2.3.3 Classification . 5

2.3.4 Tracking . 6

2.4 Related Work . 6

2.4.1 LiDAR Categorization . 6

2.4.2 Existing systems . 8

2.4.3 Discussion . 8

v

vi CONTENTS

3 LaFlector’s Prototype Design and Implementation 11

3.1 Materials . 11

3.2 Requirements . 11

3.2.1 Node . 12

3.2.2 Node controlling/Communication 12

3.2.3 Sink . 13

3.3 Assumptions . 14

3.4 Architecture . 14

3.4.1 Components . 15

3.4.2 Flow diagram . 16

3.5 Implementation . 18

3.5.1 Global Configuration . 18

3.5.2 Node . 19

3.5.3 Sink . 21

4 LaFlector’s Evaluation 27

4.1 Evaluation Setup . 27

4.2 Results . 28

4.2.1 Scenario 1: Single person . 29

4.2.2 Scenario 2: Two or more persons not crossing 31

4.2.3 Scenario 3: Two persons crossing 32

4.2.4 Scenario 4: Single person behind static object 33

4.3 Limitations . 33

4.4 Discussion . 34

5 Summary and Conclusions 35

Bibliography 36

Abbreviations 41

CONTENTS vii

List of Figures 41

List of Tables 43

List of Listings 45

A Contents of Submission Zip File 49

viii CONTENTS

Chapter 1

Introduction

It is technically simple to track the way a visitor takes across a website. It is even
possible to predict the user experience according to the movement of the mouse cursor
[19]. The data gained from this tracking can optimize the sales process and discover new
customer needs. These insights further lead to advantages over the company’s competitors.
Such insights are equally important in physical stores. It is crucial to understand how
customers interact with a product or service and which offer attracts the most interest.
Understanding the customer builds the foundation of a successful marketing strategy.
However, tracking visitor flows is not only relevant for marketing. In public locations,
security measures such as emergency routes can be enhanced by analyzing crowd behavior.

There are many approaches and techniques for physically tracking people or devices. Con-
sidering the scenario where it is necessary to observe people’s flow in a public environment
of passers-by. Requiring people to associate their mobile devices with an access point is
not a feasible strategy. Thus, a passive approach, which does not require pedestrian in-
teraction is desirable. Within the range of passive tracking approaches, it is possible to
use a LiDAR (Light Detection and Ranging) scanner. A LiDAR can be used as a single
device or in combination with a second LiDAR or another passive tracking technique.
Passive WiFI tracking can be mentioned here as an example. This approach relies on
probe request frames sent from devices to detect Access Points.

1.1 Motivation

There are many fields of applications for LiDAR systems. A recent example is the built-
in LiDAR scanner in the Apple iPad Pro 2020 for augmented-reality purposes. Another
example is autonomous driving systems where LiDAR (combined with other sensors) is
used to create a map of a vehicle’s surroundings. The technical progress in these and
many more areas makes LiDAR a highly topical field of research. A reliable tracking
system based on LiDAR could potentially be used for on-the-spot tracking at expositions,
trade shows, or stores and gain valuable data for exhibitors and companies.

1

2 CHAPTER 1. INTRODUCTION

1.2 Thesis Goals

This thesis attempts to accomplish the following linked goals:

• LiDAR Interface: An interface shall be engineered, which reads the raw data from
a LiDAR sensor by using the corresponding software development kit. The data
must be recorded in a suitable structure for subsequent data processing.

• Tracking Technique: Through research, a technique shall be developed to detect,
distinguish and track static and moving objects.

• Data Output: The collected data should be in a standardized form consisting of X
and Y coordinates, and a timestamp so that the data can be correlated with other
data sources. Besides, a dynamic plot shows the running object tracking.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the background concepts repre-
senting the foundation on which the core elements of this thesis are built. Also, Chapter
2 discloses the related work representing specific instances of those concepts embedded
in a comparable manner with the thesis’s goals. Chapter 3 presents the prototype design
based on requirements listed through literature review and aligned with the objectives
of the thesis. In the following, Chapter 4 presents implementation details of relevant ar-
chitectural elements and components, and Chapter 5 presents the prototype’s evaluation.
Lastly, Chapter 6 concludes this thesis by providing a summary of its achievements, final
considerations, and future work.

Chapter 2

Background

The Background section gives an overview of the technologies that are needed to build
and understand the prototype. As previously described, this work focuses on the LiDAR
approach and will not cover passive WLAN tracking. The related work section refers to
existing work and reflects the current state of research.

2.1 Passive Tracking

Tracking can be divided into passive and active tracking. Active tracking requires par-
ticipation and configuration of the client for a specific measurement technique. Passive
tracking works without adaptations in the environment to be analyzed. This does not
mean that signals from devices to be tracked are not necessary. However, these signals
occur without pre-configuration. For example, in the case of WiFi tracking, these are
outgoing probe requests from the clients [26]. In particular, LiDAR tracking is a passive
tracking technique as it works independently of the tracked object’s signals.

2.2 LiDAR

This section focuses on the layout and resulting technical characteristics of a LiDAR
sensor.

2.2.1 Background

LiDAR is a technique for distance measurement. It consists of a laser and a sensor to
measure the reflections of the environment. The distance can be estimated by measuring
the time it takes for the laser light to return and knowing the speed of light.
The basic principle for LiDAR technology came up in the early 1960s right after the foun-
dation was laid with the laser’s development in 1960. Like many technical developments,

3

4 CHAPTER 2. BACKGROUND

LiDAR was mainly driven by military institutions for measuring distances and weapon
guidance [18].

2.2.2 Properties

Each measurement technique has its strengths and weaknesses. This section clarifies these
characteristics concerning the LiDAR technique.

2.2.2.1 Strengths

• Precision: The precision of LiDAR scanners is relatively high. A Slamtec M1M1
scanner with a range of 20 meters has an accuracy of 2 centimeters [28]. In compar-
ison, the MAC Scavenger as a WiFi-based system achieved a deviation of 1.1 meters
at a maximum distance of 10.8 meters under good conditions since RSSI values are
not reliable[2].

• Captures objects, not devices: Android has enabled MAC address randomization by
default since version 10. Apple has extended MAC address randomization with iOS
14. This trend of the recent past is expected to continue, and device fingerprinting
will become increasingly difficult. LiDAR is not affected by this development. It
moreover allows tracking objects without a smartphone/tablet unlike Bluetooth or
WiFi tracking [12] [17].

• Privacy: Data protection regulations have become increasingly strict in recent years.
Tracking via WiFi or Bluetooth data could be complicated because the MAC ad-
dress is classified as personal data according to the GDPR [4]. LiDAR tracking is
unproblematic as it does not process any information about the tracked object.

• Range: LiDAR sensors can provide accurate results over long distances (up to 200m
in vehicles) which a radar for example cannot [16]. This is why LiDAR technology is
often used in vehicle construction in combination with other detection systems [32].

2.2.2.2 Weaknesses

• Objects behind objects: Due to the principle of operation a LiDAR scanner cannot
detect objects that are behind other objects. The front object reflects the laser
beams completely. This limitation could be compensated by a second scanner which
captures the object from a different angle.

• Large data sets: Depending on the resolution of the scanner, the aperture angle,
and the use case, the number of data points can become very large and many data
points derive from static objects that are usually not of interest. The processing of
LiDAR data can be more extensive than that of other measurement techniques.

• Robustness: The performance of a LiDAR scanner strongly decreases in heavy rain
or fog, which can reduce the detection rate of objects by up to 50% [6] [16].

2.3. OBJECT TRACKING 5

2.2.3 Legal situation

Lasers are classified according to the IEC 60825-1 standard. The Slamtec M1M1 scanner
used in this thesis contains a Class 1 laser with a power of 28 watts. Even the Slamtec
M2M1 model with an extended range of 40 meters is classified as Class 1 [28] [29].
According to the Federal Office of Public Health of Switzerland a Class 1 laser is absolutely
safe. Even direct exposure to the laser beam will not cause any damage to the human
eye. A warning sign is not necessary [23]. Due to the classification as a Class 1 laser a
LiDAR scanner can be used anywhere and at any height (even eye level).

2.3 Object Tracking

This part is about the steps that are usually performed to identify and track objects from
the unprocessed laser data. Since the scanner used in this thesis is a 2D scanner, no
3D-specific process steps are observed, such as surface matching.

2.3.1 Data Read

Due to the design of a 360-degree LiDAR scanner, it is convenient to use the Polar
Coordinate System to specify data points. A data point is defined as the distance and
angle from a starting point. The starting point corresponds to the position of the scanner.
In the first step, these data are converted into Cartesian coordinates. It makes sense to
filter out non-valid data points to reduce the number of data points and increase the
relative data quality.

2.3.2 Segmentation

A data set of a LiDAR scanner always contains all reflecting objects in a room. As a
rule, static objects such as walls, windows, or fixed objects are no longer of interest after
the initialization phase. The goal of segmentation is to filter out the objects that are
in motion. By subtracting the set of static objects from a newly acquired data set, the
resulting difference is the set of points associated with objects in motion. If the difference
is zero there are no moving objects in the room that could be tracked [27].

2.3.3 Classification

If an object is detected that consists of valid data points and do not belong to the static
objects’ data set, it must be classified. With a 2D scanner, the possibilities are limited by
the lack of surface matching. This work uses for the classification the relation between the
distance and number of data points and distinguishes between human and non-human. If,
for example, an object is close to the LiDAR scanner and covers fewer data points than
expected, it will not be identified as a human.

6 CHAPTER 2. BACKGROUND

2.3.4 Tracking

If an object could be identified as a human, the movement is recorded. A LiDAR scanner
has no way to distinguish person 1 from person 2 if they leave the room or exceed the
maximum measurement distance. A simple motion analysis should also be possible to
maintain the tracking even if two people cross each other.

2.4 Related Work

This section covers already existing techniques of tracking using LiDAR scanners. There
are very different approaches and options for object detection. To properly classify related
work, it is important to know the different ways a LiDAR can be used since classification
methods depend on the deployment scenario.

Figure 2.1: LiDAR Categorization

2.4.1 LiDAR Categorization

2.4.1.1 Capturing Mode

A 2D LiDAR angled slightly downward can be used on vehicles to distinguish flat and
uneven surfaces. From this, in turn, the course of the road can be derived. This is achieved
by evaluating the distance between the single measuring points. On roads without any
curbs the system achieves at least a score of 92% in detecting the edge of the road. If
curbs are present the value drops to 80%. This can be explained by smaller variations in
the measured values caused by a sidewalk than in uneven ground [10].

Multilayer capturing requires multiple 2D LiDAR sensors mounted at different heights.
The approach thus provides more data than a single 2D scanner but less than 3D LiDAR.
This allows an object measured in a particular layer to be verified with the other layers
in terms of tracking. In a 50 second test run in which the LiDAR was mounted on a

2.4. RELATED WORK 7

car driving through a street, the pedestrian detection rate increased from 70.5% with one
layer to 91.6% with 4 layers [7].

A 3D LiDAR is characterized by the fact that it can capture multiple angles, thus providing
significantly more data points. The points distributed over different heights also allow
effective surface matching. This is valuable data for classification. For example if an
object is completely flat over its entire height it can be eliminated that the object is
human. In an experiment in which two people walk through a room and hide behind
obstacles and come out again, the false-negative rate was halved from 30 frames to 15
frames using surface matching for a total of 696 frames [27].

2.4.1.2 Positioning

Basically, the use cases can be divided into two areas. There are applications where the
LiDAR is in motion and others where the LiDAR remains statically in place.

While static LiDAR scanners usually focus on detecting objects, for moving LiDAR sen-
sors the own positioning is of additional interest. This process is also known as SLAM
(simultaneous localization and mapping). This can for example be used for measuring
rooms. Samsung also uses LiDAR sensors for this purpose in its new robot vacuum clean-
ers [3]. To create the map of an environment, a robot can move to different points. Its
movements can be determined by the LiDAR itself and depending on the construction
also by wheel positions. To correct errors, positions are also approached multiple times
to correct errors accumulated during the movement. This is also called loop detection
(approaching a location twice) and loop closure (error correction) [11].

While LiDAR is used mounted directly on vehicles, as shown previously, they can also be
used statically at road intersections. Based on the size of the set of points, the distance
from the LiDAR, and the direction taken, it is possible to decide whether it is a pedestrian
or a vehicle. This information can be used to optimize the flow of traffic at intersections.
In a potentially further step in connected driving, approaching vehicles could be warned
of pedestrians or even force an emergency brake [34].

2.4.1.3 Object Classification Strategies

Most approaches are based on the ROS (Robot Operating System). The ROS is an
open-source framework for robot software development [25].

Heuristic Approach

Heuristics in the sense of computing is defined as ”proceeding to a solution by trial and
error or by rules that are only loosely defined” in the Oxford Dictionary of English [22].
In terms of tracking, this means expecting a moving object’s appearance at a certain time
and place. As a loose rule, the object’s current motion can give an expected value for a
future point in time.

8 CHAPTER 2. BACKGROUND

Machine Learning Approach

While in the heuristic approach, rules are defined manually, in machine learning, these
rules are automatically constructed based on a training data set. The classification of
objects belongs to the supervised learning methods. This means that, for example, to
recognize a leg, you need a training set that contains legs and non-legs representations
and the information whether it is a leg or not. From this information, a model can be
derived using a learning method. This model can then be used to make predictions [15].
Neural networks are suitable as a learning method for the classification of image and sound
files [1].

Additional data sources

Regardless of whether a LiDAR is used in motion or static, the technology is also supple-
mented with other tracking systems such as video cameras [21].

2.4.2 Existing systems

• LD: Leg Detector is the most popular ROS package for people detecting with a
LiDAR sensor. Recognition at LD is based on a machine learning classifier [24].

• PeTra (People Tracking) is a system based on a Convolutional Neural Network
(CNN). It is developed by the Robotics Group of the University of León, Spain.
CNN is a subset of neural networks [1]. PeTra was developed for use on mobile
robots. This means that the scanner’s working height was assumed to be 30 to 50
cm above the ground. Accordingly, the system was designed and trained to detect
human legs. In comparison with the LD Package PeTra was able to achieve higher
accuracy [9].

• Nemati et al. (2016) developed an approach for tracking people using heuristics
and a LiDAR sensor. The team was able to identify an object that was obscured
by another object through the prediction from the reappearance. But it was also
noted that a changing velocity of a hidden object leads to a mismatch between the
hypothesis and the reallocation. In any case, this leads to the result that the object
can no longer be identified with confidence [20].

2.4.3 Discussion

It can be stated that the same goals can be addressed with both moving and static LiDAR
sensors. The detection of persons can take place at intersections as well as at the vehicle
itself. It depends on the purpose of the data whether it is captured statically or in motion.
For the purpose of this thesis, the tracking of people in a room, it is more appropriate
to keep the LiDAR static. The LiDAR scanner is not mounted on a robot or a moving
object and is not used for localization (SLAM). Due to the static positioning, the height
of the LiDAR can be freely chosen. The system is designed to be operating at heights of

2.4. RELATED WORK 9

1.20 to 1.50 meters. This, in turn, leads to the result that the system should not recognize
legs but upper bodies.

This thesis uses a 2D LiDAR, allowing a deployable system to be constructed at lower
cost than with 3D sensors.

Since no training data set is available for a neural network supporting the given LiDAR,
the heuristic approach is chosen. In the classification, as in related works, the width of the
object is used. Techniques such as surface matching cannot be used since the measurement
consists only of a single layer.

Theses have been done on LiDAR tracking, but most focus on moving LiDAR sensors.
This thesis follows the static approach. The system is designed to be extensible with a
second LiDAR. In combination of with a low-cost 2D LiDAR sensor and detection at body
height instead of leg, the thesis provides additional value over existing related work. In
contrast to the recognition of legs, where it must always be taken into consideration that
legs could be behind each other, the recognition at body height offers chances for higher
recognition rates. The expandability to add a second LiDAR sensor provides further
research opportunities for the future.

10 CHAPTER 2. BACKGROUND

Chapter 3

LaFlector’s Prototype Design and
Implementation

The system is based on a distributed architecture consisting of a server and one or more
node(s). A node is connected to a LiDAR device either over WiFi or Ethernet. Since this
thesis focuses on a single LiDAR setup, only one node illustrates the systems’ architecture.

The whole system consisting of node and sink is called LaFlector. A wordplay from laser
beam, which is emitted by the LiDAR, and the reflection caused by an object and thus
the basis of each single measuring point.

3.1 Materials

The laser scanner used is a Slamtec Mapper M1M1 with a distance range of 20 meters
and a sample rate of 7000 Hz (laser points sampled per second by radar). The device
has built-in functions for simultaneous localization and mapping, which were not used.
Instead, the prototype works with the raw, not pre-processed data of the laser. The node
can be adjusted to work with cheaper devices like Slamtec RPLIDAR A1/A2/A3 with
low effort. The sink and node are driven by an x86-based system running Arch Linux
(Kernel 5.9.16). The code of the node can be cross-compiled for the Armv7 platform. The
sink controls the behavior of the node through sockets and provides an InfluxDB instance.
InfluxDB is an open-source time-series database (TSDB) and is used to store the data
points delivered by the node.

3.2 Requirements

The following feature requirements are derived from the objectives of this work. They are
subdivided according to components. The prototype is tested against the requirements in
the evaluation.

11

12 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

3.2.1 Node

The data collection section describes the needed steps from capturing the environment to
a set of data points. The following requirements:

Req. ID Req 1.1
Title Data fetching
Description The node must fetch the data points from the connected

LiDAR device using the Software Development Kit pro-
vided by Slamtec.

Priority 1

Req. ID Req 1.2
Title Discard data points that are not valid
Description The Slamtec SDK returns a boolean with every data point

determining if the data point is valid. The node must
discard the data point if it is not valid.

Priority 1

Req. ID Req 1.3
Title Add data to database instance
Description The node must write the data points to the database spec-

ified by a configuration file.
Priority 1

3.2.2 Node controlling/Communication

This section focuses on the controlling of the node. It determines how the node is con-
nected to the sink and what commands are accepted.

Req. ID Req 2.1
Title Establish socket connection
Description The node must connect to the sink socket server specified

by a configuration file.
Priority 1

Req. ID Req 2.2
Title Socket commands
Description The node must accept the following commands: start

(starts recording of data points), stop (stops recording of
data points), exit (ends execution on both node and sink)

Priority 1

3.2. REQUIREMENTS 13

3.2.3 Sink

The sink is responsible for interpreting the collected data by the node. It performs the
tasks of segmentation, classification, and tracking. This leads to the following require-
ments:

Req. ID Req 3.1
Title Initialization mode
Description The sink must start/stops the node to get initial data

points of the surrounding. From this, it creates the data
set of static objects, which is used for the segmentation.

Priority 1

Req. ID Req 3.2
Title Classification
Description By using predefined thresholds, the sink must classify data

points as potentially human or non-human.
Priority 1

Req. ID Req 3.3
Title Tracking
Description The sink must be able to follow an object classified as a

human.
Priority 1

Req. ID Req 3.4
Title People crossing
Description The sink must distinguish crossing people by calculating

expectation values for the position.
Priority 2

Req. ID Req 3.5
Title Visualization
Description The sink must be able to display the tracking in a coordi-

nate system graphically.
Priority 3

14 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

3.3 Assumptions

The system was designed to work under certain conditions. Therefore, the following
assumptions are considered for an ideal operation:

• Positioning: The LiDAR scanner is optimally placed and horizontally aligned. The
optimal placement depends on the environment. There should be no dead spots in
the environment if possible. The floor of the environment is flat and level.

• Height: The object classification expects a solid body with a certain width con-
cerning the measured distance. The laser must be operated at upper body height.
Using it at foot level would lead to incorrect classifications and results.

• Disturbances: It is assumed that no other devices are continuously transmitting
signals at the same wavelength to which the LiDAR scanner would respond. This
applies, for example, to laser pointers or infrared remote controls.

3.4 Architecture

In a follow-up to this thesis, it could be interesting to add a second LiDAR scanner to
the system. Therefore, attention was given to the extensibility. A client-server approach,
called node and sink, was chosen to ensure this characteristic. This node-sink structure
allows multiple nodes (LiDAR, data collection) to be run on one sink (data processing).
To enable extensibility and meet the above requirements, the following architecture was
designed.

Figure 3.1: Architecture

The LiDAR scanner is connected to the Node via Wireless LAN. Alternatively, a LAN
connection can also be created with the device being used. A node communicates with
the sink via a socket. In the context of this thesis, the node and the sink are running on
the same physical device, but distribution to different devices in the network is possible.

3.4. ARCHITECTURE 15

3.4.1 Components

A deeper view of the individual components is shown in this diagram. It is divided into
LiDAR, Node and Sink and shows the respective sub-components.

Figure 3.2: Component Diagram

The different components are explained in the following:

LiDAR: The LiDAR scanner consists of no other visible sub-components and is basi-
cally handled as a black box. The Slamtec SDK provides the needed functions to work
with the device. The detailed implementation of the LiDAR scanner itself is not part of
this thesis.

Node: The node is composed of the modules Socket Client, Data Collector and Database
Client. The Socket Client connects to the Socket Server of the sink and receives the com-
mands from it. Depending on the command, the behavior of the data collector is changed.
The Data Collector, as the name suggests, collects the data from the LiDAR and passes
it to the Database Client. The Database Client writes the data to a database provided
by the sink.

Sink: The sink is the largest component and consists of five sub-components. The Socket
Server ensures the connection to the node. The shell component captures the user inputs,
forwards them to the socket server and controls the behavior of the Data Processing. The
Data Processing is the most complex and computationally intensive component. It uses
the database as data source, processes this data and makes it available to the Plotter.
The plotter visualizes the processed data.

16 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

3.4.2 Flow diagram

The time sequence in which the components interact with each other is shown in the
following diagram. The sink must be started first because the node tries to establish a
connection to the sink directly after execution. If the connection fails because the sink
was not yet ready the node must be restarted.

Figure 3.3: Flow Diagram

If the socket connection between node and sink was successfully established, the node
could be controlled via the sink and the commands start, stop and exit.

• Node: When the node receives the start signal, data collection is started in a thread.
In the main thread the socket client is listening for new commands coming from the
sink. This data collection in thread 1 runs until the node receives the stop command.
When the stop signal is detected, the atomic Boolean variable run is set to false
and the loop in thread 1 is suspended. By setting the variable back to true via the
start command, the data collection is started again.

3.4. ARCHITECTURE 17

• Sink: First the separate thread 1 is started, in which the socket server is running.
The main thread is reserved for data processing, because the matplotlib library
needed for plotting only works in the main thread [31].

As soon as the data acquisition is running, the process of data processing is started. Data
processing is briefly delayed so that the node could already write data sets to the database.
The loop of the data processing runs until the stop signal is given by user input.

18 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

3.5 Implementation

3.5.1 Global Configuration

Node and Sink use parameters for establishing the connection to the LiDAR device,
database connector, socket setup and tracking settings. For simplicity, the same con-
fig file can be put on Node and Sink. The respective components use only the parameters
that apply to them.
The config file is formatted as a YAML file. YAML is a data serialization standard and
is often used for config files. Unlike JSON, it supports comments[33], which is helpful
for the numerous (especially tracking) parameters. The most important parameters are
listed and explained below:

Parameter Default
value

Description

initialization-
rotations

1000 The creating of the static dictionary uses this num-
ber of rotations.

rotations-per-loop 3 A single rotation does not provide enough data
points. This parameter determines how many ro-
tations are merged.

static-moving-
distance

0.3 If an object is less than than this value from a static
object away it will not be identified

human-width 0.15 If a object should be identified as human, it must
at least have this width. This value prevents small
moving objects from being classified as human.

split-distance 0.8 If two objects are right next to each other, they
cannot be distinguished. If the objects move apart,
this parameter specifies the threshold at which they
are classified as two objects instead of one.

existing-new-
threshold

0.8 When a new object is captured, this value is used
to decide whether it belongs to an existing object.
The existing object must be less than this value
away, otherwise it is considered to be a new object.

way-points 10 This parameter specifies how many of the last po-
sition way-points are used for the direction vector.

die 50 A loop consists of rotation-per-loop many rotations.
The die value indicates in how many loops an ob-
ject may no longer be detected before it dies re-
spectively is considered inactive.

born 10 A loop consists of rotation-per-loop many rotations.
The born value indicates how many loops an object
must be sighted before it is recognized as such.

Table 3.1: Configuration Parameters

3.5. IMPLEMENTATION 19

3.5.2 Node

3.5.2.1 Language, SDK, and Libraries

The SDK provided by Slamtec for the LiDAR scanner is written in C++. To keep the
node consistent and prevent issues using C/C++ wrappers for Python, the node was also
developed in C++. All functions except the InfluxDB client were implemented without
additional libraries. To establish the connection to InfluxDB the lightweight header-only
library influxdb-cpp was used.

Multi-threading was enabled as described in 3.4.2 in order to simultaneously acquire data
and process commands via the socket. The std::thread class is available as of C++11.
Before that, POSIX threads or pthreads had to be used. The LiDAR SDK requires GCC
4.8.x and was also written according to C++0x standard, with higher GCC versions the
build process could not be completed successfully. With modifications to the makefile
(CXX flags and LD flags) it was nevertheless possible to use the standard C++11 thread-
ing class with the SDK and GCC 4.8.

20 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

3.5.2.2 Code

1 while (run && connected) {

2 rpos:: features :: system_resource :: LaserScan laser_scan = sdp.

getLaserScan ();

3 std::vector <rpos::core:: LaserPoint > laser_points = laser_scan.

getLaserPoints ();

4 //do one full rotation

5 for (std::vector <rpos::core:: LaserPoint >:: iterator it =

laser_points.begin();

6 it != laser_points.end(); ++it) {

7 // if the data point is not valid , skip

8 if (it->valid() != 0) {

9 // initialize datapoint vector

10 std::vector <float > datapoint;

11 //push angle and distance to datapoint vector

12 datapoint.push_back(it->angle());

13 datapoint.push_back(it->distance ());

14 //add the datapoint vector to the datapoints vector

15 datapoints.push_back(datapoint);

16 }

17 }

18 write_datapoints(iterator , datapoints);

19 iterator = iterator + 1;

20 }

Listing 3.1: Data Collection Snippet

Collection of data is controlled by an atomic boolean, that can be written and read across
threads. Thus, if the node receives the start command, the variable run is set to True.
The data collection runs until the variable is set back to False again.
Since a rotation does not always have the same number of valid points, it makes sense to
use the C++ standard vector class instead of an array. The snippet uses two vectors: the
datapoints vector and the datapoint vector.
The datapoint vector corresponds to a single measured value. The SDK returns three
parameters: angle, distance, and a validity boolean. If a data point is invalid, the SDK
sets the distance value is 100000. This information does not offer additional value, so
invalid points are already discarded at this point and not processed further. It follows
that the datapoint vector only contains the parameters angle and distance.
The datapoints vector consists of datapoint vectors – exactly as many as valid measured
values were acquired in the last full rotation. The datapoints vector is then passed to the
influx-db client and the values are written to the database. For performance reasons, it
was decided not to write each single datapoint directly into the database, but to collect a
full rotation since the client needs to reconnect to the database for every insert.

3.5. IMPLEMENTATION 21

3.5.3 Sink

3.5.3.1 Language and Libraries

The Sink was written in Python since Python has more and easier to use extensions for
data collection, manipulation, and visualization. That is why Python is the most used
programming language in the field of Data Science [14]. Python interpreter was running in
version 3.9. Apart from the Python standard libraries, the following additional packages
were used:

• InfluxDB: To read the values of the node from the Influx database, this package was
used in version 5.3.1. The package is also officially recommended by Influx when
using Python [13].

• PyYAML: Instead of writing a simple YAML parser like in the node, the PyYAML
package in version 5.4.1 was used. This is also because the parameters for the sink
are grouped and therefore a bit harder to read.

• NumPy: This very comprehensive package provides data structures and functions
for mathematical operations. It was used for the conversion of cartesian and polar
coordinates and the midpoint and distance determination. It is also a dependency
for the matplotlib library. Version 1.20.1 was installed for this thesis.

• Matplotlib: To visualize the results the matplotlib library (version 3.3.4) was used.
It can represent numpy arrays in coordinate systems.

Independently of Python, Tk must be installed. This toolkit enables the creation of graph-
ical interfaces. If matplotlib runs in interactive mode, the package must be installed [30].
Tk is available for Arch Linux (Extra Repository) and Ubuntu (Universe Repository).

22 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

3.5.3.2 Modules

Data Segmentation

Data segmentation consists of two tasks. The first task is to capture the static objects.
In a second step, new measurements must be matched with the static objects and the
difference can be built. Since the matching has to be done with every rotation and each
rotation contains hundreds of points, this step has to be done with good performance.
For this reason, the angle and distance list are written to a dictionary. This has the ad-
vantage that each angle occurs only once, because keys are unique in Python dictionaries.
This means that for each angle there is only one distance. Another advantage is that the
lookup in a Python dictionary runs in O(1) [8].

1 for i in range(0, self._initialization_rotations):

2 # get angle and distance list from the last iteration

3 angle_list_latest , distance_list_latest = influx.

get_ad_from_last_iteration ()

4 # merge the lists from the previous rotations

5 angle_list = angle_list + angle_list_latest

6 distance_list = distance_list + distance_list_latest

7 # create empty static dictionary

8 static_dict = {}

9 # merge lists into a dictionary

10 for (angle , distance) in zip(angle_list , distance_list):

11 static_dict[angle] = distance

Listing 3.2: Creation of dictionary of static objects

This snippet shows the acquisition and construction of the Static Dictionary. This dic-
tionary remains unchanged for the rest of the current measurement. Once the static
dictionary is created, detection of moving objects can start.
Angle and distance are now retrieved again per rotation and written to the moving objects
dictionary. The moving dictionary is compared with the static dictionary and as soon as
a threshold (parameter: static-moving-distance) is exceeded, the value is stored in a sep-
arate angle and distance list. These values are then checked and classified in the next step.

1 for angle in scan_dict.keys():

2 temp_angle = angle

3 while temp_angle not in static_dict.keys():

4 temp_angle = temp_angle + 0.001

5 if temp_angle - angle > 0.005:

6 break

7 if temp_angle in static_dict.keys():

8 # do not allow points , that lay behind static objects , if this

happens , something is wrong in the

9 # room and if the distance difference is bigger than a threshold it

must be a moving object

10 if static_dict.get(temp_angle) > scan_dict.get(angle) and (

11 static_dict.get(temp_angle) - scan_dict.get(angle)) > self.

_static_moving_distance:

12 angle_list_moving.append(angle)

13 distance_list_moving.append(scan_dict.get(angle))

Listing 3.3: Comparing points to static objects

3.5. IMPLEMENTATION 23

Object Classification

Object classification starts with the two lists angle list moving and distance list moving.
These lists contain the segmented measured values of the last three rotations. Our tests
have shown that single rotations contain too few data points and are therefore not reliable.

1 startpoint_index = 0

2 endpoint_index = 1

3
4 # object[i] = object ()

5 object_list = []

6
7 # loop until the endpoint (e.g. index 500 is bigger than the length of

the angle_list_moving list

8 while endpoint_index < len(angle_list_moving) - 1:

9 # save the initial startpoint since startpoint will be shifted. This

variable must be used to create

10 # the object.

11 initial_startpoint = [angle_list_moving[startpoint_index],

distance_list_moving[startpoint_index]]

12 while helpers.distance_between_two_p_points(

13 angle_list_moving[startpoint_index], distance_list_moving[

startpoint_index],

14 angle_list_moving[endpoint_index], distance_list_moving[

endpoint_index]) < self._split_distance:

15 # if list is finished , break loop

16 if endpoint_index >= len(angle_list_moving) - 1:

17 break

18 else:

19 # shift start and endpoint

20 startpoint_index = startpoint_index + 1

21 endpoint_index = endpoint_index + 1

Listing 3.4: Dividing moving point into objects

The first task of classification is to distinguish between multiple objects. To do this, one
starts at the first point and compares it with following one. If the distance between the
points is smaller than a certain threshold (parameter: split-distance) it must still be the
same object. The check points are shifted and it is checked again. This process is repeated
until the object is completely captured. After the objects from the lists are separated,
they are identified in the next step.

24 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

Object Identification

Object identification has the task to decide whether a set of points, which was classified
as a human object, can be assigned to an already existing object or whether the object is
new. This task was solved as follows:

1 def check_if_existing_object(Object , startpoint , endpoint , iterator):

2 # object_list collecting all possible objects

3 object_list = []

4 # first convert the coordinates into cartesian

5 x1, y1 = convert_point_from_p_to_c(startpoint [0], startpoint [1])

6 x2, y2 = convert_point_from_p_to_c(endpoint [0], endpoint [1])

7 # find midpoint

8 midpoint_x , midpoint_y = c_midpoint_from_c_points(x1, y1, x2, y2)

9
10 for created_objects in Object:

11 if created_objects.isDead is False:

12 midpoint_existing_x , midpoint_existing_y = created_objects.

get_midpoint ()

13 # if the distance between the midpoints is smaller than the

threshold it must be a already existing object

14 if distance_between_two_c_points(midpoint_x , midpoint_y ,

midpoint_existing_x , midpoint_existing_y) \

15 < globals.config.get("tracking -parameters").get("

existing -new -threshold"):

16 # add possible object to list

17 object_list.append(created_objects)

18
19 # if only one object is possible , the identification is unambiguous ,

update the corresponding positioning values

20 if len(object_list) == 1:

21 object_list [0]. set_startpoint_from_p(startpoint [0], startpoint

[1])

22 object_list [0]. set_endpoint_from_p(endpoint [0], endpoint [1])

23 object_list [0]. update_last_seen(iterator)

24 globals.Logger.log(object_list [0]. get_identifier () + "’s

position updated to [" +

25 str(object_list [0]. get_midpoint ()[0]) + "," +

str(object_list [0]. get_midpoint ()[1]) + "

]", 2, iterator)

26 return True

27
28 # if more than 1, assume that the objects keep moving in the same

direction and update start/endpoint accordingly

29 # not update last_seen , if object keeps hidden , better dies because

the heuristic approach becomes more and more

30 # inaccurate

31 if len(object_list) > 1:

32 for objects in object_list:

33 objects.heuristic_update(iterator)

34 return True

35 # if no object found , then it must be new

36 else:

37 return False

Listing 3.5: Object Identification

3.5. IMPLEMENTATION 25

The set of points is matched with all objects that are still active. Basically, there are
three cases that need to be distinguished:

• No object match: The points do not correspond to any previously known object.
The object must be new accordingly.

• One object match: The points can be clearly assigned to an object. In this case,
the new position of the object is set.

• Two or more matches: In this case, it is not possible to decide which points belong
to which object. Assuming that the objects continue to move in the same direction,
the expected positioning is determined by means of a direction vector derived from
the last way-points.

3.5.3.3 Output

The output is available in two forms.

Plot

The position of the detected objects and their direction vectors are displayed in a dy-
namic X/Y coordinate system. This output form serves for visualization.

Logger

The system has a logger which creates a file with the start time at startup. The ver-
bose level determines which data is written to the log file and which is not. This output
is used for debugging. Furthermore, the logger function can be quickly exchanged with a
database client, so that the corresponding data ends up in a database instead of the log
file. This is in case the data should be further processed or combined with another data
source.

26 CHAPTER 3. LAFLECTOR’S PROTOTYPE DESIGN AND IMPLEMENTATION

Chapter 4

LaFlector’s Evaluation

This chapter describes under which conditions and for which properties the prototype was
tested. Furthermore, the results are shown and discussed.

4.1 Evaluation Setup

The evaluation was conducted in a 18 square meter room. Larger areas would be easier
to track as it becomes difficult as soon as objects are grouped closely. The windows were
covered, and there were several static objects in the room. The runs were performed
with the parameter’s default value. To simulate objects’ appearance, both entering the
measurement room and spontaneously joining the measurement height were attempted.
To test an object’s disappearance, the tracked person left the room or suddenly went
below the measurement height. The measurement height was 144 centimeters above the
ground for all test runs. Four scenarios were run five times each:

• Single Person Tracking: One person moves through the room at a walking pace.
There are no other moving objects. This scenario is the basis for further evaluation
runs and should work flawlessly.

• Two Persons Tracking: Two people move simultaneously at a walking pace in the
room. They never stand behind each other and are always at least one meter apart.
However, the paths can intersect at different times.

• Two Persons Crossing: Two people cross paths. For a short time, one person stands
behind the other. The persons do not make any hard changes of direction during
the crossing.

• Single Person behind Static Object: A static object stands in the room, which was
captured at the beginning. A person moves behind the object for a short amount
of time but keeps the walking direction.

27

28 CHAPTER 4. LAFLECTOR’S EVALUATION

These runs were measured using the following criteria. A criterion can be considered as
passed or failed.

• Positioning: The tracking is accurate and continuous. The criterion is considered
as passed if the object is tracked accordingly to the real position and there are no
unexpected jumps in the way-points.

• Classification: The person is recognized and correctly classified. No static objects
or objects are classified as human objects. The criterion is considered as passed
when the number of human objects is correctly detected.

• Identification: The same object is always identified as the same. If a person reap-
pearing from behind a static object is classified as a new object, the criterion is
considered failed. If two people cross each other and the system can no longer
assign the objects because the object identification was lost, the criterion is also
considered failed.

4.2 Results

The table below shows how often a criterion was not met in 5 runs. In general, it can
be said that the positioning worked in every case. There were a few failures in the
identification and classification in scenarios 3 and 4.

Scenario Positioning Classification Identification

1: Single Person Tracking 0 0 0

2: Two Persons Tracking 0 0 0

3: Two Persons Crossing 0 0 2

4: Person behind Object 0 0 1

Table 4.1: Results Overview

The results are represented with the created plots of the LaFlector. A series of snapshots
visualize the first scenario. These snapshots were taken at regular interval (every 5 sec-
onds) during the run. The remaining three scenarios are represented by the last snapshot
before the object disappears/dies. Way-points are recorded for the evaluation. In the
usual tracking mode, the way-points are not displayed by default. If desired, the plotting
of way-points can be enabled in the plotter class.

4.2. RESULTS 29

4.2.1 Scenario 1: Single person

The first scenario was completed successfully. In all five runs, the person was correctly
detected, tracked without interruption, and removed again after disappearing (marked
as dead). No static objects were classified as people. The following graphics show the
progress of the run with a running time of 40 seconds, in which the object alternately
moved and remained stationary.

Frame 1 of 8: Object not yet detected Frame 2 of 8: Object detected, Tracking started

Frame 3 of 8: Active tracking, direction vector visible Frame 4 of 8: Active tracking, direction vector visible

30 CHAPTER 4. LAFLECTOR’S EVALUATION

Frame 5 of 8: Object stopped, no direction vector Frame 6 of 8: Active tracking, direction vector visible

Frame 7 of 8: Object stopped, no direction vector Frame 8 of 8: Object died, way-points wiped

Figure 4.1: Snapshot series of a tracking run

4.2. RESULTS 31

4.2.2 Scenario 2: Two or more persons not crossing

The second scenario in which two people were tracked was also successfully handled. Both
persons were recognized at the same time, and their path was tracked correctly. Even when
the two people were close to each other (but not behind each other), the identification
worked without any issues in all five runs. The shown run took 35 seconds.

Figure 4.2: Plot: Two persons tracking

32 CHAPTER 4. LAFLECTOR’S EVALUATION

4.2.3 Scenario 3: Two persons crossing

In the third scenario, two people cross paths, assuming that they do not change their
speed significantly. If a person started walking while being covered by the other person,
there would be no heuristic possibility to detect this. Since according to the last confirmed
information, the person was at rest.
The five crossings were performed with the following estimated crossing angles: twice 180
degrees, once 120 degrees, once 90 degrees, once 60 degrees. In two out of five cases,
the individuals could not be positively identified after crossing. The smaller the crossing
angle, the higher the probability that the recognition fails because the persons are not
distinguishable for the LiDAR for a longer time. Accordingly, the identification of the
objects failed at 90 and 60-degree crossing angles. The best results can be achieved when
the persons cross at a straight angle (180 degrees). An example of a run with a duration
of 8 seconds and a straight angle is shown below.

Figure 4.3: Plot: Two persons crossing

4.3. LIMITATIONS 33

4.2.4 Scenario 4: Single person behind static object

In the fourth scenario occurred one error: In the second run, after reappearing, the object
was identified as a new object, not the original one. This may be due to too great a
change in speed or change of walking directly behind the static object. In this case, the
heuristic prediction no longer applies.

Figure 4.4: Plot: Single Person behind Object

4.3 Limitations

The results clearly reflect the strengths and weaknesses of a LiDAR sensor from section
2.2.3. As expected, the positioning was accurate. Things get tricky when objects are
obscured by other objects, regardless of whether they are static or in motion. Herein, it
can only be evaluated with a certain probability whether the object still exists and where
it is located when reappearing. How well this case works also depends significantly on the
parameterization. For example, if people are expected to move close to each other, the
split-distance and existing-new-threshold parameters should be decreased. This increases

34 CHAPTER 4. LAFLECTOR’S EVALUATION

the probability that the persons will be detected. At the same time, it increases the risk
that single persons will be detected as several.

4.4 Discussion

Comparing the goals set with the results, the following conclusions can be made.

LiDAR Interface

This interface had the task of making the data from the LiDAR scanner available for data
processing. This goal was achieved. The data processing always received the latest laser
data via the Influx database. No errors occurred in the interface during any of the runs.
The data acquisition worked without any interruptions. The requirement of controlling
the node via a socket was met.

Tracking Technique

The most extensive goal can be considered as largely fulfilled. From the first scenario, it
can be deduced that the segmentation of static and moving objects works reliably. The
moving object was recognized as such and tracked. Further, scenario 2 shows that the
system can also detect and track two or more people simultaneously. Errors occurred
in scenario 3. The system could no longer determine which of the intersecting persons
was in two out of five cases. Scenario 4 further demonstrates that heuristic prediction
works. Objects were recognized after disappearance except for one case. It follows that
when two crossing objects are in motion, the system appears to be less accurate than
when one of the objects is static. It is possible that even better results could be obtained
with more complex, finer-grained heuristic prediction. However, this would also require a
higher resolution LiDAR scanner. In particular, far away objects from the scanner would
otherwise take too long to be reliably detected since the density of measurement points
decreases with distance.

Data Output

The graphical illustrations from the results are from the plotter of the system. Therefore,
the requirement of visualization can be considered satisfied. The log file created with each
run contains the desired information according to the selected log level. It is, therefore
possible to read all points X/Y that an object had during a run. With a simple code
extension, the logger’s data could be made available for further processing or combina-
tion with another data source. Therefore, the requirement of expandability can also be
confirmed.

Chapter 5

Summary and Conclusions

The main objectives were achieved. The LiDAR interface works as desired. The data is
read from the LiDAR and written to a database to retrieve for further processing. The
heuristic tracking approach also works, as the results show. In more complex situations,
however, errors cannot be avoided due to the single LiDAR properties. The output of
the data is as prescribed in the goals. The data can be extended for combination with
another data source, and a plot is created simultaneously.

During the thesis, especially during tracking development, constant test runs were made
to check how objects are detected. It was important to learn how sensitive the LiDAR
scanner is to certain influences and how many data points it takes to get a reliable result.
In the initial phase, this also led to many trial and error attempts. Many parameters
depend on the LiDAR device and its specifications.

The biggest stumbling blocks were the usage of the SDK and identification in tracking.
The SDK is only moderately documented. Many comments are not written in general,
but Microsoft Visual Studio and some documented steps did not work as described. Sev-
eral requests to Slamtec were needed and answered at the end, but each message took
time, which could have been used further. In the work process, various parameters were
implemented because it turned out that it depends significantly on the environment how
one should set the tracking.

When it comes to identification in tracking, one comes up against the limits of a single
LiDAR scanner. When the object is not visible, one tries to assume information through
movement patterns that cannot be detected or confirmed by the LiDAR. This process can
be very time-consuming and frustrating, as flawless position prediction is not possible.

This thesis offers several options for future works.

• Second Data Source: For this thesis, originally, a WiFi tracking system was intended
to capture the WiFi signal and combine LiDAR and WiFi tracking. Unfortunately,
it turned out that the deployment of the system was more complex than expected
during the work process. One option for future work would therefore be to combine
the two systems that now exist.

35

36 CHAPTER 5. SUMMARY AND CONCLUSIONS

• Second LiDAR sensor: Instead of trying to increase the probability of recovering
an obscured object, a second LiDAR sensor can be used to validate the measured
or heuristically predicted position values. Provided that people’s density is not too
high, reliable tracking could already be ensured with a second LiDAR.

Bibliography

[1] S. Albawi and T. Mohammed. “Understanding of a Convolutional Neural Network
”. In: The International Conference on Engineering and Technology (2017).

[2] Lenz Baumann. “MAC Scavenger - A Passive Method Handling MAC Randomiza-
tion on Mobile Devices”. In: (2020).

[3] CNET. Samsung’s new robot vacuum uses lidar and empties its own bin like a fancy
Roomba. 2021. url: https://www.cnet.com/news/samsung-jetbot-90-ai-new-
robot - vacuum - uses - lidar - and - empties - its - own - bin - like - a - fancy -

roomba/.
[4] Brands Consulting. MAC-Adresse und der Datenschutz â Fingerabdruck des Com-

puters? 2018. url: https://brands-consulting.eu/mac-adresse-und-der-
datenschutz-fingerabdruck-des-computers (visited on Mar. 18, 2021).

[5] Volvo Car Corporation. Next generation Volvo cars to be powered by Luminar Li-
DAR technology for safe self-driving. 2020. url: https://www.media.volvocars.
com/global/en-gb/media/pressreleases/268323/next-generation-volvo-

cars-to-be-powered-by-luminar-lidar-technology-for-safe-self-driving

(visited on Mar. 18, 2021).
[6] A. Filgueira et al. “Quantifying the influence of rain in LiDAR performance”. In:

Measurement 95 (2017), pp. 143–148.
[7] S. Gidel et al. “Pedestrian Detection and Tracking in Urban Environment using

a Multilayer Laserscanner”. In: IEEE Transactions on Intelligent Transportation
Systems 11.3 (2010), pp. 579–588.

[8] M. Gorelick and I. Ozsvald. “Dictionaries and Sets”. In: High Performance Python.
2014, pp. 73–75.

[9] Á. Guerrero-Higueras et al. “Tracking People in a Mobile Robot From 2D LIDAR
Scans Using Full Convolutional Neural Networks for Security in Cluttered Environ-
ments”. In: frontiers in Neurorobotics 12.85 (2019).

[10] J. Han et al. “Road Boundary Detection and Tracking for Structured and Unstruc-
tured Roads using a 2D LiDAR sensor”. In: nternational Journal of Automotive
Technology 15.4 (2014), pp. 611–623.

[11] W. Hess et al. “Real-Time Loop Closure in 2D LIDAR SLAM”. In: IEEE Interna-
tional Conference on Robotics and Automation (2016).

[12] Apple Inc. Wi-Fi privacy. 2021. url: https : / / support . apple . com / guide /

security/wi-fi-privacy-secb9cb3140c/web (visited on Mar. 18, 2021).
[13] InfluxData. Getting Started with Python and InfluxDB. 2018. url: https://www.

influxdata.com/blog/getting-started-python-influxdb/ (visited on Mar. 18,
2021).

37

https://www.cnet.com/news/samsung-jetbot-90-ai-new-robot-vacuum-uses-lidar-and-empties-its-own-bin-like-a-fancy-roomba/
https://www.cnet.com/news/samsung-jetbot-90-ai-new-robot-vacuum-uses-lidar-and-empties-its-own-bin-like-a-fancy-roomba/
https://www.cnet.com/news/samsung-jetbot-90-ai-new-robot-vacuum-uses-lidar-and-empties-its-own-bin-like-a-fancy-roomba/
https://brands-consulting.eu/mac-adresse-und-der-datenschutz-fingerabdruck-des-computers
https://brands-consulting.eu/mac-adresse-und-der-datenschutz-fingerabdruck-des-computers
https://www.media.volvocars.com/global/en-gb/media/pressreleases/268323/next-generation-volvo-cars-to-be-powered-by-luminar-lidar-technology-for-safe-self-driving
https://www.media.volvocars.com/global/en-gb/media/pressreleases/268323/next-generation-volvo-cars-to-be-powered-by-luminar-lidar-technology-for-safe-self-driving
https://www.media.volvocars.com/global/en-gb/media/pressreleases/268323/next-generation-volvo-cars-to-be-powered-by-luminar-lidar-technology-for-safe-self-driving
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://www.influxdata.com/blog/getting-started-python-influxdb/
https://www.influxdata.com/blog/getting-started-python-influxdb/

38 BIBLIOGRAPHY

[14] Kaggle. Data Science Survey - 2018. 2018. url: https : / / www . kaggle . com /

sudhirnl7/data-science-survey-2018 (visited on Mar. 18, 2021).
[15] A. Krause. Introduction to Machine Learning. 2020. url: https://las.inf.ethz.

ch/courses/introml-s20/slides/introml-01-introduction-annotated.pdf

(visited on Mar. 18, 2021).
[16] M. Kutila et al. “Automotive LiDAR performance verification in fog and rain”. In:

IEEE Intelligent Transportation Systems Conferenc (2018).
[17] Google LLC. Privacy: MAC Randomization. 2020. url: https://source.android.

com/devices/tech/connect/wifi- mac- randomization (visited on Mar. 18,
2021).

[18] P. McManamon. “History of LiDAR”. In: LiDAR Technologies and Systems. 2019,
pp. 29–34.

[19] V. Navalpakkam and E. Churchill.“Mouse Tracking: Measuring and Predicting User-
sâExperience of Web-based Content”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (2012), pp. 2963 –2972.

[20] H. Nemati, S. Shahbandi, and B. Åstrand. “Human Tracking in Occlusion based on
Reappearance Event Estimation”. In: Proceedings of the 13th International Confer-
ence on Informatics in Control, Automation and Robotic 2 (2016), pp. 505–512.

[21] C. Premebida et al. “A Lidar and Vision-based Approach for Pedestrian and Vehicle
Detection and Tracking”. In: Intelligent Transportation Systems Conference (2007).

[22] Oxford University Press. heuristic. 2015. url: https://www.oxfordreference.
com/view/10.1093/acref/9780199571123.001.0001/m_en_gb0375970 (visited
on Mar. 18, 2021).

[23] Federal Office of Public Health FOPH. Faktenblatt Laserpointer. 2018. url: https:
//www.bag.admin.ch/dam/bag/de/dokumente/str/nis/laser/faktenblatt_

laserpointer.pdf.download.pdf/2018-02-13_Faktenblatt-Laserpointer_D.

pdf (visited on Mar. 18, 2021).
[24] ROS.org. legdetector. 2021. url: https://wiki.ros.org/leg_detector (visited

on Mar. 18, 2021).
[25] ROS.org. ROS Introduction. 2018. url: http://wiki.ros.org/ROS/Introduction

(visited on Mar. 18, 2021).
[26] J. Scheuner et al. “Probr - A Generic and Passive WiFi Tracking System”. In: IEEE

41st Conference on Local Computer Networks 88 (2016), pp. 71–78.
[27] J. Shackleton, B. VanVoorst, and J. Hesch. “Tracking People with a 360-Degree

Lidar”. In: IEEE International Conference on Advanced Video and Signal Based
Surveillance (2010).

[28] Slamtec. Introduction and Datasheet M1M1. 2019. url: http://bucket.download.
slamtec.com/975678f44875b6cb4db5ecf30202163c8910519b/SLAMTEC_mapper_

datasheet_M1M1_v1.2_en.pdf (visited on Mar. 18, 2021).
[29] Slamtec. Introduction and Datasheet M2M1. 2019. url: http://bucket.download.

slamtec.com/c61c74740d9260bf55b1d849e1dcf46bbcad8477/SLAMTEC_mapper_

datasheet_M2M1_v1.1_en.pdf (visited on Mar. 18, 2021).
[30] Matplotlib development team. Interactive Figures. 2021. url: https : / /

matplotlib.org/3.3.4/users/interactive.html (visited on Mar. 18, 2021).
[31] Matplotlib development team. Working with threads. 2019. url: https : / /

matplotlib.org/3.1.0/faq/howto_faq.html#working-with-threads (vis-
ited on Mar. 18, 2021).

https://www.kaggle.com/sudhirnl7/data-science-survey-2018
https://www.kaggle.com/sudhirnl7/data-science-survey-2018
https://las.inf.ethz.ch/courses/introml-s20/slides/introml-01-introduction-annotated.pdf
https://las.inf.ethz.ch/courses/introml-s20/slides/introml-01-introduction-annotated.pdf
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://www.oxfordreference.com/view/10.1093/acref/9780199571123.001.0001/m_en_gb0375970
https://www.oxfordreference.com/view/10.1093/acref/9780199571123.001.0001/m_en_gb0375970
https://www.bag.admin.ch/dam/bag/de/dokumente/str/nis/laser/faktenblatt_laserpointer.pdf.download.pdf/2018-02-13_Faktenblatt-Laserpointer_D.pdf
https://www.bag.admin.ch/dam/bag/de/dokumente/str/nis/laser/faktenblatt_laserpointer.pdf.download.pdf/2018-02-13_Faktenblatt-Laserpointer_D.pdf
https://www.bag.admin.ch/dam/bag/de/dokumente/str/nis/laser/faktenblatt_laserpointer.pdf.download.pdf/2018-02-13_Faktenblatt-Laserpointer_D.pdf
https://www.bag.admin.ch/dam/bag/de/dokumente/str/nis/laser/faktenblatt_laserpointer.pdf.download.pdf/2018-02-13_Faktenblatt-Laserpointer_D.pdf
https://wiki.ros.org/leg_detector
http://wiki.ros.org/ROS/Introduction
http://bucket.download.slamtec.com/975678f44875b6cb4db5ecf30202163c8910519b/SLAMTEC_mapper_datasheet_M1M1_v1.2_en.pdf
http://bucket.download.slamtec.com/975678f44875b6cb4db5ecf30202163c8910519b/SLAMTEC_mapper_datasheet_M1M1_v1.2_en.pdf
http://bucket.download.slamtec.com/975678f44875b6cb4db5ecf30202163c8910519b/SLAMTEC_mapper_datasheet_M1M1_v1.2_en.pdf
http://bucket.download.slamtec.com/c61c74740d9260bf55b1d849e1dcf46bbcad8477/SLAMTEC_mapper_datasheet_M2M1_v1.1_en.pdf
http://bucket.download.slamtec.com/c61c74740d9260bf55b1d849e1dcf46bbcad8477/SLAMTEC_mapper_datasheet_M2M1_v1.1_en.pdf
http://bucket.download.slamtec.com/c61c74740d9260bf55b1d849e1dcf46bbcad8477/SLAMTEC_mapper_datasheet_M2M1_v1.1_en.pdf
https://matplotlib.org/3.3.4/users/interactive.html
https://matplotlib.org/3.3.4/users/interactive.html
https://matplotlib.org/3.1.0/faq/howto_faq.html#working-with-threads
https://matplotlib.org/3.1.0/faq/howto_faq.html#working-with-threads

BIBLIOGRAPHY 39

[32] H. Wang et al.“Pedestrian recognition and tracking using 3D LiDAR for autonomous
vehicle”. In: Robotics and Autonomous Systems 88 (2017), pp. 71–78.

[33] YAML Ain’t Markup Language. url: https://yaml.org/ (visited on Mar. 17,
2021).

[34] J. Zhao et al. “Detection and tracking o fpedestrians and vehicles using roadside
LiDAR sensors”. In: Transportation Research: Part C 100 (2019), pp. 68–87.

https://yaml.org/

40 BIBLIOGRAPHY

Abbreviations

DB Database
GCC GNU Compiler Collection
GDPR General Data Protection Regulation
IEC International Electrotechnical Commission
LiDAR Light detection and ranging
RSSI Received Signal Strength Indication
SLAM Simultaneous Localization and Mapping
TSDB Time series database

41

42 ABBREVIATONS

List of Figures

2.1 LiDAR Categorization . 6

3.1 Architecture . 14

3.2 Component Diagram . 15

3.3 Flow Diagram . 16

4.1 Snapshot series of a tracking run . 30

4.2 Plot: Two persons tracking . 31

4.3 Plot: Two persons crossing . 32

4.4 Plot: Single Person behind Object . 33

43

44 LIST OF FIGURES

List of Tables

3.1 Configuration Parameters . 18

4.1 Results Overview . 28

45

46 LIST OF TABLES

Listings

3.1 Data Collection Snippet . 20
3.2 Creation of dictionary of static objects . 22
3.3 Comparing points to static objects . 22
3.4 Dividing moving point into objects . 23
3.5 Object Identification . 24

47

48 LISTINGS

Appendix A

Contents of Submission Zip File

Code.zip

The ZIP archive contains the code for the node and sink. The SDK is already included.

Documentation

This folder contains the LaTeX source code of this thesis and therefore also the used
figures.

Literature

This folder contains the referenced papers.

Midterm Presentation

Midterm presentation is included, final presentation is after submission.

Evaluation Protocol

The protocol made during the evaluation is included.

49

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Thesis Outline

	Background
	Passive Tracking
	LiDAR
	Background
	Properties
	Legal situation

	Object Tracking
	Data Read
	Segmentation
	Classification
	Tracking

	Related Work
	LiDAR Categorization
	Existing systems
	Discussion

	LaFlector's Prototype Design and Implementation
	Materials
	Requirements
	Node
	Node controlling/Communication
	Sink

	Assumptions
	Architecture
	Components
	Flow diagram

	Implementation
	Global Configuration
	Node
	Sink

	LaFlector's Evaluation
	Evaluation Setup
	Results
	Scenario 1: Single person
	Scenario 2: Two or more persons not crossing
	Scenario 3: Two persons crossing
	Scenario 4: Single person behind static object

	Limitations
	Discussion

	Summary and Conclusions
	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of Submission Zip File

