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Abstract

Aufgrund der Nachfrage nach Systemen, welche Distributed Denial of Service (DDoS)
Attacken erkennen, analysieren und mitigieren können, ist DDoSGrid entstanden. Eine
Plattform welche Post-Mortem-Analysen von Netzwerkattacken ermöglicht. Der Fokus
lag auf einer forschungsorientierten und erweiterbaren Plattform, welche Merkmale von
Netzwerkaufnahmen extrahiert und durch Visualisierungen einem Benutzer hilft, Attacken
zu erkennen und zu klassifizieren. Jedoch fand bisher diese Erkennung immer manuell
statt, indem der Benutzer die Visualisierungen und Metriken anschaute und dann eine
fundierte Entscheidung traf.

Diese Arbeit erweitert nun die DDoSGrid-Funktionalität, indem eine Machine-Learning
basierte Angriffklassifizierung der Netzwerkaufnahmen konzeptualisiert und implemen-
tiert wurde. Zu den bestehenden Merkmalextraktoren wurde ein zusätzlicher entwickelt,
welcher Zeitfenster-basierte Merkmale erstellt. Diese Zeitfenster von bekannten Attacken
können während der Analyse manuell nach Angriffstyp klassifiziert werden, sodass ein
Modell aus korrekt klassifizierten Attacken entsteht. Dieses Modell kann dann benutzt
werden, um neue Aufnahmen mit verschiedenen Machine-Learning-Algorithmen automa-
tisch zu klassifizieren. Die Applikation wurde mit forschungsüblichen Methoden evaluiert
und stellt sich als sehr effektiv heraus, da die Performance und Genauigkeit mit vergleich-
baren Beispielen aus der Literatur mithalten kann oder sogar besser abschneidet.

In order to provide a solution that aids in analyzing and detecting ever-increasing Dis-
tributed Denial of Service (DDoS) attacks in post, DDoSGrid was created, which offers a
research-oriented and extensible platform that provides visualizations for analyzed traffic
logs and lets a user configure dashboards using these visualizations. However, this anal-
ysis and attack-type detection was until now performed manually, by a user looking at
visualizations and metrics and making an informed decision on what attack vectors could
have been used in an attack.

This thesis expands on the base-idea of DDoSGrid and extends it by conceptualizing and
implementing an extension that allows machine learning based attack-type classification
of the uploaded data sets. In addition to the already existing feature extractors that
DDoSGrid provides, a new extractor is created that creates time-window based features of
the traffic log. These logs can be manually classified, and then added to a machine learning
model, to create a true data set. This model is then used to automatically classify new
data sets using different classification algorithms, in order to get an attack-type analysis
of the traffic log. The solution was evaluated using well-established techniques and proved
to be quite effective, both in terms of performance and accuracy, performing comparably
or in some cases better than the existing literature.
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Chapter 1

Introduction

With an increasing number of network-connected devices, the potential to use these often
unsecured devices in malicious ways grows in a similar fashion. Specifically, Distributed
Denial-of-Service (DDoS) attacks where a variety of devices such as IoT hardware, regular
modern computers or even legacy devices are used to drain resources of targets in an
organized way, have become more frequent and severe in recent years [6]. Naturally, the
consequence of this increase in attacks, is the rising cost of damages caused by them
[24, 6]. In order to protect infrastructures from potentially malicious traffic and clients,
many kinds of defense and analysis systems exist, that aid operators in detecting and
countering these attacks. Since computer-processing power has become cheaper and more
widely available with the introduction of cloud computing platforms, Machine Learning
(ML) techniques have become an attractive option to offer assistance in data processing
and pattern recognition pipelines, targeting unusual network traffic.

1.1 Motivation

Network-based attacks have become much more severe in both their volume and traffic [6],
as well as costly for the targeted network or infrastructure, since service failures downtimes
often lead to losses for the period of unavailability. It is estimated, that the number of
DDoS attacks will double between the years 2018 and 2023, from 7.9 million to 15.4 million
[6]. With the cost of a DDoS attack being approximated to be around $20’000 to $40’000
per hour [4], the need arises to quickly and efficiently detect and mitigate such attacks
at both source and target levels. Current detection systems often analyze network traffic
either on a per-packet basis, to gather information such as source location, connection
duration and connection type, as well as by gathering metrics across all packets, such as
number of connections over time or traffic features clustered by source location. In recent
years, research was conducted that suggests using machine learning techniques could help
automatically identifying the type of DDoS attack performed on a network [30]. For this,
existing network capture data is used, certain features are extracted from them and fed
to the machine learning engine to train the proposed models. New traffic can then be
classified based on these trained models.
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2 CHAPTER 1. INTRODUCTION

However, there are still challenges and opportunities on the research side to be addressed
by both, academia and industry in order to have successful applications of machine learn-
ing in cyber security and on DDoS attacks specifically. Examples of such opportunities
include (a) the integration of ML techniques with insightful visualizations to provide in-
sights for network operators about possible cyber attacks and (b) the analysis of DDoS
attacks to improve the understanding of DDoS attack characteristics in order to improve
the efficiency of proactive and reactive approaches against such attacks. Besides that,
ML techniques can be applied to automate different steps of a post-mortem DDoS analy-
sis, which would be critical when analyzing a huge amount of data as those predicted to
happen in DDoS attacks that incorporate 5G and IoT scenarios.

Network attacks also undergo constant changes in their behavior and the systems they
target and use for their malicious intents. For example, memcached attacks are a new
type of DDoS attack that have been become increasingly popular in recent times [12], due
to the rather new mechanisms on the internet that allow them to occur, namely caching
servers. In order to defend against such network attacks, Intrusion Detection Systems
(IDS) are often used, which monitor traffic, system resources, as well as overall health
of the infrastructure. DDoS detection and mitigation can also be outsourced to other
infrastructures that offer such services, so called off-premise mitigation.

1.2 Description of Work

This thesis reviews the techniques proposed in the literature and develops a protoype
machine learning based attack-type classifier integrated into DDoSGrid, with the goal of
analyzing historic traffic data into different states of attack-types. DDoSGrid is a research-
oriented DDoS attack visualization platform that is extensible and provides feature ex-
traction and visualization of network capture files, primarily PCAP and TCPDUMP files.
Based off of the existing research, a set of features are established that aid in recogniz-
ing different attack-types. A feature extractor is created as part of the DDoSGrid miner
component, that extracts these features from packet captures. Additionally, a machine
learning pipeline is created that uses these features sets for classification and model-
training. A performance evaluation is then conducted to assess whether the prototype is
a feasible tool to detect DDoS attack-types.

1.3 Thesis Outline

Chapter 2 documents the background information relevant to this thesis, such as DoS
attacks, DDoS detection, as well as machine learning. In Chapter 3, an in-depth litera-
ture review is conducted, reviewing and summarizing the existing literature surrounding
ML-supported DDoS attack detection and classification. Chapter 4 handles the selection
of extracted data features and machine learning algorithms, as well as documents the pre-
liminary test runs conducted for selecting the algorithms that will end up in the finished
solution. Furthermore, architectural changes are discussed, detailing new and changed
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components of DDoSGrid. Chapter 5 documents the design and implementation-related
steps taken, to include the ML-module into DDoSGrid. In Chapter 6, a performance
evaluation is held, where factors such as speed and common ML metrics of the automatic
classification functionality as part of DDoSGrid are assessed. Chapter 7 presents a sum-
mary and the author’s conclusions of the thesis, as well as suggestions for future work to
be done.
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Chapter 2

Background

The following chapter discusses the background information regarding the topics touched
upon in this thesis. First, an introduction to Denial-of-Service (DoS) attacks is presented,
along with a discussion of different types and features of such attacks. Then, an overview
of systems and tools that aid network operators in detecting and classifying such attacks is
given. Lastly, machine learning and its most common types of algorithms are documented.

2.1 Denial of Service (DoS) Attacks

In a Denial of Service (DoS) attack, an attacker tries, as the name suggests, to stop a
target from serving certain resources or to stop its operation completely, by overwhelming
the target’s infrastructure [23, 24]. This can be done in many ways, such as by sending
large amounts of specific traffic to the target or by exploiting flaws in frequently used
protocols that leave a node vulnerable. These attacks are often backed by malicious
intent and may bring the attacker some sort of benefit, such as reduced competition. DoS
attacks can be categorized into 2 distinct mechanisms, one being a Buffer Overflow attack
where the target is forced to give up all its resources and capabilities because disk space,
memory or CPU cycles are depleted in some way. The other category is comprised of
Flooding Attacks, where the malicious actor uses up bandwidth of the target by sending
an enormous mount of traffic and/or requests to the target, exhausting its networking
capabilities for honest nodes to connect to the targeted node [7]. Examples for effects of
such attacks include online stores being pulled offline, or other services such as financial
transfers being halted, resulting in potentially large financial losses for the target device
[23, 24].

Distributed Denial of Service Attacks (DDoS) work in a similar way with the key difference
being that the malicious actor does not necessarily use his own machine but a myriad of
controlled computers (so called bots) that execute the attack in parallel [22, 23]. This
results in an orchestrated attack on the target, making it difficult to distinguish honest
nodes from malicious ones, since an isolated source node may not look suspicious at all.
Thus, research efforts in detection, defense and mitigation of such attacks have become

5



6 CHAPTER 2. BACKGROUND

common in recent times [30, 28, 32]. The two general attack categories for DoS attacks
also apply to DDoS attacks, namely the overflowing of buffers (hardware) at the target,
as well as the exhaustion of bandwidth, resulting in a loss of service.

The way an attacker gains control of such a large amount of nodes can vary [22]. Some
botnets, such as the Mirai Botnet exploit vulnerabilities in hardware and software to
push self-spreading malware onto target devices. The Mirai Botnet for example, targets
internet-connected Linux devices such as IoT and other smart devices. By brute forcing
factory passwords and usernames on the devices, which are often easily identified on a
network, many such devices can be infected with the malware in a short amount of time
[17, 18]. Botnets can also be formed voluntarily, as was the case with the Low Orbit
Ion Cannon [16] used by 4Chan-affiliated hackers to target services such as Visa and
Mastercard [8].

One can also differentiate between reflection and amplification attacks [21]. The former
often uses packets that contain a spoofed IP address, namely the one of the target’s
exposed service, and sends them to available services that responds to such requests.
Since the server does not realize that the IP address is spoofed, the response get returned
to the target, resulting in large amounts of responses arriving at the same node, with
the result of it being unable to process all of them. The latter uses specific services
as intermediary nodes that reply with responses that are much larger than the original
request, such as DNS resolvers or memcache servers. This can be done with a comparably
small amount of bot computers that perform these kinds of attacks, since the original
requests get amplified in packet size. Both attack methods can lead to a congestion of
bandwidth or processing resources at the target’s side. [21].

2.1.1 Types of Attacks

The following section describes some of the more frequently used attack types. For the
purpose of clarification, specific attacks are divided into three distinct categories: Volu-
metric Attacks, Protocol Attacks and Application Layer Attacks. In Table 2.1, the most
common types of attacks are presented, along with the categories they belong in and the
most distinct features that can be found in traffic logs of such specific attacks.

Volumetric Attacks: Volumetric DDoS attacks are characterized by the overwhelming
data and traffic that is sent to the target. This volume uses up all the available bandwidth
and results in the offered service being unavailable. Sorted by frequency of occurrence,
volumetric attacks are by far the most common type of attack with a share of about 65%,
according to Arbor [5]. Furthermore, these large amounts of data do not necessarily have
to be generated at the attackers side, since often reflection and amplification techniques
are used, which do not require large botnets to be executed. Examples of such reflection
and amplification attacks include NTP attacks and DNS amplification attacks. In these
attacks, an intermediary service, NTP or DNS servers in the above mentioned, cases
are flooded with many requests that contain spoofed source-IPs in their packets. This
causes the servers to respond to all the requests at the same target location (reflection).
In the DNS amplification case, this response-to-request data ratio is significantly higher
(amplification), resulting in the target’s servers bandwidth being used up, without using
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Attack Type of Attack Traffic Features
SYN Flood Protocol Attack Many open connections on server

side.
High ratio of SYN and SYN-ACK to
ACK packets.

ICMP Flood Volumetric Attack High amounts of Ping and Echo
packets.
High amounts of Ping packets per
source IP.

UDP Flood Volumetric Attack High amounts of ’ICMP Destination
Unreachable’ packets from target.

Ping of Death Protocol Attack Large ping request packets
Teardrop Attack Protocol Attack Heavily fragmented TCP packets,

that clog processing power of the tar-
get node.

SSDP Attack Protocol Attack UPnP responses
NTP Attack Volumetric Attack Large amounts of monlist requests to

NTP servers and high ratio of re-
sponse to request packet size.

Memcached Attack Protocol Attack Large UDP responses to spoofed IP
addresses for small requests to Mem-
cache servers.

DNS Floods Application Layer Attack Large ratio of response to request
packet size in DNS traffic.

DNS Amplification Volumetric Attack Large amounts of traffic sent to
infrastructure-related DNS servers.

HTTP Flood Application Layer Attack Many HTTP-GET or POST requests
for the same resource in rapid succes-
sion.

Multivector Attack Combination Simultaneous or sequential combina-
tion of features mentioned above

Table 2.1: Overview of DDoS Attack Types and Their Features
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as many malicous nodes as in the the reflection attack’s case. Should the attacker have
large amounts of bot nodes that they can use, a simple ICMP Flood or UDP flood where
all nodes bombard the target with ping requests or UDP packets at various ports can be
launched at a target. The target then has to echo the ping request, or in the UDP flood’s
case check, whether it is serving something on that port, and in most cases has to respond
with an ICMP Destination Unreachable packet (often to a spoofed source IP), clogging
its bandwidth as well. A recent trend in volumetric attacks has become using memcached
attacks, where memcache servers are requested to respond with large payloads. However
these payloads are reflected to the same victim. The DDoS attack on GitHub in 2018
was a memcached attack, resulting in the largest attack ever recorded for that time with
a recorded bandwidth usage of 1.7 Terabytes per second [12].

Protocol Attacks: These kind of attacks center around exploiting a characteristic or flaw
in the protocols on the OSI-Layers 3 and 4 (network and transport layers). In comparison
to volumetric attacks, where bandwidth is used up, protocol attacks often cause the
hardware in the target to reach its capacity by using up memory, clock cycles or causing
errors in computation. The attacker uses a botnet to generate as much traffic as possible,
targeting the victim. A simple example of a network protocol attack is the SYN-Flood
attack, where the bots all send TCP-SYN requests to the target, which has to respond to
all of them with a SYN-ACK packet. However, the bots ignore the response and continue
to make SYN request. This causes the target node to be unable to respond to any new
requests, since all possible open connections are used up by waiting for ACK requests from
the bots. Honest nodes will now be unable to request service from the target, rendering it
unreachable. In the case of teardrop attacks, the attacker sends fragmented TCP packets,
which the target is unable to reassemble due to a bug in the TCP/IP protocol. This leads
to a packet overlap which crashes the target. An example of a reflection attack would
be an SSDP attack, which exploits devices that have Simple Server Discovery Protocol
enabled and face the internet. Using the UPnP protocol, spoofed UDP packets are sent to
various SSDP-enabled devices, all responding to the same target, eventually overwhelming
it and causing it to stop serving its purpose.

Application Layer Attacks: The attacks described above all occur on layers 3 or 4
on the OSI reference layer, however it is also possible to achieve a denial of service on
the application layer. The difference in effect these types of attacks have is that not
just network resources are exhausted in the target, but the node’s hardware and external
resources such as databases may also be affected. Additionally, less network traffic may
be required to achieve a denial of service, because of the additional system load the target
generates by itself. A simple example of an application layer attack is a HTTP Flood
attack, where a botnet requests the same resource of a node using either HTTP GET
or HTTP POST requests, requiring all of the target’s resources and making it unable to
successfully handle all the incoming traffic. Similarly, DNS Flood attacks target a DNS
server with requests, rendering it unable to process honest DNS requests. This is often
used for DNS servers that belong to a certain infrastructure or company.
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2.1.2 Multi-Vector Attacks

A large portion of DDoS attacks nowadays are so-called multi-vector attacks [4], meaning
not just one type of attack is used at the same time. this can make detection, as well
as mitigation harder for the defending target, since multiple facets of traffic need to
be analyzed in order to form an opinion on irregular traffic [23]. Often, combinations
of amplification and reflection vectors are used, since the two mechanisms combined can
form massive amounts of data and traffic, which is sent to the target [19]. When defending
against multi-vector attacks, one needs to keep multiple points in mind; All used vectors
need to be identified to effectively combat the attack. The attack may hit on different
layers of the OSI model. The attack vectors are not synchronized [20], meaning the timing
of the vectors can be offset. Lastly, the combination of techniques makes defense in general
more difficult due to resource exhaustion at multiple levels. These points lead to an ever
changing mitigation procedure during the course of an attack [20].

2.2 DDoS Detection and Classification Methods

One major challenge in detecting DDoS attacks is the fact that, although the outcome of
different types of attacks may be the same i.e. the blockage of a service on a network,
the methods that allow this outcome do not necessarily share the same features. As
mentioned in Table 2.1, different characteristics exist for all attack types. This, together
with the fact that attackers use spoofing methods to hide their true identities, require
effective DDoS detection and mitigation systems. Khalaf et al. [30] split DDoS defense
and detection techniques into two distinct classes; Artificial Intelligence-based (AI) and
Statistics-based. AI-based methods focus on building models on previous data that can
predict future data and/or outcomes. The more traditional methods of DDoS defense are
based on statistical models, that analyse current numbers based on previous averages and
use thresholds and rules to decide whether abnormal traffic patterns are occurring on the
server side.

Statistical methods can be further split into parametric and non-parametric methods.
With the former being based on techniques that include threshold-based anomaly detec-
tion, spectral analysis of data and the usage of confidence interval anomalies based off past
data. Disadvantages of these types of DDoS detection include limited support for a wide
variety of possible attack vectors or being better suited for regular DoS attacks instead
of distributed ones. Non-Parametric methods also base their decision on past data, but
unlike parametric methods, they form the rules and patterns themselves in an iterative
manner. Notable examples of non-parametric methods include the Markov Method and
time series analysis. Markov-based systems form their decisions based on event patterns
that occur on the network and evaluate new events on precalculated probabilities of these
events actually occurring. The events are used to form state transition matrices that pre-
dict these probabilities. Time series analyses make use of models that are formed by the
occurrence of events. Should low-probability events appear on the network, appropriate
action is carried-out that filters such events. Drawbacks of non-parametric DDoS defense
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methods are similar to parametric methods, in that they are not suited for a wide variety
of DDoS attack types.

2.3 Machine Learning (ML)

With a rise in malicious attacks on the internet, arose a need to successfully detect and
mitigate such attacks. Not only DoS is a threat on the internet, but also fraud, intrusions
and malware, to name a few. Since the early days of email, and still to this day, spam and
the detection of it, has been an ongoing cat and mouse game between the attackers and
email service providers. Naturally, the goal was to detect spam in the most efficient way,
so automated classifiers and statistical models that collect data from previous spam emails
were used to analyze new emails and classify them as either spam or honest mail [15].
While spam-detection programs were not the first to use machine-learning algorithms, the
amount of available data to train the algorithms offered its application to be a successful
undertaking.

In recent years, with the prevalence of mass data collecting and user tracking, more and
more fields are suited to have use cases for machine learning. Be it for prediction of
user needs based of past data, or the classification of network attacks, the spectrum of
applications is an ever-growing market. Additionally, the companies that are frequently on
government’s radars for questionable practices regarding consumer protection and data
privacy, are the same companies that offer large cloud computing infrastructures with
built-in machine learning suites, so the incentive to use machine learning techniques has
become higher in recent years.

The need to classify these machine learning techniques arose, since various approaches are
available and used today. Not every approach works well for every use case, and some use
cases might not even benefit at all from machine learning.

When working with data sets, we need to distinguish, whether the set is well labeled
and categorized, or not. The type of data set determines what type of learning can be
used in that specific use case. Is the data set labelled, supervised learning techniques
are used, that use the known training data as a resource to classify new test data [15].
An example of supervised learning is as follows: A collection of different rocks is to be
classified by type. In the training data, different rocks are categorized by the visual and
haptic features they present; Some rocks have rough surfaces, while others are smooth.
The rocks have different colors and homogeneity of materials. All these combinations of
features can be used to determine the type of rock. Should a new rock be analyzed, the
combination of its features are now used to determine its type using the data it collected
from the existing collection of rocks. Supervised learning can further classified into two
subcategories; Classification and Regression [15].

Should the input data be neither labelled nor classified in advance, we speak of unsuper-
vised learning, since the algorithm has to find patterns, similarities and connections on
its own. Unsupervised Learning can also be classified into two subcategories: Association
and Clustering [15].
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Figure 2.1: Two examples of classification algorithms. On the left a basic decision tree is
seen, while on the right a linear SVM can be seen, dividing two types of data points. [15]

2.3.1 Classification and Regression

In the example above, the goal of the machine learning algorithm was to classify a new
rock, based on labelled features of previously analyzed rocks. The output of such an
analysis would be a class-based result, such as ”Granite” or ”Sand Stone”. These result
classes can be either binary (True/False, Above/Below etc.) or multi-classed such as in
the rock example. Taking classification-based machine learning into a context of computer
networks, features of network traffic could be the identifying properties for the type of
network attacks. In Figure 2.1, we can see two examples of classification algorithms. On
the left there is a simple decision tree, that splits features on a boolean condition, with
the result being a leaf node that represents a state of the item that is classified. On the
right, an illustration of a Support Vector Machine is shown, where a linear vector divides
two types of data points, here being black and white dots, so that both sides of the vector
contain as many data points as possible.

However, what if the resulting value should not be a predefined category such as a string or
a range of integers? In this case, Regression-based machine learning techniques are used,
where the predicted value should result in a continuous number. Often, these techniques
are using time-based features that can result in the prediction of numbers (Time Series
Analysis) [15].

2.3.2 Association and Clustering

In association-based algorithms, the relations between the different samples are evaluated.
The goal is to determine occurrences of values, when combinations of other values are
also present. This way, combinations of e.g. items in a supermarket basket can predict
additional items that will be put in the basket as well.

When using clustering algorithms such as k-Means on unlabelled data, the goal is to group
the data into clusters that show similar properties. This can be visualized by plotting
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Figure 2.2: An example of k-Means clustering, where data points are clustered around 2
centroids that represent two different groups inside the data set. [9]

two-dimensional data onto a grid and setting central points of possible clusters, so called
centroids. Depending on the location of these centroids, different clusters can be formed
that rely on specific features and similarities of the data points [15]. In Figure 2.2, we
can see that the centroids are placed in a way so that all data points have the minimum
possible distance to their respective centroids.



Chapter 3

Related Work

This chapter focuses on the existing literature and technologies that set the foundation
for this thesis. First, existing approaches in ML-supported DDoS attack recognition are
reviewed and categorized by methods and extracted data set features they use as clas-
sification parameters. Secondly, an introduction to the existing DDoSGrid [1] platform,
upon which our prototype is built is given, followed by tools and services that may serve
as data set providers. From these data sets, the required features should be extracted to
serve our prototype with attack-traffic data, such as DDoSDB [13], DDoS LogSim [14]
and the DARPA intrusion detection tests, performed in 1998, 1999 and 2000 [42].

3.1 ML Applications in DDoS Attack Recognition

In recent years, the use of Machine Learning (ML) techniques has become a popular
research field with many possible applications. With the large amounts of data available
from network captures, the use of these data-focused algorithms may prove to be a viable
technology in detecting network attacks, as opposed to the more traditional methods of
detection. The traditional methods of attack-detection often use statistical models [28],
such as the detection of significant deviations and anomalies in attack traffic [39]. Other
research efforts include using time series analysis [40] and Exponentially Weighted Moving
Average (EWMA) calculation [41]. A drawback of these traditional methods is the need
for thresholds that act as a cut-off to determine, whether a DDoS attack is occurring or
not. These thresholds have to be set manually and may be different for every scenario,
depending on standard network load, network size and service-offered by the target nodes.

In the existing literature, the workflow of the authors evaluating ML algorithms for DDoS
detection can be generalized in the procedure visualized in Figure 3.1. The approaches
differ in the execution of the procedure’s points due to the various data feature and
algorithm combinations that are possible. The first step was the collection of network data
sets. These usually consisted of raw network captures such as Packet Capture (PCAP)
files, or statistical network information in NetFlow format. The origin of this data also
differed, in that some approaches used generated traffic from laboratory network setups

13
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Figure 3.1: Generalized Workflow in ML-supported DDoS Attack Detection

that simulated DDoS attacks over time, and others used publicly available datasets, such
as the DARPA [42] or CAIDA [44] sets which have been used in many DDoS related
research efforts. The next step resolved around the preparation of the data and the
extraction of features that are beneficial in determining the state of the network. Here
again, various approaches were used, such as the distinction of feature sets that calculate
statistical information over time and sets that are categorized on a per-packet basis. Due
to the large amount of possible data in network captures, some used methods to shrink
the data sets by sampling only a fracture of the data sets. Since different ML types
and algorithms were used, the prepared data is converted to a format or data structure
that can be fed into the algorithms. The next step is the division of the data set into
training and test sets, where both sets contained regular and DDoS traffic, so that the
model can be adequately trained. These training sets are then fed to the algorithm to
train the model. Lastly, the test sets are used to evaluate the model using cross-validation
techniques, which focus on metrics, such as accuracy, precision, recall and f1-score. In
general, most approaches achieved very high accuracy values, often above 95%. Other
factors that are considered during evaluation, are the speed of training and testing, as
well as the possibility to use the approaches in real-time, as opposed to post-mortem
analysis.

Table 3.1 provides an overview of notable examples of research efforts in detecting DDoS
attacks. Note that some approaches only had the goal of binary DDoS attack detection,
whereas others focused on detecting specific attack types. [27] evaluated the binary de-
tection, focusing on two ML techniques: Support Vector Machines (SVM) and Deep Feed
Forward (DFF). The two algorithms were compared by the accuracy and classification
times they achieved in a cross-validated evaluation of the models. One distinction they
made when it came to selecting features was, that they extracted two feature sets from the
DARPA data set, namely one set based on time-window characteristics like number of IP
packets, number of different source and destination IPs. The other set was based around
packet-related information, such as packet type, time-to-live of the packet, etc. The total
number of features amounted to 42, which in contrast with other papers is a very large
amount. [37] and [36] only used four and five features, respectively. One possible reason
for the usage of that many features was the fact that the DARPA data set contained
many different DDoS attack types, so the authors wanted to cover all possible variations
in traffic.
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Another approach by Hou et al. [28], evaluated the Random Forest (RF) algorithm’s
accuracy by extracting features from captured network logs in a test network setup. This
data was not in PCAP format like the DARPA set, but in NetFlow format, which focuses
more on statistical measures of the traffic. Evaluation of the model was then performed
using the CIC-IDS2017 datasets [45], which resulted in a very high accuracy of DDoS
detection of 98.6%. Since the data they generated and collected were large amounts of
data, they also experimented with data-sampling techniques to reduce the amount of input
data, while keeping detection accuracy high. Extracted features of the data set included
both pattern- and flow-based features. Their approach to feature extraction was done in
real-time.

[29] proposed and evaluated a DDoS detection solution that aims at preventing attacks at
the source side, in this case from attacks that originate from cloud-computing platforms.
This way, the generated attack traffic should not even leave the cloud-platform’s premises
and be mitigated at the source. They focused on the more common attack types, such as
SSH brute-force attacks, ICMP floods, DNS reflection attacks, and TCP-SYN floods, and
modeled the extracted feature set after these attack types. The final architecture allows
real-time detection of attack traffic. This is achieved via a continuously updating learning
model that is backed up by a pre-trained model. As for ML techniques used, a variety of
different algorithms were evaluated, with Random Forest and SVM achieving the highest
accuracy scores. Evaluation and training was conducted using a test network setup in a
cloud-environment.

One notable example of combining different ML techniques was performed in [35]. By
using a so called ensemble-classifier, the results of a variety of ML techniques are compared
and evaluated against each other, often offering a higher accuracy result than by using
single classifiers [38]. The goal of the work was to create a network intrusion detection
system that can detect DDoS attacks. The most accurate result of the different classifiers
they tested proved to be the ensemble ML solution that combined the results of Neural
Networks (NN), SVM, K-Nearest Neighbor and DT-C4.5 algorithms. The features that
they chose, resulted from an evaluation process where features were grouped by the attack
types they were most likely to detect. However, the final detection scheme was only on a
binary basis.
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3.2 DDoSGrid

DDoSGrid [1] is a DDoS analysis and visualization tool developed at the University of
Zurich. Its main goal is to be a research-oriented platform that allows different user
groups to upload network capture data in PCAP format and study the analyzed data,
using visualizations that are generated during analysis of these files. It is available as a self-
hosted service and consists of a miner component that accepts the data sets, runs them
through existing feature extractors and data miners and produces case-specific output
files. Existing miners provide functionality such as the calculation of the most used ports
at the target IP, or a list of the most common source IP countries. These miners are
designed to be extensible and easy to include in a forked version of DDoSGrid, so that
new use cases can easily be added to the platform. The second component of DDoSGrid
is a web-based front end. It is on one hand, the entry point where users can upload and
manage their data sets, while on the other hand being a configurable dashboard that lets
users visualize their analyzed data sets on a grid. Such a dashboard is visible in Figure 3.2
where a SYN-Flood attack is inspected. Every item in the grid is either a visualization of
a certain metric or a representation of the data set, along with general statistics that were
calculated during data set analysis. The goal for users is to choose visualizations that
are categorized by attack-type they are most likely to identify and guide them to decide
what attack vectors were used in the attack. Setups on this dashboard can be saved and
restored at a later date, as well as exported as PDF files, so the platform is well suited for
applications that require live demonstrations of attack analyses, as well as documentation
of an attack in post.

This thesis will extend the DDoSGrid platform with functionality that has will eliminate
the need for a user to try out visualizations by hand to find out what attack-types were
used and use machine learning approaches to determine the attack vectors. Both the
feature extraction component, as well as the visualization dashboard will be used in this
extension. Additional feature extractors will be conceptualized and implemented to pre-
process the data for the different ML algorithms, while the dashboard will be used to
present the findings of the analysis, in the form of fitting visualizations.

3.3 Data Providers

In order to train the chosen machine learning algorithms, sufficient data sets needs to
be acquired. Different databases and data sets exist on the internet with the purpose of
being studied and analyzed in a research context. Some of these stem from newer projects,
while others have been staples in network intrusion related research.

3.3.1 DDoSDB

DDoSDB [13] is a project from the University of Twente, which has the goal of sharing
network captures and fingerprints from actual network attacks. Security professionals and
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Figure 3.2: A DDoSGrid Dashboard, configured to show the characteristics of a SYN-
Flood atttack.

researchers can download these captures to study and analyze past attacks. It consists
of a web-frontend, that allows the querying of the datasets by certain parameters in the
Lucene querying language. The second component is an ElasticSearch-based database
that stores all the data sets and handles the search-operations. The data sets are stored
in PCAP format, and contains fingerprints and full data sets of network attacks. The
third component is the ddos dissector, which is a CLI tools that generates fingerprints
from network trace data.

Concurrently to writing this thesis, the integration of DDoSDB into DDoSGrid has hap-
pened [25]. This allows the direct import from DDoSDB data sets into DDoSGrid and
makes separate downloading unnecessary. During the development of DDoSGrid, data
sets from DDoSDB were frequently used, making these data sets especially suited for use
in DDoS attack type recognition, since the DDoSGrid miners already understand the data
structure of these data sets.

3.3.2 DARPA Intrusion Detection Evaluation

In 1998, 1998 and 2000, the MIT Lincoln Laboratory in conjunction with DARPA, have
conducted a series of simulated network attacks on a test network infrastructure, with
the aim of providing future research guidelines for detecting network intrusions and DoS
attacks. The raw network traffic captures from these tests are publicly available and well
documented, in terms of which attack types were launched at what point in time and also
offer regular traffic captures of the system, to provide a baseline of what a healthy system
should look like, from a network’s perspective [42].
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3.3.3 DDoS Logsim

Developed at the University of Zurich, DDoS Log Sim [14] is a tool that allows the
generation of DDoS attack data in PCAP format. Based on a configuration file that
contains the attack parameters, the tool generates large amounts of data that contain
SYN Flood of DNS Amplification attacks. These log files were also used during the
development of DDoSGrid, so these generated attacks might also be suitable to extract
features from to be analyzed using machine learning algorithms. The tool was designed
to be extendable, so additional generators could be written for it that suit the needs for
the context of this thesis.
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Chapter 4

Approach & Requirements

This chapter documents the process of selection for both, the features that will be ex-
tracted from uploaded data sets, as well as the machine learning algorithms that will
be used in the prototype to-be-built. As mentioned in the literature review done in 3.1,
various strategies were uses for achieving automatic DDoS attack detection, so we chose
the procedure most fitting for our purpose which is a post-analysis, done in DDoSGrid,
as an extension module.

4.1 Feature Selection

Since DDoSGrid has the goal of aiding in identifying different types of DDoS attacks, using
its specific visualizations, the aim of a ML-supported detection extension should also to be
an automatic attack-type detection, as opposed to just binary detection of an attack. This
requires that the extracted feature set from an uploaded data set contains many features
that indicate anomalies only for one or a few attack types. An example would be the
percentage of TCP-SYN flags set in all TCP packets; A high percentage clearly indicates
that a SYN Flood is occurring in the data set, whereas said feature does not necessarily
help in detecting other attacks, such as UDP-Floods. This can result in a potentially
larger set of features, depending on the number of attack types that should be identified.
However, due to the environment the ML-module will be used (web-application located
on a server), the resulting data amounts are of no concern, both from a memory and
performance standpoint, as the web application is already able to handle large amounts
of data in a short period of time, and the already existing visualization feature sets can
be of similar size, depending on the visualization. Comparing the proposed feature set to
the existing research, it falls in the middle, between small and larger feature-sets. Still,
there are some features that can indicate the occurrence of different attack types, such as
the average packet size and number of unique packet lengths. In regular traffic, packet
sizes can vary quite a bit, resulting in these features being different for every time they
are extracted, while during an attack, these features are recurring many times, indicating
that something out of the ordinary is occurring.

21
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Feature Name Attack-Types
Number of Packets General
Average Packet Size SYN-Flood, Ping of Death
Number of Bytes General
Number of Unique Packet Lengths SYN-Flood
Number of Unique Source IPs SYN-Flood, ICMP Flood
Number of Unique Destination IPs IP-Sweep, UDP Flood
Number of Unique Source Ports TCP-Flood
Number of Unique Destination Ports UDP-Flood, SYN-Flood
Average Inter Packet Interval General
Percentage of TCP Packets SYN-Flood
Percentage of UDP Packets UDP-Flood
Percentage of ICMP Packets ICMP-Flood
Percentage of Other Packets General
Percentage of TCP-SYN Flags Set SYN-Flood
Percentage of TCP-FIN Flags Set SYN-Flood
Percentage of TCP-ACK Flags Set SYN-Flood
Percentage of ICMP Echo Replies ICMP-Flood
Percentage of ICMP Destination Unreachable Messages UDP-Flood
Average Inter-Packet Arrival Time General
Attack Type

Table 4.1: Overview of preliminary relevant extracted features on time-window basis from
PCAP files.

We decided to extract a feature set that is time-window based, as opposed to a packet-
based set, due to the much smaller resulting output file and the accuracy of window-based
feature sets in the existing literature. Putting time-window and packet-based feature sets
into perspective, a time-window feature set always has the same size per window for all
data-sets, regardless of initial size. It only grows in size with each consecutive attack-
window happening in the original packet-capture. This has the result of even very severe
attacks with many packets per time-window, being reduced to a easily managed data set,
that only scales linearly with time. On the other hand, a packet-based data set grows
with each additional packet in the data-set. This can result in the extracted feature-set
being larger in size than the original binary packet capture, depending on encoding and
file format used, since the resulting feature set is just a decoded subset of the packet
capture.

As a starting point, the first three attack-types to-be-detected, were decided to be SYN-
Flood attacks, UDP-Flood attacks and ICMP-Flood attacks. Reasons for choosing these
attack types include the relative simplicity of detection based on simple features, the
availability of well-documented data sets containing these attack types, and the frequency
of occurrence of these attacks in real-life. As different attacks are identifiable on different
layers of the incoming packet, some of the extracted features, such as Average Inter Packet
Arrival Time extract information on the frame-layer of the packet, whereas other features
such as Percentage of ICMP Destination Unreachable, extract information on transport-
layer level (ICMP-Type of a packet). In Table 4.1, an overview of all the features that
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Feature Value SYN-
Flood

Value
ICMP-Flood

Value UDP-
Flood

num packets 20409 1049 46609
avg packet size 54 1064 556
num bytes 1102352 1116222 25932753
num unique packet lengths 4 2 315
num unique source ips 19905 783 1133
num unique dest ips 1 2 1
num unique source ports 17169 3 3
num unique dest ports 1 3 2
avg inter packet interval 27.4 951.4 20.5
tcp perc 100 0.1 0
udp perc 0 0 83.3
icmp perc 0 99.8 16.7
other perc 0 0 0
perc tcp syn 97.5 0.09 0
perc tcp fin 0 0 0
perc tcp ack 2.0 0.09 0
perc icmp echo reply 0 99.8 0
perc icmp dest unreachable 0 0 16.6
attack type 1 2 3

Table 4.2: Extracted Features of one time-frame from different attacks.

are extracted is presented, along with the attack type, they are most likely to identify.

Important to note is the last feature, Attack Type. This feature is represented by an
integer that defines the attack-state of the time-window. For example, a zero in this field
means that there is no attack happening during the time-window, while a one means
that a SYN-Flood is occurring, and so on. In Chapter 5, the setting of this variable is
explained further in both manual and automatic classification modes of the final solution.
In Table 4.2, a sample output of different time-windows are presented. All feature a
different attack occurring at one point in time. In the second column, the fact that a
SYN-Flood attack is occurring is identifiable by looking at the perc tcp syn values and
comparing the num uniqu packet lengths with the num packets values. Only four different
packet lengths were recorded in a total of over twenty thousand packets arriving. This
leads to the assumption of these packets being sent by a botnet, which all send more
or less the identical TCP-SYN enabled packets. Similarly, when looking at the ICMP-
Flood window, a very high percentage of ICMP Echo Reply messages were sent in the
network, leading to the assumption that and ICMP-Flooding attack was launched in the
network. Lastly, looking at the UDP-Flood column, the packets are distributed with UDP
and ICMP packets and the percentage of ICMP Destination Unreachable messages are
unusually high; The usual results of a UDP attack. These time-windows were taken and
extracted from different data sets from different environments, such as the DARPA attack
tests from 1998 and DDoSDB. It is important the the data used for training the model
comes from different scenarios experiencing the same attack circumstances, that way the
model will be able to accurately classify attack types even under very different network
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and infrastructure conditions.

4.2 ML Algorithm Selection

In the existing literature, various machine learning classifier algorithms were used to
automatically classify attacks and/or attack types. The following section describes the
procedure that was undertaken to select algorithms to be used for the DDoSGrid attack
detection module. Summarizing the literature, both simple and complex-to-use algorithms
were used and both types achieved satisfying accuracies in their respective evaluations.
This led us to select the following three algorithms for a preliminary test run, to find out
whether they would be suited for a web-based application, where computing is handled
server-side: Random Forest Classification, k-Nearest Neighbor Classification and Support
Vector Machines.

4.2.1 Random Forest Classification

This algorithm can be thought of as an evolution of Decision Trees (DTs). DTs can be
used for both classification and regression and, even though relying on relatively simple
mechanics, can be used in many different environments. The algorithms revolve around
a binary tree that classifies records according to their properties on a true or false basis,
such as Is value X larger than 10?, which splits the data set into subsets with each further
split. This classification starts from the root of the tree until either there are no further
splits to be done, a leaf node contains less that minimum number of samples, or when the
predefined maximum depth of the tree is reached. The final result is a tree-structure that
represents the leaf nodes as a series of binary decisions, resulting in the classified value
(In our case, the attack-type). Another reason that make them easy to use is the fact
that they do not require normalization of the numerical values, although depending on
the implementation, converting reoccurring strings to one-hot values or integers is often
recommended [15].

Stemming from Decision Trees are Random Forest Trees and the classifiers that make
use of them. So-called Ensemble Classifiers, incorporate many classifiers into one and are
often better performing than their standalone origins. Random Forest Classifiers build
many single Decision Trees independent from each other and build a final tree based
off of the tree nodes by taking the statistical mode and mean of the independent trees
and combining them. Since many of the independent trees would be nearly identical for
the same data set, the trees will all be built using a random subset from the training
data. This also mitigates over-fitting, a common occurrence in regular decision trees by
incorporating many different results of the independent trees. Due to the independent
nature of the individual trees, parallel processing can be used to efficiently build the
model, leading to performance increases. An example of this classification can be seen
in 4.1, where four trees are created and the final result will be decided with a majority
voting. This algorithm was chosen for a preliminary test-run, due to the high accuracies
achieved in the existing literature and the relative ease of configuration and use.
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Figure 4.1: Example of a Random Forest Classification. Different Decision Trees are
created and the final result will be voted on. [10]

4.2.2 K-Nearest Neighbor Classification

A so-called lazy-learning algorithm. As opposed to other algorithms, k-NN does not put
the main computational effort in during model building, but during actual classification.
Generalization of data points is not done in advance when training, but in-context when
new data points are being classified. Thus, the model simply contains all the feature
vectors and their complementary labels. During classification, the new record is plotted
against the available feature vectors and classified according to the k-Nearest Neighbors’
label, as can be seen in Figure 4.2 This method makes it very fast during training, due
to the low processing time required. However classification has to make up for these cir-
cumstances and may take up longer times compared to other algorithms, such as Random
Forest Classification. Another downside to this method includes large file-sizes for the
lazily-trained modules, due to the low effort put into building them. Input and output file
sizes are thus comparable in size. Despite these downsides, this algorithms was chosen for
a preliminary test run due to its ease of use and high accuracy achieved in the existing
literature.

4.2.3 Support Vector Machine

Taking its most plain form into view, Support Vector Machines or SVMs are essentially
a linear classifier. This means that when plotting the data points in an X-dimensional
room, a hyper plane tries to separate the data points into two distinct categories. The
aim of the hyper plane is to find the position, where the maximum-margin of distance
between the plane and the nearest data point on both sides of the plane is achieved. When
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Figure 4.2: Example of a k-Nearest Neighbor Classification. Two features are plotted
against each other, with the dependent variable being a boolean. Depending on which
part of the separation, the new record falls, the classification will be made. [11]

predicting a new value, the feature-vector that should be predicted is plotted against this
graph, falling on either side of the chosen hyper plane, predicting the category the fall
into. Should the data not be cleanly separable, the data points that fall between the hyper
plane and the maximum-margin are penalized against, the so-called Hinge Loss [15].

SVMs allow using different kernel tricks, that shape the form of the boundary lines ac-
cording to the tricks used. Per default, many implementations use a linear kernel trick
transformation, resulting in a straight line across the data points. However polynomial
and radial transformations are also popular choices, as they allow the boundary lines to
curve around data points, potentially resulting in a higher accuracy of results. Very well
suited for high-dimensional data sets, such as the DDoSGrid use case, delivering very high
accuracies. However, due to the highly complex procedure and resulting model, training
can take up large amounts of time and get exponentially more difficult to the power of two,
with each new record added to the data set. This algorithm was chosen for a preliminary
test run, to have a complex algorithm running against the more simpler ones mentioned
in the paragraphs above. As well as test the boundaries of the DDoSGrid use case for
this algorithm, since many features and potentially records are present in the extracted
feature set.

4.2.4 Evaluation of Algorithms

The three aforementioned algorithms were put through an evaluation procedure, to test
out whether they would be well suited to be part of a web application. Factors that
influence this decision include, the performance footprint on the host machine, disk re-
quirements, as well as processing time to both train the model and predict future values,
in this case DDoS attack types. With DDoSGrid potentially running on a lower-spec



4.2. ML ALGORITHM SELECTION 27

server, this test required that the algorithms should perform on a lower footprint when
training the model and predicting values but still achieving satisfying accuracies during
evaluation.

All three algorithms were tested using their implementation from the SciKit Learn Python
package. Accordingly, Python was used for the code-base, since it allows quick implemen-
tation and test cycles, in addition to a full fledged feature set for Machine Learning
applications. SkiKit Learn also allows creating confusion matrices and cross-validation
metrics, that come in handy during evaluation of the trained model at the end of the
procedure. The Python scripts were run inside JupyterLab notebooks, which allow sand-
boxed execution of the scripts, as well as easy handling of input and output files. These
input and output files are both in CSV format for easy handling in conjunction with tools
that produce and read these files, as can be seen in the implementation part of this thesis.

The evaluation procedure for all three algorithm was identical; A manually classified
data set consisting of DDoS attack traffic windows and their features presented in the
previous section, was read by the python script. After converting the CSV file into
Pandas dataframes that allow easy handling of the data, the resulting dataframes were
divided into a training and test set, with the training set consisting of 75% of randomly
picked records. The data set was also split into data frames containing the features and a
vector containing the dependant variable, which in our case was the attack type in integer
format. The attack types that were part of the manually classified data set were No
Attack, SYN-Flood, ICMP-Flood and UDP-Flood, represented by the integers 0, 1, 2 and
3 respectively. The DDoS attack traffic data sets were picked from both DDoSDB and
DARPA data sets to provide different network environments but experiencing the same
attack types. The features from these attack logs were extracted using a new miner as part
of DDoSGrid that extracts all the features presented in the previous section and converts
them to the aforementioned CSV file. Since the DDoSGrid miner component can be run
as a standalone application and allows supplying arguments for the individual miners,
the new miner was developed with the ability to manually classify the data sets into the
correct attack types. More information about the miner development can be found in
Section 5.3. These individually mined attack logs were then concatenated, resulting in
one large CSV file, containing around 6000 records of all 4 different attack states.

After instancing the classifier and, if required, tweaking the options to fit our use case,
the classifiers were fit with the training data to build the model that will be used for
predicting new values. With the model built, the test data set will be supplied to the
trained classifier, resulting in a vector containing the predicted attack types for all the
records in the test data frame. Finally, the confusion matrix is calculated comparing the
truth set with its predicted counterpart, presenting an accuracy score for the classifier.

This process was repeated for all algorithms, with every run having a different model at the
end, due to the fact that the training and test split being done in a randomized fashion. We
also ran tests with features we deemed to be omittable, such as the number of packets and
the percentage of other packet types. Regarding completion times, both Random Forest
and K-Nearest Neighbor classifiers finished building the model, predicting the values and
evaluating the predicted values in the one to two second range, with computing performed
on an average desktop computer. The accuracy for both algorithms resulted in the range
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between 95% and 100%, depending on configuration and algorithm, with RF resulting
higher accuracies and lower completion times, compared to k-NN. The SVM algorithm
had difficulty building the model, due to the complexity given by the number of features
and the amount of records in the data set. This led to the SVM algorithm never finishing
building the model, even after 6 hours had passed. This fact led to the decision of not
including SVM-based classification in the end solution due to the infeasability of it running
on a server machine. Regarding disk usage for the models, the two remaining algorithm
both used very low disk space, even k-NN which is known for having large model-sizes
due to it’s lazy-learning architecture. The input file we supplied was around 470kB in
size for around 6000 records. This file size could even be further shrunk, if we applied a
rounding function to the features that are represented as floating point numbers. At the
time of testing, the miner calculated floating point numbers to 17 decimals.

The result of this preliminary evaluation was the decision of including both Random Forest
and k-Nearest Neighbor algorithms in the DDoSGrid module with the possibility for the
user to choose a preferred algorithm during either upload or analysis time for each data
set. For this test, the model was rebuilt for every test run. In the DDoSGrid module,
the possibility to persist the model across file uploads is an option we kept in mind, but
decided against in the prototype implementation, since the final evaluation in Section
6.3, proved that even for larger models, the processing time is still in a feasible range.
Processing time on the deployed version of the classifier will also be shortened due to the
fact that less steps will be performed compared to the evaluation. Splitting the data set
into training and test set will not be required, as well as creating the confusion matrices
at the end of processing. Due to the relative ease of swapping algorithms, the possibility
to add further algorithms to the DDoSGrid module is there, but further evaluation efforts
should be made before including potentially inefficient algorithms in the program.

Since Jupyter Notebooks consist of Python code for the most part, the relevant code
sections can easily be extracted and placed inside their own Python files, making the
machine learning part of the proposed module modular and separated from the main
DDoSGrid application.

4.3 Extensions to the DDoSGrid Architecture

This sections documents the architectural changes necessary in DDoSGrid, in order to
incorporate the desired ML-supported attack type classification functionality. A short
overview of the existing architecture is given, followed by the definition and description of
the additional modules required and how they interact with each other and the existing
modules. Furthermore, needed changes to existing components are described.

4.3.1 Existing Architecture

As can be seen in Figure 4.3, the architecture consists of a User Layer and a Data Layer. As
the name implies, the user layer is the web-facing interface, where all actions regarding the
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upload, visualization and dashboard arrangement can be carried out. The Data Layer is
what makes data processing and persistence possible. The arrows in the diagram indicate
relationships and data flows between the individual components of the layers.

From a user’s perspective, the web-based interface of the User Layer, is the only point of
access to the application. From here, a user can upload his or her data sets in PCAP or
TCPDUMP format to the application and after processing has finished, analyze the output
of the feature extractors by opening and arranging visualizations on its dashboard. The
visualization module is responsible for that and consists of smaller modules that represent
each individual type of visualization. All data transfers occur through a single RESTful
API with the Data Layer. The requested data gets fed into the Visualization Module
which then represents these data points on the individual Visualizations.

The Data Layer performs all data processing, management and storage-related functions
for DDoSGrid. Through the RESTful API, network capture files are uploaded and first
handled by the File Upload Module. Here, Metadata and the Raw Attack Traces are
extracted and stored into their own databases. After the upload has finished, the Packet
Decoder module retrieves the Raw Attack Trace and starts decoding the trace on a packet-
stream basis. This method is used to prevent memory overflow issues, due to the fact
that PCAP files can be very large in size. The individual packets are then parsed by type
by the Protocol Parser. For all desired packet types, the Observer waits for a specific
packet type and if present, calls the Feature Extractors that await and expect certain
packet types to extract the desired properties. For example, the TCP-SYN miner, looks
at each packet’s TCP-Flag states and creates a statistic that represents the percentual
representation of each state. This is helpful for identifying SYN-Flood attacks, since large
percentage of SYN-Flags being set is a good indicator of a SYN-Flood attack occurring.
The Feature extractors store their outputs in individual files that only contain the mined
features and how they should be visualized, separately from the raw attack traces, though
connected through IDs.

4.3.2 Additional Modules and Their Relationships

In Figure 4.3 the blue elements and arrows in the Data Layer represent the additional
modules and relationships required for ML-supported attack classification. The addition
of such functionality is supposed to be a modular extension to the existing DDoSGrid
codebase, so that it can run with, and without the extension. As before, the user only
interacts with the data layer through the RESTful API, so additional endpoints in the
REST API are required to individually run the ML functionality. A new central node
called the Data Handler is required, as well as a new storage node for ML Model Data
and the ML Algorithm Modules. Additionally, one ore more new feature extractors and
corresponding visualizations are required to extract and visualize the necessary data from
PCAP files.
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Figure 4.3: Existing Architecture, with the new modules drawn in blue.
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Feature Extractors and Visualizations

The new feature extractors should have the ability to extract features over time-windows
and not just over individual packets. This requires that the observer should be able to
call the same miner, with different packet-types and data, in order to to fully inspect
multiple packets inside a time-window of predefined length. The output of this miner will
be stored in the same storage as the other extracted features, but will likely take up more
space because of the number of features extracted. Since each feature extractor requires
one or more visualizations to present the data to the user, new visualizations need to be
created to present the new classification-related data in an understandable manner.

Data Handler

The Data Handler is responsible for retrieving, converting and returning all data, related
to Machine Learning functionality. Since ML applications frequently use file formats
different from web-applications, these need to be converted for ML-use and the result
they return back for regular web-use. It gets called from the RESTful API to start ML-
routines and handles all processes related to that. Since new feature miners are required to
extract the proposed features in Table 4.2, the Data Handler mostly works with the results
from those miners. This means it requires access to the Extracted Features Database.

ML Model Data

Since ML-Applications require a model of true data to perform their classifications, the
DDoSGrid has to store this model data in its Data Layer. For every automatic clas-
sification, this model data is retrieved by the Data Handler and passed to the desired
ML-Algorithm Module that returns a classified data set. However, this model data needs
to be created by true data sets, in order to provide accurate predictions on future data
sets. After a user upload a data set, he or she wishes to manually classify, since the user
knows what kind of PCAP file it is, the ability to add this true data set to the model data
is a requirement. Again this is handled by the Data Handler, since format conversions
and file merging is required.

ML Algorithm Modules

As a starting point, following the preliminary evaluation of algorithms done in Section
4.2.4, the application should allow the selection of different ML-Algorithms. These indi-
vidual algorithm modules should present a modular interface for easy interchangeability
of algorithms. The Data Handler retrieves the model data, along with the data set to
classify to the algorithm module. The automatic classification returns a vector of attack
types, which needs to be merged by the Data Handler with the original data set. A
component that lets a user see statistics about the model, such as distribution of model
attack types and real-time evaluation results should also be provided to the user.
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Figure 4.4: Mockup for selecting the machine learning algorithm during upload.

4.4 Required Changes to the Implementation

The modules and relationships described in the previous sections, will be translated into
real requirements in this section. First we begin with the changes necessary in the front
end part of DDoSGrid. This includes mockups that illustrate the changes required to make
ML-supported attack classification possible. Second, we document the required changes
to the API, accepting calls from the front end. Since new data types are transferred
between front and back end, these flows need to be defined. Third, the new miners and
their integration with the existing parser-observer mechanisms need to be defined.

4.4.1 User Layer

In order to satisfy requirements UL-2, 3, 4 and 5, as seen in Table 4.3, a mockup was
created to showcase the different customization possibilities during the upload process.
These features will be integrated into the existing File Upload Form, to let a user define
what type of classification and algorithm will be used on the file that is being uploaded. In
Figure 4.4, the mockup for the algorithm selection is presented. Using a radio button, the
user can select between all the available ML algorithms on the platform. Additionally, to
satisfy requirement UL-1, a radio button also exists to not perform any ML-classification
at all. In Figure 4.5, the process to manually classify a PCAP file is shown. A user can
add or remove sections containing start and end times, as well as the attack type for each
section. After these parameters have been set, the upload process continues as usual via
the upload button.
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ID Description
UL-1 A user needs to be able to use DDoSGrid without any ML-supported

classification enabled.
UL-2 A user needs to be able to manually classify a data set in order to create

a truly correct dataset.
UL-3 Manually classified data sets can be classified on a file-basis into one

attack type
UL-4 Manually classified data sets can be classified on a section-basis that

allows setting multiple attack types for one file.
UL-5 A user can choose which machine learning algorithm will be applied to

classify the file that was uploaded.
UL-6 Uploaded data sets should indicate the status of classification in the data

set overview.
UL-7 Uploaded data sets should indicate the classification type in the data set

overview.
UL-8 Automatic classification should be started after a file has been success-

fully analyzed by the miner.
UL-9 Data sets that have undergone classification, either manual or automatic

can be added to and removed from the Model Data Set in the data set
overview.

UL-10 Automatically classified data sets can be re-classified, for example to see
possible changes to classification after the model has been extended.

UL-11 It should show in the data set overview, whether the classified data set
has been added to the Model Data Set.

UL-12 There should be a visualization that shows the attack type over time to
inspect the classified data sets.

UL-13 There should be a visualization that shows the total distribution of attack
types to inspect the classified data sets.

UL-14 Data sets that make use of the classification functionality should have
the new visualizations be displayed in a new category called Attack Type
Classification.

UL-15 A new tab on the application should exist to inform the user about statis-
tics and metrics about the machine learning model.

UL-16 A visualization that shows the distribution of attack types in the model
should exist on the machine learning tab.

UL-17 The entire model should be removeable from the machine learning tab.

Table 4.3: Requirements for the User-Layer Part of DDoSGrid



34 CHAPTER 4. APPROACH & REQUIREMENTS

Figure 4.5: Mockup for manually classifying the attack type of a PCAP file.

Requirements UL-6, 7 and 11 can be easily integrated into the existing Data Set List Item,
by adding additional rows, indicating classification type, status and whether the data set
was added to the model.

4.4.2 Data Layer

Taking into account the existing architecture and the new proposed modules, changes to
the existing components need to be done, in order to fit the new modules. The feature
extraction should be able to output multiple files, meaning multiple visualizations for one
miner should be possible, a change from the current implementation that only allowed
outputting a single visualization per miner. Additionally the miner should be able to
inspect multiple packets over a period of time, storing data temporarily from the current
time window. This reduction of packet data into time windows allows for the output
files to only increase linearly, regardless of the attack intensity and length. In order to
allow the manual classification of PCAP files, the system should allow passing attack-type
configuration data through the miner pipeline. This data is stored along the metadata
in its respective database for easy retrieval. This configuration data should allow setting
simple values to classify the entire data set, as well a section-based data structure to
classify a data set in detail. In addition to the current JSON output files that the miners
produce, the miner should also export the machine-learning related data into CSV format,
to be used efficiently by the machine learning pipeline. The JSON outputs do not contain
all the mined features, as they should only contain the necessary data to draw their
respective visualizations.
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For the User Layer and Data Layer to communicate correctly, the right connections need
to be established that provide the new functionality. This includes changes to existing
routes, as well as the addition of entirely new routes. Especially all machine learning
related functionality should be separated from the existing analysis procedure, to provide
a modular separation of functionality in the application.
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Chapter 5

Design & Implementation

The following chapter details the implementation-related processes in a low-level environ-
ment, as opposed to the high-level and conceptual approach detailed in the last chapter.
Originating from the modules in the new architecture, the actual software components
and their relations are documented here, starting with the creation and integration of ma-
chine learning routines inside the existing web-application. Then, changes to the miner
component are shown, that are required to process the new ML-related data and make it
compatible with the Python-based ML-routines. As the new functionality should all be
usable from the web-facing front end, the API also requires additional components. Lastly
the components in the front-end require updates to make use of the new functionality.

5.1 Data Flow and Component Relationships

In Figure 5.1, the DDoSGrid components can be seen, as well as the relations they have
with the produced files as inputs and outputs. The point-of-entry for the file processing
is the Uploader module (1), that takes the original PCAP file and either attack-type
information or classification from the web-frontend and stores this data in their respective
databases. Whether attack-information of classification-information is stored, depends on
whether manual classification of the PCAP file, or automatic classification should be
done. The PCAP Analyzer (2) takes the uploaded PCAP file and, if available, attack-
type information and runs the feature extraction pipeline, where all active miners are
executed. In this example, we focus on the ML Feature Extractor, because its file output
is different from the existing miners. The attack-type information gets added to every
mined window, according to the information given during upload. The full mined feature
set gets stored in a CSV file, while slimmed-down versions of the features get stored in
multiple, visualization-compatible JSON files. If the user chose to automatically classify
the data set, the ML Classifier module (3) uses the existing ML Model Data and the newly
mined ML Features and feeds them through the ML pipeline, creating the attack-type
variables for the new data set, based on the ML Model Data. These attack-types get
updated in the ML Features file, as well as in the JSON Visualization Data, to keep the
visualizations accurate and up-to-date. The Model Handler (4) performs addition and

37
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Figure 5.1: Data flows and relationships between files and components.

subtraction operations on the ML Model Data, and uses the ML Features when new data
should be added to the model.

5.2 Machine Learning Components

This section details the structure and functionality of the machine learning components
in a detailed manner. A set of algorithm components have been created, as well the
infrastructure to create a model data set, which can be enriched with additional data
sets, as well as have specific data sets removed.

5.2.1 Algorithms

As documented in 4.2, the classifiers consist of Python files that use the SciKit learn
library’s implementations of the respecive ML algorithms. It provides well-documented
and feature-rich implementations of the most commonly used machine learning algorithms.
The ease-of-use of the library and the sensible default options, make solving a machine
learning supported task in SciKit Learn an attractive environment for beginners and
experts alike. Due to the similar setup of both algorithms that we found suitable for
inclusion in DDoSGrid, (Random Forest and k-NN) the procedures for all algorithms look
very alike, making the integration of another algorithm a trivial task. The feasibility to
have certain algorithms part of DDoSGrid is thus mainly the product of it’s performance
in both processing requirements and time constraints.

To illustrate an algorithm, as it’s used inside DDoSGrid, we chose to present the Ran-
dom Forest classifier module as code listing 5.1. Three libraries are imported right at
the beginning of the program; sys, which handles the arguments for the program’s in-
put and output file paths, numpy, which is required to handle operations inside sklearn
(SkiKit-Learn) and lastly pandas, which allows complex data structure operations, such
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as importing CSV files as DataFrames. On line 13, an additional library is loaded, namely
the actual classifier, which is in this case a RF classifier from the sklearn library. The
reason why this import is not grouped with the others, is to have an outer program shell
that can be used interchangeably with different sklearn modules, or even different ML li-
braries. Inside the main function, lines 9 to 15 are used to import the model data in CSV
format and convert it to more manageable DataFrame structures. The columns of the file
which are the machine learning relevant values are extracted and split into the features
and the dependent variable. In our case, the dependent variable is the is attack column
of the model data. After importing the classifier class, a new Random Forest classifier is
instantiated and is given the features and the corresponding dependent variables in line
16 to create a trained model.

1 #!/usr/bin/env python3

2 # coding: utf -8

3
4 import sys

5 import numpy as np

6 import pandas as pd

7
8 def main():

9 dataset = pd.read_csv(sys.argv [1])

10 X = dataset.iloc[:, 2:-2]. values

11 y = dataset.iloc[:, -2]. values

12
13 from sklearn.ensemble import RandomForestClassifier

14 classifier = RandomForestClassifier(n_estimators = 10,

15 criterion = ’entropy ’)

16 classifier.fit(X, y)

17
18 toPredict = pd.read_csv(sys.argv [2])

19 toPredictX = toPredict.iloc[:, 2:-1]. values

20
21 toPredicty = classifier.predict(toPredictX)

22
23 for value in toPredicty:

24 print(value)

25
26 toPredict[’is_attack ’] = toPredicty

27 pd.DataFrame(toPredict).to_csv(sys.argv[2], index=False)

28
29 main()

Listing 5.1: Minimal Procedure to import a data set, the training data and apply Random
Forest Classification on it.

In lines 18 and 19, the data set that should be classified is imported and has its features
extracted. The difference to the import of the model-data is that the dependent variable
is produced by the classifier that has been trained. This happens in line 21, where the
features are fed into the classifier, which then returns a vector of dependent variables. In
our case this would be the is attack variable in integer format. The rest of the program
handles the data export. First it is printed, so that the buffer can be read from the API
part of the application which converts the resulting vector into JSON format which is
used for visualizations. Lines 26 and 27 add the new vector to the existing data-set and
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export it as a CSV file, which can then be used further by the machine learning part of
the application.

Configuration of Algorithms

The SciKit classifiers that we used, allowed for many customization options and param-
eter tweaks. For the Random Forest Classifier, we used 10 estimators, meaning 10 sets
of random decision trees are created and compared to each other. We could have chosen
to use more than 10 estimators, however due to the high accuracy and scores, that con-
figuration achieved and the fact that more estimators means more time spent classifying
records, it was deemed not necessary.

5.2.2 Model

In order for the classification to occur accurately, a set of various true data sets is required.
This true set is compiled and used as the base data for the machine learning algorithms
to build their models that will predict future values. In order for DDoSGrid to provide
the functionality to maintain this model, the infrastructure for this maintenance needs to
be created. When classifying a data set manually, i.e. tell the system which parts of the
PCAP file correspond to what attack type occurring, the application stores these manually
classified data sets as single files. A user then has the option to add these separate files to
a central model, where a broad variety of both network scenarios and attack types should
be represented, in order to provide a balanced and accurate prediction result. Adding a
data set performs a simple concatenation operation between the two files (the data set
and the existing model data). After adding a data set to the model data, a user should
also be able to remove it, since an opinion about the truthfulness of an analysis might
change or an error has slipped in during the configuration in the upload form. For this
reason, all data sets added to the model are extended with the internal database id from
DDoSGrid, to make removing entire data sets a simple operation of removing records by
their dataset id. The question arose, whether the model should be persisted, or not. We
decided against persistence, since the evaluation in 6.2 has shown, that even with larger
model sizes, the model building procedure has negligible impact on overall performance.
If the model was to be persisted, the model building step should be performed, everytime
a data set is added to or removed from the model data, since it always has to be up to
date with the internal state of which data sets should be included in the model.

5.3 Miner Component

The miners were extended by one feature extractor that has the task of extracting the
values, presented in Table 4.1. The new ML-Feature miner is different to existing miners
in a few ways. First, since the output information is not focused on a single packet type,
OSI-Layer or connection status, this miner listens to all possible events emitted by the
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packet parser. This means that per PCAP packet, information is persisted until all OSI-
Layers and packet events have been processed by the miner. Once all this information
is processed and stored into variables, the next PCAP packet is processed. This goes
on, until all packets in a time-window of a predefined amount of time in seconds have
been analyzed. When a new time-window starts processing, the stored metrics and data
of the packets are consolidated into a memory-efficient object containing all the relevant
features for that window. In Figure 5.1 we can see the values of the window object before
consolidation, along with the transformation that is applied to create the final window-
based records. Many of the values are arrays, collecting the data of all packets in a window,
which then get reduced to either extract the number of unique items or calculate averages
or percentages. The result is a lightweight object that has the same size regardless of the
amount of traffic in a time-window.

From the command line interface (described in 5.3.1), the parameters for manual classifi-
cation are provided to the miners. This means that all miners can potentially work with
these specified attack-types. For the prototypical implementation however, just the new
ML feature extractor makes use of these parameters. In the case of a single attack-type
specified, all windows in the resulting consolidated form are appended with an attack-type
value. Should multiple types be specified, the miner checks the current window according
to its UNIX timestamp and applies the specified attack-type in integer form. For windows
that are in between sections, the ’0’ attack-type is given, meaning that no attack or an
unknown attack is occurring at that point in time.

The result of the feature extraction is on one hand stored in JSON files, as are the results
from all other miners. These JSON files are used for the visualization part of DDoSGrid.
In the ML feature miner’s case, a Line Chart was chosen as a visualization that shows
the attack type over time. This requires an array of the attack types for the Y-axis and
an array of time-window numbers for the X-axis. This way the change in attack-type
over time is clearly visible. Another JSON file is created to present the distribution of
all attack types of a file in a pie-chart, without any reference to time. For a miner to
output multiple files of different file-types, meant that the export function of the miner
component had to be revised in order to store the files at their correct locations, depending
on format, as well as expect multiple files from the individual miners. On the other hand,
all the time-window features need to be exported into a CSV file that is accepted by
the machine-learning pipeline. Since from this point on, the file could be used both for
prediction by choosing the Automatic Classification option during upload, as well as for
building the model by choosing the Manual Upload option, the resulting CSV has the
same structure in either case.

5.3.1 Command Line Interface

In order to use the miner as a standalone program, the CLI is responsible for accepting
the required parameters such as the PCAP file path, parsing them and provide them to
the feature extractor pipeline. In order to supply manual classification information to
the ML feature extractor, this CLI tool had to be updated to accept a pre-formatted
string that either represents one attack type that categorized the entire PCAP file as one
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Value Type Transformation
arrival time Unix Time of the first

packet in the window
Used for determining wether to skip a
window that is empty

packet sizes
bytes

Array containing the sizes of
all packets

Summed up and used to calculate av-
erage packet size, number of bytes in
window and the number unique packet
lengths

num packets Integer counting the num-
ber of packets in the window

Used to calculate percentages of packet
types

source ips Array containing all source
IPs of packets

Reduced to get the number of unique
source IPs

dest ips Array containing all desti-
nation IPs of packets

Reduced to get the number of unique
destination IPs

source ports Array containing all source
ports of packets

Reduced to get the number of unique
source ports

dest ports Array containing all desti-
nation ports of packets

Reduced to get the number of unique
destination ports

num tcp Integer counting the num-
ber of TCP packets

Used to determine TCP percentages

num udp Integer counting the num-
ber of UDP packets

Used to determine UDP percentage

num icmp Integer counting the num-
ber of ICMP packets

Used to determine ICMP percentages

num other Integer counting the num-
ber of other packets

Used to determine other packet per-
centages

of tcp syn Integer counting the num-
ber SYN flags set

Used to determine SYN flag percentage

of tcp fin Integer counting the num-
ber of FIN flags set

Used to determine FIN flag percentage

of tcp ack Integer counting the num-
ber of ACK flags set

Used to determine ACK flag percentage

of icmp echo
reply

Integer counting the num-
ber of ICMP echo reply
packets

Used to determine ICMP echo reply
percentage

of icmp dest
unreachable

Integer counting the num-
ber of ICMP destination un-
reachable packets

Used to determine ICMP destination
unreachable percentage

arrival times Array containing all arrival
times of packets

Used to calculate the inter-packet inter-
val

Table 5.1: Time-Window values before they are consolidated.
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attack type or a more sophisticated string that allows setting start and end points for
different sections in the PCAP file that all have distinct attack types. In Listing 5.2, we
can see three different possible argument variations for the updated CLI module. In line
2, no attack-type parameters are given, resulting in no manual classification of the PCAP
file to-be-analyzed. On line 5, a simple integer is given, resulting in the entire file being
classified as a SYN-Flood attack. On line 9, different sections of the file are specified
by their UNIX Epoch timestamps. Time-windows that fall in between these timestamps
will be classified as the integer that follows the starting and end time. These sections are
separated by commas, letting a user specify many different sections, all with the same
syntax. The attack-type argument gets parsed and sent to the feature extractors through
the protocol parser.

1 # Starts the feature extraction without any attack -type classification

2 node index.js pcap_path=pcapfile.pcap

3
4 # Classifies the entire file as attack -type 1 (SYN -Flood)

5 node index.js pcap_path=pcapfile.pcap attack_type =1

6
7 # Classifies different sections of the file as

8 # attack -types 2 and 3 (ICMP -Flood and UDP -Flood)

9 node index.js pcap_path=pcapfile.pcap attack_type

=898084694:898084721:2 ,898084778:898084789:3

Listing 5.2: Possible argument variations for the standalone Miner module, integrating
manual classification information.

5.4 API Component

The API part of DDoSGrid required several changes and extensions to accommodate for
the new machine learning functionality. Existing API routes needed some changes to
incorporate the new configuration data sent from the front end, as well as the persistence
layer, storing data set related values. Furthermore a new router was added, handling all
classification related endpoints that were added.

5.4.1 Existing Routes and Persistence

Because classification-related data is transmitted from the user-focused front end to the
API, the upload route had to be extended to accept and process these values. During
upload, a record for each data set uploaded is created that contains meta-data, such
as a generated id, file size, metrics, etc. This record was extended to also include the
classification status, the classification type, the chosen ML algorithm, the attack type
and their section times if needed, as well as whether the data set was added to the model
data set. This allows for the analysis and classification steps of the back end to get these
values from the database, as opposed to temporarily persist them for further API calls.
The endpoint that starts analyzing data sets can now retrieve the attack type(s) from its
internal database.
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5.4.2 New Endpoints

All ML-related functionality is triggered via the /ml route of the API. In order to cleanly
separate the automatic classification process from the analysis step done on the analysis
route, a POST request specifying the data set id was created. Similarly to the analysis
request, after authentication and authorization is done, after which the CSV file containing
the extracted features is fed into the machine learning pipeline. This pipeline includes
the prediction of attack-types, as well as the updating of the existing CSV and JSON files
containing the same values, which are used for the visualization of the predicted values.

Various endpoints relating to information regarding the algorithms and model have been
added as well. One one hand this information is used on the upload form, where a user
can configure the classification. On the other hand it’s used on the newly created Machine
Learning tab in the front end, where these stats are displayed in a collected overview of
the attack-type classification extension. This data includes the available algorithms for
classification, the possible attack types the model is able to predict, and lastly statistics
about the model itself, such as size, the number of data sets inside the model data, and
the total number of records.

A third functionality bundle offer endpoints that allow managing the model data. Adding
and removing specific data sets to and from the model, respectively. The removal of the
entire model data set can also be done. All these model-related operations are done using
Python processes, since it offers easy to use CSV manipulation functions, as described in
the next subsection.

5.4.3 Spawning of Python Processes

In DDoSGrid, the feature miners are started as forked Node.js processes, allowing asyn-
chronous operations to occur. This results in the miners being able to process the data
freely, while not interrupting regular server availability. A similar feature was used to
launch the Python-based machine learning and CSV processing functionality. Using the
spawn functionality of Node.js, other programs can be launched from JavaScript code.
These spawned programs can be supplied with arguments, just like a regular shell pro-
gram. For the machine learning processes the chosen algorithm, data-set, as well as the
model data set can be variable, leading to the API retrieving and passing the needed
values to the routines. The spawned processes can emit regular stdout data, as well as
error information which is listened to from the JavaScript code. This way, error handling
is handled the same as the rest of the API is made possible.

5.5 Front End Components

As described in Section 4.4, the front end part of DDoSGrid needed to be updated to
accommodate for the new functionality. Both on the Dataset and Dashboard tabs, changes
were implemented in different components. First, a visualization that allows displaying
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the attack type over time was created on the Dashboard, followed by modifications on the
upload form and data set tile components on the Dataset tab. Additionally, a separate new
tab was created, along with the ability to toggle all machine-learning related functionality,
to not confuse new or inexperienced users.

5.5.1 Visualizations

The new time-based visualization was created, similarly to the existing visualization com-
ponents. A line chart was chosen to display the possible changing states of the is attack
value in the classified data set. To accurately display the legend, associating the attack-
types with their integer ids, the new endpoint is used to retrieve all possible states, as
opposed to hard-coding them into the component. The structure of the new line chart can
be used to create other visualizations that display other time-based values of the data set.
The values that it contains are arrays with the UNIX-Timestamps of the starting times
of each window, and the attack-type that was either manually entered or automatically
detected for every time-window.

Additionally, a pie chart containing the percentages of each individual attack states was
created, to show, whether certain attack-types occurred at all and which ones occurred for
longer periods of time. The No Attack / Unknown state is omitted in this visualization,
because when uploading longer PCAP files, such as day-long network captures, the most
traffic most likely is comprised of regular network traffic, skewing the visualization. Both
visualizations can be seen in Figure 6.1, which displays an automatically classified data
set that is one day long.

5.5.2 Upload Form

As specified in Section 4.4, the upload form needed to be extended to accommodate for
the configuration of the classification step. If the Extensions toggle is active on the menu
bar of DDoSGrid, the form has an additional three radio buttons the let a user select
the type of classification. Either none, automatic, or manual classification. Should the
automatic classification be selected, a sub menu appears, prompting the user to select
which algorithm should be applied, with a default value already being set. Similarly, if
the manual classification option should be selected, a sub menu appears that first lets a
user specify the attack-type of the entire data set. From here, the user can click the Add
Section button, which switches the look of the form to offer a start and an end time in
UNIX epoch format. This way multiple sections of different attack-types can be specified
for the same file, as can be seen in Figure 5.2. Removing sections is also possible, and if
only one section is present again, the presentation switches to only offering to specifying
the entire file. These form values are persisted in the state, so they can be converted to
the format described in 5.3.1 before being sent to the back end.
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Figure 5.2: The final upload modal, displaying data set that is configured to be manually
classified with different attacks.
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Figure 5.3: Machine Learning Information tab. The extension toggle is active, making
this tab visible.

5.5.3 Machine Learning Information Tab

In order to have a centralized location, where all the relevant information regarding the
machine learning extension can be displayed, a new tab was created in the menu bar.
This tab called Machine Learning, lists metrics regarding the model data, such as total
number of data sets inside the model, the number of records inside the data set, as well as
the file-size of it. All attack-types, recognized by the system are listed as well. This also
includes the internal integer id for the attack types. Lastly, all available machine learning
algorithms are listed that can make use of the model data and predict new attack-type
values. To gather all this data in one place, the new /ml endpoints were used that provide
the required data about the model. In order to give the user an impression of what parts of
the model are made up of which attack types, a distribution graph is created by counting
the content of the model data. This graph is in the form of a cake-diagram, along with a
legend of all states.

The model can also be evaluated from here. When loading the page, an evaluation of
the data set, using a X, Y train and test split is performed and its result are presented
to the user, in form of a true/false matrix for all possible states, as well as a accuracy
percentage. Chapter 6 documents this evaluation procedure in more detail, along with
the system performance evaluation.
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Chapter 6

Evaluation

The following chapter documents the evaluation process that was done, to assess the via-
bility of the proposed and built solution, which was en extension to the existing DDoSGrid
application. On one hand, the system performance in terms of speed and ability to run
large data sets is evaluated. For this multiple systems will be tested, to locate possible
bottlenecks. On the other hand, accepted machine learning metrics will be calculated to
evaluate the overall accuracy of the combination of chosen features, as well as algorithms.
Furthermore, these results will be compared to the existing literature, upon which the
authors conclusions will be drawn. Additionally, a sample output of an automatically
classified data set is visualized and analyzed in detail.

6.1 Data Sources and Model

For the evaluation, it was decided that the classifier should be able to identify 7 different
network states. These were chosen due to their availability from the data sets, as well as
their occurrence in actual attacks. Both protocol and volumetric attacks were chosen, to
provide a balanced selection of attack types.

• No Attack / Regular Traffic

• TCP-SYN Flood

• ICMP-Flood

• UDP-Flood (Destination Unreachable)

• IP-Sweep

• Ping-of-Death

• Portsweep

49
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To train the final model, mixed data sources were used. On one hand, DDoSDB was
used for TCP-SYN Flood attacks and UDP-Flood attacks, since they provide clean and
well documented attack traces. On the other hand, the DARPA Intrusion Detection
Evaluation data sets, provided ample attack data across all attack states that we planned
to classify, including regular traffic of the actual network. Attack logs from the 1998
evaluation that we used, included the entirety of weeks 5 and 6, as they provided well
balanced data sets using all aforementioned attacks, except for UDP-Floods.

The data sets were cleaned up after downloading. That included removing interfering
packages, such as Logical-Link Control and Configuration Test Protocol packages, since
both hace the same source and destination addresses, meaning they only consisted of
internal traffic. The data sets were then split up into their respective attacks, to make
uploading them to DDoSGrid on a category-basis possible. They were uploaded using
the Manual Classification functionality which provides a graphical user interface to select
from a list of attack types. Once all data sets have been uploaded, they were added
to the model, which gradually increased in size, due to the sometimes large nature of
ICMP-Flood and UDP-Flood data sets. On the Machine Learning tab, a graph depicting
the distribution of attack types in the model is calculated, as seen in Figure 5.3. One
issue that we encountered was that due to the nature of some attacks being shorter than
others, they will only occupy a fraction of the number of total records in the model, even
when supplying more attacks compared to others. This is also due to the fact that we
extracted the features on a time-window basis. An example would be to compare SYN-
Flood attacks and Ping-of-Death attacks. The PoD attacks were only mere seconds in
length, compared to SYN-Flood attacks which may last hours. In order to lessen that
gap of distribution percentages, the idea of removing duplicates in the model arose. The
results of this experimental change is detailed in Table 6.4.

Something we noticed was also was that certain attacks, which can be categorized as
DDoS-supporting attacks, can be employed in a noticeable and in stealthy ways. For
example IP-Sweeps and Portscans can either be done slowly, e.g. pinging an address
or a port only every few seconds, or all at once, resulting in higher Destination Ports
and Destination IPs features after being mined. We chose to only include the data sets
containing the noticeable occurrences of these attacks, as the stealthy occurrences can be
mistaken for either regular traffic or other attacks altogether.

The final model had a total length of 55’349 records and contained 18 datasets, with most
of them containing two to four attacks. The model had a size of 8.9MB, which was only
a fraction of the original datasets that were often gigabytes in size.

6.2 Performance Evaluation

To evaluate the performance of both the new miner, as well as the classification procedure,
a time-based evaluation was performed. This process was conducted on two different
systems with different specifications and architectures to gauge how much of a difference
in performance these systems provide. Data sets of different lengths and traffic volumes
will be fed into the two procedures to simulate real-case scenarios. For the classification
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Computer CPU RAM OS
Desktop Intel 4770K @ 4x4.0GHz 16GB Arch Linux
RaspberryPi 3 B Broadcom @ 4x1.2GHz 1GB Raspbian

Table 6.1: The two computers used to run the performance evaluation.

evaluation, the same model data set will be used as in section 6.3. The computers used
for these tests can be seen in Table 6.1, with the first machine to run these performance
tests is an Intel-based desktop computer running Arch Linux. The other is a RaspberryPi
3+ running Raspbian. The data sets that will be fed into the new feature extractor are
as follows:

• One hour-long SYN-Flood Attack (230’630 packets of 60 Bytes)

• Half hour-long ICMP-Flood Attack (1’659’612 packets of 1066 Bytes)

• 45 second-long UDP-Flood Attack (1’410’972 packets of varying sized between 400
and 3000 Bytes)

The built-in performance test script of DDoSGrid will be used to single out the perfor-
mance of the Machine Learning Feature Extractor miner, which allows setting multiple
PCAP files and the number of iterations that should be made at launch. It will compute
the average speed and peak memory used, the miner has taken to analyze the file and
mine all required features. The results of the analysis evaluation can be seen in Table 6.2.
It is quickly visible that the RaspberryPi performed significantly worse than the Desktop
computer. This can be attributed to many factors aside from the obvious CPU and RAM
differences. For one, the PCAP files were loaded from an SD Card that has significantly
lower read and write speeds, compared to the Desktop’s SSD storage, leading to less
packets being transferred from storage to RAM. Second, the RAM of the RaspberryPi
seemed to hit a cap at 10MB of heap memory used. This could either be bottle necked
by the aforementioned storage speeds or CPU power. We believe that the Pi’s analysis
speeds could be improved by switching to a USB-mounted storage disk or using network
storage, to not be limited in that factor. Looking at the Desktop’s analysis speeds, we get
a better picture of how resources are used in the miner. While being comparable in total
packet numbers, the UDP-Flood and ICMP-Flood both had different analysis speeds and
RAM usage. What leads to this difference is the intensity of the attack. Since the UDP
attack only lasted for 45 seconds but has a similar amount of packets transferred, the
time-window calculation is much more processing intensive when it comes to calculating
metrics such as the total number of source IPs per time window. Comparing the Machine
Learning Feature Extractor miner to existing ones running on the same machine, they
only performed about 10-20% worse in terms of speed, depending on the use case, despite
processing packets on multiple OSI layers.

The classification performance evaluation was set up in a similar way as the analysis
evaluation. However, the three PCAP files were already analyzed in advance and fed
into the Python routines that handled model building, classification and writing of the
new data into the data set’s analysis CSV file. Looking at the performance difference
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File Computer Speed Memory
SYN Flood Desktop 2829ms 32MB
UDP Flood Desktop 3822ms 84MB
ICMP Flood Desktop 3033ms 46MB
SYN Flood RaspberryPi 77’309ms 10MB
UDP Flood RaspberryPi 69’256ms 10MB
ICMP Flood RaspberryPi 116’513ms 10MB

Table 6.2: Elapsed time and memory consumption of the feature extractor, for both
computers and all three data sets.

File Algorithm Computer Speed Total Speed Classification
SYN Flood Random Forest Desktop 651ms 27ms
SYN Flood k-Nearest Neighbor Desktop 1247ms 204ms
SYN Flood Random Forest RaspberryPi 8457ms 319ms
SYN Flood k-Nearest Neighbor RaspberryPi - -
UDP Flood Random Forest Desktop 638ms 5ms
UDP Flood k-nearest Neighbor Desktop 1051ms 7ms
UDP Flood Random Forest RaspberryPi 8121ms 44ms
UDP Flood k-nearest Neighbor RaspberryPi 4387ms 620ms
ICMP Flood Random Forest Desktop 642ms 17ms
ICMP Flood k-Nearest Neighbor Desktop 1115ms 61ms
ICMP Flood Random Forest RaspberryPi 8322ms 181ms
ICMP Flood k-Nearest Neighbor RaspberryPi - -

Table 6.3: Elapsed time of the classification process, detailed for every file, algorithm and
computer combination.

between Desktop and RaspberryPi, the difference in file-loading times once again becomes
visible, as well as the CPU and RAM throughput differences. In two cases using k-NN
classification on the RaspberryPi, the process was killed by the operating system, either
by using too much RAM or locking up the system, so no completion times are available
for these tests. This makes sense, since k-NN is a memory-consuming process, especially
with the large model and number of features in the data sets. Comparing the classification
speeds under the same circumstances (Algorithm and Computer), it is apparent that
the actual classification step only makes up for a fraction of the total processing time.
Importing the and building the model of around 50’000 records takes up around 651ms
in the Desktop’s Random Forest classification evaluation, while actual classification only
took 27 milliseconds. Still, the UDP Flood classification is the fastest, as it only contains
45 records for each second of traffic, while the SYN-Flood and ICMP-Flood files contain
around 1500 and 3100 records, respectively.
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6.3 ML Metrics Evaluation

In this section, a comprehensive evaluation is performed with the aim of reaching a con-
clusion about the system’s viability as an automatic DDoS Attack Type Classifier. For
this, a model is trained using data from different data sources that include a variety of
DDoS attack types. This also includes regular traffic, so that the system does not acci-
dentally classify regular network states as attacks. Two machine learning algorithms were
evaluated; Random Forest Classification and k-Nearest Neighbor Classification, to show
a possible difference in overall accuracy across different methods. The model was cross-
validated using a 80% Train and 20% Test Split. This cross validation was performed ten
times, with a randomized data set split. The reported results in form of Precision, Re-
call, F1-Score, and Accuracy, the evaluation procedure was run twice, once with removed
duplicates in the data set and once with duplicates kept. The results of each evaluation
run are displayed as macro averages and as weighted averages, due to the model data set
not being balanced in terms of attack types represented. Another note, the accuracy was
calculated by rounding a floating point value, while Precision, Recall and the F1-Score
were calculated by averaging percentage integers.

Looking at the results in Table 6.4, the Precision, Recall and F1-Score in all unweighted
tests reached 100% from which we can tell that the system performs very well with attack-
types for which many records exist in the database. In this test the majority of records
consisted of regular traffic, SYN Flood Attacks, ICMP Flood Attacks and UDP Flood
attacks. Even though not all attack states were classified correctly, the large ratio of
attack types that were classified 100% correctly to falsely classified types still averaged
out to 100%. When comparing those values to their weighted counterparts it becomes
clear that the system had trouble classifying attacks that were not well represented in
the data set, such as IP Sweeps and Port Sweeps. We think that if the data set had
more records of these underrepresented attack types, the metrics could be closer to their
unweighted counterparts. The experimental test to see whether removing duplicates in
the model data set proved to be fruitful, as all test that had duplicate records removed,
performed better than their counterpart that kept the entire data set. Duplicate records
shrunk the model data to 43’714 records which is a 21% reduction in length. Comparing
Random Forest Classification with k-Nearest Neighbor Classification in our case, Random
Forest performed significantly better in the weighted result scores. This is due to the fact
that the Random Forest Classifier manages to better correctly classify low-occurrence
attack types compared to k-Nearest Neighbor Classification. However both algorithms
performed equally well in classifying the well-represented attack types in the model.

6.3.1 Findings and Discussion

In the existing literature [28] achieved an accuracy of 98.6% with Random Forest classifi-
cation, however no other metrics were presented, except for the false positive rate of 2.4%.
They used a combination of flow-based and pattern-based features for their classifiers. In
[29], the authors achieved a Random Forest classification accuracy of 99.53%, precision of
100%, recall of 99.12% and and F1 score of 0.9956 in their joint detection solution, which
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Method Accuracy Precision Recall F1-Score
RF with Duplicates 99.9% 100% 100% 100%
RF with Duplicates (Weighted) 95.1% 92.3% 92.4%
RF without Duplicates 99.9% 100% 100% 100%
RF without Duplicates (Weighted) 97.9% 95.9% 96.5%
k-NN with Duplicates 99.9% 100% 100% 100%
k-NN with Duplicates (Weighted) 83.7% 81.2% 82.3%
k-NN without Duplicates 99.9% 100% 100% 100%
k-NN without Duplicates (Weighted) 85.4% 83.5% 84.3%

Table 6.4: Results from the metrics evaluation, after cross-validating the built model.

involved multiple hosts analyzing traffic. Suresh [32] achieved an accuracy of 96.6% using
k-Nearest Neighbor classification and an F-Score of 0.969. Comparing these values with
the ones we achieved, we can place our performance, especially from the RF classifier
among these previous research efforts.

Judging off of the performance difference between the two test devices, we believe that
further optimizations to both the code base and test infrastructure could be done to
tighten the gap between the two. Better RAM usage, improving read and write speeds
using other storage media, as well as persisting the model could improve performance on
lower-end hardware and virtual machines. Another change that may improve the metrics
of the solution would be to use a more balanced model data set in terms of attack-types
represented.

Still, the new feature extractor’s performance is comparable and sometimes even faster
than other existing miners, meaning on hardware where DDoSGrid already performed
well, the new feature extractor is a non-conflicting addition to DDoSGrid’s functionality.
The same holds true for the classification pipeline, which produces results in a quick
fashion, sometimes even without a user noticing an additional operation is performed.

6.4 Case Study: Visualization Analysis of Test Data

Set Output

In order to evaluate the visual output of the classification pipeline, a data set from the
DARPA intrusion tests was chosen. This data set was recorded on Friday of the seventh
week of the 1998 tests. As can be seen in [43], in this attack, the test environment was
scheduled to be the victim of two Neptune (TCP-SYN Flood) and one Smurf (ICMP
Flood) attack. It also contained a Back attack, however the model was not trained to
detect this attack. It was classified using the same model as was used to evaluate the
performance and accuracy of the application, using Random Forest Classification. It is
important to note that the time-zone difference from the authors and the documentation
differs by four hours, meaning all time-comparisons will be formatted as Author Time
(Documentation Time). We first take a look at the visualization on the left in Figure 6.1,
which plots the DDoS-Attack type over time. Note that the X-axis is not necessarily a
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Figure 6.1: Visualizations, representing the test PCAP file, to show an over-time analysis
and the total distribution of attack types.

linear time graph, as the analysis omits time-windows that do not contain any traffic. This
results in more emphasis given to time-slots which are attack-heavy. The visualization is
programmed to give the individual dots on the graph a very high opacity when the data
set contains many data points, to better illustrate clusters of possible attack locations, as
data points plotted close to each other will appear less opaque than single points.

Following the documentation of the tests, the first SYN Flood attack occurred at 13:48
(09:48) and lasted about an hour until 14:39 (10:39). During this attack, the classification
clearly detected a long sequence of SYN-Flood attack states in the PCAP file. During this
time, only a small amount of traffic was classified as Regular Traffic, leading us to believe
that this attack was quite severe in its intensity, leaving little space for other traffic to
reach the infrastructure. Throughout the entire file, a few individual data points falsely
classify regular attack traffic as SYN-Flood traffic, due to the fact that HTTP traffic
might share some characteristics with SYN-Flood traffic, such as a high TCP packet
concentration. The second attack appeared much later in the day, at 21:16 (17:16) in
form of a Smurf attack that lasted only for around 70 seconds. However it is visible on
the visualization, because of its attack intensity. This means that the classifier classified
most, if not all, the existing time windows as ICMP-Attacks, resulting in the darkened
color of the data points in the visualization. The third attack occurred at 23:21 (19:21)
again in the form of a TCP SYN-Flood attack. This time, the attack was not as severe
as the first one, since it was launched in bursts of attack floods. This is also represented
in the visualization, since both No Attack and SYN Flood Y-values contain many data
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points, indicating that regular traffic did occur in between bursts of attacks.

Looking at the right visualization in Figure 6.1, a total distribution of the classified attack
states is visible. In the figure, the No Attack portion has been hidden, to show what parts
of the analyzed and classified PCAP file contain which attacks. The majority of time
windows was classified as SYN-Flood attacks, while a small portion of the time windows
were classified as ICMP Floods This is accurate, comparing these results with the time-
based visualization and the documentation of the DARPA intrusion tests.



Chapter 7

Summary, Conclusions and Future
Work

This thesis assessed the existing literature, regarding machine learning supported DDoS
attack detection and classification and put it into perspective regarding types of machine
learning algorithms, traffic data and overall feasibility of pursuing certain methods that
may be included in DDoSGrid as a modular extension. A set of features was decided on,
that should aid in classifying multiple attack types, including regular traffic. While certain
features are only used for one attack type, others allow identifying multiple different attack
types. The combination of those two feature types proved to be fruitful when testing
three machine learning algorithms in a preliminary test-run with data sets from different
sources and the aforementioned features, upon which models were built. Out of the three
algorithms, two were decided to be suitable to be included in DDoSGrid, namely Random
Forest Classification and k-Nearest Neighbor classification; Two algorithms that provided
low classification times and high accuracies, even with a limited model data set. In order
to build a classification module into DDoSGrid, it’s existing architecture had to be revised,
which entailed changing the purpose and functionality of some existing models and the
addition of new ML-related modules, in order to keep the proposed functionality modular
from the main application.

Implementation-wise, a new miner was created that extracted the required features from
data sets on a time-window basis and on multiple OSI layers, something the existing
application did not yet do. For the machine learning pipeline, python processes were
spawned in a similar fashion to the asynchronous miners, letting the system continue its
intended purpose, even while analyzing and classifying data sets. In order to populate
the model data set from the web-application, manual classification had to be possible,
since the model data set should consist of true data. This can be done from the front
end, along with the functionality for automatic classification. A new tab was also created
that allowed displaying metrics and statistics of the model to be displayed, along with
functions that relate to the model as a whole, such as deleting it. For the new miner
outputs, new visualizations were created that aid in displaying the new extracted features
and metrics, such as over-time visualizations of the attack type, or the distribution of
attack types inside the entire data set.
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Lastly the classification processes were evaluated in both performance (i.e.) time dimen-
sions, as well as calculating common machine learning related metrics, such as accuracy,
precision, recall and f1-score. Different data sets, algorithms and devices were used for
this evaluation in every possible combination, to show how the program performs under
different circumstances. As a whole, the evaluation results proved to be quite favorable,
in line with the existing research or performing even better, in some cases.

7.1 Conclusions

Comparing the results of the evaluation part of this thesis with the existing research, we
proved that machine learning based DDoS and network attack detection is a viable option
when sufficient data of past attacks is provided. The results proved that very high accu-
racies, as well as other machine learning metrics can be achieved, even when classifying
multiple different attack types. One issue with the current implementation that we found
was classifying attacks that are very short time-wise. Since these short attacks only pro-
vide a limited number of time-frames or records in the model, less information about them
is known, making their classification less accurate than with longer attacks. Additionally,
visualizing these short attacks can also be a challenge, especially when analyzing a data
set that was recorded over the period of a day, or more. Even when correctly classified, the
data points only show up as very small specks on the over-time classification and might
be ignored by a user or accepted as falsely classified records. The solution to this problem
and visualizing day-long data sets in general could be solved by implementing clustering
methods, that either use the most-occurred attack-type over a period of time or by using
anomaly detection that analyze the time frames before and after for each record.

The extension to DDoSGrid works well with the existing functionality it already provides,
making it a well-integrated module. This thesis also showed the extensibility of DDoSGrid,
a goal that was set during conceptualization and development of the base DDoSGrid
application [1]. Minor tweaks were necessary to the existing code base, however most
of the changes that were made, could be also used by the base functionality or future
extensions, such as the ability to export multiple files per miner. The tab-based interface
also makes adding new functionality as a separate module easy.

7.2 Future Work

Since DDoSGrid and its development is an ongoing project, certain features would be
well suited to be included or tested in future installments of the application, especially for
the machine learning components. Since ML algorithms offer a plethora of configuration
options, configuring these from the front end would be a useful feature, especially when
implementing new algorithms. Tweaking their parameters from a GUI lets a user play
around with different configurations and evaluating their results at the same time from
the Machine Learning tab. This would have to be implemented specifically for every
algorithm and imply changes from the front-end all the way to the ML pipeline. Naturally
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the inclusion of more recognized attack-types is a desired feature, due to the ever-changing
landscape of DDoS attacks. Depending on the characteristics of attacks, these new attacks
may or may not need new features extracted from the traffic, so a case-by-case analysis
and accuracy evaluation might be needed to know if new extracted features are required.
Another feature that could be required, once significant data volumes are uploaded to
an active DDoSGrid instance would be model persistence. For this prototype the need
was not seen to include this functionality due to the processing times being of reasonable
amounts. One thing we encountered once we uploaded many datasets for the evaluation
was that the list of data sets could grow rather long and unintuitive. A way to combat
this would be to include filtering and sorting options to the Data Sets tab.

Since there are efforts to take the DDoSGrid platform and use it as a general cyber se-
curity analysis tool [25, 26], the possibility of using its machine learning functionalities
becomes an attractive option. Depending on the use case though, the extracted feature
set and analysis pipelines would have to be changed drastically. An investigation into
trustworthiness levels of ML approaches can also be made in the context for DDoSGrid
since there are demands in literature, such as the research and implementation of fea-
tures that helps to investigate key aspects such as fairness, robustness, explainability, and
accountability of an AI system for cyber security.
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Appendix A

Installation Guidelines

This chapter documents how to locally install a DDoSGrid instance with the added ma-
chine learning capabilities. Note that the implementation may change in the future, so
please check with the most up-to-date instructions on the GitHub repository [46]

A.1 DDoSGrid Installation

The repository should be cloned first, which contains all DDoSGrid-related components.
Either clone the most recent version from GitHub, or use the provided code from the CD.

1 git clone git@github.com:ddosgrid/ddosgrid -v2.git

The following programs should also be installed on the target machine. For installation
guidelines, refer to the official documentation of the respective programs.

• Node.js

• npm

• git

• Python, Version >= 3.7

• libpcap

• SSH Client

A.1.1 Machine Learning

First, all machine learning related functionality should be installed. For this, change into
the /ml directory in the repository and install the Python packages using

1 cd ddosgrid -v2/ml

2 pip3 install -r requirements.txt
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A.1.2 Miner

The miner should be installed before using the API module and can be done by via:

1 cd ddosgrid -v2/miner

2 npm i

A.1.3 API

Change into the API module’s directory, and install it the required components.

1 cd ddosgrid -v2/api

2 npm i

Then, in order to locally run the API and it’s connection to a running OAuth instance,
use the provided script to connect to the CSG’s service. Note that you may require a
working account and your IP or domain might need to be added to the allowed hosts by
a CSG member.

1 ./ scripts/start_dev_server.sh

A.1.4 Front End

The last step is installing and running the front end part of DDoSGrid. First, install all
required dependencied with:

1 cd ddosgrid -v2/frontend

2 npm i

Then, run the program, by executing:

1 npm run serve

Which runs the application locally and listens to port 8081.

A.2 Evaluation

In order to reproduce the evaluation of the feature extractor, as well as the classifier, scripts
are provided that aid in evaluating these components. Make sure that the components
have been installed, as instructed in Section A.1
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A.2.1 Feature Extractor Performance

Inside the /miner directory, a file called performance-test.js is located. Inside, the feature
extractors that should not be evaluated can be commented out, or removed from the file
in the require statement, starting at line 2. In order to only perform the evaluation for
the new miner, only leave the MachineLearningFeatureExtraction miner in the require
statement. To start the evaluation, use the following statement:

1 node performance -test.js pcap_path="path/to/pcap/file.pcap"

The results will be printed on the command line.

A.2.2 Classifier Performance

For the classifier performance to be evaluated, a well-built model is required. We supplied
the model in the CD content, to be used for classification and testing. We also included
Python scripts that accept this model and a PCAP file that should be classified and
output the average completion times of the classification.

To use these scripts, inside the /ml directory you will find a folder called evaluation/per-
formance that contains one file for every machine learning algorithm. Use these files in
the following way:

1 python3 algorithm_eval.py /path/to/model/data/training.csv /path/to/pcap

/file.pcap

This will run the execution 10 times and print the average results on the command line.

A.2.3 Classifier Metrics

Similarly to the classifier performance, the classifier metrics evaluation can also be repro-
duced. In the /ml directory, there is a folder called evaluation/metrics. Inside, evaluation
scripts are located for each algorithm. Inside the scripts, a comment should point to the
location where the duplicates inside the model can be determined to be omitted or kept
in. Run the evaluation as follows:

1 python3 algorithm_eval.py /path/to/model/data/training.csv

This prints the metrics in the terminal, in both weighted and unweighted forms.
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Appendix B

Contents of the CD

The CD contains the source code for DDoSGrid and its performance evaluation scripts,
A sample model to be used for the evaluation, as well as the original data sets that make
up the model
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