
DeepEq - An educational platform to help students
develop a mathematical intuition for deep learning

Master’s Thesis

People and Computing Lab
Department of Informatics
University of Zurich

by
Peter Giger 14-915-383

Supervised by
Prof. Dr. Chat Wacharamanotham

Prof. Dr. Dominik Petko

Submission: 21 January 2021

iii

Contents

Abstract ix

Acknowledgements xi

1 Introduction 1

2 Related Work 5

3 Deep Learning Theory 7
3.1 Perceptron . 7
3.2 Loss Function . 9
3.3 Gradient Descent . 10
3.4 Backpropagation Theory . 10
3.5 Backpropagation Implementation . 11

4 Design And Implementation 15
4.1 Tutorial . 15
4.2 Interactive Component . 20

5 Evaluation 25
5.1 Method . 26
5.2 Results . 27

5.2.1 Pedagogical Aspects . 27
5.2.2 Usability Aspects . 32

6 Summary 35
6.1 Limitations . 36
6.2 Future Work . 36

A JavaScript Implementation Of Backpropagation 37

B Tutorial 43

C Questionnaire 55

iv Contents

Bibliography 59

Index 63

v

List of Figures

1.1 DeepEq User Interface . 2

3.1 Perceptron . 8
3.2 Backpropagation Example . 12

4.1 Interactive Perceptron Structure . 19
4.2 Interactive Perceptron Idyll Code . 19
4.3 Interactive Perceptron With Sliders . 19
4.4 Interactive Component . 20
4.5 Example - Vanishing Gradient Problem . 21
4.6 Example - Large Weights . 22
4.7 Integrated Code Editor . 23
4.8 Preliminary Prototype . 23

5.1 Pre-Post-Understanding Comparison . 27
5.2 Interactive Equations . 28
5.3 Open-Ended Activation Function . 29
5.4 Perceptron Representations . 30
5.5 Backpropagation Thoughts . 31
5.6 Tutorial Visibility . 33
5.7 Zoom And Scrolling Behavior . 34

vii

List of Tables

5.1 Participant Demographics . 26
5.2 Participant Questionnaire Results 7-point Likert (1: Strongly Disagree 7:

Strongly Agree) . 32

ix

Abstract

Understanding the flow of gradients in deep learning is essential. Without a gradient, there
is no learning in an artificial neural network. Platforms such as Cognimates and Google’s
TensorFlow Playground lower the barriers to machine learning and encourage users to tinker
with different parameters. However, these platforms often hide the inner workings and
equations of the algorithms. Backpropagation and gradient descent, the workhorses behind
deep learning, remain hidden from the students. For this reason, I have created DeepEq, an
educational platform to help students develop a mathematical intuition for deep learning.
DeepEq allows users to create a small neural network by joining perceptrons, automatically
provides the underlying equations, and lets users implement their own backpropagation
algorithm. A complementary interactive tutorial based on the 4C/ID model serves as a guide
throughout the learning process.

xi

Acknowledgements

I would like to thank Prof. Chat Wacharamanotham for his excellent supervision, insightful
feedback, and guidance throughout my master’s studies. Moreover, I would like to thank
Prof. Dominik Petko for his valuable inputs from the educational point of view. Last but not
least, a special thanks to my friends and family for their support.

1

Chapter 1

Introduction

Understanding the flow of gradients in deep learning is essential.
Without a gradient, there is no learning in an artificial neural network
(ANN). For instance, choosing the wrong weights or activation func-
tions can lead to a vanishing gradient (from [Hochreiter, 1998]) and
break the learning. In real-world deep learning projects, the role of the
gradient is often forgotten because frameworks such as TensorFlow
(from [Abadi et al., 2015]) successfully hide the learning algorithms.
This can be a double-edged sword: It simplifies the process of build-
ing machine learning models, but it might lead users to think that the
learning ”just works”. The problem arises when the network does not
learn as expected. Without a clear understanding of the underlying
algorithms, debugging becomes a matter of trial and error. In order
to avoid this, it is important to have an in-depth understanding of the
main algorithms (backpropagation from [Rumelhart et al., 1986], gra-
dient descent from [Ruder, 2016]) and their implications. Platforms
such as Google’s TensorFlow Playground (from [Smilkov et al., 2017])
provide interactive visualizations for a better intuition about ANNs
but do not cover details about backpropagation nor gradient descent.
For this reason, I present ”DeepEq”, an educational platform to help
students develop a mathematical intuition for deep learning.

2 1 Introduction

Figure 1.1: DeepEq User Interface - À Define a neural network architecture and set param-
eters such as the input value or activation function Á Integrated code editor for implement-
ing forward- and backpropagation in JavsScript Â Flow-based visualization for connecting
nodes (weights) and inspecting the colorized math equations.

From an educational point of view, only little is known about how
to teach artificial intelligence (AI) effectively (from [Ko, 2017]). Vi-
sualizations such as from Zeiler and Fergus [2014] are readily used
in AI courses to explain the inner workings of ANNs. But, however
good visualizations may be, truly understanding (not just using) back-
propagation requires some mathematics. For this reason, the primary
goal of DeepEq is to create a bridge between deep learning theory and
practice and allow users to reason about the mathematical implica-
tions of backpropagation in an interactive way. DeepEq is intended to
facilitate traditional ”pen and paper thought experiments” and tries to
support users in building a mental model more easily. All equations
are kept as simple as possible to make them accessible to high school
level students and above. The contributions of DeepEq (see figure 1.1)
are as follows:

• It allows users to create a small artificial neural network ”by
hand” and reveals the underlying equations for forward- and
backpropagation

• It encourages users to tinker with and implement their own
backpropagation algorithm in JavaScript

• A complementary interactive tutorial based on the 4C/ID model
serves as a guide throughout the learning process

3

The following chapters are structured as follows: Chapter 2 goes over
the related work and their limitations. Chapter 3 introduces the main
algorithms used in deep learning and serves as a basis for the interac-
tive tutorial. Chapter 4 contains the 4C/ID blueprints of the tutorial
as well as other implementation details. Moreover, two usage exam-
ples/walkthroughs of DeepEq are provided. Chapter 5 contains de-
tails about the evaluation method and the results of the think-aloud
sessions. Last but not least, Chapter 6 provides a summary of the
work and discusses possible future work.

5

Chapter 2

Related Work

To teach and tinker with AI, several tools and products exist. Tar-
geting the general population, Google [2017] created “Teachable Ma-
chine”, a hands-on experiment for training and detecting arbitrary ob-
jects shown to the webcam. Due to the low entry barriers, it is suitable
for everyone and provides a surface level understanding of machine
learning. Moreover, Smilkov et al. [2017] (working at Google) re-

TF Playground -
Feature visualization

leased a neural network playground called TensorFlow Playground.
It is an interactive tool for visualizing artificial neural networks and
requires prior deep learning knowledge. For the educational sector,
tools tend to build on block-based visual programming languages
such as Scratch (from [Resnick et al., 2009]). Block-based languages
improve learnability and make programming more accessible, espe-
cially to younger students (from [Bau et al., 2017]). Based on their
success, Lane [2017] added blocks for interacting with AI models. His
platform is called ”Machine Learning for Kids” and was first intro-
duced in 2017. One year later, Druga [2018] released Cognimates, a

Cognimates - Feeling
recognition

platform for training AI models in Scratch. Both, ML4Kids and Cog-
nimates, allow younger students to train ML models by connecting
visual blocks together. Using a similar approach but with high school
students in mind, Zhu [2019] developed several machine learning ex-
tensions for the MIT App Inventor (from [Pokress and Veiga, 2013]),
a block-based platform for building apps. Zhu covered more ad-
vanced topics ranging from regressions to convolutional neural net-
works. Targeting university students, Rao et al. [2018] introduced
Milo, a block-based visual programming environment for data sci-
ence education. Milo offers a complete data science workflow based

Milo - Neural network
block

on blocks. However, what all these tools have in common is their in-

6 2 Related Work

transparency when it comes to the underlying algorithms. For exam-
ple, artificial neural networks are merely treated as black boxes (Druga
[2018], Google [2017], Lane [2017], Rao et al. [2018], Zhu [2019]) with
some tools providing a visual glimpse into the black box (Smilkov
et al. [2017]). Backpropagation and gradient descent, the workhorses
behind deep learning, remain hidden from the students. DeepEq tries

DeepEq - Equation to open the black box by directly merging deep learning theory into
the tool.

From an educational point of view, effectively teaching AI concepts is
an emerging challenge with little existing work (from [Sulmont et al.,
2019]). As shown by Marques et al. [2020], there is no shortage of AI
courses. They have found and analyzed 30 Instructional Units (IUs)
on basic ML concepts and criticized the lack of rigorous scientific de-
velopment and evaluation of the IUs. Based on a workshop at ICER
2017, Ko [2017] published a blog post underlining the lack of knowl-
edge about how to teach ML effectively. She proposed the use of peda-
gogical content knowledge (PCK) for teaching machine learning. Two
years later, Sulmont et al. [2019] presented the first paper exploring
PCK in the context of non-computer science majors. They have dis-
covered insights about preconceptions, barriers, and pedagogical tac-
tics for teaching ML. With a focus on K-12 students, Touretzky et al.
[2019] highlighted a lack of guidance for teaching AI and proposed
curriculum guidelines. However, despite all the efforts, the field of AI
education is still in its infancy. DeepEq contributes by providing an
interactive deep learning tool and tutorial based on the 4C/ID model
by Van Merriënboer et al. [2002].

Understanding AI not only concerns educators but machine learning
experts as well. In fact, an entire field is devoted to the eXplain-
ability of AI (XAI). As machine learning algorithms are getting more
complex, transparency (opposite of black box) and interpretability are
all the more important e.g. understanding the algorithm of an au-
tonomous vehicle (from [Arrieta et al., 2020]). Well-known work such
as Zeiler and Fergus [2014] is readily used in AI courses to explain and
visualize the inner workings of a large Convolutional Neural Network
(CNN). However, even though DeepEq visualizes an ANN and tries

Zeiler - CNN
Visualization

to open the AI black box, it does provide only little value to the field
of XAI because interpreting small networks was never a problem to
begin with. Rather, DeepEq is intended to facilitate traditional ”pen
and paper thought experiments” and thus, tries to improve the pro-
ductivity of the learner.

7

Chapter 3

Deep Learning Theory

This chapter introduces the main concepts and algorithms used in
training a feedforward neural network. The interactive tutorial (see
chapter 4) is based on a simplified version of this chapter.

3.1 Perceptron

The perceptron is an artificial neuron and was first introduced by
Rosenblatt [1958]. In his paper, Rosenblatt [1958] showed that a per-
ceptron can learn from (and respond to) stimuli. The notation has
changed since then but the concepts remain and serve as the founda-
tion for today’s artificial neural networks. A modern perceptron (e.g.
from [Rumelhart et al., 1986]) multiplies an input xi ∈ R with its cor-
responding parameter wi ∈ R. This parameter is called a ”weight” be-
cause it prioritizes the inputs for all i ∈ {1, ..., n}. For example, it could
be that x1 detects animal fur and x2 detects colors. A snake-detecting
perceptron should prioritize the color detector (because snakes have
no fur) and, therefore, it should multiply x2 with a large weight w2

and x1 with a small weight w1. Finally, the results are combined
∑

i

and an activation function a : R → R is applied. Figure 3.1 illustrates
the workings of a perceptron.

8 3 Deep Learning Theory

Figure 3.1: Perceptron

The purpose of the activation function is to add non-linearity, andThe universal
approximation

theorem states that a
non-linear artificial
neural network can

approximate any
function

thus, make complex behavior possible in the first place. This is be-
cause chaining linear perceptrons again results in a linear perceptron,
therefore, does not provide a better prediction. The proof follows from
the definition of a linear function. A function f : R→ R is linear if the
following properties hold:

f(cu) = cf(u) ∀u ∈ R, c ∈ R

f(u+ v) = f(u) + f(v) ∀u ∈ R, v ∈ R

A perceptron with output y ∈ R can be written as:

y = a(
∑
i

xiwi)

Chained perceptrons (single-input in this case) can be represented as
a map between input x and output y:

y(x) = f1(...fn(x)) = (f1 ◦ ... ◦ fn)(x)

where each function fj : R → R is the intermediate output j ∈
{1, ..., n} of input xj , weight wj and activation aj :

fj = aj(xjwj)

3.2 Loss Function 9

Thus, without an activation function, chained perceptrons remain lin-
ear:

(f1 ◦ ... ◦ fn)(cu) = c(
∏
j

w)u

= c(f1 ◦ ... ◦ fn)(u)

(f1 ◦ ... ◦ fn)(u+ y) = (
∏
j

w)(u+ v)

= (
∏
j

w)u+ (
∏
j

w)v

= (f1 ◦ ... ◦ fn)(u) + (f1 ◦ ... ◦ fn)(v)

�

Because of that, activation functions are almost always used. Accord-
ing to Nwankpa et al. [2018], common activation functions are:

Sigmoid: a(x) = σ(x) =
1

1 + e−x
, x ∈ R Note: Due to the

difficult analytical
derivative of ReLU
and other rectified
activation functions,
they will not be used
in this thesis

Tanh: a(x) = tanh(x) =
ex − e−x

ex + e−x
, x ∈ R

ReLU: a(x) = max(0, x), x ∈ R

3.2 Loss Function

Training a perceptron requires a function l : Rn → R (mostly Rn →
R≥0). This function is called a loss function and imitates “learning by
example” e.g. teach a child what a dog is by showing a dog nearby. A
commonly used loss function is defined as follows (from [Rumelhart
et al., 1986]):

loss =
∑
i

1

2
(ti − yi)2, i ∈ {1, ..., n}

where ti is a true label provided by a human and yi is the output/pre-
diction of the perceptron. The further apart the true label and the pre-
diction, the higher the loss. There is no particular reason to choose this
exact loss function (e.g.

∑
i |ti − yi|works as well), but the mathemat-

10 3 Deep Learning Theory

ical properties make it easier to work with. In particular,
1

2
simplifies

the derivative, and the square creates a lower boundary for the loss.

3.3 Gradient Descent

Gradient descent minimizes the loss function by updating the weights
step-by-step in the opposite direction of the gradient (from [Ruder,
2016]). It is one of the most commonly used optimization algorithm
in artificial neural networks and responsible for the actual ”learning”
(from [Ruder, 2016]). The general problem is as follows (from [Ruder,
2016]):

min
w1,...,wn

loss(w1, ..., wn)

and iteratively update the weights:

wnew
i = wi − η∇wi loss(w1, ..., wn)

where η ∈ R>0 is the learning rate (e.g. 0.8), ∇wi loss(w1, ..., wn) is the
gradient of the loss function with respect to the weight wi, and wnew

i

is the updated weight.

3.4 Backpropagation Theory

Backpropagation (from [Rumelhart et al., 1986]) is a systematic way to
calculate the gradients efficiently, and thus essential for large artificial
neural networks. Mathematically, it is the repeated application of the
chain rule (from [Rumelhart et al., 1986]):

f ′(x) = g′(h(x))h′(x)

where f(x) = g(h(x)), g and h are differentiable with respect to x, and
f ′(x) is the derivative. It is important to note that multiple notations
of differentiation exist. For example, in Leibniz’s notation, the chain

rule can be expressed as
dz

dx
=
dz

dy

dy

dx
. However, due to the common

usage of the Lagrange’s notation in high schools, a prime mark f ′ will
be used to indicate a derivative from now on. Moreover, f ′x will be
used to express partial derivatives.

3.5 Backpropagation Implementation 11

To give an example, assume the following network (see figure 3.2):

n = sin((x0w0) + (x1w1))

y = sin(nw2)

The goal is to calculate the derivative with respect to each weight (how
much the loss changes when the weight changes). Due to the chain
rule, it is reasonable to start at the outermost weight and continue
till reaching the innermost weight. The first step is to calculate the
derivative with respect to w2.

loss =
1

2
(t− y)2

loss′y = (t− y)(−y′) = (t− y)(−cos(nw2))

loss′w2
= loss′yn

Note that loss′y represents an intermediate result and is, strictly speak-
ing, not formally correct because y is not a differentiable variable.
However, it highlights the fact that the derivative of the weight w2 is
based on the derivative of the node y. The second step is to calculate
the derivative with respect to w0 and w1:

loss′n = loss′ycos((x0w0) + (x1w1))w2

loss′w0
= loss′nx0

loss′w1
= loss′nx1

Again, (formally) there is no loss′n but it shows that the derivatives
build on each other which is why it is called backpropagation (back-
ward propagation of the errors). The derivative of the weight w0 is
based on the derivative of the node n which is based on the derivative
of the weight w2 which is based on the derivative of the node y.

3.5 Backpropagation Implementation

Calculating derivatives by hand is cumbersome and error-prone. For
this reason, it is a good idea to automate this process. The algorithm is
usually divided into ”forwardpropagation” and ”backpropagation”.
The forwardpropagation starts from the inputs, calculates the value
of the perceptron, and repeats this till every perceptron has a value.
Backpropagation builds on the results of forwardpropagation and cal-
culates the gradient of each weight.

12 3 Deep Learning Theory

Figure 3.2: Backpropagation Example

More formally, given a graph G with vertices/nodes V and
edges/weights E, forwardpropagation calculates the output of every
node by multiplying its ingoing edges ins with their corresponding
source node s and applies the summation as well as the activation
function (analogous to the calculations of a perceptron). The pseudo-
code can be found in algorithm 1.

Algorithm 1 Forwardpropagation

Require: Graph G(V,E) representing an artificial neural network
Y ← output nodes of V
for all y ∈ Y do

FORWARDPROPAGATION(y)
end for
function FORWARDPROPAGATION(v)

ins← ingoing edges of v
if ins 6= {} then

sum← 0
for all in ∈ ins do

s← source node of in
sum← sum+ in∗ FORWARDPROPAGATION(s)

end for
return activation(sum)

else
return v . exit recursion when reaching input node x

end if
end function

3.5 Backpropagation Implementation 13

Backpropagation builds on the results of forwardpropagation and cal-
culates the gradient of each edge/weight ∇out. It is important to note
that the weight gradient ∇out differs from the propagated gradient
∇total. Hence, only ∇total has to be returned (back-propagated) and
∇out has to be saved. The pseudo-code can be found in algorithm 2.

Algorithm 2 Backpropagation

Require: Graph G(V,E) representing an artificial neural network
(includes the values from forwardprop and a true value t)

X ← input nodes of V
for all x ∈ X do

BACKPROPAGATION(x)
end for
function BACKPROPAGATION(v)

outs← outgoing edges of v
if outs 6= {} then
∇total ← 0
for all out ∈ outs do

s← sink node of out
sum← pre-activation value of node v
∇total ← ∇total ∗ activation′(sum) ∗ out∗

BACKPROPAGATION(s)
∇out ← v∗ BACKPROPAGATION(s) . weight gradient

end for
return∇total

else
sum← pre-activation value of node v
return −1 ∗ (t− v) ∗ activation′(sum)

end if
end function

It should be noted that neither algorithm 1 nor algorithm 2 are suitable
for large neural networks. This is because of the non-optimized recur-
sions which re-calculate the values multiple times (keyword: dynamic
programming). However, due to the educational focus of this project,
simplicity and compactness are more important than efficiency.

The concrete JavaScript implementation of algorithm 1 and algorithm
2 can be found in the appendix A

15

Chapter 4

Design And Implementation

This project can roughly be divided into two parts, an educational tu-
torial and an interactive component providing the main functionality.
The implementation relies on Idyll (from [Conlen and Heer, 2018]), a
toolkit for interactive articles and explorable explanations. With Idyll,
it was possible to write the interactive tutorial in a clean Markdown-
like language while having the freedom to create custom components
in ReactJS providing the main functionality.

4.1 Tutorial

The content of the tutorial is based on a simplified version of chapter
3 and can be found in appendix B. The goal was to keep it as simple
as possible and make it accessible to high school level students and
above. It consists of the following five parts:

1. Perceptron

2. Loss Function

3. Gradient Descent

4. Backpropagation Theory

5. Backpropagation Implementation

16 4 Design And Implementation

The tutorial is based on the 4C/ID model by Van Merriënboer et al.
[2002] which is well suited for complex learning (e.g. real-life tasks
that require the integration of different skills), and thus is a good fit
for the problem-solving skills required in deep learning. The model
defines four central components which are then used to structure
blueprints for complex learning (from [Van Merriënboer et al., 2002]):
Learning Task (e.g. find the best answer for a given question), Sup-
portive Information (e.g. conceptual model of a search engine, library
etc.), Just-In-Time-Information (e.g. how to use a search engine, how
to access the library etc.), and Part-Task Practice (e.g. regular expres-
sions). The blueprints of the tutorials (increasing in complexity) can
be found below.

Perceptron

Supportive Information: Mental model and example
• Conceptual model of a perceptron

Learning Task: Conventional
Learners have to create a perceptron and try different input values,
weights, and activation functions. They are required to give an inter-
pretation of the equations and the flow of information.

Part-Task Practice: Interactive Elements
Two interactive elements provide hands-on practice on the concept of
a perceptron and a pixel.

Just-In-Time-Information: Demonstration
Procedures (GIF) for using the application

Loss Function

Supportive Information: Mental model and example
• Conceptual model of the loss function

Learning Task: Conventional
Learners have to try different true values, input values, weights, and
activation functions, and reason about the effect they have on the loss.

4.1 Tutorial 17

Learning Task: Conventional
Learners have to explain the circumstances under which a loss might
never approach zero.

Part-Task Practice: Interactive Elements
Two interactive elements provide hands-on practice on the concept of
a loss function.

Just-In-Time-Information: Demonstration
Procedures (GIF) for using the application

Gradient Descent

Supportive Information: Mental model and example
• Conceptual model of gradient descent

Learning Task: Conventional
Learners have to try different learning rates and think about how the
gradients are used to adjust the weights.

Learning Task: Conventional
Learners have to explain the circumstances under which a gradient
can be too small or too large.

Part-Task Practice: Interactive Elements
One interactive element provides hands-on practice on the concept of
minimizing a loss function.

Just-In-Time-Information: Demonstration
Procedures (GIF) for using the application

Backpropagation Theory

Supportive Information: Mental model and example
• Conceptual model of backpropagation
• Worked-out example of backpropagation

Learning Task: Conventional
Learners have to try different network topologies and reason about
the flow of the gradient.

Just-In-Time-Information: Demonstration
Procedures (GIF) for using the application

18 4 Design And Implementation

Backpropagation Implementation

Supportive Information: Example
• Pseudo-code of the backpropagation algorithm

Learning Task: Conventional
Learners have to implement their own version of backpropagation
based on the knowledge of the previous tasks. Working code exam-
ples are given in order to facilitate the task.

Just-In-Time-Information: Demonstration
Procedures (GIF) for using the application

The implementation of the tutorial relies on Idyll by Conlen and Heer
[2018]. Idyll provides a Markdown-like language in which ReactJS
components can be embedded to provide the interactivity. Built-in
components (e.g. sliders or text-boxes) reduce the effort and program-
ming skills required. However, for this project, the amount of time
and effort required for creating interactive elements was nevertheless
high. The reason lies in the variation of visualization problems. For
example, built-in components such as text-boxes and circles cannot
sufficiently model a perceptron. The solution is simple yet time con-
suming: 1. Draw a perceptron 2. Import into Idyll 3. Add interactivity.
These three steps have been found to be the easiest method for creat-
ing non-standard interactive components.

As an example, the process for creating an interactive perceptron in
Idyll is as follows: First, the overall structure of the perceptron has
to be created (without the interactive elements). The most straight
forward way is to use an SVG (Scalable Vector Graphics) editor such as
Inkscape. Alternatively, it can be hand-coded since SVG is a human-
readable format similar to HTML. Figure 4.1 shows the outcome when
using an SVG editor. Second, the SVG format has to be converted
(e.g. <line x1=4../> to [line x1:4../]) due to the different syntax of
Idyll. This process can largely be automated with regular expressions.
Third, the interactive components have to be created. This can be done
by linking the Idyll components (e.g. [var name:”x1” value:1/] defines
a variable) with the corresponding SVG components (e.g. [SvgText
value:x1/]). An example code can be found in figure 4.2. Last but not
least, the Idyll compiler has to generate the interactive element. The
final interactive component can be seen in figure 4.3.

4.1 Tutorial 19

Figure 4.1: Interactive Perceptron Structure

Figure 4.2: Interactive Perceptron Idyll Code

Figure 4.3: Interactive Perceptron With Sliders

20 4 Design And Implementation

Figure 4.4: Interactive Component - À Definition of the neural net-
work architecture Á Parameters of the selected node e.g. color or ac-
tivation function Â Training of the neural network Ã Visualization
settings for a) forwardpropagation b) backpropagation Ä Colorized
math equations of the selected node Å Flow-based visualization of
the network

4.2 Interactive Component

For the main functionality, a custom ReactJS component was created.
The reason for using ReactJS is because Idyll does not support any
other method for creating custom components. The main interface
of the component can be seen in figure 4.4. It allows users to create
and train a small neural network while showing the underlying equa-
tions for forward- and backpropagation. The advantage is that users
can quickly try different parameters or network topologies and rea-
son about the flow of information at a deep level. Without in-depth
an knowledge of backpropagation, their intuition might break down
at some point. Such cases are extremely valuable and one of the main
reasons why uncovering the backpropagation black box is important
in the first place. Moreover, understanding and recognizing similar
situations in a real-world deep learning project might save days of de-
bugging. Two examples of such non-intuitive cases are given below.

4.2 Interactive Component 21

Figure 4.5: Example - Vanishing Gradient Problem (a)
Forwardpropagation-View (b) Backpropagation-View

Example 1: Figure 4.5 shows two representations (a) and (b) of the
same network. The view (a) shows the values for forwardpropa-
gation, thus, input x0 = 0.4, weights wi = 1, activation functions
a(x) = tanh(x), and true value t0 = 0.8. The second view (b) shows
the values of interest for backpropagation, namely the gradients of all
nodes and weights. But why does the magnitude of the gradient de-
crease |w′0| < |w′1| < |w′2| with each layer? After all, the weights and
activation functions are the same for each layer. This non-intuitive
behavior is called the vanishing gradient problem (from [Hochreiter,
1998]). The problem occurs because the gradients depend on the gra-
dient of the previous layer. For example (see figure 4.5), the gradi-
ent of the weight w′0 = n′0x0 depends on the gradient of the previous
layer n′0 = n′1sech(x0w0)

2w1 which, again, depends on the gradient
of its previous layer n′1 = ... etc. Due to the derivative of the activa-
tion function tanh(x)′ = sech(x)2, the gradient is always smaller or
equal to one. When multiplying numbers less than one, the result is
even smaller. This is the reason why gradients can vanish and magni-
tude of the effect varies with the chosen activation functions. DeepEq
shows all the necessary equations to understand the vanishing gradi-
ent problem and, additionally, lets users try different activation func-
tions and network topologies.

22 4 Design And Implementation

Figure 4.6: Example - Large Values (a) x1 = 0.4 (b) x1 = 40

Example 2: Figure 4.6 shows the gradients of the same network with
wi = 1 and a(x) = tanh(x), the only difference being the input values
(a) x1 = 0.4 (b) x1 = 40. But why are all gradients in (b) zero? After
all, the only difference is the increase of x1 from 0.4 to 40. The reason
lies in the derivative of the activation function tanh(x)′ = sech(x)2.
As already mentioned, the maximal value of the derivative is one.
However, the minimal value rapidly approaches zero for large val-
ues. This is the reason why large input values or weights can break
the gradients, and thus hinder the learning of a network significantly.
With DeepEq, users can try different network topologies and see how
learning is hindered by large values.

Apart from letting users try and reason about different parameters
and network topologies, DeepEq also includes an integrated code ed-
itor that allows users to tinker with their own backpropagation algo-
rithm. By implementing backpropagation, users can strengthen their
understanding following a ”learning by doing” approach. The API
is simple: The users can access the current graph of the network and
they have to return an updated graph. There are no other restrictions
aside from having to use JavaScript. This gives the users the freedom
to use whatever they are comfortable with e.g. ”recursive vs. itera-
tive”, ”hard-coded vs. generalized” etc. DeepEq already provides two
implementations, a ”complete” and a ”minimal” version. The ”com-
plete” version provides all the functionality whereas the ”minimal”
only provides the numerical values without the color-highlighted
equations. Both implementations have been tested against Tensor-
Flow (from [Abadi et al., 2015]) to ensure their correctness. Figure
4.7 shows the integrated code editor with two code snippets.

4.2 Interactive Component 23

Figure 4.7: Integrated Code Editor

Figure 4.8: Preliminary Prototype

But why is DeepEq designed the way it is? From the very beginning
of the development phase, it was a priority to include the underly-
ing mathematics. Why? Because however good visualizations and
examples may be, they do not replace adequate mathematical knowl-
edge. Truly understanding (not just using) backpropagation requires
mathematics because, in the end, it is an effective way of representing
abstract concepts. Early prototypes of DeepEq (see figure 4.8) were
almost purely based on mathematics and far less intuitive. Later pro-
totypes used a flow-based visualization to better represent the flow of
information. The reason for using a flow-based visualization was to
build on the knowledge of visual programming languages and thus,
it should support users in building a mental model more easily (from
[Navarro-Prieto and Cañas, 2001, Bau et al., 2017]).

25

Chapter 5

Evaluation

The aim of the evaluation was to gain insights into the pedagogical ef-
fectiveness and usability of DeepEq. For this reason, the think-aloud
protocol by Lewis [1982] was used as the primary method of evalua-
tion. Lewis [1982] describes the think-aloud method as follows:

”The think-aloud method is a form of detailed observation of
what the user is doing with the system and documentation...The
special feature of the think-aloud method is that while working
or reading the participant is asked to keep up a running com-
mentary of his or her thoughts: what s/he is trying to do, what
questions or confusions s/he is concerned about, what s/he ex-
pects will happen next, and the like. An observer is present to
prompt the participant to keep up the flow of comments.”

The advantage of the think-aloud method is its great expressiveness
while only requiring a small number of participants (from [Lewis,
1982]). The following two sections cover the method and the results.

26 5 Evaluation

5.1 Method

All participants were recruited from personal connections. The inclu-
sion criteria were as follows: (1) high school level students and above
(2) little or no deep learning experience. The demographics of the par-
ticipants can be found in table 5.1.

ID Gender Age Education Level Deep Learning Novice
PH Female 18 High School Student Strongly Agree
PB Male 25 BSc Student (CS) Strongly Agree
PM Male 26 MSc Student (CS) Agree

Table 5.1: Participant Demographics

The think-aloud sessions lasted 2 hours per participant and were con-
ducted in-person. All observations were video recorded (screen +
body) whenever possible. Before the sessions, the participants were
asked to fill out a pre-questionnaire about their demographics and
prior deep learning knowledge. Afterward, a description of the gen-
eral procedure and about the tasks they had to complete was given.
Both, tasks and questionnaire, can be found in the appendix C. Dur-
ing the session, the observer guided the participants and decided ”on-
the-spot” which subtasks they had to complete. This guidance was
necessary due to the limited time, difference in prior knowledge, and
difference in comprehension speed. The goal was to complete all tasks
rather than focusing on a single one. For example, participant PM
quickly understood the concept of a perceptron, thus, he was asked
to continue with the next task rather than wasting time on trivialities.
On the contrary, participant PH did not know what a derivative was,
thus, a short explanation was provided to be able to continue with the
tasks. After the session, the participants were asked to fill out a post-
questionnaire about their current deep learning knowledge and their
experience with DeepEq.

In the tasks, the participants were asked to complete the first four tu-
torials (see chapter 4 and appendix B): ”Perceptron”, ”Loss Function”,
”Gradient Descent”, and ”Backpropagation Theory”. The last tutorial
”Backpropagation Implementation” was not included due to the com-
plexity and time limit. For a consistent setup, the participants were
provided with a MacBook Pro 15” 2018. Moreover, an external mouse
was given to non-Mac users because in the pilot study I found that
some users may have trouble with the zoom- and scroll-behavior of
the trackpad.

5.2 Results 27

Figure 5.1: Pre-Post-Understanding Comparison

For the analysis, interesting observations were noted and summarized
e.g. when the users struggled with or particularly liked something.
The results were then grouped into (1) pedagogical and (2) usabil-
ity aspects. Usability aspects were further sub-grouped because most
participants struggled with similar issues. Pedagogical aspects, on the
other hand, were used ”as is” (e.g. quotes) because the aim was to gain
insights rather than discovering patterns.

5.2 Results

The result section is divided into pedagogical and usability aspects. In
terms of pedagogical effectiveness, the participants found DeepEq to
be a valuable learning tool with a median rating of 6 out of 7. Regard-
ing the usability, participants found DeepEq easy to use with a median
rating of 6 out of a 7-point Likert-scale. Nevertheless, the think-aloud
method uncovered usability issues ranging from zoom-problems to
suboptimal page layouts.

5.2.1 Pedagogical Aspects

Pre-Post-Understanding: The participants were asked to rate their
understanding of different deep learning topics before and after the
use of DeepEq. The median within-subjects rating difference was 3.75
points which is a substantial increase in the (subjective) understand-
ing of the topic. However, there is a possibility that the observer’s
guidance (e.g. giving an explanation of derivatives) influenced the
results. Figure 5.1 shows the results for each participant.

28 5 Evaluation

Figure 5.2: Interactive Equations

Interactivity: When the participants were asked about their opinion
on the interactivity of DeepEq, most responses were positive. The par-
ticipants liked the color-highlighted equations and how they could try
different values themselves. On the contrary, some participants strug-
gled with the added degree of freedom. For example, participant PM
did not find the sliders (see figure 4.3) intuitive and reported that a
”Try it yourself” hint would have been useful. Moreover, an improve-
ment point was revealed by the think-aloud observations. Because
of the symbolic math equations, a change of a numerical value (e.g.
an input value) was not reflected in the equations (see figure 5.2 À

vs. Á). From a usability perspective, this lead to a gulf of evaluation
because the current state of the system was not sufficiently commu-
nicated. But more importantly, it changed the interpretation of the
equation. For example, participant PH explained the equation of a
perceptron as follows:

”The activation function is just tan, cos, sin, or whatever
one wants to use. The rest of the equation stays the same and
only the value back here (points to the numerical output value)
changes.”

Although the equation does indeed not change, there is a change in
the flow of information (numerical values) which is why this interpre-
tation is problematic. To avoid such problems and misinterpretations,
it is advisable to always communicate the current state of the system
(e.g. by using numerical values) when the user requests a change.
Last but not least, participant PB mentioned after the session that the
interactivity reduced the amount of time he had to read the tutorial
because ”trying things out” was quicker. Although this was only one
statement, it might still be a good idea to have one interactive element
for each important topic because users might only skim over the text.

5.2 Results 29

Figure 5.3: Open-Ended Activation Function

Open-ended interaction: To support complex learning and avoid
forcing students into a specific way of thinking, the tool and tuto-
rial were kept ”open” with little step-by-step instructions. However,
there are downsides to this design choice. For example, participant
PM wanted to use a ”softmax(x)” and ”logit(x)” activation function
which were not supported. This lead to a gulf of execution because
he would have needed to use the full mathematical equations (e.g.
log(x/(1−x))). On the contrary, participant PH solely used the activa-
tion functions provided in the example and the observer had to guide
the participant to try different activation functions e.g. trigonometric
functions. Last but not least, participant PB complained that the ques-
tions of the tutorial were ”too open”. Yet, a good example showing the
advantages of open-questions was given by the very same participant.
The situation was as follows (see figure 5.3): The participant created a
perceptron with three inputs (representing red, green, and blue) and
he had to give an interpretation of the output. The following thoughts
were recorded:

”The interpretation is how bright an LED shines... but then
the number is over 255. At an exam, I would probably fix the
problem using the activation function a(x) = x/1.5 (this way,
the output is smaller than 255) because it is not clearly defined
in the question.”

He knew that a value over 255 did not make any sense. Moreover, he
knew that the inputs were fixed and he assumed that the weights were
ranging from [0, 1]. Thus, he had to ensure that (255 + 125)/x ≤ 255
which is ≈ 1.5. This way, the output is scaled to a value smaller than
255. This creative solution is a consequence of the vague question and
shows that the participant deeply thought about (and understood) the
concept of an activation function.

30 5 Evaluation

Figure 5.4: Perceptron Representations - À Tutorial Á Participant PB
Â Participant PH Ã Participant PM

Different representations: While trying to create their first percep-
tron in DeepEq, all participants struggled with the representation
of the perceptron. In the tutorial, the perceptron was introduced
with a pre- and post-activation value (see figure 5.4 À). However,
DeepEq itself did not distinguish between pre- and post-activation
value. Thus, all participants created an unnecessary middle-node
(description-similarity slip). For example, the following question was
recorded from participant PB (see figure 5.4 Á):

”Isn’t this (points to the middle-node) the activation function
I have to define and only afterward can I append the output at
the end (creates an output node)?”

In this case (and in a similar situation with participant PM), the ob-
server answered the question to help the participant. In the case of
participant PH, the observer only asked to carefully re-read the learn-
ing task which solved the problem. However, it still might be advis-
able not to use multiple similar representations of the same topic.

5.2 Results 31

Figure 5.5: Backpropagation Thoughts - À Tutorial Á DeepEq

Level of Difficulty: The level of difficulty increased with each topic,
and thus the understanding decreased accordingly (see figure 5.2).
The topics ”Perceptron” and ”Loss Function” were quickly and well
understood by the participants. On the other hand, ”Gradient De-
scent” and ”Backpropagation” were more challenging according to
the participants. That was to be expected due to the mathematical na-
ture of those topics. The third-year high school student PH had a par-
ticular disadvantage because she did not know what a derivative (or
the chain rule) was. However, she still understood that the equations
of backpropagation depend on each other and that the error is propa-
gated backward. For example, the following thoughts were recorded
while reading the tutorial (see figure 5.5 À):

”You start with one equation, plug it into the next one, and
again into the next one....loss′n is from above and loss′y from here
(points to the uppermost equation)”

...and the thoughts while using the visualization (see figure 5.5 Á):

”This (middle node) times this (weight) equals this (output
node). And here, it takes this (input node) multiplied with this
(weight) which equals this (middle node)....Actually, you can do
this indefinitely and it can always take the value from the front.”

Interestingly, her mental model does not seem to be far off from the
mathematical description, presumably because DeepEq shows all the
necessary equations without having to manually calculate the deriva-
tives (which she was not able to do).

32 5 Evaluation

Question Median
It is a useful tool for learning about “deep learning” 6
The tool improves the effectiveness of my learning 6
The tool helped me connect the mathematical equations
with their corresponding visual representations

6

The tutorial was useful and easy to understand 6
The interactive elements of the tutorial helped me un-
derstand the topic better

7

Table 5.2: Participant Questionnaire Results 7-point Likert (1:
Strongly Disagree 7: Strongly Agree)

Questionnaire: Last but not least, the participants were asked to rate
several aspects of DeepEq. In general, the responses were positive
which indicates that DeepEq was an effective tool for learning. The tu-
torial and its’ interactive elements received particularly high ratings.
The results can be found in table 5.2.

5.2.2 Usability Aspects

Reset problem: One issue participants frequently encountered was
during a reset of the network. Sometimes, the participants changed
the activation function of a node and pressed ”reset” afterward be-
cause they wanted to reset the weight values. However, due to the
implementation of the reset function, the whole network (including
the activation function) was set to the last known state. This ”whole
reset” was unnecessary for the use cases that the participants have
encountered which is why the reset behavior has been restricted to
weights only.

Selection highlighting: When the participants had to change network
parameters such as weights or activation functions, the selected node
or edge was not highlighted. This lead to a gulf of evaluation because
the users thought that they had missed the node/edge and clicked
again. This minor problem was solved by changing the border color
of the selected node or edge.

5.2 Results 33

Figure 5.6: Tutorial Visibility

Layout: When the participants were asked about certain sub-
questions of the tutorial (during the task because e.g. the participants
skipped one), they (mostly) had to re-open the tutorial and look for
the specific information. Moreover, some sub-questions were com-
pletely skipped/forgotten by the participants. Figure 5.6 illustrates
the issue. The tutorial was implemented as a modal that blocks the
main view when opened. This was a deliberate design choice because
modals require only a minimal amount of space. However, for a bet-
ter user experience, references should always be accessible to the user.
For example, a retractable sidebar might be an alternative with similar
space requirements but with the option to keep the tutorial visible at
all times.

34 5 Evaluation

Figure 5.7: Zoom And Scrolling Behavior - À Original view Á Hidden
equation due to scrolling Â Change of graph size due to scrolling

Zoom and scrolling behavior: Participants often had to scroll down
the page because selecting certain nodes increased the vertical size of
the sidebar (see left-hand side of figure 5.7 À). This was not a problem
as long as the participants used the scroll-wheel on the sidebar. How-
ever, when the scroll-wheel was used on the graph view (see right-
hand side of figure 5.7 À), no scrolling action was triggered. Instead,
the graph changed in size similar to the behavior of Google Maps.
This was problematic in two different ways: 1) Certain elements e.g.
equations remained hidden (mostly unconscious) from the user (see
figure 5.7 Á) 2) The users had to undo the resizing of the graph and/or
were confused about the sudden disappearance of the graph (disap-
pearance = extremely small, see figure 5.7 Â). At first, participants
frequently encountered this problem but they quickly adapted to the
interaction method. Nevertheless, to separate zoom and scroll behav-
ior, ”zoom buttons” were added. Moreover, by overriding the scroll-
wheel zoom behavior, it is now possible to use the whole page as a
scroll area.

35

Chapter 6

Summary

In this thesis, I have created DeepEq, an educational platform to help
students develop a mathematical intuition for deep learning. DeepEq
allows users to create a small artificial neural network by hand, shows
the underlying equations, lets users change and reason about different
parameters, and provides a safe environment for implementing one’s
own backpropagation algorithm. Moreover, I have created a comple-
mentary interactive tutorial based on the 4C/ID model. Last but not
least, I have conducted three think-aloud sessions to gain insights into
the pedagogical effectiveness of DeepEq.

36 6 Summary

6.1 Limitations

Regarding the evaluation, several limitations exist. First, there are lim-
itations to the think-aloud method itself e.g. participants may not be
used to ”speaking while thinking”. This was particularly noticeable
because participant PB was more talkative and could express himself
better than the other participants. Second, due to the limited time
of the think-aloud sessions, the observer had to guide the participants
and decide which subtasks they had to complete. This guidance likely
influenced the results, especially of the questionnaire e.g. due to un-
equal time distribution per topic. Third, the low number of partici-
pants limits the generalizability of the results. In terms of the imple-
mentation, there is one major limitation. Due to the use of Idyll/Re-
actJS/JavaScript, bugs are highly likely and maintainability issues are
inevitable. It would have been preferable to use purely-functional and
type-safe languages such as Haskell/PureScript.

6.2 Future Work

I strongly believe that explorable explanations and other interactive
media will become even more important in the future. However, as
I have seen myself, the entry barriers for creating explorable expla-
nations are quite high and the amount of time required is enormous.
Idyll by Conlen and Heer [2018] certainly lowered the entry barrier
for interactive articles but non-standard interactive elements (e.g. the
main component of this thesis) still require good programming skills.
After all, a custom Idyll component is simply a wrapper around Reac-
tJS. Moreover, there does not seem to be a standardized and efficient
way of creating explorable explanations which is, in my opinion, the
biggest issue yet to be solved (e.g. by a programming language for
explorable explanations). Until then, I can’t recommend extending
DeepEq or other explorable explanations because most of them have
been built on a completely different codebase which requires a dispro-
portionate amount of effort to familiarize oneself with. Apart from
that, there are still many features I would have liked to implement
e.g. support for datasets, bias value, an efficient method for creat-
ing larger networks, support for convolutional/recurrent neural net-
works, etc. Moreover, I think that newer topics in computer science
(e.g. Blockchain) would also benefit from interactive explanations.

37

Appendix A

JavaScript Implementation
Of Backpropagation

1
2 /** Description of the variables
3
4 * graph
5
6 Description: "An array of objects containing the data

of all nodes and edges"
7 Note: Use the filter function to traverse the graph e

.g. graph.filter(element => element.target == "n0
")

8 Values Node:
9 - id: the id of the node

10 - data.activation: a string of the activation
function e.g. tanh(x)

11 - data.sum: value assigned by you, see "result"
12 - data.value: value assigned by you, see "result"
13 - data.gradient: value assigned by you, see "result"
14 - data.symbolicEquation: value assigned by you, see

"result"
15 - data.symbolicGradient: value assigned by you, see

"result"
16 Example Node:
17 {id: "n0", data: {sum: 0.1, value: 0.0997, gradient:

0.0285, activation: "tanh(x)" }}
18 Values Edge:
19 - id: id of the edge
20 - source: id of the starting point of the edge
21 - target: if of the end point of the edge

38 A JavaScript Implementation Of Backpropagation

22 - data.value: the value of the weight/edge
23 - data.gradient: value assigned by you, see "result"
24 - data.symbolicEquation: value assigned by you, see

"result"
25 - data.symbolicGradient: value assigned by you, see

"result"
26 Example Edge:
27 {id: "w2", source: "x0", target: "n1", data: {value:

0.2, gradient: -0.0005 }}
28
29
30 * math
31
32 Description: "A reference to math.js, an extensive

math library for JavaScript"
33 Example: derivative of tanh: math.derivative(’tanh(x)

’, ’x’);
34
35
36 * results
37
38 Description: "An empty array of objects to be filled

with your results"
39 Values:
40 - id: the id of the node or edge (mandatory)
41 - sum: the weighted sum e.g. x1*w1+...+xn*wn (

optional)
42 - value: value after the activation function e.g. a(

x1*w1+...+xn*wn) (optional)
43 - gradient: the value of the calculated gradient (

optional)
44 - symbolicEquation: the mathematical formula of the

forwardpropagation pass (optional)
45 - symbolicGradient: the mathematical formula of the

backpropagation pass (optional)
46 Example:
47 let result =
48 {
49 id: "n1", sum: 0.14, value: 0.99, gradient:

-0.005,
50 symbolicEquation: "cos((x0*w1) + (x1*w3))",

symbolicGradient: "y0’*(-sin....)"
51 });
52 results.push(result);
53
54 */
55
56
57

39

58 // run forward propagation for each output node
59 l e t forwardresu l t s = [] ;
60 l e t outputNodes = graph . f i l t e r (element => element . id .

inc ludes ("y")) ;
61 for (l e t i in outputNodes) { forwardpropagation (graph ,

outputNodes [i] , forwardresu l t s) ; }
62
63
64 // run backpropagation for each input node
65 l e t backpropresul ts = [] ;
66 l e t inputNodes = graph . f i l t e r (element => element . id .

inc ludes ("x")) ;
67 for (l e t i in inputNodes) { backpropagation (graph ,

inputNodes [i] , forwardresul ts , backpropresul ts) ; }
68
69
70 // merge and assign results
71 for (l e t i = 0 ; i < backpropresul ts . length ; i ++) {
72 r e s u l t s . push ({
73 . . . backpropresul ts [i] ,
74 . . . (forwardresu l t s . f ind ((e) => e . id ==

backpropresul ts [i] . id))
75 }) ;
76 }
77
78
79 // recursive forwardpropagation algorithm
80 function forwardpropagation (graph , node , r e s u l t s) {
81 // get all ingoing edges from node
82 l e t edges = graph . f i l t e r (element => element . t a r g e t ==

node . id) ;
83 i f (edges . length > 0) {
84 l e t sum = 0 ;
85 for (l e t j in edges) {
86 l e t edge = edges [j] ;
87 l e t nextNode = graph . f i l t e r (element => element . id

== edge . source) [0] ;
88 // recursive call
89 l e t nextNodeValue = forwardpropagation (graph ,

nextNode , r e s u l t s) ;
90 // calculate weighted sum of perceptron e.g. x1*

w1+...+xn*wn
91 sum += edge . data . value ∗ nextNodeValue ;
92 }
93 // apply activation function e.g. a(x1*w1+...+xn*wn

)
94 l e t value = math . evaluate (node . data . a c t i v a t i o n .

r e p l a c e (’x’ , sum)) ;
95 // save result

40 A JavaScript Implementation Of Backpropagation

96 l e t r e s u l t = { id : node . id , sum : sum , value : value
} ;

97 r e s u l t s . push (r e s u l t) ;
98 // return value for the next recursive call
99 return value ;

100 } e lse i f (node . id . inc ludes ("x")) {
101 // stop recursion when reaching an input node
102 l e t r e s u l t = { id : node . id , value : node . data . value

} ;
103 r e s u l t s . push (r e s u l t) ;
104 return node . data . value ;
105 } e lse {
106 // stop recursion when reaching a node without

connections
107 return NaN;
108 }
109 }
110
111
112 // recursive backpropagation algorithm
113 function backpropagation (graph , node , forwardresul ts ,

r e s u l t s) {
114 // get all outgoing edges from node
115 l e t edges = graph . f i l t e r (element => element . source ==

node . id) ;
116 i f (edges . length > 0) {
117 l e t t o t a l G r a d i e n t = 0 . 0 ;
118 for (l e t j in edges) {
119 l e t edge = edges [j] ;
120 l e t nextNode = graph . f i l t e r (element => element . id

== edge . t a r g e t) [0] ;
121 // recursive call
122 l e t nextNodeGradient = backpropagation (graph ,

nextNode , forwardresul ts , r e s u l t s) ;
123 // use latest data from forward propagation
124 l e t tmp = forwardresu l t s . f i l t e r (element =>

element . id == node . id) [0] ;
125 l e t nodeSum = tmp . sum ;
126 l e t nodeValue = tmp . value ;
127 // calculate gradient
128 l e t outerDer iva t ive = math . d e r i v a t i v e (node . data .

a c t i v a t i o n , ’x’) ;
129 t o t a l G r a d i e n t += nextNodeGradient ∗

outerDer iva t ive . evaluate ({ x : nodeSum }) ∗
edge . data . value ;

130 // save result for edge
131 l e t edgeGradient = { id : edge . id , gradient :

nextNodeGradient ∗ nodeValue } ;
132 r e s u l t s . push (edgeGradient) ;

41

133 }
134 // save result for node
135 l e t nodeGradient = { id : node . id , gradient :

t o t a l G r a d i e n t } ;
136 r e s u l t s . push (nodeGradient) ;
137 // return values for the next recursive call
138 return t o t a l G r a d i e n t ;
139 } e lse i f (node . id . inc ludes ("y")) {
140 // stop recursion when reaching an output node
141 l e t tmp = forwardresu l t s . f i l t e r (element => element .

id == node . id) [0] ;
142 l e t nodeSum = tmp . sum ;
143 l e t nodeValue = tmp . value ;
144 l e t outerDer iva t ive = math . d e r i v a t i v e (node . data .

a c t i v a t i o n , ’x’) ;
145 // save result
146 l e t nodeGradient = {
147 id : node . id ,
148 gradient : −1 ∗ (node . data . t rue − nodeValue) ∗

outerDer iva t ive . evaluate ({ x : nodeSum }) ,
149 } ;
150 r e s u l t s . push (nodeGradient) ;
151 return nodeGradient . gradient ;
152 } e lse {
153 // stop recursion when reaching a node without

connections
154 return NaN;
155 }
156 }

43

Appendix B

Tutorial

44 B Tutorial

45

46 B Tutorial

47

48 B Tutorial

49

50 B Tutorial

51

52 B Tutorial

53

55

56 C Questionnaire

Appendix C

Questionnaire

57

59

Bibliography

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/.

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcı́a,
Sergio Gil-López, Daniel Molina, Richard Benjamins, et al. Explain-
able artificial intelligence (xai): Concepts, taxonomies, opportuni-
ties and challenges toward responsible ai. Information Fusion, 58:
82–115, 2020.

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Tur-
bak. Learnable programming: Blocks and beyond. Commun. ACM,
60(6):72–80, May 2017. ISSN 0001-0782. doi: 10.1145/3015455. URL
https://doi.org/10.1145/3015455.

Matthew Conlen and Jeffrey Heer. Idyll: A markup language for au-
thoring and publishing interactive articles on the web. In Proceed-
ings of the 31st Annual ACM Symposium on User Interface Software and
Technology, UIST ’18, page 977–989. Association for Computing Ma-
chinery, 2018. ISBN 9781450359481. doi: 10.1145/3242587.3242600.
URL https://doi.org/10.1145/3242587.3242600.

Stefania Druga. Growing up with AI: Cognimates: from coding to teaching
machines. PhD thesis, Massachusetts Institute of Technology, 2018.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/3015455
https://doi.org/10.1145/3242587.3242600

60 Bibliography

Google. Teachable machine, 2017. URL https://
teachablemachine.withgoogle.com. Accessed: 2020-08-
11.

Sepp Hochreiter. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):107–116,
1998.

Amy J. Ko. We need to learn how to teach machine learning,
2017. URL https://medium.com/bits-and-behavior/we-
need-to-learn-how-to-teach-machine-learning-
acc78bac3ff8. Accessed: 2020-08-11.

Dale Lane. Machine learning for kids, 2017. URL https://
machinelearningforkids.co.uk/. Accessed: 2020-08-24.

C. Lewis. Using the ”thinking Aloud” Method in Cognitive Interface De-
sign. Research report. IBM T.J. Watson Research Center, 1982.

Lı́via S Marques, Christiane Gresse von Wangenheim, and Jean CR
HAUCK. Teaching machine learning in school: A systematic map-
ping of the state of the art. Informatics in Education, 19(2):283–321,
2020.

Raquel Navarro-Prieto and Jose J Cañas. Are visual programming
languages better? the role of imagery in program comprehension.
International Journal of Human-Computer Studies, 54(6):799–829, 2001.

Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and
Stephen Marshall. Activation functions: Comparison of trends
in practice and research for deep learning. arXiv preprint
arXiv:1811.03378, 2018.

Shaileen Crawford Pokress and José Juan Dominguez Veiga. Mit app
inventor: Enabling personal mobile computing, 2013.

A. Rao, A. Bihani, and M. Nair. Milo: A visual programming environ-
ment for data science education. In 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 211–215,
2018.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. Scratch: Pro-
gramming for all. Commun. ACM, 52(11):60–67, November 2009.
ISSN 0001-0782. doi: 10.1145/1592761.1592779. URL http://doi.
acm.org/10.1145/1592761.1592779.

https://teachablemachine.withgoogle.com
https://teachablemachine.withgoogle.com
https://medium.com/bits-and-behavior/we-need-to-learn-how-to-teach-machine-learning-acc78bac3ff8
https://medium.com/bits-and-behavior/we-need-to-learn-how-to-teach-machine-learning-acc78bac3ff8
https://medium.com/bits-and-behavior/we-need-to-learn-how-to-teach-machine-learning-acc78bac3ff8
https://machinelearningforkids.co.uk/
https://machinelearningforkids.co.uk/
http://doi.acm.org/10.1145/1592761.1592779
http://doi.acm.org/10.1145/1592761.1592779

Bibliography 61

Frank Rosenblatt. The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. Psychological review, 65
(6):386, 1958.

Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning Representations by Back-propagating Errors. Nature, 323
(6088):533–536, 1986. doi: 10.1038/323533a0. URL http://www.
nature.com/articles/323533a0.

Daniel Smilkov, Shan Carter, D. Sculley, Fernanda B. Viégas, and
Martin Wattenberg. Direct-manipulation visualization of deep net-
works, 2017.

Elisabeth Sulmont, Elizabeth Patitsas, and Jeremy R. Cooperstock.
Can you teach me to machine learn? In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, SIGCSE ’19, page
948–954, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450358903. doi: 10.1145/3287324.3287392. URL
https://doi.org/10.1145/3287324.3287392.

David S. Touretzky, Christina Gardner-McCune, Fred Martin, and
Deborah W. Seehorn. Envisioning ai for k-12: What should every
child know about ai? In AAAI, 2019.

Jeroen JG Van Merriënboer, Richard E Clark, and Marcel BM
De Croock. Blueprints for complex learning: The 4c/id-model. Ed-
ucational technology research and development, 50(2):39–61, 2002.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision,
pages 818–833. Springer, 2014.

Kevin Zhu. An educational approach to machine learning with mo-
bile applications. Master’s thesis, Massachusetts Institute of Tech-
nology, 2019.

http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0
https://doi.org/10.1145/3287324.3287392

Typeset January 21, 2021

	Abstract
	Acknowledgements
	Introduction
	Related Work
	Deep Learning Theory
	Perceptron
	Loss Function
	Gradient Descent
	Backpropagation Theory
	Backpropagation Implementation

	Design And Implementation
	Tutorial
	Interactive Component

	Evaluation
	Method
	Results
	Pedagogical Aspects
	Usability Aspects

	Summary
	Limitations
	Future Work

	JavaScript Implementation Of Backpropagation
	Tutorial
	Questionnaire
	Bibliography
	Index

