
Master Thesis
July 28, 2020

Automatically repairing environmental
build failures

Emirald Mateli
of Përmet, Albania (16-726-804)

supervised by
Prof. Dr. Harald C. Gall

Carmine Vassallo

software evolution & architecture lab

Master Thesis

Automatically repairing environmental
build failures

Emirald Mateli

software evolution & architecture lab

Master Thesis

Author: Emirald Mateli, emirald.mateli@uzh.ch

Project period: 28 Jan 2020 - 28 Jul 2020

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. Dr. Harald C. Gall and the Software Evolution and Architecture Lab
of the University of Zurich for giving me the opportunity to conduct this work in their group. I
would also like to thank my supervisor, Carmine Vassallo for the guidance, inputs, and expertise
shared with me during the work of this thesis. Special thanks go to Christian Macho and Selene
Lobnig from the University of Klagenfurt, for their assistance and inputs with the inspection
process and the repair strategies conducted in this thesis.

Abstract

Continuous Integration is a widely-used software engineering practice in both industry and open-
source projects to automate compilation, testing, and quality assurance tasks. Recent studies
reveal that troubleshooting build failures is the main barrier that developers encounter when
adopting CI. Because of their complexity, developers usually spend at least one hour per day in
fixing build failures. While the majority of build failures are caused by expected human mistakes
such as the wrong implementation of a method, a non-negligible part of failures (33%) are caused
by environmental factors such as flakiness of the build infrastructure. In this thesis, we want
to understand how developers fix environmental failures and the extent to which they can be
automatically repaired. We inspect 380 failed builds belonging to 42 different environmental
failure types from 97 open-source projects written in Java and Ruby and built on Travis CI. Based
on the analysis of the resolution patterns of these failures, we devise and implement an approach
for automatically repairing 10 environmental build failure types. To show the applicability of our
approach, we run our tool against 67 environmental build failures from popular GitHub projects
achieving an overall success rate of 55.22%. To assess the usefulness of our automatic repair,
we successfully fix 37 builds from GitHub projects and open issues on these projects where we
propose to accept the generated patches for those failures. 66.6% agree with the proposed fixes
and are willing to use our tool.

Zusammenfassung

Continuous Integration ist eine sowohl in der Industrie als auch in Open-Source-Projekten weit
verbreitete Praxis der Softwareentwicklung zur Automatisierung von Kompilierungs-, Test- und
Qualitätssicherungsaufgaben. Jüngste Studien zeigen, dass die Fehlerbehebung bei Build-Fehlern
das Haupthindernis ist, auf das Entwickler bei der Einführung von CI stoßen. Aufgrund ihrer
Komplexität verbringen Entwickler in der Regel mindestens eine Stunde pro Tag mit der Behe-
bung von Buildfehlern. Während die Mehrzahl der Buildfehler durch zu erwartende menschliche
Fehler wie die falsche Implementierung einer Methode verursacht wird, ist ein nicht zu vernach-
lässigender Teil der Fehler (33%) auf Umgebungsfaktoren wie die Flakheit der Build-Infrastruktur
zurückzuführen. In dieser Arbeit wollen wir verstehen, wie Entwickler Umgebungsfehler be-
heben und inwieweit sie automatisch repariert werden können. Wir untersuchen 380 fehlgeschla-
gene Builds aus 97 Open-Source-Projekten, die in Java und Ruby geschrieben wurden und auf
Travis CI basieren, die zu 42 verschiedenen Arten von Umgebungsfehlern gehören. Auf der
Grundlage der Analyse der Lösungsmuster dieser Ausfälle entwickeln und implementieren wir
einen Ansatz für die automatische Reparatur von 10 umgebungsbedingten Buildfehlertypen. Um
die Anwendbarkeit unseres Ansatzes zu zeigen, lassen wir unser Tool mit 67 umgebungsbed-
ingten Um die Nützlichkeit unserer automatischen Reparatur zu beurteilen, reparieren wir 37
Builds aus GitHub-Projekten automatisch, und offene Fragen zu diesen Projekten, bei denen wir
vorschlagen, die generierten Patches für diese Fehler zu akzeptieren. 66.6% stimmen mit den
vorgeschlagenen Korrekturen überein und sind bereit, unser Tool zu verwenden.

Contents

1 Introduction 1

2 Background 3
2.1 Package managers . 3
2.2 Build tools and automation . 3
2.3 Travis CI . 4

3 Related work 7
3.1 Empirical studies on causes of build failures . 7
3.2 Build failure repair and summarization . 8
3.3 Program repair . 8

4 How do developers repair environmental build failures? 9
4.1 Replication of Ghaleb et al. study . 9
4.2 Build chains . 10
4.3 Build inspection platform . 11
4.4 Sample generation . 13
4.5 Inspection process . 13
4.6 Results . 14

4.6.1 Unidentified branch/tree/commit . 15
4.6.2 Error building gems . 15
4.6.3 Server or service unavailable . 16
4.6.4 Log size limit . 16
4.6.5 Wrong build status: Jobs passing but build broken & Build exited successfully 17
4.6.6 Flaky categories . 17

5 To what extent can environmental build failures be automatically repaired? 19
5.1 Repair program implementation . 19
5.2 Repair strategy implementation . 20

5.2.1 Unidentified branch/tree/commit . 20
5.2.2 Server or service unavailable . 20
5.2.3 Error building gems . 20
5.2.4 Log size limit . 21

5.3 Validation procedure . 21
5.4 Quantitative study results . 24

5.4.1 Unidentified branch/tree/commit . 26
5.4.2 Error building gems . 27

viii Contents

5.4.3 Log size limit . 28
5.4.4 Server or service unavailable . 29

5.5 Qualitative study results . 30

6 Discussion 33
6.1 Implications . 33

6.1.1 Implications for developers . 33
6.1.2 Implications for researchers . 33
6.1.3 Implications for CI vendors . 34

6.2 Limitations . 35
6.3 Potential industrial applications and future work . 36
6.4 Conclusions . 37

Appendix 41

Contents ix

List of Figures
2.1 Diagram depicting transitions between the Travis CI job phases which affect the

build status outcome . 4

4.1 Example build chain . 11
4.2 Build explorer interface showcasing the left navigation menu and builds belong-

ing to a certain category. Screenshot taken from the live environment where each
category contains up to 9 builds per category assigned to a reviewer. 12

4.3 A detail from the build view showcasing a build chain alongside with breakage
information and useful links. 13

4.4 A typical build review entry . 14

5.1 Distribution of breakages by build. New validation dataset vs the Ghaleb et al. data 24
5.2 Repair statistics by category . 25
5.3 Sample issue created for the tronprotocol/java-tron project. Maintainer reacted

positively, welcoming us to create a pull request with the proposed changes. 31

6.1 Log extract taken from job 688789747. The test suite was attempting to connect to
a local server. 34

6.2 Overview of a possible build repair service . 36

List of Tables
4.1 Number of builds organized by group. “Repositories” denotes the total number of

projects affected by issues in a particular group, “Spread” is the total ratio against
the total number of 152 repositories. In the above data, it can be seen that a few
categories such as “09 - Database (DB) issues” or “11 - External bugs” do not affect
a large number of repositories. 10

4.2 Sample build resolution chain for Build #195 in psu-stewardship/scholarsphere in
category “03.04 - Server or service unavailable” . 10

5.1 Distribution of the new dataset in the taxonomy. The much higher representation
of category 01.04 appears due to a change in the handling of empty log files. 23

5.2 Results of repair statistics. Failed denotes builds that were unable to be repaired. . 25
5.3 Results of automatic build repair for category “01.01 - Unidentified branch/tree/-

commit” . 26
5.4 Results of automatic build repair for category “01.02 - Error building gems”. 27
5.5 Results of automatic build repair for category “02.02 - Log size limit”. 28
5.6 Results of automatic build repair . 29
5.7 Issues created alongside with their noted responses. 32
5.8 Responses groupped by category . 32

1 Categories (01-02) and the number of builds present in each. Names verbatim from
Ghaleb et al. [GCZH19] . 41

2 Categories (03-11) and the number of builds present in each. Names verbatim from
Ghaleb et al. [GCZH19] . 42

x Contents

List of Listings
4.1 Extract from the errored Build #6159 of spring-cloud/spring-cloud-gcp, due to the

developers merging pull request #2432 while the jobs were still being intialized. . . 15
5.1 Injecting an update command before any other action takes place in the build. . . . 20
5.2 Extract from an example .travis.yml file. We add the installation of necessary

packages to compile Ruby Gems as the output of the repair tool execution. 21
5.3 Injecting Maven command-line arguments to suppress network transfer progress . 21
5.4 Repairing build 687064030. Distribution Ubuntu “Trusty” is used, a downgrade

from the current “Xenial” release in order to match the original build environment. 25
5.5 Despite the repair, installation of package pip3 cannot continue as it does not exist. 29

Chapter 1

Introduction

Continuous Integration (CI) is a software development practice that facilitates automatic com-
pilation, testing, and deployment of software artifacts triggered by changes committed into a
source code repository [IZ17, HNT+17]. CI enables teams to reduce their release cycle improv-
ing overall product quality and customer satisfaction by allowing them to perform multiple
integrations and releases in a day [Che15, FF06, VSZ+17]. Since its inception as one of the Ex-
treme Programming practices in 1991 [Bec99], it has become a widely adopted practice and the
overall number of projects using CI continues to grow for both open-source projects and indus-
try [HNT+17,KKA14,AP18,CH11]. As a result of the more frequent integrations and code review
processes, CI enhances and fosters communication within the team, results in faster deliveries,
and higher quality artifacts. [VYW+15].

Despite its many advantages, CI provides developers with some new challenges to address.
Initial adoption, learning curve, adapting to the new technology, and troubleshooting build breaks
are some of the main inhibiting factors [SBO18, HNT+17, KKA14]. After the implementation of a
CI system, verification of the correctness of the artifact is bound to build results. Broken builds
slow down development teams since it may prevent releases, testing, or developers from continu-
ing with their main work as fixing the build becomes a priority [Vas20,KKA14]. Developers spend
at least one hour per day fixing broken builds with edge cases taking up to several days causing
project timelines to slip. An effect even more pronounced on remote teams due to communication
overhead [KKA14, CH11].

When looking at failed builds, besides due to the correctness checks, such as code quality or
tests, they may fail for reasons unrelated to development activities. We categorize failed builds
into two groups: "Verification" and "Non-verification" failures. Verification failures happen when
the build fails due to compilation, testing, or quality issues. Non-verification failures (also called
environmental build failures) happen due to reasons unrelated to development activities in the CI
server, such as infrastructure errors, API limits, invalid CI configuration, missing dependencies,
or failing while locating third-party resources and come from the environment where builds are
generated [GCZH19].

Current research reveals a non-trivial amount of environmental build failures [T. 17,GCZH19,
VSZ+17]. Ghaleb et al. [GCZH19] shows that 33% of broken builds are affected by environ-
mental errors. Rausch et al. reveals that just git clone errors make up to 27% of the break-
ages in some projects. While there are many studies about CI and build failures [GCZH19, T.
17, HNT+17, VSZ+17], to the best of our knowledge there are no studies that investigate the pos-
sibility of automatically repairing environmental build failures. This thesis aims to address the
aforementioned gap by analyzing broken builds and resolution patterns from the developers to
answer the following research questions:

2 Chapter 1. Introduction

RQ1: How do developers repair environmental build failures?
To answer this question, we conduct an empirical study consisting of 380 builds to understand

how developers address environmental breakages and to assess which categories from the Ghaleb
et al. taxonomy (Tables 1 and 2 in the Appendix) are suitable for automatic repair. To understand
each breakage we inspect several builds from the introduction of the error until its resolution in
a method called “Build Chain” described in Section 4.2. We try to understand the cause of the
failure as well as the approaches developers took in their fixes. As a result of this inspection, we
produce a list of categories that we’re able to repair alongside their corresponding strategies.

RQ2: To what extent can environmental build failures be automatically repaired?
To answer this RQ, we build a prototype tool to automatically repair environmental failures

based on strategies devised from RQ1. We evaluate it using a dataset of broken builds from Java
and Ruby GitHub projects with more than 500 stars that use Travis CI 1 during the May-June
2020 period. Our tool is able to repair 55.22% of builds. In a qualitative survey conducted with
developers from successfully repaired projects, 66.6% of developers agree with the proposed fix.

1https://travis-ci.com

Chapter 2

Background

In this section, we present concepts and ideas needed to understand the rest of the sections in this
thesis.

2.1 Package managers
In Linux 1, “package manager” describes a collection of tools to automate the process of installa-
tion, removal, and upgrading of software installed on the local machine [BPVPT19]. The package
manager downloads files to install, verifies their integrity using file checksums, and performs the
installation process according to the instructions contained in the package.

Apt is a package manager for Ubuntu 2, the distribution of choice for Travis CI. The installation
process in Apt works by keeping a local copy of the package lists, upgrades as well as packages
that exist in the repositories. When an install command is issued, Apt uses the local information
to install the package rather than querying directly on the internet. Our inspection results show
that not updating the repository information can result in environmental breakages due to the
information available locally being outdated.

2.2 Build tools and automation
Projects use build tools to automate the process of compiling the source code into binary, pack-
aging, running automated tests, and sometimes even deploying to remote servers. Often, they
perform package management as well. A package manager is a tool that manages external de-
pendencies the project relies upon, such as third-party libraries that are essential for the program
to operate. Much like an operating system package manager, but restricted to packages for a spe-
cific programming language. These package managers will often query third-party servers for the
requested version of the package, download, and automatically install it. In our study, projects
are limited to Java and Ruby, thus we encounter two such tools. Maven 3 for Java, and Bundler 4

for Ruby.
Build automation refers to tooling that executes build automation utilities when triggered by

an event or in a scheduled fashion. We introduce Travis CI as a continuous integration service
that provides build automation to projects.

1https://www.kernel.org/
2https://ubuntu.com
3https://maven.apache.org/
4https://bundler.io/

4 Chapter 2. Background

2.3 Travis CI
Travis CI is a continuous integration platform operating at travis-ci.com and is one of the
many platforms offering CI servers for projects hosted on GitHub. Each build on Travis is a group
of jobs that run in sequence. A job is an automatic process that performs the necessary verification
checks. Jobs can be necessary to test against multiple environments. A job is also composed of
multiple phases, which are steps inside a job. For the purpose of this paper we study only the
phases which affect the overall build status: before_install, install, before_script,
script, after_script 5 which also run in this order. Figure 2.1 shows the transitions between
the different phases. The install phase takes care of installing any dependencies the job might
require. The script phase on the other hand runs the verification process.

before_install

install

before_script

script

errored

failedsuccess

after_script

after_successafter_failure

Figure 2.1: Diagram depicting transitions between the Travis CI job phases which affect the build status
outcome

A build is finished when all of its jobs are finished. Once a build is finished it is also assigned
a label which marks it as passed/failed/errored. The following is a breakdown for each relevant
status:

• Passed: Exit code 0 returned from all jobs

• Failed: Non-zero exit code returned in the script phase of any job

• Errored: Non-zero exit code returned in one of the following phases of any job:

– before_install

– install

– before_script

5https://docs.travis-ci.com/user/for-beginners

2.3 Travis CI 5

Travis is configured via .travis.yml, a YAML file in which developers can customize the
way build and jobs run. The above sections accept either a string or a list of strings that will be
executed by the machine running the job. In this thesis, we will be using these sections to modify
the behavior in our efforts to repair the various errors encountered. Travis allows also loading of
entire scripts into the build if the behavior is too complex to be contained in a few commands.

Chapter 3

Related work

In related studies, we can find motivating examples of similar work and prior studies on build
failures build failure assistance.

3.1 Empirical studies on causes of build failures
In their work, Ghaleb et al. study the impact that noise has on breakage data. Current research
does not take into consideration environmental failures when studying build breakages, and pro-
pose that environmental breakages should not be used to study the association of breakages with
development activities [GCZH19]. In their study, Ghaleb et al. find that 33% of all build break-
ages are due to environmental issues. As a result of this study, the paper presents a taxonomy of
11 groups further divided into a total of 61 sub-categories to classify the different environmental
errors of 154 Java and Ruby projects presented in Tables 1 and 2 of the Appendix. The work in
this thesis is based on this very taxonomy for our environmental error classification purposes.
This helps us with studying the resolution patterns of a particular category by inspecting broken
builds only from that subset as well as for validating the final repair strategies by testing it against
its broken builds.

In their work Rausch et al. perform an empirical analysis of build failures in open-source
Java projects using a CI workflow. The study focuses on analyzing the types of errors occurring
during builds of the studied projects as well as understanding what development practices can
be associated with build failures. They distinguish fourteen distinct types of errors occurring in
builds. The data is gathered from log files classified with a semi-automatic procedure. Among
all categories, the most frequent causes are due to test failures which make up to 80% of the total
amount, code rule violations during code inspection, and compilation errors are also prominent
in the observations. Their results show that failed builds have non-negligible noise in the data
and that errors mostly occur in the first half of the build runtime. In their results, depending on
the project, between 9% and up to 27% of failures are caused by git changes not being available
to download due to developers merging the changes between the time a build is scheduled and
when the job starts [T. 17]. This cause of failure is also present in the Ghaleb et al. [GCZH19]
dataset, as well as in our validation dataset presented in Section 5.3.

Vassallo et al. study types of build failures in open-source and a private company, comparing
frequencies of errors between the two. Their research attempts to understand the nature of errors
during the build stage in the company and open-source projects. They devise a taxonomy made
up of 20 categories that not only encompass verification failures related to compilation, testing,
or static analysis but as well as categories such as release, preparation, or deployment [VSZ+17].

We use the results of these works to better understand build failures and their nature. The
taxonomy proposed from Ghaleb et al. [GCZH19] is the one we will keep using in this thesis

8 Chapter 3. Related work

moving forward due to its more extensive nature.

3.2 Build failure repair and summarization
Prior studies conducted by Macho et al. [MMP18] propose BUILDMEDIC in an effort to automati-
cally repair builds broken due to dependency resolution errors. BUILDMEDIC is able to recognize
the dependency error type and apply the appropriate strategy with an overall success rate of
54%. This closely resembles our research goals and proves that successful repair of breakages
is possible. The scope of this work lies beyond repairing only of dependency related errors but
rather aims to research the feasibility of repair against any sort of environmental breakage by us-
ing the previously defined taxonomy from Ghaleb et al. [GCZH19] as a cornerstone to study and
attempt repair of all 61 sub-categories. If repairing the breakage is not possible, then we want to
aid the developers in quickly identifying the cause and pointing to the solution to minimize the
time needed to inspect erroring builds which has been found to be non-negligible and may span
several workdays [KKA14]. In their study, Macho et al. focus on repairing dependency-related
breakages whereas, in this thesis, we attempt to repair a number of environmental breakages. In
their work Foyzul et al. [Has19], empirically assess how to classify build failures into different
categories, or a taxonomy similar to other papers [VSZ+17,GCZH19,T. 17]. In addition, they also
assess the extent to which build failures can be fixed by altering configuration files [Has19].

Vassallo et al. investigate build failures and propose BART, a tool that summarizes the failure
in order to help developers understand the key points of the failure and suggest possible solutions
found on the internet. Results from this study show that the time to fix a build was reduced on
average by 37%, a motivating example for the usefulness of the automatic repair assistance and
summarization which lines up with the goals of this thesis [Vas20].

3.3 Program repair
In recent years there have been studies that attempt to automatically repair the failing program.
Le Goues et al. propose GenProg, a “Genetic Program Repair” which uses existing test cases to
automatically generate candidate repair patches which, when applied will cause the tests to pass,
signifying “Repair” of the program as defined by Rinard et al. [LNFW12,PKL+09]. Ghanbari et al.
propose PraPR, an automated program repair which aims to help debugging by proposing likely
fixes for the encountered bugs by inserting checks in the field references and method calls [Gha19].

These approaches are able to understand the program in order to generate the proposed fixes.
According to the definition provided in the introduction, these errors would however fall into
verification errors. In this thesis, we aim to repair environmental breakages and thus, do not need
to alter or understand the program being tested.

Chapter 4

How do developers repair
environmental build failures?

In this chapter, we discuss the approach taken towards answering our first research question. We
begin by replicating the results of the Ghaleb et al. [GCZH19] study and constructing our initial
dataset from the replication results in addition to detailed build information downloaded from the
Travis CI REST API. Next, we devise the best way to inspect the builds and describe our method
in Section 4.2. To perform the validation, a team of 4 reviewers is set in place inspecting a sample
of 380 build chains. Finally, the reviewers, who were split into two groups start a reconciliation
process to evaluate and resolve differences in their results. Each group produces two outputs,
a list of builds with notes with problem summary, resolution process, suitability for automatic
fix, as well as a list of categories that resulted as fixable alongside their corresponding repair
strategies.

4.1 Replication of Ghaleb et al. study

One of the first steps was to download the replication package provided by Ghaleb et al. [GCZH19]
and replicate the results of their study as we will be using the build classification tool extensively
through this work. As a result of this process, we obtain the original dataset from the study
consisting of 35,467 broken builds analyzed and classified according to the breakage type (Table
4.1).

During this process we explore the dataset, randomly inspecting broken builds in an effort to
better understand environmental failure and resolution patterns by analyzing the methods and
approaches taken by the developers. While the initial dataset proved to be very useful, it was
a time-consuming process to find broken builds on the dataset, navigate to Travis CI web UI,
GitHub, and all the associated pages. To this extend, we decided to further augment our dataset
by downloading the entire build history for the 152 projects. We perform this process through an
ad-hoc Python script able to navigate the Travis CI REST API and download build, job, commit
information, and raw logs for our data. Besides getting more familiar with the overall taxonomy,
the types of errors, as well as knowing how to set up the main inspection procedure, one of
the main contributions of this initial process is the decision to inspect build chains rather than
individual builds.

10 Chapter 4. How do developers repair environmental build failures?

Group Builds Repositories Spread
01-Internal CI issues 9,220 150 0.98684
02-Exceeding limits 10,979 142 0.93421
03-Connection issues 8,732 138 0.90789
04-Ruby & bundler issues 2,432 76 0.5
05-Memory & disk issues 1,837 78 0.51316
06-Platform issues 332 53 0.34868
07-Virtual Machine issues 617 54 0.35526
08-Accidental abruption 646 33 0.21711
09-Database (DB) issues 196 2 0.01316
10-Buggy build status 462 41 0.26974
11-External bugs 10 4 0.02632

Total 35,467 152

Table 4.1: Number of builds organized by group. “Repositories” denotes the total number of projects affected
by issues in a particular group, “Spread” is the total ratio against the total number of 152 repositories. In the
above data, it can be seen that a few categories such as “09 - Database (DB) issues” or “11 - External bugs”
do not affect a large number of repositories.

4.2 Build chains
To better understand the path developers take to fix a build breakage we wanted to avoid cas-
cading breakages, which are builds that are broken due to a previous commit introducing errors.
Instead of analyzing builds at random, navigating the builds attempting to figure out the context
and the error cause, we wanted to order them in a way that describes a “path” from the intro-
duction of the error until its resolution. To this end, we use the newly downloaded build history
from Travis CI to find which builds from our dataset mark the start of a breakage and then to
inspect builds from the same branch until the first passed build which signifies that the error has
disappeared. It is worth noting that the error may have been resolved in a previous failing build
but there was no way for us to automatically know up until what point the error was present. By
inspecting until the first passed build, it was guaranteed that the solution would be contained in
the chain.

To demonstrate this, in Table 4.2 we present a sample case of a build resolution with a chain
of four commits.

Build # Date Duration Status
195 2014-04-01 18:01:31 47 seconds Errored
228 2014-04-07 18:33:44 1min. 7 seconds Errored
238 2014-04-08 16:27:40 56 seconds Errored
246 2014-04-08 20:13:14 27min. 10 seconds Passed

Table 4.2: Sample build resolution chain for Build #195 in psu-stewardship/scholarsphere in category “03.04
- Server or service unavailable”

In the chain presented in Table 4.2, a commit containing changes performing a version up-
grade of a Ruby Gem triggers build 195, which unexpectedly breaks due to an environmental
failure: A dependency, libclamav-dev all of a sudden fails to install. In the next two commits,

4.3 Build inspection platform 11

the author does not address the issue but rather continues normally with work. Only to be re-
paired in the final commit with a strategy also recommended by us in our results chapter. The
four commits, tell a story and this is what helps us understand the process better, even if in this
case the developer decided not to immediately address the error. Inspecting only the second, or
third commit without the other two will not be very helpful as we simply have a broken build,
without any additional information about the cause or the solution.

In order to construct a build chain, we follow a few steps. The first step is to find the source
of the breakage. We consult our dataset of builds that are broken from environmental causes and
the result of the previous build is passing. For each of these builds we locate additional builds
in the same branch and stop at the first passing build. The branch filter is necessary as it allows
us to isolate the current breakage and repair process by not including builds in different branches
where different features or fixes are being worked on. An observation can be made that the build
chain can also end at the first build belonging in a different category compared to the original one.
However, in our inspection process we found that builds may change categories temporarily as
the developer while attempting a repair might introduce a new type of error but this still belongs
in the same build chain as merely an attempt to repair the original breakage. To demonstrate this
idea we show an example in Figure 4.1

a b

c d e

c' g

f

Branch

Error
building
gems

Error
building
gems

Server or
service

unavailable
Passed

Figure 4.1: Example build chain

In this example, after commit “b” a new branch is created to work on a feature, initially im-
plemented in commit “c”, the feature, however, introduces a new dependency that needs to be
compiled and introduces the “Error building gems” error due to missing packages in the project.
In commit “d” developer unsuccessfully attempts a repair. In commit “e” the developer requests
the wrong packages which could not be found and introduces a new type of error. In commit “f”,
the correct packages are requested and the build process continues normally. This concludes the
work done on this branch, which is then merged into the main trunk. In the above example, even
though the error category changed, we still considered it as part of the same chain.

4.3 Build inspection platform
For the needs of our analysis, we found out that using the Travis web interface was neither suf-
ficient nor efficient in accomplishing our goals. In addition browsing GitHub, for commits, diff,
or pull requests to gather additional context was very often necessary. Although most of this in-
formation was already available locally in the datasets generated so far, querying the databases
directly was also found out to be not a big improvement. We needed fast navigation between

12 Chapter 4. How do developers repair environmental build failures?

the history of the project, a way to summarize the code changes or errors. To meet our needs an
ad-hoc platform was built. Powered by a React 1 front-end, Python 2 back-end running Flask 3,
a PostgreSQL 4 instance containing the 35,467 builds, and a MongoDB 5 instance containing the
build history of the 152 projects. MongoDB proved quite useful in helping getting started with
the data as the JSON documents downloaded from the Travis CI could be inserted into collections
without any transformation being necessary and were immediately available for querying. The
build listing and navigation are powered by the PostgreSQL data whereas when the user requests
detailed build information we use the build history located in MongoDB to provide the full range
of details available in the app as shown in Figure 4.2.

Figure 4.2: Build explorer interface showcasing the left navigation menu and builds belonging to a certain
category. Screenshot taken from the live environment where each category contains up to 9 builds per
category assigned to a reviewer.

In figure 4.3 we showcase different aspects of the “Build details” interface. (1) Build number
and repository. (2) Commit information. (3) Cause of breakage as identified by analyzing the
build log. (4) Quick links to useful resources related to this diff such as Travis CI, The Git diff, and
a link to the GitHub commit page. (5) Table Containing all builds starting from the current one
until the one where the breakage is resolved. We notice gaps in build numbers, this is however
a normal occurrence as the breakage does not affect the entire repository but rather a git branch.
To construct the chain we filter builds only from the branch to which the commit causing the
breakage belonged to.

It is at this point that we decide to begin with the inspection process. We have the platform
online to facilitate the process, we have an understanding of the failures in our dataset, and how
to inspect them via build chains. Next, we decide on how to sample a part of the dataset for
inspection.

1https://reactjs.org/
2https://www.python.org/
3https://flask.palletsprojects.com/
4https://www.postgresql.org/
5https://www.mongodb.com/

4.4 Sample generation 13

Figure 4.3: A detail from the build view showcasing a build chain alongside with breakage information and
useful links.

4.4 Sample generation
Before calculating the final sample size, the first step was to exclude categories that have a very
low spread and the errors happen in a few repositories, which may indicate problems with the
testing/CI process in those particular repositories rather than a general problem. To this end,
for each category, the number of repositories it affects was also calculated. Categories belonging
to the lower quartile were discarded. This left us with a total of 42 categories to inspect. To
generate the final sample, a confidence level of 95% with a 5% interval was chosen, yielding the
final sample population of 380 builds from 42 categories. This left us with 9 per category builds
to be inspected.

A secondary dataset containing only the head of the “build chains” was constructed. These
builds are more likely to contain the solution since in reality they represent a set of builds rather
than a single one and allows the reviewers to better understand the process that went into solving
the build at hand.

The sampling generation algorithm prioritized builds from this new dataset as well as mak-
ing sure that the builds belong to as many different repositories as possible in order to reduce
bias from inspecting only builds from a few repositories, this way more approaches were to be
seen. This process was executed for each of the 42 distinct categories to yield the final sample
population of builds to be inspected.

4.5 Inspection process
The inspection was carried out by a group of 4 reviewers, facilitated by the platform specifically
designed for this process in order to allow easy inspection of build chains. The dataset was ran-

14 Chapter 4. How do developers repair environmental build failures?

domly split in half, with each half being assigned to two different reviewers, thus creating two
pairs. In order to reduce bias, we keep the inspection results private while the process is ongoing.

Each reviewer was assigned several tasks: Manually inspect each of the builds, including fol-
lowing the resolution chain as one of the main tasks to be carried out, find causes for failure,
and possible solutions by reviewing the developers’ solution or by using information available
on the internet. For each build fill out an information sheet containing the following informa-
tion: Build “name”, Summary of failure, Observations, Suitable for automated
fix?, Remarks, Links, Tags, Fixed by developer? (Figure 4.4).

When both reviewers from a pair would finish the inspection process, they begin a reconcil-
iation process by checking their results and finding a common solution for builds which their
repair strategy or suitability for automatic repair differs. Once both reviewers had a common set
of results after the reconciliation step, for each repairable category they develop a list of possible
fixes alongside concrete strategies. The other pair of reviewers would then review this list, their
suitability for automatic repair as well as whether the repair is feasible.

• Build name: rspec/rspec-expectations #764

• Category: Unidentified branch/tree/commit

• Tags: Fixable

• Fixed by developer?: No

• Summary of failure: Git fails to clone the repository, which causes the job to fail

• Observations:

– Pulling the branch was not possible

– The branch was deleted (due to pr merge) before it could be cloned

• Suitable for automated fix?: Yes

• Suitable solution: Recreate the branch based on the pull request diff and re-run

• Remarks: None

• Links: https://github.com/rspec/rspec-expectations/pull/32

Figure 4.4: A typical build review entry

4.6 Results
This section discusses the results of the build inspection process.

Our build inspection results show 10 categories out of 42 as possible to repair in an automatic
fashion, aggregating to 9110 observations, or 25.68% of all the broken builds in the dataset. In
the following paragraphs, we give out a summary, insights, and suggestions or solutions for each
category separately.

4.6 Results 15

4.6.1 Unidentified branch/tree/commit
Problem summary

The failure occurs when a job starts but the requested git reference, be it a branch, hash, or tag –
no longer exists. We identify the following as causes for this behavior:

Case 1: A branch that was requested to be cloned, no longer exists. This commonly occurs with
GitHub pull requests, which is the main way for third-party contributors to propose changes to a
repository. In this case, the pull request is merged before all the jobs have finished their cloning
phase. Upon merging a pull request, GitHub removes the named branch used for that specific
pull request, causing the jobs to fail as shown in Listing 4.1. This is also a common occurrence in
the study from Rausch et al. in which this specific kind of issue ranges from 9% to 27% of the total
breakages [T. 17].

Case 2: A branch no longer exists and is unable to be cloned. In this case, the branch was
simply deleted and can no longer be referenced.

Case 3: A commit, referenced by its hash, cannot be cloned. In this example, the commit may
have been removed by using git’s history rewrite operations such as rebasing, amending commits,
or simply force-pushing changes onto remote repositories.

Our suggestion

In all three of the above cases the cause of breakage lies with the developers rather than GitHub
which only acts as a git service provider, or with Travis. In the case of interacting with pull re-
quests, we recommend developers to wait for build results before continuing with these changes
to help them assess that the proposed change meets the projects’ standards, especially when
changes come from a third-party contributor not directly involved with the project.

If the changes do not affect the system but consists only of textual changes such as documenta-
tion then it is possible to skip builds for these kinds of changes as not to add additional overhead
for commits, as well as not needing to wait for results which will be known in advance.

Cloning into ’spring-cloud/spring-cloud-gcp’...

$ cd spring-cloud/spring-cloud-gcp

$ git fetch origin +refs/pull/2432/merge:

fatal: Couldn’t find remote ref refs/pull/2432/merge

The command "eval git fetch origin +refs/pull/2432/merge: " failed. Retrying, 2

of 3.

Listing 4.1: Extract from the errored Build #6159 of spring-cloud/spring-cloud-gcp, due to the developers
merging pull request #2432 while the jobs were still being intialized.

4.6.2 Error building gems
Problem summary

The job tries to compile gems(packages/third-party libraries) from source but is unable to do so
or is requesting gems that don’t exist.

16 Chapter 4. How do developers repair environmental build failures?

Our solution

(i) Addressing the problem when a developer requests gems that don’t exist is something we
did not try to resolve, because the name might have been a typo, the version does not exist or
perhaps the gem is sitting in a private repository. To this end we let the developers address
this issue themselves. (ii) We were able to resolve “building gems” error by including necessary
development toolkits such as make, cmake, gcc and the development version of Ruby available
in the ruby-dev package.

4.6.3 Server or service unavailable
Problem summary

This serves as a catch-all category for HTTP requests performed which return 4XX status codes,
indicating bad client requests, 5XX which represent server errors in addition to system package
installation failures.

Our solution

Bad requests and internal server errors were deemed as not possible to repair. We were able to
address the last issue. In our analysis, we found that developers issued install commands via
apt, the package manager of choice in Ubuntu distributions that Travis uses. Apt maintains a
local copy of URLs that help it locate packages as described in the manpages 6. Over time, this
information might be outdated, and issuing install commands increases the chance that they fail
since the URLs might have changed/moved. The more time passes since the last update, the
more chances for the error to occur. To avoid this error, it is always recommended to update the
repository information before issuing install commands.

4.6.4 Log size limit
Problem summary

Travis CI imposes a log size limit of 4Mb, whenever a job exceeds that limit it will be immediately
killed. The two main causes for errors of this kind are: (i) Maven being exceedingly verbose, and
(ii) A large number of errors producing big, repeated stack traces.

Our suggestion

To address problem (i) we were able to control and reduce Maven’s verbosity and especially trim
unnecessary information such as network transfer progress, where Maven repeatedly produces
output regarding a downloads’ status. This was deemed unnecessary and only transfer errors
are shown. Additionally all Maven output below the level WARN were removed, this includes
log levels such as DEBUG and INFO. We do not do further modifications so that the rest of the
application is unaffected and may still produce INFO or DEBUG level logs.

Alternative proposals

Another suggestion we considered until the late stages was to embed a new command-line tool
in the build pipeline and condense the output. It was observed that several builds in this category

6http://manpages.ubuntu.com/manpages/xenial/man8/apt.8.html

4.6 Results 17

have a log which is the same line or lines repeated over and over again, often with the only change
being in the timestamp. This was also a very common occurrence with stack traces.

Our proposal was a tool on which Maven output would be piped into and would condense
a line or several lines and simply output the line or lines once alongside their frequency. It was
decided not to go forward with this implementation however due to not wanting to interfere with
the development part of the log by altering the stack-traces or other output.

4.6.5 Wrong build status: Jobs passing but build broken &
Build exited successfully

Problem summary

Travis CI reports the wrong build status for builds in these categories. Jobs are passing but the
build is marked as broken or the build is marked as passing but any of the jobs were broken.

Our solution

We notify developers via different communication channels of the erroneous status reported by
Travis about the build in case.

4.6.6 Flaky categories
As a result of RQ1 the following categories were found to be repairable. We briefly describe the
problem for each of them and offer a similar repair strategy.

Logging stopped progressing

Log gathering for builds in this category stops abruptly and the returned log from the build jobs
is only partially retrieved.

Script compilation error

Travis CI errors while executing the before_script or script phases.

Empty log

Travis CI log gathering fails and the returned log is entirely empty or containing solely the string
“null” when retrieved from the API. We have encountered issues containing this bug dating as
back as 2012 7. A forum post dating from 2017 and persisting up to 2020 shows that the error is
still occurring 8.

Time limit waiting for response

The build is waiting for an external resource that is not able to be retrieved in a timely fashion
and thus the job is killed.

7https://travis-ci.org/github/spree/spree/builds/2331735
8https://github.com/travis-ci/travis-ci/issues/7443

18 Chapter 4. How do developers repair environmental build failures?

Our suggestion

These categories were shown to be also repairable, but we were unable to devise an approach
besides re-running. They are mostly internal CI errors or bugs and as such, there is very little
agency over them. Due to their flakiness, a re-run is often enough to repair the error.

Chapter 5

To what extent can
environmental build failures be

automatically repaired?

In this chapter, we present all the steps taken towards answering RQ2. With the full list of cat-
egories and their corresponding repair strategies, we begin the implementation for each of the
proposed fixes. We set up a git repository on which all builds will be ran and set up Travis CI
to monitor for changes. Once the implementation is finished, we devise ways to test the imple-
mentation and create a new validation dataset from broken builds in the May-June 2020 period.
After performing a classification process according to the Ghaleb et al. [GCZH19] taxonomy, we
run build repairs and record the results. We set up a qualitative study by surveying developers
responsible for projects which we were able to perform a successful repair for by creating GitHub
issues.

5.1 Repair program implementation
In order to test the repair strategies, a tool was built, which, given a repository and a category
from the taxonomy, would then attempt to conduct a repair by using the strategies described
above. Following is presented the implemented workflow alongside the categories that it was
able to repair.

The application is a combination of Bash and Python scripts that accept a Travis CI build ID
and a repair strategy that corresponds to a category in the taxonomy. Bash is used for the system
calls and fetching the necessary resources while the Python script conducts the actual repair on
a repository powered by an ad-hoc library built for specifically interacting with .travis.yml
files. The process of outputting a commit to trigger a new Travis build from the above input is
described below.

Prerequisites: (i) A GitHub repository which will host a mirror of the original repository
alongside the newly applied patch. (ii) Travis CI token. (iii) The machine’s SSH key added to the
GitHub account which owns the mirror repository. (iv) A Travis CI account linked to the GitHub
one monitoring the mirror repository for changes.

First, build metadata is extracted using the Travis CI REST API. For our use case, we fetch
the repository name and head commit hash. Using this information we are able to download a
snapshot of the repository at this specific commit through GitHub. We download the snapshot
as a compressed archive. It is not necessary to perform a git clone operation as we are not
interested in the project history leading up to this point. Using the new files we create a new
git repository and add the origin endpoint pointing at GitHub using the git protocol allowing

20 Chapter 5. To what extent can environmental build failures be automatically repaired?

us to perform pushes without having to input credentials manually. A necessary step to make
the process fully automatic. We run the repair script which accepts a directory containing a git
repository alongside the strategy to apply. A commit is created from the modified repository
folder and pushed to the git remote. Travis CI will pick up the changes as configured, and trigger
a build based on the new commit.

5.2 Repair strategy implementation
Below we describe the implementation for each of the repair strategies.

5.2.1 Unidentified branch/tree/commit
Builds in this category were unable to clone the requested git reference, however, the pull request
branch reference no longer exists. To achieve our goal, we reconstruct the Git branch that was
meant to be ran. Normally git branches cannot be restored unless a developer has a local copy
that can be pushed again, however in this case we utilize GitHub’s API to recreate the branch.
GitHub is able to provide the Git diff for that particular pull request as well as the head commit
hash which the pull request was created from. By using these two pieces of information we are
able to recreate the branch as follows: (i) Clone the repository at the head commit, (ii) Apply patch
via git. After the branch has been recreated it can be pushed again for Travis CI to run.

5.2.2 Server or service unavailable
The subset of errors we were able to address in this category fail due to apt package manager
installation errors. The local repository containing information where to download the package
is outdated. We are to avoid this error by updating the repository information before requesting
a dependency installation. The overhead to this approach is minimal as only metadata related to
packages is downloaded rather than the package binaries themselves. To this end, we add a new
update command to refresh the repositories as the first action to be executed as shown in Listing
5.1. The apt commands issued by our repair process are protected with a guard that checks the
existence of apt before issuing any commands. This avoids errors with builds on Windows or
Mac OS servers which we do not target.

def update_apt_repositories(config):

return yml_edit_section_arr(config,

"before_install",

safe_run_aptget("sudo apt-get update"),

YML_ACTION_PREPEND)

Listing 5.1: Injecting an update command before any other action takes place in the build.

5.2.3 Error building gems
For the repair of builds in this category, we identified that the cause of breakage was the absence
of development toolkits such as compilers and the Ruby development version. We install these
by issuing the commands shown in Listing 5.2. First, we update the repositories to avoid the
“Server or service unavailable” environmental error, then we install the required packages. The
commands are prepended into the before_install section in order to make sure they are the
first ones to run before any other user command takes place.

5.3 Validation procedure 21

before_install:

- if [$(command -v apt-get)]; then sudo apt-get update; fi

- if [$(command -v apt-get)]; then sudo apt-get install -y build-essential

ruby-dev libgmp-dev; fi

Listing 5.2: Extract from an example .travis.yml file. We add the installation of necessary packages to
compile Ruby Gems as the output of the repair tool execution.

5.2.4 Log size limit
Our approach to limiting log size was through interacting with Maven and forcing it to run in
non-interactive mode as well as limiting the output produced during the installation phase which
would needlessly produce large amounts of output regarding artifact download status. Maven
is configurable in several ways, through environment variables, command-line arguments, a file
named .Mavenrc which are used to modify its behavior. Initially, we used the environment
variable MAVEN_OPTS to configure the behavior but due to how different repositories are config-
ured we found out that using the command-line arguments is the most reliable way of modifying
Maven behavior in a repository-agnostic way. We attempt to find maven commands in the four
sections of interest before_install, install, before_script and script as shown in
Listing 5.3 and append the parameters at the end of the command line.

def Maven_reduce_verbosity(config):

mvn_args = "-B -Dorg.slf4j.simpleLogger.log.org.apache.Maven.cli"

".transfer.Slf4jMavenTransferListener=warn"

check for Maven commands in all sections

for section in ["before_install", "install", "before_script", "script"]:

if section in config:

if isinstance(config[section], str):

if "mvn " in config[section]:

config[section] += " " + mvn_args

elif isinstance(config[section], list):

for i, command in enumerate(config[section]):

if "mvn " in command:

config[section][i] += " " + mvn_args

return config

Listing 5.3: Injecting Maven command-line arguments to suppress network transfer progress

The above process has a pitfall in that it will fail to modify the arguments for some specific
cases such as Maven commands being executed in another script file. However, we observe that
the occurrence was not too frequent in our dataset.

5.3 Validation procedure
In this section, we present the approach taken for our validation procedure and generation of
the validation dataset used to test the repair rate of the developed strategies and tool. In order
to validate our results, we create a new dataset from recent breakages from popular and active

22 Chapter 5. To what extent can environmental build failures be automatically repaired?

projects. This process had also in mind the generation of reports which will be sent to developers
for suggestion and approval (Shown in Section 5.5), hence the need to repair breakages that were
relatively recent.

The data is gathered from 2462 real-world Java and Ruby open source projects hosted on
GitHub which also employ Travis CI. To find mature projects we restrict the number of GitHub
stars to at least five hundred. We also limit the languages to Java and Ruby so that they match
our original dataset. Since Travis does not have a public catalog of repositories GitHub was used
as the main data source to search for projects with the following criteria:

• Language: Java or Ruby

• Stars: ≥ 500

To generate the dataset we need the full list of projects from GitHub. However, GitHub’s API
endpoint is significantly throttled in terms of call frequency(30 requests per minute down from
the normal 83 per minute) and queries return only the first 1000 results regardless of the total
number.

To avoid these limits we use the following techniques to generate the dataset:

• Keep the number of requests below 30 per minute by intentionally waiting between network
requests.

• Bypass the maximum of 1000 results per query by further segmenting the query by append-
ing GitHub “stars” to the criteria in an automatic fashion as follows:

– language:java language:ruby stars:500..519

– language:java language:ruby stars:520..539

– ...

– language:java language:ruby stars:2500..2999

– ...

– language:java language:ruby stars:7000..40000

The higher the number of stars, the fewer repositories exist so the stars range can be safely
increased without hitting the 1000 results per query. By using this process we were able to down-
load a full list of all 6345 GitHub projects. The next step was to filter out projects not using Travis
CI. This was done by first fetching the default Git branch each project uses, since not every project
uses a “master” branch, then checking in the tree for the existence of a .travis.yml file. The
total number of projects using Travis as their CI of choice totaled at 2462, or 38.8%

To finalize the dataset generation process we downloaded the build history using the Travis
REST API using a custom-built set of scripts that query, navigate, and fetch all related build and
job information. The entire history contained 2,288,926 builds. To limit the amount of data we
decided to query broken builds between May and June 2020. Reason for this being that we wanted
to test on new data as well as to communicate with the developers with reports sent out in the
form of GitHub issues for our qualitative study used for the validation process.

For each build, we only consider jobs which exited without success then download the raw
logs to be analyzed and classified.

This process produced 62734 log files downloaded from Travis which we classify using the
tools provided from Ghaleb et al. replication package [GCZH19]. The distribution according to
the environmental issues taxonomy is presented in Table 5.3.

We also compare this with the distribution of the original dataset in Figure 5.1. We note that
our dataset contains a higher percentage of builds broken classified as “Unidentified branch/tree/-
commit”. This discrepancy may come due to a few select projects in our dataset containing

5.3 Validation procedure 23

a majority of the broken builds in this category. “Unidentified branch/tree/commit” contains
287 projects, but the top four: “activemerchant/active_merchant”, “BetterErrors/better_errors”,
“apache/incubator-iotdb”, “apache/druid”, make up 23.917% of the errors.

We also experience lower rates of builds being killed by Travis CI due to exceeding limits.
Noteworthy is the (almost) absence of categories such as “Memory & Disk issues”, “Platform
Issues”, “Virtual Machine” issues, “Accidental abruption”. From our inspection process, these
categories are mostly internal Travis CI errors. Their lack of presence could be due to the possible
fixes and improvements in the platform.

Category Builds
01.01-Unidentified branch/tree/commit 5,958
01.02-Error building gems 10
01.03-Failure to fetch resources 362
01.04-Logging stopped progressing 15,362
01.08-Multithreading issues 4
01.11-Cannot access GitHub 11
01.12-Empty log 1
01.13-Caching problems 1
02.01-Stalled build (not response) 925
02.02-Log size limit 285
02.03-Command execution time limit 243
02.06-Job runtime limit 745
02.07-API rate limit 1
03.01-Connection timeout 176
03.04-Server or service unavailable 10,611
03.05-Connection refused, reset, closed 1,276
03.06-Connection credentials error 663
03.07-Remote end hung up unexpectedly 5
03.08-Network transmission error 1
03.11-SSL certificate error 18
04.01-No compatible gem versions 387
04.02-Cannot find, parse, execute gems 106
04.03-Command loading failure 28
04.04-Bad file descriptor 4
04.06-Bundler not installed 318
05.01-Out of memory/disk space 89
05.02-Core dump problems 1
05.03-Segmentation fault 7
06.01-Language installation issues 2
07.01-Improper VM shut down 3
07.02-VM creation error 3
08.01-Build crashes unexpectedly 24
09.02-DB connection error 1
10.02-Build exited successfully 504
Total 38,135

Table 5.1: Distribution of the new dataset in the taxonomy. The much higher representation of category
01.04 appears due to a change in the handling of empty log files.

24 Chapter 5. To what extent can environmental build failures be automatically repaired?

G
ro

up

01-Internal CI issues

02-Exceeding limits

03-Connection issues

04-Ruby & bundler

05-Memory & disk issues

06-Platform issues

07-Virtual Machine

08-Accidental abruption

09-Database (DB) issues

10-Buggy build status

0 20 40 60

Validation Ghaleb et al

Figure 5.1: Distribution of breakages by build. New validation dataset vs the Ghaleb et al. data

5.4 Quantitative study results
In this section, we present the results of our automated repair. We run the prototype against 67
broken builds, limiting to the most recent build per project/category combination.

Builds from the category “01.02 - Error building gems” and “02.02 - Log size limit” were also
fetched from the original dataset provided by Ghaleb et al. [GCZH19] , we also limit the execution
of category “02.02 - Log size limit” to projects using Maven as it is what our solution targets. As
the goal was to replicate the original build environment as closely as possible, a new option was
added in the build run process to control the Linux distribution used for building. On Travis CI
the current Linux distribution used for builds is Ubuntu “Xenial”, however, some of our builds
are ran with Ubuntu “Trusty” and with older JDK versions which appeared to error during the
installation phase from Travis CI due to them no longer being supported. For this reason, we add
and use the use-dist flag and set it to trusty for the older builds. An example of a repair is
shown in Listing 5.4.

Category “03.04-Server or service unavailable” which as we have discussed so far, contains
many distinct problems we limit our repairs only to builds containing package installation com-
mands in the before_install, install, before_script or script sections of the .travis.yml
configuration file.

Our results yield an overall success rate of 55.22%. The data is presented in Figure 5.2 and
Table 5.2. For each of the categories, we include a section where the results are briefly discussed.

5.4 Quantitative study results 25

./runrepair maven-verbosity 687064030

Inner command executed to conduct the actual repair from above command

./repair \

--work-dir ~/repairs \

--strategy "$1" \

--repository git@github.com:$mirror.git \

--ref master

--use-dist trusty

Listing 5.4: Repairing build 687064030. Distribution Ubuntu “Trusty” is used, a downgrade from the current
“Xenial” release in order to match the original build environment.

Builds

C
at

eg
or

y

Overall

Unidentified
branch/tree/com

Error building
gems

Log size limit

Server or service
unavailable

0 20 40 60 80

Repaired Failed

Figure 5.2: Repair statistics by category

Category Repaired Failed Total Success rate
Overall 37 30 67 55.22%
01.01 - Unidentified branch/tree/commit 20 5 25 80.00%
01.02 - Error building gems 10 12 22 45.45%
02.02 - Log size limit 4 11 15 26.67%
03.04 - Server or service unavailable 3 2 5 60.00%

Table 5.2: Results of repair statistics. Failed denotes builds that were unable to be repaired.

26 Chapter 5. To what extent can environmental build failures be automatically repaired?

5.4.1 Unidentified branch/tree/commit
Category “Unidentified branch/tree/commit” in practice has a 100% success rate taking into ac-
count the goal of the repair is to get the build running regardless of its result, which is always
possible. The failures in our results set come from broken builds which were not part of a pull
request. The resulting error comes from either a branch being deleted while the build was initial-
izing or any git operation which performs a history rewrite, potentially causing commits to be no
longer available, because they were either removed, squashed via rebasing, etc.

Name Category Success
activemerchant/active_merchant #699426008 01.01 - Unidentified branch/tree/commit Yes
activerecord-hackery/ransack #692962875 01.01 - Unidentified branch/tree/commit Yes
adomokos/light-service #693975633 01.01 - Unidentified branch/tree/commit Yes
aidewoode/black_candy #693137940 01.01 - Unidentified branch/tree/commit Yes
airbnb/synapse #699464415 01.01 - Unidentified branch/tree/commit No
airsonic/airsonic #690562827 01.01 - Unidentified branch/tree/commit No
alibaba/arthas #689981989 01.01 - Unidentified branch/tree/commit Yes
alibaba/easyexcel #698948869 01.01 - Unidentified branch/tree/commit Yes
alibaba/fastjson #687392372 01.01 - Unidentified branch/tree/commit Yes
alibaba/jvm-sandbox-repeater #684611569 01.01 - Unidentified branch/tree/commit Yes
alibaba/nacos #698446758 01.01 - Unidentified branch/tree/commit Yes
aliyun/aliyun-openapi-java-sdk #696724305 01.01 - Unidentified branch/tree/commit Yes
oshi/oshi #693060692 01.01 - Unidentified branch/tree/commit No
gauravk95/bubble-navigation #690228410 01.01 - Unidentified branch/tree/commit Yes
chef-cookbooks/docker #696829061 01.01 - Unidentified branch/tree/commit Yes
pravega/pravega #696708758 01.01 - Unidentified branch/tree/commit Yes
airbnb/synapse #699464415 01.01 - Unidentified branch/tree/commit No
jnunemaker/flipper #697755516 01.01 - Unidentified branch/tree/commit Yes
tronprotocol/java-tron #695045282 01.01 - Unidentified branch/tree/commit Yes
spring-cloud/spring-cloud-gcp #699377884 01.01 - Unidentified branch/tree/commit Yes
lsegal/yard #682700120 01.01 - Unidentified branch/tree/commit Yes
apache/kylin #699153478 01.01 - Unidentified branch/tree/commit Yes
jruby/jruby #694472963 01.01 - Unidentified branch/tree/commit Yes
RipMeApp/ripme #689514059 01.01 - Unidentified branch/tree/commit Yes
Shopify/shopify_app #693728377 01.01 - Unidentified branch/tree/commit No

Table 5.3: Results of automatic build repair for category “01.01 - Unidentified branch/tree/commit”

5.4 Quantitative study results 27

5.4.2 Error building gems
We were able to repair several builds in this category by installing the necessary development
packages as a general solution. There exist, however many builds which were unable to be
repaired. These builds required the installation of additional packages that a few Ruby Gems
required. However, we kept using our general-purpose strategy rather than adapting it to indi-
vidual Gem needs which were deemed to be too specific to a repository rather than an overall
solution to the category.

Name Category Success
chef/chef #42701252 01.02 - Error building gems Yes
cloudfoundry/cloud_controller_ng #8245585 01.02 - Error building gems No
errbit/errbit/jobs/27524839 01.02 - Error building gems No
expertiza/expertiza #40630769 01.02 - Error building gems No
fatfreecrm/fat_free_crm #3673679 01.02 - Error building gems Yes
feedbin/feedbin #126338249 01.02 - Error building gems No
fluent/fluentd #139084821 01.02 - Error building gems Yes
fog/fog #12954394 01.02 - Error building gems No
ging/social_stream #6448036 01.02 - Error building gems Yes
Growstuff/growstuff #8360936 01.02 - Error building gems No
guard/guard #12566736 01.02 - Error building gems No
kmuto/review/jobs/138674605 01.02 - Error building gems Yes
middleman/middleman/jobs/107173351 01.02 - Error building gems Yes
nanoc/nanoc/jobs/5417491 01.02 - Error building gems Yes
neo4jrb/neo4j-core #45387041 01.02 - Error building gems Yes
openshift/rhc #42876035 01.02 - Error building gems Yes
opf/openproject/jobs/8650479 01.02 - Error building gems No
pagseguro/ruby #24539687 01.02 - Error building gems No
rails-api/active_model_serializers #20480376 01.02 - Error building gems No
grosser/parallel #699142850 01.02 - Error building gems Yes
puppetlabs/r10k #685959208 01.02 - Error building gems No

Table 5.4: Results of automatic build repair for category “01.02 - Error building gems”.

28 Chapter 5. To what extent can environmental build failures be automatically repaired?

5.4.3 Log size limit
Builds in this category were able to be repaired at a rate of 4/15. We notice that our strategy
does indeed work and saves space in the log size which in the four passing cases is enough to
allow the build to complete. In the case of the builds that were unable to be repaired, the main
cause is repeated stack traces being printed throughout all the test suite, long after the Maven
installation process. We observe that the space saved by our repair strategy is immediately filled
by even more stack traces being outputted due to repeated errors in the build. We are, however,
encouraged from the validation dataset regarding our approach being correct in that many of
the projects already have a similar implementation in place. Projects such as “apache/druid”,
“apache/zeppelin”, “apache/shiro”, “jan-molak/jenkins-build-monitor-plugin” “debezium/de-
bezium”, “hugegraph/hugegraph” had a similar or in some cases identical implementation. We
also encountered ad-hoc solutions with developers filtering the output via grep commands rather
than using Maven’s built-in capabilities to reduce logging. Table 5.5 presents the results of this
inspection.

Name Category Success
hugegraph/hugegraph #694584460 02.02 - Log size limit No
geotools/geotools #690963648 02.02 - Log size limit No
openmrs/openmrs-core #684903024 02.02 - Log size limit No
mybatis/spring-boot-starter #695575606 02.02 - Log size limit No
DataSystemsLab/GeoSpark #687975530 02.02 - Log size limit Yes
spring-projects/spring-petclinic #690087792 02.02 - Log size limit No
siddhi-io/siddhi #687064030 02.02 - Log size limit No
ron190/jsql-injection #683484467 02.02 - Log size limit No
yahoo/elide #689367789 02.02 - Log size limit No
thingsboard/thingsboard #691775483 02.02 - Log size limit No
debezium/debezium #698460843 02.02 - Log size limit Yes
bonigarcia/webdrivermanager #694607560 02.02 - Log size limit Yes
javaparser/javaparser #685292554 02.02 - Log size limit No
apache/ignite #677028233 02.02 - Log size limit Yes
apache/hudi #697533820 02.02 - Log size limit No

Table 5.5: Results of automatic build repair for category “02.02 - Log size limit”.

5.4 Quantitative study results 29

5.4.4 Server or service unavailable
Builds in this category were able to be repaired at a rate of 3/5 as shown in Table 5.6. We observe
that builds in this category which were unable to be repaired, require packages that do not exist
or otherwise contain problems in their dependencies. We show in Listing 5.5 an example of a
failing build due to an inexistent package. The developer possibly meant to require package
python3-pip, a package manager for Python 3. The current name used is perhaps a confusion
due to the binary name of the package being pip3 (often also aliased as pip).

Name Category Success
apache/druid #695860094 03.04 - Server or service unavailable No
apache/incubator-heron #688899916 03.04 - Server or service unavailable No
apache/jmeter #692282255 03.04 - Server or service unavailable Yes
apache/storm #696047598 03.04 - Server or service unavailable Yes
apache/zeppelin #695717856 03.04 - Server or service unavailable Yes

Table 5.6: Results of automatic build repair

$ if [$(command -v apt-get)]; then sudo apt-get update; fi

$ wget -q "https://github.com/bazelbuild/bazel/releases/download/${

BAZEL_VERSION}/bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh"

$ chmod +x bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh

$./bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh --user

$ sudo apt-get install pip3

Reading package lists... Done

Building dependency tree

Reading state information... Done

E: Unable to locate package pip3

The command "sudo apt-get install pip3" failed and exited with 100 during .

Your build has been stopped.

Listing 5.5: Despite the repair, installation of package pip3 cannot continue as it does not exist.

30 Chapter 5. To what extent can environmental build failures be automatically repaired?

5.5 Qualitative study results
In order to validate the applicability of our tool in a real scenario, and the quality of the produced
patches, besides the build being fixed, we wanted to gather direct feedback from the contributors
in each of the repositories and whether they agree or not with our strategies and the validity of
our solution. To this end, we generate textual reports from our builds and contact the contributors
through opening GitHub issues such as the sample presented in Figure 5.3.

Our issue template contains five important sections. The opening paragraph serves as an
introduction to environmental failures and briefly explains to the developers how they can arise.
Next, we describe a type of environmental breakage found in the project repository, alongside
with links to the breakage as well as the number of occurrences to stress its importance (e.g., 3
occurrences in the May-June period). Then we provide them with our solution or suggestion on
how to handle the problem in a textual manner alongside a sample diff representing the necessary
code changes in .travis.yml. We provide a disclaimer and lastly, we indicate to the developers
how to communicate their approval besides replying with a comment. In our results, we use the
reactions as definitive agree/disagree responses.

We open issues on the corresponding projects for each of our successful repairs, limited to one
per project/breakage type combination, in order not to flood GitHub issues with our repeated
recommendations. In total, we create 22 issues whose results we present as follows. We receive
9 responses out of which, in 6 of them the developers agreed with the proposal, in three issues
developers express their lack of concern for the issue presented to them. We acknowledge as
positive responses cases when developers react with “thumbs-up” as suggested in the issue, state
favorable opinion in the comments, or otherwise mark the issue as a task needed to be done. In
total, 66.6% of the developers agree with our proposed fixes. We also observe several cases where
the developers are not concerned about the environmental breakages occurring in their projects.
We also encounter reactions where the developers are initially not concerned but later agree with
our proposal.

The full list of issues and their responses are presented in Table 5.7 and Table 5.8.

5.5 Qualitative study results 31

Build failures often indicate a fault with the software being built such as compilation or test
failures. However, there is a subset of build failures (called environmental or non-verification
failures) that are not expected within a standard application development lifecycle, such as
build configuration failures, dependency resolution failures, infrastructure failures, and so
on.

Problem: One type of environmental failure is due to due to git references being no longer
available at the time a build job starts. For example, pull requests are merged shortly before
the start of the scheduled build, causing a build failure due to an unfound (because merged)
branch. In your project, we detected 3 failures of this type over the May-June timespan. For
instance, we found that Build #20361 did not pass due to the above issue.

Solution: It is generally recommended to wait for the build results before merging a pull
request. If you wish to skip builds you may also use the SKIP CI tag in your commit
message. Additionally, it is also possible to skip builds containing non-code changes as
shown in this example and below:

+ before_install:

+ - |

+ if ! git diff --name-only $TRAVIS_COMMIT_RANGE | grep -qvE ’(.md)|(.png)

|(.pdf)|(.html)|^(LICENSE)|^(docs)’

+ then

+ echo "Only doc files were updated, not running the CI."

+ exit

+ fi

Disclaimer: I developed a tool that repairs environmental build failures and I am now
evaluating its usefulness for open-source projects.

Please up/downvote the issue to indicate whether you agree/disagree with the report and the proposed
fix.

Figure 5.3: Sample issue created for the tronprotocol/java-tron project. Maintainer reacted positively, wel-
coming us to create a pull request with the proposed changes.

32 Chapter 5. To what extent can environmental build failures be automatically repaired?

Issue Reaction
1. github.com/activemerchant/active_merchant/issues/3698
2. github.com/activerecord-hackery/ransack/issues/1139
3. github.com/adomokos/light-service/issues/198
4. github.com/aidewoode/black_candy/issues/56 Won’t fix
5. github.com/alibaba/arthas/issues/1309
6. github.com/alibaba/easyexcel/issues/1470
7. github.com/alibaba/fastjson/issues/3348
8. github.com/alibaba/jvm-sandbox-repeater/issues/74
9. github.com/alibaba/nacos/issues/3345 Acknowledged, Agree
10. github.com/aliyun/aliyun-openapi-java-sdk/issues/440
11. github.com/chef-cookbooks/docker/issues/1126
12. github.com/gauravk95/bubble-navigation/issues/31
13. github.com/jnunemaker/flipper/issues/473 Acknowledged, Won’t fix
14. github.com/jruby/jruby/issues/6325 Acknowledged, Won’t fix
15. github.com/lsegal/yard/issues/1342
16. github.com/pravega/pravega/issues/4947 Acknowledged, Agree
17. github.com/RipMeApp/ripme/issues/1706
18. github.com/spring-cloud/spring-cloud-gcp/issues/2465 Acknowledged, Agree
19. github.com/tronprotocol/java-tron/issues/3283 Acknowledged, Agree
20. github.com/grosser/parallel/issues/279 Acknowledged, Agree
21. github.com/bonigarcia/webdrivermanager/issues/513 Acknowledged, Agree
22. github.com/DataSystemsLab/GeoSpark/issues/463

Table 5.7: Issues created alongside with their noted responses.

Category Positive responses Nr. of responses Acceptance rate
Unidentified branch/tree/commit 4 7 0.57
Error building gems 1 1 1
Log size limit 1 1 1
Overall 6 9 0.66

Table 5.8: Responses groupped by category

Chapter 6

Discussion

6.1 Implications
In this section, we discuss implications as a result of the work done in this thesis.

6.1.1 Implications for developers
Disregarding build results

According to our observations, the over-representation of “Unidentified branch/tree/commit” in
our validation dataset, in the Ghaleb et al. [GCZH19] study as well as in the study from Rausch et
al. [T. 17], is that developers simply do not wait for build results before merging new code into the
repository and undervalue the CI as a process. We urge developers to wait for the build results
in order to make an informed decision about the quality of code being added into the codebase.
This is especially true about pull requests are the vast majority of the causes for the "Unidentified
branch/tree/commit" category and that come from third-parties rather than current maintainers
of the project.

6.1.2 Implications for researchers
Immediate feedback

We argue that the best way to implement the approach suggested in this thesis is in the form of
immediate feedback to the developer rather than sending them in bulk or otherwise. As shown
in the study from Kerzazi et al. [KKA14]. Developers may spend up to several days working
towards resolving a build failure. Immediate feedback will give the proper guidance and provide
developers with a solution and if that is not possible, then to point them towards the proper
method to address this in a similar fashion such as the one described by Vassallo et al. [Vas20].

Installation of dependencies

We notice that in several cases, developers refer to apt package names by the name of the installed
binary, which is often different from the name of the package. We present an example case from
project apache/incubator-heron 1 where the package python3-pip is requested using the
binary name pip3. This could be a new possible repair method, in which a strategy is devised to
correct this kind of mistake and provide the correct suggestion or a list of possible candidates.

1https://travis-ci.org/github/apache/incubator-heron/builds/688899916

34 Chapter 6. Discussion

Categories are too general

A few categories are too general and encompass a very wide range of issues, such as "03.04 -
Server or service unavailable" which encompasses all sorts of network failures. Http errors re-
turning 4XX, 5XX status as well as failure to install system packages are bundled here. However,
these three things represent very distinct cases that need to be handled differently. Http 4XX are
client errors, meaning the client is incorrectly performing the request. Http 5XX are server errors,
in this case, the client is no longer to blame, but rather the server has encountered an error or is
otherwise misbehaving. Installation of system packages is an entirely different thing that shares
very little with Http requests, besides it being the transport protocol.

Language specific categories

Few categories are language-specific, while the study was performed using only Java and Ruby
projects, the taxonomy is better served by staying language agnostic. Examples of this include all
of the categories under "04-Ruby & bundler issues", it could then be argued that a group of "Java
& Maven issues" is also due, or "Java & Gradle issues". We argue that the entire taxonomy needs
to be several levels deep instead of having just two levels of depth.

Classification method

The way a build is classified is through matching it against several regular expressions or con-
stant text strings. This approach has the pitfall that it generates too many false positives. Merely
including a few strings such as "No output has been received in the last" anywhere in the output
will incorrectly misclassify it as "02.01-Stalled build (not response)" (sic).

Some example categories suffering from false-positives due to this kind of classification being
solely based on substring searching and patterns are the ones from "03 - Connection issues", such
as "03.04 - Server or service unavailable" or "03.05 - Connection refused, reset, closed".

In these categories we notice a large number of false positives not necessarily due to exter-
nal factors, some third-party service being unavailable; but rather services the developers have
requested to be installed are not correctly configured, or servers running locally are the ones re-
turning these errors making them wrongly classified as environment breakages as we argue that
this is the developers’ responsibility to properly configure Redis, Mysql, PostgreSQL, Selenium
or other similar services. We show an example of such a case in Figure 6.1.

Starting simulator

OpenJDK 64-Bit Server VM warning: Ignoring option MaxPermSize; support was

removed in 8.0

nc: connect to localhost port 8096 (tcp) failed: Connection refused

Figure 6.1: Log extract taken from job 688789747. The test suite was attempting to connect to a local server.

6.1.3 Implications for CI vendors
Caching mechanism for git clone results

One of the most prominent categories in the taxonomy is “Unidentified branch/tree/commit”
which as described occurs when a git reference is no longer available. Travis CI supports a mul-

6.2 Limitations 35

titude of caching mechanisms, but not for git clone. We argue that this one is an important one
due to several reasons: (i) It avoids cases where some jobs were able to clone the repository but
others not. (ii) It saves bandwidth. (iii) Makes the overall build faster as long as the nodes where
the jobs are executed are closer to each other than with GitHub. (iv) Avoids GitHub errors which
are frequent enough to be in a popular enough category in “01.11-Cannot access GitHub ”. We
argue that all of the above benefits come without a downside to the build process.

We communicate our thoughts about this process to Travis CI support and inquire whether
this approach has been considered, but has been rejected, or otherwise if they would be open to
implementing such a mechanism. It has been revealed to us via an E-Mail communication that the
implementation of this caching mechanism is currently not possible due to technical limitations.

Category volatility

In our results, we notice that the rate in which categories appear changed over time. When com-
paring the distribution of categories between datasets (Figure 5.1) we notice many of the cate-
gories which represent internal errors of the Travis CI platform to be significantly less represented,
or not at all represented in the new taxonomy. This has the potential implication that errors have
been fixed and flakiness by the tool vendor has been reduced. On the other hand, with the intro-
duction of new tools and processes, there might exist a need to further extend the taxonomy with
new categories.

Re-running jobs which fail due to internal CI errors

There are a plethora of breakages happening due to internal CI errors. While builds should be
reproducible and thus not allowed to be re-run [HF10]. We argue that some jobs can be re-run
when the process failed due to CI. In these cases, we will include all VM creation errors where
user code has not been executed yet or “01.12-Empty log” which occurs when Travis fails to collect
the build logs. This, of course only masks the flakiness of the CI server, but it should allow user
builds a chance to execute and lower the amount of noise and failures in builds due to the CI
vendors’ infrastructure errors.

Infrastructure errors persisting through the years

In both the dataset by Ghaleb et al. [GCZH19] , as well as our new dataset from 2020, we notice
infrastructure errors persisting through the years. Such a case is “01.12 - Empty log”. The earliest
instance we could find in our data with a type of this error is from 2012 2. This error was still
visible in our new data. A GitHub issue 3 is tracking the progress of this defect, which despite
attempts to fix it, is still occurring.

6.2 Limitations
In this section, we list some of the possible threats to validity and our solutions to mitigate each
of them.

1. During the inspection process, reviewers inspecting a build, or category might be biased
towards a solution if others have come to that conclusion before. We mitigate this bias by keeping
the results of the inspection separate for all 4 reviewers until the whole inspection procedure is
done.

2https://travis-ci.org/github/spree/spree/builds/2331735
3https://github.com/travis-ci/travis-ci/issues/7443

36 Chapter 6. Discussion

2. We avoid getting “bad” samples by prioritizing build chains in our sampling strategy. As
we have established in previous chapters, build chains give us a better idea of the breakage rather
than a singular failing build. To this extent, we prioritize including build chains in our sample
rather than picking individual builds.

3. Another point of bias lies in sampling. Since we analyze only a subset of the data, our
samples might be biased. To mitigate this we code the sampling procedure in a way such that
the maximum number of projects will be present in the final sample. This way we get a variety
of issues from different projects operating on many domains and from as many developers as
possible.

4. Another threat we wanted to avoid is having to analyze or repair breakages which do not
generalize but occur only in a small subset of the projects. To avoid this, we compute the number
of projects for which the error appears, we calculate the quartiles and then discard categories
belonging in the lower quartile. This way we avoid categories that are dominated by a few select
projects. However, we do restrict the usage of language to Java and Ruby to be consistent with
the original dataset, and since some of our repair strategies specifically target technologies from
these languages such as Maven or Bundler.

6.3 Potential industrial applications and future work
In this section, we discuss possible future work or practical applications of the results with re-
spect to build breakage resolution and monitoring such as cases of “Unidentified branch/tree/-
commit”· The system could reconstruct the pull request branch, run the build and notify the
developer of its results.

Actor Repository

Commit

CI

Build
passed?

Done

Yes

No

Application server

Classify buildEnv.error?

Done

No

Queue build for
repair

Yes

Build queue

Success?

Done

No

Notify developers and
propose changes

Yes

Notify

Attempt
repair

Figure 6.2: Overview of a possible build repair service

6.4 Conclusions 37

The system context in Figure 6.2 gives a high-level overview of a system that is able to provide
feedback and propose changes to projects regarding the current failure.

The system is able to be notified by Travis when a certain build fails via hooks. When new
builds are received they are run through the build classifier to place the build somewhere in the
taxonomy. Unknown errors can be then be manually analyzed in order to extend the taxonomy.
Once a build is on a category that is possible to repair it is placed into a queue which workers may
periodically poll. Different workers pick builds from the queue and initiate a repair. If the repair
was successful then the developers should be notified via channels such as E-Mail, comments on
the GitHub project, or pull requests when code changes are proposed which the developers may
act upon.

6.4 Conclusions
In this section, we highlight the main contributions made. We inspect 380 builds and build chains
to answer the two posed research questions. We propose the use of build chains as a method of
inspecting builds in order to get a more complete picture rather than inspecting isolated builds at
random. To this end, a “Build explorer” utility was built from scratch and used as the means to
facilitate our research goals which we hope researchers interested in studying build failures will
use alongside the studying using build chains. A total of 10 out of 42 categories in the taxonomy
were found to be repairable. The main limitation lies in that widespread repair success remains
a difficult task due to the little agency that exists over many of the causes such as internal CI
errors, third-party services being unreliable, slow, or otherwise unresponsive. The results show
a repair rate of 55.22% tested against builds on GitHub projects from the May-June 2020 period.
In Section 6.3, we propose a concept system making use of the repair strategies and suggesting
fixes or otherwise help to the developers while they are addressing the breakage, in an attempt to
address one of the barriers of CI adoption [KKA14] by making use of the results of this thesis.

38 Chapter 6. Discussion

Bibliography

[AP18] S A I B Arachchi and Indika Perera. Continuous integration and continuous delivery
pipeline automation for agile software project management. 05 2018.

[Bec99] K. Beck. Embracing change with extreme programming. Computer, 32(10):70–77, 1999.

[BPVPT19] Olivier Bal-Pétré, Pierre Varlez, and Fernando Perez-Tellez. Pacloud: Towards a uni-
versal cloud-based linux package manager. In Proceedings of the 2019 International
Communication Engineering and Cloud Computing Conference, CECCC 2019, page 6–13,
New York, NY, USA, 2019. Association for Computing Machinery.

[CH11] M. Cataldo and J. D. Herbsleb. Factors leading to integration failures in global feature-
oriented development: an empirical analysis. In 2011 33rd International Conference on
Software Engineering (ICSE), pages 161–170, 2011.

[Che15] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Soft-
ware, 32, 03 2015.

[FF06] M. Fowler and M. Foemmel. Continuous Integration. 2006.

[GCZH19] Taher Ghaleb, Daniel Costa, Ying Zou, and Ahmed E. Hassan. Studying the impact of
noises in build breakage data. IEEE Transactions on Software Engineering, pages 1–14,
08 2019.

[Gha19] Ali Ghanbari. Toward practical automatic program repair. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering, page 1262–1264.
IEEE Press, 2019.

[Has19] Foyzul Hassan. Tackling build failures in continuous integration. In Proceedings of the
34th IEEE/ACM International Conference on Automated Software Engineering, ASE ’19,
page 1242–1245. IEEE Press, 2019.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edition,
2010.

[HNT+17] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
Trade-offs in continuous integration: Assurance, security, and flexibility. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, page 197–207, New York, NY, USA, 2017. Association for Computing Machin-
ery.

40 BIBLIOGRAPHY

[IZ17] Md Rakibul Islam and Minhaz F. Zibran. Insights into continuous integration build
failures. In Proceedings of the 14th International Conference on Mining Software Reposito-
ries, MSR ’17, page 467–470. IEEE Press, 2017.

[KKA14] N. Kerzazi, F. Khomh, and B. Adams. Why do automated builds break? an empirical
study. In 2014 IEEE International Conference on Software Maintenance and Evolution,
pages 41–50, 2014.

[LNFW12] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method
for automatic software repair. IEEE Transactions on Software Engineering, 38(1):54–72,
2012.

[MMP18] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically repairing
dependency-related build breakage. In Proc. of the International Conference on Software
Analysis, Evolution, and Reengineering (SANER), page 106–117, 2018.

[PKL+09] Jeff Perkins, Sunghun Kim, Samuel Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Gregory Sulli-
van, Weng-Fai Wong, Yoav Zibin, Michael Ernst, and Martin Rinard. Automatically
patching errors in deployed software. pages 87–102, 01 2009.

[SBO18] Mali Senapathi, Jim Buchan, and Hady Osman. Devops capabilities, practices, and
challenges: Insights from a case study. pages 57–67, 06 2018.

[T. 17] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. "an empirical analysis of build
failures in the continuous integration workflows of java-based open-source software"
in proceedings of the 14th international conference on mining software repositories
(msr 2017). 2017.

[Vas20] Vassallo, Carmine. Proksch, Sebastian. Zemp, Timothy. Gall, Harald C. Every build
you break: developer-oriented assistance for build failure resolution. 2020.

[VSZ+17] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaidman, M. Di
Penta, and S. Panichella. A tale of ci build failures: An open source and a financial or-
ganization perspective. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 183–193, 2017.

[VYW+15] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
github. pages 805–816, 08 2015.

Appendix

Category Builds
01.01-Unidentified branch/tree/commit 4010
01.02-Error building gems 829
01.03-Failure to fetch resources 1893
01.04-Logging stopped progressing 520
01.05-Error fetching CI configuration 1092
01.06-Error finding gems 204
01.07-Cannot execute git command 92
01.08-Multithreading issues 70
01.09-Unknown Travis CI error 79
01.10-Script compilation error 19
01.11-Cannot access GitHub 330
01.12-Empty log 26
01.13-Caching problems 5
01.14-Writing errors 23
01.15-Remote repository corruption 16
01.16-Cannot allocate resources 6
01.17-Storage server offline 2
01.18-Path issues 4
02.01-Stalled build (not response) 5746
02.02-Log size limit 1374
02.03-Command execution time limit 1933
02.04-Test running limit 1549
02.05-Time limit waiting for response 191
02.06-Job runtime limit 157
02.07-API rate limit 29

Table 1: Categories (01-02) and the number of builds present in each. Names verbatim from Ghaleb et
al. [GCZH19]

42 Chapter . Appendix

Category Builds
03.01-Connection timeout 2057
03.02-Broken connection/pipes 185
03.03-Unknown host 757
03.04-Server or service unavailable 1675
03.05-Connection refused, reset, closed 2244
03.06-Connection credentials error 1392
03.07-Remote end hung up unexpectedly 220
03.08-Network transmission error 46
03.09-Connection, proxy, & sync errors 43
03.10-SSL connection error 105
03.11-SSL certificate error 8
04.01-No compatible gem versions 662
04.02-Cannot find, parse, execute gems 381
04.03-Command loading failure 722
04.04-Bad file descriptor 253
04.05-Dependency request error 320
04.06-Bundler not installed 94
05.01-Out of memory/disk space 1302
05.02-Core dump problems 158
05.03-Segmentation fault 303
05.04-Memory stack error 72
05.05-Corrupted memory references 2
06.01-Language installation issues 326
06.02-Invalid platform 2
06.03-Unexpected failure 4
07.01-Improper VM shut down 549
07.02-VM creation error 47
07.03-VM connection problem 7
07.04-Invalid VM state 5
07.05-Stalled VM 9
08.01-Build crashes unexpectedly 646
09.01-DB creation quota 159
09.02-DB connection error 37
10.01-Jobs passing but build broken 114
10.02-Build exited successfully 348
11.01-E.g., interpreter bugs 10

Table 2: Categories (03-11) and the number of builds present in each. Names verbatim from Ghaleb et
al. [GCZH19]

