
Department of Informatics, University of Zürich

BSc Thesis

A General-purpose Range Join
Algorithm for PostgreSQL

Thomas Rolf Mannhart
Matrikelnummer: 17-917-907

Email: thomasrolf.mannhart@uzh.ch

March 16, 2020
supervised by Prof. Dr. M. H. Böhlen and Prof. Dr. A. Dignös

Acknowledgements

I would like to offer my special thanks to my supervisor, Prof. Dr. Anton Dignös, with whom
it was and will be a pleasure to work.

I would like to thank, Prof. Dr. Michael H. Böhlen and the Database Technology Group of
the University of Zurich for making this thesis possible.

I would also like to thank the Database Systems Group of the Free University of Bozen-
Bolzano, where I felt very welcome.

ii

Abstract

In this thesis we provide a range join algorithm based on the sort-merge paradigm and its
implementation into the open-source RDBS PostgreSQL. The traditional sort-merge join is
an efficient join algorithm for equality constraints, while a range join additionally considers
a predicate describing that a value from one relation is in the range between two values of
the other relation. PostgreSQL implements the sort-merge join or Merge Join (MJ) as a state
machine adhering to the demand-pull pipeline paradigm. Our range join or Range Merge
Join (RMJ) builds on the existing implementation and expands it with additional conditions
to efficiently handle range joins. We describe in detail, how we modified the PostgreSQL
optimizer and executor to achieve this goal. We provide the implementation of the RMJ algo-
rithm as well as the identification of possible range join predicates and the correct sorting of
the input relations. We show the benefits of our implementation in several experiments using
real-world and synthetic workloads and datasets. The experiments show a major reduction in
execution time in most real-world and all of our synthetic workloads, while only incurring a
minor overhead in planning time in a few cases.

Zusammenfassung

In dieser Thesis zeigen wir einen Range-Join-Algorithmus, der auf dem Sort-Merge-
Paradigma basiert und dessen Implementierung im Open-Source-RDBS PostgreSQL. Der
Sort-Merge-Join ist ein effizienter Join-Algorithmus für Gleichheitsbedingungen. Ein Range-
Join berücksichtigt ein zusätzliches Prädikat, das beschreibt, dass ein Wert aus einer Relation
im Bereich zwischen zwei Werten der anderen Relation liegt. PostgreSQL implementiert den
Sort-Merge-Join oder Merge-Join (MJ) als eine “state machine”, welche nach dem Demand-
Pull-Pipelining-Prinzip funktioniert. Unser Range-Join oder Range-Merge-Join (RMJ) baut
auf der bestehenden Implementierung auf und erweitert sie um zusätzliche Bedingungen, um
Range-Joins effizient zu handhaben. Wir beschreiben im Detail, wie wir den Optimizer und
Executor von PostgreSQL modifiziert haben. Wir zeigen nicht nur die Implementierung des
RMJ-Algorithmus, sondern auch die Identifizierung möglicher Range-Join-Prädikate und die
korrekte Sortierung der Input-Relationen. Wir zeigen die Vorteile unserer Implementierung
in mehreren Experimenten unter Verwendung von realen und synthetischen Arbeitslasten und
Datensätzen. Die Experimente zeigen eine erhebliche Reduzierung der Ausführungszeit in ei-
nigen realen und all unseren synthetischen Arbeitslasten mit nur einem geringfügig höheren
Planungsaufwand in bestimmten Fällen.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 3
1.3. Organization of the Thesis . 3

2. Background 4
2.1. Sort-Merge Join . 4
2.2. Range Join . 5

3. A Range Merge Join in PostgreSQL 6
3.1. The Sort-Merge Join Implementation in PostgreSQL 6
3.2. A Range Merge Join Implementation for PostgreSQL 8

3.2.1. Algorithm . 8
3.2.2. Implementation as a State Machine 9

4. Integration into the PostgreSQL Kernel 12
4.1. Overview . 12
4.2. Path Nodes . 12
4.3. Planner/Optimizer . 13

4.3.1. range clauses . 13
4.3.2. Sorting . 15

4.4. Executor . 17
4.4.1. Initialization . 17
4.4.2. Execution . 17

4.5. Query Plans . 18

5. Experiments 20
5.1. Setup . 20

5.1.1. Synthetic Workloads . 20
5.1.2. Real-World Workloads . 21

5.2. Overview . 21
5.3. Overhead of the RMJPATCH . 22

5.3.1. Workload and Methodology . 22
5.3.2. Planning Time . 22
5.3.3. Execution Time . 24

v

5.4. Range Join Execution Time . 25
5.4.1. RMJ Vs. MJ . 25
5.4.2. Merge Condition Vs. Range Condition 26
5.4.3. RMJPATCH Vs. HEAD . 27
5.4.4. RMJ Vs. Index Joins . 28
5.4.5. Real-World Workloads . 30

5.5. Summary . 32

6. Experiences from the PostgreSQL Implementation 33
6.1. Procedure . 33
6.2. Takeaways . 34
6.3. Open Issues . 35

7. Conclusion and Future Work 37

A. Appendix 40
A.1. TPC-H Query Description . 40
A.2. TPC-H Planning Time Without Filtering Constants 41
A.3. Synthetic Experiments With Parallelization Enabled 42

vi

List of Figures

1.1. Example input relations marks and grades 1
1.2. Result of range join between marks and grades 2
1.3. Example input relations emps and events. 2
1.4. Result of range join between emps and events with an equality condition on

attribute dept. 3

3.1. State diagram of PostgreSQL’s sort-merge join implementation. 8
3.2. State diagram for the range merge join implementation as an extension of the

sort-merge join. 10

4.1. Query plans for the introductory examples in Chapter 1.1. 19

5.1. Planning time for varying number of joins and conditions. 24
5.2. Runtime results for our synthetic workloads with only MJ and RMJ enabled. . 26
5.3. Runtime results for varying selectivity κ or δ. 27
5.4. Runtime results for our synthetic workloads with all join algorithms enabled. 28
5.5. Runtime results for our synthetic workload with range conditions only

(smaller default values for input relations, n = m = 10k). 29
5.6. Runtime results for our synthetic workload with range conditions only and

a B+-Tree index on s for HEAD (smaller default values for input relations,
n = m = 1M). 30

5.7. Runtime results for our synthetic workload with range conditions only and
a GiST or SP-GiST index on r for HEAD (smaller default values for input
relations, n = m = 1M). 31

5.8. RMJPATCH vs. HEAD on real-world workload. 32

6.1. Simplified state diagrams of the PostgreSQL Merge Join state machine. . . . 33

A.1. Runtime results for our synthetic workloads with only MJ and RMJ enabled. . 42
A.2. Runtime results for our synthetic workloads with all join algorithms enabled. 43
A.3. Runtime results for our synthetic workload with range conditions only

(smaller default values for input relations, n = m = 10k). 44
A.4. Runtime results for our synthetic workload with range conditions only and

a B+-Tree index on s for HEAD (smaller default values for input relations,
n = m = 1M). 45

vii

A.5. Runtime results for our synthetic workload with range conditions only and
a GiST or SP-GiST index on r for HEAD (smaller default values for input
relations, n = m = 1M). 46

viii

List of Tables

3.1. States of the PostgreSQL Merge Join . 6

5.1. Parameters of synthetic data used in the experiments. 20
5.2. Notation for statistical significance. 22
5.3. Planning time in milliseconds for the TPCH queries 23
5.4. Execution time in milliseconds for the TPCH queries 25

A.1. Description of TPC-H queries. 40
A.2. Planning time in milliseconds for the TPCH queries (without filtering constants). 41

ix

1. Introduction

1.1. Motivation
Joins are arguably one of the most important, frequent, and expensive operations in relational
database systems (RDBS). Traditionally, joins are mostly based on equality constraints (i.e.,
equi joins), such as key-foreign-key joins. This type of joins with an equality join condition
are well supported in contemporary RDBSs and efficient evaluation techniques exist, such as
hash join [17], sort-merge join [19], or index join [18].

In some application scenarios joins are based on range conditions, where a value of one
relation has to be joined into a range defined by the other relation. This type of join is called
Range Join. For example, to associate data of a click stream with its origin country [12], it
is necessary to join the IP addresses of the click stream with the (several) IP address ranges
of the different countries. Other examples can be found in taxation, insurance, and shipping
applications [8, 9], where prices are often related to ranges. In a shipping scenario it may
be the case, that the weight of a package falling within a specific range, results in a certain
price. Range joins are based on inequalities for which most RDBSs fail to provide an efficient
evaluation. In most cases the only available join algorithm for range conditions is either a
nested loop or an index join, of which former is a brute force approach and latter is only
efficient for very selective joins.

Example 1 (Range Join) Consider the example relations in Figure 1.1. Relation marks
records the marks of students achieved in an exam. The first tuple records that the student
Anton with student number 1232 achieved a mark of 23.5 out of 100 in the exam. Relation
grades records the grading scheme for the exam. Here, the first tuple records that a student
who achieved a mark between 0 and 18 receives a grade of 1. A student that achieved a mark
between 18.5 and 36 receives a grade of 2.

marks

name snumber mark
Anton 1232 23.5
Thomas 4356 95
Michael 1125 72
Hans 3425 90

grades

mmin mmax grade
0.0 18 1

18.5 36 2
36.5 54 3
54.5 72 4
72.5 90 5
90.5 100 6

Figure 1.1.: Example input relations marks and grades

1

To determine the grade of each student the two tables need to be joined on the mark that
falls between mmin and mmax. This can be done using the following query.

SELECT name, snumber, grade
FROM marks JOIN grades ON mark BETWEEN mmin AND mmax;

The result of this query is shown in Figure 1.2. For instance, the student with name Anton re-
ceives a grade of 2, because his mark of 23.5 falls into the range [18.5, 36] which corresponds
to the grade 2 (cf. relation grades in Figure 1.1).

name snumber grade
Anton 1232 2
Thomas 4356 6
Michael 1125 4
Hans 3425 5

Figure 1.2.: Result of range join between marks and grades

In some scenarios range conditions in joins, such as in Example 1, do not occur in isolation,
but may also be accompanied with one or more additional equality conditions.

Example 2 (Range Join with an equality condition) Consider the example relations in Fig-
ure 1.3. Relation emps records the contracts of employees in departments of a company. The
first tuple in emps, for instance, records that the employee Anton works in the Sales depart-
ment during the time period January 2020 to March 2020. Relation events records events
of the company for which employees of a specific department are required. In events, the
first tuple records a fair in Switzerland for which an employee of the Marketing department is
required on March 5, 2020.

emps

name dept ts te
Anton Sales 2020-01-01 2020-03-31
Thomas Marketing 2020-01-01 2020-06-30
Michael Marketing 2020-03-01 2020-12-31
Hans Sales 2020-01-01 2020-12-31
Thomas Accounting 2020-07-01 2020-12-31

events

event dept t
Fair CH Marketing 2020-03-05

Presentation Sales 2020-06-15
Fair IT Marketing 2020-08-03

Balance Report Accounting 2020-08-03
Product launch Marketing 2020-10-15

Figure 1.3.: Example input relations emps and events.

To find the employees that are available for an event the two tables need to be joined on
the department attribute, as well as on the event date that falls into the employee’s contract
period. This can be done using the following query.

SELECT name, em.dept, event, t
FROM emps em JOIN events ev ON em.dept = ev.dept AND t BETWEEN ts AND te;

2

name dept event t
Thomas Marketing Fair CH 2020-03-05
Michael Marketing Fair CH 2020-03-05
Michael Marketing Fair IT 2020-08-03
Michael Marketing Product launch 2020-10-15
Hans Sales Presentation 2020-06-15
Thomas Accounting Balance Report 2020-08-03

Figure 1.4.: Result of range join between emps and events with an equality condition on
attribute dept.

The result of this query is shown in Figure 1.4. For instance, the first tuple records that
Thomas from the Marketing department is available for the fair in Switzerland on March 5,
2020. Thomas is not available for other events for the Marketing department as he moved to
the Accounting department later on.

The goal of this thesis is to provide an efficient evaluation algorithm for range joins and to
implement it into the open-source RDBS PostgreSQL.

1.2. Contributions
The technical contributions of this thesis are as follows:

• We provide an algorithm for range joins based on the well known sort-merge paradigm
and transform it to fit the demand-pull pipelining mechanism adopted by most RDBS.

• We show an implementation of our algorithm as an extension of the sort-merge join
execution algorithm, termed range merge join, and its integration into the analyzer, op-
timizer, and executor of the open-source RDBS PostgreSQL.

• We conduct extensive experiments on synthetic and real-world workloads to show the
efficiency of our implementation as well as the tight integration into the kernel of Post-
greSQL.

1.3. Organization of the Thesis
The remainder of this thesis is organized as follows: Chapter 2 introduces the necessary back-
ground on sort-merge join algorithm and range joins; Chapter 3 provides the implementation
of the range merge join execution algorithm and its variant using a demand-pull pipelining
mechanism; Chapter 4 shows the integration of our range merge join into the optimizer, and
executor of the open-source RDBS PostgreSQL; Chapter 5 reports the results of our experi-
mental evaluation on synthetic and real-world workloads; Chapter 6 describes our experience
working on the PostgreSQL kernel; Chapter 7 concludes the thesis and provides directions for
future work.

3

2. Background

In this section we first give the necessary background on the sort-merge join [19] on which the
implementation of our range merge join is based on, and then formally define the range join.

2.1. Sort-Merge Join
The sort-merge join [19] (MJ) is a join algorithm for equality conditions that requires both
input relations to be sorted by their join attribute. If the input relations are not sorted, an
explicit sort step is performed before the join. The algorithm for the sort-merge join is shown
in Algorithm 1. The main idea of the MJ is as follows. The input relations of the join are

Algorithm 1: MJ(r, s, E)
Input: Relations r and s and equality attributes E.
Output: Result of r onr.E=s.E s.

1 r ← first(r);
2 s← first(s);
3 while r 6= ω ∧ s 6= ω do
4 if r.E < s.E then
5 r ← next(r); // skip outer
6 else if r.E = s.E then
7 marked← s; // mark
8 while s 6= ω ∧ r.E = s.E do
9 output r and s;

10 s← next(s);

11 r ← next(r); // end of matches for outer
12 if r 6= ω ∧ r.E = marked.E then
13 s← marked; // backtrack inner

14 else
15 s← next(s); // skip inner

scanned from the beginning until at least one relation finishes during the join process. For
each tuple of the outer relation, one of three cases may apply: (i — lines 4–5) the current
outer tuple is smaller in sort order than the inner tuple, in this case the current outer tuple is
skipped; (ii — lines 6–13) the current outer and inner tuples have the same join attributes, in
this case the inner tuple is marked for possible other outer tuples, a join match is produced,
and all subsequent tuples in the inner relation are checked and matched. The outer relation is

4

advanced and if the new tuple has the same join attributes as the marked inner tuple, the inner
relation is backtracked; (iii — lines 14–15) the current outer tuple is larger in sort order than
the inner tuple, in this case the inner tuple is skipped.

The sort-merge join is an effective algorithm for joining on equality conditions with com-
plexityO(n+m+z) for sorted relations, where n andm are the size of the two input relations
respectively, and z is the size of the result.

2.2. Range Join
As the goal of this thesis is to implement a range join in PostgreSQL, we here report its formal
definition. A range join is a join in which the join predicate specifies that a value from one
relation is in the range between two values defined by the other relation.

Definition 1 (Range Join) Let r and s be relations with schema R and S, respectively; E ∈
R∩S be a set of joint attributes; attributes ts ∈ R and te ∈ R represent an interval in r; and
attribute t ∈ S be an attribute with the same domain as ts and te. Let further be ≺s∈ {<,≤}
and ≺e∈ {<,≤}. A range join between r and s is expressed as follows:

r onr.E=s.E∧r.ts≺ss.t≺er.te s

The two comparison operators ≺s∈ {<,≤} and ≺e∈ {<,≤} define whether t can be equal
to ts and/or te respectively.

5

3. A Range Merge Join in
PostgreSQL

3.1. The Sort-Merge Join Implementation in
PostgreSQL

PostgreSQL adopts a demand-driven or demand-pull pipelining mechanism [14]. Each exe-
cution algorithm for an operator in a query returns the next tuple to the caller (execution algo-
rithm preceding it) until there are no more tuples to return in which case it returns NULL [15].

To adhere to this mechanism, the sort-merge join is implemented as a state machine shown
in Figure 3.1. This algorithm implements the MJ of Algorithm 1, but note that while Algo-
rithm 1 implements an inner join, this state machine implementation also includes an early
stop mechanism for anti joins, and a mechanism for outer joins.

Each time the executor function is called, the state machine returns one tuple or NULL to
signal the end of the join. The state is preserved as context information in an internal data
structure called MergeJoinState and passed along to each call of the executor function.
Below we describe the transitions in the state machine together with a short description of
all the different states in the Table 3.1. For a better visibility we use shorter names for the
states, in PostgreSQL the merge join states are prefixed with EXEC_MJ_, i.e., NEXTINNER
corresponds to EXEC_MJ_NEXTINNER in PostgreSQL.

Table 3.1.: States of the PostgreSQL Merge Join
State Description
INITIALIZE_OUTER: Fetch the first outer tuple.
INITIALIZE_INNER: Fetch the first inner tuple.
JOINTUPLES: Join the current outer and inner tuples.
NEXTINNER: Fetch the next inner tuple.
NEXTOUTER: Fetch the next outer tuple.
TESTOUTER: Check if the current outer and the marked inner tuple match. Restore

the marked inner if they do. Fetch the next inner otherwise.
SKIP_TEST: Check if the current tuples match and mark the inner tuple if they do.
SKIPOUTER_ADVANCE: Skip the current outer tuple and fetch the next outer tuple.
SKIPINNER_ADVANCE: Skip the current inner tuple and fetch the next inner tuple.
ENDOUTER: In case of a right or full join NULL-fill any unmatched inner tuples.
ENDINNER: In case of a left or full join NULL-fill any unmatched outer tuples.

The initial state of the state machine is INITIALIZE_OUTER to fetch the first tuple

6

from the outer relation. Every time a new tuple is fetched, it is evaluated and flagged
as ENDOFJOIN if the fetched tuple is NULL, i.e., we are at the end of this relation; as
NONMATCHABLE if the fetched tuple is not able to match anything, for instance if one of
the attributes in the equality condition has a NULL value that cannot be equal to any other
value; and as MATCHABLE otherwise. If both, the outer and inner tuples are MATCHABLE,
their equality (or merge) attributes are compared and the result is stored in compareResult.
If compareResult = 0, the tuples match, i.e. their merge attributes are equal. In this
case they can be joined. If compareResult < 0, the outer tuple’s merge attributes are
smaller then the inner tuple’s merge attribute and the next outer tuple is fetched. Finally,
if compareResult > 0, the outer tuple’s merge attributes are larger then the inner and we
fetch the next inner tuple.

In SKIP_TEST, when two tuples match, the current position of the inner subplan (pre-
ceding algorithm in the pipeline) is marked by ExecMarkPos() and a copy of the current inner
tuple is saved. When a new outer tuple is fetched in NEXTOUTER, it is compared to the marked
(copied) inner tuple in TESTOUTER, not the current inner. If they match, the marked inner
tuple becomes the new current inner tuple and the inner subplan is restored to the marked po-
sition by ExecRestrPos(). Otherwise, if the current inner is MATCHABLE, it will be considered
in SKIP_TEST.

7

03.06.20, 16:26Merge_Join_Diagram.xml

Page 1 of 1https://app.diagrams.net/

INITIALIZE_OUTER

INITIALIZE_INNER

JOINTUPLES

NEXTOUTER

TESTOUTER NEXTINNER

SKIP_TEST SKIPOUTER_ADVANCESKIPINNER_ADVANCE

ENDOUTER

ENDINNER ENDINNERENDOFJOIN INITIALIZE_INNER

MATCHABLE

ENDOFJOIN

MATCHABLE

compareResult < 0compareResult > 0

compareResult = 0
do ExecMarkPos()

MATCHABLEMATCHABLE

NONMATCHABLE

ENDOFJOIN

NONMATCHABLE

ENDOFJOIN

JOIN_ANTI
or single_match

not JOIN_ANTI
and not single_match

MATCHABLE
and compareResult = 0

not MATCHABLE
or compareResult < 0

NONMATCHABLE

ENDOFJOIN

compareResult = 0
do ExecRestrPos()

compareResult > 0
and MATCHABLE

compareResult > 0
and NONMATCHABLE

compareResult > 0
and ENDOFJOIN

MATCHABLE

NONMATCHABLE

NONMATCHABLE

Figure 3.1.: State diagram of PostgreSQL’s sort-merge join implementation.

3.2. A Range Merge Join Implementation for
PostgreSQL

In this section we report the implementation of our range merge join (RMJ) as an extension of
PostgreSQL’s sort-merge join (MJ). First, we report its simplified algorithm and later on we
show its implementation as an extension to the state machine of the MJ describe above.

3.2.1. Algorithm
The main algorithm for a range inner join is shown in Algorithm 2. It is very similar to the
MJ algorithm in Algorithm 1 and requires its input relation r to be sorted by the attributes of
the equality condition E and additionally by the the start of the range condition (ts). The sort
order of the other input relation s is according to the equality condition E and additionally by
the value of the range condition (t).

8

The main differences of the RMJ as compared to the MJ (cf. Algorithm 1) is in the treatment
of the range condition. At lines 6 and 8 for a valid join match, the current two input tuples
in addition to match on the equality attributes also need to satisfy the range condition r.ts ≺s

s.t ≺e r.te. Similarly, an inner tuple is skipped at lines 14–15 not only when the inner tuples’s
equality attributes are large in sort order compared to the outer tuple, but also for equal equality
attributes and ¬(r.ts ≺s s.t), i.e., t is before the range defined by the current outer tuple r (and
due to the sort order no subsequent outer tuple may have the same equality attributes as r and
a range that starts earlier).

Algorithm 2: RMJ(r, s, E,≺s,≺e)

Input: Relations r and s, equality attributes E, comparison operator ≺s∈ {<,≤} for start
point, and comparison operator ≺e∈ {<,≤} for end point.

Output: Result of r onr.E=s.E∧r.ts≺ss.t≺er.te s.

1 r ← first(r);
2 s← first(s);
3 while r 6= ω ∧ s 6= ω do
4 if r.E < s.E then
5 r ← next(r); // skip outer
6 else if r.E = s.E ∧ r.ts ≺s s.t then
7 marked← s; // mark
8 while s 6= ω ∧ r.E = s.E ∧ s.t ≺e r.te do
9 output r and s;

10 s← next(s);

11 r ← next(r); // end of matches for outer
12 if r 6= ω ∧ r.E = marked.E then
13 s← marked; // backtrack inner

14 else
15 s← next(s); // skip inner

3.2.2. Implementation as a State Machine
Our RMJ is implemented as an extension to state machine of PostgreSQL’s existing MJ (cf.
Figure 3.1). The extended state machine which enables the execution of range joins is shown
in Figure 3.2. The additions to the MJ are highlighted in blue and are preceded by a Boolean
flag in the implementation (not shown in the diagram) such that it can be used for both MJ and
RMJ by simply setting the flag correspondingly.

If we execute a RMJ, the range condition is only compared, if the merge conditions hold, i.e.
compareResult = 0. The result of the range comparison is stored in compareRangeResult.
If compareRangeResult = 0, the tuples match, i.e. the inner range attribute is contained
in the outer interval. In this case they can be joined. If compareRangeResult < 0, the
inner range attribute is after the outer interval and the next outer tuple is fetched. Finally, if

9

03.06.20, 16:24Range_Merge_Join_Diagram.xml

Page 1 of 1https://app.diagrams.net/

INITIALIZE_OUTER

INITIALIZE_INNER

JOINTUPLES

NEXTOUTER

TESTOUTER NEXTINNER

SKIP_TEST SKIPOUTER_ADVANCESKIPINNER_ADVANCE

ENDOUTER

ENDINNER ENDINNERENDOFJOIN INITIALIZE_INNER

MATCHABLE

ENDOFJOIN

MATCHABLE

compareResult < 0
or compareRangeResult < 0

compareResult > 0
or compareRangeResult > 0

compareResult = 0
and compareRangeResult = 0

do ExecMarkPos()

MATCHABLEMATCHABLE

NONMATCHABLE

ENDOFJOIN

NONMATCHABLE

ENDOFJOIN

JOIN_ANTI
or single_match

not JOIN_ANTI
and not single_match

MATCHABLE
and compareResult = 0

and compareRangeResult = 0

not MATCHABLE
or compareResult < 0

or compareRangeResult < 0

NONMATCHABLE

ENDOFJOIN

compareResult = 0
and compareRangeResult = 0

do ExecRestrPos()

compareResult > 0
and MATCHABLE

compareResult > 0
and NONMATCHABLE

compareResult > 0
and ENDOFJOIN

compareResult = 0
and compareRangeResult > 0

do ExecRestrPos()

compareResult = 0
and compareRangeResult < 0

do ExecRestrPos()
MATCHABLE

NONMATCHABLE

NONMATCHABLE

Figure 3.2.: State diagram for the range merge join implementation as an extension of the
sort-merge join.

compareRangeResult > 0, the inner value is before the outer interval and we fetch the next
inner tuple.

Due to the new conditions and transitions some states have a different behaviour (if we
execute a RMJ). These altered states are described below.

SKIP_TEST: The current outer and inner tuples equality attributes are compared first. Only
if compareResult = 0, the current tuples range attributes are compared.

If compareRangeResult = 0, the machine moves to JOIN_TUPLES.

If compareRangeResult > 0, the machine moves to SKIPINNER_ADVANCE.

If compareRangeResult < 0, the machine moves to SKIPOUTER_ADVANCE.

NEXTINNER: The next inner tuple is fetched and if the inner tuple is MATCHABLE the merge
attributes are compared. If compareResult = 0, the range attributes are compared.

10

If compareRangeResult = 0, the machine moves to JOIN_TUPLES.

If compareRangeResult < 0, the machine moves to NEXTOUTER.

TESTOUTER: The current outer and the marked inner tuples merge attributes are compared. If
they match, the marked inner tuple becomes the current inner tuple and the inner subplan
is restored to the marked position. Then the range attributes of the current tuples are
compared. At this point, the current inner is always the restored marked inner.

If compareRangeResult = 0, the machine moves to JOIN_TUPLES.

If compareRangeResult > 0, the machine moves to SKIPINNER_ADVANCE.

If compareRangeResult < 0, the machine moves to SKIPOUTER_ADVANCE.

11

4. Integration into the PostgreSQL
Kernel

4.1. Overview
In PostgreSQL the query processing workflow is composed of several stages: SQL query

parser−→
parse tree

analyzer−→ query tree
optimizer−→ plan tree executor−→ execution tree.

The integration of the RMJ into PostgreSQL requires modification of two stages and some
of their corresponding data structures: the optimizer and the plan tree, and the executor and the
execution tree. For each type of tree, additions are introduced that store information required
for the processing of the new RMJ algorithm.

In the executor stage of PostgreSQL an execution algorithm consist of three main functions,
namely ExecInit〈Operator〉, Exec〈Operator〉, and ExecEnd〈Operator〉 for, re-
spectively, the initialization, the execution, and the finalization of an evaluation algorithm.
Here, 〈Operator〉 is the name of the actual execution algorithm, such as, MergeJoin,
Nestloop, or Sort.

At the end of the Sections 4.3.1 – 4.4.2, we describe the methods we introduced to the
ProstgreSQL kernel. In most cases, we derived our implementation from existing methods,
which is noted at the end of the description.

4.2. Path Nodes
The optimizer creates multiple possible paths to solve a query and uses the best path to build
the plan tree. This paths are represented as trees and consist of different types of nodes1,
containing different information.

For the following sections, we need to introduce some of these nodes used by the Post-
greSQL’s optimizer to build join paths.

RestrictInfo: For every logically ANDed restriction condition (in WHERE or JOIN/ON
clause), a RestrictInfo is created. They have to be logically ANDed to be able to rule out
tuples with only a subset. In our case, these subsets are the merge conditions, the range
condition and the join quals. A RestrictInfo node holds important information about the
restriction condition, which is used by the optimizer to choose the best query plan.

1https://github.com/postgres/postgres/blob/REL_12_STABLE/src/include/node
s/pathnodes.h

12

https://github.com/postgres/postgres/blob/REL_12_STABLE/src/include/nodes/pathnodes.h
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/include/nodes/pathnodes.h

PathKey: A list of PathKey nodes is used to represent a sort ordering. The first Pathkey
represents the primary sort key, the second represents the secondary sort key and so on.
An empty PathKey list indicates that there is no particular sort ordering.

EquivalenceClass: In general, EquivalenceClass nodes are created to represent the fact
that two or more expressions are equal. In our case, we use EquivalenceClass nodes as
the base structure for PathKey nodes. Since every PathKey must reference an Equiva-
lenceClass, we will end up with single-member EquivalenceClass nodes for our range
conditions.

4.3. Planner/Optimizer

4.3.1. range clauses
For our RMJ there are two kinds of possible range clauses (range conditions), where we use
r as the outer and s as the inner relation. The first possibility are two inequality conditions of
the form (r.ts ≺s s.t) and (s.t ≺e r.te). These two conditions form a range clause and are
always in this order, where the start condition is first and the end condition second. The second
possibility is a containment condition of the form (r.range@> s.t) or (s.t <@ r.range) where
r.range is of type rangetype2 and represents an interval and s.t is an element representing a
point. These conditions are read as (r.range contains s.t) and (s.t contained by r.range)
respectively. These conditions are represented as RestrictInfo nodes, or restrictinfos, as we
call them from here on.

The planner creates a list containing all possible range clauses. A range clause itself is a
list containing either the two described inequality conditions in the correct order, or one of
the above containment conditions. The optimizer will still try the same MJ paths as it would
without the RMJ implementation. Additionaly, we try at least one RMJ path for every range
clause we constructed in the newly introduced method select_rangejoin_clauses.

All restrictinfos which are possible members of a range clause need some preparation. After
the initialization of a restrictinfo, the planner recognizes if it is a possible member of a range
clause (inequality or containment condition) and we assign the correct operator families3 (op-
families) for both arguments to the restrictinfo. To store this information, we expanded the
restrictinfo struct with two variables of type list* called rangeleftopfamilies and
rangerightopfamilies for the opfamilies of the left and right argument respectively.
These opfamilies contain the btree operators of the specific types and are primarily used for
sorting (Section 4.3.2), but also to distinguish inequality and containment conditions.

check_rangejoinable: This function checks if a restrictinfo can be part of a range clause
and assigns the B+ tree (btree) opfamilies if so.

First we check the can_join flag, which indicates that the restrictinfo describes a
binary operation expression between two non-overlapping sets of relations, i.e. a possi-

2https://www.postgresql.org/docs/12/rangetypes.html
3https://www.postgresql.org/docs/12/catalog-pg-opfamily.html

13

https://www.postgresql.org/docs/12/rangetypes.html
https://www.postgresql.org/docs/12/catalog-pg-opfamily.html

ble candidate for us. Next, we rule out all restrictinfos with clauses containing volatile
functions4.

All restrictinfos that can join and do not contain volatile functions, have to be
checked for containment conditions we can use in a range clause. A restrictinfo
that represents such a containment condition, has to be handled separately, because
get_rangejoin_opfamilies will not return any operator families for it.

For such a restrictinfo, we extract the types of both arguments and look them up sepa-
rately in the type cache5. We assign the btree operator families listed in the typecache
entries to the restrictinfo.

For any other restrictinfo, we call get_rangejoin_opfamilies. If the restrictinfo
describes a usable inequality condition, the returned opfamilies are the btree opfamilies
for both arguments. Otherwise, NIL is returned and the retrictinfo will not be considered
as rangejoinable.

This function is derived from check_mergejoinable in initsplan.c6, which
serves a similar purpose for equality conditions.

get_rangejoin_opfamilies: This function checks if an operator is an inequality operator
and returns the corresponding btree opfamilies.

We get the operator number (opno) as an input and search the catalog pg_amop7 to see
if the target operator is registered as the "<", "<=", ">" or ">=" operator of any btree
opamily. If we find an opfamily, we append it to the result list we return at the end.

This function is the pendant to get_mergejoin_opfamilies in lsyscache.c8,
which checks for equality operators.

select_rangejoin_clauses: This function returns all possible range clauses for a given
join.

We get the list of all restrictinfos for the current join. For each restrictinfo, we check
first, if the clause is rangejoinable, i.e. its rangeleftopfamilies are not empty.
Next, we check if the restrictinfo is of the correct form. Usable are only restrictinfos of
the form "outer op inner" or "inner op outer" where outer and inner are the relations to
be joined. If the restrictinfo is usable, we have two possibilities;

The first possibility is that the left and the right operator families of the restrictinfo are
equal, which means it describes an inequality condition. In this case we check for all
prior inequality conditions in candidates, if there is a possible range clause, combining
the two. This is done by calling range_clause_order, which also returns the

4https://www.postgresql.org/docs/12/xfunc-volatility.html
5https://github.com/postgres/postgres/blob/REL_12_STABLE/src/include/util
s/typcache.h

6htps://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimi
zer/plan/initsplan.c

7https://www.postgresql.org/docs/12/catalog-pg-amop.html
8https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/util
s/cache/lsyscache.c

14

https://www.postgresql.org/docs/12/xfunc-volatility.html
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/include/utils/typcache.h
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/include/utils/typcache.h
htps://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/plan/initsplan.c
htps://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/plan/initsplan.c
https://www.postgresql.org/docs/12/catalog-pg-amop.html
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/utils/cache/lsyscache.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/utils/cache/lsyscache.c

correct order. If it returns an order, we create the range clause and append it to the result
list. We append the restrictinfo to the canditadtes list for the following restrictinfos.

The second possibility is a restrictinfo describing a containment condition. It is only
considered, if it is of the form "outer @> inner" or "inner <@ outer", because the range
has to be an attribute of the outer relation. If this is the case, we create the range clause
and append it to the result list.

This function is derived from select_mergejoin_clauses in joinpath.c9,
which returns all merge clauses for a given join.

range_clause_order: This function checks if two restrictinfos can be combined into a
range clause and retruns which one is the startclause.

As an input, we get two restrictinfos to compare. We extract all the necessary infor-
mation from both, i.e. the arguments as nodes, which argument references the outer
and which the inner relation and if the strategy is less("<", "<=") or greater (">", ">=").
With this information, we decide if these two restrictinfos can be used to create a range
clause and which of them describes the start and which the end condition. If the first
restrictinfo describes the start condition and consequently has to be listed first, we return
1. Otherwise, if the second has to be listed first, we return 2. If it is not possible to build
a range clause, 0 is returned.

4.3.2. Sorting
As mentioned in the previous section, we need the btree opfamilies of the restrictinfos in our
range clause to sort the input relations. More specifically, we need the opfamilies of the first
restrictinfo in a range clause to build EquivalenceClass nodes, we call eclasses, for both at-
tributes we want to sort. Because we do not know if a restrictinfo will represent the start condi-
tion of a range clause or if it will end up as part of a range clause at all, initialize_range
clause_eclasses creates eclasses for all rangejoinable restrictinfos.

These eclasses are the base structure of our PathKey nodes (pathkeys) that define our sort
order before merging. After the optimizer defined a sort order for the merge clauses, we step
in and add the necessary outer and inner pathkeys for the range clause. If a pathkey already
exists, because it belongs to a merge clause, we only use it, if it is at the end of the list. This
ensures that the relations are sorted primarily by their equality attributes before they are sorted
by their range attributes. This sorting happens in sort_inner_and_outer in joinpath.c10.

For cases where there are no mergclauses, i.e. no merge pathkeys, we try a path for every
possible range clause and the corresponding outer and inner pathkeys. This results in n RMJ-
paths for n range clauses. Otherwise, the optimzer creates a different sort order for every
merge pathkey in the list and creates a normal MJ-path. For m merge clauses, we create
O(m) MJ-paths. For every one of these sort orders generated, we try additional paths for each

9https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/opti
mizer/path/joinpath.c

10https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/opti
mizer/path/joinpath.c

15

https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/path/joinpath.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/path/joinpath.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/path/joinpath.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/path/joinpath.c

range pathkey and the corresponding range clauses, as long as the range pathkey is either at
the end of the pathkey list or is not in the list at all. This means, for n range clauses andm > 0
merge clauses we create O(n ∗m) RMJ-paths, i.e. O(m+ n ∗m) paths in total.

initialize_range clause_eclasses: This function initializes both single-member
eclasses of a restrictinfo which has been marked as rangejoinable.

We get a restrictinfo, which already has its range opfamilies assigned. Before we can
create the eclasses and assign them to the restrictinfo, we have to extract the types of the
attributes.

Usually, these types correspond with the input types of the operator and we retrieve
them this way. However, if we deal with a containment condition, we have to extract the
type of the element side explicitly, because it is not implied by the operator.

This function is derived from initialize_merge clause_eclasses in
pathkeys.c11, which initializes the eclasses for equality conditions.

find_range clauses_for_outer_pathkeys: This function finds all range clauses that
can be used with a set sort order for the outer relation and a specific set of merge clauses.

We take the last merge clause in the list, because it corresponds to the last merge pathkey,
i.e. the last pathkey used to sort the outer relation according to the merge clauses. Our
range clauses have to correspond to this or the next pathkey, to ensure that the relation
is sorted correctly.

For every pathkey, we check if it corresponds to the merge clause. If it does, or the
merge clause is NULL, it is a potential range pathkey. Otherwise, we continue the loop
with the next pathkey.

We check for every range clause and append the ones who match the pathkey to the
result list. If the merge clause is NULL, we either had no merge clauses at all or the
previous pathkey corresponded to the merge clause. In this case, we can break the loop.
Otherwise we checked the last merge pathkey, we assign NULL to merge clause and
loop once more with the next pathkey.

We derived this function from find_merge clauses_for_outer_pathkeys
in pathkeys.c11.

select_outer_pathkeys_for_range: This fuction gets a list of range clauses as input,
creates the outer pathkey for every range clause and returns the list of all outer pathkeys.

Similar to select_outer_pathkeys_for_merge in pathkeys.c11.

make_inner_pathkey_for_range: This function creates and return the inner pathkey for
a given range clause.

Equivalent to what make_inner_pathkey_for_merge in pathkeys.c11 does
for a set of merge clauses.

.
11https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/opti

mizer/path/pathkeys.c

16

https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/path/pathkeys.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/optimizer/path/pathkeys.c

4.4. Executor

4.4.1. Initialization
Our RMJ is an extension of the MJ algorithm and data structure and in the initialisation, if there
are no range clause, the mj_RangeJoin flag is set to false which means that a traditional MJ
is performed. If we have a range clause, a new struct called RangeJoinData is initialized
and filled with the information about the range clause.

MJCreateRangeData: This function initializes the RangeJoinData, which provides the
range clause for the execution.

If the rangclause consists of two inequality conditions, they get initialized as ex-
ecutable expressions and stored in startClause and endClause. Otherwise,
if the range clause consists of a single containment condition, the range argu-
ment and the element argument are initialized separately and stored as rangeExpr
and elemExpr. This splitting of the expression is necessary, to be able to use
the newly introduced rangetype functions elem_before_range_internal and
elem_after_range_internal during execution.

4.4.2. Execution
During execution, we always check the merge condition first. Only if MJCompare returns 0
and we are dealing with a RMJ (indicated by mj_RangeJoin), we check the range condition
by calling MJRangeCompare.

The state machine is implemented as an infinite loop containing a switch statement for
the current state, i.e. we have a different case for every state. The first change introduced
to the state machine is in the case EXEC_MJ_NEXTINNER, where no special cases apply.
The second modified part, is in the case EXEC_MJ_TESTOUTER where it is to note, that the
marked inner relation is always restored if the merge condition holds, regardless of the range
condition. This is different in the third and last modified part under EXEC_MJ_SKIP_TEST,
where the inner relation is only marked, if the merge and range conditions hold.

MJCompareRange: This function compares the range attributes of the current tuples and re-
turns 0 if the current tuples match, i.e. the outer intervall contains the inner element,
< 0 if the element is after the intervall and > 0 if it is before.

In case of having a startClause and an endClause, we can just execute them to
check if they hold. We check the end clause first and set the result to −1 if it does not
hold, i.e. the inner element is after the outer interval. If the start clause does not hold
(the inner element is before the outer interval), we set the result to 1.

Otherwise, we have a rangeExpr for the outer interval and an elemExpr for the
inner value. To use the internal methods for rangetypes, we have to look up the type-
cache for the range expression. We check if the element is after the interval by calling

11https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/exec
utor/nodeMergejoin.c

17

https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/executor/nodeMergejoin.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/executor/nodeMergejoin.c

elem_after_range_internal and set the result to −1 if it is. We check if the
element is before the interval by calling elem_before_range_internal and if
so, set the result to 1.

If the result has not changed, which means the element is contained in the interval and
the range condition holds, we return 0.

This function provides the same functionality for the range clause as MJCompare in
nodeMergejoin.c12 does for the merge clauses.

elem_before_range_internal / elem_after_range_internal: This functions
check if an element (point, value) is before (or after) a range (interval, period).

First, we deserialize the rangetype to extract the lower and upper bounds. To check if
the element is before the range, we have to compare it to the lower bound. A compare
result > 0 means, the element is before the range and we return true. We compare the
element to the upper bound, to check if it is after the range. Here, the element is after
the range if the compare result is < 0. If the result is 0, i.e. the element is equal to the
bound (upper or lower), we have to check if the bound is inclusive and only return true,
if it is not.

This functions are basically the two parts of range_contains_elem_internal
in rangetypes.c13.

4.5. Query Plans
In this section we show the query plans produced by our implementation. We use the exam-
ple from the introduction, and we run them on our RMJ implementation. Using the function
EXPLAIN(ANALYZE,TIMING FALSE), PostgreSQL gives the query plans shown in Fig-
ure 4.1. We used VACUUM and ANALYZE on all four relations. For Example 2, the relations
are too small for the RMJ to be beneficial, as you will see in our experiments in Section 5.4.3.
For the sake of this example and to get the RMJ query plan, we disable the more efficient
hash-join.

In Figure 4.1a, you can see the range condition ((marks.mark >= grades.mmin)
AND (marks.mark <= grades.mmax)) and the sort keys grades.mmin and
marks.mark. The grades relation is only sorted by its range attribute representing the start
of the interval.ad Explain a bit the query plan

In Figure 4.1b, you can see the merge condition (em.dept = ev.dept) and the
range condition ((ev.t >= em.ts) AND (ev.t <= em.te)). The sort keys are
now em.dept, em.ts for emps and ev.dept, ev.t for event. As intended, the re-
lations are sorted by their equality attributes first and their range attributes second.

12https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/exec
utor/nodeMergejoin.c

13https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/util
s/adt/rangetypes.c

18

https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/executor/nodeMergejoin.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/executor/nodeMergejoin.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/utils/adt/rangetypes.c
https://github.com/postgres/postgres/blob/REL_12_STABLE/src/backend/utils/adt/rangetypes.c

QUERY PLAN

Range Merge Join (cost=2.22..2.32 rows=3 width=14) (actual rows=4 loops=1)
Range Cond: ((marks.mark >= grades.mmin) AND (marks.mark <= grades.mmax))
-> Sort (cost=1.14..1.15 rows=6 width=20) (actual rows=6 loops=1)

Sort Key: grades.mmin
Sort Method: quicksort Memory: 25kB
-> Seq Scan on grades (cost=0.00..1.06 rows=6 width=20) (actual rows=6 loops=1)

-> Sort (cost=1.08..1.09 rows=4 width=18) (actual rows=7 loops=1)
Sort Key: marks.mark
Sort Method: quicksort Memory: 25kB
-> Seq Scan on marks (cost=0.00..1.04 rows=4 width=18) (actual rows=4 loops=1)

Planning Time: 0.116 ms
Execution Time: 0.056 ms

(12 rows)

(a) Joining grades and marks (Example 1)

QUERY PLAN

Range Merge Join (cost=2.23..2.33 rows=1 width=29) (actual rows=6 loops=1)
Merge Cond: (em.dept = ev.dept)
Range Cond: ((ev.t >= em.ts) AND (ev.t <= em.te))
-> Sort (cost=1.11..1.12 rows=5 width=22) (actual rows=5 loops=1)

Sort Key: em.dept, em.ts
Sort Method: quicksort Memory: 25kB
-> Seq Scan on emps em (cost=0.00..1.05 rows=5 width=22) (actual rows=5 loops=1)

-> Sort (cost=1.11..1.12 rows=5 width=24) (actual rows=6 loops=1)
Sort Key: ev.dept, ev.t
Sort Method: quicksort Memory: 25kB
-> Seq Scan on events ev (cost=0.00..1.05 rows=5 width=24) (actual rows=5 loops=1)

Planning Time: 0.092 ms
Execution Time: 0.060 ms

(13 rows)

(b) Joining emps and events (Example 2)

Figure 4.1.: Query plans for the introductory examples in Chapter 1.1.

19

5. Experiments

5.1. Setup
The experiments were run on a machine with an Intel(R) Xeon(R) CPU E5-2667 v3 @
3.20GHz, 20480KB of cache, 100GB of RAM, and a 64bit Ubuntu SMP GNU/Linux
with the kernel version 4.4.0-143-generic. We use PostgreSQL 13devel (commit
9f87ae38eaffcc7f72c45bfeb79e09dd6e8c2f48 with the default configuration.
To measure the execution time of queries, we use EXPLAIN (ANALYZE, TIMING
FALSE), which reports the total planning and execution time excluding the time for pro-
ducing each tuple in each executor node and the overhead of writing and printing the result.

5.1.1. Synthetic Workloads
We use synthetic data to show the effect of varying individual data characteristics on the
performance of our Range Merge Join. Unless otherwise specified, Table 5.1 summarizes the
parameters for the synthetic data used in the experiments and their default values. n is the
size of relation r, i.e., the relation containing the interval, and m is the size of relation s, i.e.,
the relation containing the point. κ is the reciprocal (1

x
) of the number of distinct values in

the equality predicate. The values for the equality predicate are uniformly distributed, which
means that the equality predicate for κ in the join has selectivity κ. The periods and points are
uniformly distributed and as a parameter we use the average duration of periods in % of the
domain, which means for an average duration of periods δ the range predicate has selectivity
δ.

Table 5.1.: Parameters of synthetic data used in the experiments.
Parameter Description Default value

n size of relation r 10, 000, 000
m size of relation s 10, 000, 000
κ selectivity of the equality condition 0.001%
δ selectivity of the range condition 0.001%

The query we evaluate on the synthetic data is a join between two tables with an equality
condition on an attribute g and a range condition such that t in s falls into the range [ts, te]
in r as follows.
SELECT *
FROM r JOIN s ON r.g = s.g AND s.t BETWEEN r.ts AND r.te;

20

Since we did not consider a parallelized version of our RMJ yet and because we got
results, where the execution time for HEAD was bigger with parallelization then with-
out, we disabled parallelization for the experiments on our synthtic workloads, i.e., we set
max_parallel_workers_per_gather = 0. The results with parallelization enabled
can be seen in the appendix (Section A.3).

5.1.2. Real-World Workloads
As real-world workloads we compute a range (left) join as it is used in the temporal normal-
ization primitive [6, 7, 4, 5] to compute temporal aggregation [10]. We use the real-world
datasets and workloads from [6, 7].

The Incumbents dataset [11] from the University of Arizona has 83,857 tuples. Each tuple
records a job assignment (pcn) for an employee (ssn) over a specific time interval. The data
ranges over 16 years and contains 49,195 employees assigned to 38,178 jobs. The interval
timestamps are recorded at the granularity of days and have a duration between 1 and 573
days, with an average of approximately 180 days. The Flight dataset [3] contains 55,072
tuples. Each tuple records the actual time interval of a flight from a departure airport (fap) to
a destination airport (dap). The data ranges over 10 days and contains 559 different departure
and 578 different destination airports. The interval timestamps are recorded at the granularity
of minutes and have a duration between 25 and 915 minutes, with an average of approximately
128 minutes.

To compute the temporal normalization primitive for temporal aggregation, the database
systems needs to perform a range (left) join, and to show the improvements of RMJPATCH

for this operation we execute the following query, where g depending on the normalization
operation may either be one of the attributes of the datasets or may be omitted.
SELECT *
FROM r LEFT OUTER JOIN

(SELECT g, ts AS t FROM r UNION SELECT g, te AS t FROM r) AS s
ON r.g = s.g AND r.ts <= s.ts AND s.ts < r.te;

5.2. Overview
Every addition to the PostgreSQL optimizer and executor imposes some overhead in planning
and execution time, respectively. In the first part of the evaluation we quantify this overhead
for the cases when no RMJ is used. In the second part of the evaluation we focus on the RMJ
and compare its execution time for various settings with the traditional equality based joins,
such as HJ and MJ, and index based joins. We also show how the RMJ is tightly integrated
into the PostgreSQL optimizer.

21

5.3. Overhead of the RMJPATCH

5.3.1. Workload and Methodology
In this section, we quantify the overhead on palling time and execution of our implementation
of a new join algorithm on the PostgreSQL system. We use the TPCH benchmark [1] with
scale factor 10, i.e., a database of 10GB and compare our version with the HEAD version of
PostgreSQL. For queries Q17 and Q20 we use a scale factor of 1, i.e., a database of 1GB,
because already in this case they take 2 hours and 1 hour, respectively, to execute. A short
descriptions of the queries is provided in Table A.1. We run each query 10 times sequentially
alternating between the two versions, and repeat this ten times, resulting in 100 (10 × 10)
executions of each query. For the queries Q17 and Q20 we only run 1 × 3 executions. Each
query is run in an independent session in order to avoid plan caching. For this experiments
we disable the hash join by using set enable_hashjoin = false in order to see the
full overhead of our implementation. In this case all optimization paths of the merge join are
explored without pruning in case the hash join seems more promising at an early stage, but
also the merge join is used as join algorithm in all queries. To quantify the overhead, we report
average planning and execution times for both versions, the absolute and relative differences of
the average and the statistical significance based on a two-sided t-test1 on the 100 observations
to test if the two versions have identical average. The notation for the statistical significance
is provided in Table 5.2. The lower the p-value the higher the evidence that the averages differ
and thus the difference is statistically significant.

Table 5.2.: Notation for statistical significance.
Notation Explanation

ns p > 0.05
* p ≤ 0.05

** p ≤ 0.01
*** p ≤ 0.001

**** p ≤ 0.0001
- not enough samples

5.3.2. Planning Time
The results for planning time are shown in Table 5.3. Generally, the time required for planning
ranges from below a millisecond to a few milliseconds and the largest absolute overhead of
our patch RMJPATCH compared to HEAD is about 0.18 milliseconds. In terms of relative
difference, we have the largest overhead for query Q18, which is also statistically significant.
Since we encountered many outliers in both systems for theses small numbers we truncated
the largest 10% of running and execution time. For the long running queries Q17 and Q20
RMJPATCH has a lower planning time, but since this queries run for several hours, there are

1In Python: scipy.stats.ttest_ind(a=group1, b=group2, equal_var=False)

22

not enough samples to provide statistical significance, and in general RMJPATCH does not
omit paths in planning so the difference can only be explained by noise and outliers in the
running time.

From these experiments, we do not see a clear pattern in overhead neither for many joins nor
for inequalities (both parameters, which are inspected for the RMJ during planning). Query
Q8 is the query with the most number of joins, i.e., eight joins, and query Q6 the one con-
taining most inequalities, i.e., five inequalities, and for each of this condition our RMJPATCH

in contrast to HEAD evaluates whether it can be used as a range condition. In both of these
queries the overhead of RMJPATCH is very small.

We repeated the experiments without pruning constants and other unusable expressions in
the planning phase, i.e. without checking the can_join flag (cf. Section 4.3.1). The results
can be seen in Table A.2 in the Appendix. In this case the overhead for the queries with
inequalities would be high (see Q6, Q8, and Q14 in Table A.2). Once the filtering of constants
in the inequality conditions was implemented, inequalities seem not to cause high overhead.

Table 5.3.: Planning time in milliseconds for the TPCH queries
Query RMJPATCH HEAD Difference Difference % Significance

Q1 0.456 0.461 -0.005 -1.03% ns
Q2 2.434 2.251 0.183 8.15% **
Q3 1.505 1.445 0.060 4.14% **
Q4 1.083 1.040 0.042 4.09% ns
Q5 3.003 2.881 0.122 4.22% *
Q6 0.324 0.332 -0.008 -2.32% ns
Q7 2.441 2.345 0.096 4.09% **
Q8 3.101 2.998 0.103 3.43% *
Q9 3.739 3.701 0.038 1.02% ns

Q10 1.521 1.513 0.008 0.52% ns
Q11 1.272 1.237 0.035 2.84% ns
Q12 1.044 1.023 0.021 2.03% ns
Q13 0.734 0.717 0.017 2.36% ns
Q14 0.817 0.801 0.016 1.97% ns
Q15 0.841 0.823 0.019 2.26% ns
Q16 1.184 1.151 0.034 2.93% ns
Q17 1.815 6.201 -4.386 -70.73% -
Q18 1.738 1.582 0.156 9.86% **
Q19 1.142 1.064 0.078 7.28% *
Q20 7.404 10.902 -3.499 -32.09% -
Q21 3.129 3.160 -0.030 -0.96% ns
Q22 0.889 0.862 0.028 3.20% ns

In the next experiments we use a synthetic workload to investigate the impact of number
of joins and number of inequality conditions on planning time. In this experiment we (i) vary
the number of joins (equality or inequality) in a query from 0 to 25, and (ii) vary the number
of conditions for a single join. The results are shown in Figure 5.1. Figure 5.1a shows the
planning time for varying number of joins that are related using an equality condition, and
we can see that the planning time increases substantially with an increasing number of joins.
This is the result of the increasing number of choices posed to the optimizer (join orders and

23

algorithms).
In Figure 5.1a we can see that the number of joins has little impact on our RMJPATCH.

Figure 5.1b shows a similar experiment, but this time instead of equality conditions the joins
are related using inequality conditions, i.e., (< instead of =). We can see that the optimizer
requires much less time compared to the case of equality joins. In both cases we can see that
RMJPATCH does not impose a large overhead on planning time for a larger number of joins
compared to HEAD.

RMJPATCH HEAD Overhead

0 10 20
0

20

40

60

of joins

Pl
an

tim
e

[m
se

c]

(a) Varying number of joins with equality condi-
tion

0 10 20
0

2

4

6

of joins
Pl

an
tim

e
[m

se
c]

(b) Varying number of joins with inequality con-
dition

0 5 10
0

0.2

0.4

0.6

0.8

of equalities

Pl
an

tim
e

[m
se

c]

(c) Varying number of equality conditions

0 5 10
0

0.2

0.4

0.6

of inequalities

Pl
an

tim
e

[m
se

c]

(d) Varying number of inequality conditions

Figure 5.1.: Planning time for varying number of joins and conditions.

Figure 5.1c and Figure 5.1d compare the planning time for respectively, a varying number
of equality and inequality conditions. In this case we do not vary the number of joins, i.e., the
conditions relate to only one join. We can see that the planning time is very low as compared
to varying the number of joins. RMJPATCH only incurs an overhead for inequality conditions
due to the checking of potential range conditions. Also in this case the overhead is relatively
small.

5.3.3. Execution Time
Next we show the results of the TPCH queries in terms of execution time. The results are
shown in Table 5.4. Recall that we exclusively use sort-merge joins for the execution of
these queries in order to quantify if our patch adds overhead to the traditional sort-merge join
execution algorithm due to additional conditional statements on a Boolean flag for the RMJ

24

(the conditionals check if the execution is a RMJ or an MJ). We can see that there are queries
with statistical significance, but by consulting the difference we can see that the RMJPATCH

is faster most of the time compare to HEAD. Due to the large sample size (100) in most of the
cases we will have some kind of statistical significance, but since none of these queries use the
RMJ algorithm our patch cannot be faster for these queries, and the difference in runtime is
most probably only caused by interference of other processes. In summary, we can conclude,
that the overhead of our RMJPATCH to the traditional MJ execution algorithm is negligible.

Table 5.4.: Execution time in milliseconds for the TPCH queries
Query RMJPATCH HEAD Difference Difference % Significance

Q1 20,901 20,956 -55 -0.26% ns
Q2 4,098 4,097 1 0.02% ns
Q3 17,364 17,464 -100 -0.57% ns
Q4 2,548 2,567 -18 -0.71% ns
Q5 20,179 20,270 -90 -0.45% ns
Q6 3,303 3,386 -84 -2.47% ****
Q7 14,267 14,274 -7 -0.05% ns
Q8 22,527 22,375 152 0.68% ns
Q9 47,211 48,301 -1,090 -2.26% ****

Q10 10,789 10,852 -63 -0.58% *
Q11 4,654 4,625 29 0.62% ns
Q12 6,489 6,578 -88 -1.34% ns
Q13 14,646 14,790 -145 -0.98% ****
Q14 4,191 4,260 -69 -1.62% ****
Q15 4,224 4,347 -123 -2.84% ****
Q16 5,100 5,112 -12 -0.23% ns
Q17 3,299,008 3,333,433 -34,425 -1.03% -
Q18 79,072 79,344 -271 -0.34% ns
Q19 5,363 5,467 -104 -1.90% ****
Q20 7,056,775 7,308,710 -251,936 -3.45% -
Q21 25,197 25,186 11 0.05% ns
Q22 11,262 11,303 -41 -0.36% ns

5.4. Range Join Execution Time

5.4.1. RMJ Vs. MJ
In the next experiment we compare the sort-merge join of PostgreSQL with our range merge
join on the synthetic workloads (cf. Section 5.1.1). For these first experiments we disable the
other hash and nested loop join algorithms. The results are shown in Figure 5.2. In the figures
we also indicate for each approach the used join algorithm sort-merge join (MJ) that only
supports equality conditions or range merge join (RMJ) that supports both equality and range
conditions. As expected, the RMJ can take advantage of the range condition and outperforms
the MJ. This is particularly visible in Figure 5.2d for cases when the range condition is very
selective (small values of selectivity), and when the equality condition in Figure 5.2c has a
higher selectivity, which means that the MJ produces more result tuples for which the range

25

condition has to be performed as a filter after the join. When δ reaches 100%, i.e., all tuples
that satisfy the equality condition also satisfy the range condition, RMJ and MJ have the same
performance in this case.

RMJPATCH HEAD

10−1 100 101 102

101

102

103

RMJ RMJRMJ RMJRMJ

RMJ
RMJ

MJ
MJ

MJ

MJ
MJ

MJ
MJ

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−1 100 101 102

101

102

103

RMJ RMJRMJ
RMJRMJ

RMJ
RMJ

MJ
MJ

MJ

MJ
MJ

MJ
MJ

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−6 10−3 100
101

102

103

RMJ RMJ RMJ RMJ RMJ RMJ RMJ
RMJ

RMJ

MJ MJ
MJ

MJ

MJ

κ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of equality condition.

10−6 10−3 100

101.5

102 RMJ

RMJ

RMJRMJRMJRMJRMJRMJRMJ

MJ
MJMJMJMJMJMJMJMJ

δ [%]

R
un

tim
e

[s
ec

]

(d) Varying selectivity of range condition.

10−1 100 101 102
10−1

101

103

RMJ
RMJRMJ

RMJ
RMJ

RMJ
RMJ

MJ
MJ

MJ

MJ
MJ

MJ
MJ

n,m [M]

R
un

tim
e

[s
ec

]

(e) Varying number of input tuples in r and s.

Figure 5.2.: Runtime results for our synthetic workloads with only MJ and RMJ enabled.

5.4.2. Merge Condition Vs. Range Condition
In the next experiment, we analyze the efficiency of the merge and range condition in the
execution of a sort-merge based join. We are interested to see which join condition, equality
condition using MJ or range condition using RMJ is more efficient to evaluate based on their
selectivity. In both cases we use a sort-merge based join (MJ or RMJ) and the same selectivity,
but we either use an equality condition without range condition or a range condition without
equality condition. The results are shown in Figure 5.3. As expected, for cases where we only

26

have a range condition (RANGE) a RMJ is used and for cases when we only have an equality
condition (MERGE) a MJ is used. The sort-merge technique for the equality condition gen-
erally is more efficient than for the range condition, with an increased runtime of 7%, 14%,
18%, 18%, and 21% for the provided data points of respectively, 0.0001%, 0.001%, 0.01%,
0.1%, and 1% selectivity. The reason for this is the more efficient backtracking mechanism for
equality that can exploit the transitivity property of equality (cf. line 12–13 in Algorithm 1).
More specifically, if a new outer tuple does not match in equality with a marked inner tuple,
then backtracking is not required, because no inner tuples between the marked tuple and the
current inner tuples can produce a join match. For the range condition this does not hold and,
particularly, in the absence of an equality condition backtracking always has to be performed,
resulting in more and further backtracking (cf. line 12–13 in Algorithm 2). It is worth men-
tioning at this point that despite backtracking is less effective for the range condition, an inner
tuple may only be skipped once, i.e., when it can no longer produce join matches. Thus, the
complexity of the sort-merge techniques for both equality condition and range condition is the
same.

RANGE JOIN MERGE JOIN

10−4 10−3 10−2 10−1 100
100

101

102

103
RMJ

RMJ

RMJ

RMJ
RMJ

MJ

MJ

MJ

MJ
MJ

Selectivity [%]

R
un

tim
e

[s
ec

]

Figure 5.3.: Runtime results for varying selectivity κ or δ.

5.4.3. RMJPATCH Vs. HEAD

In this part of the evaluation we enable all join algorithms and compare RMJPATCH with HEAD

on our synthetic workloads. The results are shown in Figure 5.4. We can see that in general
PostgreSQL favours the hash join (HJ) to the sort-merge join. In fact for HEAD the optimizer
never chooses the MJ, and comparing to Figure 5.2 where the MJ is slightly slower compared
to the HJ the optimizer opts for the correct choice. We can see that also for RMJPATCH the
optimizer chooses a HJ in a few settings, in particular when one or both relations are small so
that efficient in-memory hash tables can be employed and when the equality condition is very
selective. We can see for RMJPATCH that in all cases when the RMJ is faster than the HJ, the
optimizer correctly opts for it, resulting in a more efficient join execution.

Next, we compare RMJPATCH and HEAD on our synthetic workloads but this time with
range condition only, i.e., without equality condition. For this cases, since HEAD has no
adequate join algorithm we have to reduce the default values for the number of input tuples in
r and s to 10, 000. The results are shown in Figure 5.5. In this case the only join option for

27

RMJPATCH HEAD

10−1 100 101 102

101

102

103

HJ

HJ
HJ RMJRMJ

RMJ
RMJ

HJ

HJ
HJ

HJ
HJ

HJ
HJ

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−1 100 101 102

101

102

103

HJ
HJ

HJ RMJRMJ

RMJ
RMJ

HJ
HJ

HJ

HJ
HJ

HJ
HJ

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−6 10−3 100

101

102

103

HJ HJ
HJ RMJ RMJ RMJ RMJ

RMJ

RMJ

HJ HJ
HJ

HJ

HJ

κ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of equality condition.

10−6 10−3 100

101.5

102 RMJ

RMJ

RMJRMJRMJRMJRMJRMJRMJ

HJ
HJHJHJHJHJHJHJHJ

δ [%]
R

un
tim

e
[s

ec
]

(d) Varying selectivity of range condition.

10−1 100 101 102
10−1

101

103

HJ
HJ

HJ
RMJ

RMJ

RMJ
RMJ

HJ
HJ

HJ

HJ
HJ

HJ
HJ

n,m [M]

R
un

tim
e

[s
ec

]

(e) Varying number of input tuples in r and s.

Figure 5.4.: Runtime results for our synthetic workloads with all join algorithms enabled.

HEAD is a nested loop (NL), while RMJPATCH can take advantage of the range condition and
use a RMJ and is much faster. When the selectivity of the range condition reaches 100%, i.e.,
all tuples match on the range condition, both NL and RMJ have the same performance. In this
case, the NL spends more time for checking the range condition compared to RMJ, but RMJ
additionally has to sort the input resulting in this worst case scenario to the same execution
time for both approaches.

5.4.4. RMJ Vs. Index Joins
PostgreSQL supports three types of indices that, if created upfront, can act as an access method
for a range condition and thus, potentially can be used to compute a range join using an index

28

RMJPATCH HEAD

10−1 100 101 102
10−2

100

102

RMJ RMJRMJ RMJRMJ
RMJ

RMJ

NL
NL

NL

NL
NL

NL
NL

n [k]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−1 100 101 102
10−2

100

102

RMJ RMJRMJ RMJRMJ
RMJ

RMJ

NL
NL NL

NL
NL

NL
NL

m [k]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−6 10−3 100
10−2

10−1

100

101 RMJ

RMJ

RMJ

RMJ
RMJRMJRMJRMJRMJ

NLNLNLNLNLNLNLNLNL

δ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of range condition.

10−1 100 101 102
10−4

10−1

102

RMJ
RMJRMJ

RMJRMJ
RMJRMJ

NL

NL
NL

NL
NL

NL
NL

n,m [k]
R

un
tim

e
[s

ec
]

(d) Varying number of input tuples in r and s.

Figure 5.5.: Runtime results for our synthetic workload with range conditions only (smaller
default values for input relations, n = m = 10k).

join. For PostgreSQL’s range types2 two index types exist, the general inverted search tree
(GiST) [13] and the space partitioned general inverted search tree (SP-GiST) [2]. The GiST
index type is an implementation of a one-dimensional R-Tree, while the SP-GiST index types
is an implementation of a quadtree. Both of these indices can be created on range types
and provide an access method for the operators @> and <@ that correspond to “range contains
element” and “element is contained by range” respectively. The third index types that supports
range conditions is the B+-Tree [16]. When created on a scalar value, such as for instance a
DATE or an INT, it supports range searches over these values. It is important to note at this
point that GiST and SP-GiST need to be created on the relation containing the range (denoted
as r in this thesis), while the B+-Tree index needs to be created on the relation containing the
value or element (denoted as s in this thesis).

Figure 5.6 compares HEAD using a B+-Tree index with our RMJ. We use a default of
1M tuples for our synthetic workloads in this case and only a range condition (no equality
condition). As expected HEAD opts for an index nested loop or index join (INL) using the
B+-Tree index. This type of join scans one (outer) relation (r in this case) and for each tuple
performs a range search on the other (inner) relation (s in this case). RMJ is more efficient that
INL in general, while INL is efficient if the number of outer tuples (n) is small. Only when
the number of outer tuples (cf. Figure 5.6a) is smaller that ten times the inner relation (s) INL

2https://www.postgresql.org/docs/12/rangetypes.html

29

https://www.postgresql.org/docs/12/rangetypes.html

is more efficient than RMJ. This because RMJ scans both relations, while INL uses the index
for the other, which in this case is the larger relation.

RMJPATCH HEAD

10−2 10−1 100 101
10−1

100

101

102

RMJ RMJRMJ
RMJ

RMJ

RMJ
RMJ

INL

INL
INL

INL
INL

INL
INL

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−2 10−1 100 101

100

101

102

RMJ RMJRMJ
RMJ

RMJ

RMJ
RMJ

INL INL INL
INL

INL

INL

INL

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−5 10−3 10−1
100

102
RMJ

RMJ

RMJ

RMJ
RMJRMJ

INL

INL

INL

INL
INLINL

δ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of range condition.

10−2 10−1 100 101
10−2

100

102

RMJ
RMJ

RMJ
RMJ

RMJ

RMJ
RMJ

INL
INL INL

INL
INL

INL
INL

n,m [M]

R
un

tim
e

[s
ec

]

(d) Varying number of input tuples in r and s.

Figure 5.6.: Runtime results for our synthetic workload with range conditions only and a B+-
Tree index on s for HEAD (smaller default values for input relations, n = m =
1M).

Figure 5.7 shows the same experiment for range types where for HEAD a GiST or SP-
GiST index has been created. We can see that RMJ in most settings is more efficient than the
INLs based on GiST and SP-GiST, except when the relation s contains fewer tuples. Recall
that for this case the indices are created on r so for the INL r is the inner relation and s is
the outer relation (opposite of B+-Tree). Similar as in the previous experiment INL is only
efficient when the outer relation contains about ten times less tuples then the inner relation (cf.
Figure 5.7b).

5.4.5. Real-World Workloads
Next, we evaluate RMJPATCH and compare it to HEAD on our real-world workloads as de-
scribed in Section 5.1.2. The results are shown in Figure 5.8. The labels for the workload are
indicates with the dataset and the used equality attribute. For instance, “Incumbents (ssn)”
is the Incumbents dataset with equality condition on the ssn attribute, while “Incumbents
()” is the Incumbents dataset with no equality condition. Additionally, also here we pro-
vide the execution algorithm used for RMJPATCH and HEAD, and we also report the numbers
for RMJPATCH (RMJ only) where we force the optimizer to use our range merge left outer

30

RMJPATCH HEAD (GiST) HEAD (SP-GiST)

10−2 10−1 100 101
100

101

102

RMJ RMJRMJ
RMJ

RMJ

RMJ
RMJINL INL INL INL INL

INL
INL

INL INL INL INL INL

INL
INL

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−2 10−1 100 101

100

101

102

RMJ RMJRMJ RMJRMJ

RMJ
RMJ

INL

INL
INL

INL
INL

INL
INL

INL

INL
INL

INL
INL

INL
INL

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−5 10−3 10−1

101

102

103

104

RMJ

RMJ

RMJ

RMJRMJRMJ

INL

INL

INL
INLINLINL

INL

INL

INL

INLINLINL

δ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of range condition.

10−2 10−1 100 101

10−1

101

103

RMJ
RMJRMJ

RMJ
RMJ

RMJ
RMJ

INL
INL

INL
INL

INL

INL
INL

INL
INL INL

INL
INL

INL
INL

n,m [M]
R

un
tim

e
[s

ec
]

(d) Varying number of input tuples in r and s.

Figure 5.7.: Runtime results for our synthetic workload with range conditions only and a
GiST or SP-GiST index on r for HEAD (smaller default values for input rela-
tions, n = m = 1M).

join (RMLJ). For “Incumbents (ssn)”, both RMJPATCH and HEAD opt for a hash right outer
join (HRJ) with inverted inputs that is the fastest option for this setting. We can see that if
we force the optimizer to use a RMLJ the performance is very similar 255ms compared to the
230ms of the HRJ. The reason why the hash join approach is extremely efficient for this query
is because the ssn attribute, with a selectivity of 0.0027%, is very selective, while the range
condition only provides an additional selectivity of 28%. For “Incumbents (pcn)”, RMJPATCH

opts for a RMLJ while HEAD opts for a sorted-merge left outer join (MLJ). Also in this case
the performance of MLJ and RMLJ is very similar, with 320ms for the RMLJ and 355ms
for the MLJ, because also in this case attribute pcn is very selective (0.01%) and the range
condition provides an additional selectivity of 17%. For “Incumbents ()” there is no equality
condition anymore and HEAD has to revert to a NL, while RMJPATCH can use the range con-
dition and use a RMLJ, resulting in a huge performance improvement of 1.7sec compared to
11.5sec. The selectivity of the range condition in this case is 6.5%.

For “Flight (fap)” RMJPATCH used a RMLJ compared to a MLJ used by HEAD. The RMLJ
takes 600ms in this case while the MLJ takes 7.6sec. The selectivity of attribute fap in this
case is 1.3% and the selectivity of the range condition on top of this is 1.6% that is much more
selective as in the previous cases. For “Flight ()” with no equality condition HEAD has to use a
NL that takes 30sec, while RMJPATCH can use a RMLJ that takes 1sec with a range condition
having a selectivity of 1.2%.

31

RMJPATCH HEAD RMJPATCH (RMJ only)

Flight (fap) Flight ()Incumbents (ssn) Incumbents (pcn) Incumbents ()

0

10

20

30

RMLJ RMLJHRJ RMLJ RMLJ

MLJ

NL

HRJ MLJ

NL

RMLJ RMLJRMLJ RMLJ RMLJ

Query

R
un

tim
e

[s
ec

]

Figure 5.8.: RMJPATCH vs. HEAD on real-world workload.

5.5. Summary
In summary, our RMJPATCH and its implementation of the RMJ does not cause large over-
heads in terms of planning time, and its additions to the traditional MJ (checking of additional
flags during execution) does not have an effect on the MJ’s performance. For cases when
queries contain range joins (with or without equality conditions) the RMJ provides consider-
able performance gains over a large spectrum of settings as well as real-world datasets. The
integration of the RMJ in RMJPATCH also shows that the planner is able to detect cases when
the RMJ is adequate for query processing.

32

6. Experiences from the PostgreSQL
Implementation

In this section we share our experiences in the PostgreSQL development and the initial steps,
approach, and methodology that was used through the development of this thesis.

6.1. Procedure
When starting the work, the first step was to get a deep understand of PostgreSQL’s implemen-
tation of the Merge Join. We created a simplified state diagram shown in Figure 6.1a. To test
our initial modifications, we implemented this simple version of the MJ algorithm as a small C
program to have a prototype for quick implementation. We then modified the simplified state
diagram with the additional conditions for the Range Merge Join, and verifying our theoretical
solutions by modifying the implemented algorithm accordingly.

As a simple starting point, we worked on a solution using an extra state we called
RANGE_TEST which would sit upstream of JOINTUPLES checking the range conditions
every time before tuples get joined. This was effectively the same as the normal MJ imple-
mentation. To get the advantages of a Range Join we then evaluated the start condition in
the states which are upstream and only checked the end condition in RANGE_TEST. This
meant, it made no sense anymore to have an extra state for that. Our second attempt for a
RMJ implementation, shown in Figure 6.1b, was the one which we ended up implementing
into PostgreSQL.

29.05.20, 12:48simple-RMJ.xml

Page 1 of 1https://app.diagrams.net/

JOINTUPLES

NEXTOUTER

TESTOUTER NEXTINNER

SKIP_TEST SKIPOUTER_ADVANCESKIPINNER_ADVANCE

compareResult < 0compareResult > 0

compareResult == 0
mark inner

compareResult == 0

compareResult < 0

compareResult == 0
restore marked

compareResult > 0

(a) Vanilla merge join.

29.05.20, 13:11simple-RMJ.xml

Page 1 of 1https://app.diagrams.net/

JOINTUPLES

NEXTOUTER

TESTOUTER NEXTINNER

SKIP_TEST SKIPOUTER_ADVANCESKIPINNER_ADVANCE

compareResult < 0
or not end cond.

compareResult > 0
or not start cond.

compareResult == 0
and end cond.
and start cond.

mark inner

compareResult == 0
and end cond.

compareResult < 0
or not end cond.

compareResult == 0
and end cond.
and start cond.
restore marked

compareResult > 0
compareResult == 0
and not start cond.

restore marked

compareResult == 0
and not end cond.

restore marked

(b) Modified version including range conditions.

Figure 6.1.: Simplified state diagrams of the PostgreSQL Merge Join state machine.

33

We started by using only range conditions consisting of two inequality expressions and did
not support range types. We did not implement sorting at this early stage yet, and instead
sorted r.ts and s.t in the query itself using SELECT s ORDER BY s.t and SELECT r
ORDER BY r.ts as a sub-query. To compare the range attributes, we just had to initialize
both conditions as executable expressions and execute them in our comparison function.

The next step, was to identify range conditions consisting of a single containment expres-
sion for range types. To execute the RMJ with this type of range condition, we had to find a
new solution for our comparison. We tried different solutions, including extracting the spe-
cific values from the current tuples, until we found out, that we can initialize the arguments
separately as executable expressions, to use them with the internal range type functions. This
seemed the cleanest solution to us, since we used PostgreSQL’s abstractions and implemented
two new range type functions to check for start- and end condition.

At this point, we create only one path using the first identified range condition to have
a running prototype. To identify and try out multiple range conditions, we defined a range
condition as a list containing either two inequality expressions or one containment expression.
The planner gets a list containing all possible range conditions, i.e. a list containing lists, and
a path has a single range condition, which is a list itself. To give the planner the option to
choose the best range condition, we had to implement sorting.

The sorting was the most difficult part, because we needed to modify multiple parts of the
planning process. We identified the point, where the pathkeys are created and ordered, but we
needed equivalence classes to create pathkeys. So we wanted to create equivalence classes
first, but to create them, we need the btree operator families.

For the inequality expressions we could just look up the operator family of the used inequal-
ity operator like it is done for equality expressions, because the same are also used for sorting
both sides. For the containment expressions we had to find another solution. Both sides of the
operation have a different typeand these are not even clearly defined by the operator, so we
had to work with typecache lookups and use the cached btree opamilies.

Having the correct opfamilies, we needed to create the single-member equivalence classes.
But if we used the types implied by the operator, as it is done for merge clauses, the element
side would not have the correct type for the btree opfamily. So we extracted the types directly
from the arguments, but then the range side would not have the correct type. We have to check,
which one is the element type by checking if it is a “contains” or “contained by” operation and
only extract this side separately.

6.2. Takeaways
To us it was very helpful to visualize the state machine as a state diagram. We were able
to visualize and simulate our solutions without any coding by simply modifying the diagram
and traversing it with different examples. Then we performed the more sophisticated tests by
using our simple standalone RMJ state machine algorithm. In this way, we did not have to
care about any PostgreSQL-specific implementation to test our initial solution.

The code-base of PostgreSQL is very large as well as constantly evolving. There are multi-
ple levels of abstraction and not everything is intuitive as it seems at a first glance, although the

34

comments in the code are extremely helpful. Every time we had to implement something new,
we searched for a similar implementation in the existing code-base to have some reference.
We derived most of the methods used for handling the range clauses from existing methods
used for merge clauses. These gave a good framework to adapt to our needs, especially with
the inequality expressions.

It was very helpful to us to reflect on the work we did, and we cleaned up a lot of the code
while writing this thesis, in particular Chapter 4. Eventually, we even found some bugs that
were not showing in any of our tests.

Working with range types and containment expressions was much more complex, be-
cause we could not derive it from the merge clause handling. We searched for differ-
ent examples in the code, we had multiple iterations of different solutions. Some solu-
tions still feel like a workaround and can possibly be implemented cleaner. We have to
work with multiple typecache lookups, we compare the expressions operator number (opno)
with the specific operator numbers referenced by OID_RANGE_CONTAINS_ELEM_OP and
OID_RANGE_ELEM_CONTAINED_OPmultiple times and we introduced two new rangetype
specific functions, but only internal.

The most difficult part, was to get the sorting to work. Multiple times, we reached a position
in the code, where we thought the sorting implementation would start, just to realize that some
information needs to be assigned further upstream. The overhead for every joinable inequality
expression shown in Figure 5.1 is a result of pushing the creation of equivalence classes further
upstream. This would not be necessary in the current state of the implementation, but it is a
result of a first try to implement the RMJ working with presorted paths. We postponed this,
because we would need to reintroduce the distinction between outer and inner paths, which is
not necessary for the traditional MJ.

6.3. Open Issues
Consider Presorted Sub-Paths. As mentioned in the previous section, we already
started with the implementation for the RMJ working with presorted paths. At first the op-
timizer creates the merge join paths that require an explicit sorting of the relations, which is
the procedure where we step in to create RMJ paths. Then the optimizer tries to match differ-
ent outer sub-paths in their respective sort order with subsets of all merge clauses. The goal
is to find a combination of a presorted outer path and the corresponding set of merge clauses,
which is more efficient then the explicitly sorted paths. We want to modify this procedure to
also take range clauses into account. Additionally, the merge join does not require to do the
same for inner paths, because there is no difference between outer and inner. The RMJ on the
other hand needs this distinction, which provides an additional challenge.

RMJ-Specific Test Cases. PostgreSQL has an integrated test suite. For our RMJ imple-
mentation, we will need specialized tests to ensure its integrity during future development.

Parallelization. In the current state, parallelization is disabled for our RMJ, while it is
enabled for the traditional MJ. We want to make it possible to use partial merge joins with

35

range conditions.

Path Pruning. Section 4.3.2 described how many paths are created, if we have merge- and
range conditions. This number grows exponentially with the number of merge clauses and
potential range clauses. Our goal is to reduce this number of paths in a way that prevents the
loss of the most efficient paths in most cases.

Quickly Produce Lower-Bound Cost Estimates. For the pruning of unpromising join
paths at an early stage PostgreSQL relies on lower-bound cost estimates. When the MJ or RMJ
contain merge clauses PostgreSQL uses only the first merge clause to provide estimates. For
cases when no merge clause exists, currently we do not provide initial costs in the function
initial_cost_mergejoin, but rather ignore the range clauses. Related to this, we also
want to rethink how the final costs are calculated. Based on the experiments shown in the
Sections 5.4 and A.3, it seems that the optimizer does not always choose the best possible
path. We want to evaluate that behaviour further and provide an improved solution.

36

7. Conclusion and Future Work

In this thesis, we formally define range joins and provide an implementation based on the tradi-
tional sort-merge paradigm. We then, described in detail the implementation of PostgreSQL’s
sort-merge join as a state machine and show how it can be extended to be able to additionally
handle range joins. More precisely, we modified three states and the corresponding transitions
and explain how these modifications enable PostgreSQL to execute a range merge join.

We provide a tight integration of our range merge jon into the PostgreSQL kernel, adher-
ing to the PostgreSQL architecture and conventions. The implementation into PostgreSQL’s
code-base is described in detail, split into the four parts: definition of range clauses, sort-
ing, initialization, and execution. In our experiments, we showed how the RMJ incurs only
a very small overhead in planning time for specific applications, and no significant overhead
in execution time for the traditional sort-merge join caused by our extension. Using synthetic
workload, we showed how the RMJ outperforms the sort-merge join, as well as the hash join
in most settings when a range condition in addition to an equality condition is present. Com-
pared to index joins that can support range joins, we were able to reduce the execution time
significantly. Our experiments on real-world workloads reveal how our implementation has
the ability to make an important difference in practical applications. Finally, we also pro-
vided an insight into our experience with the integration of new functionality into PostgreSQL
together with the insights we gained during this work.

Future work points in several directions. First, we want to submit the patch to the psql-
hackers1 mailing list, to gain feedback from the community, which will be helpful with our
future development. Then, we want to work on the open issues described in the thesis. In
particular, we want to implement the RMJ with presorted sub-paths, we want to expand the
test suite with RMJ-sepecific test cases, we want to develop a parallelized version of the RMJ,
we want to optimize the planning by creating less paths, and we want to better integrate the
cost estimates for range conditions into the optimizer.

1https://www.postgresql.org/list/pgsql-hackers/

37

https://www.postgresql.org/list/pgsql-hackers/

Bibliography

[1] TPC-H specification – Transaction Performance Council. http://www.tpc.org. Ac-
cessed: 2020.

[2] W. G. Aref and I. F. Ilyas. SP-GiST: An extensible database index for supporting space
partitioning trees. J. Intell. Inf. Syst., 17(2-3):215–240, 2001.

[3] A. Behrend and G. Schüller. A case study in optimizing continuous queries using the
magic update technique. In Proceedings of the Conference on Scientific and Statistical
Database Management, SSDBM ’14, pages 31:1–31:4. ACM, 2014.

[4] M. H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen. Database technology for process-
ing temporal data (invited paper). In Proceedings of the 25th International Symposium
on Temporal Representation and Reasoning, TIME 2018, volume 120 of LIPIcs, pages
2:1–2:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[5] M. H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen. Temporal data management
- an overview. In Business Intelligence and Big Data - 7th European Summer School,
eBISS 2017, Tutorial Lectures, volume 324 of Lecture Notes in Business Information
Processing, pages 51–83. Springer, 2018.

[6] A. Dignös, M. H. Böhlen, and J. Gamper. Temporal alignment. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012,
pages 433–444. ACM, 2012.

[7] A. Dignös, M. H. Böhlen, J. Gamper, and C. S. Jensen. Extending the kernel of a rela-
tional DBMS with comprehensive support for sequenced temporal queries. ACM Trans.
Database Syst., 41(4):26:1–26:46, 2016.

[8] A. Fuller. Look up values in sql server using range joins. https://www.techrep
ublic.com/article/look-up-values-in-sql-server-using-range
-joins/, 2006. Accessed: 2020.

[9] A. Fuller. Using sql server joins for easy range lookups. https://www.techrepub
lic.com/article/using-sql-server-joins-for-easy-range-loo
kups/, 2006. Accessed: 2020.

[10] J. Gamper, M. H. Böhlen, and C. S. Jensen. Temporal aggregation. In Encyclopedia of
Database Systems, Second Edition. Springer, 2018.

38

http://www.tpc.org
https://www.techrepublic.com/article/look-up-values-in-sql-server-using-range-joins/
https://www.techrepublic.com/article/look-up-values-in-sql-server-using-range-joins/
https://www.techrepublic.com/article/look-up-values-in-sql-server-using-range-joins/
https://www.techrepublic.com/article/using-sql-server-joins-for-easy-range-lookups/
https://www.techrepublic.com/article/using-sql-server-joins-for-easy-range-lookups/
https://www.techrepublic.com/article/using-sql-server-joins-for-easy-range-lookups/

[11] J. A. G. Gendrano, R. Shah, R. T. Snodgrass, and J. Yang. University information system
(uis) dataset. TimeCenter CD-1, 1998.

[12] IP2Location.com. Ip address ranges by country. https://lite.ip2location.c
om/ip-address-ranges-by-country. Accessed: 2020.

[13] M. Kornacker. Access Methods for Next-generation Database Systems. PhD thesis,
University of California, Berkeley, 2000. AAI9994590.

[14] E. Pitoura. Pipelining. In Encyclopedia of Database Systems, Second Edition. Springer,
2018.

[15] PostgreSQL Global Development Group. Dcoumentation PostgreSQL 12 – Executor.
https://www.postgresql.org/docs/12/executor.html, 2020. Accessed:
2020.

[16] D. Zhang, K. P. Baclawski, and V. J. Tsotras. B+-tree. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018.

[17] J. Zhou. Hash join. In Encyclopedia of Database Systems, Second Edition. Springer,
2018.

[18] J. Zhou. Index join. In Encyclopedia of Database Systems, Second Edition. Springer,
2018.

[19] J. Zhou. Sort-merge join. In Encyclopedia of Database Systems, Second Edition.
Springer, 2018.

39

https://lite.ip2location.com/ip-address-ranges-by-country
https://lite.ip2location.com/ip-address-ranges-by-country
https://www.postgresql.org/docs/12/executor.html

A. Appendix

A.1. TPC-H Query Description

Table A.1.: Description of TPC-H queries.
Query Description Operators
Q1 Pricing Summary Report Aggregation (no join)
Q2 Minimum Cost Supplier Join between five relations and a nested aggregation

with join between four relations
Q3 Shipping Priority Aggregation with join between three relations
Q4 Order Priority Checking Correlated nested subquery (no explicit join)
Q5 Local Supplier Volume Join between six relations
Q6 Forecasting Revenue Change Aggregation (no join)
Q7 Volume Shipping Aggregation with join between six relations
Q8 National Market Share Aggregation with join between eight relations
Q9 Product Type Profit Measure Aggregation with join between six relations
Q10 Returned Item Reporting Aggregation with join between four relations
Q11 Important Stock Identification Aggregation with join between three relations and a

nested aggregation with join between three relations
Q12 Shipping Modes and Order Priority Aggregation with join between two relations
Q13 Customer Distribution Double aggregation with left join between two rela-

tions
Q14 Promotion Effect Aggregation with join between two relations
Q15 Top Supplier Aggregation with join between two relations and a

nested aggregation
Q16 Parts/Supplier Relationship Aggregation with join between two relations and a

correlated nested subquery
Q17 Small-Quantity-Order Revenue Aggregation with join between two relations and a

correlated nested subquery
Q18 Large Volume Customer Aggregation with join between three relations and a

correlated nested subquery
Q19 Discounted Revenue Aggregation with join between two relations and dis-

junctive predicates
Q20 Potential Part Promotion Join between two relations and two correlated nested

subqueries
Q21 Suppliers Who Kept Orders Waiting Aggregation with join between four relations and two

correlated nested subqueries
Q22 Global Sales Opportunity Aggregation with two correlated nested subqueries

(one with two levels of nesting)

40

A.2. TPC-H Planning Time Without Filtering Constants

Table A.2.: Planning time in milliseconds for the TPCH queries (without filtering constants).
Query RMJPATCH HEAD Difference Difference % Significance

Q1 0.916 0.918 -0.002 -0.20% ns
Q2 4.147 4.115 0.032 0.78% ns
Q3 2.726 2.650 0.076 2.85% ns
Q4 1.961 1.897 0.064 3.35% ns
Q5 5.215 5.115 0.100 1.96% ns
Q6 0.721 0.617 0.104 16.85% ****
Q7 4.184 4.084 0.100 2.44% ns
Q8 5.210 4.881 0.329 6.74% *
Q9 6.158 6.350 -0.192 -3.03% ns

Q10 3.018 2.951 0.067 2.27% ns
Q11 2.170 2.129 0.041 1.93% ns
Q12 1.930 1.905 0.025 1.29% ns
Q13 1.758 1.688 0.070 4.15% ***
Q14 1.736 1.633 0.103 6.30% ***
Q15 1.495 1.445 0.050 3.45% ns
Q16 2.200 2.187 0.013 0.58% ns
Q17 1.833 1.423 0.411 28.86% -
Q18 2.637 2.659 -0.022 -0.83% ns
Q19 1.824 1.764 0.059 3.36% ns
Q20 2.246 2.578 -0.332 -12.88% -
Q21 5.179 5.175 0.004 0.08% ns
Q22 1.478 1.472 0.006 0.42% ns

41

A.3. Synthetic Experiments With Parallelization
Enabled

RMJPATCH HEAD

10−1 100 101 102

101

102

MJ
MJ

RMJ RMJRMJ

RMJ
RMJ

MJ
MJ

MJ

MJ
MJ

MJ
MJ

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−1 100 101 102

101

102

MJ
MJ

RMJ
RMJ

RMJ

RMJ
RMJ

MJ
MJ

MJ

MJ
MJ

MJ
MJ

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−6 10−3 100
101

102

MJ MJ
RMJ RMJ RMJ RMJ RMJ

RMJ

RMJ

MJ MJ MJ

MJ

MJ

κ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of equality condition.

10−6 10−3 100

101.5

102 RMJ

RMJ

RMJRMJRMJRMJRMJRMJRMJ

MJ

MJ
MJMJMJMJMJMJMJ

δ [%]

R
un

tim
e

[s
ec

]

(d) Varying selectivity of range condition.

10−1 100 101 102
10−1

101

103

RMJ
RMJ

RMJ

RMJ
RMJ

RMJ
RMJ

MJ
MJ

MJ

MJ
MJ

MJ
MJ

n,m [M]

R
un

tim
e

[s
ec

]

(e) Varying number of input tuples in r and s.

Figure A.1.: Runtime results for our synthetic workloads with only MJ and RMJ enabled.

42

RMJPATCH HEAD

10−1 100 101 102
100

101

102

HJ
HJ

HJ

RMJRMJ

RMJ
RMJ

HJ
HJ

HJ

HJ
HJ

HJ
HJ

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−1 100 101 102
100

101

102

HJ
HJ

HJ

RMJ
RMJ

RMJ
RMJ

HJ
HJ

HJ

HJ
HJ

HJ
HJ

m [M]

R
un

tim
e

[s
ec

]
(b) Varying number of input tuples in s.

10−6 10−3 100

101

102

HJ HJ
HJ

RMJ RMJ RMJ RMJ
RMJ

RMJ

HJ HJ
HJ

HJ

HJ

κ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of equality condition.

10−6 10−3 100

101.5

102 RMJ

RMJ

RMJRMJRMJRMJRMJRMJRMJ

HJ

HJ
HJHJHJHJHJHJHJ

δ [%]

R
un

tim
e

[s
ec

]

(d) Varying selectivity of range condition.

10−1 100 101 102
10−1

101

103

HJ
HJ HJ

RMJ
RMJ

RMJ
RMJ

HJ
HJ HJ

HJ
HJ

HJ
HJ

n,m [M]

R
un

tim
e

[s
ec

]

(e) Varying number of input tuples in r and s.

Figure A.2.: Runtime results for our synthetic workloads with all join algorithms enabled.

43

RMJPATCH HEAD

10−1 100 101 102
10−2

100

102

RMJ RMJRMJ RMJRMJ
RMJ

RMJ

NL
NL

NL

NL
NL

NL
NL

n [k]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−1 100 101 102
10−2

100

102

RMJ RMJRMJ RMJRMJ
RMJ

RMJ

NL
NL NL

NL
NL

NL
NL

m [k]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−6 10−3 100
10−2

10−1

100

101 RMJ

RMJ

RMJ

RMJ
RMJRMJRMJRMJRMJ

NLNLNLNLNLNLNLNLNL

δ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of range condition.

10−1 100 101 102
10−4

10−1

102

RMJ RMJRMJ
RMJRMJ

RMJRMJ
NL

NL
NL

NL
NL

NL
NL

n,m [k]

R
un

tim
e

[s
ec

]

(d) Varying number of input tuples in r and s.

Figure A.3.: Runtime results for our synthetic workload with range conditions only (smaller
default values for input relations, n = m = 10k).

44

RMJPATCH HEAD

10−2 10−1 100 101
10−1

100

101

102

RMJ RMJRMJ
RMJ

RMJ

RMJ
RMJ

INL

INL
INL

INL
INL

INL
INL

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−2 10−1 100 101

100

101

102

RMJ RMJRMJ
RMJ

RMJ

RMJ
RMJ

INL INL INL
INL

INL

INL

INL

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−5 10−3 10−1
100

102
RMJ

RMJ

RMJ

RMJ
RMJRMJ

INL

INL

INL

INL
INLINL

δ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of range condition.

10−2 10−1 100 101
10−2

100

102

RMJ
RMJ

RMJ
RMJ

RMJ

RMJ
RMJ

INL
INL INL

INL
INL

INL
INL

n,m [M]

R
un

tim
e

[s
ec

]

(d) Varying number of input tuples in r and s.

Figure A.4.: Runtime results for our synthetic workload with range conditions only and a B+-
Tree index on s for HEAD (smaller default values for input relations, n = m =
1M).

45

RMJPATCH HEAD (GiST) HEAD (SP-GiST)

10−2 10−1 100 101
100

101

102

RMJ RMJRMJ
RMJ

RMJ

RMJ
RMJINL INL INL INL INL

INL
INL

INL INL INL
INL INL

INL
INL

n [M]

R
un

tim
e

[s
ec

]

(a) Varying number of input tuples in r.

10−2 10−1 100 101

100

101

102

RMJ RMJRMJ RMJRMJ

RMJ
RMJ

INL

INL
INL

INL
INL

INL
INL

INL

INL
INL

INL
INL

INL
INL

m [M]

R
un

tim
e

[s
ec

]

(b) Varying number of input tuples in s.

10−5 10−3 10−1

101

102

103

104

RMJ

RMJ

RMJ

RMJRMJRMJ

INL

INL

INL
INLINLINL

INL

INL

INL

INLINLINL

δ [%]

R
un

tim
e

[s
ec

]

(c) Varying selectivity of range condition.

10−2 10−1 100 101

10−1

101

103

RMJ
RMJ

RMJ
RMJ

RMJ

RMJ
RMJ

INL
INL

INL
INL

INL

INL
INL

INL
INL

INL

INL
INL

INL
INL

n,m [M]

R
un

tim
e

[s
ec

]

(d) Varying number of input tuples in r and s.

Figure A.5.: Runtime results for our synthetic workload with range conditions only and a
GiST or SP-GiST index on r for HEAD (smaller default values for input relations,
n = m = 1M).

46

	Introduction
	Motivation
	Contributions
	Organization of the Thesis

	Background
	Sort-Merge Join
	Range Join

	A Range Merge Join in PostgreSQL
	The Sort-Merge Join Implementation in PostgreSQL
	A Range Merge Join Implementation for PostgreSQL
	Algorithm
	Implementation as a State Machine

	Integration into the PostgreSQL Kernel
	Overview
	Path Nodes
	Planner/Optimizer
	range clauses
	Sorting

	Executor
	Initialization
	Execution

	Query Plans

	Experiments
	Setup
	Synthetic Workloads
	Real-World Workloads

	Overview
	Overhead of the RmjPatch
	Workload and Methodology
	Planning Time
	Execution Time

	Range Join Execution Time
	RMJ Vs. MJ
	Merge Condition Vs. Range Condition
	RmjPatch Vs. Head
	RMJ Vs. Index Joins
	Real-World Workloads

	Summary

	Experiences from the PostgreSQL Implementation
	Procedure
	Takeaways
	Open Issues

	Conclusion and Future Work
	Appendix
	TPC-H Query Description
	TPC-H Planning Time Without Filtering Constants
	Synthetic Experiments With Parallelization Enabled

