
Department of Informatics, University of Zürich

BSc Thesis

Integrating the RCAS Index with the
Software Heritage Archive

Marc Rettenbacher
Matrikelnummer: 17-727-843

Email: marc.rettenbacher@uzh.ch

July 15, 2020
supervised by Prof. Dr. M. Böhlen and K. Wellenzohn

Acknowledgements

I would like to express my gratitude to my supervisor Kevin Wellenzohn for always taking
his time to provide valuable feedback and support throughout the whole process. I would also
like to thank Prof. Dr. Michael Böhlen for the opportunity to write my thesis at the Database
Technology Group at University of Zurich.

2

Abstract

The Software Heritage Archive aims to collect and preserve all publicly available software
in the form of source code. It saves the project history and structure in the form of a graph
and makes it publicly available through multiple interfaces. We want to use the data from the
Software Heritage Archive to test the novel Robust Content-And-Structure (RCAS) index on
a larger scale. This is a first step to providing an interface to query the Software Heritage
Archive directly. For this we propose a way to parse the Archive and extract file paths and file
sizes of all projects as sample values for both Content and Structure, as the current interfaces
do not directly offer this functionality.

We implement and use a RCAS index to integrate our parsed data, as the index is made for
semi-structured hierarchical data and thus answers CAS queries efficiently. To measure the
index performance, we run different queries against it, utilizing the descendant axis // and
the wildcard character * in the path part of the query. We found that the placement of the
descendant axis // and wildcard * has a large impact on query performance.

Zusammenfassung

Das Ziel des Software Heritage Archives ist es, alle öffentlich verfügbare Software als Source
Code zu sammeln und zu archivieren. Es speichert die Struktur und den Verlauf aller Projekte
als Graph und macht diesen durch mehrere Schnittstellen öffentlich zugänglich. Wir wollen
die Daten des Software Heritage Archives dazu nutzen, den neuartigen "Robust Content-And-
Structure" Index mit einem grösseren Datenset zu testen. Dies ist der erste Schritt, um eine
Schnittstelle für die Abfragung des Software Heritage Archives direkt zu erstellen. Wir stellen
einen Ansatz dar, um Dateipfade und Dateigrössen als Beispiele für sowohl Struktur als auch
Inhalt des Archives herauszulesen, da die jetzigen Schnittstellen diese Funktionalität nicht
anbieten.

Wir implementieren und benutzen den RCAS Index um die analysierten Daten mit dem
Index zu integrieren, da er für halbstrukturierte, hierarchische Daten gemacht wurde und da-
her CAS Abfragen effizient beantworten kann. Um die Performance des Indexes zu messen
benutzen wir mehrere Abfragen, die unter anderem die "descendant axis //" und den "wild-
card character *" beinhalten. Wir lernen, dass die Position der "descendant axis //" und der
"wildcard *" in der Abfrage einen wichtigen Einfluss auf die Performance hat.

4

Contents

1. Introduction 8

2. Software Heritage Archive 10
2.1. Software Heritage Structure . 10
2.2. SQL Solution . 13
2.3. In-Memory Solution . 15

3. RCAS Index 19
3.1. Content and Structure Indexing . 19
3.2. Dynamic Interleaving and RCAS Structure 20
3.3. RCAS Implementation . 23

3.3.1. Language and Data Types . 23
3.3.2. Algorithms . 24

4. Query Performance Evaluation 32
4.1. Setup . 32
4.2. Dataset and Index Structure . 32
4.3. CAS Queries Evaluation . 33

5. Summary and Future Work 38

A. Appendix 39
A.1. Additional CAS Query Information . 39

5

List of Figures

1. Software Heritage Relational Dataset, Image from [8]. 11
2. SQL query to compose all path/value pairs. 14
3. Directory_entry_dir class layout. 16
4. Recursive function to create all Path/Value/ID triplets. 18

5. RCAS index of the composite keys from Table 2 and their dynamic interleav-
ing in Table 6. 22

6. Header files with the node_t and nodeInner_t class declarations. 23
7. Node inheritance structure. 24
8. Determining endianness of the current system at runtime. 25
9. Converting a 64bit signed integer to a binary comparable byte vector on a big

endian system. 25
10. Simplified function to determine the discriminative byte for a given dimension

and set of keys. 26
11. Psi-partitioning for PATH and VALUE dimensions. 26
12. Simplified RCAS construction algorithm. 27
13. Simplified matchValue function. 28
14. Simplified matchPath function. 30
15. Simplified query evaluation function. 31

16. Distribution of the values (i.e., file sizes) in the ranges [0, 20k] and [0, 400k]. 33
17. RCAS index node distribution and Path/Value distribution for given nodes. . . 33
18. Runtime measurements for queries Q1 to Q8 for different file sizes using

copied buffers. 35
19. Buffer copy time in relation to query execution time. 36
20. Runtimes for queries Q1 to Q8 with size ∈ [0, 100k] with and without opti-

mized buffers. 37

6

List of Tables

1. Sample files from a developer project in the Software Heritage Archive. . . . 9

2. File information for the example project from Table 1. 12
3. The files from Table 1 split up over the relevant relational tables in the Soft-

ware Heritage Archive. 13
4. Intermediate results of recursive CTE, showing intermediate results. 15

5. Discriminative Byte distribution for the keys from Table 2 and various subsets. 20
6. Dynamic Interleaving of the composite Keys from Table 2. Discriminative

bytes are displayed in bold. 22

7. CAS queries with the number of results, the number of traversed and collected
nodes. 34

8. CAS queries with the number of results, the number of traversed and collected
nodes. 40

7

1. Introduction

With the growing trend of storing data digitally and often also publicly available, the access
to rich and complex data becomes easier by the day. Examples being public posts on social
media to be used in sentiment analysis, the world wide web itself or public code-repositories
such as the Software Heritage Archive to analyse development trends.

In this thesis we use data from the Software Heritage Archive to test the RCAS index on a
larger scale. According to the Software Heritage Website [6][7], the Archive itself is a project
that aims to collect, preserve and share all publicly available software in the form of source
code. It aims to help preserve our cultural heritage, support the research community and in-
dustry. The Software Heritage Archive archives a project by saving each commit individually,
thus preserving the history of each project. It currently archives over 126 million different soft-
ware projects, containing more than 8 billion source files and 1.7 billion commits. It provides
access to the data through multiple ways:

• A web-application allows for easy access through the browser itself, allowing the user
to search different repositories/source packages etc. and inspect those.

• An API for programmatic access to the content stored in a graph-structure. This allows
the lookup of individual directories, commits etc.

• A downloadable database of the whole graph dataset and additional smaller subsets of
it.

The above access methods are not sufficient for our needs, as we want to search for files
using path-based queries that also restrict the values of an attribute, such as the file size. To
overcome this, we use the downloadable database and propose a way to manually extract file
paths and file sizes as outlined in Chapter 2. We then test our RCAS index implementation
using selected Content-and-Structure queries.

We specifically use Content-and-Structure (CAS) queries as they are queries that pose re-
strictions on both the content and the structure of the dataset the query is executed on, both of
which are important aspects of the Software Heritage Archive. For CAS queries we use blue
for the structure and red for the content part of the query. In the context of the Software
Heritage Archive we can imagine a query such as:

Q1: All developers that modified a file inside the tests directory in the last ten days.

Here we restrict the content of the archive to only include commits with a timestamp
that is less than 10 days old and we restrict the structure by requiring at least a test file

8

inside a tests directory to have changed in the commit. Or we could have a query Q2:
//src/*, size<500 that simply searches for all files directly located in any src folder
with a size smaller than 500 bytes. Here, the size restriction affects the content, and requir-
ing the files to be directly located in any src folder affects the structure of the archive. We
display a sample project that could be saved in the Software Heritage Archive in Table 1.
We can then query all files with a size between 50k and 100k bytes in the util folder
with a query Q3: /src/util//, 50k ≤size≤ 100k, which returns the header file
/src/util/types.h with size 66274 bytes. In Section 3.1 we define additional sym-
bols, such as the descendant axis // and the wildcard character *.

File path File size (bytes)
/.gitignore 122,624
/src/util/types.h 66,274
/src/util/helpers.h 135,595
/src/main.cpp 183,329
/src/merger.h 185,033
/src/merger.cpp 185,036

Table 1.: Sample files from a developer project in the Software Heritage Archive.

9

2. Software Heritage Archive

In this chapter we give an overview of the Software Heritage Archive structure and how the
structure is reflected in the relational tables of the archive. We then discuss possible ap-
proaches to parse the archive database together with their respective advantages and disadvan-
tages.

2.1. Software Heritage Structure
We summarize the Software Heritage Archive structure from [4] and [8]. The Software Her-
itage Archive is structured as a fully deduplicated Merkle Directed Acyclic Graph (Merkle
DAG). A Merkle DAG uses cryptographically strong hashes as node identifiers. The identi-
fiers of non-leaf nodes are based on the hashes of their child nodes [3]. The authors decided
to use a DAG due to source code artefacts being massively duplicated across projects. In the
DAG we can save each unique artefact only once and refer to it each time it is referenced in
a different artefact. This allows them to track software artefacts across different projects and
consequently reduces the storage size of the DAG. The DAG is saved as a set of relational
tables, which can be organized in 5 logical layers (groups), as can be seen in Figure 1. A sixth
group contains additional crawling information on when and where a snapshot was encoun-
tered. We describe the tables and their respective groups along with the number of rows of
each table for the popular-3k-python dataset, which is a subset of the whole archive,
as seen in Section 4.1. The top logical layer of the Archive consists of snapshots, which
refer to each revision contained in them. Each revision points to its project directory
structure, which points to the content tables of the directory files. We use bold for
group names, typewriter for table names and italic for attribute names.

Snapshots are the top layer of the DAG, they capture the whole state of a project across
all branches1 for a given point in time. This also allows us to deduplicate unmodified forks in
the archive, as we then have two different snapshot entries pointing to the same revision.
Each snapshot_branch points to the latest revision of a branch.

• snapshot_branches (8.2M): An intermediate table to represent the many-to-many
relation between snapshot and snapshot_branch.

• snapshot(10.3k): contains all snapshots captured by the archive.

• snapshot_branch(694k): contains all branches captured by the archive, the target
attribute points to a given revision.

1Modern Version Control Systems, like git, allow developers to work on different versions, or branches, of the
project in parallel.

10

content

directories

revisions

snapshots

origins

releases

content

sha1 sha1

sha1_git sha1_git

length bigint

directory

id sha1_git

dir_entriesbigint[]

file_entriesbigint[]

rev_entriesbigint[]

directory_entry_dir

id bigserial

target sha1_git

name unix_path

permsfile_perms

directory_entry_file

id bigserial

target sha1_git

name unix_path

permsfile_perms

directory_entry_rev

id bigserial

target sha1_git

name unix_path

permsfile_perms

skipped_content

sha1 sha1

sha1_git sha1_git

length bigint

revision

id sha1_git

date timestamp

committer_datetimestamp

directory sha1_git

message bytea

author bigint

committer bigint

origin

id bigserial

type text

url text

origin_visit

origin bigint

visit bigint

date timestamp

snapshot_idbigint

snapshot

object_id bigserial

id sha1_git

person

id bigserial

release

id sha1_git

target sha1_git

date timestamp

name bytea

commentbytea

author bigint

revision_history

id sha1_git

parent_id sha1_git

parent_rankinteger

snapshot_branch

object_id bigserial

name bytea

target bytea

target_typesnapshot_target
snapshot_branches

snapshot_idbigint

branch_id bigint

Figure 1: Software Heritage Relational Dataset, Image from [8].

Releases, i.e. tags, are tagged revisions, which mark important milestones such as a ver-
sion release of the project etc. Each release points to its revision and may contain additional
information such as date, name, comment, author.

• release (11.0k): Table referring to a tagged revision via target attribute and con-
tains additional information about the release.

Revisions, also known as commits, refer to the state of the entire project source tree at a
given point in time. Revisions cover only one branch, unlike snapshots. Each revision points
to the root directory of its project.

• revision_history (5.8M): Contains the ordered set of previous revision ids (par-
ents). The parent_rank attribute defines if a previous revision was an initial repository
revision, a normal merge revision or any other type of revision.

• revision (5.2M): Contains all revisions stored in the archive along with revision
information and the id of the root directory

• person (127k): Contains information about the revision author, but name and email
were removed.

Directories contains all file paths by storing the individual directory and file names, as well
as additional directory information. Each directory may point to its content if it contains
any files. A directory may also include additional revision information, which is not relevant
for our purposes.

• directory (17.0M): Each directory contained in the archive. It holds references to
all of its subdirectories and also to all of its files, but no information about itself. The

11

file- and subdirectory-references are saved as an array of ids (see attributes dir_entries
and file_entries).

• directory_entry_dir (12.8M): Contains the name and the permissions of the
directory which the target attribute refers to.

• directory_entry_file (11.2M): Contains the name and the permissions of each
file in the archive. Points to the content of the file via the target attribute.

Content describes the lowest layer of the DAG and forms its leafs. The tables contain the
checksums of the file content, which can be used to retrieve the actual files from the Software
Heritage web API. The files are separated into two categories:

• content (9.9M): Contains the checksum and the length of each file in the archive.

• skipped_content (5): Contains the checksum and the length of each file not archived.

Origins is not part of the DAG, it contains additional crawling information and states where
and when a given snapshot has been captured.

• origin_visit (239k): Contains the different recurring visits of a given origin along
with the date the visit occurred on. Points to the crawled origin and also to the
snapshot table.

• origin (2.8k): The url of the project origin and its type (git, svn,...).

File path File size (hex) Reference
k1 /.gitignore 00 01 DF 00 1
k2 /src/util/types.h 00 01 02 E2 2
k3 /src/util/helpers.h 00 02 11 AB 3
k4 /src/main.cpp 00 02 CC 21 4
k5 /src/merger.h 00 02 D2 C9 5
k6 /src/merger.cpp 00 02 D2 CC 6

Table 2.: File information for the example project from Table 1.

In this thesis we want to index the paths and the sizes of the files that are stored in the
Software Heritage Archive. To achieve this we need the groups revisions, directories and
content. The revisions point us to all root directories, which are the beginnings of each
file path. Roughly 18% of the project revisions point to a duplicate project directory. Thus
we deduplicate the directory attribute of the revision table to avoid calculating the same
path/value pairs multiple times. Directories contains each file path split up in directory and file
names, while content contains the file sizes. Table 2 shows the files of our example project
from Chapter 1. Table 3 shows how the data of Table 1 is stored in the Software Heritage
Archive. We can again see the usage of arrays for the directory- and file-entries. We also note
that directory_entry_dir and directory_entry_file do not use hashes as their
ids, but rather 64bit Integer values.

12

id date (timestamp + time zone) directory message committer
482d19... 2020-03-12 14:02:22+02 8d392f... Added project files. 1

(a) revision

id dir_entries file_entries
8d392f... [1] [1]
56d616... [2] [4,5,6]
a516ce... null [2,3]

(b) directory

id target name
1 56d616... src
2 a516ce... util

(c) directory_entry_dir

id target name
1 f9fa01... .gitignore
2 609633... types.h
3 be9d72... .helpers.h
4 fc9eae... main.cpp
5 84d1ba... merger.cpp
6 99248f... merger.h

(d) directory_entry_file

sha1 sha1_git length
d671f6... f9fa01... 122,624
aab548... 609633... 66,274
8e9672... be9d72... 135,595
2cfab2... fc9eae... 183,329
378ffc... 84d1ba... 185,033
5a72bc... 99248f... 185,036

(e) content

Table 3.: The files from Table 1 split up over the relevant relational tables in the Software
Heritage Archive.

To construct the RCAS index we need the Software Heritage data in a (path,value,
reference) format, as depicted in Table 2, where reference points to the directory_
entry_file id. We achieve this by using the unique directory entry points to get the root di-
rectories and recursively combining them with directory_entry_dir and directory_
entry_file to get the file paths. We then combine the file paths with the content to get
the file sizes. We decide to not include the repository names in our file paths, as they only
seem to appear as part of the origin url, which does not have a consistent format to easily
extract the names.

2.2. SQL Solution
The approach outlined in Section 2.1 can be directly implemented in SQL. Figure 2 shows the
code used to generate all the file paths, file sizes and their references. We define two common
table expressions (CTE): The basecase joins all distinct root directories from revision with
directory and then keeps track of all the files and the subdirectories. curPath is the so far
accumulated file path. Each file path starts with a slash /. The recursive path CTE gets
the names of all the subdirectories and appends them to the curPath attribute by joining with
directory_entry_dir. We still need to join with directory in each iteration to get
the next level of subdirectories and files. After concatenating all paths, we join our path CTE

13

1 WITH RECURSIVE
2 basecase AS (
3 SELECT dir_entries, file_entries, CONCAT('/') as curPath
4 FROM (SELECT DISTINCT directory FROM revision) as r
5 JOIN directory d ON r.directory = d.id
6),
7 path AS (
8 SELECT *
9 FROM basecase

10 UNION ALL
11 SELECT dir.dir_entries, dir.file_entries, CONCAT(path.curPath, name,

'/')↪→

12 FROM path
13 JOIN directory_entry_dir ded ON ded.id = any(path.dir_entries)
14 JOIN directory dir ON ded.target = dir.id
15)
16 SELECT DISTINCT concat(curPath, name) as filepath, length, def.id
17 FROM path
18 JOIN directory_entry_file def ON def.id = any(path.file_entries)
19 JOIN content ON def.target = content.sha1_git
20 ORDER BY filepath, length;

Figure 2: SQL query to compose all path/value pairs.

with directory_entry_file and content to retrieve all the file sizes. We need to use
recursion for this query, as we do not know how many join iterations we will need due to
the file paths not being known in advance. With the recursive CTEs we can repeat the join
operation until no new results are added.

We experienced severe performance issues when we executed this SQL query on a subset of
the popular-3k-python dataset. For 100 root directory references from the revision
table (entry points) it takes 44 seconds (0.44s/entry point), for 1k it takes 2.4 minutes (0.15s/en-
try point) and for 10k 25.3 minutes (0.15s/entry point). This means for the complete
popular-3k-python dataset with 4.3M unique entry points it would take around 5 days
with an optimistic 0.1s per entry point. This is not feasible for the popular-3k-python
dataset and also not for the complete Software Heritage Archive, which is magnitudes larger.

There are multiple reasons for the bad performance, we list three possible ones:

• The SQL query saves all intermediate results, due to the UNION (ALL) clause in the
recursive CTE. If we look at Table 4, the left table displays a sample of the results
computed from the path CTE in Figure 2 before we join it with the directory_
entry_file table. We see that we need most results due to the file_entries attribute,
but we could discard all intermediate results that hold null values for file entries. We
would like to discard those results as soon as we encounter them to achieve a resulting
set as seen in Table 4. Small-scale tests show that with a sample of 1k revision entry
points we can have up to 20% of intermediate results with a file_entries value of null,
which is suboptimal.

14

dir_entries file_entries curPath
[1,2,4,16] [2,7] /
[3,5,9,65] null /src/

[2,5,11,14] [1,4,11] /src/java/
null [14,16,17] /tests/

(a) Sample of some intermediate results after
recursively computing all file paths

dir_entries file_entries curPath
[1,2,4,16] [2,7] /

[11,14,2,5] [1,4,11] /src/java/
null [14,16,17] /tests/

(b) Optimal sample after recursively comput-
ing all file paths

Table 4.: Intermediate results of recursive CTE, showing intermediate results.

• We did not optimize our postgresql instance for our query. This means that postgresql
may write intermediate join results to disk earlier than needed due to the default
work_mem settings, which would cause worse performance.

• We know that the Merkle DAG is fully deduplicated, this means that during our query we
may often have multiple nodes that have the same child node. Here we would compute
the same subtree each time it appears, instead of computing it just once for each unique
file path.

To avoid the above mentioned problems we try to implement a recursive algorithm that
works fully in-memory and also discards of any unneeded intermediate and duplicate results
directly.

2.3. In-Memory Solution
Overview: In this approach we want to load all table data directly into memory and keep
it there, avoiding costly disk read/writes of intermediate results. This means we have to be
conservative with our limited memory available. We choose to implement this approach in
Java. We create classes that hold the relevant table information in arrays in columnar table
layout. We can then recursively create our file paths by following the pointers from our root
directories to our files. Like the SQL approach in Section 2.2, we use recursion as we do not
know beforehand how often we need to repeat our path joining.

To reduce the amount of data and tables that we need to read into our program, we decide to
create temporary tables by removing unnecessary attributes from the Software Heritage tables.
We can then easily dump our temporary tables as CSVs for the program to read. We create
four temporary tables:

• directory’(id, dir_entries, file_entries)

• directory_entry_dir’ (DED)(id, target, name)

• directory_entry_file’ (DEF)(id, name, length)

• entry_dirs(id)

15

For directory’ and DED we remove any additional attributes from their original tables.
We join the content table with DEF to add the length attribute directly. entry_dirs
contains the unique directory ids from the revision table. As all our later table searches will
happen by id, we sort each table by its id. We transform the bigint[] arrays in directory
by separating them with an empty space when exporting. This makes parsing them trivial
compared to the default export format of arrays which uses "{long1,long2}". The name
attributes are encoded as a hex string, thus we can safely use a comma as our attribute separator
for exporting and parsing the created CSV files.

1 public class Ded {
2 long[] id;
3 byte[][] target; //reference to Directory id
4 String[] name;
5 int curIndex = 0;
6

7 Ded(int numEntries){/* Initialize Arrays with size */}
8

9 void insertRow(String line, Dir dirs){
10 String[] lineArr = line.split(",");
11 byte[] targetId = Dir.gitShaToByteArr(lineArr[1]);
12 int targetIndex = Arrays.binarySearch(dirs.getId(), targetId,

Arrays::compareUnsigned);↪→

13

14 id[curIndex] = Long.parseLong(lineArr[0]);
15 target[curIndex] = dirs.id[targetIndex];
16 //convert hex string to smaller byte array back to string
17 name[curIndex] = (new

String(Dir.gitShaToByteArr(lineArr[2]))).intern();↪→

18 curIndex++;
19 }
20 }

Figure 3: Directory_entry_dir class layout.

Data Structures: The Software Heritage Archive stores the table ids either as a sha1 hex
string or long number. In the case of hex Strings we convert it to a byte array to cut the
memory usage in half. A hex string "\x737263" would be saved as a byte array of size
three with values {73 72 63}, using three bytes instead of 8 for the storage. As the id for
entry_dirs is a sha1 value, we use a 2D array to hold all the ids as starting points to
create our file paths.

For the other tables we create a class each with an array for each attribute. We use only one
class per table to avoid additional object overhead and byte-alignment. We use a column-based
storage of attributes as most of our searches are only for one attribute (id), while in the SQL
solution the database was row-store oriented. Figure 3 shows the class layout for DED: It uses
a long[] to store all its ids, a 2D byte array for the references back to the directory id and
a String array for the names. Each row of the attributes refers to a row in the CSV. In the case

16

of id, this array is automatically sorted due to how we exported our temporary tables, which
means we can use a binary search to quickly find rows. The classes for DEF and directory
have a similar structure.

Input Reading: We parse all CSVs by using the Java Stream API and a buffered file reader
for faster reading. We then insert each row in the appropriate class. Figure 3 shows the
insertion procedure for a row in the DED table. We split each row to get the id, target and
name separately. Instead of saving the target directory id directly, we search for that directory
entry in the Directory (Dir) class and save a reference to its id as target. This way we only
need to save the id once in the Dir class and can refer to it with a pointer, saving memory.
We also convert the name from a hex String back to ASCII to reduce its size. A hex string
\x737263 would lead to an ASCII string src, cutting the size in half.

String Interning: As many names, such as src, tests, .gitignore are repeated
often, we decide to intern them. Interning a string results in it only being allocated once in the
String Pool. When creating a new interned string that already exists inside the String Pool, it
is not allocated again but refers to the existing string. This reduces the memory consumption,
but increases the execution time slightly, as the program has to check the String Pool on each
string creation.

Since JDK 7 HotSpot JVM, the interned String pool is no longer saved in the PermGen
area but on the heap, allowing large amounts of Strings to be interned [1]. String interning
saves less memory than expected, as our peak memory consumption happens during the path
creation phase, where we create many intermediate strings that are not interned. However, the
maximum needed memory is still lower with interning.

File Path Creation: The path creation algorithm can be seen in Figure 4. We start with the
directory id given from entry_dirs and get the corresponding directory. The first if
clause handles the recursive calls to all subdirectories, the second clause is for file handling.
There we create a new FileEntry for each result and save it in our resulting set, which
means duplicates get eliminated automatically.

As our dataset represents a deduplicated Merkle DAG, we often have different projects
referring to the same directory. This means we have multiple calls on the same directory node,
which leads us to create identical path/value pairs multiple times. Optimally we want to stop
the path creation if for a given prefix a a directory node has already been visited, but continue
if we visit the node with a different prefix b. This may occur when two projects have identical
subfolders but with a different directory path. We achieve this check by using a HashMap
with the directoryIndex (Figure 4, line 2) as a key and a list of prefixes as its values.
We do this via the handleDuplicates method. This leads to faster completion times but
occupies more memory. Depending on the given memory limitations it may not be a good
choice.

Evaluation: The main advantage of the Java solution compared to the SQL solution is
the execution speed, which is magnitudes faster. This comes with the restriction that the
dataset is limited by the amount of available RAM. The CSVs from the database dump are
around 6.8GB in size, the Java parser needs close to 30GB of RAM. This is roughly a factor 5
increase in memory needed and mostly comes from the calculatePath function in Figure

17

1 void calculatePath(HashSet<FileEntry> result, byte[] id, String curPath){
2 int dirIndex = Arrays.binarySearch(dirs.getId(), id,

Arrays::compareUnsigned);↪→

3

4 handleDuplicates(dirIndex);
5

6 if(dirs.dir_entries[dirIndex] != null){
7 for(long dedId:dirs.dir_entries[dirIndex]){
8 int curDedIdx = Arrays.binarySearch(deds.id, dedId);
9 calculatePath(result, deds.target[curDedIdx],

curPath+deds.name[curDedIdx]+"/");↪→

10 }
11 }
12

13 if(dirs.file_entries[dirIndex] != null){
14 for(long fileId:dirs.file_entries[dirIndex]){
15 int curDefIdx = Arrays.binarySearch(defs.id, fileId);
16 if(curDefIdx < 0){ break; } //if file was skipped_content
17 var fileEntry = new FileEntry(/*params */);
18 result.add(fileEntry);
19 }
20 }
21 }

Figure 4: Recursive function to create all Path/Value/ID triplets.

4 because we have all the partial curPath strings and also our results saved in a memory-
inefficient Set. Due to the high memory consumption this approach is unlikely to work
for the whole Software Heritage Archive with its size of 1.2TB - 250 times larger than the
popular-3k-python used here.

18

3. RCAS Index

In this chapter we give an overview of Content and Structure interleaving and how we can use
different attribute interleaving techniques for more efficient query execution. We describe our
design choices for our RCAS index implementation and show how we implemented various
algorithms.

3.1. Content and Structure Indexing
As CAS queries affect both the content and the structure of the data, the question arises, if we
should handle the two query parts sequentially or in parallel via interleaving. This has a big
impact on the index structure and query performance. For example if we were to sequentially
execute first the content and then the structure query or vice versa, we would often have huge
intermediate results. For Q2: //src//, size<500 from Chapter 1, if we first execute
the content query we would have all files with a size smaller than 500 bytes and then would
need to filter out which of them meet the structure requirement. For big datasets loading and
processing all those intermediate results is not a good option.

Contrary to other index implementations for CAS queries, which often build separate in-
dexes for content and structure or prioritise one dimension, the RCAS index is well-balanced
and offers a robust performance [9]. This also means that we reduce the problem of having
large intermediate results, as with the dynamic interleaving of the dimensions we query both
at the same time.

While the RCAS index is designed for any type of CAS queries, the implementation of this
thesis focuses on the combination of path and value dimensions with path being a full file path
and value being the size of a given file. We support simple searches for file ranges such as
QC = 100 ≤ size ≤ 1000 for content, as well as searching for a given path. Additionally we
implement the descendant axis //, which matches zero to any number of descendants. For
example a path query QP =/a/b// would match /a/b, as well as /a/b/desc1/desc2.
We also implement the wildcard character *, which can be used to match any path between two
slashes. Using the Software Heritage Archive as an example, it could be used to match all files
directly located in the test folder with the query QP =/test/*, or to skip one folder hierar-
chy to get all files in the include folders which could be located in both /test/include
and /src/include. We could achieve this with a query such as QP =/*/include//.

19

3.2. Dynamic Interleaving and RCAS Structure
An important property of the Robust Content-and-Structure (RCAS) Index is its dynamic inter-
leaving of the path and value attributes for each entry. We refer to each pair of PATH/VALUE
attributes as a composite key k(P,V), where P is the file path and V is the file size displayed
as a 32bit unsigned Integer. The following chapter is based on [9]. We use the same no-
tation as [9] for composite key sets: K1..6 refers to {k1, k2, k3, k4, k5, k6} and K2,5,6 refers to
{k2, k5, k6}.

Consider the two composite keys ka: /a/code/xy.z, 00 01 B9 5F and
kb: /a/code/z.y, 00 01 CC DF. Using concatenation we can join the dimensions to-
gether as either PV or VP. This has the disadvantage that in the case of PV, we have to read
the whole PATH until we can discard keys based on their VALUE predicate. In the case of a
high PATH selectivity1 but low VALUE selectivity, this would be very inefficient. The same
problem exists for the VP concatenation. In both cases, any sort of interleaving of the two
dimensions would speed up the selection process, as we can narrow down the relevant keys
faster. If we decide to interleave each byte of the dimensions, we would get for example inter-
leaving Ika =/00a01/B9c5Fode/xy.z. This approach works well if we have dimensions
with similar length. In the case where one dimension has significantly more bytes, the above
approach prioritizes the shorter dimension, making it an inefficient interleaving. However, the
dynamic interleaving approach proposes a better way to interleave the bytes. We look at all
the keys and interleave only at the first byte in each dimension where the keys differ (called
discriminative byte), grouping them in the process. We repeat this until no discriminative byte
can be found any more. This allows the dimensions to be more evenly interleaved and looks
as follows: Key ka differs from kb at the following byte per dimension highlighted in bold: ka:
/a/code/xy.z, 00 01 B9 5F, which leads to an interleaving of I ′ka =/a/code/00
01xy.zB9 5F. Compared to Ika, where we had 8 path bytes at the end, we now have two
value bytes at the end of I ′ka, spreading the value bytes more evenly. To use this interleaving,
we first need to define the terms discriminative byte and ψ-partitioning.

Discriminative Byte: The discriminative byte dsc(K,D) of a set of composite keys K in
dimension D ∈ {P, V } is the position of the first byte in dimension D for which not all keys
are equal. If all values of dimension D are equal, the discriminative byte does not exist. In
this case we set the discriminative byte to the length of dimension D + 1 of any key in K.

Composite Keys K dsc(K,P) dsc(K,V)
K1..6 2 2
K3..6 6 3
K5,6 13 4
K6 16 5

Table 5.: Discriminative Byte distribution for the keys from Table 2 and various subsets.

1We define the selectivity as the percentage of data returned.

20

Table 5 shows the positions of the discriminative bytes for the PATH and VALUE dimen-
sions on the keys from Table 2. To group the composite keys that have the same value for
the discriminative byte in dimension D together, we have to partition the set of keys K. This
means we can have at most 256 different partitions for a given discriminative byte, one for
each possible byte value.

ψ-Partitioning: ψ(K,D) = {K1, ..., Km} is the ψ-partitioning of composite keys K in
dimension D if and only if:

• All partitions are non-empty

• The number m of partitions is minimal

• All keys in partition Ki ∈ ψ(K,D) have the same value for dsc(K,D)

• The partitions are disjoint

• The partitioning is complete, each key is in a partition Ki ∈ ψ(K,D)

We show the ψ-partitioning for selected sets of our composite Keys in dimension P or V
from Table 2:

• ψ(K1..6, P) = {K1, K2..6}
• ψ(K3..6, V) = {K3, K4, K5,6}
• ψ(K3..6, P) = {K3, K4..6}
• ψ(K6, P) = ψ(K6, V) = {K6}

Interleaving: In order to dynamically interleave our keys, we recursively ψ-partition our
set of keys. After each iteration we alternate the dimension which we partition in. If this is not
possible, we use the same dimension as the previous iteration. This happens when all values in
a partition are equal in the given dimension. If we cannot ψ-partition a set of keys any further
in any dimension we stop and assign it the leaf dimension ⊥. For each of the partitioned
sets we assign path and value substrings sP = k.P [dsc(Ki−1, P), dsc(Ki, P) − 1] and sV =
k.V [dsc(Ki−1, V), dsc(Ki, V)]. k.P denotes the path of a key k in the given partition and
the interval is the byte sequence between the previous and the current discriminative byte, but
not including the current discriminative byte. Consider a key k =/hello/world, 20 01
02 DF, a previous discriminative byte position of 2 and a current one of 4 for both path and
value dimensions. We then have sP = k.P [2, 4 − 1] =he and sV = k.V [2, 4 − 1] =01
02. Table 6 shows the dynamic interleaving for each key from our example project in Table
2. Each tuple contains sP , sV and dimension D. Here we started our interleaving with the
VALUE dimension.

21

Key Dynamic Interleaving IDY (k,K1..6)
k1 (/,00,V), (ε,01,P), (.gitingore,DF 00,⊥)
k2 (/,00,V), (ε,01,P), (src/util/types.h,02 E2,⊥)
k3 (/,00,V), (src/,02,P), (util/helper.h,11 AB,⊥)
k4 (/,00,V), (src/,02,P), (m,ε,V), (ain.cpp,CC 21,⊥)
k5 (/,00,V), (src/,02,P), (m,ε,V), (erger.,D2,P), (h,C9,⊥)
k6 (/,00,V), (src/,02,P), (m,ε,V), (erger.,D2,P), (cpp,CC,⊥)

Table 6.: Dynamic Interleaving of the composite Keys from Table 2. Discriminative bytes are
displayed in bold.

RCAS Index Structure: We implement the RCAS index as an Adaptive Radix Tree [2].
We use 4 intermediate node types with sizes of 4, 16, 48 and 256 to refer to its children.
Each intermediate node also keeps track of its dimension D, a path substring sP and a value
substring sV . We use different sizes for intermediate nodes depending on how many child
nodes they have, to reduce the memory consumption. A leaf node has a similar structure to an
intermediate node, but instead of children it holds the references of our keys. Figure 5 shows
the resulting RCAS index using the dynamically interleaved composite keys from Table 6.
The discriminative bytes are highlighted in bold. Each leaf node has a set of references ({r})
that point to file ids.

n1
(/,00,V)

n2
(ε,01,P)

n3
(.gitingore,
DF 00,⊥)
{r1}

n4
(src/util/types.h,

02 E2,⊥)
{r2}

n5
(src/,02,P)

n6
(util/helper.h,

11 AB,⊥)
{r3}

n7
(m,ε,V)

n8
(ain.cpp,
CC 21,⊥)
{r4}

n9
(erger.,
D2,P)

n10
(h,C9,⊥)
{r5}

n11
(cpp,CC,⊥)
{r6}

Figure 5: RCAS index of the composite keys from Table 2 and their dynamic interleaving in
Table 6.

22

3.3. RCAS Implementation

3.3.1. Language and Data Types
To implement the RCAS index we choose the C++ programming language, because it offers
both high-level abstractions but still allows detailed memory management. We choose C++17
to allow access to more modern features and simpler syntax, such as range-based for loops.

We define several types to use in our implementation:

• using ref_t = uint64_t, which is used for the references in each leaf.
uint64_t refers to an unsigned integer with a size of 64bit (8byte). We create a
custom type instead of using an unsigned integer directly to allow easy change of the
type if necessary. We use ref_t to refer to the ID of a directory_entry_file
entry in the Software Heritage Archive.

• using PV_key_t = pair<vector<uint8_t>, vector<uint8_t>>,
which holds a pair of byte vectors consisting of a path and a binary comparable value
byte vector. To make a signed integer binary comparable we have to flip the first bit,
as it represents the sign, which is 1 for negative numbers and 0 for positive numbers
[2]. Section 3.3.2 gives more detail on how to create a binary comparable value byte
vector. We use a pair data type from the standard library as an easy way to hold the
two vectors together.

• using keyList_t = list<pair<PV_key_t, ref_t>> is used to create a
list of all keys, which are a pair of PV_key_t and a ref_t. We can use a list instead
of a vector as we only need to traverse it from front to back and also append elements to
its end. Unlike a vector, a list never needs to resize when multiple items are appended.

We also define enums for the dimensions of a node, the node type and for certain matching
conditions in the query algorithm. We set enum-base to an uint8_t instead of the default
4 bytes that it uses. This gives us a greater readability compared to using an 8bit integer
directly, while requiring the same amount of memory.

1 class node_t {
2 public:
3 dim d_;
4 node_type n_type_;
5 vector<uint8_t> sp;
6 vector<uint8_t> sv;
7

8 virtual ~node_t();
9 };

class nodeInner_t: public node_t {
public:

int16_t num_children;

virtual void insert_node(node_t *n,
uint8_t keyByte) = 0;↪→

virtual node_t** get_child_pointers()
= 0;↪→

};

Figure 6: Header files with the node_t and nodeInner_t class declarations.

We structure our nodes using class inheritance, see Figure 7. Figure 6 shows the sample
class declaration for classes node_t and nodeInner_t. Our parent class node_t holds

23

the node type and dimension enums as well as the sP and sV vectors. We also declare a
virtual destructor such that we can delete the derived classes through a base class pointer. The
nodeLeaf_t and nodeInner_t classes both inherit directly from node_t. the leaf node
adds a reference vector and the inner node adds a counter for the amount of children it has.
Additionally we define intermediate nodes with specific sizes from 4 to 256 that inherit from
nodeInner_t. Each of those intermediate nodes has an array with pointers to its child-
nodes. The nodes with sizes 4, 16, 48 additionally have a key array for more efficient access
to the child nodes. We refer to [2] for a more in-depth explanation on the keys and children
implementation.

node_t
dim, node_type, sP , sV

nodeLeaf_t
ref_t[]

nodeInner_t
num_children

node4_t
keys[], children[]

node16_t
keys[], children[]

node48_t
keys[], children[]

node256_t
children[]

Figure 7: Node inheritance structure.

3.3.2. Algorithms
To create the RCAS index, we need to have a complete list of the composite keys and their
reference value ref_t.

Data Parsing: While parsing the resulting CSV from our In-Memory solution in Section
2.3, we can create the path byte vector sP by simply iterating over every PATH character and
pushing it into the vector. For the value vector sV we need to take into account its binary
comparability and also the memory endianness. For our implementation we want the value
bytes saved in big endian. To check if we are on a big endian machine, we can create a two
byte number, get the first byte of it and check its content. As can be seen in Figure 8, we
save the number 1 as two bytes, 0x00 and 0x01. We then return the first byte in order via
a reinterpret_cast and see if it equals 0x00 or 0x01. We need binary comparability
as we want to compare our values by looking at each individual byte. To achieve that we
need to flip the first bit of each number due to it being the sign bit, which determines if the
number is negative or positive. This is due to negative numbers being represented as a two’s
complement. If we do not flip it, we would classify all negative numbers to be larger than

24

all positive numbers. Lastly, to push each individual byte into the value vector we can left
shift2 our number in a big endian system such that the desired byte is at front and use a similar
approach as in Figure 8 to get the value of the byte and save it. If we encounter a little endian
system we just read the number byte-wise from back to front to get the correct order. The
whole process for a big endian system can be seen in Figure 9.

1 bool isBigEndian(){
2 int16_t test = 0x0001;
3 const bool bigEndian = *reinterpret_cast<char*>(&test) !=1;
4 return bigEndian;
5 }

Figure 8: Determining endianness of the current system at runtime.

1 void int_to_bitwise_bin_comp(int64_t value, vector<uint8_t> &byteVec){
2 uint64_t XOR_mask=1;
3 XOR_mask <<= 63;
4 value = value^XOR_mask;
5 for(uint16_t i=0; i<sizeof(value)-1; ++i){
6 auto tempValue = value<<(i*8);
7 byteVec.push_back(*reinterpret_cast<uint8_t*>(&tempValue));
8 }
9 }

Figure 9: Converting a 64bit signed integer to a binary comparable byte vector on a big endian
system.

Discriminative Byte: We evaluate the discriminative bytes for both the path and value
dimensions with the simplified dsc_inc function in Figure 10. We take the first key of the
set, and from the position of the last discriminative byte (diffPos) to the end of the current
key, we check if any other key has a different character than the one of the first key. As soon
as we find a different one, we return this new position, else we return one past the length, as
given in the definition from Section 3.2.

ψ-Partitioning: In Figure 11 we show the ψ-partitioning for the PATH and VALUE di-
mensions. We have a partitions array of size 256. We then iterate over each key, get its
character value at the position of its discriminative byte and use that to determine the index of
the partitions array where the key will be inserted. We use std::move to indicate that
the value may be moved efficiently instead of just copying it.

Figure 12 shows a simplified version of the RCAS construction algorithm. We use DIM
to refer to the current dimension, e.g. g_DIM_new = g_p_new if we are in the PATH
dimension.

2Bit shifting a value by x bits to the left (operator «) means it moves it by x bits to the left while adding zeros,
e.g. 1111 1001«4 equals 1001 0000

25

1 uint16_t dsc_inc(keyList_t &keys, dim &DIM, uint16_t diffPos) {
2 //DIM = PATH or VALUE
3 auto* k.DIM = &keys.front().first.DIM
4 while(diffPos < k.DIM->size()){
5 for(auto &key:keys){
6 auto currentByte = key.first.DIM[diffPos];
7 if(currentByte != (*k.DIM)[diffPos]){
8 return diffPos;
9 }

10 }
11 diffPos++;
12 }
13 return diffPos;
14 }

Figure 10: Simplified function to determine the discriminative byte for a given dimension and
set of keys.

1 void psi_partition(keyList_t &keys, dim &DIM, uint16_t &diffPos, keyList_t

*partitions) {↪→

2 //DIM = PATH or VALUE
3 for(auto &key:keys){
4 partitions[key.first.DIM[diffPos]].push_back(std::move(key));
5 }
6 }

Figure 11: Psi-partitioning for PATH and VALUE dimensions.

To create the actual index via our constructRCAS function, we take the set of keys and
determine the discriminative byte. We then assess if the node to be created is a leaf node or an
intermediate node. We have a leaf node if both discriminative byte positions are larger than
their path and value length respectively. In that case we can fill in the sP and sV values and
set the dimension to LEAF. We then copy the references into the node and return the node, as
can be seen in the if clause in Figure 12, line 7.

If it is not a leaf node, we have to check if the discriminative byte of the current dimension
D is smaller than the length of D, in order to do a ψ-partitioning in D. Else we would need to
do it in D̄. We ψ-partition the set of keys to determine how many children the node will have.
We give the intermediate node the smallest possible size based on the number of partitions.
Finally we go through each set of keys produced by the partitioning and recursively call the
constructRCAS function with D̄ to create the child nodes.

Querying RCAS Index: A query traverses the RCAS index in a depth-first fashion and
excludes subtrees that do not need to be traversed. In order to query the index, we define
a query object that executes the query for us. It is initialized with a given query and holds
the resulting set of references. We use an enum with values MATCH, MISMATCH to state
whether a node matches or mismatches in the path or value dimension. We use INCOMPLETE

26

1 node_t* constructRCAS(keyList_t &keys, dim DIM, uint16_t g_p, uint16_t
g_v) {↪→

2 auto* firstKey = &keys.front().first;
3

4 uint16_t g_p_new = dsc_inc(keys, dim::PATH, g_p);
5 uint16_t g_v_new = dsc_inc(keys, dim::VALUE, g_v);
6

7 if(g_p_new >= firstKey->first.size() && g_v_new >=
firstKey->second.size()){↪→

8 auto* leaf_node = new nodeLeaf_t();
9

10 addAttributes(leaf_node, keys, g_p_new, g_v_new);
11 return leaf_node;
12 }
13

14 if(g_DIM_new >= firstKey->DIM.size){
15 invertDIMValue(DIM);
16 }
17

18 auto *partitions = new keyList_t[256];
19 psi_partition(keys, DIM, g_DIM_new, partitions);
20

21 nodeInner_t* inner_node = constructInnerNode(getNodesize(partitions));
22 addAttributes(leaf_node, keys, g_p_new, g_v_new, DIM);
23

24 for(int b=0; b<256; ++b){
25 if(!partitions[b].empty()){
26 inner_node->insert_node(constructRCAS(partitions[b],

invert_dim(DIM), gp_new, gv_new), b);↪→

27 }
28 }
29 delete[] partitions;
30 }

Figure 12: Simplified RCAS construction algorithm.

when we cannot make that decision yet, due to needing more information. We first give a
detailed explanation of the three main parts of the query function and then describe how they
work together.

Query Buffers: We create a byte vector (buffer) for the PATH and VALUE dimension.
We use these buffers to keep track of the so far encountered path and value bytes. For each
intermediate node we visit we update the buffers, which are default initialized, by appending
sP and sV to them. As mentioned in [9], we pass those buffers by value each time we visit a
new node, creating a copy. As we show in Section 4.3, this and the default initialization cause
large performance problems for queries that traverse many nodes. We fix our implementation
by initializing our buffers with a large default size as was mentioned in [9]. Additionally, we
now only use one buffer for each dimension globally, overwriting the bytes in them as needed.
We use a variable for each buffer to keep track of the insertion position. Updating the path and

27

value buffers now works by adding the sV and sP values of the new node to their respective
buffers via std::copy at the specified position and updating the insertion position.

Value Matching: In Figure 13 we show a simplified version of the matchValue algo-
rithm, which compares the value range of the query with the value byte buffer. It uses the
value buffer and an additional query state object, which holds the current positions in the
buffers, the query path and the insertion positions for the buffers. matchValue first checks
if any byte of the so far encountered value buffer is outside of the query value byte range with
the first two if statements. If none are outside the value range and we encounter a leaf node,
we can return MATCH if the whole value buffer was compared to the upper and lower bound
and no violation occurred. If we did not yet check the whole value buffer but can already
tell that the value is within the bounds via binary comparability, we also return MATCH. An
example for this in decimal would be the number 2334 and the bounds [1000, 4000]. Just by
looking at the thousands number we see that 2 is between 1 and 4. We then already know
that 2334 is in our bounds without having to check the other decimals. Binary comparability
does the same thing but looks at the byte values instead. We do the same in-bounds check for
non-leaf nodes. If the value buffer does not yet contain the whole value and we currently only
know that the value is on one of the boundaries, we have to return INCOMPLETE, as the value
could still be out of bounds.

1 matcher matchValue(vector<uint8_t> &buffV, node_t *n, qState &s) {
2 if(smallerThanLowerBound(vLow, buffV, s)){
3 return MISMATCH;
4 }
5 if(largerThanUpperBound(vHigh, buffV, s)){
6 return MISMATCH;
7 }
8

9 if(n->n_type() == leaf){
10 if(s.vLo == buffV.size() || s.vHi == buffV.size()){
11 return MATCH;
12 }
13 if(buffV[s.vLo] > vLow[s.vLo] && buffV[s.vHi] < vHigh[s.vHi]){
14 return MATCH;
15 }
16 }
17 else if(betweenLowHigh(buffV, vLow, vHigh, s)){
18 return MATCH;
19 }
20 return INCOMPLETE;
21 }

Figure 13: Simplified matchValue function.

Path Matching: We also take a closer look at the matchPath function from Figure 14.
At first we compare each character of the so far encountered path (buffP) with the query
path until we either get a mismatch or arrive at the end of the buffer. If we arrive at the end

28

of the buffer at row 16, we check if both query and buffer matched up completely, which
leads to a MATCH. If we reached the end of the file path but not the end of the query, we
return a MISMATCH. Else we cannot make a decision yet and return INCOMPLETE. If we
get a character mismatch while comparing the buffP with the query, we have the following
scenarios:

• We encounter a descendant axis, depicted in the query with a ˆ. We first check if the
descendant axis is at a valid position. If it is at a valid position, we set a flag that we
encountered a descendant axis in this query and note its position. We then continue
comparing buffP with the query.

• We encounter a wildcard character *. This means we want to skip to the next / in our
path. We traverse our path until we find the next / and continue matching as before, or
we reach the end of buffP. If we reached the end of the file path and the end of the
query, we MATCH. If the query is not finished, we MISMATCH. If neither query nor file
path is finished, we have to return INCOMPLETE and continue.

• We have a normal character mismatch but have encountered a descendant axis before.
In this case, we reset query and value buffer positions back to where the descendant
axis was encountered. We then increase our buffP position to the next / in the path
and continue matching from there. If no / can be found in the file path, we return a
MISMATCH. If no / can be found in buffP, but we are not at the end of the file path,
we can continue searching and return INCOMPLETE.

• If none of the above happens, we simply return MISMATCH.

29

1 matcher matchPath(vector<uint8_t> &buffP, qState &s) {
2 while(s.curPosP < buffP.size()){
3 if(qPath[s.curPosQ] == buffP[s.curPosP]){ s.incPos(); }
4 else if(qPath[s.curPosQ] == '^'){
5 handleDescendantAxis(buffP, qPath, s);
6 }
7 else if(qPath[s.curPosQ] == '*'){
8 handleWildCard(buffP, qPath, s);
9 }

10 else if(s.descPosQ != -1){
11 resetToDescAxis(buffP, qPath, s);
12 continueToNextAxis(buffP, s);
13 }
14 else{ return MISMATCH; }
15 }
16 if(s.curPosP == buffP.size() && s.curPosQ == qPath.size()){
17 return MATCH;
18 }
19 if(!buffP.empty() && buffP.back() == '\0'){
20 return MISMATCH;
21 }
22 return INCOMPLETE;
23 }

Figure 14: Simplified matchPath function.

Query Evaluation: Figure 15 shows the evaluateQuery function, which is called on
the root node of the RCAS index. We pass the query state object by value to have separate
values for each node it is invoked on. We first update the path and value buffers with the so
far encountered path and value bytes. We then compare the value buffer with the value range
given from the query in matchValue. This can lead to three possible outcomes: The buffer
value matches the value range (MATCH), we cannot make a decision yet if the whole buffer
value will match or not (INCOMPLETE) or the encountered value is outside of the value range
(MISMATCH). Due to the binary comparability we can also determine if a value matches or
mismatches without having loaded the whole value in the buffer. This allows for faster in-
vocation of the collection algorithm, which we will look at later. We then do the same
evaluation on the path dimension with matchPath. Here, adding additional functionality
such as a descendant axis or a wildcard character does not change the basic premise of our
three return values, it just makes the evaluation more complex. If the value or path match-
ing returned MISMATCH, we can return and continue searching a different node/subtree. If
both checks return MATCH, we can invoke the collection algorithm on the current node, which
collects all the references that are in the subtree rooted at the current node. Else, one of the
checks returned INCOMPLETE and we have to traverse the subtree, which we do by recur-
sively calling our query on the next node.

30

1 void evaluateQuery(node_t *n, vector<uint8_t> &buffV, vector<uint8_t>
&buffP, qState s) {↪→

2 updateBuffers(n, buffV, buffP, s);
3

4 matcher matchV = matchValue(buffV, n, s);
5 if(matchV == matcher::MISMATCH){ return; }
6

7 matcher matchP = matchPath(buffP, s);
8 if(matchP == matcher::MISMATCH){ return; }
9

10 if(matchV == matcher::MATCH && matchP == matcher::MATCH){
11 CAS_Query::collect(n);
12 return;
13 }
14

15 auto* inner_n = dynamic_cast<nodeInner_t*>(n);
16 auto* child_nodes = inner_n->get_child_pointers();
17

18 for(int i=0; i<getNodeSize(n); i++){
19 if(*(child_nodes+i)){
20 evaluateQuery(*(child_nodes+i), buffV, buffP, s);
21 }
22 }
23 }

Figure 15: Simplified query evaluation function.

31

4. Query Performance Evaluation

In this chapter we give an overview of our experimental setup and the dataset used for it. We
then evaluate the performance of several sample queries.

4.1. Setup
The evaluation of the queries was conducted on a Windows 10 machine with an Intel i7-3770s
4 core processor, a 1TB 7200rpm HDD and 2x8GB of DDR3-1600 RAM. Both the index
and the queries were compiled using mingw-w64 with the flags -O3 and -m64. If not stated
otherwise, each runtime measurement is the average of 50 runs.

We use the popular-3k-python dataset provided by the Software Heritage Archive,
which consists of 3052 repositories from GitHub, Gitlab, PyPI and Debian that are tagged as
being written in Python [5]. We then extract the composite keys and reference ids using the
approach from Section 2.3 which we use to bulk-load the RCAS index.

4.2. Dataset and Index Structure
The dataset consists of rows with the format ’"PATH",VALUE,ID’, where PATH is the com-
plete file path of each unique file, VALUE is the size of its file and ID is the id associated
with the file. Special characters, such as double quotes, are escaped with an additional double
quote. For the popular-3k-python dataset there are around 10 million keys, 4 million
unique paths and 467 thousand unique values (file sizes). The file sizes are all between 0 and
104 million bytes. As seen in Figure 16, around 20% of the file sizes are below 1000 bytes,
while the majority of the files are below 20’000 bytes. The dataset itself has a size of 572
megabyte. Each composite key is unique. Duplicate entries were removed during the CSV
creation, as they also reference the same ID and add nothing to the index.

Parsing the CSV file and reading it into memory takes 35.8 seconds, constructing the index
then takes 39.2 seconds for a total initial construction time of 75 seconds. After creating the
index it has a size of 637 megabyte, which is an increase in size of about 11% compared to the
CSV file. In total there are 13.9M nodes, most of which are leaf nodes, as seen in Figure 17.
We also see that there are barely any nodes with size 48 and 256. If we look at the path and
value distribution for the non-leaf nodes, we see that nodes with size 4, 16 and 48 are primarily
path nodes, and the nodes with size 256 are primarily value nodes. This makes sense, as we
have a smaller amount of possible different values per path character than we have for the
value part. The index itself has a height of 95, which is a lot. In Appendix A.1 we can see

32

which paths generate such a large index height. Additionally, the average leaf node depth is
9, which means that a height of 95 is an outlier and the index in general is more modest in
height.

0 5,000 10,000 15,000 20,000
0M

0.5M

1M

1.5M

2M

#o
ffi

le
s

0 1 · 105 2 · 105 3 · 105 4 · 105
0M

2M

4M

6M

8M

Figure 16: Distribution of the values (i.e., file sizes) in the ranges [0, 20k] and [0, 400k].

leaf 4 16 48 256

0M

2M

4M

6M

8M

10M

Node type

#
of

no
de

s

4 16 48 256
100

101

102

103

104

105

106

107

path nodes value nodes

Figure 17: RCAS index node distribution and Path/Value distribution for given nodes.

4.3. CAS Queries Evaluation
To evaluate the performance of the wildcard character * and the descendant axis // for dif-
ferent situations we define the following queries as seen in Table 7. We report the number of
results returned, the number of intermediate nodes that are traversed by the evaluateQuery

33

algorithm but do not yet invoke the collect algorithm and the number of nodes that are vis-
ited by the collect algorithm. We also state the percentage of the total keys returned and the
percentage of total nodes returned.

Queries, 0 ≤ size ≤ 100k result size trav. nodes col. nodes
Q1 /src/eyed3/utils/cli.py 1 (<0.1%) 163,871 (1.2%) 1 (<0.1%)
Q2 //tests// 1,191,911 (11.8%) 11,613,781 (83.1%) 1,409,668 (10.1%)
Q3 //tests/* 366,203 (3.6%) 12,654,780 (90.6%) 367,136 (2.6%)
Q4 /*/include// 30,893 (0.3%) 8,743,784 (62.6%) 37,604 (0.3%)
Q5 /src//nonexist 0 (0%) 661,217 (4.7%) 0 (0%)
Q6 /src// 486,498 (4.8%) 1,943 (<0.1%) 663,655 (4.7%)
Q7 /src/include// 21,871 (0.2%) 173,932 (1.2%) 28,066 (0.2%)
Q8 /src/* 34,435 (0.3%) 401,973 (2.9%) 37,604 (0.3%)

Table 7.: CAS queries with the number of results, the number of traversed and collected nodes.

The value selectivity for size ∈ [0, 100k] is 0.94. Query Q1 shows the performance of lo-
cating a file with a fully written out path. Q2 returns all files with a /tests anywhere in their
path. Q3 is a subset of Q2, only returning all the files directly in any /tests folder. Q4 re-
turns all files with /include located at the second hierarchy level, e.g. /tests/include.
Q5 searches for a non-existent file with the /src prefix. Queries Q6 and Q7 return all files
where the path starts with /src or /src/include respectively, Q7 returning a subset of
Q6. QueryQ8 returns all files that are directly in the folder /src, which is also a subset ofQ6.
Each of the queries above is also executed for a size ∈ [0, 5000] and size ∈ [0, 1000], which
have a value selectivity of 0.48 and 0.20 respectively, as can be seen in Table 8 of Appendix
A.1.

The resulting query runtime is displayed in Figure 18. Looking at the runtime differences of
each query separately, we see a clear difference between each value range, as is to be expected,
due to the changing value selectivity.

As expected, providing a full path such as Q1 results in the best performance. We also
notice that the file size is a big factor for the query performance, despite there only being one
valid file that matches the path. This is the case because if we use a large size range we cannot
discard nodes based on the size and have to rely mostly on the path matching. We can see
the increase of visited nodes for Q1, size ∈ [0, 1000], where we visit 15k nodes compared
to Q1, size ∈ [0, 100k], where we visit 164k nodes - a factor 10 increase. If we know the
exact size of the file (4217) we can further reduce the amount of visited nodes to 801 and the
execution time to 0.9ms.

Queries that start with a descendant axis have the highest runtime and also visit the highest
amount of nodes. This is the case because we cannot stop the node traversal early based on the
path, as in the case of Q2, there might be a /tests somewhere at the end of the path. Thus
the only way to quickly restrict the amount of visited nodes is a limited value range. We also
notice that Q3 is slightly slower than Q2. This happens because Q2 can invoke the collection
algorithm as soon as it finds a /tests in its path, while Q3 has to continue traversing the
subtree to see for further instances of /tests and can only collect the leaf nodes.

34

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

101

102

103

104

Query

ex
ec

ut
io

n
tim

e
(m

s)

0-100k 0-5k 0-1k

Figure 18: Runtime measurements for queries Q1 to Q8 for different file sizes using copied
buffers.

Q4 is in the same time range as the queries starting with a descendant axis. This is due to the
wildcard character at the beginning of the query. It means that for each path we cannot discard
the node until we encounter a second / and then a mismatch after. Thus having us traverse
lots of nodes. If we compare with query Q7, we see that having the wildcard character at the
beginning leads to around 50% more results but also to a factor 50 increase in traversed nodes.
This makes queries that start with a descendant axis or a wildcard character very expensive
and should be avoided unless necessary.

For Q5 we traverse roughly the same nodes as Q6, with the only difference that in Q5 we
traverse all the nodes, while in Q6 we are able to collect a majority of the nodes. Since Q6

is faster than Q5, we assume that the collect algorithm is faster than the traversal of the
nodes.

If we compare query Q6 and Q7, we notice that even though Q7 returns fewer results, visits
fewer nodes and is a subset of Q6, it takes longer to execute. Similarly with Q8, which also
returns a subset of the results of Q6 but takes roughly double as long to execute.

Queries Q5-Q8 suggest that the evaluateQuery algorithm in Figure 15 is way slower
than the collect algorithm. In order to test this, we analyse queries Q6 and Q8 from Table 7, as
they either collect or traverse the majority of their nodes. We also analyse queries Q′2 and Q′3,

35

Q6 Q8

0

50

100

150

ex
ec

ut
io

n
tim

e
(m

s)

Q′2 Q′3
2,000

3,000

4,000

5,000

update buffer copy buffer rest

Figure 19: Buffer copy time in relation to query execution time.

which are a modified version of Q2 and Q3 with a size ∈ [0, 900k]. They both have a similar
amount of traversed nodes, but a different amount of collected nodes. We measure the time it
takes to copy the path and value buffers for each recursive execution call of evaluateQuery
for each query and also the time spent in the updateBuffers function. As shown in Figure
19, we can see that there is only little time spent (9%) on updating and copying the buffers for
Q6, while for Q8, 75% of the execution time is spent on buffer updating and copying. This
difference can also be seen in the number of traversed nodes, Q6 traverses roughly 2k nodes,
Q8 402k. Comparing Q′2 and Q′3, we see a similar amount of time spent on the buffers. This
is also reflected in the amount of traversed nodes, roughly 12M for Q′2 and 13M for Q′3.

To reduce the update buffer time, we have to increase the initial size of the value- and
pathbuffer vectors in order to avoid resizing. Currently the buffers are created initially empty
with a default capacity. This means that when we update the buffers via vector.insert,
we often trigger a reallocation of the entire vector. If we use a large buffer that can contain the
whole path/value bytes without reallocating, updating the buffers is not a problem any more.
But we still copy both buffers each time the evaluateQuery function is called. To avoid
this, we can change the implementation to just use one path and one value buffer and pass
those by reference instead of by value.

If we look at the results in Figure 20 now, we can see that queries, that solely relied on
the evaluateQuery algorithm like Q1, are now about 3x faster than before. Q4, as well
as the queries with a descendant axis prefix also gained a significant speed up, but still are
considerably slower than the other queries. Query Q5 is still slower than Q6, which shows that
traversing nodes is still more expensive than just collecting those nodes, but the time difference
is not as large any more. Q7 also executes roughly three times faster and is now as expected
faster than Q6.

To conclude we note that searching for a single known file is very fast (e.g. 0.9ms for
query /src/eyed3/utils/cli.py, size = 4217). Additionally, due to the traversal of
nodes being slower than the collection of nodes in this implementation, queries that end with
a wildcard character are slightly slower or as fast compared to a query with an equal path and
value, but having a descendant axis instead of a wildcard character at the end. This despite the
wildcard query usually returning fewer results and visiting fewer nodes. Having a wildcard

36

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

101

102

103

Query

ex
ec

ut
io

n
tim

e
(m

s)

copied buffers single buffer

Figure 20: Runtimes for queries Q1 to Q8 with size ∈ [0, 100k] with and without optimized
buffers.

character or a descendant axis at the start of a query slows it down considerably, as seen in
Figure 20.

37

5. Summary and Future Work

In this Thesis we integrated the RCAS index with the Software Heritage Archive to run CAS
queries on the archive data and measure the performance of the index. We noted that the
current access methods of the Archive were not sufficient for our needs. Thus we showed
two approaches on how to parse the Software Heritage Archive to retrieve the requested file
paths and sizes for our index implementation. After assessing the up- and downsides of each
approach we concluded that both approaches would not be feasible for the whole Software
Heritage Archive either due to time constraints (SQL approach) or due to memory constraints
(In-Memory approach). Thus we used the superior In-Memory approach on a subset of the
whole Archive.

We implemented the RCAS index and a query evaluator that also implements the descendant
axis and the wildcard character for path matching. We tested the performance of our imple-
mentation on the popular-3k-python subset of the Software Heritage Archive, which
was parsed using the In-Memory approach. Using the parsed subset we evaluated the gen-
eral query performance and the performance impact of the descendant axis and the wildcard
character at different query positions. During this we improved our query implementation by
using two global buffers instead of copying them for each index node visited, which greatly
increased the performance of queries that traversed many nodes. We concluded that queries
with a descendant axis or wildcard character at the beginning of the path part of the query
perform significantly worse than queries that use them at a later position, due to the amount
of nodes that have to be visited.

Future Work lies in exploring an approach to efficiently parse the whole Software Heritage
Archive and test the RCAS index on the extracted data. Multi-threading support for the query
evaluator would also be a possible area to improve on.

38

A. Appendix

A.1. Additional CAS Query Information
Sample file path that generates an index of at least height 90, ˆ is placed after each new node
starts:

/ ^ ^ t ^^ e ^^ s ^ t ^ / ^ i n ^ t e g r a t i o n / ^ t a r g e t ^ s / ^ c ^ opy / f i l e s / s u b d i r / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 1 / c i r c l e s / ^
s u b d i r ^ 1 / c i r c l e s / ^ s u b d i r ^ 2 / baz . t x t

39

Queries, 0 ≤ size ≤ 5k result size trav. nodes col. nodes
Q1 /src/eyed3/utils/cli.py 1 (<0.1%) 71,595 (0.5%) 1 (<0.1%)
Q2 //tests// 685,754 (6.8%) 6,344,106 (45.4%) 828,906 (5.9%)
Q3 //tests/* 148,198 (1.5%) 7,024,730 (50.3%) 148,234 (1.1%)
Q4 /*/include// 17,890 (0.2%) 4,196,184 (30.0%) 22,902 (0.2%)
Q5 /src//nonexist 0 (0%) 280,099 (2.0%) 0 (0%)
Q6 /src// 186,286 (1.8%) 3,338 (<0.1%) 276,772 (2.0%)
Q7 /src/include// 12,137 (0.1%) 75,617 (0.5%) 16,803 (0.1%)
Q8 /src/* 9,629 (0.1%) 138,897 (1.0%) 9,629 (<0.1%)

(a) CAS queries with size ∈ [0, 5000]

Queries, 0 ≤ size ≤ 100k result size trav. nodes col. nodes
Q1 /src/eyed3/utils/cli.py 0 (0%) 15,801 (0.1%) 0 (0%)
Q2 //tests// 363,243 (3.6%) 2,687,233 (19.2%) 450,738 (3.2%)
Q3 //tests/* 39,048 (0.4%) 3,098,920 (22.2%) 39,049 (0.3%)
Q4 /*/include// 4,464 (<0.1%) 1,498,371 (10.7%) 5,786 (<0.1%)
Q5 /src//nonexist 0 (0%) 60,484 (0.4%) 0 (0%)
Q6 /src// 39,980 (0.4%) 1,758 (<0.1%) 58,726 (0.4%)
Q7 /src/include// 3,067 (<0.1%) 16,589 (0.1%) 4,250 (<0.1%)
Q8 /src/* 2,088 (<0.1%) 27,505 (0.2%) 2,088 (<0.1%)

(b) CAS queries with size ∈ [0, 1000]

Table 8.: CAS queries with the number of results, the number of traversed and collected nodes.

40

Bibliography

[1] Jdk-6962931 : move interned strings out of the perm gen. https://bugs.java.
com/bugdatabase/view_bug.do?bug_id=6962931. [Online; accessed 5-
July-2020].

[2] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful indexing for main-
memory databases. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 38–49. IEEE, 2013.

[3] R. C. Merkle. A digital signature based on a conventional encryption function. In
C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 369–378, Berlin,
Heidelberg, 1988. Springer Berlin Heidelberg.

[4] A. Pietri, D. Spinellis, and S. Zacchiroli. The software heritage graph dataset: Public
software development under one roof. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pages 138–142, 2019.

[5] popular-3k-python dataset. https://docs.softwareheritage.org/devel/
swh-dataset/graph/dataset.html#popular-3k-python. [Online; ac-
cessed 21-June-2020].

[6] Software heritage archive. https://www.softwareheritage.org/. [Online;
accessed 14-June-2020].

[7] Software heritage mission. https://www.softwareheritage.org/mission/.
[Online; accessed 9-June-2020].

[8] Software heritage relational schema. https://docs.softwareheritage.org/
devel/swh-dataset/graph/schema.html. [Online; accessed 07-July-2020].

[9] K. Wellenzohn, M. H. Böhlen, and S. Helmer. Dynamic interleaving of content and struc-
ture for robust indexing of semi-structured hierarchical data. PVLDB, 13(10):1641–1653,
2020.

41

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6962931
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6962931
https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html#popular-3k-python
https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html#popular-3k-python
https://www.softwareheritage.org/
https://www.softwareheritage.org/mission/
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html
https://docs.softwareheritage.org/devel/swh-dataset/graph/schema.html

	Introduction
	Software Heritage Archive
	Software Heritage Structure
	SQL Solution
	In-Memory Solution

	RCAS Index
	Content and Structure Indexing
	Dynamic Interleaving and RCAS Structure
	RCAS Implementation
	Language and Data Types
	Algorithms

	Query Performance Evaluation
	Setup
	Dataset and Index Structure
	CAS Queries Evaluation

	Summary and Future Work
	Appendix
	Additional CAS Query Information

