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Zusammenfassung

Diese Masterarbeit gibt eine kurze Einführung und Übersicht zu den Forschungs-
feldern der Evolution von Ontologien (ontology evolution) und Wirkungsanalyse von
Veränderungen (impact analysis), untersucht COntoDiff, ein Tool zur Erkennung
von Veränderungen zwischen Ontologie-Versionen und präsentiert eine Implemen-
tierung von IncVer, einem Programm zur Generierung von inkrementellen Versio-
nen.

Die obengenannten Forschungsfelder befassen sich mit Veränderungen die an einer
Ontologie durchgeführt werden. Deshalb sind verschiedene Momentaufnahmen, oder
Versionen von grossem Interesse. Viele Ontologien stellen allerdings nur wenige
Versionen zur Verfügung, wenn überhaupt, welche oftmals zeitlich weit auseinander
liegen und oft hunderte bis tausende einzelne Veränderungen abdecken. Solch grosse
Mengen lassen meist nur relativ grobe Einsichten zu Eigenschaften und Auswirkun-
gen von Veränderungen zu.

IncVer erlaubt das Generieren von detaillierten Evolutionsdatensätzen. Das Pro-
gramm liest dabei zwei Ontologie-Versionen, identifiziert und gruppiert Verände-
rungen und erstellt dann inkrementell eine Version für jede Gruppe von Verände-
rungen. IncVer baut auf COntoDiff auf und unterstützt bisher das OBO Ontolo-
gie Format. Ein Hauptaugenmerk liegt aber auf der Erweiterbarkeit der Software.
Dazu wurde die IncVer-Architektur in drei separate Komponenten unterteilt, die
zusammen eine Pipeline bilden. Sie besteht aus dem Diff Calculator, sowie den Or-
dering und Applying Komponenten. Ersterer ist zuständig für das Berechnen eines
sogenannten diff s, einer Liste von Veränderungen zwischen zwei Versionen. Die
folgende Komponente sortiert das resultierende diff und die Applying Komponente
wendet die Änderungen schliesslich inkrementell an. Es wurde eine Grundimple-
mentierung für alle drei Komponenten erstellt.

Um die Richtigkeit der Resultate zu verifizieren wurden drei Bedingungen for-
muliert, die erfüllt sein müssen damit die erstellten Versionen als richtig erachtet
werden. Mit diesen Bedingungen, angewendet als Metriken, war es möglich vielver-
sprechende Ergebnisse zu erzielen, die die Anwendbarkeit von IncVer in der On-
tologieversionierung sowie die potenzielle Verwendbarkeit in den Forschungsfeldern
Ontology Evolution und Impact Analysis demonstrieren.

Eine Jar Distribution von IncVer wurde erstellt, die die Grundimplementierung
sowie die Evaluationsfunktionalität beinhaltet.





Abstract

This master thesis contains an introduction and overview on the field of ontology
evolution and ontology versioning, an inspection of the ontology change detection
tool COntoDiff and an implementation of the incremental version generation tool
IncVer.

The fields of ontology evolution and impact analysis are interested in the changes
that occur in an ontology. As such, snapshots in time, or versions, are of great
interest to researchers. Many ontologies, however, provide only few versions, if at
all, and these are often far apart in time and contain hundreds to thousands of
changes. These large changes only allow rough analysis of their nature and impact.

IncVer is a tool which allows the generation of detailed evolution datasets, taking
two input ontology versions and detecting and grouping the changes between these
versions. Then, incremental versions are built, one per change action, building from
the old version to the new version. IncVer is built on top of COntoDiff and
so far supports the OBO ontology format, but is designed to be extensible at its
core. In order to achieve this, the IncVer architecture is separated into three
components forming a pipeline: The Diff Calculator, the Ordering and the Applying
component, responsible for calculating a diff, sorting the resulting diff and applying
the changes in that diff, respectively. A base implementation is provided for all three
components.

To ensure correctness of the results, three conditions were formulated which need
to be met for the generated versions to be considered correct. Applying these con-
ditions as metrics, I was able to achieve promising results, demonstrating the ap-
plicability of IncVer to ontology versioning and its potential use to the fields of
ontology evolution and impact analysis.

A Jar distribution of IncVer is provided, encapsulating the base implementation
of the pipeline, as well as the evaluation functionality.
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1

Introduction

The concept of Semantic Web has been in use since the term has been coined in
the seminal article by Berners-Lee et. al [2]. While it has undergone varying levels
of hype and disinterest in the industry in its close to twenty years of existence, the
academic interest remains unbroken.

The term Semantic Web encompasses a big array of topics, areas of research and
fields of application, echoing the complexity and scope of the world wide web itself.
A particular sphere of interest is the area of ontology evolution, which itself can
be separated in various subtopics. Comprehensive overviews have been presented
by Khattak et al. [12] and Zablith et al. [25]. In particular, Zablith et al. [25]
provide a detailed survey of the various stages ontology evolution can be separated
into. According to them, ontology evolution can be considered one of 11 stages of
the broader ontology change process. They separate ontology evolution into five
steps: Detecting the Need for Evolution, Suggesting Changes, Validating
Changes, Assessing Impact and finally Managing Changes — the last two will
be of particular interest to this thesis.

A common use case of ontologies, or knowledge graphs (KG) in general, is to
run computations and queries on them, ranging from answering simple queries like:
“When was Ernest Hemingway born?”, to expensive operations like computing the
logical closure of an ontology or executing functional analyses. Changes in the
ontologies and KGs naturally lead to some of the results being invalidated. While
Hemingway’s date of birth will never change, a list of film adaptations of his books
might. For complex and expensive operations it can be beneficial to know whether
the change in the underlying ontology has significant influence on the result of said
operations and research in this area of impact analysis is ongoing [19, 8].

To analyse the impact of changes in ontologies it is helpful to have different ver-
sions of real-world ontologies to capture real-world changes instead of synthetically
produced ones; Pernischova [19] works with this approach, for instance. Ontology
versioning is defined as “the ability to handle changes in ontologies by creating and
managing different variants of it” by Klein and Fensel [13] and is its own area of
research; various approaches have been suggested to capture or reconstruct [5], and
represent and track [6, 9] changes between ontologies. In contrast to previous pub-
lications, which focus on ontology evolution only as “updating the ontology based
on the required changes” and considering ontology versioning as a separate task,
Zablith et al. [25] emphasize that ontology versioning is “intrinsically linked” to
ontology evolution.
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Unfortunately, for many, readily available ontologies only few versions other than
the current ones exist, if at all. Those ontologies which maintain versions usually
only produce a release every few months or in even bigger intervals. Because of this,
the number of changes between versions is often very high and analysing change
impact yields only very coarse results. This thesis looks to amend this situation
by developing an approach to first splitting up the high number of changes between
two versions into groups of smaller changes and then generating incremental versions
based on these smaller groups of changes.

Most of the approaches towards change detection and classification are either very
early publications such that no working implementation could be found, like [16], or
remain mostly theoretical, as in [18]. An exception to this is COntoDiff, an approach
presented by Hartung et al. [9]. COntoDiff refers to both the algorithm presented
in the paper, as well as a Java implementation of the algorithm provided along with
it1. COntoDiff first detects low-level changes between two input ontology versions
and in a subsequent stage aggregates these changes into higher-level changes. Along
with this, it provides a catalog of low- and high-level changes.

The goal of this thesis is thus to implement an incremental version generation
system, or incremental versioning system, employing change actions as the basic
steps between incremental versions, to aid in a more granular analysis of ontology
change. After conducting a thorough literature research, assessing the state of the
art in the area of ontology evolution, COntoDiff by Hartung et al. [9] was chosen as
a foundation for the incremental versioning system. Using the existing COntoDiff
implementation, a collection of change actions is generated, which occur between
two input ontology versions. I devised a way in which these change actions can
be ordered, such that they can be incrementally applied to the earlier or old input
version, step by step building towards the later or new input version. The main
challenge here lies in, firstly, ordering the change actions in such a manner that
no unmet dependencies occur, like adding a connection to an entity that has not
been added yet and, secondly, applying change actions correctly to an ontology. All
these steps were integrated into an extensible software framework, named IncVer.
Finally, the framework was tested on five different ontologies and evaluated by im-
posing conditions that were specifically devised for this purpose. Applying metrics
based on said conditions, I was able to achieve promising results, demonstrating the
applicability of IncVer on various ontologies.

The central contribution of this thesis is thus IncVer, a Java framework for incre-
mental ontology version generation. Extensibility is a core concern of the framework
and a component-based architecture allows for flexible customization of one or more
parts of the execution pipeline. Along with the modular structure, a readily-usable
base implementation for versioning OBO ontologies is provided as well; a JAR dis-
tribution for use in the Command Line is made available. Concretely, this thesis
also contributes an approach to ordering change actions such that no dependency
conflicts occur.

This thesis is structured as follows: after this introduction to the wider field of
ontology evolution and ontology versioning in particular, the chapter proceeds with
a brief theoretical introduction of relevant concepts and terms, such as the ontol-

1https:// dbs.uni-leipzig.de/ de/ research/ projects/ evolution of ontologies and mappings
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1.1. BACKGROUND KNOWLEDGE & TERMINOLOGY 3

ogy models and the OBO format, before concluding with related work. After this
follows an in-depth analysis of COntoDiff in Chapter 2, the chosen foundation
for IncVer, introducing the catalog of change actions it defines, outlining its func-
tionality and highlighting its limitations and their impact on the implementation of
IncVer.

Chapter 3 is dedicated to the implementation of IncVer. It starts top-down
with an introduction to the high-level architecture, followed by a segment listing the
improvements and fixes made to COntoDiff in preparation for use in IncVer. The
chapter then proceeds with implementation details of the framework, showcasing the
base implementations for each stage in the IncVer pipeline.

Finally, in Chapter 4, I will establish three conditions for evaluating the results of
IncVer. Subsequently I present and discuss the results of applying said conditions
to the generated incremental versions of five different datasets. This thesis will then
close by presenting limitations of the work done, potential future work and final
conclusions.

1.1 Background Knowledge & Terminology

Before going into the specifics of COntoDiff and the practical work, it is helpful
to first lay out some basic theory and terminology so as to prevent any confusion
or misunderstanding due to subtle differences between the theoretical description of
the COntoDiff -algorithm and its concrete implementation. Thus the section begins
by briefly defining diffs in the context of ontology versioning, then I will introduce
the ontology model used by the COntoDiff -algorithm, followed by a comparison to
the OBO flat file format, which is used in the implementation.

1.1.1 Diffs

The list of changes between two ontology versions is referred to as evolution map-
ping or diff, borrowing the term from version control systems such as Git. The
changes themselves are also, mostly synonymously, called change actions or change
operations. Various models have been proposed to classify possible changes with
a very detailed breakdown presented in [25], but a common approach is to seper-
ate changes into basic or low-level and complex or high-level changes. In general,
low-level changes are atomic changes, that represent a single, structural change, like
updating a value or adding a new entity. High-level changes are composite, often
semantic changes, grouping multiple operations, for instance deleting a person from
an ontology, along with its properties such as age or gender. Various catalogs of
change actions or change languages have been proposed on different levels of granu-
larity and employing various formalisms, such as OWL, RDF or Generic formalisms.
See [25] for more details.

1.1.2 Ontology Model

So far, nothing specific has been said on what an ontology looks like. There are
various ontology formats, the most important of which in all likelihood is the Web

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: The CAR Ontology Model

Ontology Language, specifically OWL 2, developed and maintained by the W3C2

(see [1]). Being a highly expressive ontology language, it is part of the W3C’s
semantic web stack and supports various serialization syntaxes such as RDF/XML,
Functional Syntax or Turtle. Another format that is heavily used in the area of life
sciences is the OBO Flat File Format or simply OBO format, which has its own
syntax, specified in [11]). OBO is a strict subset of OWL 2.

COntoDiff opts for a relatively simple ontology model, which I will, for lack of an
established term, simply call the CAR model, the reason for which will be apparent
shortly. This model is strongly related to the OBO ontology format and directly
maps to it. This ontology model consists of three types of elements, detailed in the
following paragraphs. See Figure 1.1 for a visual representation of the model. In
addition, Listing 1.1 shows a term stanza from the gene ontology. While explaining
the parts of the CAR model, I will point out the corresponding lines in the listing.

Concepts are the entities in a CAR model, more specifically classes. Seeing a
CAR-ontology as a graph structure, they are the vertices. Concepts are similar to,
but less complex than classes in OWL 2. They are identified by an id, also referred
to as accession number (mostly in the context of OBO). Concepts correspond closely
to terms in the OBO-format, which must have at least an id and a name (a label
in OWL terminoloy). The whole term stanza in Listing 1.1 corresponds to a term,
and is uniquely identified by the id in line 2.

Attributes consist of an attribute name and an attribute value and are associated
with a concept. As the name states, they denote certain properties that a concept
can have. The data type of an attribute value is not further specified, but for
our purposes are primitive data types, such as string, or boolean. Within a graph
structure, attributes can be seen as a vertex-edge pair that connects a value to a
concept using an attribute name, or tag. Attributes map to tag-value pairs of terms
in OBO. Lines 2 through 7 represent attributes of the term. Strictly speaking, the
id is also an attribute of the term.

Relationships connect a source concept to a target concept and have a name,
but no associated attributes. In the context of a graph structure, relationships are
directed, named edges. They correspond to relationship and is a tags of terms in

2https://www.w3.org/
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1.1. BACKGROUND KNOWLEDGE & TERMINOLOGY 5

OBO. It is worth pointing out the distinction between instance-level relationships,
which connect concepts, and schema-level relationship definitions which provide the
blueprint for relationships. Analogous to the idea of classes vs. instances in object
oriented programming, relationships are instances of relationship definitions on the
schema level. The CAR model has no notion of relationship definitions — OBO,
however, does. I will go into this difference in a later section. In Listing 1.1 lines 8
and 9 denote the outgoing relationships of the term. On line 8 is a is a relationship
connecting to SO:0000143, which is the most important relationship in many GO
ontologies and hence has its own tag. Line 9 shows a generic relationship tag, in
this case the term is a part of term SO:0000149.

Listing 1.1: An OBO Term from the Gene Ontology

1 [ Term ]
2 id : SO:0000007
3 name : r e a d p a i r
4 de f : ”A pa i r o f sequenc ing reads in which . . . ” [SO: l s ]
5 subset : SOFA
6 synonym : ” read−pa i r ” EXACT [ ]
7 prope r ty va lue : f i n a l i z e d o n ”08−04−2018” xsd : s t r i n g
8 i s a : SO:0000143 ! assembly component
9 r e l a t i o n s h i p : p a r t o f SO:0000149 ! cont i g

1.1.3 Relation to OBO Format

It is important to note that the CAR model is only an informal model. Given that
[9] originates from the area of life sciences and the gene ontology, it seems likely that
the model was defined simply as a slightly more generic version of the OBO format.
This is further supported by the fact that the implementation of COntoDiff works
with the OBO file format.

As noted above, concepts, attributes and relationships closely correspond to el-
ements of the OBO format. There are however some key differences between the
CAR model and the OBO format, which are particularly relevant when looking at
the limitations presented by COntoDiff.

Attributes vs. Tags: Attributes in the CAR model are a modification of tag-
value pairs of terms in OBO (why I add the ”of terms” part will be explained in
the next subsection). In theory there can be an attribute for anything, that is,
any attribute name is possible. In contrast, OBO is restricted to a predefined set
of tags, that is, attribute names. This can be worked around however, with the
property value tag. This tag consists of a property name, a value and a data type,
functioning as a way to specify custom properties. For an example, see Listing 1.1,
line 7.

While the attribute values in the CAR models can be considered single-valued,
the tag-value pairs in OBO have a predefined cardinality and often allow and in
some cases even require multiple values. Since attributes are not explicitly defined
as using primitive data type values, they could also make use of composite data

5



6 CHAPTER 1. INTRODUCTION

types. However, the actual implementation parses values as single strings and thus,
for all intents and purposes, can be considered single-valued primitive data types.

Relationships and Typedefs: The distinction between relationship instances
and schema-level definitions has been mentioned earlier in 1.1.2. Relationships in
the CAR model stand on their own and have no associated attributes or structure
except their name and connected concepts. The OBO format, however, supports
typedefs, which are basically schema level definitions of relationships. Along with
their name and id, typedefs can also have tag-value pairs, i.e. associated properties
— this is also the reason why I emphasized that attributes correspond to tag-value
pairs of terms.

1.2 Related Work

The first notable contribution to change detection between ontology versions is
PromptDiff [16], introducing the notion of a structural diff, capturing the structure
of a ontology as opposed to an arbitrary text serialization. This approach has been
expanded on by Tury and Bieliková [23]. They introduce the distinction between
changes on the schema or structural level, consisting of elements such as classes or
relationship domains, and the level of individuals or content, meaning instances of
classes. Both works employ heuristics in their algorithms for change detection.

COntoDiff [9] is both an algorithm and an implementation of that algorithm
for change detection between versions of life science ontologies. They employ some
heuristics described in the previously mentioned papers and produce an evolution
mapping consisting of a comprehensive catalog of low- and high-level change actions.
Other contributions to change detection exist of varying levels of granularity in
change actions and supported formalisms, such as SemVersion [24], recording low-
level changes based on RDF and RDFS. Kontchakov et al. [14] provide a low-
level formal framework for diffs of DL-Lite (description logics) ontologies. Finally,
Papavassiliou et al. [18] focus on high-level changes in RDF/S ontologies. Zablith
et al. [25] compiled a comprehensive overview of change detection approaches and
the process of ontology evolution as a whole.

Frommhold et al. [6] provide an approach to RDF versioning, as a foundation
for a RDF version control system, addressing issues such as blank nodes or the
possibility of unperceived manipulation. They also define a vocabulary to describe
changes in an RDF dataset. Papakonstantinou et al. [17] introduce the Semantic
Publishing Versioning Benchmark to evaluate the performance of ontology version-
ing system. The DBpedia Wayback Machine [5] is a semantic web pendant to the
Internet Archive Wayback Machine3, capable of reconstructing past iterations of
Wikipedia articles converted to RDF versions.

3https:// archive.org/web/
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COntoDiff — An Analysis

The implementation of COntoDiff as presented in [9] (henceforth simply referred
to as COntoDiff) forms the basis of the work in this thesis. As such, it warrants a
closer inspection, disseminating what it does and, just as importantly, what it does
not do. Section 2.1 looks at the capabilities of COntoDiff, detailing the stages it
undergoes and listing the low- and high-level changes it supports. Section 2.2 then
examines the shortcomings of COntoDiff, before the chapter closes with Section
2.3 detailing the consequences for the design and implementation of IncVer.

2.1 Inspection of COntoDiff

COntoDiff is the implementation of the COntoDiff -algorithm as it is laid out in
[9]. A high-level recap of the algorithm will follow, as part of its inspection but for
a more in-depth look, refer to the paper.

2.1.1 Stages

From a high-level point of view, the process of COntoDiff can be separated into
three stages, where the output of each stage is used as input for the next stage, with
the last stage producing the final complex diff. A set of so-called Change Operation
Generating Rules (COG rules) determines the intermediate and final diffs of this
process, generated at each stage and consisting of basic (low-level) and complex
(high-evel) change operations. There is a set of COG rules for each stage, which
are applied to the stage-input and produce the output. For a detailed listing of all
COG-rules, refer to [9]. These diffs consist of change actions, which describe a self-
contined change between two ontology versions. A note on terminology: low-level
and basic change (actions) are used interchangeably, as are high-level and complex.

Basic Diff: This stage takes two ontologies, the old and new version, as input and
calculates a basic diff. Formally, the basic COG rules (b-COG) are applied to the
input ontologies in this stage. In practice, the process is less clearly structured and
first determines newly added and removed concepts, attributes and relationships.
Furthermore, with minimal use of heuristics similar to those introduced in [16],
some mappings between old and new elements are determined. Unlike the next two
stages, this stage is hard-coded and not customizable or extensible without directly
editing the source code. The result is a diff consisting of nine possible low-level
change actions:



8 CHAPTER 2. CONTODIFF — AN ANALYSIS

• Add-, Delete-, MapConcept
• Add-, Delete-, MapAttribute
• Add-, Delete-, MapRelationship

As can be seen, there is an add, delete and map action for the three element
types concept, attribute and relationship. Furthermore, note, that the map actions
only record elements that have been modified — elements that remained wholly
unchanged are not explicitly included in the diff.

Initial Complex Diff: In this stage, the complex COG rules (c-COG) are applied
to the basic diff from the previous stage along with the input ontologies. These
rules are specified in an XML file and could in theory even be extended or modified.
They look for predefined ”patterns”, i.e. constellations of low-level change actions
and ontology elements. An example of such a c-COG rule, specifically C8, can be
seen in Formula 2.1.

a, b ∈ Oold ∧ c ∈ Onew ∧mapC(a, c) ∧mapC(b, c) ∧ a 6= b

∧ @d(d ∈ Onew ∧mapC(a, d) ∧ c 6= d)

∧ @e(e ∈ Onew ∧mapC(b, e) ∧ c 6= e)

→ create[merge({a}, c),merge({b}, c)],
eliminate[mapC(a, c),mapC(b, c)]

(2.1)

This rule checks if there are two distinct concepts from Oold that map to the
same concept in Onew, that also do not map to any other concept in Onew. If so,
the high-level merge actions are created and the corresponding input change actions
(mapC ) are eliminated. It is important to highlight that two separate merge actions
are generated, instead of one merge({a, b}, c). This aggregation is actually done in
the next and final step, since more than two elements can be aggregated.

Aggregation: In this final stage, the set of aggregation COG rules (a-COG) are
repeatedly applied to the result of the previous stages, until no new changes are
generated. This is to allow the aggregation of any number of elements. Staying with
the example of the high-level action merge, Formula 2.2 describes the rule which
aggregates merges that merge into the same concept c. Note that lower-case letters
refer to concepts, while upper-case letters denote sets of concepts. Applying 2.2
repeatedly results in one change action merge(X, t) where X = {a} ∪ {b} ∪ {c} ∪ ...
for all concepts that merge into t.

c ∈ Onew ∧A,B ⊆ Oold ∧merge(A, c) ∧merge(B, c) ∧A 6= B

→ create[merge(A ∪B, c)],

eliminate[merge(A, c),merge(B, c)]

(2.2)

The result of this stage is the final, complex or compact diff, containing the highest-
level actions, that is, all actions that do not belong to any other complex change
action. On one hand, not all low-level actions need to belong to a higher-level action
(e.g. addAttribute can appear on its own), while on the other hand, high-level change
actions can be aggregated into other high-level change actions (addLeaf can belong
to addSubGraph). In practice, COntoDiff keeps a list of all basic and complex
change actions, as well as a mapping between them.

8



2.2. LIMITATIONS OF CONTODIFF 9

Change Action Status Notes

substitute supported Replace a concept by another concept
toObsolete supported Set is obsolete attribute to true
revokeObsolete supported Inverse of toObsolete
move supported Move a concept and its subgraph from one concept

to another. De facto ”re-wires” a relationship to a
new target concept

chgAttValue supported
addLeaf supported
delLeaf supported
addInner new
delInner new
merge supported Merge two or more concepts into a single one
split supported Split a concept into two or more concepts
addSubGraph supported Aggregation of delInner and delLeaf actions
delSubGraph missing
leafMerge missing specific case of merge
leafSplit missing specific case of split

Table 2.1: Supported High-Level Change Actions

2.1.2 List of Supported High-Level Change Actions

Table 2.1 lists all the high-level change actions that are currently supported by
COntoDiff and, by extension, also by IncVer, marked as either supported or
new in the Status column. Change actions marked as new are supported but not
described in [9].

Furthermore, Table 2.1 also lists high-level change actions that are described in [9]
but are not implemented in the available version of COntoDiff, marked as missing
in the column Status. The reasons for this are not clear. One explanation could be,
that these change actions simply did not occur or only rarely. This is supported
by the evaluation conducted in [9], which lists no occurrences of addSubGraph and
leafMerge change actions in the evaluated datasets. leafSplits did occur often, but no
splits so perhaps the specific leaf- cases were removed to have uniform split and merge
actions, which are more general versions of the leaf- versions. Another explanation
for the lack of a delSubGraph change action may be technical difficulties. However,
these are all speculations.

2.2 Limitations of COntoDiff

COntoDiff unfortunately also lacks some functionality in regards to the goal of
this thesis, some of which has already been hinted at in the previous section. This
section will list the main limitations of COntoDiff relevant to the implementation
of IncVer.

9



10 CHAPTER 2. CONTODIFF — AN ANALYSIS

2.2.1 No Real OWL Support

COntoDiff is claimed to support a subset of OWL. In practice however, this
statement can be disregarded. To understand why, it is worth elaborating on the
relation between OWL and OBO. Tirmizi et al. [22] take a look at how these two
formats relate to each other and determines that OBO is a strict subset of OWL
DL, that is, that every expression in OBO can also be expressed in OWL, however
many OWL constructs cannot be expressed in OBO. In addition to this analysis,
the paper provides a mapping from OBO to OWL.

While many mappings are readily apparent (term → owl:Class, is a-tag →
rdfs:subClassOf ), some others are not quite so obvious. For instance, the OBO
relationship tag is a relation between classes, not between instances. As such, it
is mapped to an OWL construct using rdfs:subClassOf and property restrictions
(owl:Restriction) to model this relation.

To relate this back to the topic at hand: using this mapping, only OWL documents
of a very specific structure can be converted to OBO — in practice these are only
documents which have been converted from OBO to OWL before with this mapping.
Unfortunately, COntoDiff only parses these aforementioned structures in an OWL
document and does not understand general OWL axioms. As such, for any practical
purpose, COntoDiff does not support OWL.

2.2.2 Limited Set of Tags Supported

There is a discrepancy between arbitrary attributes that are supported by the CAR
model in theory, the fixed set of tags that OBO defines and the attributes/tags that
are actually recognized by COntoDiff. Specifically, COntoDiff only parses the
following tags:

• id
• name
• is obsolete
• xref
• def
• alt id
• exact/broad/related/narrow synonym
• synonym
• is a
• relationship

While these tags are arguably among the most common ones, considering that
the OBO spec defines more than 20 possible tags, COntoDiff is far from covering
the full OBO spec.

2.2.3 Primitive Tag Value Parsing

In addition to the limited set of tags that are supported, the parsing of these values
is also rather rudimentary. Particularly noteworthy is the handling of annotations,

10



2.3. CONSEQUENCES FOR INCVER 11

or lack thereof. Annotations are additional, often optional arguments that provide
further information on the attribute value. For instance, many tags in OBO support
an optional trailing list of so-called dbxrefs, which are generally references to other
datasets or wikis relevant to the tag, often taking the form of hyperlinks. COntoD-
iff does not parse these, so in the case that only a dbxref of an attribute changes,
COntoDiff would not detect this change. However, this case probably occurs not
very often, if at all.

Another noteworthy omission is the scope of a synonym tag. In OBO, synonyms
can be of different types, or scope: EXACT, BROAD, NARROW or the default
RELATED, which is assumed if no scope is specified. While COntoDiff initially
parses the scope, it is not carried over to the change action data and is missing in
the diff.

2.2.4 No Parsing of Typedefs

Another rather substantial omission is that Typedef -stanzas, specifying schema-level
definitions of relationships, are wholly ignored by the COntoDiff OBO parser.
Consequently, changes to relationship definitions, such as changes in domain or
range, or relationship properties like transitivity or reflexivity, or worse, Typedef
additions and removals are not captured at all.

2.2.5 No DeleteSubGraph Change Action

As seen in Table 2.1, there are some change actions that are mentioned in the paper
but not implemented in COntoDiff. While the actions leafSplit and leafMerge
are captured by the general split and merge actions respectively, there is no ana-
logue for delSubGraph. This is particularly unexpected since its inverse operation,
addSubGraph is supported.

It is unclear why these operations have not been implemented. Perhaps the de-
velopers came across unforeseen technical issues or the change actions were deemed
unnecessary after further development. Uunfortunately no further documentation
on this could be found.

2.3 Consequences for IncVer

The previous section featured an explanation of relevant missing features of COn-
toDiff. This section will now discuss how these insights inform the design and
scope of the IncVer implementation. Overall, these limitations were split into two
categories: those missing features that could reasonably be implemented via exten-
sions or workarounds, and those that were considered outside the scope of this thesis
and thus were accepted into the specification of IncVer.

2.3.1 Implemented Features

The limited support of OBO tags was relatively straightforward to address and has
been improved by extending the OBO parser to accept any attribute. This does not

11



12 CHAPTER 2. CONTODIFF — AN ANALYSIS

mean, however, that IncVer accepts any tag, since it is still limited to the set of
tags defined in the OBO spec — this can however be worked around by using the
property value tag, for which support has also been added.

The incomplete parsing of tag values has been improved. Concretely, many at-
tributes are being looked up in the new version input ontology to catch any dbxrefs
associated with those values. The same process is used to determine the scope of
synonyms. However, the full specification of OBO tag-values is still not being cap-
tured and improvements in this regard are very much desired. This will be reserved
for future work.

Finally, support for Typedefs has been added as well. This is being done sepa-
rately from the COntoDiff OBO parsing since it was not possible to add without
largely rewriting the existing code and extending the COntoDiff algorithm. As such,
Tyepdefs are parsed independently from the new and old version input ontologies
and a very basic diff is calculated, including added, removed and changed Typedefs.
New Typedefs are then included the first time a relationship of that type is added.
Remaining Typedef updates (removals, changes and remaining additions) are then
added after all other change actions have been applied.

2.3.2 Missing Features Accepted into Specification

A rather minor concession is the decision to forego an implementation of the del-
SubGraph change action. Such an implementation would likely be possible without
diving very deep into the COntoDiff implementation as it should, in theory, be
possible to specify the change action via the XML configuration file, mentioned in
2.1.1. Ultimately however, the availability of this change action was not as high a
priority as other features, as IncVer is still fully functional without it.

In contrast, the lack of support for OWL in COntoDiff represents a larger shift
in scope from the original vision. Since the COntoDiff algorithm operates strictly
on the CAR model, it is not possible to include support for general OWL without
significantly extending the algorithm to the point where this could constitute its own
research project. Hence, it was decided to focus on the original goal of implement a
functioning version of an incremental versioning system on the basis of the existing
COntoDiff implementation.

At the same time, this factor informed the emphasis on a modular architecture,
which will be discussed thoroughly in Chapter 3. The idea behind this is that at a
later point, the COntoDiff algorithm may be replaced by a different diff algorithm,
with its own format and change actions or equivalent.

12
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IncVer Implementation

This chapter is concerned with the design and implementation of IncVer, the incre-
mental version generator for ontologies. Following a top-down approach, the chapter
begins with an introduction to the overall architecture of the system, detailing its
pipeline architecture consisting of three components, along with general informa-
tion. Then follows an overview of the changes made to COntoDiff, as it serves
as the first component in the pipeline. The subsequent sections contain a look at
implementation details of the remaining components that make up IncVer, as well
as the pipeline that ties them together.

3.1 High-level Architecture

Initially, IncVer was conceived as general incremental versioning system built on
top of COntoDiff. However, after inspecting COntoDiff and determining its
functionality and limitations, detailed in Sections 2.1 and 2.2, it became clear that
support for general ontologies, including OWL, is not possible solely on the basis
of COntoDiff. Given these circumstances, the current architecture of IncVer was
developed.

The goal behind the architecture is to provide a working implementation employ-
ing COntoDiff, but also provide an extensible framework that can support other
types of ontologies such as OWL at a later time. Thus, a modular approach was cho-
sen, consisting of three components: the Diff Calculator, the Ordering component
and the Applying component, with a pipeline combining these elements in sequential
fashion. See Figure 3.1 for a schematic visualization of the architecture with appli-
cation flow and components. For all three components working implementations
were built as part of this thesis which are listed in italics and parentheses in the
figure, but the architecture is chosen such that they can be exchanged for different
implementations, catering to different needs and ontologies.

Diff Calculator: The frameworks begins by using the Diff Calculator to calculate
a diff. In the current implementation, COntoDiff is used for this step. Later on,
this could be exchanged by a diff system for OWL ontologies, for instance. The
resulting diff, i.e. a collection of change actions, is passed on to the next component.

Ordering: The Ordering component takes the (arbitrarily ordered) diff and ap-
plies a specific ordering to it. The simplest conceivable implementation would just
shuffle the diff randomly, or, slightly more sophisticated, order the collection by
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Figure 3.1: The IncVer Architecture, its Components and Base Implementations

change action. The implementation in IncVer chooses an approach that is a bit
more involved and will be explained in detail in Section 3.3. Again, this component
can later be exchanged for a custom Ordering implementation, catering to specific
needs. The result of this step is a sorted collection of change actions.

Applying: In the final step, the Applying component takes the sorted change
actions and builds the incremental versions, by applying the change actions, in order,
to an evolving ontology, starting with the old input version. Proceeding this way, an
ontology output file is created after each step. The changes are applied by calling
what I term apply functions. For every change action that the Diff Calculator of
choice can generate, a corresponding apply function needs to be implemented. This
apply function takes a concrete change action along with an ontology and applies the
change action to it accordingly. For IncVer an apply function has been implemented
for all change actions supported by COntoDiff, as described in Section 2.1.

The observant reader may already have gleaned from these descriptions, that the
individual components are not wholly independent of each other. Most apparently,
the set of apply functions in the Applying step is determined by the set of change
actions that the Diff Calculator supports. Additionally, depending on the set of
change actions, some dependencies may occur between them (e.g. A must be applied
before B) which means that an arbitrary ordering might be invalid. This is, in fact,
the case for COntoDiff, which is also the reason why the base implementation
of the Ordering component in IncVer is more complex. Details on this point will
follow in Section 3.3.

3.2 Changes to COntoDiff

This section features a brief look at the changes that were made to the COntoDiff
implementation.

SQLite support: The original implementation used MySQL as a backing storage
to store change action data and mappings from low- to high-level actions. MySQL is,
however, a rather heavyweight SQL implementation, that needs to be installed on a
host machine and have a daemon running to be accessible. Hence, COntoDiff was
migrated to support SQLite, a very lightweight SQL implementation that operates
in-memory and stores databases to files. SQLite does not need to be installed and
can be used by simply including a programming library. This makes COntoDiff,
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3.3. ORDERING IMPLEMENTATION 15

and by extension IncVer, much more portable since the SQL implementation is
contained within the software distribution.

Generic Attribute Parser: As mentioned previously in Section 2.2.2, the orig-
inal attribute parsing in COntoDiff was very limited, only supporting a small set
of tags. This functionality was extended and any tag can be parsed now: COntoD-
iff still checks for known tags, but if no match is found, the extension parses a line
according to the pattern: <tag-name>: <tag-value>. In addition, whitespaces
and end-of-line comments, demarcated with an exclamation mark, are trimmed.

Bugfixes: Finally, while working with COntoDiff, some bugs were encountered
and subsequently fixed. Among these were, for instance, typos or faulty regexes.

3.3 Ordering Implementation

The Ordering component is, in essence, a sorting function that operates on a un-
sorted collection of change actions and produces an ordered sequence of change
actions. This definition is deliberately left very general to allow for high flexibil-
ity. The only implicit condition is that the order of change action produces valid
incremental ontology versions.

Later implementations may, for instance, implement a filtering Ordering compo-
nent that not only sorts the change action but removes certain change actions, or
even adds new change actions. In this way, the Ordering component can be thought
of as a kind of transformation function. In fact, the base implementation in IncVer
makes use of this freedom, as we will see later in this section.

3.3.1 Atomic and Composite Change Actions and Application
Order

The change actions which COntoDiff generates can be separated in two groups, the
atomic change actions and the composite change actions. These terms are roughly
equivalent to basic/complex and low-level/high-level, but are more descriptive for
the context of this section.

Atomic change actions are those generated by the basic diff in COntoDiff and
consist of add, delete and map operations for concepts, attributes and relationships
each, yielding a total of nine atomic change actions. Some of these, like add-

and delAttribute can appear independently in the final, compact diff, others, like
mapAttribute or delConcept are always aggregated into a composite change action.

Composite change actions are the high-level change actions that are created by
combining and aggregating atomic changes or other composite changes. The ex-
pression composite is chosen to emphasize the fact, that they are made up of other
change actions. Ultimately, every composite change action of atomic and nested
composite change actions can be unravelled into a flat collection of atomic change
actions.

This introduces the question of how to sort these atomic change actions, such
that no dependencies occur. A composite change action as a whole must be self-
contained, i.e. not leave the ontology which it is applied to in an inconsistent state,
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Figure 3.2: The Atomic Change Action Ordering to Avoid Dependencies

like having dangling relationships or attributes that point to concepts that do not
exist. As such, when all atomic change actions which make up that composite
change action are applied, the ontology must be in a consistent state. However,
depending on the implementation of the ontology and the apply function, the order
in which these atomic change actions are applied also matters. For instance, the
addAttribute apply function in IncVer does not support adding of attributes to
concepts that do not exist. The implementation side of this issue is handled in the
Applying component for IncVer, but thematically it fits into the topic of ordering.

There is a straightforward solution to this problem: Given the set of atomic change
actions, consisting of the nine change actions mentioned above, a global partial order
can be defined over them such that no dependencies among them can occur, forming
a partially ordered set or poset. The ordering is shown in Figure 3.2.

The graph in Figure 3.2 is to be read top to bottom, with change actions placed
high coming before those placed below them. The ordering between elements on
the same level does not matter and can be chosen arbitrarily — hence, a partial
ordering. Arrows indicate that the source may depend on the target change action.
The idea behind constructing this order is to place change actions as high as possible,
avoiding dependencies on the same level.

Several observations allowed this poset to be constructed. First of all, change
actions can never depend on change actions of the same type, hence, there are no
loops in our graph. Otherwise it would not be possible to sort atomic change ac-
tions based on their type. Furthermore, attributes and relationships associated with
concepts must always be removed before the concept they belong to is removed. By
the same token, concepts must always be added before associated attributes and
relationships are added. The inverse of these two cases — a concept is removed and
an attribute/relationship is added to it, and a concept is added and an attribute/re-
lationship is removed from it — logically cannot occur, assuming two valid input
ontologies. Finally, as a combined case of the previous point, when a concept is
mapped, deletions on it must occur before, and additions to it must be made after
it is mapped. This leaves the change actions mapA and mapR; these have no depen-
dencies and depend on no other change action type, since both maps imply, that
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3.3. ORDERING IMPLEMENTATION 17

their associated concepts exist in both the old and new version and thus are neither
added nor deleted.

3.3.2 Dependencies among High Level Change Actions

Initial work on IncVer was done under the assumption that high level change
actions generated by COntoDiff were always independent of each other, such that
they could be applied in any order. Accordingly, a simple random shuffling function
was chosen as the first Ordering component to be implemented. However, an initial
working prototype soon revealed, that the assumption of independence was false.

I determined, that certain change actions require other change actions to be ap-
plied before them, otherwise they fail because certain preconditions (e.g. the ex-
istence of a concept) were not met. Specifically, the following case was observed:
While applying an addSubGraph change action, an exception was thrown because
application of an addRelationship change action had failed. addRelationship was
an atomic change action of the addSubGraph composite change action and attempted
to connect a concept A to a concept B with relationship r. However, concept B was
missing. The atomic change actions were applied following the sort order described
in 3.3.1, which means that the addition of B was not part of said addSubGraph

change action. Further inspection of all change actions in the corresponding diff
revealed, that concept B was added in a different addSubGraph change action.

This might indicate an issue with the rule formulated for addSubGraph, but instead
of searching for a potential issue deep within the COntoDiff implementation, I
opted for a more general solution. This approach is also able to handle other kinds
of dependencies that might be encountered and is described in the next subsection.
However, inspection of the dependencies revealed another issue: cyclic dependencies
can occur. That is, in its simplest form, change action A depends on change action B,
and vice versa. More generally, when seeing change actions and their dependencies
as a nodes and edges of a graph, respectively, there are cycles between the change
actions in question. However, this graph visualization points us in the direction of
a solution, as will be discussed in the next section.

3.3.3 Logical Change Action Orderer

The Logical Change Action Orderer is the base implementation of the Ordering
component in IncVer and an answer to the issues explained in the previous section.
In essence, it produces a mostly arbitrary ordering, only taking dependency order
into account. That is, it guarantees that dependent change actions come after the
change actions they depend on, and only that.

A valid ordering can, however, not always be achieved simply by ordering the
change actions correctly, due to the previously mentioned possibility of cycles. With
cycles, there is no correct ordering : Consider, for instance, the interdependent
change actions A and B.B depends on A, so A must come before B, but A also de-
pends on B, thus B must come before A and so on.

This is why the logical change action orderer makes use of the possibility to trans-
form input change actions, as mentioned in Section 3.3. In particular, it determines
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Figure 3.3: Steps of the Logical Change Action Orderer

the cyclic dependencies and aggregates these dependency clusters into an aggregate
change action, implemented as AggregateChanges. Note the distinction between
composite change action, which is the category of change actions that contain other
change actions, and AggregateChanges, which is a concrete composite change ac-
tion, specifically to aggregate other change actions which form cyclic dependencies.

Figure 3.3 shows the steps that the orderer undertakes to determine a valid, ag-
gregated order of change actions. It starts by modelling the change actions provided
by the diff as nodes in a graph. Then, in step (i), dependencies among the change
actions are determined. In the base implementation, this is done by an algorithm
that inspects composite change actions for addRelationship atoms, that connect a
concept that is in another composite change action, that ”reach over”, in a manner of
speaking. If such instances are found, a dependency is added, modelled as a directed
edge, where the target node depends on the source node. Said type of dependency
was the only type of dependency among change actions that was encountered during
testing. However, since the approach is very generic, this part can be extended with
further heuristics to determine other potential dependencies, if required.

Step (ii) consist of finding cycles in the graph generated by the previous step, or
dependency clusters. A distinction is to be made between simple cycles, which are
a closed path along edges and nodes with no repeating nodes, except the start-end
node, and complex cycles which may have repeating nodes. Consider the constel-
lation in Figure 3.4. They form two simple cycles, namely Ssimple,1 = {A,B,C}
and Ssimple,2 = {B,D}, but only one complex cycle Scomplex = {A,B,C,D}. For
the purpose of dependency aggregation, we are interested in complex cycles. To
stay with the example, we would want to aggregate A, B, C and D into a single
AggregateChanges change action.

As an implementation detail, the graph library used (JGraphT 1), otherwise very
potent, unfortunately only supports detection of simple cycles. Hence, an additional
step is required to determine complex cycles. For any set of change actions which
form a complex cycle, there are actually infinite possible paths that represent a

1https://jgrapht.org/
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complex cycle, since the path can just continue to repeat itself. Thus, more precisely,
the sets of change actions that are part of the same complex cycle are required —
the specific path along this cycle is irrelevant for our purposes. Equally, we are only
interested in the set of nodes that are part of a simple cycles, not the path itself.

The observation that the path and thus the order in which the nodes are walked
does not matter is important. Instead, simple cycles are looked at as sets of nodes.
Combined with the realization, that dependency clusters consist of simple cycles
that overlap, which in this context means to have shared nodes, we can formulate
an algorithm to collect the simple cycle sets into dependency clusters: Given all sets
of nodes that form a simple cycle, repeatedly merge two overlapping sets — replace
the two sets by their union – until no overlapping sets remain. The resulting sets
are the dependency clusters.

Finally, as step (iii), all dependency clusters are aggregated into an Aggregate-

Changes change action containing the original change actions. In Figure 3.3 these
would be change actions C, D and F. Note that edges coming into or leading out
of the cluster must be maintained and, if the merge of nodes leads to two edges
pointing from the same source node to the same target node, collapsed.

The resulting graph is a directed acyclic graph, which always has at least one
topological ordering. A topological ordering or topological sort is a ordering of the
nodes in a graph, such that if there is an edge (i, j), then i < j (for theoretical
details on this, refer to [21]). This is in fact exactly what we require as output of the
Ordering component: The Logical Change Action Orderer produces an ordering of
the input change actions which matches the topological sort of a graph constructed of
the change actions as vertices and dependencies among them as edges, with potential
cycles collapsed into aggregate change actions. Note that this is not possible if a
graph has cycles, since if we have edges (i, j), (j, i), a topological sort would imply
that i < j ∧ j < i which is obviously false.

3.4 Applying Implementation

The final Applying component is a collection of apply functions for all change actions
that the Diff Calculator supports. Strictly speaking, the set of change actions is
determined by the Ordering component, as it is in our case, because the Logical
Change Action Orderer introduces an aggregation change action, but for simplicity’s
sake I will refer to it as the COntoDiff change actions. The purpose of this part
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of IncVer is to take an initial ontology version — the old input version — and
”evolve” it by incrementally applying the ordered change actions produced by the
Ordering component, thus creating the desired incremental versions until the new
input version is reached.

3.4.1 Implementation Details

No software artifact of a certain size can created in reasonable time without the
use of external libraries, which handle out-of-scope tasks. Two notable libraries are
used extensively throughout the code and had influence on some of the design of
IncVer. They will be briefly described in the following paragraphs.

OWL API2: The OWL API was presented first by Horridge and Bechhofer [10]
and developed as part of the Wonderweb Project3. It is one of the most commonly
used APIs for working with OWL 2 and is implemented in Java. It consists of the
API, an in-memory reference implementation of the API and parsing and rendering
capabilities for the most common serialization formats for OWL, such as RDF/XML,
OWL/XML, OWL Functional Syntax or Turtle, among others. In addition it pro-
vides a reasoner interface for external OWL reasoners, which is supported by many
reasoners, such as FaCT++4 or HermiT5. The current version as of this writing is
version 5 but its adoption in various libraries is not yet complete, as in the ROBOT
library discussed next. IncVer thus uses version 4.

The OWL API will be used as an internal representation of the ontologies. Conse-
quently, all apply functions have been written to operate on OWLOntology objects, as
provided by the API. The reason for this choice is twofold: Firstly, using the highly
expressive OWL ontology format as a basis facilitates extending the pipeline to other
ontology formats than OBO. Secondly, the ROBOT library, explained below, also
uses OWL internally.

ROBOT OBO Library6: ROBOT is both a command line tool for working with
OBO ontologies, as well as a programming library which supports manipulating
said ontologies. The tool provides functions such as converting between various
formats like OBO, RDF/XML and OWL Functional Syntax, or generating simple,
axiom-based diffs between two ontologies, both of which were used heavily during
development and testing. The main use for IncVer lies in its capability to parse
and render OBO ontologies. As mentioned above, ROBOT uses the OWL API
internally to represent ontologies. This means that it converts the OBO format to
OWL, according to similar rules as the ones presented by Tirmizi et al. [22].

3.4.2 General Apply Functions

In its generic form, an apply function takes an ontology and a change action as input,
and applies that change action to the ontology. The apply function may assume
that the ontology is in a consistent state such that the change can be applied, i.e.

2https:// github.com/owlcs/ owlapi
3http://www.cs.ox.ac.uk/ ian.horrocks/Projects/wonderweb.html
4http:// owl.cs.manchester.ac.uk/ tools/ fact/
5http://www.hermit-reasoner.com/
6http:// robot.obolibrary.org/
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it is not supposed to add an attribute to a concept that does not exist — it is
the responsibility of the Ordering component to ensure a valid ordering of change
actions.

As mentioned before, for IncVer an apply function for every change action gen-
erated by COntoDiff, as well as the AggregateChanges introduced by the Logical
Change Action Orderer has been implemented. These can be split into low-level
and high-level, analogous to the change actions themselves. The low-level apply
functions apply the corresponding low-level change actions (add/del/map C/A/R)
to the ontology accordingly.

Many of the high-level apply functions operate differently. Seeing as high-level
or composite change actions are basically a collection of low-level change actions,
they can simply be applied by flattening them to their low-level change actions,
ordering these according to the atomic change action ordering discussed in Section
3.3.1, and delegating the application of the low-level change actions to the low-level
apply functions. This also handles the challenge, that some composite change action
types can contain arbitrarily many (or few, down to zero) change actions of different
types, atomic and composite. delLeaf for instance may contain just a delC and one
delR change action, but also could contain multiple delAs, as well as delR change
actions. Furthermore the low-level apply functions need not know whether they are
part of a high-level change action or details of its implementation.

This covers the general pattern of how the apply functions are implemented, and
there is little else to say on their implementation. However, three apply function
implementations are worthy of some spotlight:

MapC: The mapC apply function is special in that it may have to delete a concept,
add a concept, or do nothing at all. The mapC change action can occur in merge and
split actions. Because of this, three cases are possible for a mapping of concept A

to concept B: (1) A equals B, i.e. both concepts are the same and mapC needs to do
nothing, (2) the merge case, where A is not in the new version, being merged into
B and mapC must remove A, and finally (3) the split case, where B is created from a
split of A and must be added by mapC.

However, only the first case can be detected from within the mapC change action;
apply functions do not know whether they are called alone or as part of a high-
level apply function (like merge/split). To solve this issue, a workaround has been
implemented. The determining factor whether a concept in a map operation is to
be added or removed is whether it is also mapped from or to, respectively. That
is, given mapC(A,B), if and only if B is also mapped from, it need not be added.
Otherwise it has to be added. Analogous reasoning holds for A and its removal.
With this knowledge, two lookup sets are created by iterating through all mapC

change actions generated by the diff. One set holds all concepts that are mapped to,
and one holds the concepts that are mapped from. Using this set-lookup strategy,
we achieve linear complexity O(n) with n equals the number of mapC actions, since
we only have to iterate through them once, and looking up values in a set has O(1)
complexity.

Attributes: This concerns the add-, map- and, to a lesser degree, the delete-

Attribute apply functions. The issue here goes back to the attribute parsers and
change actions implemented in COntoDiff and has already been touched upon in
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Section 2.3.1. Firstly, synonym scope is not stored in the change actions, the apply
functions only know to add a new synonym attribute with its value, but not what
scope the synonym has. Similarly, dbxrefs are not stored either. To avoid having
to rewrite parts of COntoDiff, in order for it to pass on these values, the apply
functions instead look up the attributes in the new input version.

addRelationship: The noteworthy point here is not the addition of a relationship
itself, but the fact that COntoDiff does not parse typedefs. This has received
mention in Section 2.3.1 along with an approach to solving this. However, the
issue here is a larger one and warrants some discussion: typedefs are a part of an
OBO ontology and ignoring them is no minor omission. While relationships are
covered on the instance level and thus, one could implicitly infer typedefs from
whether a relationship occurs in the ontology or not, a lot of schema information,
such as domain, range or hierarchy are not retained. Moreover, there are ontologies
which contain typedefs but no corresponding relationship instances, so this implicit
approach fails.

Unfortunately, this problem is embedded in COntoDiff and large changes to it
would have to be made to amend this. Though no analysis has been conducted on
this, it stands to reason that, similar to the other elements in the CAR model, a
typedef can be added, deleted or mapped. In addition, typedefs are closely connected
to their relationship instances: for a valid ontology, relationships should only occur
when a corresponding typedef is defined. The inverse does not hold, as mentioned
before — an OBO ontology can have a typedef but no instance of it.

From this, we can deduce some relations between operations on typedefs and
operations on relationship instances: Relationship instances can be added at the
earliest at the same time as adding the corresponding typedef, not before that.
Likewise, relationship instances must be removed at the latest at the same time
as their typedef is deleted. Finally, when a typedef is mapped, all its relationship
instances must be changed accordingly.

It is apparent that without tracking the typedefs, these connections cannot be
captured. Instead, a compromise solution was built, as implementing such a system
would have easily exceeded the scope of this thesis. I implemented a simple compo-
nent that parses typedefs of the old and new input ontology versions and then calcu-
lates a very basic diff. This diff tracks additions, deletions and mappings. The map-
ping part is however very basic, matching typedefs with the same id are matched.
There is no facility to capture more sophisticated matchings based on patterns,
for cases where the id is changed. Relating this all back to the addRelationship

apply function: this simple diff is stored for lookup, and whenever it is called,
addRelationship checks if the relationship has a corresponding typedef that is
newly added, and if it is the first time an instance of that relationship is added,
the typedef is added as well. Additionally, as a final step after all change actions
have been applied, the remaining typedef changes (unapplied additions, removals
and mappings) are applied. This approach takes inspiration from the connections
made in the previous paragraph.
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3.5 Implementation Pipeline and Providers

Finally, all these parts must be combined. This is what the pipeline is for. It is
responsible for taking the input versions, feeding them to the Diff Calculator, passing
the result on to the Ordering component, and finally coordinating the Applying
component to iteratively apply change actions and generating incremental versions.
Additionally, the pipeline takes care of initializing the components and providers,
which will be elaborated on in the next section.

3.5.1 Global Data Providers

As has been explained in previous sections, there are some parts within the pipeline
that depend on information from a different part — for instance the mapC apply
function, which needs access to the mapped-to and -from concepts, which is calcu-
lated on the diff generated by the diff calculator. For this purpose, several so-called
providers have been implemented, which calculate and subsequently provide certain
information. A listing of these will follow, along with a brief explanation of what
their specific task is.

DiffDataProvider: Provides global access to data concerning the diff that was
calculated between the old and new input versions. It provides read-access to ba-
sic and complex change actions, but also some lookup functionality, used in apply
functions, like whether a concept is mapped to or from (see Section 3.4.2).

TypedefTracker: Is responsible for tracking which typedefs have been and are
yet to be added to, removed from or modified in the ontology. Whenever the
addRelationship apply function adds a relationship, it checks with the Typedef-

Tracker whether this relationship belongs to a new typedef and is being added the
first time, in which case the apply function will also add the typedef to the ontology,
along with the relationship.

RobotOWLData & OWLUtil: Provide convenience functions and lookup for
data and operations relevant to ROBOT and OWL respectively. Foremost, they
provide full IRIs used in the OWL representation. The IRI for concepts and typedefs
depends on the name of the input ontology, and thus can only be determined after
it has been parsed. Furthermore, many OBO tags are denoted by specific IRIs, not
all following the same pattern. Hence RobotOWLData provides a build-function for
these. Finally, several convenience functions can generate various complex OWL
axoims which are used to represent OBO constructs and would be tedious to be
constructed manually in every apply function.

3.5.2 Command Line Interface

To make IncVer more readily usable, a command line interface (CLI) was imple-
mented. The distributed Jar supports two commands, pipeline and validate. The
former executes the pipeline as it is described in this chapter. The latter is a utility
for evaluating the results generated by IncVer. It has been used for the evaluation
in this thesis, which will be presented in-depth in Chapter 4 — this section shall
only briefly demonstrate the usage of the command line tool.
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Long Short Parameters Description

--save -s FILE Saves the calculated diff in serialized format to
FILE

--load -l FILE Loads a previously serialized diff from FILE in-
stead of calculating it

--prefix -p PREFIX Set the the prefix of generated incremental ver-
sions, resulting in the pattern PREFIX.n.obo,
where n is the version number. Defaults to
incver.n.obo

--nocheck -n Set this flag to disable the storage requirements
check

--diffonly -d Diff only mode. Calculates diff without gener-
ating incremental versions. Requires the -s or
--save flag

Table 3.1: Available Options and Flags for the Pipeline CLI Command

Pipeline: This command allows the execution of the main IncVer pipeline,
which can be called by providing two input versions as well as specifying an output
folder. An example call would be:

$ java -jar incver.jar pipeline old.obo new.obo incver-output/

This call would execute the pipeline on old.obo and new.obo as the old and
new input versions respectively. The generated incremental versions would be saved
into the folder iv-output/. By default, the pipeline calculates an estimate of how
much disk space the resulting versions will approximately take up and the user must
confirm to proceed with the generation, but this check can be disabled. Additionally,
several flags and options, of the form --flag and --option=param respectively, can
be specified to customize the execution. Table 3.5.2 shows the available options in
detail.

Validate: With the validate command, the generated versions can be evaluated.
This is done by applying three conditions, discussion of which will be reserved for
Chapter 4. A sample call would be:

$ java -jar incver.jar validate old.obo new.obo incver-output/

As can be seen, the same arguments as with the validate call are passed, this
time with a populated output folder containing incremental versions. In addition,
the two options --only/-o and --skip/-s can be specified, taking the numbers of
the conditions that are to be applied or skipped respectively as arguments. A valid
parameter would be --only=13, which would only execute conditions 1 and 3. By
default, the validate command executes all three conditions.
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4

Evaluation and Discussion

While the main goal of this thesis is the realisation of a functioning and usable base
implementation, an evaluation is of course in order to assert that the software does
what it is supposed to do. I was able to receive promising results evaluating IncVer
with multiple datasets and metrics.

This chapter will start by laying out how IncVer is evaluated, introducing three
evaluation conditions. Following that, I will present some results: As part of the
evaluation, five sample ontologies were selected and processed by IncVer. The re-
sulting incremental versions were then subjected to said evaluation metrics. Finally,
the chapter concludes by discussing the results and remarking on limitations and
future work.

4.1 Evaluation Metrics

It is not the explicit goal of IncVer to correctly model the evolution history of two
ontology versions, but to produce valid incremental versions. Valid in this context
means that the incremental versions could have reasonably existed. Indeed, there
is no way to determine whether the generated incremental versions and their order
correspond to the actual evolution of the ontology without additional versioning info,
such as edit logs. While the base implementation of IncVer does not support such
functionality, it might be implemented in the future by ways of a custom Orderer
component.

Three conditions were thus formulated which need to hold for the result of running
IncVer to be considered valid. The conditions look at ontologies as collections of
OWL axioms, which can colloquially be understood as statements, such as ”SO:0001
is a class”, ”X has name Peter” or ”parent of is the inverse of child of”. The first
two conditions check the incremental versions as a whole, in a sense, while the third
condition analyses the individual steps between the incremental versions.

The conditions were formulated as strict logical statements that need to hold over
the entirety of the output produced. Such an all-or-nothing approach is much too
coarse for helpful analysis, since a single violation in thousands of axioms would
result in a failure, without further information. Thus, for meaningful evaluation
the conditions were converted to metrics that yield a numeric breakdown of each
condition.
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4.1.1 End-To-End Conditions

For old and new input versions Oold, Onew respectively and incremental versions
O1, O2, ...On with n = number of Change Actions:

∀i : a ∈ Oi =⇒ a ∈ Oold ∪Onew (4.1)

On = Onew (4.2)

No Unknown Axioms: Condition (4.1) states that every axiom a in each in-
cremental version Oi must also be in the old or the new input version. In essence,
this condition ensures that no unknown axioms are introduced to incremental ver-
sions. It is also worth pointing out, that this condition may not reflect the actual
development between the ontology versions, since it is easily possible that during its
evolution an axiom is added and then removed again. This case cannot be captured
by COntoDiff or the base implementation of IncVer.

As a metric, all axioms of each incremental version are checked to see if they
are contained in the union of Oold and Onew. As a further layer of granularity,
containment is split up into three cases, instead of the two contained/not contained.
These are full match, partial match and unknown. A full match occurs when exactly
the same axiom is in the incremental version as well as in one or both of the input
versions. A partial match is a slight relaxation of the former case; it occurs when
axioms with the same values, such as subject or attribute name are in the incremental
version as well as in the input versions, but annotation values such as dbxrefs differ.
This case is mainly motivated by the limited attribute parsing of COntoDiff as
discussed in Section 2.2.3. If none of the previous two is the case, the axiom is
classified as an unknown. As a final point: Since many axioms will be in every
version, unchanged, each unique axiom is only considered once, as not to inflate the
numbers.

Last Version Equals New Version: Condition (4.2) states that the final in-
cremental version that is generated equals the new input version, that is, consists of
the same axioms. The purpose of this condition is twofold: Firstly and obviously,
with the final version, all change actions are applied and we should ”land on” the
new input version. Metaphorically speaking, this condition checks whether the path
taken (the incremental versions) leads to the intended destination (the new input
version). Secondly, and perhaps more importantly, this condition is the complement
to (4.1), in that it ensures that no axioms are missing.

Converted into a metric, the final version On is compared with the new input
version Onew. Here I differentiate between four cases: full match, partial match,
unknown and missing. Full and partial matches work analogously to the previous
condition. Unknown axioms are those that are in On but not in Onew, and missing
axioms are the inverse case, axioms that are in Onew but not in On. As can be seen,
the naming is chosen in relation to the expected, i.e. the new input version. The
measurement taken is a count of all four cases and since there are only two versions
compared, we need not consider duplicate axioms.

It is also worth pointing out, that unknown axioms generally are not expected to
be wholly unknown axioms with previously unseen values, but incorrectly or incom-
pletely parsed attribute values, strings or annotations. Similarly, missing axioms
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are likely not missing completely but similar axioms with incorrect values. This is
because even one wrong character in a definition string, for instance, would lead to
the axiom not being recognized. Moreover, it is important to distinguish between
unknowns in Condition 1, which are axioms that are unknown to the old and new
input ontologies, and unknowns in Condition 2, which are axioms that are unknown
only to the new input ontology.

An additional condition was considered, stating that every generated incremental
version must be valid. Valid in this context means structurally valid. A violation
would be for example an attribute being in the ontology without the concept it
belongs to. However, after some investigation it became clear that, firstly, most of
such violations are not possible in OBO — for instance, an attribute can only be
written in its corresponding term stanza — and secondly, the ROBOT library only
produces valid version — if a formatting error is present or an invalid value, then
attempting to save the ontology produces an exception. Hence, a metric based on
this condition would not be very meaningful.

4.1.2 Increment Step Condition

For a given sequence of change actions C1, C2, ...Cn, the resulting incremental ver-
sions O1, O2, ...On and the change action set resulting from applying COntoDiff
to two versions CAi,j = COntoDiff(Oi, Oj) require that:

CAi−1,i = {Ci} (4.3)

The third condition (4.3) states that when calculating the diff between two con-
secutive incremental versions Oi−1 and Oi, the resulting diff must be a set only
containing one change action, that action being the same as that which was applied
to generate the second version. Essentially, this condition ensures that each subse-
quent version changed exactly by the change action that was applied to it, or simply,
that the apply functions apply the correct changes and are applied correctly. In or-
der to be able to do this after the fact an incremental version log is required, which
keeps track of the change actions that were applied to each version, or potential
errors that occurred when applying.

Hence, the IncVer pipeline keeps a log while generating the incremental versions
and writes them to a file after applying all the changes. The log maps version file
names to the change actions that were applied to generate that version, or error
messages if an exception occurred while applying the change or writing it to file.

For the metric, a diff is calculated with COntoDiff, between every two consec-
utive versions of the generated incremental versions. The resulting compact diff is
compared with the expected change action recorded in the version log. A distinction
is made between six different cases:

Exact The diff produces one change action that is identical to the expected change
action. This is the desired result.

Type The diff produces one change action that is of the same type (e.g. delAttr) as
the expected change action but not exactly identical, differing in a value, for
instance.
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Dataset Versions Old Size New Size Versions LLCA

Sequence types and fea-
tures Ontology (SO)

2010-7 to
2010-11

17 110 17 796 404 962

Phenotype and Trait
Ontology (PATO)

2018-3 to
2018-11

21 890 21 748 329 455

Plant Ontology 2017-2 to
2018-9

23 150 23 544 273 865

Human Disease Ontol-
ogy (Non-Classified)

2019-3 to
2019-4

136 232 136 421 609 1070

PROtein Ontology
(Non-Reasoned)

2013-2
(v32) to
2013-3
(v33)

364 250 365 024 290 1238

Table 4.1: Evaluation datasets, the old and new versions used, as well as their re-
spective size in number of axioms. Additonally, the number of versions
generated and low level change actions computed by COntoDiff is listed.

Unknown The diff produces one change action but it is of a different type than the
expected change action.

Exact Contained The diff produces multiple change actions, one of them is identical
to the expected change actions.

Type Contained The diff produces multiple change actions, at least one of them is
the same type as the expected change action but none is identical.

Not Contained The diff produces multiple change actions, all of which are of a
different type than the expected change action.

Furthermore, a note is made if an error occurred during the creation of an incre-
mental versions, since those results are almost certain to produce an error.

4.2 Results

This section will briefly introduce the datasets used for evaluation. Then, the results
of the evaluation will be presented, along with an explanation of how the evaluation
was conducted.

4.2.1 Datasets

For the purpose of evaluation, five datasets ([4, 7, 3, 20, 15]) were selected. The only
requirements for these datasets were that (1) they must be in the OBO format, and
(2) there must exist at least two versions of it. Apart from that, an effort was made
to select ontologies of differing sizes and sources.
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Table 4.1 lists the datasets along with some characteristics. The size is measured in
OWL axiom count and is a good indicator for file size. It is however only a very rough
indicator for number of changes between versions. Hence, column Versions lists
the number of incremental versions generated and column LLCA lists the number
of low-level change actions calculated by COntoDiff. Low-level change actions
were chosen as a more precise indicator for degree of change compared to high-level
change action count, since that number can be misleading: one HLCA could be a
addSubGraph with tens of component changes or just a single delA. For the number
of high level change actions, please refer to Table 4.6.

As can be seen, the datasets range from relatively small, like the SO with only
17 to 18 000 axioms, to an order of magnitude larger with the Human Disease On-
tology and PROtein Ontology consisting of well over 100 000 and 300 000 axioms
respectively. While testing, filesize was a another consideration: In combination
with a high number of incremental versions, the resulting total size of all incremen-
tal versions can quickly grow large. In this regard, the result of the Human Disease
Ontology took up the most disk space, reaching 2.84 GB in size, and PATO was the
smallest with only 212 MB.

Finally, the rate of change varies strongly as well. I will measure rate of change as
# LLCA
T ime . The slowest to change of our datasets is the Plant Ontology with 865 LLCA

19 months
or approximately 45.5LLCA

month . On the other side of the spectrum, there is the PROtein
Ontology, with 1238 change actions in a single month.

4.2.2 Condition 1

Table 4.2 lists the results of evaluating the datasets with Condition 1. For the most
part the results are satisfying, with only few unknown axioms produced. SO yields
only one partial match and one unknown axiom, and the Plant and Human Disease
ontologies include no unknown axioms at all. Fewer errors on SO are to be expected,
since that dataset was used during development. As such it is even more surprising
that the results on the Plant Ontology and HDO are slightly better.

It is pertinent to compare the number of errors to the number of low level change
action, for an impression on how well IncVer performs, since many axioms in an

Dataset Full Partial Unknown Total LLCA

SO 17 918 1 1 17 920 962

PATO 22 018 0 0 22 018 455

Plant 23 684 0 12 23 696 865

HDO 136 673 0 0 136 673 1070

PROtein 365 011 0 50 365 061 1238

Total 565 304 1 63 560 368 4590

Table 4.2: Results of Evaluation with Condition 1, featuring the counts of Full and
Partial matches, Unknown axioms and total count, along with the number
of low-level change actions between old and new version
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ontology are completely unchanged. In that regard, the performance is best on the
HDO with 0 errors on 1070 low-level change actions, and the worst on PRO with
50 errors

1238 LLCA or 0.040errors/LLCA.

Surprisingly, no partial matches occurred except a single one in SO. This indicates
that the measures taken to address the issue of the restricted parsing capabilities
in COntoDiff were somewhat effective, if not perfect as we will see in the next
section.

4.2.3 Condition 2

The results of imposing Condition 2 to the datasets can be seen in Table 4.3. It is
readily apparent that more errors occurred for this condition, but it could be argued
that it is also a stricter condition, since matches are only sought in the new input
version. This captures additional issues, like an attribute not being deleted or a
concept not being correctly mapped. Nevertheless, the number of errors is relatively
small, with PATO again achieving a perfect performance.

Table 4.4 shows the error rates per dataset in errors
LLCA , calculated by summing the

errors, once including and once without partial matches, and then dividing the sum

Dataset Full Partial Unknown Missed Total LLCA

SO 17 787 6 1 3 17 797 962

PATO 21 748 0 0 0 21 748 455

Plant 23 326 138 81 80 23 625 865

HDO 136 409 5 42 7 136 463 1070

PROtein 364 960 5 61 59 365 085 1238

Total 564 230 154 185 149 564 718 4590

Table 4.3: Evaluation Results for Condition 2 including the counts of Full and Partial
matches, Unknown and Missed axioms and total count, along with the
number of low-level change actions between old and new version

Dataset w. Partial w.o. Partial Axioms LLCA

SO 0.010 0.004 17 797 962

PATO 0 0 21 748 455

Plant 0.346 0.186 23 625 865

HDO 0.050 0.046 136 463 1070

PROtein 0.101 0.097 365 085 1238

Overall 0.106 0.073 564 718 4590

Table 4.4: Error Rates in Errors per LLCA for Condition 2, both including and
excluding Partial Match cases as errors, along with the total number of
axioms in the final generated versions and the count of low level change
actions between old and new input version, detected by COntoDiff
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Dataset Exact Type Unkn. Exact C Type C Not C Aggr. Total

SO 359 1 41 0 0 4 2 405

PATO 330 0 0 0 0 0 0 330

Plant 0 0 0 229 23 7 1 259

HDO 0 0 0 397 208 3 0 608

PROtein 166 4 22 0 0 1 0 193

Total 855 5 65 626 231 15 3 1795

Table 4.5: The results of applying Condition 3 to every consecutive pair of incre-
mental versions, listing the counts of Exact, Type and Unknown cases,
as well as Exact Contained, Type Contained and Not Contained. Addi-
tionally, the number of Aggregate change actions and the total number
of compared pairs are listed.

by the number of low level change actions. This shows the Plant Ontology to produce
the worst result, with a particularly high count of partial matches. This may indicate
a prevalent use of annotations in that specific ontology. IncVer performs consider-
ably better on the other datasets, with PROtein ranging at roughly 0.1 errors/LLCA

and the remaining ontologies having an error rate of 0.5 and below, and with an
overall error rate of approximately 0.1 errors/LLCA when counting partial matches
and 0.73 when excluding them.

It is also important to point out that unknown and missed axioms are not in-
dependent of each other but are in many cases related. If, for instance, IncVer
fails to correctly map an attribute, this will produce an unknown axiom, since the
unchanged attribute is not in the new version, as well as a missing axiom, since the
final version does not contain the correctly changed attribute. This may explain
why the numbers of unknown and missed axioms lie very close to each other for four
out of five datasets.

Finally, not all of the errors produced are caused by IncVer failing to apply
change actions correctly. As mentioned previously, COntoDiff has only very lim-
ited parsing capabilities, and while part of this issue has been addressed by extend-
ing the parser, some limitations still apply. Changes to annotations for instance are
completely ignored and other, multi-valued tags are only parsed partially. Given in-
complete information, it is obvious that IncVer cannot fully reconstruct the target
ontology version even with its best-effort approach.

4.2.4 Condition 3

The results of the evaluation with Condition 3 are presented in Table 4.5. The
columns are counts according to the distinctions made earlier in Section 4.1.2, rep-
resenting Exact, Type and Unknown cases, as well as Exact Contained, Type Con-
tained and Not Contained cases, in that order. In addition, the number of aggregate
change actions that were generated while producing the incremental versions and
the total number of generated versions is listed. Both warrant some explanation.

COntoDiff does not produce aggregate change actions — they are introduces

31



32 CHAPTER 4. EVALUATION AND DISCUSSION

Dataset HLCA Errored Versions

SO 405 0

PATO 330 0

Plant 275 16

HDO 610 2

PROtein 291 98

Total 1911 116

Table 4.6: Count of High Level Change Actions for every dataset, along with the
number of incremental versions that produced an error.

by the Logical Change Action Orderer by merging dependency cycles, as detailed in
Section 3.3.3. As such, running COntoDiff on the incremental versions will not
produce an aggregate change actions but the individual actions that make up that
aggregate change action and will appear as a Not Contained case in the evaluation.
For the sake of correctness, the resulting counts are kept in the table, but the
aggregate cases have all been inspected and the resulting change actions are indeed
the expected ones. Thus, the aggregate count is listed as well, and can be deducted
from number of Not Contained cases.

Additionally, Table 4.6 lists the high-level change action count after aggregation
along with the number of incremental versions that produced an error applying the
change and were subsequently not written to file. This is relevant to the data in
Table 4.5 since that data is only calculated over the successfully generated versions.
It is also an additional measure of performance, directly measuring the execution
error rate of the apply functions. Inspection of the errors for the PROtein Ontology
show that most of the errors are due to chgAttValue apply function not being able
to find an axiom in the new input version involving an xref attribute.

4.3 Discussion

Condition 1 aims to assess the degree to which unknown or wrong axioms are in-
troduced to the incremental versions. As expected, the numbers are low with only
0.014errors/LLCA overall. In addition, the unknown axioms are not wholly foreign
axioms but values that have been parsed incorrectly or incompletely, or definitions
and synonyms, who could not be looked up in the target ontology, again likely due
to the limited parsing.

Results for the arguably stricter Condition 2 paint a similar picture, although the
number of errors is slightly higher. Overall, approximately 0.07errors/LLCA occur if
partial matches are accepted, and a slightly higher 0.1errors/LLCA if partial matches
are considered errors. Two things are worthy of note: Firstly, there is some variance
between the different datasets and there seems to be little to no correlation between
size of ontology and error rate nor between low-level change action count and error
rate, but no deeper statistical analysis has been conducted on this. The higher error
count in some datasets may be due to more prevalent usage of annotation values and
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less common term tags, which were tested less or not at all. Secondly, the counts for
Unknown and Missed axioms are often related. If, for instance, a concept is mapped
incorrectly or an attribute is not deleted, an Unknown (to the new version) axiom is
present and the correct one is missing. Considering this, the results are acceptable,
with the exception of the Plant ontology which has a noticeably higher rate of errors
than the other ontologies, particularly when counting Partials as errors. In general,
there are no grave errors, but rather axioms that are not quite correct.

The analysis and interpretation of the results of the third condition is less straight-
forward. For the SO, PATO and PROtein Ontology, the majority of change actions
are indeed exact matches, showing good performance. While the Plant and Human
Disease ontologies each have 0 exact matches, they have many Exact Containment
matches, which indicates that the change actions did not completely fail. Indeed,
inspection of these Exact Containment cases revealed a peculiar pattern: almost all
generated diff sets contained the expected change action, but between every pair of
consecutive versions, COntoDiff also detects several mapC change actions. Further
inspection is required to fully understand this occurrence, but possible causes for
this may lie in the mapC implementation or with COntoDiff. In particular, one
possible explanation is that COntoDiff detects mappings between unchanged con-
cepts and since these concepts are never modified, they are detected between every
pair of ontologies.

Many Unknowns can be explained by partial application of composite change
actions. For instance, the move action consists of deleting an old relation and
adding a new one in its place. However, if an error occurs in the second step, the old
relationship is still deleted, as the composite apply functions for the most part do not
first ensure whether all component actions succeed, leading to a delR action being
detected instead of move. I deem it feasible for such consistency-checking behaviour
to be implemented if it is desired. For the example at hand: Whether it is preferable
for the old axiom to be kept in case of partial errors, or be deleted depends wholly
on the use case, ideally the complete composite change action should be applied.

Taken together, the results of all three validations paint a favourable picture.
While IncVer is by no means without issues that need yet to be addressed, and
which will be elaborated on in the following sections, it shows a lot of promise as
a base implementation. In particular, the surprisingly high performance on some
ontologies (SO, PATO, PROtein) shows that IncVer generally works well. This
assessment is supported further by the fact that many of the errors that occurred
can be traced back to one specific issue with the implementation, that can be feasibly
addressed.
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Limitations

This chapter briefly discusses some limitations of this thesis, given by its scope, time
constraint as well as those which derive from the results of the evaluation.

While the results presented in Chapter 4 are encouraging and demonstrate that
IncVer largely works, there are still some caveats. IncVer has some clearly defined
shortcomings that need yet to be addressed, some of which go back to COntoDiff:
not all attribute tags are yet supported, others are being only partially or incorrectly
parsed. The workaround for some attribute types implemented in IncVer that
consist of looking up attributes in the new input version amends this issue somewhat
but does not manage to completely solve it.

Closer inspection of the validation results for condition in Section 4.2.4 identify
further issues. The high count of errored versions in the PROtein Ontology shows
that handling of the xref attribute is not yet good enough, and warrants a re-
examination of the implementation of the chgAttValue apply function. Also, the
generation of mapC change actions between incremental versions for the Plant and
Human Disease ontologies is not fully understood yet and requires further inves-
tigation; it is possible, however, that this is not actually an error in IncVer, but
instead caused by COntoDiff detecting some unchanged concepts as mappings,
explaining why these mapC actions occur between all versions.

All in all, IncVer is expected to work well for many OBO ontologies, however,
perfect results are not to be expected. Manual inspection of the results may be
advisable. For automated inspection, the code implementing all three validations
conducted in this chapter is also included in the JAR distribution and can be exe-
cuted via the command line.

Going beyond the evaluation results, there are also some functional limitations.
The most prominent one is IncVer being restricted to OBO ontologies. Initially,
more broad support for other ontology formats, mainly OWL, was planned. However
after learning that COntoDiff only supports OBO, the scope had to be adjusted.
The support for typedefs is also very limited as has been laid out in Section 2.2.

As a final note on performance: the main bottleneck lies in the calculation of
the compact diff in COntoDiff. During testing and evaluation over the datasets,
the execution time mainly increased with diff size. Responsible for this seems to
be primarily the aggregation step, which repeatedly iterates over the complete diff
until no new aggregation is achieved. Obviously, writing more incremental version
also takes more time. Despite this, executing IncVer over the datasets resulted in
acceptable running times; as a reference value, generating the incremental versions
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for the HDO which yielded 610 incremental versions taking up approximately 2.84
GB completed in under 5 minutes on an Intel Core i7-8550U business laptop with
16GB RAM and SSD. Calculating diffs and generating incremental version over
larger datasets with many changes however will quickly reach infeasible levels of
space and time requirements.
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Future Work

The insights from building IncVer and the subsequent analysis of its results in
Chapter 4 provides multiple avenues to pursue for future work. Most obvious is the
addressing of the issues mentioned in Section 4.3 , including the re-examination of
some apply functions, such as mapC, and improvements to the attribute handling
(xrefs in particular) and annotations.

To inform the corrections and improvements that are required, more detailed
validation results might be necessary. The VERSIONLOG.csv that is produced when
IncVer is run could serve as a solid starting point, as it records exceptions that
occur during creation of incremental versions. The validation reports, produced
by running the validate command could also be updated to, perhaps optionally,
provide more detailed information.

Another issue is the rudimentary support for typedefs. It should be considered
only provisional and if more sophisticated tracking of typedef changes is required,
the results of the base IncVer implementation may not be of sufficient quality. This
may then require a different Diff Calculator than COntoDiff or a majorly revised
version, which tracks typedefs.

Shifting from corrections and improvements to extensions: an implementation of
pipeline components that support OWL ontologies would be a major contribution
to the framework. Many concepts used in the base implementation, such as the
dependency graph and cycle merging could be reused in an OWL counterpart.

Finally, an Ordering component that takes into account some version history
information, such as existing intermediate versions on version control systems or
edit history from ontology editors would go a long way in approximating real world
ontology evolution.
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Conclusions

This chapter marks the conclusion to this thesis, summarizing the work done and
recapturing my findings and the results that were attained.

With IncVer, I implemented an incremental versioning tool which allows for
the creation of detailed version datasets from two input ontology versions. These
resulting incremental versions differ only by a few changes between each consecutive
pair. Previously, researchers were limited to the releases of ontologies, which often
lie apart several months or even longer and usually contain hundreds to thousands of
changes between releases. IncVer makes it now possible to analyse change between
ontology versions on a much more granular level and it is thus expected to be of
particular use in the field of ontology evolution and impact analysis, where it is often
desired to have small and detailed changes instead of large swathes of changes, in
order to analyse the nature and impact of individual change actions or small groups
of related changes.

The modular architecture of IncVer is by design very extensible. Users are able
to customize every stage in its pipeline. The first component, the Diff Calculator,
is responsible computing a diff between two input ontology versions. An updated
version of COntoDiff was chosen as base implementation for this component, but
many other diffing approaches could conceivable be plugged in. The resulting diff, a
set of change actions, is passed on to the Ordering component, producing a sorted,
possibly transformed sequence of change actions. The base implementation is the
Logical Change Action Orderer, producing an arbitrary order, avoiding unmet de-
pendencies between change actions. To achieve this, I developed an approach which
represents the change actions as a dependency graph, merges cycles and then pro-
duces a topologically ordered sequence of change actions. It is possible to implement
custom Orderer components which can be tailored to specific research requirements,
such as modelling the evolution after real world patterns or taking edit histories into
account. The final Applying component takes the ordered list of change actions and
applies them incrementally to the old input version, evolving the ontology until it
reaches the state of the new input version.

To ensure correctness, three conditions were imposed on the generated incremental
versions, which had to be met for a result of running IncVer to be considered
correct. They examine whether unknown axioms were introduced, required axioms
were missing and whether the difference between two consecutive versions matches
the change action that was supposed to be applied. With these conditions converted
to more granular metrics, the incremental versions generated from five different
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datasets were evaluated, yielding promising results. It is thus fair to say that this
thesis was successful in providing a tool that allows for creation of detailed evolution
datasets. This now enables further research on ontology evolution and its effects.

Nonetheless, issues remain; The results of IncVer are not completely error free
and performance varies with the ontology used. The cause of most errors could how-
ever be narrowed down and at least some possible explanations could be formulated.
Because of time constraints, they could not yet be fixed.

IncVer is so far limited to OBO ontologies, dictated by the discovery that COn-
toDiff in effect only supports the OBO format. Furthermore, it only recognized
a fraction of the defined attribute tags, but this could be addressed by extending
the OBO parser. A further improvement has been implemented, parsing typedefs
separately, computing a very basic diff and adding new typedefs whenever the cor-
responding attribute is added for the first time or at the end.

The extensible nature of IncVer makes it a very flexible and promising tool for
the area of ontology evolution and change analysis. Apart from addressing remaining
issues, a potentially very useful extension would be the implementation of pipeline
components that support the OWL format. Given the high expressivity of OWL and
that it is possible to translate many ontology formats, including OBO, to OWL, this
would go a long way in making the approach of IncVer usable on a large number
of ontologies. Other improvements such as more sophisticated support for OBO
typedefs or including historical information when ordering change actions would
further increase the usefulness of IncVer.
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Appendix

A.1 Contents of the CD

• “Abstract.txt”, an unformatted text file containing the abstract

• “Zusfsg.txt”, an unformatted text file containg a German summary

• “Masterarbeit.pdf”, a PDF file of this master thesis

• Executable Jar Distribution of IncVer

• Configuration files “ChangeActions.xml” and “Rule OBO.xml”

• Java source code for IncVer

• Development documentation for IncVer

• Collection of synthetic datasets for testing IncVer

• Python script for out-of-order, line-based file comparison

• Ontologies used for evaluation

• CSV and text files containing evaluation results for evaluation ontologies

• LATEX files of this thesis
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