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Zusammenfassung

Daten-Wissenschafts-Notebooks sind die Notebooks, die für Datenwissenschaft-
stätigkeiten wie Erforschung, Zusammenarbeit und Visualisierung entwickelt werden.
Traditionsgemäss verwendet, wie ein instrument, zum von reproduzierbaren Ergebnis-
sen und von Dokumentation der Forschung bereitzustellen, sie in den letzten Jahren
wegen der enormen Zugkraft im Bereich des maschinellen Lernens bekannt geworden.
Wechselwirkende Notebooks sowie Jupyter, Zeppelin, und Kaggle sind etwas von dem
Primärplattformleutegebrauch für die Implementierung einer Datenwissenschaftsaufgabe.
Die Notebooks, benutzt von den Datenwissenschaftlern, um ihre Datenwissenschaftsauf-
gaben einzuführen, sind eine wichtige Quelle von den Daten für das Verständnis und
das Analysieren von Datenwissenschaftsrohrleitungen in der Praxis eingeführt gewor-
den. Jede Datenwissenschaftsrohrleitung enthält viele Datenwissenschaftstätigkeiten und
zwecks sie zu analysieren, ist es notwendig, zu identi�zieren, wo in einem gegebenen Note-
books jede Datenwissenschaftstätigkeit statt�ndet. Die Datenwissenschaftstätigkeiten in
den notebooks durch Experten zu beschriften ist ein Zeit raubender und teurer Prozess.
In dieser Master-Arbeit versuchen ich, die Datenwissenschaftstätigkeit/-tätigkeiten jedem
Zelle der Datenwissenschafts Notebooks unter Verwendung überwachtes maschinelles
Lernen zu klassi�zieren und zuzuweisen. Ich haben einen Satz allgemeine hochrangige
Datenwissenschaftstätigkeiten als Aufkleber identi�ziert und jedes Notebooks Zelle die
Aufkleber zuweisen, die auf der Datenwissenschaftstätigkeit basieren, die sie durchführen.
Mehrfache Datenwissenschafts-Tätigkeitsaufkleber sind zu jedem Zelle wegen der unter-
schiedlichen Kodierungsart der notebook benutzer, der Überschneidungstätigkeiten, des
etc. erlaubt worden. Ein Anmerkungsexperiment war entworfen und geleitet, um ex-
pert/s beschriftete zu erhalten Daten und ein Satz von 100 Experte angemerkten jupyter
Notebooks wird als Datensatz in den Experimenten benutzt. Python sind Klassen en-
twickelt worden, um verschiedene Merkmale aus den jupyter Notebooks für die Klassi-
�kationsaufgabe zu extrahieren. Mehrfachverbindungsstelle überwachte Klassi�katoren
(KNearest Neighbors, Support Vector Machine, Multi-layer Perceptron, Gradient Boost-
ing, Random Forest, Decision Tree, Naive Bayes, Logistic Regression) sind unter Verwen-
dung der Klassi�kationsmethoden Singlelabel und Multilabel für die Klassi�kationsauf-
gabe ausgewertet worden. Logistic Regression klassi�kator unter Verwendung Multilabel-
Klassi�kation hat im Vergleich zur Singlelabel Classi�cation eine höhere Präzision. Die
Forschung zeigt, dass Ensemble methoden und Logistic Regression für die Klassi�kation
des Quellcodes geschrieben in Notebooks passender sind. Die Bedeutung des Merkmale,
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die in den Forschungsfragen besprochen werden, stellen Einblicke in die informativen
Merkmale für Codeklassi�kation zur Verfügung. Der Vergleich der zwei Klassi�kation-
sparadigmen und der besseren Leistung von Multilabel-Klassi�kation im Hinblick auf
Präzision führt zu die Schlussfolgerung, dass Datenwissenschaftsrohrleitungen, wie in
den Notebooks gefunden nicht immer sequenziell sind und in hohem Grade die meisten
Zeiten überschneiden, sich im Vergleich zum theoretischen Design von Datenwissenschaft-
srohrleitungen. Ich haben auch eine Ontologie für Notebooks und die Datenwissenschaft-
stätigkeiten entwickelt und verwenden diese, um die Anmerkungen in der semantischen
Netzart zur Verfügung zu stellen, im Resource Description Framework (RDF)1 format
gespeichert für weitere Analyse. Darüber hinaus haben ich auch Ergebnisse der explo-
rativen Datenanalyse und der Leistung der unüberwachten Klassi�kation auf dem Daten-
satz produziert und diskutiert. Eine Analyse der inter-annotator Vereinbarung wird auch
diskutiert. Es ist wichtig, zu erwähnen, dass die Merkmals, die unter Verwendung dem
Systems erzeugt werden, in den Analysen auch benutzt werden können, die in andere
Kontexten eingestellt werden.

1https:// en.wikipedia.org/wiki/Resource_Description_Framework
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Abstract

Data Science Notebooks are notebooks developed for data science activities like explo-
ration, collaboration, and visualization. Traditionally used as a tool to provide repro-
ducible results and documenting the research, they have become prominent in the last
few years due to the enormous traction in Machine learning �eld. Interactive notebooks
like Jupyter, Zeppelin, and Kaggle are some of the primary platforms people use for
implementing a data science task. Notebooks, used by data scientists to implement
their data science tasks, have become an important source of data for understanding
and analysing data science pipelines implemented in practice. Each data science pipeline
contains many data science activities and in order to analyse them, it is necessary to
identify where in a given notebook each data science activity takes place. Labelling the
data science activities in the data science notebooks by experts is a time consuming and
expensive process. In this master thesis, I attempt to automatically classify and assign
the data science activity/activities to each cell of the data science notebooks using su-
pervised machine learning. I have identi�ed a set of common high-level data science
activities as labels and assign each notebook cell the labels based on the data science
activity they perform. Multiple data science activity labels have been allowed to each
cell due to di�erent coding style of the notebook users, overlapping activities, etc. An
annotation experiment was designed and conducted to get expert/s labelled data and a
set of 100 expert-annotated jupyter notebooks is used as a dataset in the experiments.
Python classes have been developed in order to extract various features from the jupyter
notebooks for the classi�cation task. Multiple supervised classi�ers (KNearest Neigh-
bors, Support Vector Machines, Multi-layer Perceptron, Gradient Boosting, Random
Forest, Decision Tree, Naive Bayes, Logistic Regression) have been evaluated using both
Singlelabel and Multilabel Classi�cation methods for the classi�cation task. Logistic
Regression classi�er using Multilabel Classi�cation has a higher precision compared to
Singlelabel Classi�cation. The research shows that ensemble methods and logistic regres-
sion are more suitable for classi�cation of source code written in notebooks. Features
importances discussed in the research questions provide insights into the informatory
features for code classi�cation. The comparison of the two classi�cation paradigms and
better performance of Multilabel Classi�cation in terms of precision leads to the con-
clusion that data science pipelines as found in notebooks are not always sequential and
are highly overlapping most of the times compared to the theoretical design of data sci-
ence pipelines. I have also developed an ontology for notebooks and the data science
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activities and use the same to provide the annotations in semantic web style serialized in
Resource Description Framework (RDF)2 format for further analysis. In addition, I have
produced and discussed the results of exploratory data analysis and the performance of
unsupervised classi�cation on the dataset. An analysis of inter-annotator agreement is
also discussed. It is important to mention that the features generated using the system
can also be used in analyses set in other contexts.

2https:// en.wikipedia.org/wiki/Resource_Description_Framework
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Introduction

1.1 Motivation

Data science is an interdisciplinary �eld that uses scienti�c methods, processes, algo-
rithms, and systems to extract knowledge and insights from data in various forms, both
structured and unstructured [Dhar, 2013]. Given the enormous amount of data generated
and data science techniques developed every day [Hey et al., 2009] [Gordon Bell, 2009],
Data science as a �eld continues to gain increasing importance. It should also be noted
that the data science methods are developed and used by not only computer scien-
tists, mathematicians, and statisticians but also people from various non-STEM �elds
for achieving their various needs. While data science techniques have been used to solve
a wide range of problems from automation to healthcare, there are scarce examples of
works studying the way data science pipelines/processes are implemented [Leek, 2013].
To be able to better design methodologies and frameworks that enable high-quality data
science for evolving needs, it is necessary to understand the way data science is designed,
implemented and reported by data science practitioners which provides the motivation for
the master thesis. Ultimately, the goal is to guarantee high-quality design and execution
of data science processes to every data scientist.

This thesis is a �rst step towards addressing this goal, as I investigate methods to
automatically annotate data science notebooks1, labelling parts of the notebooks that
refer to each of the steps in the data science process.

1.2 Research Questions

Goal. The main goal of this master thesis is to design and implement a method that
automatically classi�es and annotates the parts of the data science notebook into data
science steps/activities. Given a set of notebooks containing multimodal data (code, nat-
ural language like comments or markdowns, media like graphs or animations etc.), the
task is to automatically classify, label and annotate the parts of each of the them accord-
ing to the Data Science activity they carry out using state of the art machine learning

1Notebook, notebook, and Jupyter notebook are used interchangeably



1.3. CONTRIBUTION OF THE THESIS 3

methods [Pustejovsky and Stubbs, 2012]. The research questions that we address are
precisely:

1. What features in the notebook are more informatory to the automatic classi�cation
of data science notebooks?

2. Do non-code features like markdown/comments in notebooks improve classi�cation
accuracy?

3. Are import statements along with their library functions su�cient to classify the
code according to their data science activities?

4. Do popular2 coders produce notebooks that are easier to classify/have higher clas-
si�cation accuracy?

1.3 Contribution of the Thesis

The contributions of this master thesis are:

1. A method to automatically classify and annotate the parts of the data science
notebooks according to the data science activity it performs.

2. An evaluation of various classi�cation methods and techniques to automatically
classify the parts of the data science notebooks.

3. An ontology to annotate data science activities in the notebooks.

4. A data set containing RDF annotations about the notebooks and the data science
activities in them.

1.4 Thesis Structure

The rest of the thesis is structured as follows: Chapter 2 discusses the related work and
background knowledge in the �eld. In Chapter 3, the concepts discussed throughout the
thesis are introduced. Chapter 4 discusses the system and its components in detail. The
system is evaluated using the dataset presented in Chapter 5. Chapter 5 also presents
the methodology and an extensive analysis of the data which is followed by the results
of the classi�cation task using supervised machine learning techniques. The chapter
also presents the output of the classi�cation task using RDF annotations. Chapter 6
discusses the results and its insights further in detail. Rest of the chapters conclude the
thesis through Conclusions and Future Work.

2Popularity of a user is identi�ed using a number of features: forks, stars/upvoters, watchers count.
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Related Work

Classi�cation of source code for various purposes (identi�cation of programming lan-
guage, authorship, syntax classi�cation etc) has been explored for many years now while
scarce examples of studies that classify source code from notebooks exist. Only recently,
analysis of data science notebooks has gained attention and in this chapter, I will discuss
some of the existing works relevant to classi�cation of source code in the context of this
thesis. I also discuss in this chapter, existing ontologies representing any information
related to the data science process and activities that is relevant for the annotation task.

2.1 Analysis of Data Science Notebooks

So far, there has not been any published papers1 that classify notebook parts according
to the data science activity.

2.2 Code Classi�cation

More research has been focused on using machine learning techniques for classifying
source code but in di�erent contexts. [Barstad et al., 2014] uses static code analysis and
machine learning for predicting the code quality. K-Nearest Neighbour (KNN), Naive
Bayes (NB) and Decision Tree (DTree) are compared as classi�ers with Naive Bayes per-
forming the best for predicting badly and well-written code. [Zevin and Holzem, 2017]
uses max-entropy classi�er for programming language prediction. Other papers dis-
cussing classi�cation methods for source code analysis in di�erent contexts include
[Knab et al., 2006] which focuses on defect prediction in source code using Decision Tree
and [Ugurel et al., 2002] which discusses the multi-class classi�cation of source code by
category, and programming language using Support Vector Machines (SVM). Some of
the other papers discussing text classi�cation in general include [Burges, 1998] using
SVM and [Cavnar and Trenkle, 1994] which focuses on n-grams based text classi�cation.

1to the best of my knowledge
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In [Binkley, 2007], authors have published a summary on source code analysis and
discuss extensively the research that has been done previously and also on what challenges
lies ahead. I focus on the review about the �rst of three components (the parser, the
internal representation, and the analysis of this representation) in source code analysis,
parsing, which is relevant for our machine learning approach. "Parsing is the necessary
evil of most source-code analysis," says [Binkley, 2007] and suggests that source code
analysis should move from lexical and to semantics which is something I have left for the
future work.

User Style Features. [Pellin, 2006] focused on prediction of code authorship says
that user style of a coder is not captured because of the presence of auto-�lling and other
automatic code writing features. Instead of �at tree representation with term counts, the
authors represent features using syntactical tree structures. As notebooks do not support
a structured coding environment like a typical IDE, user style plays an important role in
the way a function is implemented or a code block is written. The authors also represent
each data point at a function-level granularity to represent which is not always typical
in notebooks. The function-level granularity also increases the documents in the corpora
and the authors suspect that programming patterns exist in methods.

Code Metrics Features. Halstead and McCabe Cyclomatic Complexity are used as
features in [Barstad et al., 2014] for predicting source code quality combining rule-based
static code analysis and machine learning.

Syntax based Features. In [Zevin and Holzem, 2017], authors use syntactical features
to predict the programming language of the source code using Maximum Entropy Classi-
�er. The authors replace alpha, numeric and punctuation sequences with constants since
each such sequences represents token of di�erent type and n-grams (uni, bi, tri) produced
using WEKA2 for grammar structures of programming language. [Ugurel et al., 2002]
uses words from code (including header �le names) and comments. The authors have
used words, bigrams and lexical phrases extracted from comments and README �les
for classifying source code by topic and programming language.

Sequence Capturing Features. Discovering sequences of labels or subsequences in a
set of sequences is of interest to us and helpful in identifying how data science pipelines
are designed. While sequential pattern mining for source code has not gathered attention,
few papers have been published that do consider the sequential nature of the lines of code
in the context of feature location. In [Bacchelli et al., 2012], for the purpose of content
classi�cation of development mails, the authors use features �@@-lineBefore�, and �@@-
lineAfter� to consider the lines before and after to recognize the structure of patch or
stack trace content.
2https://www.cs.waikato.ac.nz/ml/weka/

5
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2.3 Ontology modelling

There have been many ontologies created in the context of the semantic web, however,
there are only a few focusing on the representation of research and data analysis process.
Currently, no standard ontology for representing data science pipeline or notebooks infor-
mation is currently in existence. An ontology for data science terms and activities3 has
been developed by a team from IBM Research AI4 and Stanford University Statistics5.
While this provides a vocabulary for many activities that is a part of a data science task,
it does not include the concepts of a data science pipeline.

Another ontology, The Work�ow Motif Ontology6 that focuses on data related oper-
ation in a scienti�c work�ow has been developed by a team from Ontology Engineering
Group, Universidad Politécnica de Madrid, Spain, University of Southern California,
USA and University of Manchester, UK, based on the Taverna [Missier et al., 2010] and
Wings [Gil et al., 2011] work�ows, i.e., the work�ow of data in a general experiment.
What is required for our task is an ontology that sits between the two ontologies dis-
cussed above with work�ow ontology being a superclass and data science ontology being
subclasses (see Section 4.1.2).

3https://www.datascienceontology.org/ about
4https://www.research.ibm.com/arti�cial-intelligence/
5https:// statistics.stanford.edu/
6http:// vocab.linkeddata.es/motifs/
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Preliminaries

This chapter introduces the concepts of a notebook, its structure, and characteristics. I
also discuss in this chapter, di�erent data science pipelines that are in existence.

3.1 A Notebook

Notebooks are documents produced by the Jupyter Notebook App and is of �le type
.ipynb. They contain all the content from a Jupyter Notebook Web application session
including "both computer code (e.g. python) and rich text elements (paragraph, equa-
tions, �gures, links, etc.). Notebook documents are both human-readable documents
containing the analysis description and the results (�gures, tables, etc.) as well as exe-
cutable documents which can be run to perform data analysis"1. Jupyter notebook doc-
uments are stored in JSON plain text format and can be shared, and version-controlled.
Each notebook is composed of a sequence of cells. Each cell is a multiline text input
�eld which can be of type: code, markdown or raw. Notebooks also contain output cells
which display the results from the execution of a code cell. Figure 3.12 illustrates a
simple notebook and its parts.

3.1.1 JSON Structure of a Notebook document

Jupyter notebook �les are simple JSON documents. They contain text, source code, rich
media output, and metadata. A notebook at the highest level is a dictionary with the
following keys3:

1. metadata (dict): contains arbitrary JSONable information about your notebook,
cell, or output. Metadata used in this project are: kernel_language (notebook)

2. nbformat (int): declares notebook format

1https:// jupyter-notebook-beginner-guide.readthedocs.io/ en/ latest/what_is_jupyter.html#
notebook-document

2Figure adapted from https:// nbviewer.jupyter.org/ github/ ipython/ ipython/ blob/ 6.x/ examples/
IPythonKernel/ SymPy.ipynb

3https:// nbformat.readthedocs.io/ en/ latest/
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Figure 3.1: Basic structure of a notebook

Figure 3.2: Basic structure of a notebook cell

3. nbformat_minor (int): declares notebook format

4. cells (list): Cell is a segment of the document encapsulating code and text. All the
cells have a basic structure as shown in Figure 3.24

3.1.2 Types of Cells

There are di�erent types of cells in the notebook and they are described below.

1. Markdown: Markdown cells are used for body-text and contain markdown. Mark-
down is a lightweight markup language with plain text formatting syntax and is
a superset of HTML. In Jupyter notebooks, plain text is added in the cell of type
markdown. Markdown cell allows rendering of plain text, GitHub �avoured mark-
down or LaTeX and also allows embedding code.

2. Code: Code cells contain lines of code which are the primary content of a notebook.
They can also contain comments. Code is written in the language associated with
the kernel and on execution produces a list of outputs which are displayed in Output
cell. Code cells may be denoted with execution_count of type int or null.

4Figure adapted from https:// jupyter-notebook.readthedocs.io/ en/ stable/ notebook.html

9
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Figure 3.3: An example of stream output in notebooks

3. Raw NBConvert: Raw cells contain content that will not be rendered by notebook
authoring environment and is not modi�ed in nbconvert output (e.g. LaTeX).

4. Output: Output cells display output from the execution of a code cell. Output can
be of various types: stream output, display_data, execute_result or error and is
indicated by output_type.

3.1.3 Output types

1. stream output: stream output (stdout or stderr (see Figure 3.35))

2. display_data: rich display output data with mime-type key.

3. execute_results: contains execute count and results of an execution.

4. error: traceback of a failed execution.

3.1.4 Cell attachments

Markdown and raw cells can have a number of attachments. The attachments can be
referenced in the markdown content of a cell and are typically inline images6.

3.2 Data Science Pipeline and Steps

In order to annotate notebooks in terms of the steps/activities in data science, it is
important to �rst identify what these steps are. Di�erent sources identify a di�erent
set of activities for a data science pipeline. Data science pipeline is a series of data-
related activities connected in a sequential manner to go from obtaining the data to

5Figure adapted from https:// jupyter-notebook.readthedocs.io/ en/ stable/ examples/Notebook/
RunningCode.html

6https:// nbformat.readthedocs.io/ en/ latest/ format_description.html#cell-attachments

10



3.2. DATA SCIENCE PIPELINE AND STEPS 11

Figure 3.4: Data Science in Theory and Practice

model or interpret the data. While data science pipelines can have more, or less data-
related activities depending on the business problem at hand, there is no one prescribed
work�ow. Figure 3.4 shows the common data science pipelines suggested in both theory
(by academics) and practice (by freelance data scientists and organizations).

While business understanding is a part of the data science pipeline in industries,
problem understanding/framing is an integral part of every data science pipeline except
academia. After the collection of data necessary for the problem, review/validation of
data is considered as a separate part in only some of the pipelines which are also the case
with Extract, Transform and Load (ETL) step. Data preprocessing is a part of every
data science pipeline suggested and I suspect those pipelines which did not emphasize
on review/validation or ETL assumed them as a part of data preprocessing. While
Modelling is a part of all the suggested data science pipelines, evaluation, parameter
tuning, prediction, and visualization/reporting are only emphasized in some of them.
This exposes the overlapping nature of the data science activities and inconsistency
in the de�nition of the activities suggested, practised, and required in a data science

11



12 CHAPTER 3. PRELIMINARIES

pipeline.

3.2.1 Data Science pipeline in Notebooks

Business Understanding and Problem Framing are not programming tasks7. Hence,
they will only appear at most as markdowns in well-documented notebooks. It is also
important to note that while ETL is an important part of the data science pipelines, most
of the times, data is already collected and to some extent processed and put together
by ETL (Extract, Transform, Load) tools before being loaded into notebooks. In the
case of notebooks, it is also possible ETL and data analysis are performed in di�erent
notebooks. So, I expect the data science pipelines in a single notebook to contain less
data preparation than what would be required in reality. Although reporting form an
integral part of the data science pipeline, I do not expect to have reporting as a data
science activity in all notebooks except the well-documented ones [Rule et al., 2018].
Similarly, I do not expect deployment as an activity in notebooks, as it is not typically
implemented using notebooks.

7https:// data.sngular.com/ en/ art/ 48/ crisp-dm-phase-i-business-understanding
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4

System Design

This chapter discusses the designs decisions, architecture, and the components of the
automatic annotation system in detail. In this chapter, I �rst discuss what is a basic
unit of annotation i.e., what constitutes a 'part' of the notebook, which are the parts
that perform a data science activity and what are the data science activities that will be
used as classi�cation labels. Next, I introduce the system and its components. Finally,
I discuss each component and its functionalities in detail.

All the classes, methods and notebooks implemented for the system are discussed in
brief in A.1. More details and comments are available in the implemented classes and
notebooks.

4.1 System and its Components

4.1.1 Design Decisions

The �rst step in classi�cation of the parts of the notebook is to identify what a 'part'
(granularity) of the notebook is and then generate a feature vector for each part to
be classi�ed. In case of a single jupyter notebook, granularity levels could be viewed
as cell-based or line-based. The intuitive way of viewing the granularity in a Jupyter
notebook is cells. Some users prefer to write a complete functional code block in
one cell, while some, prefer a few lines or a single line in one cell. For example,
writing import statements in two cells depending on their functionality. In this thesis,
cell granularity is chosen for two important reasons. One, it is the actual unit of a
jupyter notebook. Two, any data science activity is usually accomplished with few lines
of code rather than a single line of code which means annotating a block of code is enough.

As stated in Section 3.1.2, there are di�erent types of cells available in a notebook.
As only cells of type code actually perform a data science activity, only code cells will
be annotated in the notebook. Markdown or RawNB provide the context to the data
science activity while Output provides the results of a data science activity.
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Figure 4.1: Automatic Annotation System for Data Science notebooks

Another important task in classi�cation is to identify the set of classi�cation labels,
here, activities in a typical data science pipeline. As I discussed in Section 3.2, there is no
one de�ned approach to what is a standard data science pipeline. Figure 3.4 shows that
a pipeline can contain 5-10 activities according to the user: organizations, non-expert
users or individual experts. In order to arrive at an appropriate number of steps of a data
science pipeline, our own practical knowledge and knowledge from Figure 3.4 is used.

4.1.2 Components

Based on the design decisions, a system for Automatic Annotation of Data Science Note-
books has been developed. In order to provide a clearer picture of the system, I present
four important steps as illustrated in Figure 4.1 which depicts the high-level view of the
Automatic Annotation System for Data Science Notebooks. Data preparation compo-
nent prepares the data by extracting features from notebooks, which along with the label
from experts is used to train the classi�er for code cell classi�cation task. The trained
classi�er is used to predict the labels for the test set. The output of the classi�cation task
for the test data will be then serialized in RDF (see Section 5.6) based on Data Science
Process and Notebook Ontology (see Section 4.1.2) and linked data concepts. Each of
the components in the system is explained in detail in the following sections.

15
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Data preparation

Data preparation is the �rst and foremost process in a classi�cation task. In order to
perform classi�cation, we need to �rst extract features from the data science notebooks
that will include notebook content, metadata about the notebooks and any other relevant
data. Each cell in a notebook thus represents a data point as I consider cell granularity
(discussed in Section 4.1.1). Using a feature vector per cell increases the data points in
our dataset and I also retain the sequential nature of the cells in a notebook using several
other features like execution_count, cell_number etc.

A parser for the notebook (see Section A.1.1) along with various other classes has been
implemented to extract the features from each notebook, its metadata and other relevant
sources (see A.1 for implementation details). Together they form the Parser/Feature
Generator in the system. Feature generation is primarily focused towards notebooks
stored in GitHub or Kaggle but are applicable to any notebook of .ipynb type. The
features are explained in Section 4.1.2. The data sources used for feature generation are:

1. Jupyter notebooks

2. Metadata information for Jupyter notebooks

Feature Engineering In this section, I explain the feature vector generated using the
Parser/Feature Generator (see Section A.1.1) for each cell in a notebook. Each feature
vector of a cell apart from the main content of the cell also includes few other features
to capture notebook context (indicated by †), i.e., they are common for all the cells
for a given notebook (e.g. �lename or kernel language). The features are common and
have the same de�nition for all the notebooks created using di�erent work�ow systems
(Jupyter or Kaggle Kernel) unless otherwise mentioned. The features are divided into
four categories based on what they represent. They are Notebook document features,
Style features, Statistical features, and Popularity features. In total, there are 60 features
which can be either text-based or numeric-based and are explained in detail below.

Notebook document features Notebook document features are features based on
the content available in a notebook document.

�lename† Filename indicates the name of the notebook �le in the dataset.

cell_number Cell number indicates the position of the cell in a given notebook. Cell
number along with �lename uniquely identi�es a cell in the dataset.

execution_count Execution count indicates the order in which a cell was executed
by the user in a notebook.

linesofcode Lines of code indicates the total number of lines in a given cell of cell_type
code.

16
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linesofcomment Lines of comment indicates the total number of comment lines in a
given cell of cell_type code. Any line that starts with '#' is considered as a comment
line.

linesofmarkdown Lines of markdown indicates the total number of lines in a given
cell of cell_type markdown.

function_count Function count indicates the number of functions in a given cell of
cell_type code. Any line that starts with the keyword 'def' is considered to be a function.

variable_count Variable count indicates the number of variables in a given cell of
cell_type code. A variable is considered to be any keyword composed of alphanumerics
and _ with a '=' to the right. Parameters are not considered.

cell_type Cell type indicates the type of a cell which can be any of the values in
[markdown, code, output, raw].

text Text contains either the code content or markdown/raw content depending on the
cell_type.

import_text Import text are content of library import statements in a given cell
of cell_type code. Any line that starts with 'import..as..' or 'from..import..' or
'from..import..as..' is considered (python). Similarly, library imports for other languages
are handled according to their respective structure.

comment All the comments in a given code cell. This feature is valid only for code
cells.

output_name This indicates the name of the output. This feature is valid for the
cells of cell_type output.

output_text This indicates the content of the output. For example, image/png or
text/plain. This feature is valid for the cells of cell_type output.

output_type This indicates the type of the output. For example, display_data. This
feature is valid for the cells of cell_type output.

code_line_before code_line_before indicates the last line of code in a code cell pre-
ceding the current cell. In case of the cells of cell_type markdown or raw_nb, this
information is obtained from the code cell preceding it (may or may not be immediately
preceding).

17
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code_line_after code_line_after indicates the �rst line of code in a code cell fol-
lowing the current cell. In case of the cells of cell_type markdown or raw_nb, this
information is obtained from the code cell following the current cell (may or may not be
immediately succeeding).

markdown_heading markdown_heading indicates the �rst line of a markdown cell.
In case of the cells of cell_type code, this information is obtained from the markdown
cell preceding it (may or may not be immediately preceding).

kernel_language† This indicates the kernel language of a given notebook. It is ob-
tained from ['kernelspec']['name'] of notebook metadata (JSON).

language† This indicates the language of the notebook. It is obtained from ['language']
of notebook metadata (JSON).

language_version† language_version indicates the version of the language of a given
notebook. It is obtained from ['language_info']['version'] of notebook metadata (JSON).

Style/User features User-based features or Style-based features are features that
identify the user and repository information associated with a notebook and is generated
from corpus metadata.

repo_id† repo_id is the repository id of the notebook. Each repo_id is unique and
belongs to the repository. Each repository may contain one or many notebooks i.e., one
or many notebooks may have the same repo_id.

owner† owner indicates the owner id/name of a notebook or the repository containing
the notebook.

readme† readme contains the readme information of a repository (in case of GitHub).

Statistical/Metric features Statistical or Metric-based features are features that
contain code metrics for a given notebook. I have two set of metrics: standard code
metrics implemented through radon1 and custom metrics generated using classes imple-
mented in Feature Generator for the notebooks.

radon. I generate standard code metrics using radon library2. The metrics take into
account the whole of the notebook. Hence, the metrics are same for all the cells in a
notebook. I convert the .ipynb notebook to .py script and generate the metrics using
radon API3.
1https:// pypi.org/ project/ radon/
2Radon introduction to Code Metrics https:// radon.readthedocs.io/ en/ latest/ intro.html
3https:// radon.readthedocs.io/ en/ latest/ api.html

18
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r_loc† "The total number of lines of code. It does not necessarily correspond to the
number of lines in the �le."

r_sloc† "The number of source lines of code - not necessarily corresponding to the
LLOC."

r_comments† "The number of comment lines. Multi-line strings are not counted as
comment since, to the Python interpreter, they are just strings."

r_multi† "The number of lines which represent multi-line strings."

r_blank_lines† "The number of blank lines (or whitespace-only ones)."

r_single_comments† The number of single line comments.

r_distinct_operators† The number of distinct operators (η_1)

r_distinct_operands† The number of distinct operands (η_2)

r_total_operators† The total number of operators (N_1)

r_total_operands† The total number of operands (N_2)

r_program_vocabulary† (η = η_1 + η_2)

r_program_length† (N = N_1 +N_2)

r_calculated_length† (N̂ = η_1 log_2η_1 + η_2 log_2η_2)

r_di�culty† (D =
η_1

2
· N_2

η_2
)

r_e�ort† (E = D · V )

r_time† (T =
E

18
) seconds (time to program)

r_bugs† (B =
V

3000
) (no of delivered bugs)

r_halstead_volume† (V = N log_2η)
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r_lloc† "The number of logical lines of code. Every logical line of code contains exactly
one statement."

r_percentage_of_lines_of_comment† The percent of lines of comment (multiline
strings as comment lines are not counted)

r_maintainability_index† Maintainability Index (MI) score in the range 0-100.

r_maintainability_rank† Maintainability rank based on MI score.

1. MI score 100 - 20, Rank A, Maintainability Very high

2. MI score 19 - 10, Rank B, Maintainability Medium

3. MI score 9 - 0, Rank C, Maintainability Extremely low

r_cyclomatic_complexity† Cyclomatic Complexity (CC) score in the range 0-100.

r_cyclomatic_complexity_rank† Cyclomatic Complexity rank based on CC score.

1. CC score 1 - 5, Rank A, Risk low - simple block

2. CC score 6 - 10, Rank B, Risk low - well structured and stable block

3. CC score 11 - 20, Rank C, Risk moderate - slightly complex block

4. CC score 21 - 30, Rank D, Risk moderate - more than moderate - more complex
block

5. CC score 31 - 40, Rank E, Risk moderate - high - complex block, alarming

6. CC score 41+, Rank F, Risk moderate - very high - error-prone, unstable block

Custom Metrics. Below custom metrics are generated using class:NotebookMetrics
and class:CodeCellMetrics.

tot_loc_per_nb† Total number of lines of code (in cells of cell_type code) in a given
notebook.

tot_locomment_per_nb† Total number of lines of comment (in cells of cell_type
code) in a given notebook.

tot_function_count_per_nb† Total number of function blocks (in cells of
cell_type code) in a given notebook.

20
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tot_variable_count_per_nb† Total number of variables (in cells of cell_type code)
in a given notebook.

no_of_code_cells_per_nb† Total number of code cells in a given notebook.

code_tokens_per_nb† Total number of code tokens (tokenized using nltk's
word_tokenize) in a given notebook.

no_of_markdown_cells_per_nb† Total number of markdown cells in a given
notebook.

markdown_tokens_per_nb† Total number of mardown/raw tokens (tokenized us-
ing nltk's word_tokenize) in a given notebook.

Popularity features Popularity-based features are features that indicate the popu-
larity of a notebook. In the case of GitHub, it is indicated using the popularity of the
repository containing it. In the case of a Kaggle Kernel, it comes from the fork and
upvotes information of the kernel.

For GitHub4, the popularity features are:

fork_count† Number of times a repository containing the notebook is forked.

star_count† Number of GitHub users who have bookmarked the repository. Stars
also indicate the number of appreciation a repository has received.

watcher_count† Number of GitHub users watching the repository to receive noti�-
cations on new pull requests and issues that are created for a repository.

For Kaggle5, the popularity features are:

fork_count† Number of times a Kaggle kernel is forked.

star_count† Number of times a Kaggle kernel is upvoted.

watcher_count† Cells from Kaggle Notebook kernel will have value 0 for the
watcher_count feature by default (since there is no such feature in Kaggle).

4https:// help.github.com/ categories/ exploring-projects-on-github/
5https://www.kaggle.com/docs/ kernels#collaborating-on-kernels
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External features

packages_info This feature indicates the man-page information about the libraries
imported in a given cell. The information contains the description of libraries as given
in an external source: The Python Package Index (pypi)6.

Annotated dataset preparation for Supervised Learning

Supervised classi�cation requires expert labels which are collected using an annotation
experiment to train the model. The following section explains the classi�cation labels
applicable to the classi�cation task (classifying cells of a notebook).

Classi�cation Labels Using the analysis of data science activities in Section 3.2,
10 labels were chosen (7 data science activities (indicated by *) + 3 generic activities
(indicated by **)). They are explained below:

load_data** Load data is the process of loading a dataset into a jupyter notebook
environment. The dataset can be of any type (e.g. .csv, .pkl, .jpg, .png, .hdf5), which
once loaded is intended to be used for data analysis or any data science activity.

helper_functions** Helper functions are import statements or other piece of code
which are not directly related to the data science activity at hand and rather are useful
functions in scripting. For example, built-in jupyter notebook magic commands. A
concrete example would be %matplotlib inline which sets the inline backend so that the
output plots are displayed directly below the code cell that executes it. Some more
examples would be import pandas as pd, from IPython.display import Audio, %pprint.

comment_only** Comment only labels are applicable to code cells which contain
only comments. This is not valid for markdown or raw type cells.

data_preprocessing* Data preprocessing includes tasks such as cleaning, instance
selection, normalization, transformation, feature extraction, feature selection, etc. Data
preprocessing is used to transform the raw data into clean data. It ensures that the
data does not contain irrelevant, redundant and inconsistent data. The product of data
preprocessing is the �nal training set.7

data_exploration* Data exploration8 or Exploratory Data Analysis is an approach to
initial data analysis whereby a data scientist or an analyst uses techniques to inspect what
is in a dataset and understand the nature and characteristics of the data. Summarization

6https:// pypi.org/
7https:// en.wikipedia.org/wiki/Data\_pre-processing
8https:// en.wikipedia.org/wiki/Data\_exploration
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of data's main characteristics and clearly emerging patterns are helpful in deciding the
models and hypotheses. Data exploration often involves visual exploration.

modelling* Modelling is the process of applying (/�tting) various learning or statistical
models and algorithms on the data in order to 'perform a speci�c task without explicit
restrictions, relying on models and inferences instead'9. Modelling can be descriptive,
predictive or prescriptive depending on the business problem.

prediction* Prediction is an important step as many of the Data science tasks are
predictive modelling tasks. Once the model has been trained, it can be used to predict
the output on a new set of data.

evaluation* Evaluation is the process of evaluating a model using various evaluation
metrics like the goodness of �t between model and data, accuracy, f1score and so on.
Evaluation is also done to compare di�erent models, in the context of model selection,
and to evaluate how accurate are the predictions (associated with a speci�c model and
data set)10.

result_visualization* Result visualization is the data visualization step of a Data
Science pipeline. It is the graphical representation of information and data. By us-
ing visual elements like charts, graphs, it enables decision-makers to see the analytics,
model performance, results visually and understand trends, detect outliers and patterns
in data11.

save_results* Save results is the process of serializing and storing the results from a
data science activity.

Simulation A simulation of expert annotation was done with a mixed group of experts
(Engineering, Finance, Computer Science) who have knowledge about data science. The
observations from the simulation regarding the availability of instructions, clarity of
tasks assigned, availability of resources, and other general comments were taken into
consideration while designing the expert annotation task. The purpose of the simulation
was to understand and identify the clarity of instructions, completeness of classi�cation
labels, output format, and the time required to complete annotation.

Annotation Experiment: Training labels by experts Code cell classi�cation task
requires labelled dataset. Data science activities are the class labels5.4.1 and are essential
in the supervised learning12 task of a classi�er. As the thesis investigates both Single-
label Multiclass and Multilabel Multiclass classi�cation, annotation task is designed in

9https:// en.wikipedia.org/wiki/Machine_learning#Models
10https://www.oreilly.com/data/ free/ evaluating-machine-learning-models.csp for more information
11https://www.tableau.com/ learn/ articles/ data-visualization
12https:// en.wikipedia.org/wiki/ Supervised_learning
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such a way that all the relevant labels and a primary_label for a given classi�cation
instance is captured. To put it concretely, each code cell will be assigned a set of labels:
[primary_label, relevant_label1, relevant_label2...relevant_labeln]. Figure 4.2 shows a
sample annotation template with classi�cation labels recorded. primary_label will be
used in Singlelabel Multiclass classi�cation and the complete set of labels will be used in
Multilabel Multiclass classi�cation.
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The following annotation task is set up in order to obtain the class labels for a data
science notebook based on a given set of guidelines and questions. The class labels are
to be obtained from data science experts manually inspecting and annotating the data
science notebook.

Goal. The goal is to annotate a given data science notebook i.e, assign one or more
classi�cation labels (data science activities) to each code cell based on the guidelinesA.3.

Annotator Pro�le. The annotator is a data science expert with considerable experi-
ence in the activities involved in a Data Science project. The annotator can also be a
computer scientist/statistician or someone who is involved in a computational discipline
and has some practical experience with data science projects.

Class labels. Load Data (load_data), Helper Functions (helper_functions), Com-
ment Only (comment_only), Data Preprocessing (data_preprocessing), Data Explo-
ration (data_exploration), Modelling (modelling), Evaluation (evaluation), Prediction
(prediction), Result Visualization (result_visualization), Save Results (save_results).

Output. Annotators were asked to indicate their labels for each code cell in a notebook
in an annotation template <�lename>.xlsm or <�lename>.csv �le (see Figure for the
format), for each notebook separately. In addition, the experts were asked to indicate
how con�dent (in the scale of 0-100) they are about the annotation and how well-written
(understandable, clarity of process, clarity of code) is the notebook (in the scale of 0-10).

Code Cell Classi�er

The classi�cation task of our annotation system, code cell classi�cation (refer to 5.5) is
implemented by instantiating various state of the art classi�ers available in scikit-learn.
The classi�ers are discussed in brief in Section A.5. Code cell classi�cation aims to
implement and evaluate the classi�er that best classi�es the code cells in data science
notebooks according to the data science activity. I explore both Singlelabel and Multi-
label classi�cation methods while using binary relevance (OnevsRest in scikit-learn) as
the classi�cation technique for Multilabel classi�cation. Figure 4.3 illustrates a simple
notebook annotated according to the data science activities.

Data Science Process and Notebook Ontology

"The W3C Web Ontology Language (OWL) is a Semantic Web language designed to
represent rich and complex knowledge about things, groups of things, and relations
between things."13. Ontologies (or vocabularies) are documents that de�ne and describe
the concepts and relationships of a particular domain and exist as OWL/RDF etc.
There are many ontologies available14 that can be reused to represent the knowledge in

13https://www.w3.org/ 2001/ sw/wiki/OWL
14List of Ontologies https://www.w3.org/wiki/Lists_of_ontologies
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Figure 4.3: A simple notebook and its annotations.

the world wide web15.

Data science activities representation in notebooks requires a vocabulary that de�ne
concepts about notebooks, data science activities and the relationship between them. A
new ontology, Data Science Process and Notebook Ontology (no) (see Section A.2) has
been developed that de�nes the concepts of notebooks and data science activities I have
identi�ed in a data science pipeline. I also reuse RDF ontology and OWL ontologies
wherever possible.

15Refer https://www.w3.org/ standards/ semanticweb/ ontology for more information.

27



28 CHAPTER 4. SYSTEM DESIGN

F
igure

4.4:
D
ata

Science
P
rocess

and
N
oteb

ook
O
ntology

28



4.1. SYSTEM AND ITS COMPONENTS 29

Figure 4.5: Data Science Process and Notebook Ontology: Classes and Properties

The no ontology developed contains concepts, data properties and object properties
relevant to semantically annotate data science notebooks and is described below. The
Ontology is designed using Protégé16 and is represented in .owl format.

Figure 4.4 shows the ontology no visualized using ProtégéVOWL17.

Concepts and Relationships

Figure 4.5 shows concepts (classes and subclasses) and relationships (data properties and
object properties) of the no ontology as in Protégé.

Concepts

1. Concepts for Notebook: Notebook, NotebookCell, Markdown, RawNB, Code .

2. Concepts for Data science process: DataScienceWork�ow, HelperFunctions, Load-
Data, DataPreprocessing, DataExploration, Modelling, Evaluation, Prediction, Re-
sultVisualization, SaveResults.

Data Properties cell_number, �le_extension, name, owner, programming_language,
published_in_platform, type, url, work�ow_system, work�ow_type

Object Properties hasDataScienceActivity (n:n), hasNotebookCell (1:n), isData-
ScienceActivityIn (n:n), isNotebookCellOf (n:1)

16https:// protege.stanford.edu/
17http:// vowl.visualdataweb.org/ protegevowl.html
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Annotation Generator

A notebook (refer to Section A.1.7) has been implemented to produce annotated dataset
based on the ontology developed given the data science activity labels for a set of data
points. Annotation is serialized in the RDF format and follows the linked data concept.
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5

Experiments and Results

In this chapter, I present the data, methodology, experimental setup and the results of the
empirical evaluation that I accomplished for the automatic annotation task. Moreover, I
showcase the RDF annotation process to generate a data set that represents notebooks
and its data science labels using Data Science Process and Notebook Ontology.

5.1 Data

In this chapter, I present the corpora of Notebook documents (or "notebooks") containing
GitHub Notebook documents corpus and Kaggle Notebook documents corpus. I then
discuss in brief the characteristics of the dataset chosen for the experiment.

5.1.1 Corpora of Jupyter Notebook Documents

Jupyter notebook corpora used in this thesis contains notebooks retrieved from two
sources: GitHub and Kaggle. All the notebooks have been created using Jupyter work�ow
system that supports various programming language kernels.

GitHub corpus

GitHub corpus contains a part of the ~1 million Jupyter notebooks1 dataset created
for exploration of how people use narrative text in Jupyter Notebooks. The dataset is
published by the Design Lab2 team at UC San Diego3 and also includes metadata infor-
mation of the repository [Rule et al., 2018]. The metadata information of the repository
has been used to retrieve owner information, repository information including README
for the GitHub notebooks. Other metadata information for GitHub corpus (refer to
Section 5.1.1) such as fork, star, and watcher counts have been retrieved using the im-
plemented classes (see Section A.1). Python notebooks account for a large portion of the
data (97%) while R and Julia are the other prominent languages (see Figure 5.1) in the

1Dataset https:// library.ucsd.edu/ dc/ collection/ bb6931851t
2https:// designlab.ucsd.edu/
3https:// designlab.ucsd.edu/
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Figure 5.1: Language composition of GitHub Corpus

dataset. The notebooks are obtained from over 1000 repositories which are generated by
academics, data science practitioners etc.

Kaggle corpus

Kaggle corpus contains publicly available Kaggle notebooks4 retrieved for a set of search
keywords5 using Kaggle API. Metadata results for the notebooks including the links to
the Kaggle notebooks are retrieved using Kaggle API6. Value:ref in the metadata is then
used to download the notebook. Features like fork and upvoters have been retrieved
using classes implemented for the thesis. A total of 111 notebooks are available in the
corpus of which 100% are of programming language python.

A Kaggle notebook document is one of the possible types of Kaggle kernel (others
being RMarkdown Scripts and Scripts). Kaggle notebook kernel supports Python and R
as a programming language and consist of a sequence of cells, where each cell is formatted
in either markdown (for writing text) or in a programming language of one's choice (for
writing code)7.

5.1.2 Selection of Dataset

4https://www.kaggle.com/docs/ kernels
5More details in the implementation
6https:// github.com/Kaggle/ kaggle-api
7https://www.kaggle.com/docs/ kernels
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I chose a total of 100 notebooks containing GitHub and Kaggle notebooks, out of
which 90 notebooks form training dataset (out of which 15 form validation dataset) and
10 notebooks form test dataset. Figure 5.2 shows the dataset selection stages in detail.

Characteristics of the dataset

The corpus of both GitHub and Kaggle contains Jupyter notebooks that were employed
for di�erent purposes. As the thesis focuses on data science notebooks, a smaller set of
notebooks were chosen according to the task the notebooks perform. The dataset chosen
from the corpora satis�es following conditions.

Kernel language The corpora contains notebooks composed of various programming
languages. Figure 5.3 shows the composition of languages in the dataset, both training,
and the test set. All the notebooks selected for the experiment use Python as their kernel
language while the parser developed works also on a notebook of any kernel language.

Purpose Only notebooks that were developed for the purpose of a data science task
are considered. I identi�ed this manually by inspecting the notebooks.

5.2 Methodology

For the evaluation of the automatic annotation system, I followed the following method-
ology.

1. I generate features from the GitHub and Kaggle notebooks dataset selected for the
experiment (see Section 5.3).

2. I prepare classi�cation labels for the training (including validation) and test dataset.
I also get the classi�cation labels for the notebooks from data science experts using
the annotation experiment designed (see Section 4.1.2).

3. I perform an exploratory analysis to understand the characteristics of the dataset
in various dimensions (see Section 5.4) using statistical and unsupervised machine
learning methods.

4. After selecting the data points for classi�cation from the dataset, i.e., data points
of cell_type code, I split the dataset into training (70% of the notebooks dataset),
validation (20% of the notebooks dataset) and test (10% of the notebooks dataset)
set.

5. I select the text-based features and perform data preprocessing using the methods
available in the Preprocessing class for training, validation, and test set.

6. After which, I vectorize the text features of the dataset using T�df method.
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Figure 5.3: Language composition of the Dataset for Experiment
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7. I then perform feature selection using chi28 method.

8. I select the statistical features as required to complete the feature vector.

9. I perform standardization of the features to represent both text-based and
statistical-based features on the same scale.

10. I investigate several classi�cation methods using both Singlelabel and Multilabel
Multiclass classi�cation for the thesis and identify the best classi�er given the setup
(see Section 5.5 for results). (This step is one-time evaluation.)

11. Given the best classi�er, I evaluate the estimators (best hyperparameters) using
GridSearchCV9. GridSearchCV uses Prede�nedSplit cross-validator10.

12. I train the classi�er using the training set (classi�er parameters are identi�ed by
GridSearchCV in the previous step).

13. Using the trained classi�er, I predict the classi�cation labels for the test set.

14. At the end of the classi�cation task, I produce a dataset with RDF annotations
using predicted labels and notebook information based on the Data Science process
and Notebook Ontology.

15. I verify that the dataset with RDF annotation is semantically analysable using
SPARQL queries.

16. Based on the observations from the classi�cation task, I answer the research ques-
tions.

17. I discuss in detail about feature importance and other relevant points on classi�-
cation accuracy.

5.3 Data Preparation

This section discusses the data preparation process of notebooks dataset which includes
feature generation and preparation of classi�cation labels for the dataset.

5.3.1 Feature Generation

I generated the features explained in Section 4.1.2 for the dataset of 100 data science
notebooks using Notebook Parser and classes implemented in Feature Generator (see
Section A.1.1). Classes used and their characteristics are given below:

1. CellFeatures: For each cell in the notebook, a feature vector is generated.

8https:// scikit-learn.org/ stable/modules/ generated/ sklearn.feature_selection.chi2.html
9https:// scikit-learn.org/ stable/modules/ generated/ sklearn.model_selection.GridSearchCV.html

10https:// scikit-learn.org/ stable/modules/ generated/ sklearn.model_selection.Prede�nedSplit.html
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2. PypiPackagesInformationFeatures: For each cell in the notebook, a feature vector
is generated.

3. StyleFeatures: The feature values generated using this class are common for all the
cells of a notebook. For Kaggle, the author is considered as the owner. Kaggle will
not have repo_id and readme (not applicable) and will have a None value.

4. CodeMetrics Class: The feature values generated using this class are common for
all the cells of a notebook.

5. NotebookMetrics: The feature values generated using this class are common for all
the cells of a notebook.

6. CodeCellMetrics: The feature values generated using this class are common for all
the cells of a notebook.

7. PopularityMetrics: The feature values generated using this class are common for
all the cells of a notebook. Since popularity metrics require metadata as in GitHub
corpus format, a python function for Kaggle metrics is implemented separately. In
Kaggle, totalVotes is the star_count and forks is fork_count. I keep a constant ′0′

value for watcher_count as Kaggle does not have such a metric.

A Jupyter notebook has been implemented for data preparation task that generates
and puts together all the features. It splits the data into training, validation, and test
dataset to be used for further analysis/machine learning. Totally the dataset contains
60 features including text-based features + 11 labels (for Singlelabel11 and Multilabel
classi�cation12).

It is important to emphasize that, only data points that have cell_type code will be
taken further for the classi�cation task.

5.3.2 Classi�cation Labels

A total of 100 notebooks were annotated by data science experts based on the annotation
experiment designed (explained in Section 4.1.2). I annotated a total of 100 notebooks
which is used in the classi�cation task. Two more data science experts annotated a total
of 50 notebooks which is used for assessing the quality of annotations, while I reviewed
the rest of the 50 notebooks using the knowledge from the annotations by the other
two experts. Each code cell is assigned a primary_label along with other relevant labels
(discussed in Section 4.1.2). Annotation by experts together with the features generated
from the notebooks form the dataset for the classi�cation task.
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Figure 5.4: Inter annotator agreement scores: Main annotator and Annotator 1

Figure 5.5: Inter annotator agreement scores: Main annotator and Annotator 2
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cohen_kappa accuracy

comment_only 0.8538 Very good
data_exploration 0.5895 Moderate
data_preprocessing 0.3747 Fair
result_visualization 0.6735 Good
evaluation 0.4931 Moderate
helper_functions 0.6237 Good
load_data 0.6604 Good
modelling 0.5244 Moderate
prediction 0.5295 Moderate
save_results 0.3249 Fair

Table 5.1: Cohen's kappa score for classi�cation labels: Main annotator & Annotator 1

Evaluation of Annotation Quality: Inter-Annotator Agreement

For evaluating the inter-annotator agreement between the annotations, we used Cohen's
kappa score from scikit. Cohen's kappa is "a score that expresses the level of agreement
between two annotators on a classi�cation problem"13. I have also evaluated the
accuracy14 along with the Cohen's kappa score. Both the measures are evaluated for
each label in the classi�cation labels set. Figure 5.4 and 5.5 shows the Cohen's kappa
score and the accuracy for each label in the main annotation against annotator1 and
annotator2 respectively. I have a very good accuracy score for most of the labels while
Cohen's kappa score perform moderate to above-moderate for most of the labels.

For the kappa score, based on the interpretation of kappa using [Altman, 1990], the
agreement between main annotator and annotator1 for labels are given in Table 5.1.
Table 5.2 shows the cohen_kappa score for labels between main annotator and annotator2

5.4 Exploratory Analysis of the Dataset (EDA)

In this section, I discuss the exploratory analysis done on the dataset to understand
the characteristics of the notebooks, its metadata, labels etc using statistical and un-
supervised learning methods. The exploratory analysis is focused towards the following
questions:

Statistical Analysis

11Singlelabel classi�cation and Singlelabel Multiclass classi�cation are used interchangeably
12Multilabel classi�cation and Multilabel Multiclass classi�cation are used interchangeably
13https:// scikit-learn.org/ stable/modules/ generated/ sklearn.metrics.cohen\_kappa\_score.html
14https:// scikit-learn.org/ stable/modules/ generated/ sklearn.metrics.accuracy_score.html
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cohen_kappa accuracy

comment_only 1.0 Very good
data_exploration 0.5615 Moderate
data_preprocessing 0.3645 Fair
result_visualization 0.4334 Moderate
evaluation 0.588 Moderate
helper_functions 0.449 Moderate
load_data 0.7714 Good
modelling 0.6201 Good
prediction 0.7232 Good
save_results 0.2793 Fair

Table 5.2: Cohen's kappa score for classi�cation labels: Main annotator & Annotator 2

1. What are the general characteristics of notebooks and its cells?

2. What are the general characteristics and composition of cells of cell_type code
in the notebooks dataset?

3. What is the composition of external libraries in data science notebooks?

4. What are the general characteristics of the classi�cation labels in the dataset?

Unsupervised Methods

1. What is the number of latent topics in data science notebooks?

a) Based on code-markdown-raw data

b) Based on code data

c) Based on only import statements

5.4.1 Statistical Analysis

Notebook Characterisitics

Exploration of the characterisitics of Jupyter notebook dataset is performed to under-
stand the general characteristics of the dataset. Figure 5.6 shows the number of code
cells vs. markdown cells in a notebook and Figure 5.7 shows the total number of tokens
in code cells vs. total number of tokens in markdown cells. From both the �gures, we see
that the markdown cells and markdown content are considerably less in most of the note-
books. This result for data science notebooks is in line with the �ndings from the paper
[Rule et al., 2018] that there is not enough explanation or reasoning of the results in the
notebooks. Figure 5.8 shows the cyclomatic complexity composition of the notebooks
from low risk-A to very high risk-F.
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Figure 5.6: No of code cells vs markdown cells per notebook

Figure 5.7: No of code tokens vs markdown tokens per notebook
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Figure 5.8: Cyclomatic Complexity

Code Cells Characterisitics

To understand the characteristics of code cells in notebooks, I use the datapoints of
cell_type code from the dataset and groupby(filename) to create an aggregate of
various features. Characteristics of the dataset are explored in various dimensions (per
notebook): number of code cells, number of lines of comment, number of lines of code,
number of variables, and number of functions.

Figure 5.9 shows that most of the notebooks (90%) contain 0 to 31 code cells. It also
shows that each notebook contains 68.9% of the times 0-55 variables and around 76.6%
of the notebooks have only 0-3 functions in them. The interesting �nding is that 85.6%
of the notebooks had up to 199 lines of code and around 40% of the notebooks have more
than 99 lines of code showing a great variation in the dataset.

External libraries in the notebooks

As a part of EDA, I also analysed the composition of external libraries in the data
science notebooks. Figure 5.10 shows that 6.86% of the times a library is imported,
it is numpy. It is important to note that I have not eliminated the duplicate import
statements downloading the same library multiple times. This is helpful in analysing
di�erent functions imported from same libraries. From the same �gure, we see that
11.45% of the times scikit-learn and 5.95% of the times matplotlib is imported. The
highest percentage of scikit also reveals that multiple scikit functions are downloaded
in a single notebook. In total, 30.06% of the libraries imported are pandas and the
above-mentioned libraries which are as expected as these are considered necessary
libraries for a data science task. In Figure 5.11, we observe that 30% of the times, up to
3 libraries are imported in every notebook (ignoring duplicates). This is in line with our
previous observation that some libraries are necessary for a data science task.

43



44 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.9: Code cell characterisitics per notebook
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Figure 5.10: Top 20 libraries imported among the notebooks

Figure 5.11: Number of libraries imported per notebook
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Figure 5.12: Top 1000 words in dataset:code-markdown-rawnb

The exploratory analysis shows patterns with respect to the classi�cation labels and
statistical features I have generated and has the potential to improve the accuracy of the
classi�cation models. Please note that more analyses are found in the notebooks.

Lexical Universe View

Figure 5.12 shows the top 1000 words occurring in the dataset:code-markdown-rawnb
and Figure 5.13 shows the top 1000 words occurring in the data:code.

Classi�cation Labels

In this section, I discuss the exploratory analysis focused towards classi�cation labels.
Figure 5.14 shows that around 77% of the cells have only one data science activity while
23% of the cells have more than one labels. From the annotation experiment, I observed
that the main reason for having more than one labels assigned to a cell is predominantly
due to overlapping and non-linear data science activities. It is important to take note
that, a programmer's coding style is also another top reason.

46



5.4. EXPLORATORY ANALYSIS OF THE DATASET (EDA) 47

Figure 5.13: Top 1000 words in dataset:code

Figure 5.14: Number of classi�cation labels per cell
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Figure 5.15: Number of cells per label

Figure 5.15 shows the composition of data science activities in notebooks. Around
27% of the cells perform data_preprocessing and around 20% of the cells perform
data_exploration while one would expect all data science activities to have a more or less
equal share. data_preprocessing accounts for around 1/5th of all data science activities
(leaving out general labels) which is in line with common knowledge. The interesting
�nding is that prediction as a data science activity do not seem to be appearing in many
notebooks having a share of around only 3%. I suspect this might be due to notebooks
being an explorative work�ow system rather than a system that supports production-
ready software. Whether only individual data science practitioners and learners use the
system and not organizations are yet to be ascertained.

Figure 5.16 and 5.17 shows the importance of lines_of_code and output_type of a
cell in identifying the classi�cation label of the cell respectively. Figure 5.16 shows that
around 30% of the times when a cell has only one line of code, it is more assigned to
label:helper_functions. This shows the user behaviour of writing import statements or
other helper functions separately in a single cell.

Similarly, in Figure 5.17, we see that 65% of the times data_exploration is assigned to
cells which have some output. The unexpected �nding is that 45% of the times, cells with
label:data_exploration has no output. While annotating, I observed that most of the
Kaggle notebooks do not have executed results and only unexecuted form of notebook.
This could be one of the reasons why data_exploration cells do not have any output in
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Figure 5.16: helper_functions vs. lines_of_code

Figure 5.17: data_exploration vs. output_type
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our dataset.

Lastly, I explore in brief wherein a notebook each of the data science activity la-
bels appear. For this purpose, each notebook that has at least 9 code cells is di-
vided into 9 parts/positions based on their cell_number ('comment_only' label is
not considered). The positions and labels are: 1:helper_functions, 2:load_data,
3:data_preprocessing, 4:data_exploration, 5:modelling, 6:evaluation, 7:prediction, 8:re-
sult_visualization, 9:save_results. For example, if a notebook has 27 cells and the
cell_number is 14, then the cell is considered to be in the 14/(27/9) = 5th part/po-
sition of the notebook and I ideally expect the 5th data science activity (modelling) in
the cell. Similarly, I have computed the positions of the data science activities in the
notebooks and visualized in Figure 5.18. It shows that helper_functions occur mostly
at the beginning of the notebook while load_data, modelling, prediction, evaluation
and result_visualization have more or less de�ned positions in the notebook. The two
most important data science activities taking a majority share in a data science pipeline,
data_preprocessing and data_exploration occur in almost all of the positions. That is,
data_preprocessing and data_exploration do not con�ne themselves to the initial part
of a data science pipeline and occur throughout the pipeline. According to my obser-
vation during annotation experiment, one of the major reasons for such a behaviour
is that there are notebooks that perform exclusively data_exploration activity. For
data_preprocessing label, the reason might be that a data scientist/programmer is per-
forming an activity and probably going back and rechecking her data, make modi�cations
and so on. This could also mean that an ETL activity does not really produce data in
a format that is readily usable and requires more modi�cations to get the data in the
desired way for a data_scientist.

5.4.2 Unsupervised learning

I employed three unsupervised learning techniques: Latent Dirichlet Allocation, KMeans
Clustering and Agglomerative Clustering to understand the number of latent topics in the
dataset. I performed three analyses based on the features used: code, code-markdown-
raw, and import statements. The features used for the three analyses are as follows:

code. This analysis uses lines of code as data for learning. Preprocessing of the data
is done using custom_text_processing method from the Preprocessor class.

code-markdown-raw. This analysis uses lines of code and lines of markdown and
raw cells (essentially, all the content from notebook) as data for learning. Preprocessing
of the data is done using custom_text_processing method for code and text_processing
method for markdown and raw data.

import statements. This analysis uses only import statements from code cells
as data for learning. Preprocessing of the data is done using import_text_processing
method from the Preprocessor class.
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Figure 5.18: Position of labels in Notebooks
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Vectorization of text based features is done using T�dfVectorizer15. I use uni,
bi, tri-grams and do not exclude any features for the learning. Tf-idf has following
parameter setup:

t�df = T�dfVectorizer(ngram_range=(1,3), use_idf=True, stop_words='english')

The results for each method used are discussed below.

Results

LDA For topic modelling, ldamodel from gensim16 is used and the parameters are as
follows:

Lda(doc_term_matrix, num_topics=n, id2word=dictionary, passes=50, ran-
dom_state=0)

Seed for num_topics are evaluated over range(start=2, stop=10, step=2). Best
number of topics are calculated based on the topic coherence_score (derived from
CoherenceModel17).

Inference LDA topic modelling with all the features generated has predicted 8 topics
but the topics are noisy and meaningless. As markdown contains a lot of task-speci�c
data, I suspect it to be a likely source of the noise. With only code data (see Figure
A.2), LDA has predicted 8 topics. The topics have distinguished, modelling and re-
sult_visualization activities, but still do not prove to be meaningful for our task. The
noise in case of code only content could be coming from various user-generated variables.
While LDA modelling with only import statements (see Figure A.3) has di�erentiated
modelling activity, the predicted topics are just 2 and are not helpful in understanding
the latent topics. See A.1, A.2, and A.3 for the �gures from LDA topic modelling.

Agglomerative Clustering Agglomerative clustering uses the method Agglomera-
tiveClustering from scikit-learn18 and the parameters are as follows:

AgglomerativeClustering(n_clusters=n, a�nity="euclidean", linkage="ward")

where n_clusters is de�ned based on Ward's minimum variance method19.

15https:// scikit-learn.org/ stable/modules/ generated/ sklearn.feature_extraction.text.T�dfVectorizer.
html

16https:// radimrehurek.com/ gensim/models/ ldamodel.html
17https:// radimrehurek.com/ gensim/models/ coherencemodel.html
18https:// scikit-learn.org/ stable/modules/ generated/ sklearn.cluster.AgglomerativeClustering.html
19https:// en.wikipedia.org/wiki/Ward\%27s_method

More information on implementation can be found in class:Clustering
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Inference A total of 2 clusters were predicted for all the sets of features: code, code-
markdown-raw, and import. The cophenet metric (distance between the clusters)20 for
import data was evaluated as 0.66 which was six times higher compared to that of code
and code-markdown-raw, indicating clear boundaries between clusters. Whether the
import data is enough to classify the points is indecisive from the results of Agglomerative
Clustering and is dealt in one of the research questions (see Section 5.7.3). See A.4, A.5,
and A.6 for the �gures from Agglomerative clustering.

K Means KMeans clustering o�ered in sklearn21 was used for this task. The
parameters are setup as follows:

KMeans(n_clusters=n).�t(vectorized_corpus)

The clusters are visualized using PCA reduction22 with n_components set to 3.

Seed for n_clusters parameter is set with the value:
mean(lda_predicted_number_of_topics, agglomerative_predicted_number_of_clusters)
of respective feature set (code, code-markdown-raw, import).

Inference KMeans clustering with code features predicted a total of 4 clusters. The
clusters have some reasonable distinction (see Figure A.8) between helper_functions
(numpy, pandas), modelling (x_train, y_train) and data_preprocessing. KMeans
clustering of code-markdown-raw data and import data do not provide any useful
results. See A.7, A.8, and A.9 for the �gures from KMeans clustering.

Number of Topics From the inferences of all the three methods, the best number of
clusters predicted vary around 4-8 and is in line with the number of classi�cation labels
that I have chosen for data science activities in the notebooks. It is also important to
note that the analyses show unsupervised classi�cation methods are not the best strategy
for code classi�cation of data science notebooks.

5.5 Code Cell Classi�cation

In this section, I investigate Singlelabel Multiclass classi�cation and Multilabel Multi-
class classi�cation for the code cell classi�cation problem. For Singlelabel classi�cation, I
use primary_label as the classi�cation label, which means each data point will have one
label. For Multilabel classi�cation, I have used all the labels applicable to a data point
including primary_label. In Singlelabel and Multilabel classi�cation, I �rst provide a

20https:// docs.scipy.org/ doc/ scipy-0.17.1/ reference/ generated/ scipy.cluster.hierarchy.cophenet.html\
#scipy.cluster.hierarchy.cophenet

21https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
22https:// scikit-learn.org/ stable/modules/ generated/ sklearn.decomposition.PCA.html
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comparison of the performance of various classi�ers and then proceed to discuss the
best performing classi�er in detail. I also discuss in brief the performance of classi�ers
over four sets of features: all the features generated, code, code-markdown-comments,
and import libraries. Please note that for evaluating import libraries, I replace the
lines of code with the description of the library invoked. For example, if a cell contains
pd.read_csv('test.csv'), I replace it with the man-page description of pandas. This
helps in overcoming the sparsity of library tokens. The implementation of both Single-
label Multiclass classi�cation and Multilabel Multiclass classi�cation uses scikit-learn
implementation. A total of 1475 datapoints (code cells) are used for training using
cross-validation (90% of the notebooks in the dataset). The test set contains a total of
173 datapoints (code cells) which is 10% of the notebooks in the dataset.

Before applying the classi�cation model, I preprocess the text features in the
dataset (training, validation, and test) using the cutom_text_preprocessing in the
Class:Preprocessing. Machine learning methods require features to be represented as
numeric. T�dfVectorizer method from scikit-learn23 was used to transform the text
features into numerics. The setup for T�dfVectorizer are as follows:

Singlelabel classi�cation: T�dfVectorizer(ngram_range=(1,3), use_idf=True,
stop_words='english')

Multilabel classi�cation: T�dfVectorizer(ngram_range=(1,3), use_idf=True,
max_df=0.2, min_df=2, stop_words='english')

Wherever applicable I have also applied categorization as a means for transforming text
features: output_type, output_name, kernel_language, language, language_version,
repo_id, �lename, owner, r_cyclomatic_complexity_rank, r_maintainability_rank,
primary_label. I used chi2 method for feature selection to select k most relevant fea-
tures from the text features (without feature selection, the text features generally are
around 120,000). I have retained all the other features generated for classi�cation. The
features are then standardized24 to represent them in same scales before being passed to
the classi�er.

5.5.1 Singlelabel Classi�cation

I evaluate a total of 9 classi�ers for Singlelabel classi�cation: Linear SVC, SVC, Lo-
gistic Regression, Random Forest, Decision Tree, Gradient Boosting, KNearest Neigh-
bors, Multinomial Naive Bayes and Multilayer Perceptron. For each classi�er, I estimate
the parameters using GridSearchCV cross-validation and train them with the training
dataset. Each of the trained classi�ers is then evaluated against the test set and the
performances are discussed below. Feature vector contains 2000 text features selected

23https:// scikit-learn.org/ stable/modules/ generated/ sklearn.feature\_extraction.text.T�dfVectorizer.
html

24https:// scikit-learn.org/ stable/modules/ generated/ sklearn.preprocessing.StandardScaler.html
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model all features code code-markdown-comments import

mlp 0.509 0.543 0.572 0.306
linearsvc 0.434 0.613 0.532 0.289
kneighbors 0.422 0.520 0.538 0.214
gbclassi�er 0.590 0.647 0.572 0.208
logistic 0.503 0.578 0.607 0.289
svc 0.468 0.162 0.566 0.162
randomforest 0.514 0.561 0.526 0.220
dt 0.393 0.538 0.509 0.197
multinomial_nb NaN 0.509 NaN 0.266

Table 5.3: Comparison of accuracy of classi�ers over di�erent set of features - Singlelabel
classi�cation

using chi2 method. Statistical features are included while evaluating all the features
generated.

Comparison of Classi�ers

Table 5.3 shows the accuracies of all the classi�ers over a di�erent set of features25.
Gradient Boosting classi�er trained with the code has the highest accuracy of 64.7%.
comparison. LinearSVC trained with the code has an accuracy of 61.3% and is the
second best performing classi�er. I found that all the classi�ers perform worse when
trained with only import statements. The classi�ers perform better with either code
or code-markdown-comments. The accuracies of all the classi�ers evaluated follow the
equation given below in case of Singlelabel Multiclass classi�cation:

code (or) code_markdown_comments > all features > import statements

Figure 5.19 visualizes the table 5.3.

Best performing classi�er: Gradient Boosting I take the best performing Gradi-
ent Boosting classi�er trained with code for further analysis. The parameters evaluated
by GridSearchCV for Gradient Boosting classi�er is shown in Figure 5.20. Figure 5.21
shows accuracy, f1score and classi�cation_report for the classi�er and Figure 5.22 shows
the confusion matrix.

While most of the classi�cation labels have precision above 0.6, 'data_preprocessing'
has a low precision value of 0.39. In terms of recall, 'load_data', 'evaluation' and 'predic-
tion' have recall values lesser than 0.4. The classi�er performs well in terms of both preci-
sion and recall with labels: 'helper_functions', 'modelling' and 'data_exploration'. The

25Nan denotes the particular classi�er is not evaluated for the given feature.
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Figure 5.19: Classi�ers Accuracy Comparison over Features - Singlelabel Classi�cation

Figure 5.20: GradientBoosting Classi�er - Singlelabel Classi�cation - Parameters
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Figure 5.21: GradientBoosting Classi�er - Singlelabel Classi�cation - Metrics
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classi�er classi�es labels: 'load_data', 'evaluation', 'prediction' and 'result_visualization'
with higher precision and lower recall score, which means while most of them are true
positives, a lot of true positives were also missed out (refer to 5.22). I suspect this is
because of the imbalance in the distribution of classi�cation labels in the training data
set. Poor precision and recall scores of 'comment_only' label is also a result of im-
balanced class distribution in the data. At the same time, 'data_preprocessing' has a
higher recall score but low precision. This shows that many of the labels are predicted
as 'data_preprocessing' even when they are not. This behaviour is visualized clearly in
the confusion matrix 5.22. A reason for this is that the structure of a piece of code that
performs 'data_preprocessing' activity is generic and similar to the lines of code that
performs any other data science activity. Another important reason is also that I have
used only 'primary_label' for the classi�cation and the presence of features relevant to
other labels in a given data point might be a source of confusion for the classi�er. Note
that in the set of true labels for the test set, I do not have any data point assigned to
label 'save_results'.

5.5.2 Multilabel Classi�cation

I evaluate a total of 6 classi�ers for Multilabel classi�cation: Linear SVC, SVC, Logistic
Regression, Random Forest, Decision Tree and Gradient Boosting. It is important to
note that for Multilabel classi�cation, all the relevant labels are taken into account, which
means multiple labels can exist for each data point. The technique used for Multilabel
classi�cation is binary relevance26 method which is implemented by OnevsRest in scikit-
learn. Similar to Singlelabel classi�cation, for each classi�er I estimate the parameters
using GridSearchCV cross-validation and train them with the training dataset. Feature
vector contains 1000 text features selected using chi2 method and statistical features are
included while evaluating all the features generated. Each trained classi�er is evaluated
against the test set and the performance of the classi�ers are discussed below.

Comparison of Classi�ers

In this section, I produce a brief comparison of the performance of classi�ers over a
various set of features for Multilabel classi�cation. I use three metrics for evauation:
subset/exact accuracy27, hamming loss28 and Jaccard similarity29.

Table 5.4 shows di�erent metrics evaluated for the classi�ers over various set of features.
Logistic regression classi�er trained with code has achieved a subset accuray of 36.99%.
Since I use a total of 10 classi�cation labels in Multilabel classi�cation, I expected the
subset accuracy to be low as it is a harsh metric. Table 5.4 shows that all of the classi�ers

26Binary relevance (OnevsRest in Scikit) https:// scikit-learn.org/ stable/modules/ generated/ sklearn.
multiclass.OneVsRestClassi�er.html

27https:// scikit-learn.org/ stable/modules/ generated/ sklearn.metrics.accuracy_score.html
28https:// scikit-learn.org/ stable/modules/ generated/ sklearn.metrics.hamming_loss.html
29https:// scikit-learn.org/ stable/modules/ generated/ sklearn.metrics.jaccard_similarity_score.html
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Figure 5.22: GradientBoosting Classi�er - Singlelabel Classi�cation - Confusion Matrix
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model[feature set] subset_acc hamming_loss jaccard_sim

rf[all features] 0.236994 0.115029 0.307611
gb[all features] 0.248555 0.115029 0.366763
dt[all features] 0.132948 0.179191 0.309345
svc[all features] 0.000000 0.147399 0.000000
lsvc[all features] 0.052023 0.239884 0.137187
log[all features] 0.219653 0.193642 0.359593
rf[code] 0.260116 0.120231 0.324952
gb[code] 0.225434 0.108671 0.358863
dt[code] 0.242775 0.142775 0.376879
svc[code] 0.000000 0.147399 0.000000
lsvc[code] 0.312139 0.107514 0.394220
log[code] 0.369942 0.108092 0.443353
rf[code-markdown-comments] 0.179191 0.123121 0.235645
gb[code-markdown-comments] 0.260116 0.117919 0.334586
dt[code-markdown-comments] 0.150289 0.136994 0.326686
svc[code-markdown-comments] 0.000000 0.147399 0.000000
lsvc[code-markdown-comments] 0.306358 0.118497 0.396050
log[code-markdown-comments] 0.294798 0.124277 0.349326
rf[import] 0.109827 0.136416 0.201252
gb[import] 0.132948 0.138728 0.210019
dt[import] 0.098266 0.144509 0.199904
svc[import] 0.000000 0.147399 0.000000
lsvc[import] 0.069364 0.145665 0.141618
log[import] 0.132948 0.142197 0.190173

Table 5.4: Comparison of metrics of classi�ers over di�erent set of features - Multilabel
classi�cation
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Figure 5.23: Comparison of metrics of classi�ers over di�erent set of features - Multilabel
classi�cation
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have a hamming loss that is <20%. A low hamming loss score means that the proportion
of labels predicted incorrectly is low. I observed that many of the data points were
classi�ed as either one of the classi�cation labels or none (see Figure 5.25). The low
hamming scores are misleading because the composition of labels varies hugely in the set
of true labels (see Figure 5.24) compared to the set of predicted labels. Subset accuracy,
a harsh metric, also do not seem appropriate for the classi�cation task since I have more
classes. Jaccard similarity is a midpoint between hamming loss and subset accuracy
[A. F. Park and Read, 2019] and is more likely to show a balanced view of the classi�er's
performance. It measures the similarity between the set of predicted labels and the
corresponding set of true labels. Logistic regression classi�er trained with code performs
the best in terms of Jaccard similarity coe�cient score achieving 44.3%. This means that
the set of prediction labels prediction by logistic regression classi�er is ~45% similar to
the set of true labels. We can also see from the table 5.4 that the second best performing
classi�er is Linear SVC with a Jaccard similarity score of 39.4%. Figure 5.23 visualizes
the table 5.4.

Best performing classi�er: Logistic Regression I take the best performing
logistic regression classi�er trained with code for further analysis. The parameters
evaluated by GridSearchCV for logistic regression classi�er is shown in Figure 5.26.
Figure 5.27 shows f1score and classi�cation_report for the classi�er and Figure 5.28
shows the receiver operating characteristic curve for logistic regression classi�er.
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Figure 5.24: True label set composition

Most of the classi�cation labels have precision value above 0.5 except 'prediction'
which has a precision of 0.33. In terms of recall, 'helper_functions', 'modelling' and 're-
sult_visualization' have recall values higher than 0.55. This means the classi�er performs
well in terms of both precision and recall with labels: 'helper_functions', 'modelling' and
'result_visualization'. The classi�er classi�es all the labels with high precision and low
recall score except 'save_results' and 'comment_only', both of which have precision and
recall scores of 0. This indicates that while true positives have improved, false negatives
have also increased. I suspect, an imbalance in the distribution of classi�ciation labels is
the reason for an increased number of false negatives. While I use all the relevant labels
for a given point, the data set still has a skewed distribution of classes. Also, since the
binary relevance method trains a binary classi�er for each of the classes, I am unable to
leverage any possible correlations between labels.

Figure 5.29 shows the accuracy score for each label in a binary relevance method using
logistic regression classi�er. This is in line with the observation of a low hamming loss.
Figure 5.24 and 5.25 shows that the logistic regression classi�er do not assign any label
to a massive 30% of the data points. While this is a concern which is re�ected in a low
recall score, it also means not many labels are inaccurately assigned.
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Figure 5.25: Predicted label set composition - Logistic Regression Classi�er

Figure 5.26: Logistic Regression Classi�er - Multilabel Classi�cation - Parameters

Figure 5.27: Logistic Regression Classi�er - Multilabel Classi�cation - Metrics
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Figure 5.28: Logistic Regression Classi�er - Multilabel Classi�cation - ROC
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Figure 5.29: Logistic Regression Classi�er - Multilabel Classi�cation - Accuracies
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Figure 5.30: Notebook Cell Object respresentation in RDF format using Data Science
Process and Notebook Ontology

5.5.3 Evaluation and Prediction

To have an automatic annotation system that produces accurate annotations, the clas-
si�er should ideally produce zero false positives. A false positive is costly because an
inaccurately annotated data point is worse than an unannotated datapoint. With that
goal, Multilabel classi�cation is preferred over Singlelabel classi�cation for automatic an-
notation system based on the average precision results. While Singlelabel classi�cation
has a higher average recall value compared to Multilabel classi�cation, the trade-o� is
to have a system that produces annotation with high precision. Hence, I use Multilabel
classi�cation with logistic regression classi�er to predict the labels for the test set.

5.6 Annotated Dataset as Output

5.6.1 RDF Serialization

I use the information from test data and the corresponding labels predicted to produce
a data set containing RDF annotations. Data Science Process and Notebook Ontology
(refer to 4.1.2), denoted as 'no' is used as the ontology for annotation. Figure 5.30 and
5.31 illustrates the annotations serialized in RDF.

Figure 5.30 shows the RDF serialization of a single datapoint, a code cell. Name of
the notebook cell is identi�ed with <�lename>_<cell_number>. no#nb_60623_8
is a NamedIndividual of no:type code, no:isNotebookCellOf no#nb_60623, con-
tains no:hasDataScienceActivity no#Evaluation and no:hasDataScienceActivity
no#Modelling.

Figure 5.31 shows the RDF serialization of a single notebook object. no#nb_111963 is
a NamedIndividual of no:type Notebook, has no:name nb_111963 and no:owner 1596037,
written in no:programming_language python. It is no:published_in_platform github,
developed in no:work�ow_system jupyter and has no:�le_extension .ipynb. no:url indi-
cates where the notebook resides. It also contains no:hasNotebookCell no#nb_111963_0
which has no:hasDataScienceActivity no#Modelling.
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Figure 5.31: Notebook Object respresentation in RDF format using Data Science Process
and Notebook Ontology
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Figure 5.32: A simple SPARQL query

5.6.2 SPARQL Analysis

SPARQL (SPARQL Protocol and RDF Query Language) is a semantic query language
for databases, "able to retrieve and manipulate data stored in Resource Description
Framework (RDF) format"30.

The RDF format of the output from the classi�cation task allows its to be queried by
SPARQL queries. A simple SPARQL query on the dataset containing RDF annotations
using library rd�ib31 is demonstrated in the Figure 5.32. It queries for notebooks
containing a cell that performs data science activity 'prediction'. The query produces
the following result:

3 results
name: http://www.semanticweb.org/ramas/ontologies/2019/0/no#nb_37187
title: nb_37187
cell: http://www.semanticweb.org/ramas/ontologies/2019/0/no#nb_37187_19

name: http://www.semanticweb.org/ramas/ontologies/2019/0/no#caravan-insurance-
customer-identi�cation
title: caravan-insurance-customer-identi�cation
cell: http://www.semanticweb.org/ramas/ontologies/2019/0/no#caravan-insurance-
customer-identi�cation_28

name: http://www.semanticweb.org/ramas/ontologies/2019/0/no#caravan-insurance-
customer-identi�cation
title: caravan-insurance-customer-identi�cation
cell: http://www.semanticweb.org/ramas/ontologies/2019/0/no#caravan-insurance-
customer-identi�cation_20

Thus, the semantic web-based dataset containing RDF annotations allows us to
take advantage of the semantics of the notebooks and data science activities in them for
further analyses in the area of code discovery and other machine learning problems.

30https:// en.wikipedia.org/wiki/ SPARQL
31https:// rd�ib.readthedocs.io/ en/ stable/
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5.7 Answers to the research questions

I have drawn the conclusions to the research questions based on the evaluation of various
classi�ers on di�erent feature sets.

5.7.1 What features in the notebook are more informatory to the au-
tomatic classi�cation of data science notebooks?

I have discussed this in Section 6. In general, I have found that the code features
generated are more informatory than other features in the notebooks for classi�cation.

5.7.2 Do non-code features like markdown/comments in notebooks im-
prove classi�cation accuracy?

No. I found that in both Singlelabel and Multilabel classi�cation, code features give bet-
ter accuracy leading to the conclusion that non-code features like markdown/comments
do not really improve the classi�cation accuracy.

5.7.3 Are import statements along with their library functions su�-
cient to classify the code according to their data science steps?

No. I found that in both Singlelabel and Multilabel classi�cation, classi�ers trained
with only import statements along with the library functions have always performed
signi�cantly worse than all of the other features sets I evaluated.

5.7.4 Do popular coders produce notebooks that are easier to classi-
fy/have higher classi�cation accuracy?

Inconclusive. I have tested whether notebooks with higher star_count or higher
fork_count has better accuracy than the ones with lower star_count or lower fork_count
respectively. The accuracy for each label is obtained using the binary relevance method of
Multilabel classi�cation using logistic regression classi�er (best performing classi�er). I
split the notebooks into popular and unpopular (50%:50%) set based on their fork_count
or start_count and computed scikit-learn accuracy_score. The results are inconclusive
since for some of the classes, popular notebooks have higher classi�cation accuracy while
for the others, unpopular notebooks have higher classi�cation accuracy.
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Discussions

In this chapter, I discuss more on the performance of the classi�ers for code cell classi�-
cation of notebooks.

6.1 Singlelabel Classi�cation

feature_importances_. I used feature_importances_1 attribute from Decision-
TreeRegressor to understand the importance of features. Feature_importances_ are
calculated based on how much each feature decreases the weighted impurity of the forest
and is a good measure to understand the importance of features in a machine learning
task.

I found the top 30 features from one of the DecisionTreeRegressors available in
the best performing Singlelabel classi�er, Gradient Boosting classi�er. They are:
read_csv, open, algebra import, pd read_sql, datetime, values, seaborn sns matplotlib,
zip tqdm_notebook range, fpr tpr, full_protein_model, fs, format test_accuracy,
fpr, get_accuracy data, format path, format datetime pred, format datetime, for-
est_�t, full_protein_model h5, get_color_pal, get_accuracy data bias, forest confu-
sion_matrix, get_feature_names to_pickle, get_feature_names to_pickle term_list,
get_tensor_by_name, get_train_data, get_transforms, graph_b, graph_w, green,
green alpha, green alpha plt, green_path, forest confusion_matrix cv_target, for-
eign_keys cursor, forest, foreign_keys cursor db, �le pd, �le pd read_csv, �le_ids,
�lename labelled, �lename labelled heatmap, �lter_movies, �lter_movies index, �nal-
project, �nalproject db, �nalproject db db, �t, �t x_train, �t x_train y_train.

statistical features. In a classi�cation task, when the feature vector includes both
text-based features and statistical features, some of the statistical features have been
found to have high importance. In the case of Singlelabel classi�cation using Gradient
Boosting classi�er, two of the top ten features are statistical features. They are r_sloc and
variable_count. At the same time, in the Singlelabel classi�cation using Random Forest

1feature_importances_ https:// scikit-learn.org/ stable/ auto_examples/ ensemble/ plot_forest_
importances.html
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classi�er, six of the top ten features by their importance are statistical features. They
are cell_number, variable_count, linesofcode, execution_count, code_tokens_per_nb
and output_type.

Representativeness of the dataset. I also analysed whether the performance of
the classi�er using Singlelabel classi�cation varied hugely if a di�erent training and test
dataset were to be used. I found that the performance varied +/- 5% depending on the
classi�er. This shows that the dataset is fairly representative of the jupyter notebook
data. However, having more data points to learn from will make the classi�er more
robust.

6.2 Multilabel Classi�cation

Classi�cation labels in test and predicted set. Figure 6.1 shows the true com-
position of the classi�cation labels in the test set and Figure 6.2 shows the composi-
tion of the predicted labels using Multilabel classi�cation. They show that 'load_data'
and 'data_exploration' are the highly misclassi�ed labels. While more datapoints are
classi�ed as 'data_preprocessing' as expected, 6.2 shows that even more data points
than expected are classi�ed as 'modelling'. The next highly represented labels are
' helper_functions' and 'result_visualization' which have representation around ~5%
higher than their true representation. I suspect the higher representation of 're-
sult_visualization' and lower representation of 'data_exploration' is related since they
have very similar features. Data points misclassi�ed as 'modelling' are shown below and
it clearly reveals that the two important reasons for misclassi�cation are: one, lack of
distinct structure for certain data science activities and two, lack of enough data points
in the training dataset to learn from.

Features : [y_pred clf.predict x_test print metrics.accuracy_score y_test y_pred
helper_functions]
True labels: 'evaluation', 'prediction'
Predicted labels: 'modelling', 'evaluation', 'prediction'

Features: [clf clf_nb helper_functions ]
True label: 'prediction'
Predicted label: 'modelling'

Size of the feature vector. I analysed whether the performance of the classi�er
varied given the size of the feature vector. I found that there is no signi�cant pattern
in the performance of the classi�er depending on the size of the feature vector used (see
Figure 6.3). This shows that increasing the feature size does not necessarily mean an
increase in the performance of the classi�er. I also tested how the classi�er performed
when the preprocessed code did not contain uninformative features like user-generated
variables. While this did not improve the performance, it helps in reducing feature size
and keep the model simple to draw an inference.
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Figure 6.1: Labels in test set

Figure 6.2: Labels in predicted set
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Figure 6.3: Evaluation Metrics - Multilabel Classi�cation - Size of the feature vector
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6.3 General Comments

Distribution of classi�cation labels. The distribution of classes in the dataset is
skewed towards some classes. This a�ects the performance of classi�ers as discussed in
5.5. While Multilabel classi�cation reduces this bias by taking into account all of the
relevant labels, thereby increasing data points for each class, a larger training dataset will
further mitigate the bias raising from an imbalanced distribution of classi�cation labels.
While I do believe that an increase in training dataset size will improve the performance
of both Singlelabel and Multilabel classi�cation, it is di�cult to achieve a balanced class
distribution in case of data science activities. This is because of the fact that some data
science activities like 'data_preprocessing' happen more often than other labels and are
coded generally in multiple cells to implement their functionalities. Nevertheless, to the
make system more robust to classi�cation labels that are inherently di�cult to classify,
it is important to have enough representation of them.

Inter-annotator agreement. The low Cohen-kappa scores, in general, show the
ambiguity in identifying data science activities in a data science pipeline. This shows
that data science activities do not have universal agreement on their de�nitions and
practices and have a lot of room for improvement. This rea�rms the thesis's motivation
to design methodologies and frameworks that enable a high-quality data science.
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Conclusions

This thesis is an endeavour devoted to a topic which is being increasingly adopted by
various discipline: Data science. Understanding the way data science is designed, im-
plemented and reported by data scientists is important to provide tools and frameworks
that enable high-quality data science. As a �rst step, I have implemented an automatic
annotation system to classify the data science notebooks according to the data science
activity they perform. This has enhanced my understanding of data science steps
and its overlapping nature along with the software engineering aspects (readability,
production-readiness etc.) of notebooks in general. Whereas previous methods have
focused on source code classi�cation in general, considerable progress has been made in
this thesis about the classi�cation of code in notebooks implemented using an interactive
platform, i.e., Jupyter which do not follow the same coding standards as a normal piece
of code in IDEs.

For this thesis, I have generated and discussed various features for the notebook
classi�cation. I also explored the latent topics in the notebooks along three lines:
code, code-markdown-raw and import statements using unsupervised learning methods
such as LDA Topic Modelling, Agglomerative Clustering and KMeans Clustering. The
analyses also show that, given the data set, unsupervised learning methods do not
provide useful results in understanding the latent topics. I also have elaborated on
the exploratory analysis of the dataset extensively. For classi�cation, I have analysed
both Singlelabel Multiclass classi�cation and Multilabel Multiclass classi�cation and
discussed the advantages of applying one over the other. The analysis led to the
conclusion that Multilabel classi�cation using logistic regression applied over code
features has a high precision. Further analysis into classi�cation labels and feature
importance have provided an insight into the steps of the data science pipeline and
exposed their non-sequential nature in practice. Additionally, I have also evaluated
the classi�ers with respect to a various set of features in order to answer the research
questions on the relevance of meta-features in a code classi�cation system.
The dataset generated with RDF annotations using the ontology Data Science Process
and Notebook proves su�cient to represent the notebooks and its data science activities.
I also demonstrated, in brief, the capability of the annotated dataset using a simple
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SPARQL query.

This thesis has provided the �rst comprehensive code classi�cation for notebooks ac-
cording to the data science activities and code classi�cation for notebooks in general1. I
have discussed various features, classi�cation methods, classi�ers and their performances.
The present �ndings of the occurrence of data science steps in notebooks have important
implications for improving the data science pipeline. I hope that this work will be bene�-
cial in code classi�cation and semantic analysis of notebooks and also to understand the
data science implementation in practice. It is also important to note that the automatic
annotation method for data science notebooks could be extended to annotations of other
types given an appropriate set of classi�cation labels whereas the feature set presented
can be used in machine learning methods focused towards various tasks.

1to the best of our knowledge
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Future Work

The thesis provides a lot of scopes to take the work further in its endeavour to provide
high-quality data science. It was out of the scope of this thesis to test how the models
would perform if word embeddings or code embeddings representation is used instead
of T�df representation for text-based features. Further research on this should be
undertaken. I believe more analysis into the features and classi�cation of data science
notebooks with regards to GitHub and Kaggle respectively could reveal more about the
users who implement data science tasks and their characteristics. Automatic feature
discovery of notebooks would be an area worth exploring as well. It remains also to be
tested whether deep learning networks like CNN (which has worked well on text data)
and LSTM (sequence prediction) will improve the classi�cation accuracy of notebook
code cell classi�cation. Furthermore, I also plan to explore an active learning approach,
to make the algorithm select the notebooks to be labelled to reduce the cost of expert
labelling. These are reserved for future work.

As a next step, I plan to implement a jupyter plugin using the annotation system
which will enable me to both get annotation from more users and also provide guidance
into what data science step the user should take next in their data science task. I also
plan to review and extend the Data Science Process and Notebook Ontology by adding
more properties, relationships and objects and also integrate them with other existing
data science ontologies.

Last but not least, I plan to extend the ground truth, in order to have more samples
labelled that will help the system in providing annotations that are more accurate.
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Appendix

A.1 Implementation

This section discusses in brief the implementation details of the python classes and note-
books (path: src/notebooks/ ) developed as a part of this thesis. The implementation
language is python and all the classes developed are pure-pythonic and might depend on
external libraries. Jupyter notebooks (with python as kernel language) are also devel-
oped wherever necessary. More documentation is found within the scripts themselves.
df indicates a dataframe in this section.

A.1.1 Feature Generator

Feature Generator includes a set of classes including a Notebook Parser
class:CellFeatures. It provides varied set of features (see Section 5.3.1 for de�nitions)
extracted from the notebook not limiting to the textual content of the notebook. The
features are then later used to solve the classi�cation problem. The features generated
can also be used for other machine learning problems. All the classes take .ipynb �les as
input except for CodeMetrics class which takes .py �les as input. The classes developed
as a part of Feature Generator are explained below.

Notebook Parser

The CellFeatures class The main python class to extract the features from a note-
book is implemented in Class.Features.CellFeatures. CellFeatures leverages the json for-
mat of the notebooks. For each notebook, multiple features (column) of each cell (row)
are extracted. The dataframe is then serialized as a pickle �le for further analysis.

classname: CellFeatures

invocation: CellFeatures(path, �les, store_path)

path: path to the folder containing the notebooks

�les: list of notebooks for which features are to be extracted or provide '[]' for all
the �les
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store_path: path to store the pickle �les generated (a .pkl for each notebook is
stored separately)

methods: get_code_cell_features()

output: a dataframe containing features from all the cells of the notebooks extracted.
Each row in the output dataframe represents a cell in a notebook and each column
represents a feature.

Other Features

The PypiPackagesInformationFeatures class PypiPackagesInformationFeatures
class uses the import libraries information in a cell as input and generates a
new feature based on pypi description of the libraries. It is implemented in
Class.Features.PypiPackagesInformationFeatures.

classname: PypiPackagesInformationFeatures

invocation: PypiPackagesInformationFeatures(df, pypi)

df: dataframe of the cell features

pypi: dataframe of the pypi information with columns: library and description

methods: get_pypi_packages_information_features(col, newcol)

col: column name of the dataframe containing library information

newcol: column name of the newly generated feature

output: modi�ed input dataframe (not a copy). Each row in the output dataframe rep-
resents a cell in a notebook and the new column contains the respective description
of the libraries.

The StyleFeatures class StyleFeatures class extracts style (or) user (notebook cre-
ator) related features. It is implemented in Class.Features.StyleFeatures. It is only
applicable for metadata format as in GitHub corpus.

classname: StyleFeatures

invocation: StyleFeatures(df_repo, df_readme, df_owner, path, �les)

df_repo: dataframe of the repository metadata as in GitHub corpus

df_readme: dataframe of the readme metadata as in GitHub corpus

df_owner: dataframe of the repository owner metadata as in GitHub corpus

path: path to the folder containing the notebooks

�les: list of notebooks for which the features are to be extracted or provide '[]' for
all the �les
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methods: get_style_features()

output: a new dataframe containing style/user features (see Section 5.3.1 for de�ni-
tions) of the list of the notebooks. Each row in the output dataframe represents a
notebook.

The CodeMetrics class CodeMetrics class extracts code metrics for each.py �le
(notebook) using python library radon1. It is implemented in Class.Metrics.CodeMetrics.

classname: CodeMetrics

invocation: CodeMetrics(path, �les)

path: path to the folder containing the .py �les

�les: list of .py �les (.py �les of notebooks) for which the features are to be
extracted or provide '[]' for all the �les

methods: get_code_metrics()

output: a new dataframe containing code metrics for the list of the notebooks. Each
row in the output dataframe represents a notebook.

The NotebookMetrics class NotebookMetrics class extracts metrics like no of code
cells, no of markdown cells, no of code tokens, no of markdown tokens per notebook and
is implemented in Class.Metrics.NotebookMetrics.

classname: NotebookMetrics

invocation: NotebookMetrics(df)

df: a dataframe containing features from all the cells of the notebooks (as gener-
ated by class:CellFeatures)

methods: get_notebook_metrics()

output: a new dataframe containing notebook metrics based on the input df. Each row
in the output dataframe represents a notebook.

The CodeCellMetrics class CodeCellMetrics class extracts metrics like no of vari-
ables, no of functions, no of lines of code, no of lines of comment per notebook and is
implemented in Class.Metrics.CodeCellMetrics.

classname: CodeCellMetrics

invocation: CodeCellMetrics(path, �les)

path: path to the folder containing the notebooks

1Refer to https:// radon.readthedocs.io/ en/ latest/ for more information on the metrics
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�les: list of notebooks for which the features are to be extracted or provide '[]' for
all the �les

methods: get_popularity_metrics()

output: a new dataframe containing metrics (aggregated over all code cells in a note-
book) for the list of the notebooks. Each row in the output dataframe represents
a notebook.

The PopularityMetrics class PopularityMetrics class extracts metrics like
fork count, star count, watcher count per notebook and is implemented in
Class.Metrics.PopularityMetrics. It is only applicable for metadata format as in GitHub
corpus.

classname: PopularityMetrics

invocation: PopularityMetrics(df_repo, df_owner, path, �les)

df_repo: dataframe of the repository metadata as in GitHub corpus

df_owner: dataframe of the repository owner metadata as in GitHub corpus

path: path to the folder containing the notebooks

�les: list of notebooks for which the features are to be extracted or provide '[]' for
all the �les

methods: get_popularity_metrics()

output: a new dataframe containing popularity metrics for the list of the notebooks.
Each row in the output dataframe represents a notebook.

A.1.2 The Preprocessing class

Preprocessing class uses NLTK library to preprocess the text data. The rules are im-
plemented in Class.Preprocessing.Preprocessing for code processing, text processing and
import statements processing.

classname: Preprocessing

invocation: Preprocessing(df)

df: dataframe of the cell features

methods:

set_column(self, col, newcol)

col: column name of the dataframe containing text features to be prepro-
cessed

newcol: column name of the newly generated feature ('text_processed')
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process(self, newcol, function)

newcol: column name of the newly generated feature

function: function to apply for preprocessing (available functions:
code: 'custom_text_preprocessing', import statements: 'im-
port_text_preprocessing', natural language like markdown, comments,
raw text: 'text_preprocessing')

output: modi�ed dataframe of input df (not a copy). Each row in the output dataframe
represents a cell in a notebook.

A.1.3 The Classi�ers class

Classi�ers class provides helper functions to set up training data and test data, apply
preprocessing methods, t�df feature representation, and chi2 feature selection. It is
implemented in Class.Classi�ers.Classi�ers.

classname: Classi�ers

invocation: Classi�ers(df, labels)

df: features in a dataframe format where each row indicates a cell in a notebook
(training + validation dataset)

labels: list of classi�cation labels

methods:

apply_conditions_to_dataframe(conditions) output: restricted dataframe for
machine learning model. For e.g. dataframe containing only cells of cell_type
code.

test_train_data_set(testdf) output: sets test data features

set_lexical_features(features_list) output: chooses text based features using Fea-
tureSelector class (see Scripts for more information) for machine learning task
and returns train and test data

preprocessing(col) output: preprocesses text based features of training + valida-
tion and test data and stores it in column col

vectorization(t�df) output: vectorizes selected text based features of training +
validation and test data using the input t�df model. returns vectorized train-
ing+validation features, test features and trained t�df

feature_selection(chi2, k, training_labels) output: selects k number of features
from text based features using the chi2 method and training_labels. returns
selected training+validation features, test features and trained chi2 selector.

set_statistical_features(stat_features, X_train_features, X_test_features) out-
put: chooses the speci�ed list of statistical features using FeatureSelector
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class (see Scripts for more information) and combines it with the train-
ing+validation and test data's vectorized text features and returns the same.
The resulting feature set of training+validation and test data is used for train-
ing the machine learning model and prediction.

A.1.4 The Clustering class

Clustering class implements LDA, K-means, Agglomerative/Hierarchical clustering and
uses scikit-sklearn library for the same. It is implemented in Class.Clustering.Clustering.

classname: Clustering

invocation: Clustering(lda_params, hierarchical_params, results_path, content)

lda_params: (start = start value of range of topics to explore, stop = stop value
of range of topics to explore, step = step value of range of topics to explore,
top_words = number of words to return per topic, corpus = bag of words of
corpus)

hierarchical_params: (max_d = maximum distance between clusters for plot-
ting, full_dendrogram = True if full dendrogram plot is required, trun-
cated_dendrogram = True if truncated dendrogram plot is required, link-
age_metric = 'ward', a�nity_metric = 'euclidean', h_corpus = vectorized
features as array)

results_path: path to store the plot results

content: keyword about the features used (string)

methods:

get_best_clusters_prediction()

output: get_best_clusters_prediction() - number of clusters as predicted by
LDA Topic model and Hierarchical clustering

KMeans_model('default' = 'default' or �, Kmeans_num = if not default, use
this as seed for n_clusters, vect_corpus = vectorized features as array,
vect_feature_names = names of features using t�df)

output: KMeans_model - features in clusters and kmeans.labels_

A.1.5 Models

All the classi�ers are implemented in class.Models.<classi�er>. The classi�ers are im-
plemented using scikit-learn2 functions along with GridSearchCV for cross validation.
Cross validation folds are given by user input.

2scikit-learn https:// scikit-learn.org/ stable/
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classname: <classi�er>.
Available classi�ers are: DT (DecisionTree), GB (Gradient Boosting), KN (KNeigh-
bors), LSVC (Linear Support Vector Classi�cation), LR (LogisticRegression), MLP
(Multilayer Perceptron), MNB (Multinomial NaiveBayes), RF (Random Forest),
SVC (Support Vector Classi�cation). Use the abbreviation for invocation.

invocation: <classi�er>(X_train, y_train, X_test, y_test, indices_train, in-
dices_test, test, labels, results_path, plotname, content, fold)

X_train: training features and validation features

y_train: training + validation labels

X_test: test features

y_test: test labels

indices_train: indices of training and validation dataset

indices_test: indices of test dataset

test: original test features before preprocessing for evaluation

labels: list of classi�cation labels

results_path: path to store the results

plotname: name of the plot to be generated (string)

content: keyword about the features used (string)

fold: cross validation fold (int) or Prede�nedSplit or KFold or Strati�edKFold
split for cross validation

methods: run()

output: The classi�er classes along with the prediction output also return evaluation
scores like f1score, accuracy, classi�cation report, confusion matrix and probabilities
(if available). Predicted classes against their features are stored in result .pkl. The
classes also return the trained model that can be readily used on new preprocessed
inputs.

A.1.6 Utils

The GenerateLabelFiles and GenerateExperimentLabelFiles class Gen-
erateLabelFiles and GenerateExperimentLabelFiles classes creates annotation
template for main annotation and annotation experiment respectively to get
classi�cation labels and is implemented in Class.Utils.GenerateLabelFiles and
Class.Utils.GenerateExperimentLabelFiles.

classname: GenerateLabelFiles/GenerateExperimentLabelFiles

invocation: GenerateLabelFiles(pickle_�les, pickle_path, labels_path)/ GenerateEx-
perimentLabelFiles(pickle_�les, pickle_path, labels_path
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pickle_�les: list of the �les for which annotation template �les are to be generated

pickle_path: path to the folder containing the pickles (features of the notebook
obtained using CellFeatures)

labels_path: path to the folder where output �les are to be stored

methods: generate_label_�les()

output: .csv/.xlsm �le for each of the notebooks are stored in labels_path

The KaggleNotebooks class KaggleNotebooks class �nds and downloads Kaggle
notebooks for a given search keyword. It is implemented in Class.Utils.KaggleNotebooks.

classname: KaggleNotebooks

invocation: KaggleNotebooks(path, search_keyword)

path: path to store the downloaded Kaggle notebooks

search_keyword: keyword to search for Kaggle notebooks using Kaggle API

methods: get_kaggle_notebooks()

output: all the notebooks found for a given search keyword are stored in the path
speci�ed and respective metadata information for all the notebooks are returned
as a dataframe

The WordCloudView class WordCloudView creates a word cloud from words and
frequencies. It is implemented in Class.Utils.WordCloudView and uses external library
WordCloud.

classname: WordCloudView

invocation: WordCloudView(c, plotname, path)

c: words and frequencies

plotname: name of the WordCloud image

path: path to store the generated WordCloud image

methods: plot()

output: WordCloud image for words and frequencies input stored in path speci�ed

The CustomPlot class CustomPlot creates a custom plot from the data based on
input parameters. It is implemented in Class.CustomPlot.CustomPlot. It is used for
Exploratory Data Analysis.

classname: CustomPlot

invocation: CustomPlot(seaborn_palette)
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methods: plot_seaborn_category(dataframe_data, column_to_plot,
top_count_to_plot, start, plotname, path_to_store_plot, �g, axes)

start: start value for top values to be plotted. For e.g plot top �rst 20 values
(start = 0) or plot top 20 values from second top (start = 1)

output: custom plot generated and stored in path speci�ed

The PypiPackagesInformation class PypiPackagesInformation retrieves language,
summary and description of all the libraries available in PyPi3 and is implemented in
Class.Utils.PypiPackagesInformation. Output from PypiPackagesInformation is used by
class:PypiPackagesInformationFeatures.

classname: PypiPackagesInformation

invocation: PypiPackagesInformation()

methods: get_pypi_packages_information()

output: dataframe containing libraries information, its language, summary and descrip-
tion from PyPi

The GetClassi�erReport class GetClassi�erReport class creates output for-
mat for annotation experiment to get classi�cation labels and is implemented in
Class.Utils.GetClassi�erReport.

classname: GetClassi�erReport

invocation: GetClassi�erReport(results_path, plotname, accuracy, f1score, classi�ca-
tion_report, confusion_matrix, confusion_matrix_as_string, result_df, classi�-
cation_labels)

result_df: containg labels predicted, probabilities (if available) and corresponding
text feature in a dataframe

methods: get_reports()

output: all the evaluation metrics are used to create a report and is stored in the
result_path along with the test results

The PandasUtils class PandasUtils implements helper functions to load mul-
tiple pickle �les or csv �les into a single dataframe and is implemented in
Class.Utils.PandasUtils.

classname: PandasUtils

invocation: PandasUtils()

3PyPi https:// pypi.org/
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methods:

get_pickle_�les_in_dataframe(pickle_path, pickle_�les)

pickle_�les: list of the pickle �les to be combined

pickle_path: path to the folder containing the pickles

get_csv_�les_in_dataframe(csv_path, csv_�les)

csv_�les: list of the csv �les to be combined

csv_path: path to the folder containing the csvs

output: a dataframe with the all pickles/csvs combined

A.1.7 Notebooks

I implemented several notebooks as a part of the thesis in order to implement the tasks
like data_preparation, classi�cation, annoatation etc. In this section, the purpose of the
notebooks are explained in brief. More comments, explanations and parameter setups
are found in the notebooks (for the restriction of space). The numeric in front of the
�lename indicate the order in which notebooks shall be executed (specially for the data
preparation process).

1. 1_prep_choose_valid_�lenames_from_pickles: This notebook is designed to ex-
tract notebooks that are valid and json readable from the corpus.

2. 2_prep_selection_of_test_train_simulation_dataset.ipynb: This notebook im-
plements functions required for selecting data set (training, test) by random sam-
pling.

3. 3_prep_generate_classi�cation_label_�les.ipynb: This notebook implements
functions to generate annotation template �les (main annotation and annotation
experiment by other experts) for recording classi�cation labels by data science ex-
perts

4. 4_prep_kaggle_notebook_corpus_preparation.ipynb: This notebook retrieves
public kaggle kernels using KaggleAPI and prepares Kaggle Notebook corpus for
the experiment.

5. analysis_clustering.ipynb: This notebooks is generated to analyse the perfor-
mance of unsupervised methods like Topic modelling, Agglomerative clustering
and KMeans Clustering on the data.

6. analysis_code_statistical_features.ipynb: This notebook performs exploratory
data analysis of the statistical features of the dataset.

7. analysis_import_libraries_composition_in_the_datasets.ipynb: This notebook
is implemented to analyse the usage of external libraries (top libraries in dataset,
number of libraries imported per notebook etc.)
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8. analysis_language_composition_in_the_datasets.ipynb: This notebook analyses
the language composition in the dataset.

9. analysis_notebook_style_features.ipynb: This notebook is implemented to anal-
yse if there is any relation between popularity features and other features in the
notebook dataset.

10. data_preparation.ipynb: This notebook is implemented to prepare the data (from
the corpus) for the classi�cation experiment. Various features generated using the
classes available in Feature Generator (see Section A.1.1) are also explained.

11. eda_features.ipynb: This notebook is implemented to perform exploratory analysis
of the features generated.

12. inter_annotator_agreement.ipynb: This notebook analyses the inter-annotator
agreement between the main annotation and other annotations (gathered through
experiment) using the percentage of agreement and cohen-kappa metric.

13. model_question_3.ipynb: This notebook is implemented to generate 'text' feature
based on only import statements in the notebooks in order to answer the research
question 3.

14. modelling_multi_label_classi�cation.ipynb: This notebook is implemented to per-
form classi�cation of the dataset using Singlelabel Multiclass classi�cation.

15. modelling_single_label_classi�cation.ipynb: This notebook is implemented to
perform classi�cation of the dataset using Multilabel Multiclass classi�cation.

16. rdf_ontology_annotator.ipynb: This notebooks uses 'no' ontology to annotate
notebooks based on their classi�cation labels and produces an annotated dataset
serialized in RDF4.

17. theory_visualize_datascience_in_theory_and_practice.ipynb: This notebook
analyses various steps currently suggested in a data science pipeline by academia,
industry, and individual data science experts.

A.2 Data Science Ontology for Notebooks ('no' ontology)
<?xml version="1.0"?>
<rdf:RDF xmlns="http://www.semanticweb.org/ramas/ontologies/2019/0/no"
xml:base="http://www.semanticweb.org/ramas/ontologies/2019/0/no"
xmlns:no="http://www.semanticweb.org/ramas/ontologies/2019/0/no#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

4Resource Description Framework https:// en.wikipedia.org/wiki/Resource_Description_Framework
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<owl:Ontology rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no">
<owl:versionIRI rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no/1.0.0"/>
</owl:Ontology>

<!�
///////////////////////////////////////////////////////////////////////////////////////
//
// Object Properties //
///////////////////////////////////////////////////////////////////////////////////////
�>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#hasDataScienceActivity �>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#hasDataScienceActivity">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>
<owl:inverseOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#isDataScienceActivityIn"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Code"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#CommentOnly"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataExploration"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataPreprocessing"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Evaluation"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#HelperFunctions"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#LoadData"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Modelling"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Prediction"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#ResultVisualization"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#SaveResults"/>
</owl:ObjectProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#hasNotebookCell �>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#hasNotebookCell">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>
<owl:inverseOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#isNotebookCellOf"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell"/>
</owl:ObjectProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#isDataScienceActivityIn �>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#isDataScienceActivityIn">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#CommentOnly"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataExploration"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataPreprocessing"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Evaluation"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#HelperFunctions"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#LoadData"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Modelling"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Prediction"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#ResultVisualization"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#SaveResults"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Code"/>
</owl:ObjectProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#isNotebookCellOf �>

<owl:ObjectProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#isNotebookCellOf">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topObjectProperty"/>
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<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell"/>
<rdfs:range rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
</owl:ObjectProperty>

<!�
///////////////////////////////////////////////////////////////////////////////////////
//
// Data properties
//
///////////////////////////////////////////////////////////////////////////////////////
�>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#cell_number �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#cell_number">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#�le_extension �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#�le_extension">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#name �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#name">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#owner �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#owner">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#Name"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#programming_language �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#programming_language">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#published_in_platform �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#published_in_platform">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
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</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#type �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#type">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Code"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Markdown"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#RawNB"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#url �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#url">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#work�ow_system �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#work�ow_system">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#work�ow_type �>

<owl:DatatypeProperty rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#work�ow_type">
<rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#topDataProperty"/>
<rdfs:domain rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

<!�
///////////////////////////////////////////////////////////////////////////////////////
//
// Classes
//
///////////////////////////////////////////////////////////////////////////////////////
�>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#Code �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Code">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#CommentOnly �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#CommentOnly">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataExploration �>
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<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataExploration">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataPreprocessing �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataPreprocessing">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#Evaluation �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Evaluation">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#HelperFunctions �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#HelperFunctions">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#LoadData �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#LoadData">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#Markdown �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Markdown">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#Modelling �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Modelling">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Notebook"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#Prediction �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#Prediction">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
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</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#RawNB �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#RawNB">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#NotebookCell"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#ResultVisualization �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#ResultVisualization">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>

<!� http://www.semanticweb.org/ramas/ontologies/2019/0/no#SaveResults �>

<owl:Class rdf:about="http://www.semanticweb.org/ramas/ontologies/2019/0/no#SaveResults">
<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ramas/ontologies/2019/0/no#DataScienceWorkFlow"/>
</owl:Class>
</rdf:RDF>

<!� Generated by the OWL API (version 4.5.7.2018-12-02T02:23:35Z) https://github.com/owlcs/owlapi �>

A.3 Expert Annotation Experiment

The main goal of this master thesis is to design and implement a method that automat-
ically classi�es di�erent parts of a Data Science notebook, so as to label the steps of the
Data Science process that are present in the notebook. In order to train and evaluate the
method, we need to curate a ground truth. Therefore, your input as an expert labeller
is very much appreciated.
You will be given a set of notebooks to be labelled, a set of possible labels and your task

is to indicate for each cell of the notebook one or more relevant label(s), that describe
the purpose of the code appearing in the cell. We would also like you to indicate how
con�dent you feel about your answers. Below, you will �nd detailed information about
the meaning of the labels and things to take into account.
In this annotation task, you will need to consider the following �les for each notebook

to be annotated:

• notebook_name.ipynb: the Python notebook to be analysed and labelled.

• notebook_name.ipynb.xlsm: a macro-enabled excel worksheet, where you should
annotate the notebook.

A.3.1 Instructions

Please read the instructions before proceeding with the labelling task.
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How to annotate one notebook

• Open the Python notebook and the annotation �le in any compatible software (e.g.,
use Jupyter for the notebook and Excel for the annotation �le).

• Read the set of possible labels and their meaning (see also Section A.3.1).

• For each cell in the notebook, please read the content and consider the line(s) of code,
plots, visualizations and comments. Please ignore markdown.

• Decide the purpose of the cell, and assign one or more of the available labels. In the
annotation �le (notebook_name.ipynb.xlsm), please mark with 1 the label(s) you
would like to assign to the cell.

• Also, determine the primary data science process performed in the cell. Record the
observation by choosing the appropriate label in the primary_label column in the
annotation �le.

• If, for a given cell, you do not agree with any of the given labels, please indicate the
label that you think is relevant in the other_label column.

• You have the option of adding some notes in the notes column, if you would like to
enter any observation about the cell (e. g. if it was hard to decide the label or
anything you think it is important to be mentioned). You do not need to enter
notes for every single cell.

• Once you have completed the labelling of all cells, please indicate in the last two rows
of annotation �le the following information:

1. con�dence percentage: how con�dent you felt when providing the labels (with
a value between 0 (not con�dent at all) and 100 (very con�dent)).

2. notebook score: give a general score for the notebook, based on the clarity
and understandability of the code (with a value between 0 (not clear at all)
and 100 (very clear)).

General tips

· The annotation should be done based on the available implementation in the notebook.
Please do not execute the code of the notebook to decide the label.

· Note that sometimes, it is useful to go through the whole notebook to be aware of the
context of the cells.

Classi�cation Labels

We have de�ned a set of 9 labels: 3 of them are general labels that provide some meta-
information (see Section A.3.1), and 7 labels correspond to the main steps in the data
science process (see Section A.3.1).
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General Labels

load_data This label indicates that the cell is just loading data into the Jupyter
notebook environment. The code can be for loading one or multiple data sets of any
type (e.g. .csv, .pkl, .jpg, .png, .hdf5).

helper_functions This label should be used when the cell contains code that supports
the code in the notebooks. These helper functions can be import statements or other
piece of code that is not directly related to the data science activity at hand and rather
are useful functions in scripting. For example, built-in Jupyter notebook magic com-
mands. A concrete example would be: %matplotlib inline, which sets the inline backend
so that the output plots are displayed directly below the code cell that executes it. Some
other examples include import pandas as pd, from IPython.display import Audio,
and %pprint.

comment_only If the cell contains only commented text, you should use this label.
This label should not be used for markdown; please remember that you should ignore
markdown.

Labels for Each of the Data Science Steps

data_preprocessing Data preprocessing includes tasks such as cleaning, instance se-
lection, data normalization, data transformation, feature extraction and feature selection.
Data preprocessing ensures that the data does not contain irrelevant, redundant and in-
consistent data. 5

data_exploration Data exploration6 or exploratory data analysis is an approach to
initial data analysis, where a data scientist inspects the content of a dataset in order to
understand the nature and characteristics of the data. This step, that often contributes
to the identi�cation of patterns in the data, is helpful to identify research hypotheses
and decide on the modelling. Data exploration often involves visual exploration of the
data.

modelling Modelling is the process of applying (or �tting) statistical models and al-
gorithms to the data in order to "perform a speci�c task without explicit restrictions,
relying on models and inferences instead"7. In simple terms, training a classi�er or a
neural network to learn from the data is modelling.

prediction Prediction is an important step as many of the data science tasks are
predictive modelling tasks. This label refers to the generation of an outcome that was
previously unknown, by applying the model built to new data.

5Data preprocessing https:// en.wikipedia.org/wiki/Data_pre-processing
6Data exploration https:// en.wikipedia.org/wiki/Data_exploration
7Machine learning Models https:// en.wikipedia.org/wiki/Machine_learning#Models
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evaluation Evaluation refers to the process of evaluating the model using evaluation
metrics like accuracy, or F1 score. In the context of model selection, the evaluation step
can be used to compare di�erent models. valuation is also done to compare di�erent
models 8.

result_visualization Result visualization is the graphical representation of results
(via elements like plots, tables and other graphs). Please note that we di�erentiate
between data exploration and result visualization. The purpose of the former is to better
understand the data, while the latter focuses on visualizing e. g. a tested hypothesis, or
a performance comparison.

save_results This label should be used when the cell is primarily creating a persistent
copy of some results (e. g. serializing the content of a variable into a CSV �le).

Thank you very much for your help.

A.4 Unsupervised classi�cation results

A.4.1 LDA

Figure A.1 shows the visualization of topic modelling of the dataset taking into account
all of the code-markdown-raw data. Figure A.2 and Figure A.3 shows the topic modelling
of the dataset taking into account code data and import statements data respectively.

8Evaluating Machine Learning Models https://www.oreilly.com/data/ free/
evaluating-machine-learning-models.csp for more information
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Figure A.1: Topic Modelling using LDA (code-markdown-raw)

Figure A.2: Topic Modelling using LDA (code)

A.4.2 Agglomerative Clustering

Figure A.4 shows the dendrogram visualization (n_components=3) of agglomerative clus-
tering of the dataset taking into account all of the code-markdown-rawnb data. Figure
A.5 and Figure A.6 shows the agglomerative clustering of the dataset taking into account
the code data and import statements data respectively.

A.4.3 KMeans Clustering

Figure A.7 shows the visualization of K-means clustering of the dataset taking into
account all of the code-markdown-raw data. Figure A.8 and Figure A.9 shows the K-
means clustering of the dataset taking into account the code data and import statements
data respectively.

Figure A.3: Topic Modelling using LDA (import statements)
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Figure A.4: Agglomerative Clustering - Full view (code-markdown-raw)

Figure A.5: Agglomerative Clustering - Full view (code)
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Figure A.6: Agglomerative Clustering - Full view (import)
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Figure A.7: Kmeans visualized using PCA (code-markdown-raw)

Figure A.8: Kmeans visualized using PCA (code)
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Figure A.9: Kmeans visualized using PCA (import)
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A.5 Methods, Tools and Techniques

In this section, I brie�y summarize the popular classi�ers that are used in the classi�ca-
tion task: both parametric9 (Support Vector Machine, Linear Support Vector Machine,
Multinomial Naive Bayes) and non-parametric (K-Nearest Neighbor, Logistic Regression,
Multilayer Perceptron, Decision Tree, Random Forest, Gradient Boosting) classi�ers ap-
plied to the task and the two types of classi�cation task: Singlelabel Multiclass Classi-
�cation and Multilabel Multiclass Classi�cation performed on the dataset. This section
also discusses in brief the two important strategies of multiclass classi�cation: OnevsOne
(OvO) and OnevsRest (OvR).

A.5.1 Unsupervised Techniques: Topic Models and Clustering

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative statistical10 topic modelling technique "that
allows sets of observations to be explained by unobserved groups that explain why some
parts of the data are similar." LDA views each document as a mixture of a small number
of topics. Each topic represents a set of words and is latent (hidden). LDA aims to
use this latent information to predict the number of latent topics and assign topics
to each document (see [M. Blei et al., 2003] for the mathematical foundation behind
LDA). The important assumption LDA makes is that the prior topic distribution is
a symmetric Dirichlet. The required top-document and topic-word distribution for LDA
is then modelled using probability density function of Dirichlet distribution11:

f (x1, . . . , xK ; α1, . . . , αK) =
1

B(α)

K∏
i=1

xαi−1
i

It is to be noted that the order of the words are ignored in LDA as Bag-of-words12 tech-
nique is used to represent documents. Figure A.10 shows the plate diagram for a LDA
illustrating the relationship among documents, topics, and words [Bonaccorso, 2018].

In the plate diagram, α is the Dirichlet parameter for the topic-document distribution,
while γ is the Dirichlet parameter the topic-word distribution. θ is the topic distribution
for a speci�c document, while β is the topic distribution for a speci�c word.

K-Means

Clustering is an unsupervised machine learning technique that allows us to �nd groups
of similar instances where the instances are more related to each other within the group

9Parametric models make an assumption about the underlying distribution of the data whereas non-
parametric models do not. http://www.cs.huji.ac.il/ ~shais/UnderstandingMachineLearning/

10https:// en.wikipedia.org/wiki/Generative_model
11https:// en.wikipedia.org/wiki/Dirichlet_distribution
12https:// en.wikipedia.org/wiki/Bag-of-words_model
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Figure A.10: Plate diagram for a LDA

than to instances in other groups [Raschka, 2015]. One of the most popular clustering
algorithms, K-means, aims to partition n instances into k (set as hyperparameter) clusters
in which each instance belongs to the cluster with the nearest mean/centroid. As a result
of the clustering, the data is partitioned into Voronoi cells. Figure A.11 shows the results
of simple k-means clustering.
Steps involved in k-means are:

1. Initialize k cluster centers randomly.

2. Assign step: asssign instances to the closest cluster center. One of the commonly
used distance metric is Euclidean distance13.

3. Update step: update cluster centers as mean of assigned instances of the new
clusters.

4. Repeat step 2 and step 3 until convergence, that is, until the assignments no longer
change.

There are several techniques to choose k value (e.g. elbow method)14. K-means algorithm
does not guarantee global optimum as the results depend on initial clusters. Several
improvements on K-means have been proposed, the most popular being K-means++
which is an algorithm for choosing initial cluster centers to K-means [Pavan et al., 2012].

13https:// en.wikipedia.org/wiki/Euclidean_distance
14Please refer to https:// en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_

set for more information
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Figure A.11: Results of a simple k-means clustering showing voronoi partitions

A.5.2 Supervised Techniques: Classi�ers

Support Vector Machine (SVM)

Support Vector Machine is a popular classi�er whose optimization objective is to maxi-
mize the distance (functional margin) between separating hyperplane/s and its support
vectors. Support vectors are the closest points that identify the separating hyperplane/s.
Larger the functional margin, smaller the generalization error of the error. Figure A.1215

illustrates the hyperplane, support vectors and functional margin of a SVM classi�er.

Linear and Non-linear SVM Linear SVM are used in the problems that have linearly
separable classes like the one depicted in Figure A.12. Most of the real world problems
usually are non-linear classi�cation problem. These problems contains classes that are not
separable by linear hyperplane/decision boundary (see Figure A.13). A variant of SVM,
non-linear SVM kernels are used to solve non-linear classi�cation problems. The basic
idea is to transform the original data into high dimensional feature space using a mapping
function ϕ and then train a linear SVM to classify the data. For example, a linear SVM
can be applied to a two-dimensional data (x1, x2) after transforming it into a three-
dimensional feature space: ϕ(x1, x2) = (z1, z2, z3) = (x1, x2, x

2
1 + x22) [Raschka, 2015].

The same transformation is applied to new, unseen data before classifying them using
SVM. Figure A.14 illustrates the idea of transforming features into a higher dimensional
space.
Transformation of orginial features into a higher dimensionall features space requires

computing dot-products and is often very expensive. But this can be avoided by applying
the kernel-trick: 'For all x and x

′
in the input space X , certain functions k(x,x

′
) can

15https:// en.wikipedia.org/wiki/ Support-vector_machine
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Figure A.12: SVM Classi�er

Figure A.13: A simple example of a non-linearly separable data
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Figure A.14: Transformation of feature space
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be expressed as an inner product in another space V, i.e, k(x,x′) = 〈ϕ(x), ϕ(x′)〉V '16.
Kernels operate in an high-dimensional implicit features space and thus, by replacing
the dot-product by kernel function: , a computationally expernsive explicit mapping
is avoided. One of the widely used kernel fucntion is gaussian kernel or Radial Basis
Function (rbf) kernel which is denote by k(x,x′) = exp(−γ‖x− x′‖2)17.

Multinomial Naive Bayes (Multinomial NB)

Multinomial Naive Bayes comes from a family of Naive Bayes classi�ers. Naive Bayes
classi�ers18 are probabilistic classi�ers on based Bayes' theorem [Stuart and Ord, 1994]
and have a strong assumption that the features are independent of each other.
Bayes' theorem is mathematically stated as:

P (A | B) =
P (B | A)P (A)

P (B)

where A and B are events and P (B) 6= 0.

P (A | B) is a conditional probability: the likelihood of event A occurring given that
B is true.

P (B | A) is a conditional probability: the likelihood of event B occurring given that
A is true.

P (A)P (A) and P (B)P (B) are the probabilities of observing A and B independently
of each other which is known as the marginal probability19.

Let's consider a dataset with n instances and m features. Every feature vector will
be represented as: xi = (xi

(1), ...xi
(m)) and the target vector Y with P classes will be

Y = (y1, ...yn) where yi(0, 1, 2....P − 1) where each yi belongs to one of P classes.

Under conditional independence, Bayes' theorem can be written as:

P (yi | xi(1), ...xi(m) = αP (yi)
∏
j P (xi

(j) | yi)

where marginal Apriori probability P (yi) and conditional probabilities P (xi(j) | yi) are
calculated through a frequency count or a maximum likelihood estimation (MLE)20. For

16https:// en.wikipedia.org/wiki/Kernel_method
17https:// en.wikipedia.org/wiki/Radial_basis_function_kernel
18Refer to https:// scikit-learn.org/ stable/modules/ naive_bayes.html for more information and exam-

ples.
19https:// en.wikipedia.org/wiki/Bayes\%27_theorem
20More information on MLE can be found at https:// en.wikipedia.org/wiki/Maximum_likelihood_

estimation
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a given input vector x, predicted class is the one for which the Posteriori probability is
maximum [Bonaccorso, 2018].

Multinomial Naive Bayes uses multinomial distribution for modelling which is useful
when each value of a feature vector represents the number of occurrences of a term or rel-
ative frequency [Bonaccorso, 2018], like in a text-based classi�cation [Rennie et al., 2003].

If there is a feature vector x = (x1, ..., xn) having n features and xi represents
frequency, then the likelihood of observing x is given by21:

p(x | Ck) =
(
∑

i xi)!∏
i xi!

∏
i

pki
xi

If a particular class and feature value never occur together in the training data, then
probability estimate based on the frequency will be zero. Multinomial Naive Bayes thus
requires a correction parameter called pseudocount, such that no probability is ever set
to be zero. Since multiplying with a 0 wipes out all other information in rest of the
features. This regularization is called Laplace smoothing when the pseudocount is one
and Lidstone smoothing in general case. The advantage of Naive Bayes classi�ers is that
they work well even with a fewer set of training instances.

K-Nearest Neighbor (KNN)

K-Nearest Neighbor Classi�er is a non-parametric, instance-based learning algorithm
which computes the classi�cation based on the majority vote of the k nearest neighbor
of each query instance where k is speci�ed by the user. Output of the KNN classi�er is
a class membership. The value of k is dependent on the data; large values of k reduces
noise but makes boundaries less disntint. Figure A.15 illustrates a simple class�cation
task of a KNN classi�er22.
Following are the steps involved in KNN classi�cation:

1. For a given query instance in the feature space, KNN identi�es the k nearest neigh-
bors based on a distance metric (e.g., Euclidean distance) In the above example
with k=3, I identify three instances as nearest neighbors: two red triangles and one
blue square.

2. KNN takes a majority vote of the classes of the k nearest neighbors. In the example,
red triangle has majority vote of two.

3. KNN assigns the majority vote as the class of the query instance. In the example,
query instance is assigned the class: red triangle.

KNN classi�ers perform both binary and multi class classi�cation and are very good for
outlier detection.
21Formula taken from https:// en.wikipedia.org/wiki/Naive_Bayes_classi�er#Multinomial_naive_

Bayes
22https:// en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#/media/File:KnnClassi�cation.svg
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Figure A.15: A simple example of a KNN Classi�er

Logistic Regresssion

Logistic Regression is a probabilisti model used for classi�cation which works on linearly
separable classes. It can extend to multiclass problem by using the OnevsRest strategy
(see Section A.5.4). Logistic regression predicts the probability of an instance belonging
to a certain class. It is calculated from the logistic function which is a sigmoid function
taking any real value as an input and produces 0 or 1 as an ouput. It is an inverse form
of logit function or log of odds ratio (odds in favour of a particular event) [Raschka, 2015].

Logit function is denoted as logit(p(x)) = ln
(

p(x)
1−p(x)

)
= β0 + β1x where p(x) is

the probability of a particular class happening. Taking exponentiation on both sides:

p(x)

1− p(x)
= eβ0+β1x.

In classi�cation, logit(p(y = 1/x)) = eβ0+β1x is the conditional probability that a
particular instance belongs to class 1 where x are features.

Taking inverse, logistic function is written as p(x) =
1

1 + e−(β0+β1x)
, where p(x) is

the probability of the instance belonging to one of the two classes in case of binary
classi�cation. β

′
s are the parameters to be learned.

A simple logistic regression classi�er is illustrated in Figure A.16. It shows the
prediction of target class based on petal length and width.
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Figure A.16: An example of logistic regression classi�cation

Multilayer Perceptron (MLP)

MLP is a multi-layer feed forward arti�cial neural network consists of atleast three
layers: input layer, hidden layer and an ouput layer. If an MLP network contains
multiple hidden layers, then it is also called deep neural network. Each node except
the nodes of input layer is called a neuron in an arti�cial neural network. Figure A.17
shows the building blocks of a neural network [Bonaccorso, 2018]. Each neuron uses
a non-linear activation function whose parameters are optimized through a technique
called Backpropogation (see [Rumelhart et al., 1986a] and [Rumelhart et al., 1986b] for
more details). Logistic (sigmoid), hyperbolic tangent (tanh) and recti�ed linear units
(ReLU) are the commonly used non-linear activation functions.

sigmoid g(z) = 1/(1 + e−z)

tanh g(z) = ez−e−z

ez+e−z

ReLU g(z) = z+ = max(0, z)

An illustration of a fully connected MLP with one hidden layer (shallow/vanilla neural
network) is shown in Figure A.18. A fully connected neural network means every neuron
in a layer is connected to all the neurons in the next layer. ith activation function in an
lth layer is denote by a(l)i . wjk

(l) denotes the weight from jth input to kth activation
function of l th layer.

The steps in a MLP is as follows:
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Figure A.17: A neuron in an arti�cal neural network

Figure A.18: Illustration of a MLP arti�cial neural network
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1. The input layer denotes the inputs (x0, x1, x2, x3)23. In a text-based classi�cation,
this can be one-hot coded or tf-idf 24 transformed vectors. Weights are randomly ini-
tialized25 and activation functions are decided before-hand. The input fed through
the network produces a predicted output ŷ.

2. From the network's ouput, error is calculated (y−ŷ) using an objective cost function
(e.g. logistic function).

3. The error is backpropagated through the network to compute gradients with respect
to the weights in each layers.

4. The weights are updated based on the computer gradient using stochastic gradient
descent method26.

5. Steps 1-3 are repeated for multiple epochs (set as hyperparameter) to learn the
weights.

6. At the end of the �nal epoch, an output 1 or 0 is predicted for binary class.
(In multiclass classi�cation, a softmax function softmax(z)i =

exp(zi)∑k
l=1 exp(zl)

is used

an acitivation in the output layer instead of lgoistic or tanh or ReLU acitivation
function thus resulting in 1 for predicted class and others 0).

MLP is a supervised learning technique and performs multiclass classi�cation using
OnevsRest strategy (see Section A.5.4). It works well on any kind of data, thus making
it attractive for especially non-linear data.

Decision Trees

Decision tree is yet another popular and one of the interpretable classi�ers. They are tree
structures with leaves representing class labels, nodes representing features and branches
represent conjunctions of features that lead to those class labels27. Decision tree classi�ers
predicts the target class by asking a series of questions. It recursively splits the data into
subsubsets based on a feature value. At every split, the feature that results in the highest
information gain (IG)28 is chosen. The recursive ends when a subsubset of instances at
a given node all belongs to the same target class (all the leaves of the decision tree
are pure) [Raschka, 2015]. In simpler terms, at every point, a feature is chosen and its
value determines the subsubsets. This process is repeated until all the instances in a
subsubset belong to the same class. Generally, a very deep tree with many nodes is
generated as a result of multitude of features that are present in many of the machine
learning problems. This leads to over�tting and thus requires pruning of the tree by

23x0 is a bias term to avoid zero input to the network
24https:// en.wikipedia.org/wiki/Tf-idf
25Di�erent methods to initialize weights exist.
26Refer to https:// scikit-learn.org/ stable/modules/ sgd.html for more information and examples on

Stochastic Gradient Descent
27https:// en.wikipedia.org/wiki/Decision_tree_learning
28https:// en.wikipedia.org/wiki/ Information_gain_in_decision_trees
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Figure A.19: A simple example of a Decision Tree Classi�er

setting a limit for maximal depth of the tree [Raschka, 2015]. Figure A.19 illustrates a
simple decision tree classi�er showing survival of passangers in Titanic ('sibsp' denotes
of number of siblings/spouses on board)29.

Random Forest

Random Forest classi�ers is an ensemble learning method, learning from an ensemble of
decision trees. An ensemble learning methods combines weak learners (slightly correlated
with true classi�cation than a random guess) to build a strong learner (strongly correlated
with true classi�cation) to provide robust method. In essence, Random Forest classi�ers
builds a multitude of decision trees (number of trees 'k' can be set as a hyperparameter)
and predicts the target label as the mode of the classes predicted by the ensemble30.
Each decision tree in the ensemble learns from a random 'd' set of features (whereas
in Decision Tree method, the model evaluates all the features) [Raschka, 2015]. The
algorithm follows the below steps:

1. Draw a random sample of size n from training set with replacement.

2. Build a decision tree from the sample. At each node:

a) Randomly select d features without replacement.

b) Split the node into subsubsets using the feature providing the best split (An
example objective function: maximizing the information gain).

29https:// en.wikipedia.org/wiki/Decision_tree_learning
30https:// en.wikipedia.org/wiki/Random_forest
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3. Repeat the steps 1 to 2 k times.

4. Assign the class label by a majority vote (mode) of the predictions by decision
trees.

While Random Forest do not provide the same interpretability of the model as a decision
tree due to their complex 'forest' like structure, they are less prone to over�tting.

Gradient Boosting

Gradient Boosting is another popular ensemble learning method, like Random For-
est classi�ers, also learns form an ensemble of decision trees. Gradient Boosting
[Friedman, 2001] builds a tree ensemble step by step (forward stage-wise additive
modelling) [E. Schapire, 2013] [Bonaccorso, 2018]. At each step, the algorithm �ts
a decision tree using a weighted version of the data: increasing the weight of the
misclassi�ed instances and decreasing the weight of the correctly classi�ed instances
in the previous step. Thus, the future weak focus on misclassi�ed instances (Boosting
[E. Schapire, 2002]). The goal is to minimize the target loss function using Steepest
Gradient Descent31.

Gradient Boosting methods requries less training data and fewer features to achieve
the same performance when compared to training separately.

A.5.3 Multiclass and Multilabel Classi�cation

For classi�cation of code cells, I employed two strategies: Multiclass and Multilabel Clas-
si�cation. Classi�cation tasks can be either binary-class or multi-class problem. Binary
classi�cation is used when an instance is classi�ed into one of the two classes. Multiclass
or Multinomial classi�cation is used when an instance is classifed into one of the three
or more classes. Multilabel classi�cation is the problem of predicting multiple labels for
each instance. As data science steps classi�cation contains more than two classes and
each code cell can have either a single label or multiple labels, I investigated both mul-
ticlass classi�cation and mutilabel classi�cation. In this section, I brie�y summarise the
techniques, classi�cation algorithms and the reasoning for choosing them. Experiments
on the dataset are discussed in Section 5. Results and evaluation are discussed in Section
?? and Section 5.7

Multiclass Classi�cation

Multilabel classi�cation assigns a set of labels to each instance. For example, in the
dataset, if a code cell perform the following actions: loading multiple data �les and
describe the data, it should be classi�ed as: load_data. For this, I will train the classi�er

31https:// en.wikipedia.org/wiki/Gradient_descent
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Figure A.20: Multiclass Classi�cation of Digits

with the primary label assigned to each instance as discussed in the Section 5.5.1. Figure
A.20 illustrates the multiclass classi�cation of digits32.

Multilabel Classi�cation

Multilabel classi�cation assigns a set of labels to each instance. For example, in the
dataset, if a code cell perform the following actions: loading multiple data �les and
describe the data, the classi�er assigns labels: [load_data, data_exploration]. For this, I
will train the classi�er with all the relevant labels assigned to each instance as discussed
in the Section 5.5.2. Figure A.2133 illustrates a multi label classi�cation where some of
the instances are assigned two class labels.

A.5.4 Classi�cation Strategies

Binary classi�ers can be extended to multiclass problems by using one of the two impor-
tant classi�cation strategies: OnevsOne and OnevsRest. OvO and OvR transforms the
multiclass problem into multiple binary class problems.

OnevsOne (OvO)

In OvO, one binary classi�er per pair of classes is trained. Each classi�er uses the
instances from the pair of classes in the training set to learn. For an unseen instance,

32Sklearn Multiclass Classi�cation Example: Recognizing hand-written digits https:
// scikit-learn.org/ stable/ auto_examples/ classi�cation/ plot_digits_classi�cation.html#
sphx-glr-auto-examples-classi�cation-plot-digits-classi�cation-py

33https:// scikit-learn.org/ stable/ auto_examples/ plot_multilabel.html#sphx-glr-auto-examples-plot-multilabel-py
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Figure A.21: Multilabel Classi�cation

a majority voting is applied to predict the class from the combined classi�ers34. In
total n ∗ (n − 1)/2 classi�ers are trained for a multiclass problem with n classes. The
complexity is quadratic O(n2) in OvO strategy and so, is not �rst preferred strategy
[Bonaccorso, 2018].

OnevsRest (OvR)

In OvR, one binary classi�er per class is trained, where the particular class is treated
as the positive class and the rest are treated as the negative class. Thus, I will train n
binary classi�ers if I have n labels in the multiclass problem. It has linear complexity
O(n) and is the default choice of strategy. OvR can su�er from imbalanced distribution
of the dataset since prediction can be skewed towards the class with more samples but
provides more interpretability35. OvR also supports Multilabel classi�cation.

A.5.5 Evaluation Metrics

In this section, I will give brief information about the evaluation metrics [Powers, 2011]
that are considered in this thesis.

Accuracy

Accuracy is the fraction of predictions the model got right. Accuracy is de�ned as:

Accuracy = Number of correct predictions/Total number of predictions

34Refer to https:// scikit-learn.org/ stable/modules/multiclass.html#one-vs-one for more information
on OvO

35Refer to https:// scikit-learn.org/ stable/modules/ generated/ sklearn.multiclass.OneVsRestClassi�er.
html for more information and examples
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In binary and multiclass classi�cation, accuracy in scikit-learn is equal to the Jaccard
index36, or Jaccard similarity coe�cient, de�ned as the "size of the intersection divided
by the size of the union of two label sets, is used to compare set of predicted labels
for a sample to the corresponding set of labels in y_true". In multilabel classi�cation,
accuracy in scikit-learn computes subsubset accuracy: the set of labels predicted for a
given instance "must exactly match the corresponding set of labels in y_true"37.

Precision

Precision is de�ned as the number of true positives TP over the number of true positives
plus the number of false positives FP.

Precision =
TP

TP + FP

Recall

Recall is de�ned as the number of true positives TP over the number of true positives
plus the number of false negatives FN.

NPV =
TN

TN+ FN

Confusion Matrix

A confusion matrix allows visualization of the performance of an algorithm with re-
gards to false positives, false negatives, true positives, and true negatives. Each row of
the matrix represents the instances in a predicted class while each column represents
the instances in an actual class38. Figure A.22 illustrates a simple confusion matrix
[Raschka, 2015].

F1-score

F1 score is the harmonic mean of precision and recall.

F1 = 2 · PPV · TPR
PPV + TPR

=
2TP

2TP + FP + FN

36https:// en.wikipedia.org/wiki/ Jaccard_index
37Refer to https:// scikit-learn.org/ stable/modules/ generated/ sklearn.metrics.accuracy_score.html for

more information and examples
38https:// en.wikipedia.org/wiki/Confusion_matrix
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Figure A.22: A simple confusion matrix
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