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Abstract

With the rise of AI, smart technology is taking over many aspects of our lives. We rely
on it increasingly more often for simple and also for complex tasks. But do people really
trust these smart systems or do they still prefer the old-fashioned human? To answer this
question, this work explores trust in AI. We used a neural network as a representative
and image classification as an example task that can be performed by a smart system. Is
a user’s trust in an answer influenced by knowing whether it was given by another human
or by an AI? To check for a possible bias, we conducted an experiment in the form of a
survey with 900 participants on the crowd-sourcing platform Amazon Mechanical Turk.
It pitted labels for images and their visually represented explanations obtained from
the neural network against those produced by humans. Using a multi-dimensional scale
to measure trust, we gained insights for different settings. They varied regarding the
available information: giving the origin of label and explanation versus withholding or
disguising sources, e.g. a human-generated label and explanation is presented as coming
from AI. We compared the results and found few statistically significant differences
between the various setups. This led us to conclude that no clear bias exists toward AI-
or human-produced results and that knowledge about the source and the availability
thereof does not exhibit a distinct influence on trust of humans in AI.





Zusammenfassung

Mit dem Aufstieg von AI hält smarte Technologie Einzug in viele Aspekte unseres
Lebens. Wir verlassen uns immer öfter darauf für einfache und auch für komplexe Auf-
gaben. Aber vertrauen Leute wirklich diesen intelligenten Systemen oder ziehen sie im-
mer noch den altmodischen Menschen vor? Um diese Frage zu beantworten, beschäftigt
sich diese Arbeit mit Vertrauen in AI. Wir verwenden ein neuronales Netzwerk als ein
Vertreter und Bildklassifizierung als ein Beispiel für eine Aufgabe, die von einem in-
telligenten System übernommen werden kann. Wird das Vertrauen eines Benutzers in
ein Ergebnis durch das Wissen beeinflusst, ob es von einem Menschen oder einer AI
kam? Um die mögliche Existenz von Vorurteilen zu prüfen, führten wir ein Experiment
in Form einer Umfrage durch mit 900 Teilnehmern auf der Crowdsourcing Plattform
Amazon Mechanical Turk. Es stellte Klassifikationen von Bildern und die zugehörige
visuell repräsentierte Erklärung produziert durch das neuronale Netzwerk den von Men-
schen gemachten gegenüber. Mittels einer mehrdimensionalen Skala zur Messung von
Vertrauen erhielten wir Einblicke für verschiedene Set-ups. Diese variierten bezüglich
den verfügbaren Informationen: Die Herkunft von Label und Erklärung ist gegeben
oder nicht sowie Verschleiern der Quelle, wie zum Beispiel von Menschen gemachte La-
bel und Erklärung werden als von einer AI produziert dargestellt. Wir verglichen die
Resultate und stellten wenige statistisch signifikante Unterschiede fest zwischen den un-
terschiedlichen Konstellationen. Das führte uns zur Schlussfolgerung, dass keine klaren
Vorurteile vorhanden sind bezüglich von AI oder Menschen gemachten Antworten und
dass Informationen zur Quelle sowie deren Verfügbarkeit keinen eindeutigen Einfluss
aufweisen auf Vertrauen von Menschen in AI.
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Introduction

In recent years, we have seen a rapid increase in the capabilities of Artificial Intelligence
(AI) [LeCun et al., 2015, Krizhevsky et al., 2012]. This has also led to a wide deploy-
ment of these smart systems (used interchangeably with AI in this work). They play
an integral role in our everyday lives. Their tasks range from seemingly unimpactful
functions like optimizing the battery usage for our smartphones to crucial activities such
as the self-driving system in the newest cars. While these two examples both simplify
our lives, they hold one important difference: the consequences of their failure. Phone
manufacturers may be fine with having a 1% error rate on the prediction of the usage
of the smartphone which results in inefficient battery optimizations. Cars, on the other
hand, may not even be permitted on the road with a 0.1% error rate because it may lead
to thousands of accidents per day resulting in at least as many users injured. With these
ramifications, humans are required to place their trust in these smart systems because
they (at least partly) relinquish control over something. This relies heavily on trans-
parency and explainability [Siau and Wang, 2018], which led to the term eXplainable AI
(XAI) coined in [Gunning, 2017].

Even though AI may have caught up to human performance levels and even surpassed
us in certain tasks, the most efficient methods are a black box [Samek et al., 2017b].
There is no way of getting a look at their inner workings which results in a lack of
transparency even though it can be crucial for certain applications (e.g. medical field).
An effort has to be made in the direction of interpretability and explainability.

In this work, we examine the implications of explanations in an AI setting inspired
by the Turing Test [Turing, 1950], which has received much criticism when it comes to
determining intelligence in AI, but it still can be relevant in the context of trust and bias
toward machines. The authors of [Hayes and Ford, 1995] name two major drawbacks
of the Turing Test: there is no way of recording small advancements and an impartial
assessment is difficult. The former criticism says that it only checks for a total result (i.e.
pass or fail) which is important in the proposed setting as trust is either gained or not.
This converts the presumed disadvantage into an actual advantage. The latter argument
may prove true when evaluating a system for performance (is it fast or good enough?)
because judges may have seen similar systems and learned from their examinations. But
trust is invoked intrinsically and its requirements may differ from person to person [Hoff
and Bashir, 2015]. This invalidates the criticism, that the Turing Test needs unbiased
opinions. In [Moor, 1976], the author describes an argument that the Turing Test could



2 CHAPTER 1. INTRODUCTION

be treated as flawed since a machine may pass it with some unconventional procedures
which can be cause to posit that it did not think at all as required by the test. Curiosity
invoked by human nature then demands insights into the inner workings of said machine.
Understanding how it operates might change the conclusion that it thinks. As long as
it remains unproven that knowledge of the inner workings are necessary to judge this
ability, this criticism can be treated as void. In our approach to the Turing Test, we
explicitly provide evidence of the internal mechanics of a machine (namely explanations)
to study the effects on users. This leads to the following research question:

(RQ) Given an image classification and a visual explanation of the classification, is the
user’s trust in the system influenced by knowing whether the answer was given by
a human or by an AI?

Because of the current, excellent state of AI for image classification and the availability
of resources, we chose this task as the centerpiece of the experiment. In this context, we
designed a system using an existing state-of-the-art CNN toolbox and an off-the-shelf
explanation framework. Then, we conducted a study where we ask the participants
questions related to trust. Does their knowledge of the source for the prediction and the
explanation affect the amount of trust they place in the system?

This work is structured as follows: in Chapter 2 we discuss the definitions and effects of
trust in smart systems and present an overview of solutions to explain AI with a special
focus on Convolutional Neural Networks (CNN) [LeCun et al., 1998, Krizhevsky et al.,
2012]. The design of the experiment and the questions we want to answer are explained
in Chapter 3. Chapter 4 treats the implementation of the system that produced the
data for the proposed experiments as well as how we deployed the survey. In Chapter
5, we evaluate the results. This is followed by Chapter 6 which outlines the identified
limitations and points to work left for the future. Finally, we draw the conclusions in
Chapter 7.

2
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Related Work

In this chapter, we discuss the related work. We start out by examining what trust is
in the context of XAI and its impact. We then work our way through surveys for XAI
toward multiple options for general explanation systems. A special focus is put on the
evolution of explainability of CNN for image classification. Last but not least, we look
at the algorithms used in the implementation.

2.1 Trust and AI

First, we need to define trust before we can discuss its implications for software. The
authors of [Mayer et al., 1995] may have a background in economics, but their formulation
is relevant in this scope nevertheless. They define trust as:

“[...] the willingness of a party to be vulnerable to the actions of another
party based on the expectation that the other will perform a particular action
important to the trustor, irrespective of the ability to monitor or control that
other party.” (p. 712)

In the context of AI the trustee (the later-mentioned party) is the smart system (used
synonymously with AI and machine in this work) and the trustor (the first-mentioned
party) is the user.

The authors of [Verberne et al., 2012] take this definition up and state that trust in
smart systems is closely related to it providing information and having the same goals
as the user. Not only do these conditions lead to trust but also to acceptance.

The paper [Siau and Wang, 2018] focuses on building trust in AI, but the authors share
the view that acceptance relates to trust. Furthermore, they distinguish between two
types of trust: initial trust built based on cues or dispositions and continuous trust which
needs to be nurtured. Each has different factors that affect trust-building. Initial trust is
formed by performance which includes representation, perception, and reviews as well as
characteristics from the process like transparency, the ability to explain, and trialability.
Developing continuous trust is also affected by performance, but the features are usabil-
ity and reliability, collaboration and communication, sociability and bonding, security
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and privacy protection, and interpretability. A second factor is related to purpose with
keywords being goal sharing and concerns about job replacement.

The authors conclude that trust in AI differs from that in other technologies since the
process, purpose, and performance for smart systems lack clear definitions. Neverthe-
less, trust is essential in the evolution and the acceptance of AI.

In [Langley et al., 2017], the authors state that trust by human users requires smart
systems to explain and reason about their behavior. They introduce the term explain-
able agency and characterize its task as follows: given a set of objectives and some back-
ground knowledge, they generate plans for a predefined problem, execute them (while
adapting where necessary), and are required to produce records of decisions, summary
reports, as well as understandable answers to questions about their choices. Therefore,
they require four abilities: explaining decisions while generating a plan, reporting exe-
cuted actions, reasoning why it diverged from a plan as well as adapting to actual events,
and communicating its decisions and reasons.

The authors also elaborate on criteria for evaluating explainable agents. First, the
subjective ratings about the quality of answers to questions in regards to clarity and
suitability. Second and more objectively, how well people can predict the behavior of an
agent in future situations after they interacted with the system.

2.2 Building Trust with XAI

The authors of [Samek et al., 2017b] claim that trust between AI and humans is similar
to trust relationships between people for which explanation is often a prerequisite. They
bring forth arguments on why explanations in smart systems are necessary. Their first
reason is verification: by default, a user should not trust a black box system. Further-
more, explanations facilitate improvements. Not only is it easier to compare systems,
but we can also find weaknesses and discover biases (in model or data). Another major
argument is knowledge transfer, where learning from an existing system is made possible
by distilling its knowledge and therefore gaining new insights. Last but not least, AI
needs to comply with current and future legislation. In the European Union, a law took
effect in 2018, which gives users a right for an explanation when their life is affected by
a decision made by an algorithm [Goodman and Flaxman, 2017].

In the second part of their paper, the authors elaborate on a potential evaluation of the
quality of explanations. They rely on a measure based on perturbation analysis proposed
in [Samek et al., 2017a]. To assess an explanation introduce noise to an input variable
deemed highly important for the prediction. This should lead to a steeper decline of the
prediction score than perturbation of less important inputs. An objective measure for
the quality of an explanation can be obtained by iteratively perturbing input variables
and keeping track of the decline of the prediction score.

4
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2.3 Interpretability and Explainability in AI

The survey [Dosilovic et al., 2018] explicitly connects explainability to trust by point-
ing out the newly arising problems with the advances of AI in areas such as medicine
or self-driving cars. Because of the way humans interact with smart systems (and the
other way around since they also affect our lives), a trust-relationship must be built.
Therefore these systems must satisfy many criteria [Israelsen and Ahmed, 2019], such
as explanatory justifiability, usability, fairness, or reliability. The authors then cite def-
initions for trust, interpretability, comprehensibility, and explainability from literature,
but they end up concluding that there are no unique definitions, terms are used inter-
changeably by researchers, and formalization is impossible since no definition is strict
enough.

They continue by presenting two methods for interpretability and explainability: in-
tegrated and post-hoc. The former relies on transparency and in turn trades off perfor-
mance since they are conflicting goals [Yaochu Jin and Sendhoff, 2008, Freitas and A.,
2004]. It comes in two forms; pure (restricting itself to transparent models) and hybrid,
where transparent model families are combined with black-box methods. Post-hoc in-
terpretability is not dependent on the inner workings of the model and has no effect on
performance. The authors distinguish two types of post-hoc methods: those addressing
interpretability and others covering explainability. Interpretability can be achieved by
having a transparent proxy model approximating the prediction of the black-box or in an
indicative approach with conceptual representations such as visualizations. A common
form of explaining is not just having a prediction as output but also including a list with
features and their significance in the decision while other methods present explanations
as visualizations, text, examples, etc. The authors end up concluding that not enough
studies have been conducted on interpretability with user-based metrics and point out
that more focus should be put on these less explicit criteria instead of the optimization
objectives.

In the survey [Zhang and Zhu, 2018] the authors call for the need to visualize Deep
Neural Networks (DNN) and especially CNNs. They argue that DNNs obtain their im-
pressive performance by sacrificing interpretability because of their black-box nature.
This makes them hard to interpret apart from the final output layer.

The authors then identify five research directions to improve visual interpretability.
When it comes to unraveling the combinations of patterns found in CNN representations,
two interpretable solutions are described: explanatory graphs and decision trees. Ensu-
ing, two studies are presented involving interactions between humans and computers on
the interpretability of middle-to-end learning which they consider to be an important
research topic for the future. While all other directions consider pre-trained networks,
the authors also bring up building explainable models where methods are explored that
are not a black-box approach but rather have clear semantics innately. Diagnosis of CNN
representations is subdivided into five separate topics. There is a section on inspecting
CNN features from an overall perspective and one on assessing areas prone to changing
the output with minimal perturbation. Besides how to improve network representations

5
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by looking at the feature space, they also discuss ways of how to detect possible biases
in the CNN representation. And finally, they talk about identifying areas in the image
that have a big influence on the prediction with works such as [Ribeiro et al., 2016]
and [Selvaraju et al., 2017], both of which will be discussed in detail in Section 2.4 and
Section 2.5 respectively. Ultimately, visualizations of CNN representations is what they
consider to be the most straightforward approach to inspect latent patterns in layers.
Among the mentioned works is [Zeiler and Fergus, 2013] which we will discuss in detail
in Section 2.5.

2.4 Explaining Predictions

The motivation behind [Ribeiro et al., 2016] is explained with trust since the lack thereof
will lead to users dismissing models or predictions. Gaining insights and understanding
reasons are quite important for this aspect. Thus, the authors introduce LIME (Local
Interpretable Model-Agnostic Explanations), an approach to explaining the results of
any classifier. The name stems from the identified properties an explainer should have:
making sense to humans and avoiding to be model-specific. LIME creates a simpler and
interpretable classifier (e.g. sparse linear models or shallow decision trees) which imi-
tates the behavior of the black-box model locally. Small changes to the input variables
and observing changes in the output allows creating an explanation in the form of a list
with the contributions of the features to the prediction.

DeepLIFT (Deep Learning Important FeaTures) [Shrikumar et al., 2017] is an expla-
nation approach specific to DNNs but in turn improves the computational efficiency
when compared to LIME. Instead of approximating the model, it calculates the impor-
tance of each input neuron for a prediction by a single pass of backpropagation. A
score is computed by comparing to a reference (the choice of which largely relies on
pre-existing domain knowledge) and reveals important parts of the input.

2.5 Visualizing Explanations for DNN Image Classifiers

The authors of [Zeiler and Fergus, 2013] refer to ImageNet [Krizhevsky et al., 2012] to
make mention of the impressive performance of CNNs for image classification. They fol-
low it up by pointing out that neural nets still lack the transparency and interpretability
needed to understand their capabilities and how to efficiently improve them. To alle-
viate these problems, they introduce a visualization technique using a deconvolutional
network (deconvnet) [Zeiler et al., 2011] in order to project feature activations back into
the input pixel space which results in a feature map the size of the original image where
the area (i.e. pattern) is highlighted that strongly activates the neuron. Even though
this technique requires a change to the architecture of the original CNN by attaching a
deconvnet to each layer, the experiments showed that their error rates lie within 0.1%
of unaltered nets.

6
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The authors [Zhou et al., 2015] criticize that the abovementioned technique using a de-
convnet only works on the convolutional but ignores the fully-connected layers. They
present a method to produce Class Activation Maps (CAM), a heat map to visualize
where the neural net is ’looking’ to identify a category. In order to obtain these discrim-
inative regions of an image, take a weighted sum of the last convolutional layer’s feature
maps and then up-sample the results to the size of the input image. This goes to show
that CNNs trained for classification with image labels have impressive capabilities to
localize objects. Furthermore, the experiments suggest also good performances for other
applications including pattern discovery, text detection, and visual question answering.

The paper [Selvaraju et al., 2017] extends the concept of CAM to Grad-CAM (Gradient-
weighted Class Activation Map). The enhancements lie in the formula for calculating the
CAM: as the name says the weights in the summation are the gradient (of a particular
class) flowing into the last convolutional layer. It is a generalization enabling the usage
of any CNN-based architecture and rids the need for both pre-training as well as changes
in the network structure. The results are high-resolution representations of which parts
the neural net considers important for classifying. In experiments, they show that the
visualizations can help humans differentiate categories better, detect biases in data, and
assess the trustworthiness of a classifier.

Interestingly enough, the authors also take time to make a point as to why trans-
parency and explanations (and trust) are needed when interacting with AI. The progress
of AI can be divided into three phases: weaker, on-par, stronger. While AI is weaker than
humans at the assigned task (and therefore not reliable), transparency and explanations
help to find failure modes to steer research in the right direction. As AI becomes better
at what it is doing, it can be considered more reliably ’deployable’. During this stage,
transparency is necessary to induce trust in users. When AI has surpassed humans, we
can learn things from these systems by using explanations in machine teaching [Johns
et al., 2015].

In Table 2.1 we provide an overview of the previously presented explanation techniques
for explanations of predictions.

Name Target Result Technique

LIME Any classifier List with weights Approximate and simplify

DeepLIFT DNN Score for neurons Calculate importance for neurons

deconvnet CNN Visualization Project feature activations

CAM CNN Visualization Weighted sum of last conv-layer

Grad-CAM CNN Visualization Grad-weighted sum of last conv-layer

Table 2.1: Overview of the presented explanation techniques

7
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2.6 Algorithms for the Implementation

In this final section, we discuss the two techniques used in the implementation. First,
we present VGGNet, a CNN for image recognition (and classification), which was used
for the labeling part of the system. To conclude, we have a look at Grad-CAM++, a
method to explain predictions of a CNN visually.

2.6.1 Classification: VGGNet

The authors of [Simonyan and Zisserman, 2014] used their findings to secure the runner-
up spot for the classification task in the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [Russakovsky et al., 2015] in 20141. They focus on the depth of the
CNN and keep other parameters fixed. Using a small convolutional filter (3×3) and
stride 1, they show that significant improvements can be achieved by pushing the num-
ber of weight layers up to 19. The net takes a 224×224 RGB-image as input and consists
of a stack (of varying size depending on the chosen depth) of convolutional layers ensued
by three fully connected layers with the third one carrying out the ILSVRC 1000-way
classification. Soft-max is the terminal layer.

CNNs with this type of architecture were trained and evaluated on the ILSVRC 2012
data set. For the training, more than one million images were used on a system with four
high-end GPUs taking two to three weeks per network. In the evaluation, two types of
errors were considered: top-1 and top-5. The former describes the percentage of incor-
rectly classified images, while the latter covers the cases when the ground-truth is not in
the top five predictions. The authors then show that their architecture outperforms all
submissions of the ILSVRC 2012 on these measurements. This leads them to conclude
that depth is an important aspect in CNN architecture design.

Not only does the VGGNet achieve state-of-the-art accuracy for the ILSVRC, but it
also generalizes well to other tasks or data sets. Furthermore, the authors also released
the weights for immediate deployment of the pre-trained networks with 16 and 19 weight
layers2.

2.6.2 Explanation: Grad-CAM++

For the explanation of the label, we chose Grad-CAM++ [Chattopadhay et al., 2018]
which further improves the previously presented method Grad-CAM. The authors point
out an important weakness: localizing several instances of the same class in an image
leads to a decline in performance. Also, for single-object images the target might not be
caught in its entirety. These two factors both affect trust negatively. In order to address
these issues, they adjust the formula of Grad-CAM (see Equation 2.1) and arrive at
Equation 2.2 for the weights (w).

1http:// image-net.org/ challenges/ LSVRC/ 2014/
2http:// www.robots.ox.ac.uk/ ∼vgg/ research/ very deep/

8
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The improvements are achieved by adding weights (α) to the pixels to avoid a simple
average and by using the Rectified Linear Unit (relu) activation function. The reason
for the latter is explained with favoring positive influence over negative inhibition. De-
spite these changes, Grad-CAM++ retains the same computational complexity as its
predecessor; i.e. a single backpass.
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The authors also introduce three metrics with all of them being expressed in percentages
and computed over the whole data set: average drop, increase in confidence, and win.
Average drop % is measured as the reduction in confidence when only the explanation
map is used as an input instead of the full image; the lower the better the explanation.
% increase in confidence is the contrary measurement to the first one and counts the
number of times a boost in confidence was recorded when using the explanation map
as input; since this is complementary to average drop %, higher means better. Win %
directly compares the performance relying on the previous two metrics by counting the
number of times one model has a higher (or lower) drop in confidence. The authors then
show that Grad-CAM++ outperforms Grad-CAM on all three.

They also evaluate human interpretability of the explanations and set this criterion
equivalent to invoking greater trust in users. In the experiment, they have human
subjects choose the explanation map that they feel best describes the object in the
image with one coming from Grad-CAM and one from Grad-CAM++ (without knowing
which is which and also having the option of ’same’). Since Grad-CAM++ outperforms
its predecessor significantly, the authors conclude that it instills greater trust in the
underlying model.

9
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Experimental Design

This chapter covers the design of the experiment and is divided into two sections. First,
we recapitulate the initial research question and break it down into smaller problems.
Afterward, we discuss the design of the survey we intend to use to answer the stated
questions in two parts: one dedicated to the components and setup followed by one to
show the structure.

3.1 Goals

This work aims to investigate trust in the context of humans interacting with AI and
how knowledge of the source influences it. Inspired by the Turing Test [Turing, 1950]
we set out to answer the following research question:

(RQ) Given an image classification and visual explanation of the classification, is the
user’s trust in the system influenced by knowing whether the answer was given by
a human or by an AI?

Based on it, we can now formulate the questions we want to answer with the experiment.

(RQa) Does knowing the source influence trust?

While this might sound oddly familiar to the original research question, there is a fun-
damental difference. The initial statement concerns knowledge about the type of the
source, whereas this case compares the availability of information against lack thereof.

(RQb) Is a machine more or less trusted than a human?

This question aims for a direct comparison of AI and human when it comes to trust.
By giving the true source for a prediction and measuring trust we can try to draw some
conclusions.
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(RQc) Is there a bias in which source to trust?

The third and final question concerns a possible bias people might have to prefer human
over AI predictions. It can be evaluated by having AI predictions disguised as produced
by humans and the other way around.

With these three sub-questions in mind, we decided to conduct the experiment in the
form of a survey. A priori, we knew that we could evaluate these issues with image
classification and corresponding explanations. There are numerous off-the-shelf-tools
available to produce both these items for a wide range of images.

By opting for a simple question-answer-survey with predefined data we ensured that
we did not limit our target audience from the start. Instead of having to sit down face-
to-face with participants, we also had the possibility to distribute it to a wide network
of people: crowd-sourcing on the internet.

3.2 Survey Design

In order to find answers to the questions introduced in the previous section, we designed
a survey. First, we present the components and then the structure we arranged them in.

3.2.1 Components and Setup

Since all of our research questions are about comparing trust in different settings, we
needed a measure that quantifies it and allows us to compare. We found such a measure
in the Multi-Dimensional Measure of Trust (MDMT) [Ullman and Malle, 2019]. The
authors propose 16 items to be evaluated on a discrete scale from 0 (not at all) to 7
(very) and including an option for ’not applicable’. They are grouped into four dimen-
sions (reliable, capable, ethical, sincere) of four items each. Furthermore, the authors
identify two factors of trust: capacity (reliable, capable) and moral (ethical, sincere). As
the name says, the MDMT is a measure of trust in the context of human-machine (or
human-human) interaction. This allowed us to calculate several different measures for
trust by averaging the values for a dimension or a factor. For a full list of the items as
well as the evaluation scale, please refer to the original publication [Ullman and Malle,
2019].

Another questionnaire we integrated into the survey is the Affinity for Technology Inter-
action (ATI) scale [Franke et al., 2019] consisting of nine questions. It gives statements
and asks if the participants agree or disagree on a six-point Likert scale. For a full
list of the associated questions, please refer to the appendix of the original publication
[Franke et al., 2019]. The authors report studies to have shown “[...] moderate to high
correlation with geekism [and] technology enthusiasm [...]”. We expect these two things
to be connected to acceptance and trust for a new system.

12
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Lastly, we also want to learn about the participants’ stance regarding trust in gen-
eral. For this purpose, we used the three questions of the SOEP-trust (Socie-Economic
Panel) survey proposed in [Naef and Schupp, 2009]. They all consist of a statement and
a four-point Likert scale on agreeance. With these questions, we gained insight into the
attitude of the participant when it comes to trusting strangers.

Regarding the setup, we opted to assign people to one of nine groups. They all rep-
resent a different setting to compare trust in. Table 3.1 provides an overview. We can
split them into two categories: those who get an explanation (groups 1, 2, 3) and those
who do not (groups 4 to 9). Everyone sees the original images that were used as input
for the classification algorithm along with the produced label. Three groups (3, 8, 9) are
not given a source for label or explanation, denoted by ’?’ in the row ’Given’. Instead,
they are told that these two things were produced by an unknown source (but limited
to human or AI). Groups 1 and 2 truthfully get the label produced by human (H) and
AI respectively. The same goes for groups 4 and 6 which additionally also see an expla-
nation for the label. Groups 5 and 7 are being deceived and see different explanations
than they are being told, i.e. human-produced for AI and AI-produced for given source
human. We aimed to show the tendencies people have to trust or distrust an entity.

Group 1 2 3 4 5 6 7 8 9

Label YES YES YES YES YES YES YES YES YES
Explanation NO NO NO H H AI AI H AI
Given H AI ? H AI AI H ? ?

Table 3.1: Overview of the different groups for the experiment

3.2.2 Structure

A rough overview of the designed survey can be seen in Figure 3.1. It consists of four
parts in three blocks. The first part serves as the introduction and includes some initial
questions. It is followed by the main block containing six images (as well as explanations
where applicable) and the corresponding questions. Part three is also still in the main
block and consists of a questionnaire about the set of all six images. The last and third
block is made up of three final questions regarding general trust in strangers.

The first part of the survey is prefaced by a brief overview of what the study is about:
exploring the relationship between humans and machines as well as comparing it to
human-human interaction. After asking for the participant’s informed consent, we gather
some basic demographic traits such as age group, country, etc. We also utilize an at-
tention task in this first part. We pose the question about the experience with the
crowd-sourcing platform but instruct them in a short paragraph to ignore said question
and put something else in the answer box. This allows us to discard answers for which
we have to assume that the participant did not read the instructions carefully and thus

13
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Figure 3.1: Structure of the survey

renders their replies unusable.
The second half of the first part consists of the ATI scale to gather data on the tech-

nology affinity of the participants.

The second part starts with a short recapitulation of the instructions along with a
declaration of the given source. Then follows the centerpiece of the survey: a set of six
images and their labels. The label consists of one or multiple keywords that describe
an object present in the image. Depending on the group, they are shown along with
an explanation, a visualization of the reasoning for the label. For each image, we ask
the participant if the label is correct and in case they selected no have them elaborate
and give a new label. Where applicable, we do the same for the explanation: does it
capture the label well? We also ask for a reasoning if they deny as well as their proposed
improvement for the explanation (move, resize, or both). Those things are done for each
of the six images individually.

14



3.2. SURVEY DESIGN 15

We show multiple images from the same source to give the participants something to
build an opinion on. One of the six images has a fake and obviously wrong label in order
to keep accuracy constant and to ensure that it is not a confounding factor. Introducing
an error involves risk and therefore trust.

The third part shows all the original images (without label or explanation) and asks
the questions of the MDMT. We use it to evaluate the trust in the (given) source.

We close the survey out with the SOEP-trust-questionnaire. This allows a compari-
son between trust in strangers and trust in the explicitly mentioned entity from the
main block.

For an impression of what the final survey looked like, please refer to Appendix B
for screenshots.

15





4

Implementation

This chapter covers everything we implemented. We start by describing the framework
built with off-the-shelf-tools and used to produce the data necessary for the experiment
proposed in Chapter 3. Next, we elaborate on the data set and its subset we chose as
input. We then discuss our efforts to make AI and human explanations comparable. This
included bringing them to a common format and their visualizations. Finally, we talk
about the implementation of the experiment using the crowd-sourcing platform Amazon
Mechanical Turk.

The code for the implementations can be found on the accompanying CD. For detailed
instructions on how to use the framework, please consult Appendix A.

4.1 Framework and Modes

We created a framework that can be used to produce explanations for a multitude of
input images. The user simply needs to provide said data along with some code for
classification and explanation. The combination of these two techniques into a single file
is called mode in this project. The first such mode was built based on the code for the
implementation of Grad-CAM++1 provided by the paper [Chattopadhay et al., 2018].
It combines their proposed explanation technique with VGGNet [Simonyan and Zisser-
man, 2014] and works out of the box with any input image. We started by porting the
code to Python 3 and removing unnecessary outputs. Next, we rearranged the code to
be better comprehensible and to make it easier to build similar modules. This included
strictly sectioning the code into parts for classification and explanation.

The implementation for the classification using the deep convolutional neural network
is done with TensorFlow [Abadi et al., 2016]. Pre-trained networks have been made
publicly available2 and this allowed us to skip the time-consuming task of training it
ourselves. The implementation uses one with 16 weighted layers (hence called VGG16).
In the technical report [Simonyan and Zisserman, 2014] it is referred to as ConvNet

1https:// github.com/ adityac94/ Grad CAM plus plus
2http:// www.robots.ox.ac.uk/ ∼vgg/ research/ very deep/

https://github.com/adityac94/Grad_CAM_plus_plus
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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Configuration D. It was trained using the training set of the ImageNet Challenge 20143,
which consisted of almost half a million images and contained 1000 classes.

The code for the classification of the images loads said neural network as well as the
input image. After the execution, the label with the highest predicted probability of
fitting the image is extracted. We added a utility file with some helper functions. It
contains the code to load, crop (to have the required 224×224×3 dimensions), and save
the input image for the neural net as well as the probing to only get the top predicted
label from the neural network since we only rely on one in this scenario.

Furthermore, the utility file also visualizes the explanation produced by the AI. But
before that, it has to be calculated first. Also using TensorFlow, the central Grad-
CAM++ Equation 2.2 is implemented with the Python library NumPy [Oliphant, 2006].
The resulting CAM is resized to fit the dimensions of the input image and passed to the
function responsible for the visualization.

4.2 Data Set

The data set was chosen according to several requirements: high-resolution images,
human-produced (and not just human-verified and machine-produced) labels, a broad
selection of classes (instead of only covering one special field), and ideally also providing
some sort of explanation. Only one of the available data sets was identified to fulfill all
of these criteria: ImageNet [Russakovsky et al., 2015]. It contains more than 14 million
high-resolution images in nearly 22’000 categories. A subset of over one million images
also have bounding box annotations4, which we can use as explanations. The images were
collected on image hosting services and search engines like Flickr5. Annotations (labels
as well as bounding boxes) are human-made and human-verified using crowd-sourcing.

4.3 Data Selection

The data set for the survey was built incrementally using the framework and example
mode described in Section 4.1. We set the goal to have 60 images labeled and explained
by both human and AI. This resulted in a data set of 180 images; one-third of which
were the cropped original images and one third each human and AI explanations.

As input we used the validation data set of the ImageNet Large Scale Visual Recogni-
tion Challenge 2011 (ILSVRC2011)6 [Russakovsky et al., 2015]. One might argue that it
is not methodologically correct to use a set that was somehow involved in training. We
counter this argument with the fact that the test set does not include the properties of
the bounding boxes which are crucial for our use case. Since we try to avoid the training

3http:// www.image-net.org/ challenges/ LSVRC/ 2014/
4http:// image-net.org/ about-stats
5https:// www.flickr.com/
6http:// www.image-net.org/ challenges/ LSVRC/ 2011/ registered-downloads
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set at all costs, we were left with the validation set. Also, we were more interested in AI
explanations than labeling accuracy.

With a Python script (available in the repository) we randomly chose images from the
50’000 available while keeping track as not to choose two from the same class. We then
ran the framework on these data batches and discarded elements according to a number
of guidelines. First of all, the label given by the AI had to coincide with the human label
to avoid any possible bias from errors. Furthermore, the image could not depict anything
that we considered to be inappropriate content (e.g. a possibly dead animal). We also
rejected images that had multiple instances of an object in order to balance the scales
between human and AI detection (and therefore explanation). According to their paper
[Chattopadhay et al., 2018], this is a known weakness of their predecessor’s approach and
our results confirmed that flaw to still be existing in Grad-CAM++ to a certain extent.
Comparing this factor is considered out of scope for this work. Lastly, we checked the
images to have labels that make sense for a layman as not to inadvertently have subjects
flag images as wrongly labeled because the depicted concept is too complicated. We
repeated this process until we had the desired data set of 60 images completed.

Finally, we chose ten out of the 60 images at random and gave them an obviously fake
label (for both human and AI) in order to introduce some inaccuracy into the results,
while keeping the explanations. This resulted in about 83% correctly labeled images for
the final data set.

All the produced images are available at https:// files.ifi.uzh.ch/ MTxai19/ .

4.4 Toward Comparable Explanations

[Zhou et al., 2015] point out that their explanations can be used for localization. While
the bounding boxes of ImageNet mainly act as localization, they can be seen as part of
an explanation. To the best of our knowledge, the explicit connection of localization to
explanation remains to be shown and is left up to future work.

The initial problem was that we started from two different formats: the human ex-
planation was a bounding box given by the coordinates of the four corners and the AI
explanation was a heat map (see Figure 4.1a). For the experiment, we needed them in
a state where they are comparable.

Human and AI explanations are both produced by the previously mentioned utility file
(created specifically per mode). In our example, two functions are responsible: the one
loading the image also creates the human explanation, while there was one dedicated to
visualizing the output of the Grad-CAM++-algorithm. We will now discuss the process
of bringing the two explanations into a comparable format as well as the visualization
methods.

4.4.1 Converting the Heat Map

The result of the Grad-CAM++-algorithm is a 224×224 matrix with values ranging
from 0 to 1, denoting the impact of a pixel on the label. In the default implementation,
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(a) Grad-CAM++ heat map

(b) Threshold: 10% (c) Threshold: 50% (d) Threshold: 75%

(e) Threshold: 85% (f) Threshold: 90% (g) Threshold: 95%

Figure 4.1: Different threshold values for the conversion from heat map to bounding box

the visualization of the explanation is a heat map with red (important), green (middle-
ground), and blue (unimportant) areas.

We were now presented with four options to make the explanations comparable: con-
vert the heat maps to bounding boxes, the bounding boxes to heat maps, both to a
new common format, or produce new human explanations. We discarded the last option

20
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since it was clearly out of scope considering the given frame, time, and resources. The
third choice was also beyond the intended extent of this work since it would have made
investigations necessary as to which format would be suitable or ideal. This left us with
the conversions. In order to produce a heat map from a bounding box, the introduc-
tion of some noise would have been necessary to not only color the areas but to also
frazzle the boundaries. In this case, the human explanation could no longer be consid-
ered human-produced since it would have been machine-processed (we already covered
involving humans in creating new explanations above). The only feasible option was to
convert the heat map to a bounding box.

Luckily, there were tools available for such a task and we only needed to define the
parameters. Using the Python library OpenCV’s [Bradski, 2000] thresholding we con-
verted the heat map to a binary (black and white) image. The resulting contours were
then processed with the function boundingRect to compute a bounding box.

The threshold for the conversion is defined as a parameter in the utils-file as a per-
centage value (i.e. between 0 and 1) and can be adjusted. We decided on the value used
in our experiment empirically. Figure 4.1 shows the initial Grad-CAM++ heat map for
an example image as well as the bounding boxes for several thresholds in the form of
colored areas. We computed multiple AI bounding box for a set of images and compared
them. The main goal was to capture all of the ’bright red’ regions in the heat map and
to exclude unimportant areas. Furthermore, we also tried to avoid making it obvious
which explanation came from which source as this would lead to bias in the experiment.
We finally settled on the value of 75% as it would produce the most consistent results
over the range of images we tested.

4.4.2 Visualizing the Explanation

Now with both explanations in the same format (i.e. given by corners of a bounding
box), we needed to decide on the visualization of the explanations. We produced them
in three different ways, as seen in Figure 4.2, for a series of images.

Figures 4.2b and 4.2e show our initial idea: the bounding box is represented as a red
area overlay on the original image. While it might seem better to only show the outlines
of the rectangle, we decided against it since we could not be sure that the chosen color
would easily be visible against the overall hue of the image. Therefore, we went with a
filled area to alleviate this problem. Furthermore, we had a variable in the utils-file that
controlled the alpha of the overlay. We empirically determined 0.4 to be a good value
that would make both the bounding box as well as the underlying original image visible.
Both Figures 4.1 and 4.2 are produced using this value.

We also considered the inverse, as seen in Figures 4.2c and 4.2f. Instead of placing the
emphasis on a certain area by coloring it in, we did it the other way around. Everything
except for the determined bounding box was filled with the color white. This left the
area that was considered important in place but removed its surrounding context.

Figures 4.2d and 4.2g show the variant which cuts the area out and displays it sepa-
rately. It is then scaled to about the size of the input image. In addition to removing
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(a) Normalized input image

(b) Human: colored area (c) Human: cut out in place (d) Human: cut out scaled

(e) AI: colored area (f) AI: cut out in place (g) AI: cut out scaled

Figure 4.2: Different visualizations for a bounding box explanation

the context, it also takes out the positional information of the bounding box as well as
the proportions to the image.

In the end, we decided to use the colored area since we deemed the context of the
bounding box too important. Seeing only a part of the image could be confusing in some
cases and even more so when they were scaled differently. We kept the color of the area
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red and manually checked the produced images and explanations to make sense and be
understandable with it.

4.5 Deployment on Amazon Mechanical Turk

After obtaining all the necessary data (images, labels, explanations), we decided on
using the crowd-sourcing platform Amazon Mechanical Turk (AMT) for the survey.
Our requirements coincided exactly with the description of a Human Intelligence Task
(HIT)7, a single self-contained job that can be completed by a worker. In our case, a
HIT consists of one run-through of the survey.

AMT allowed us to create a template in HTML (Hypertext Markup Language) and
read data from an additional Comma-Separated Values (CSV) file. Once uploaded and
deployed as a project, AMT took care of connecting it to the workers, gathering their
answers, and also producing a CSV that we could use for the evaluation.

The final implementation of the survey was composed of two parts: the HTML be-
ing responsible for displaying the questionnaire as well as containing some logic for
handling the input from the CSV and a simple web Application Programming Interface
(API) to ensure workers could only participate once since AMT did not provide such a
functionality.

The HTML mainly consists of the questions and containers for the images and labels.
While they are empty by default, JavaScript was used to fill them with the corresponding
contents. Through the functionality of AMT we can provide a CSV with 90 rows of which
every single one holds all the necessary data to represent one HIT. We distributed the
60 original images to ten buckets of six images each while making sure that each bucket
has one image with a fake label. Each line holds the group number, the source given
to the participant as well as the original image plus explanation (where applicable).
Nine groups with ten buckets each resulted in the above mentioned 90 rows. With
placeholders in the variable definitions, the data is automatically read from the CSV.
We used JQuery8 for the management of the elements. Not only are they filled this way
but we can also hide and show what we need. The necessary logic is implemented in the
ready-function which is executed as soon as the site loads. The survey form is hidden by
default and only shown after a query to the API to ensure that workers only participate
once. This call is done with Ajax (Asynchronous JavaScript and XML) and the form is
unlocked in the callback-function, provided that it is the worker’s first access to the HIT.
During this procedure, we also set all answer fields to empty to track which questions
were answered and which were ignored. We then hook into the on-submit-function of
the form and add another call to the API to register the worker’s ID as a participant.
Next, we randomize the order of the six images read from the CSV and put them in
the predefined containers. Finally, we show and hide some elements pertaining to source
and explanation in order to display the correct information for the worker’s group.

7https:// docs.aws.amazon.com/ AWSMechTurk/ latest/ RequesterUI/ mechanical-turk-concepts.html
8https:// jquery.com/
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To keep track of the participants and to prevent them from completing more than
one iteration of the survey, we used the micro web framework Flask9. We deployed the
instance on a free account of https:// www.pythonanywhere.com since it provided all the
functionality we needed. The API has two entry points: one to add and one to query
workers. As soon as they submitted their answers, we created a save file for that worker
ID and included the group number for possible later use. The other method is called on
load in the HTML. It queries the server if there already exists a save file for a certain
worker ID and receives the respective state. That way, we could determine if the worker
had already answered the survey and hide it to prevent them from completing it again.

This construct was then deployed on AMT as a survey and accessed by 900 unique
workers in order to gather their responses. AMT provided the results in a downloadable
CSV including some additional data like average and individual response time.

9http:// flask.pocoo.org
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Evaluation

This chapter discusses the findings from the results obtained in the experiment described
in Chapter 3. After deploying it to Amazon Mechanical Turk and having 900 unique
workers take the survey, we analyze their responses. Both the data set as well as the
code used in the evaluation are available on the accompanying CD.

To start, we recapitulate the questions we want to answer beginning with the initial
research question followed by the three problem statements as described in Section 3.1.

(RQ) Given an image classification and a visual explanation of the classification, is the
user’s trust in the system influenced by knowing whether the answer was given by
a human or by an AI?

(RQa) Does knowing the source influence trust?

(RQb) Is a machine more or less trusted than a human?

(RQc) Is there a bias in which source to trust?

The survey on AMT resulted in a CSV that could easily be loaded using Python which
we used for the evaluation. Every submission by a participant corresponded to one line,
so we had 900 data rows in the CSV. In a first step, we reduced the number of columns
from 438 to the 20 relevant for our questions. This included the MDMT [Ullman and
Malle, 2019] and some demographics. We then filtered out participants who did not give
consent to use their information (0% by design with 100% retained). Subsequently, we
removed answers where the attention task had been failed. We were more tolerant in
this check than we initially intended to be. Answering the given question rather than the
attention test or ignoring it resulted in rejection. But instead of insisting on pinpoint
accuracy, we also accepted variations of the expected answer due to typing mistakes
(such as lower and upper case) or slightly misreading (e.g. answering with two sentences
instead of two words).

Still, it resulted in 445 rows being removed (49% and therefore 51% retained). Out
of the original 100 participants per group we were left with groups of sizes between 41
and 61 (see Figure 5.1). We deemed it enough to get relevant results. The remaining
455 rows were preprocessed for the MDMT: we replaced the corresponding number
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for ’not applicable’ (8) with ’not a number’ so they would be ignored for the ensuing
computations.

To answer the questions, we calculated trust as measured by the MDMT in both the
four dimensions (reliable, capable, ethical, sincere) as well as the two factors (capacity,
moral) by averaging the corresponding items. The MDMT assigns values from 0 (not
at all trusted) to 7 (very trusted). We compared these elements for previously defined
selections of groups and combinations thereof. An overview of the experiment groups
can be seen in Table 3.1. We address RQa, RQb, and RQc before approaching RQ.

In order to check if the data at hand was normally distributed, we used SciPy’s
normaltest1. We report all the obtained p-values for every sample’s trust dimensions
and factors in Appendix C. For most combinations, we received p-values significantly
smaller than 0.05. This suggested that the majority of the samples was not normally
distributed.

With this knowledge, we decided on non-parametric tests. We used the two-sided
Kolmogorov-Smirnov statistic2 for the comparison of two sets of groups. The Kruskal-
Wallis H-test3 was used for three or more sets. Where necessary, we opted for Dunn’s
test4 as post-hoc pairwise comparison. We report all the numbers in the following tables
rounded to three decimal places.

Figure 5.1: Number of workers per group remaining after attention task test

Caveat! While preparing the data for evaluation, we noticed that we had accidentally
dropped one item of the MDMT for the survey, namely respectable. We replaced the
corresponding column in the data with ’not applicable’ (i.e. ’not a number’) and cal-
culated the respective trust dimension (ethical) and factor (moral) nevertheless. ’Not
applicable’ is an answer option defined by the MDMT and according to the authors the
measurements computed despite missing values still hold.

1https:// docs.scipy.org/ doc/ scipy/ reference/ generated/ scipy.stats.normaltest.html
2https:// docs.scipy.org/ doc/ scipy/ reference/ generated/ scipy.stats.ks 2samp.html
3https:// docs.scipy.org/ doc/ scipy/ reference/ generated/ scipy.stats.kruskal.html
4https:// github.com/ maximtrp/ scikit-posthocs
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(RQa) Does knowing the source influence trust?

To find an answer to this question, we combined groups 1 and 2 into a set of participants
that had received the information about the source which had produced the labels. We
compared their trust measurements against those of group 3 which had not been given
the source. Table 5.1 shows the trust values as measured by the MDMT. While the
difference column implies that the participants rated the known source higher than the
unknown source, the p-values obtained from the Kolmogorov-Smirnov statistic indicate
that none of the differences are statistically significant.

Dimension /
Factor

Known source Unknown source Difference p-value

Reliable 4.901 4.823 0.078 0.749
Capable 4.991 4.880 0.111 0.763
Ethical 4.989 4.791 0.199 0.174
Sincere 5.030 4.884 0.147 0.552

Capacity 4.946 4.852 0.094 0.667
Moral 5.043 4.848 0.195 0.260

Table 5.1: Trust as measured by the MDMT for RQa: known (groups 1 and 2) compared
to unknown source (group 3) with no further information

Table 5.2 shows the measured trust in known and unknown sources when adding expla-
nations. We compared the combination of groups 4 and 6 to the union of groups 8 and
9. Even though the unknown source exhibits a greater value on both the capable and
sincere subscale, none of the differences are statistically significant.

Dimension /
Factor

Known source Unknown source Difference p-value

Reliable 4.632 4.566 0.066 0.308
Capable 4.624 4.627 -0.004 0.589
Ethical 4.692 4.662 0.029 0.850
Sincere 4.823 4.840 -0.017 0.937

Capacity 4.628 4.596 0.031 0.180
Moral 4.787 4.757 0.030 0.875

Table 5.2: Trust as measured by the MDMT for RQa: known (groups 4 and 6) compared
to unknown source (groups 8 and 9) with explanations
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(RQb) Is a machine more or less trusted than a human?

Table 5.3 contains statistically significant differences (denoted by * next to the p-value).
Since we used a two-sided test, we can consider results with both p < 0.025 as well as p
> 0.975 indicative. We compared trust in labels and explanations produced by a human
(group 4) to AI-made (group 6). Those groups were given the actual source type. The
capable subscale and the capacity trust both exhibit statistically significant differences.
According to their answers, participants trust humans more in the capable dimension
but slightly prefer AI for the capacity factor.

Dimension / Factor Human AI Difference p-value

Reliable 4.616 4.644 -0.028 0.708
Capable 4.634 4.615 0.018 0.993 *
Ethical 5.004 4.409 0.596 0.087
Sincere 5.043 4.631 0.411 0.499

Capacity 4.625 4.630 -0.005 0.998 *
Moral 5.044 4.563 0.481 0.106

Table 5.3: Trust as measured by the MDMT for RQb: labels and explanations from a
human (group 4) compared to those from an AI (group 6)

In the second step toward answering this question, we created two samples by combining
two groups each. Groups 4 and 7 had both been given human as the source but the latter
had seen explanations and labels from an AI. The other sample consisted of groups 5
and 6 who were told an AI was the source but in truth for the latter it was actually a
human. As seen in Table 5.3, participants showed more trust toward the AI as the given
source with the exception of the ethical dimension. But those results are inconclusive
since none of the differences are statistically significant.

Dimension / Factor Human AI Difference p-value

Reliable 4.491 4.861 -0.37 0.425
Capable 4.440 4.863 -0.423 0.081
Ethical 4.708 4.659 0.049 0.247
Sincere 4.757 4.834 -0.077 0.612

Capacity 4.465 4.862 -0.397 0.102
Moral 4.753 4.778 -0.025 0.396

Table 5.4: Trust as measured by the MDMT for RQb: given source human (groups 4
and 7) compared to given source AI (groups 5 and 6)
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(RQc) Is there a bias in which source to trust?

In order to detect a possible bias, we provided the participants with fake sources. We did
this for both human as well as AI labels and explanations. First, we compared groups
that had seen human-generated products but only one of those had them designated
truthfully (group 4). The other two were told it had been an AI (group 5) or an unknown
source (group 8). Table 5.5 reports the measured trust along with the p-values. Only
two rows show statistically significant differences: reliable and capacity.

Dimension / Factor H as H H as AI H as ? p-value

Reliable 4.616 5.074 4.502 0.038 *
Capable 4.634 5.105 4.615 0.071
Ethical 5.004 4.903 4.527 0.099
Sincere 5.043 5.033 4.672 0.157

Capacity 4.625 5.090 4.558 0.031 *
Moral 5.044 4.989 4.604 0.091

Table 5.5: Trust as measured by the MDMT for RQc: comparison of groups seeing labels
and explanations made by a human but only told so truthfully once (group
4) while the other two are given AI (group 5) or unknown (group 8) as the
source

Using the post-hoc test, we did a pairwise comparison of the relevant measurements. The
p-values in Tables 5.6 and 5.7 indicate that the statistically significant differences are
between groups 5 and 8. For both the reliable dimension as well as the capacity factor
the participants trusted more in the human posing as AI than in the human disguised as
an unknown source. The numerical differences found were 0.572 for reliable and 0.531
for capacity.

H as H H as AI H as ?

H as H -1 0.402 0.402

H as AI 0.402 -1 0.032 *

H as ? 0.402 0.032 * -1

Table 5.6: p-values for the pairwise comparison of the possibly statistically significant
differences for ’reliable’

H as H H as AI H as ?

H as H -1 0.198 0.401

H as AI 0.198 -1 0.029 *

H as ? 0.401 0.029 * -1

Table 5.7: p-values for the pairwise comparison of the possibly statistically significant
differences for ’capacity’
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We did the same for AI-generated explanations and labels: comparing samples given
the true source (group 6), disguised as created by a human (group 7), and posing as
unknown source (group 9). The three-way test as reported in Table 5.8 did not show
any statistically significant differences between the samples.

Dimension / Factor AI as AI AI as H AI as ? p-value

Reliable 4.644 4.378 4.640 0.755
Capable 4.615 4.266 4.642 0.360
Ethical 4.409 4.468 4.833 0.336
Sincere 4.631 4.514 5.048 0.213

Capacity 4.630 4.322 4.641 0.427
Moral 4.563 4.504 4.947 0.269

Table 5.8: Trust as measured by the MDMT for RQc: comparison of groups seeing labels
and explanations made by an AI but only told so truthfully once (group 6)
while the other two are given human (group 7) or unknown (group 9) as the
source

(RQ) Given an image classification and a visual explanation

of the classification, is the user’s trust in the system influenced

by knowing whether the answer was given by a human or by

an AI?

To answer the initial research question, we summarize the results of the sub-questions.
The findings of RQa suggested that there is no difference in trust from knowing or not
knowing the source. This was confirmed by the second part of RQc. Even though we
disguised AI products as human and unknown source alongside revealing the true nature,
participants did not exhibit a clear preference. This was indicated by the absence of a
statistically significant difference and implies that knowing the source does not influence
trust.

The first part of RQc (human explanations and labels given as true and fake sources)
may suggest otherwise and also show statistically significant differences but we consider
these results inconclusive. A clear preference was exhibited toward human source dis-
guised as AI over human as unknown for the reliable dimension and the capacity factor.
It is not evident, however, whether this implies increased trust in the human explana-
tion or the fake AI source as the measurement gives no indication for that. Additional
examination of the existing data is required. This could possibly include a comparison
of the ATI values for the participants which is considered out of scope for now.

The evaluation of RQb also yielded no decisive results regarding a potential preference.
Participants exhibited minimally higher trust for both human (capable dimension) and
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AI (capacity factor) explanations and labels. Since every other difference was statistically
not significant, we have no clear proof for a possible preference.

To conclude and give an answer to the research question, we can say that we did not
find any heavy indications for trust to be influenced by the availability or information
itself about the source of an image classification and its visual explanation in a human-
machine-scenario.
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Limitations and Future Work

This chapter covers the limitations we identified and explains how they can be addressed
in future work. It is divided into two sections. First, we describe the restrictions regard-
ing explanations. We then point out additional work to be done in the future.

6.1 Explanations

In Section 4.4, we mentioned that [Zhou et al., 2015] find their explanations can be used
for localization. We left the reverse direction - are localizations an explanation? - for
future work. This is out of scope here since it also begs the following question: what
makes a good explanation? Not only are more experiments needed to answer this in
the context at hand but it requires the evaluation of explanation techniques and their
visualizations.

While we introduced several explanation approaches in Section 2.4, we limited the ex-
periment to one. Furthermore, since there is an endless multitude of image classification
algorithms and we can combine each of them with an explanation method, we end up
with a sheer infinite amount of modes to be used in the framework. We suggest some
evaluation beforehand to limit the numbers but then it might be interesting to compare
them in a large scale experiment in a trust setting.

Instead of limiting the diversity of the different explanations to visualization like the
three presented Subsection 4.4.1, one could explore different possibilities. While compar-
ing different visualizations (heat map, bounding box, etc.) might certainly be interesting,
the explanations do not have to be limited to a projection back to the image space. Of
the introduced techniques in Section 2.4 some use a list of features for explanations.
This concept can be extended to keywords or even generalized to full sentences giving a
description. More investigation is required.

We declared producing new human explanations out of scope in Subsection 4.4.1.
With existing technologies such as eye trackers human subjects could explain the label
of images by generating heat maps of the areas they focus on. These could then be
directly compared to the heat maps generated by Grad-CAM++ [Chattopadhay et al.,
2018] and the likes.
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6.2 Future Work

In our experiment, we intentionally limited the data used to 60 images in order to be
able to address more people and therefore get more responses. For the next step, one
should think about repeating the experiment with more or different data. It could also
be interesting to let people use their own images and have them rate the trust generated
by the explanation. A similar setup (without rating) is already implemented by Grad-
CAM1 [Selvaraju et al., 2017].

In the current setup, we imposed the restriction for each image to have the same label,
irrespective of the source. In other words, the labels produced by AI and human for an
image used in the experiment were the same. It might be an interesting approach to
remove the constraint that AI and human have to coincide with the label. This allows
to study the impact of accuracy and see which prediction generates better trust also
with respect to the explanation. Performance is mentioned as a reason for trust in AI
in [Siau and Wang, 2018]. Do people have reservations toward AI and is possibly better
performance enough to cancel out their bias and trust the machine more?

Furthermore, the data used in the experiment does not have to be confined to image
classification. Using different tasks as the centerpiece with the same approach allows to
check if the results for trust are consistent.

Also, a different approach to the experimental design could prove to be interesting.
Instead of aiming to have many different people answer a survey, extend its length and
get more consistent and coherent results from fewer participants. We consider our study
to be a first check to see if we even get a signal which is why we wanted to get as many
different contributors as possible. Such an extended experiment might be beneficial to
obtain a potentially more accurate measure of trust. It could also be used to investigate
the evolution of trust over the course of the experiment as it is dynamic and can change
drastically [Hoff and Bashir, 2015].

We also want to point out that we analyzed only a fraction of the available data,
namely the trust as quantified by the MDMT [Ullman and Malle, 2019]. We have not
even touched upon the possible relationship between trust and the measured ATI [Franke
et al., 2019]. Furthermore, the data regarding the effect of faking the source and the
implied deception went mostly ignored for now.

The evaluation could also be expanded in other ways, for example with improved
filtering of the answers. While we employed a simple attention task, one could also check
for patterns in the answers to find workers with the sole goal of finishing as quickly as
possible. We tested for entries with only one unique answer in the MDMT (i.e. had
the same option for all items) but decided not to exclude them as they might have been
genuine answers. Further analysis is required for this. It is worth noting that we had
a function in place to stop the time participants took to fill in the survey and possibly
filter them on it for the evaluation. However, the way workers engage HITs on AMT
rendered the measurements useless because opening a task does not imply that they
start right away. An improved implementation is necessary.

1http:// gradcam.cloudcv.org/ classification
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The experiment could also be repeated (including all of the 16 items of the MDMT)
with a higher number of participants to possibly get a more accurate measurement for
trust and statistically significant differences. It might also be interesting to only use
master workers on AMT and see if there is an increase in the quality of the answers.

Last but not least, the MDMT as a measurement has to be challenged with regard to
the results obtained which did not allow clear conclusions. One case indicated higher
trust on the capable subscale toward a human but the capacity trust (which is a com-
posite of the two dimensions reliable and capable) showed increased trust in AI over a
human. We propose to either directly ask for a value of trust on a scale (which is to be
determined) or at least use an additional measurement for trust to compare the MDMT
to.
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Conclusions

We investigated how the availability of certain information affects trust of humans when
interacting with AI. The goal was to find an answer to the question if trust was influenced
by knowing the source (human or AI) of a prediction and its reasoning. We broke it down
into three sub-problems. Firstly, does knowing the source influence trust? Secondly, is
a machine more or less trusted than a human? Finally, is there a bias in which source
to trust?

First, we explored what trust is in the setting of human-machine-interaction and
how to build it with explanations. Subsequently, we put the focus on neural network
image classifiers and how to visualize their reasoning. Using the popular CNN VGGNet
[Simonyan and Zisserman, 2014] for classification and Grad-CAM++ [Chattopadhay
et al., 2018] to visually explain the predictions we built a framework to enable batch
processing of images.

With the questions above in mind, we designed a survey incorporating images along
with labels and explanations produced by different sources. In ImageNet [Russakovsky
et al., 2015] we found a data set which had labels and explanations (bounding boxes for
the image classification task) generated and verified by humans. The AI counterparts
were provided by the above-mentioned framework. Bringing the explanations into a
common format meant converting the heat maps produced by the AI into bounding
boxes. This allowed us to make comparisons between the two. By having the same
labels for both sources we ensured that accuracy and therefore performance did not play
a role for trust.

In the survey, we showed each human subject a set of six images, labels, and the type
of the source (human, AI, or unknown). Depending on which of the nine groups the
participants were in they also received the visualized explanations. The MDMT [Ullman
and Malle, 2019] allowed us to measure the trust the subjects had established with six
different values (four dimensions and two factors). We deployed the questionnaire to 900
human workers on AMT which resulted in 100 participants per group.

While evaluating, we compared the trust measurements between previously defined
selections of groups and combinations thereof. Calculating the differences between them
and checking for statistical significance, we gained several insights. We could not detect
an effect on trust of knowing the source or not. Similarly, no unambiguous bias was
found toward any type of source. There were two statistically significant differences for
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trust in machines versus trust in humans. But since they were both very small and one
was in favor for AI and one for human, we did not receive a clear result.

This led to the conclusion that knowledge about the source and the availability thereof
does not exhibit a distinct influence on trust of humans in a machine.
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Framework Usage

In order to facilitate the usage of the system, the runner accepts arguments.

• -m: defines the mode used by the framework; name of the class containing the
run-function

• -f : used to pass the name of an image to be processed

• -all : can be used instead of -f to have all images in the input folder processed

A complete list of all arguments including their description can be obtained using the
parameter -h.

The input images need to be placed in the folder input. The repository includes two ex-
ample modes: VGG16 combined with Grad-CAM as well as VGG16 and Grad-CAM++.
The missing frozen neural network file vgg16.npy can be downloaded from https:// drive.
google.com/ drive/ folders/ 0BzS5KZjihEdyUjBHcGFNRnk4bFU and must be placed in
the modes\models folder.

The framework can be run with the command below and arguments where needed.

python runner . py −m modeName [− f f i leName ] [− a l l ]

In order to create new modes, it is recommended to model them after the existing
vgg16 gradcampp.py as well as adding a utils-file. Since the output depends on its
purpose, the only requirement for the mode is for the main-class to include a run-function
that can be used by the framework to execute the code.

https://drive.google.com/drive/folders/0BzS5KZjihEdyUjBHcGFNRnk4bFU
https://drive.google.com/drive/folders/0BzS5KZjihEdyUjBHcGFNRnk4bFU
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The Survey

B.1 Overview

In this appendix, we document the survey designed for the experiment with screenshots.

• Figure B.1: introduction, instructions, and informed consent

• Figure B.2: demographics

• Figure B.3: Affinity for Technology Interaction (ATI) scale [Franke et al., 2019]

• Figure B.4: instructions along with the first image, label, explanation, and ques-
tions

• Figure B.5: set of all six images and the first three items of the Multi-Dimensional
Measure of Trust (MDMT) [Ullman and Malle, 2019]

• Figure B.6: final three questions regarding trust in strangers [Naef and Schupp,
2009]
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Figure B.1: Introduction, instructions, and informed consent

Figure B.2: Demographics
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Figure B.3: ATI scale
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Figure B.4: Instructions along with the first image, label, explanation, and questions
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Figure B.5: Set of all six images and the first three items of the MDMT

Figure B.6: Final three questions regarding trust in strangers
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B.2 Answer Options

In order not to clutter the screenshots, we do not show the expanded drop-down answer
options. Rather, we give them down below for questions excluding those that require
text as input or are obvious (such as yes/no).

• How old are you?

– 17 or younger

– 18 - 20

– 21 - 29

– 30 - 39

– 40 - 49

– 50 - 59

– 60 or older

• What is the highest level of education you have completed?

– Less than high school degree

– High school degree or equivalent (e.g., GED)

– Some college but no degree

– Associate degree

– Bachelor degree

– Graduate degree

• ATI Scale

– Completely disagree

– Largely disagree

– Slightly disagree

– Slightly agree

– Largely agree

– Completely agree

• Which explanation would you have given?

– I would have made the selected field smaller.

– I would have made the selected field bigger.

– I would have moved the selected field.

– I would have moved the selected field and changed its size.

50
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• MDMT: scale from 0 (not at all) to 7 (very) and additionally ’does not fit’

– 0 (not at all)

– 1

– 2

– 3

– 4

– 5

– 6

– 7 (very)

– does not fit

• Trust in strangers

– Disagree strongly

– Disagree somewhat

– Agree somewhat

– Agree strongly

51





C

Testing for Normal Distribution

Table C.1 reports the p-values for normal distribution obtained with SciPy’s normaltest1

of all samples used in the evaluation. All the numbers in the table are rounded to three
decimal places.

Dimension / Factor [1, 2] [3] [4, 6] [8, 9]

Reliable 7.236e-02 5.261e-03 2.181e-01 5.336e-01
Capable 7.228e-02 2.238e-03 3.888e-01 3.920e-01
Ethical 1.485e-03 4.648e-01 3.236e-02 3.639e-02
Sincere 5.873e-02 9.150e-04 4.032e-01 1.847e-01
Capacity 7.734e-03 4.840e-04 3.912e-01 7.246e-01
Moral 1.329e-02 9.130e-03 2.466e-01 1.894e-02

Dimension / Factor [4] [6] [4, 7] [5, 6]

Reliable 3.707e-04 3.540e-02 1.572e-03 2.230e-03
Capable 1.837e-04 9.962e-03 8.166e-03 1.164e-05
Ethical 8.056e-04 6.792e-01 3.067e-04 2.555e-02
Sincere 1.224e-05 1.776e-02 2.811e-03 3.403e-04
Capacity 7.217e-05 2.042e-02 3.905e-03 6.048e-05
Moral 2.426e-04 1.091e-01 2.554e-02 1.610e-03

Dimension / Factor [5] [8] [7] [9]

Reliable 7.236e-02 5.261e-03 2.181e-01 5.336e-01
Capable 7.228e-02 2.238e-03 3.888e-01 3.920e-01
Ethical 1.485e-03 4.648e-01 3.236e-02 3.639e-02
Sincere 5.873e-02 9.150e-04 4.032e-01 1.847e-01
Capacity 7.734e-03 4.840e-04 3.912e-01 7.246e-01
Moral 1.329e-02 9.130e-03 2.466e-01 1.894e-02

Table C.1: p-values for the normal distribution of the samples

1https:// docs.scipy.org/ doc/ scipy/ reference/ generated/ scipy.stats.normaltest.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html
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Contents of the CD

The CD contains the following files:

• German abstract (zusfsg.txt)

• English abstract (abstract.txt)

• Master’s thesis (masterarbeit.pdf)

• Archive of the code repository (2019-florian-ruosch.zip)
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