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Abstract—In temporal-probabilistic (TP) databases, the combination of

the temporal and the probabilistic dimension adds significant overhead

to the computation of set operations. Although set queries are guar-

anteed to yield linearly sized output relations, existing solutions exhibit

quadratic runtime complexity. They suffer from redundant interval com-

parisons and additional joins for the formation of lineage expressions.

In this paper, we formally define the semantics of set operations in

TP databases and study their properties. For their efficient computa-

tion, we introduce the lineage-aware temporal window, a mechanism

that directly binds intervals with lineage expressions. We suggest the

lineage-aware window advancer (LAWA) for producing the windows of

two TP relations in linearithmic time, and we implement all TP set

operations based on LAWA. By exploiting the flexibility of lineage-aware

temporal windows, we perform direct filtering of irrelevant intervals and

finalization of output lineage expressions and thus guarantee that no

additional computational cost or buffer space is needed. A series of

experiments over both synthetic and real-world datasets show that (a)

our approach has predictable performance, depending only on the input

size and not on the number of time intervals per fact or their overlap, and

that (b) it outperforms state-of-the-art approaches in both temporal and

probabilistic databases.

1 INTRODUCTION

The need to manage large, temporal-probabilistic (TP) datasets

appears in a wide range of applications, such as temporal predic-

tions (e.g., weather) as well as in sensor (e.g., RFID) and other

forms of scientific data, which are inherently temporal and fre-

quently contain erroneous measurements. The combination of the

temporal and the probabilistic dimension in a relational database

setting requires that the result of the relational algebraic operators

complies with the semantics of each dimension. To this end,

probabilistic databases rely on the possible-worlds semantics to

define for which instances of the probabilistic database an answer

tuple is valid. Conversely, temporal databases use the sequenced

semantics to define at which time points (i.e., snapshots of the

temporal database) an answer tuple is valid. The possible-worlds

and the sequenced semantics very nicely complement each other,

since they both employ the notion of data lineage to guarantee a

closed and complete representation model for temporal, uncertain

data.

In this paper, we introduce a sequenced TP data model and,

under this model, we define and implement the three principle

TP set operations, intersection (∩Tp), union (∪Tp) and difference

(−Tp)1. In the following example, we illustrate the usefulness of

TP set operators in an application involving temporal-probabilistic

predictions.

Example 1. Consider the supermarket application of Figure 1. The

supermarket records data related to purchases of clients (a),

online shopping carts (b), and inventory (c). At each time point

(e.g., a day), the supermarket aims at predicting the products

that clients want to buy or order versus those that it has in

stock. For example, the tuple ('milk', a1, [2,10), 0.3) captures

that, at each day from the 2nd to the 10th of the month, “milk

is bought" with probability 0.3. There is a single prediction for

each fact at each time point and thus, there is no other tuple in

a that predicts the probability of buying 'milk' over an interval

overlapping with [2,10).

In order to have an overview of its supply and demand,

the supermarket wants to determine, at each time point, the

probability that a product is in stock but no client wants

to order or buy this product. The corresponding query is

Q= c−Tp (a∪Tp b), i.e., the union of relations a and b, followed

by a difference with relation c (see Fig. 1b). Answer tuple

('milk', c1 ∧¬a1, [2,4), 0.42) (see Fig. 1e) expresses that, with

probability 0.42, 'milk' is in stock but is not ordered or bought

during interval [2,4). The lineage expression used for the

computation of the interval and the probability of this tuple

is formed based on the tuples of the input relations which are

valid at each time point (c1 and a1) and the semantics of the

operation to be computed (∪Tp and −Tp).

1. Note that, although in a relational setting intersection is a dependent
operation which can be expressed in terms of two difference operations,
we show that considering intersection as a separate operator has significant
performance advantages in a TP setting.

http://arxiv.org/abs/1910.00474v1
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a (productsBought)

Product λ T p

'milk' a1 [2,10) 0.3

'chips' a2 [4,7) 0.8

'dates' a3 [1,3) 0.6

b (productsOrdered)

Product λ T p

'milk' b1 [5,9) 0.6

'chips' b2 [3,6) 0.9

c (productsInStock)

Product λ T p

'milk' c1 [1,4) 0.6

'milk' c2 [6,8) 0.7

'chips' c3 [4,5) 0.7

'chips' c4 [7,9) 0.8

(a) Input Relations

−Tp

c ∪Tp

a b

(b) Query

F λr λs T

'milk' a1 null [2,5)

'milk' a1 b1 [5,9)

'milk' a1 null [9,10)

'chips' null b2 [3,4)

'chips' a2 b2 [4,6)

'chips' a2 null [6,7)

'dates' a3 null [1,3)

(c) W(a,b)

F λr λs T

'milk' c1 null [1,2)

'milk' c1 a1 [2,4)

'milk' null a1 [4,5)

'milk' null a1 ∨b1 [5,6)

'milk' c2 a1 ∨b1 [6,8)

'milk' null a1 ∨b1 [8,9)

'chips' c3 a2 ∨b2 [4,5)

'milk' null a2 ∨b2 [5,6)

'chips' null a2 [6,7)

'chips' c4 null [7,9)

'dates' a3 null [1,3)

(d) W(c,a ∪Tp b)

Product λ T p

'milk' c1 [1,2) 0.6

'milk' c1 ∧¬a1 [2,4) 0.42

'milk' c2 ∧¬(a1 ∨b1) [6,8) 0.196

'chips' c3 ∧¬(a2 ∨b2) [4,5) 0.014

'chips' c4 [7,9) 0.8

(e) Query Result

Fig. 1: The Supermarket Application Scenario

TP set operations are interesting because of the overhead added

in their computation when combining the temporal and probabilis-

tic dimension. They are however a class of operations that have

received little attention so far: they have not been explicitly defined

in existing TP approaches [1], with TP set difference not being

supported at all. Existing temporal techniques suffer from two

main drawbacks. First, approaches used for the computation of

temporal set operations [2], [3] replicate input tuples with adjusted

intervals before the actual algebraic operations are applied. They

rely on joins with inequality conditions that have quadratic com-

plexity due to unproductive tuple comparisons. Second, stitching

lineage expressions to the output tuples in a relational manner

requires additional joins in comparison to the set operations

that are available in current temporal database implementations.

Existing probabilistic approaches [4], on the other hand, reduce

set operations to joins, since their computation not only requires

the comparison of relational attributes among the input tuples,

but also the combination of their lineage expressions. However,

the computation of TP set operations under a sequenced TP data

model requires more sophisticated solutions for the computation

of output intervals than the use of temporal predicates in joins.

In this paper, we introduce the concept of a lineage-aware

temporal window as a means to combine the computation of

the output intervals and the computation of the input lineage

expressions that will contribute to an output tuple. The set of all

windows of two TP relations constitutes a common core based

on which we can produce the result of any TP set operation by

using appropriate filter and concatenation functions. Based on this

approach, we develop efficient algorithms for the computation of

windows, and we eliminate redundancies in the steps that existing

approaches need to rely on to identify the input tuples contributing

to an output tuple.

Example 2. In order to compute the query of Fig. 1b, we need

to first compute the set of lineage-aware temporal windows

W(a,b) of relations a and b (Fig. 1c) to compute their union.

Each window spans a maximal interval over which a set of

non-temporal attributes, called a “fact", is included in the same

input tuples. The window w = ('milk', a1, b1, [5,9)) indicates

that at each time point in [5,9), the fact 'milk' is included

in the tuple of a with lineage a1 and in the tuple of b with

lineage b1. In the result of a TP union, an output tuple is

created when at least one of the input tuples is valid, and the

windows of a and b form output tuples by using a disjunction

of the input lineages. Thus, window w is transformed into

output tuple ('milk', a1 ∨ b1, [5,9), 0.72). For the computation

of the set difference c−Tp (a∪Tp b), the lineage-aware temporal

windows of relations c and a∪Tp b are computed as shown

in Fig. 1d. The window ('milk', c2, a1 ∨ b1, [6,8)) indicates

that at each time point in [6,8), the fact 'milk' is included in

the tuple with lineage c2 from input relation c, while the tuple

with lineage a1∨b1 is included from a∪Tp b, respectively. Note

that the windows of Fig. 1d which are highlighted in red are

not included in the final output of the TP set difference, since

there is no valid tuple in the left input relation. An output tuple

is created for each of the remaining lineage-aware temporal

windows by concatenating the lineage expressions λr and λs

to λr ∧¬λs.

Outline & Contributions.
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• We propose a sequenced temporal-probabilistic data model

that complies with both the sequenced semantics from tempo-

ral databases [3], [5] and the possible-worlds semantics from

probabilistic databases [6], [7].

• We formally define the semantics of TP set operations and

study the properties of TP set queries under this model. TP

set queries have not previously been investigated under a

sequenced temporal-probabilistic model.

• We introduce the concept of lineage-aware temporal win-

dows, a mechanism that binds an interval with the lineages

of the tuples that are valid during the interval. We show that

each output tuple of a TP set operation maps to exactly one

window, and we reduce the computation of a TP set operation

between two TP relations to the application of conventional

selection and projection operations over their sets of lineage-

aware temporal windows.

• We introduce the lineage-aware window advancer (LAWA),

a window-sweeping algorithm that computes all lineage-

aware temporal windows of two TP relations and guarantees

O(n logn) worst-case complexity. Exploiting the flexibility

of the windows, we are able to finalize lineages and filter out

irrelevant intervals directly at the time of their creation. No

additional costs are involved and thus the computation of a

TP set operation has linearithmic complexity, improving over

existing implementations with quadratic complexity.

• We experimentally demonstrate that LAWA is the only ap-

proach that does not deteriorate in performance as the data

history grows. In contrast to existing techniques, our solution

does not depend on the characteristics of the dataset (such

as the number of intervals per fact, or the overlap among

intervals), but only on the size of the input relations.

This paper is an extension of our ICDE paper [8] and it is

organized as follows. Section 2 provides an overview of related

works on temporal and probabilistic databases with a focus on

set operations. Section 3 introduces our TP data model, while

Section 4 defines the model’s query semantics. Section 5 defines

TP set operations over duplicate-free input relations. Section6

introduces lineage-aware temporal windows. Section 7 introduces

an algorithm for the computation of lineage-aware temporal

windows, and Section 8 includes our implementation of TP set

operations. Section 9 presents a comprehensive performance study

that compares our implementation of TP set operations with ex-

isting timestamp-adjustment and lineage-computation approaches.

Section 10 concludes the paper.

2 RELATED WORK

We next review related approaches from both temporal and

probabilistic databases and explain their limitations in terms of

supporting TP set operations. Set difference, for example, has

received little attention in temporal databases and can only be

computed using the generic normalization operator [3]. Under a

combined temporal and probabilistic data model, there is currently

no solution that supports set difference.

Temporal Set Operations. In temporal databases, the result of

a temporal set operation opT is defined as the result of applying

op over a sequence of atemporal instances (the so-called snap-

shots) of the input relations—a key concept in temporal databases

termed snapshot reducibility [9], [10], [11]. Maximal intervals

are produced by merging consecutive time points to which the

same input tuples have contributed (change preservation). Dignös

et al. [3], [2] use data lineage to guarantee change preservation

for all relational operations under a sequenced semantics. They

adapt the Normalization operator, introduced by Toman et al. [12],

to compute temporal set queries. Intuitively, the normalization

N(r,s) of a relation r based on another relation s replicates the

tuples of r and assigns new time intervals to them. The new

intervals are obtained by splitting the original intervals based on

tuples of s with which they overlap. Normalization is a generic

operator that subsequently requires an outer join of r and s with

quadratic complexity. Since it is not symmetric, it has to be

computed once for each of the two input relations [3], [2] for

the computation of temporal set-operations (cf. Fig. 2).

r

N(r, s)

s

N(s, r)

−

∩

∪ r∪T s

r∩T s

r−T s

Fig. 2: Temporal set operations using Normalize N.

Temporal joins can be used for the computation of TP set in-

tersection. Efficient solutions for temporal joins have been widely

discussed in the literature [13], [14], [15], [16]. Specific solutions

either partition the data [16] in ways that are not beneficial for

our case, since TP relations are duplicate-free (see Section 3),

or they require fixed-length input schemas [15]. Timeline Index

(TI) is a data structure introduced by Kaufmann et al. [13], [17]

to efficiently compute temporal aggregation, join and time-travel

operations. TI of relation r maps each start or end point in r to

a list of ids of tuples that start or end at this time point. Timeline

Join (TJ) is applied on the indexes created for the input relations

and implements a combination of a merge- and a hash-join. The

performance of TJ suffers because the original tuples need to be

fetched both for the application of a filtering condition and for the

creation of the output tuples.

Overlap Interval Partitioning (OIP) by Dignös et al. [14] is

designed to compute a join r ⊲⊳T s among tuples with overlapping

time intervals. Initially, OIP splits the time domain into k granules

of equal size. Adjacent granules are combined to form the parti-

tions of an input relation r so that each tuple in r is assigned to

the smallest partition into which it fits. In order to compute the

overlap join, the overlapping partitions of r and s are identified

(fast), and then a nested loop is performed to join the tuples of

these partitions (slow). This approach finds all pairs of tuples (r,

s), for r ∈ r and s ∈ s, with overlapping time intervals. Although

OIP can be extended to apply additional filtering conditions, e.g.,

equality conditions on the atemporal attributes of the tuples that

are joined, its performance deteriorates when the condition has

low selectivity (see Section 9).

Sweeping-based approaches, finally, have been widely used

for the computation of overlap joins [15], [18] in temporal settings.

A sweepline moves over all start and end points of tuples, and

determines, for each time point, the tuples of both input relations

that are valid. These approaches cannot directly be applied for

the computation of TP set operations. First, they generally do not

consider join conditions on the non-temporal attributes. Second,

they support set intersection but cannot produce all output tuples
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needed for set difference and union. The creation of output

intervals through the tuples that the sweepline intersects is not

sufficient for these two set operations.

Probabilistic Set Operations. In probabilistic databases, the

result of a probabilistic set operation opp is defined as the result

of applying op over the set of all possible instances of the input

relations. The Trio system [19] was among the first to recognize

data lineage, in the form of a Boolean formula, as a means to

capture the possible instances at which an output tuple is valid. In

an effort to provide a closed and complete representation model for

uncertain relational data, they introduced Uncertainty and Lineage

Databases (ULDBs) [20]. The algebraic operators are modified

to compute the lineage of the result tuples in a ULDB, thus

capturing all information needed for computing query answers

and their probabilities. Recently, Fink et al. [4], [21] reduced the

computation of probabilistic algebraic operations to conventional

operations (cf. Fig. 3) so that these can be performed using a

DBMS, rather than by an application layer built on top of it.

r

s

d|><|

⊲⊳

∪

and(λr, λs)

andNot(λr, λs)

ϑor(λ ) r∪p s

r∩p s

r−p s

Fig. 3: Probabilistic set operations. The joins filter out the facts that
are not needed for the result and they add the input lineages in the
same schema, so that output lineages can be formed using lineage-
concatenating functions.

Temporal-Probabilistic Set Operations. A temporal-

probabilistic model was introduced in the work of Dekhtyar

et al. [22]. Each tuple includes a TP part consisting of two

temporal conditions, corresponding to sets of potential starting

and ending points, and a pair of probability values, corresponding

to the minimum and the maximum probability of the fact being

true. Conceptually, TP relations are converted into annotated

relations, i.e., relations with tuples at a time-point granularity,

and they are queried using annotated operators. The result

is converted back to the initial compact representation, using

probability combination functions. The use of these functions

instead of lineage information has two implications. Firstly,

change preservation [3], a property of the temporal domain is not

satisfied, since lineage is not used as a criteria to merge the results

of consecutive time points into maximal intervals. Secondly,

the closure property [23], [7] of the probabilistic domain is

not satisfied, since we lose track of the input tuples used for

computing the probability of an output tuple, thus making the

final result non-compositional.

Dylla et al. [1] introduced a closed and complete TP database

model, coined TPDB, based on existing temporal and probabilistic

concepts. Query processing is performed in two steps (cf. Fig. 4).

The first step, grounding, evaluates a chosen deduction rule (for-

mulated in Datalog with additional time variables and temporal

predicates) and computes the lineage expressions of the deduced

tuples. The second step, deduplication, removes the duplicates that

could occur in the grounding step by adjusting their intervals.

Although the TPDB data model is generic, the grounding step

cannot cover operations whose results include subintervals that

are only present in one of the two input relations. As explained in

Section 5, sequenced TP set difference is one of these operations

and is not supported by TPDB.

r

s
⊲⊳θ

∪

and(λr, λs)

Duplicate

Elimination
r∪p s

r∩p s

r−p s

Fig. 4: TP set operations in TPDB. Condition θ includes temporal
predicates and duplicate elimination forms output intervals.

3 DATA MODEL & NOTATION

We denote a temporal-probabilistic schema by RTp(F , λ , T ,

p), where F = (A1, A2, . . ., Am) is an ordered set of attributes,

and each attribute Ai is assigned to a fixed domain Ωi. λ is a

Boolean formula corresponding to a lineage expression. T is a

temporal attribute with domain ΩT ×ΩT , where ΩT is a finite

and ordered set of time points. p is a probabilistic attribute with

domain Ωp = (0,1] ⊂ IR. A temporal-probabilistic relation r

over RTp is a finite set of tuples. Each tuple r ∈ r is an ordered

set of values in the appropriate domains. The value of attribute

Ai of r is denoted by r.Ai. The conventional attributes F = (A1,

A2, . . ., Am) of tuple r form a so-called fact, and we write r.F
to denote the fact f captured by tuple r. For example, the tuple

('milk', a1, [2,10), 0.3) of relation a (see Fig. 1a) includes the fact

a1.F = ('milk'), the lineage expression a1.λ = a1, the time interval

a1.T = [2,10), and the probability value a1.p= 0.3. The temporal-

probabilistic annotations of the schema express that (i) a1 = true

with probability a1.p for every time point in a1.T , (ii) a1 = false

with probability 1−a1.p for every time point in a1.T , (iii) and a1

is always false outside a1.T .

By following conventions from [1], [2], [3], [24], we assume

duplicate-free input and output relations. Formally, a temporal-

probabilistic relation r is duplicate-free iff ∀r,r′ ∈ r(r 6= r′ ⇒
r.F 6= r′.F ∨ r.T ∩ r′.T = /0)). In other words, the intervals of any

two tuples of r with the same fact f do not overlap.

A lineage expression λ is a Boolean formula, consisting of

tuple identifiers and the three Boolean connectives ¬ (“not"), ∧
(“and") and ∨ (“or"). Tuple identifiers represent Boolean random

variables among which we assume independence [1], [24], [25]).

For a base tuple r, r.λ is an atomic expression consisting of

just r itself. For a result tuple r̃ derived from one or more TP

operations, r̃.λ is a Boolean expression as defined above. For a

result tuple, lineage is determined by the temporal-probabilistic

operators (formally defined in Section 4) that were applied to

derive that tuple from the base tuples. The probability of a result

tuple is computed via a probabilistic valuation of the tuple’s

lineage expression, using either exact (see, e.g., [25], [26], [27])

or approximate (see, e.g., [28], [29], [30], [31], [32]) algorithms.

For example, in the result relation of Fig. 1e, the lineage c1 ∧¬a1

yields a marginal probability of 0.6 · (1−0.3)= 0.42 by assuming

independence among the base tuples c1 and a1 (see Fig. 1a).

Finally, we write λ
r, f
t as an abbreviation for:

λ
r, f
t =

{

r.λ iff r ∈ r ∧ r.F = f ∧ t ∈ r.T

null iff ∄ r ∈ r (r.F = f ∧ t ∈ r.T ).
(1)
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Thus, λ
r, f
t refers to the lineage expression of a tuple in relation

r with fact f that is valid at time point t. If there are no tuples in

r with fact f at time point t, we write λ
r, f
t = null.

4 QUERY SEMANTICS

For our query semantics, we adopt both the sequenced seman-

tics [5], widely used for the temporal dimension, and the possible-

worlds semantics [7], commonly used for the probabilistic di-

mension. The sequenced semantics is consistent with viewing

a temporal database as a sequence of atemporal databases (the

“snapshots”), one for each time point t in ΩT . Conceptually, query

evaluation then resolves to evaluating a query against each of

these snapshots and producing maximal output intervals according

to time points with equivalent data lineage. Thus, an output

interval consists of time points, in which the corresponding fact

has been derived based on the same input tuples. The possible-

worlds semantics defines a probabilistic database as a probability

distribution over a finite set of possible states (aka. “worlds”) in

which the probabilistic database could be. Conceptually, a query

is evaluated against each of the possible worlds. The marginal

probability of an answer tuple then is defined as the sum of the

possible-worlds probabilities, for which the answer tuple exists.

Data lineage [20], [19], in the form of a Boolean expression, serves

as a concise condition that is satisfied over the possible worlds in

which each answer tuple exists.

The query semantics of our sequenced TP data model is based

on an intriguing analogy between the temporal and probabilistic

semantics: rather than iterating over snapshots or possible worlds,

they both use the notion of data lineage to define their operational

semantics. Given a TP relation r, a tuple r ∈ r is valid at every

time point t included in its time interval r.T with probability r.p.

Thus, all tuples of a TP relation r that are valid at time point t

with a given probability are included in the probabilistic snapshot

of r at t. Specifically, we obtain the probabilistic snapshot of a

TP relation r with schema RTp = (F , λ , T , p) at time point t by

applying the timeslice operator τ
p

t , which is defined as:

τ
p

t (r
Tp) = {(r.F,r.λ , [t, t +1),r.p) |r ∈ r∧ t ∈ r.T}

In Fig. 5, we illustrate the probabilistic snapshots of the

relations a and c of Fig. 1a at time point t = 2. The probabilistic

snapshot of relation b at this time point is null since there is no

tuple of b valid.

a (productsBought)

Product λ T p

'milk' a1 [2,3) 0.3

'dates' a3 [2,3) 0.6

c (productsInStock)

Product λ T p

'milk' c1 [2,3) 0.6

Fig. 5: Probabilistic Snapshots τ
p

2(a) and τ
p

2(c)

Definition 1. (TP Snapshot Reducibility) Let r1, . . . ,rm be a set

of TP relations, let opTp be an m-ary temporal-probabilistic

operator, let opp be the corresponding probabilistic operator,

let ΩT be the time domain, and let τ
p

t (r) be the timeslice

operator. The operator opTp is snapshot reducible to opp iff,

for all t ∈ ΩT , it holds that:

τ
p

t (opTp(r1, . . . ,rm))≡ opp(τ p

t (r1), . . . ,τ
p

t (rm))

Snapshot reducibility states that a probabilistic snapshot of

the result of an m-ary TP operation opTp(r1, . . . ,rm) at any time

point t is equivalent to the result derived from the corresponding

probabilistic operation opp on the probabilistic snapshots of the

input relations at t. Applying an atemporal operation over all prob-

abilistic snapshots thus is consistent with snapshot reducibility in

temporal databases and implies that the result at any time point

t, both in terms of probability values and facts, is determined

only by the input tuples that are valid at t. The application of

opp guarantees that the computations at each time point will yield

Boolean lineage expressions that are consistent with the possible-

worlds semantics [19], [20].

As example, consider the query of Fig. 1b over the relations

of Fig. 1a. According to the lineage expression of tuple ('milk',

[2,4), c1 ∧¬a1, 0.42), at t = 2, the fact 'milk' has been derived

from the input tuples a1 and c1, i.e., the only input tuples of the

probabilistic snapshot at t = 2 (Fig. 5 that include the fact 'milk'.

Since the probability of 'milk' at t = 2 is only affected by the

probabilities of a1 and c1, it can be computed based on the lineage

expression c1 ∧¬a1.

Definition 2. (TP Change Preservation) Let r1, . . . ,rm be a set

of TP relations, let opTp be an m-ary temporal-probabilistic

operator, and let u.Ts, u.Te denote the start and end points of

an interval associated with a tuple u. For each tuple u ∈ u,

where u = opTp(r1, . . . ,rm), it holds that:

∀t, t ′ ∈ u.T(λ u,u.F
t ≡ λ

u,u.F
t′

) ∧

∄u′ ∈ u((u′.Te = u.Ts ∨u′.Ts = u.Te)∧ (u′.λ ≡ u.λ ))

Intuitively, change preservation ensures that only consecutive

time points of tuples with equivalent lineage expressions are

grouped into intervals. For example, the output tuples ('milk', [1,2),

c1, 0.6) and ('milk', [2,4), c1 ∧¬a1, 0.42) are not merged into the

interval [1,4), since they do not have equivalent lineages. Change

preservation guarantees that a fact is valid over the same possible

worlds with maximal intervals. The first line of Def. 2 ensures that

the lineage expression at all time points in the interval of a result

tuple is the same. The second line ensures that the time intervals

produced by coalescing time points with the equivalent lineage

expressions are maximal.2

5 TP SET OPERATIONS & QUERIES

5.1 TP Set Operations

In TP databases, the result of a TP set union includes, at each time

point t ∈ ΩT , the facts for which there is a non-zero probability to

be in r or in s; the result of a TP set intersection includes, at each

time point, the facts for which there is a non-zero probability to be

in r and in s; and the result of a TP set difference between two TP

relations r and s includes, at each time point, the facts for which

there is a non-zero probability to be in r and not in s.

Definition 3. (TP Set Operations) Let r and s be temporal-

probabilistic relations with schema (F, λ , T , p), and let λ
r, f
t

denote the lineage expression of the tuple in relation r that

includes fact f and is valid at time point t. Given a result tuple

2. Rather than performing logical equivalence checks among Boolean for-
mulas, which are co-NP-complete, we resort to a syntactic comparison of the
lineage sets in our implementation.
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r̃ and the lineage-concatenation functions depicted in Table 1,

we define the three TP set operations r∪Tp s, r∩Tp s and r−Tp s

as follows:

r̃ ∈ r∪Tp s ⇐⇒ ∀t ∈ r̃.T ((λ r,r̃.F
t 6= null ∨ λ

s,r̃.F
t 6= null) ∧

r̃.λ ≡ or(λ r,r̃.F
t ,λ s,r̃.F

t )) ∧

∀t ′ /∈ r̃.T (r̃.λ 6≡ or(λ r,r̃.F
t′

,λ s,r̃.F
t′

))

r̃ ∈ r∩Tp s ⇐⇒ ∀t ∈ r̃.T (λ r,r̃.F
t 6= null∧λ

s,r̃.F
t 6= null ∧

r̃.λ ≡ and(λ r,r̃.F
t ,λ s,r̃.F

t )) ∧

∀t ′ /∈ r̃.T (r̃.λ 6≡ and(λ r,r̃.F
t′

,λ s,r̃.F
t′

))

r̃ ∈ r−Tp s ⇐⇒ ∀t ∈ r̃.T (λ r,r̃.F
t 6= null ∧

r̃.λ ≡ andNot(λ r,r̃.F
t ,λ s,r̃.F

t )) ∧

∀t ′ /∈ r̃.T (r̃.λ 6≡ andNot(λ r,r̃.F
t′

,λ s,r̃.F
t′

))

TABLE 1: Definition of lineage-concatenation functions.

and(λ1,λ2) = (λ1)∧ (λ2)

andNot(λ1,λ2) =

{

(λ1) if λ2 = null

(λ1)∧¬(λ2) otherwise

or(λ1,λ2) =







(λ1) if λ2 = null

(λ2) if λ1 = null

(λ1)∨ (λ2) otherwise

The above definition of TP set operations specifies the intervals

and lineage expressions of a result tuple r̃. The first line of the

definition of each operation relates to Def. 1. It states that, at any

time point t ∈ r̃.T , fact r̃.F must be included in the corresponding

input tuples from r and s. Consequently, the lineage expression of

the output tuple r̃ at each time point t ∈ r̃.T (cf. second line)

is computed based on the same input tuples, according to the

lineage-concatenating functions of Table 1. In the case of set

union, there must exist at least one tuple in either one of the two

input relations that also includes r̃.F over r̃.T . For set intersection,

there must exist corresponding tuples in both input relations. For

set difference, an output tuple is produced at all time points t, at

which there exists a tuple of the left relation r that is valid at t

in r.T . This happens in two cases: (a) if a fact f is included in

a tuple of r but in no tuple in s, and (b) if a fact f is included

in a tuple of r but, with a probability of less than 1, also in a

tuple of s. The first case resembles the definition of temporal set

difference, where, at each time point in the output, there exist

facts that are included in tuples of r and not in tuples of s. The

second case occurs due to the probabilistic dimension. The result

of a probabilistic set difference between r and s includes all facts,

which have a non-zero probability to be in r and not in s.

Example 3. Figure 6 shows the relations a and c of Fig. 1a as

well as selected output tuples of a−Tp c. Different colors are

used for different facts: green is used for 'milk', blue for 'dates'

and red for 'chips'. Output tuples are drawn below the time

axis. For example, the output tuple ('milk', a1 ∧¬c2, [6,8),
0.09) satisfies Def. 3: for all time points in [6,8), it holds

that λ
a,'milk'

t = a1 6= null and λ
c,'milk'

t = c2. Thus, ∀t ∈ [6,8),
andNot(λ a,'milk'

t ,λ c,'milk'

t )≡ a1 ∧¬c2.

1 2 3 4 5 6 7 8 9

a1

a2a3
a

c1 c2

c3 c4
c

(a3,0.6) (a2 ∧¬ c3,0.24) (a1 ∧¬ c2,0.09)

Fig. 6: Selected output tuples of a−Tp c.

The third line of the definition of each TP set operator is a

direct consequence of Def. 2. It guarantees that, when merging

consecutive time points into an interval, we consider only the ones

for which the condition in the first line is satisfied. In other words,

a new interval is created whenever there is a change in the validity

of a tuple from either r or s at the currently considered time

point. In Example 6, at time points t = 5 and t = 8, λ
a,'milk'

t = a1

and λ
c,'milk'

t = null. Thus, outside the interval [6,8) of tuple

('milk', [6,8), a1 ∧¬c2, 0.09), there are no time points for which

andNot(λ a,'milk'

t ,λ c,'milk'

t ) ≡ a1 ∧¬c2. Fig. 7 shows the result of all

TP set operations between relations a and c in Fig. 1a.

a∪Tp c

Product λ T p

'milk' c1 [1,2) 0.6

'milk' a1 ∨c1 [2,4) 0.72

'milk' a1 [4,6) 0.3

'milk' a1 ∨c2 [6,8) 0.79

'milk' a1 [8,10) 0.3

'chips' a2 ∨c3 [4,5) 0.94

'chips' a2 [5,7) 0.8

'chips' c4 [7,9) 0.8

'dates' a3 [1,3) 0.6

a−Tp c

Product λ T p

'milk' a1 ∧¬c1 [2,4) 0.12

'milk' a1 [4,6) 0.3

'milk' a1 ∧¬c2 [6,8) 0.09

'milk' a1 [8,10) 0.3

'chips' a2 ∧¬c3 [4,5) 0.24

'chips' a2 [5,7) 0.8

'dates' a3 [1,3) 0.6

a∩Tp c

Product λ T p

'milk' a1 ∧c1 [2,4) 0.18

'milk' a1 ∧c2 [6,8) 0.21

'chips' a2 ∧c3 [4,5) 0.56

Fig. 7: TP set operations computed for the relations of Fig. 1a.

5.2 TP Set Queries & Complexity

Having defined TP set operations, we now move on to TP set

queries, which are expressions of TP set operations over TP

relations.

Definition 4. (TP Set Query) Let r1, . . . ,rm be duplicate-free

TP relations. A TP set query Q is any expression of TP set

operators that adheres to the following grammar:

Q ::= ri | Q∪Tp Q | Q∩Tp Q | Q−Tp Q | (Q)

The following theorem and corollary establish an interesting

relationship between safe queries [25], [26] in probabilistic

databases and tractable queries in our TP setting. The theorem

is based on the observation that repeated applications of TP

set operations create regular lineage expressions, which are in

one-occurrence form (1OF) [7] if none of the input relations

occurs more than once in a TP set query. Formally, a formula is in

1OF iff no tuple identifier occurs more than once in the formula.

Correspondingly, we call a TP set query Q non-repeating iff every
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input relation ri occurs at most once in Q.

Theorem 1. Any non-repeating TP set query Q over duplicate-free

TP relations yields lineage formulas in 1OF.

Proof 1. Consider a TP set operation over two TP relations r

and s, both having schema (F , λ , T , p). Since r and s are

duplicate-free, we cannot have two tuples in either r or s that

share the same fact at overlapping time intervals. Assume we

have n1 tuples in r and n2 tuples in s with the same fact f , but

each with non-overlapping time intervals. Then, for n= n1+n2

input intervals, we can at most obtain 2n−1 output intervals.

According to change preservation (Def. 2), we create the same

amount of output tuples, one for each output interval and each

with a different combination of tuple identifiers in their lineage

(Def. 3). Next, inductively, during any further application

of a TP set operation (over non-repeating subgoals), change

preservation will only merge two consecutive time intervals iff

their lineages are equivalent. This cannot occur, since all of

the lineages that are created by an individual TP set operator

are different. That is, for a non-repeating TP set query, each

tuple identifier can occur at most once in the lineage of a result

tuple, which means that the lineages are in 1OF.

Corollary 1. Any non-repeating TP set query Q over duplicate-free

TP relations has PTIME data complexity.

The proof of the corollary follows directly from Theorem 1,

since computing the marginal probability of a Boolean formula

in 1OF can be done in linear time in the size of the formula for

independent random variables [7]. Also, all temporal alignment

operations are of polynomial complexity (see [2], [3] as well as

the algorithms in Section 7 and Section 8).

The above class of non-repeating TP set queries over

duplicate-free TP relations nicely complements the dichotomy

theorem [25], [26] established for unions of conjunctive queries

(UCQs) in probabilistic databases. Each individual TP set oper-

ation over two compatible relation schemas resolves to (a union

of) at most two conjunctive queries, in which no intermediate

duplicates due to a projection onto a subset of attributes in F

may arise. Although repeated applications of TP set operations

in a query do not necessarily form UCQs, the overall query

remains hierarchical [7], since all attributes in F are propagated

through the operations. Change preservation, on the other hand,

which is required for a sequenced temporal semantics, preserves

these complexity considerations by merging only intervals with

equivalent lineage expressions into a single output interval. TP set

queries with repeating subgoals however remain #P-hard as shown

in [33] (consider, e.g., the query (r1 ∪
Tp r2)−

Tp (r1 ∩
Tp r3)).

6 LINEAGE-AWARE TEMPORAL WINDOWS

The result of all TP set operations includes facts whose probability

is computed over maximal intervals, i.e., intervals during which

the same input tuples are valid. The computation of such intervals

in temporal databases is performed by adjusting the intervals of

each input relation based on the tuples of the other input relation

that are valid. Combining the adjusted results to identify the inter-

vals when, for example, tuples of both relations are valid [14], and

concatenating their lineages for probability computation [1], [14]

must be performed with joins. In this section, we introduce the

lineage-aware temporal window, a novel mechanism that directly

associates candidate output intervals with the lineage expressions

of the valid input tuples of both relations. We show that a window

contains all the information to produce an output tuple of a TP set

operation opTp, and that the set of all windows is a common core

based on which all set operations can be computed using simple

filtering and lineage-concatenation functions.

A lineage-aware temporal window has schema (F , T , λr, λs).

F is a fact included in tuples over interval T . λr and λs are the

lineage expressions of the input tuples of the left input relation r

and the right input relation s, respectively, which are valid over

[winTs,winTe) and include F .

Definition 5. (Lineage-Aware Windows) Let r and s be TP re-

lations with schema (F, λ , T , p). The set of lineage-aware

windows W(r,s) of r with respect to s with schema (F, T , λr ,

λs) is defined as follows:

w̃ ∈ W ⇐⇒ ∀t ∈ w̃.T ( (λ r,w̃.F
t 6= null ∨ λ

s,w̃.F
t 6= null) ∧

(w̃.λr = λ
r,w̃.F
t ∧ w̃.λs = λ

s,w̃.F
t ) ) ∧

∀t ′ /∈ w̃.T (w̃.λr 6= λ
r,w̃.F
t ∨ w̃.λs 6= λ

s,w̃.F
t )

For a window w̃ to be created over w̃.T , at least a tuple of

one of the input relations must be valid (Line 1). Each window w̃

in W(r,s) spans over the interval or a subinterval of a tuple r in

r or a tuple s in s that include the fact w̃.F and as stated in the

second line of the definition these tuples will determine w̃.λr and

w̃.λs respectively. Finally, according to line 3 of Definition 5, the

interval of window w̃ is a maximal subinterval of an input tuple.

In other words, at every time point outside the w̃.T , either an input

tuple that was valid over w̃.T stops being valid or an input tuple

that was not valid over w̃.T starts being valid.

Example 4. In Fig. 8, the TP relations a and c of Fig. 1 are

illustrated along with the lineage-aware temporal windows of

these two relations. Different colors are used for different facts:

green for 'milk', red for 'chips', and blue for 'dates'. A rectangle

represents a window, filled in the color of the tuples including

the corresponding fact. The window w1 = ('milk', [1,2), c1,

null) is colored green since it includes the fact w1.F = 'milk'.

It indicates that, over interval [1,2), fact 'milk' is included in

tuple c1 of relation c (w1.λr = c1) but in no tuple of relation

a (w1.λs = null). The window w1 only spans the maximal

interval [1,2), since at time point t = 2, tuple a1 starts being

valid and thus, there is a change in the tuples of the two

relations that are valid at t = 2 and include fact 'milk'.

Theorem 2. Let r and s be TP relations with schema (F, λ , T ,

p), opTp a TP set operation, and W(r,s) the lineage-aware

windows of r and s. Given the output of the TP set-operation

r opTp s, there exists a window w in W that contains all the

necessary information to produce a tuple u in r opTp s.

Proof 2. We assume that opTp is a TP set-intersection (∩Tp) and

u is an output tuple in r ∩Tp s. According to the definition

of this operation and since, at each time point, only one tuple

of each relation can include a fact, at each time point in u.T ,

there is exactly one tuple of r and one s valid and include

u.F. Each window in W(r,s) records, for each fact F and time

point t, the tuples of each relation that include F at t. Thus,

windows are only created over time points when there is at

least one valid input tuple. In order for u to map to at least one

window w ∈ W, there must exist a window w with the same
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1 2 3 4 5 6 7 8 9

a1

a2a3
a

c1 c2

c3 c4
c

F='milk'
T = [1,2)
λr = null

λs = c1

F='milk'
T = [2,4)
λr = a1
λs = c1

F='milk'
T = [4,6)
λr = a1

λs = null

F='milk'
T = [6,8)
λr = null

λs = c2

F='milk'
T = [8,10)

λr = a1
λs = null

F='dates'
T = [1,3)
λr = a3

λs = null

F='chips'
T = [4,5)
λr = a2
λs = c2

F='chips'
T = [5,7)
λr = a2

λs = null

F='chips'
T = [7,9)
λr = null

λs = c4

W(a,c)

Fig. 8: Lineage-Aware Temporal Windows W(a,c)

fact (u.F = w.F) and interval (u.T = w.T ) as u, and for which

it holds that w.λr = λ
r,u.F
t and w.λs = λ

s,u.F
t . Assuming that

there is no such window, i.e., assuming that one of the above

mentioned conditions is not satisfied, we conclude that there

are no valid tuples including u.F or the interval u.T is not

maximal. This contradicts our initial assumption of u being

a valid output tuple and of exactly one tuple of r and one s

being valid over u.T and including u.F . Consequently, there is

at least one window w ∈ W to which we can map u. In turn,

we assume that u maps to two windows w1 and w2 of W. This

means that u has the same fact and interval with both w1 and

w2 and that w1.λr = λ
r,u.F
t =w2.λr and w1.λs = λ

s,u.F
t =w2.λs.

Consequently, window w1 coincides with w2, and this proves

that there is exactly one window w ∈ W that contains all the

information needed to produce an output tuple u for TP set-

intersection. Similarly, we can prove that the same holds for

an output tuple of any TP set operation.

The flexibility of lineage-aware temporal windows relies on

two characteristics: the lineages of valid tuples of each input

relation are directly associated with a maximal interval, and they

are separately recorded. These two characteristics allow for an

efficient computation of the output tuples by using simple filtering

conditions and lineage-concatenating functions instead of the

additional joins performed in related approaches [1], [14]. Given

a TP set operation, λr and λs can be used to determine whether

fact F and interval [winTs, winTe) yield an output tuple. If this

is the case, λr and λs are combined to the lineage expression of

this output tuple.

Theorem 3. Let r and s be TP relations with schema (F, λ , T , p),

opTp a TP set operation, and W(r,s) the set of lineage-aware

windows of r and s. Given the filtering conditions λ f ilter in

Table 2 and the lineage-concatenating functions λ f unction of

Definition 3, the computation of opTp is reduced to:

r opTp s = πF,T,λ f unction(λr ,λs)(σλ f ilter
(W(r,s))) (2)

Proof 3. We assume that opTp is a TP set-intersection (∩Tp),

and a tuple u that is produced by the algebraic expres-

sion πF,T,and(λr,λs)(σλr 6=null∧λs 6=null(W(r,s))). As a result, u

has been produced from a window in W(r,s) for which

w.λr 6= null and w.λs 6= null. Also, u.λ = and(w.λr,w.λs).

TABLE 2: Definition of filtering conditions.

opTp λ f ilter λ f unction

r ∩Tp s λr 6= null ∧ λs 6= null and(λr,λs)

r −Tp s λr 6= null andNot(λr,λs)

r ∪Tp s λr 6= null ∨ λs 6= null or(λr,λs)

Assuming that u /∈ r ∩Tp s means that one of the conditions in

Def. 3 for TP set-intersection is not satisfied. This is not possi-

ble, since u has been produced based on a window w and thus

for all time points in u.T or equivalently in w.T , λ
r,u.F
t 6= null,

λ
s,u.F
t 6= null and u.λ = and(λ r,u.F

t ,λ s,u.F
t ). Similarly, the

contradiction can be shown for the time points outside u.T
and it can be shown that all tuples in r ∩Tp s are created based

on the algebraic expression πF,T,λ f unction(λr ,λs)(σλ f ilter
(W(r,s))).

We can prove that the same holds for an output tuple of any

TP set operation.

r

s
W(r, s)

λr 6= null

λr 6= null∧λs 6= null

λr 6= null∨λs 6= null

and(λr, λs)

andNot(λr, λs)

or(λr, λs) r∪Tp s

r∩Tp s

r−Tp s

Fig. 9: TP set operations using lineage-aware temporal windows.

In Theorem 3, we reduce the computation of a TP set operation

r opTp s to the application of a conventional projection and

selection on the lineage-aware temporal windows of r and s.

The filtering condition in the selection as well as the lineage

concatenating-function used in the projection are directly derived

from the definition of TP set operations (Definition 3). The com-

putation process is illustrated in Fig. 9. In comparison to existing

temporal or probabilistic approaches used for set operations (cf.

Fig. 2 and Fig. 3), the set of lineage-aware temporal windows

constitutes a computational core that only needs to be computed

once and does not suffer from the quadratic complexity of previous

approaches, as shown in Section 7.
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7 LINEAGE-AWARE WINDOW ADVANCER

In this section, we present the lineage-aware window-advancer

(LAWA), an algorithm that produces all lineage-aware temporal

windows of two TP relations. Each lineage-aware temporal win-

dow w in W(r,s) records the lineage expression of the tuple of

each input relation that is valid over w.T and that includes w.F .

Since the interval of each window is maximal, a new window

should be created when there is a change in the tuples of the input

relations that are valid and include a given fact. Such a change

only takes place when an input tuples starts or stops being valid,

i.e., at the starting and ending points of input intervals, and this

observation directly points to the use of a sweeping technique.

Algorithm 1: LAWA(status)

1 (prevWinTe,currFact,rValid,sValid,r,s) = status;

2 if rValid = null ∧ sValid = null then
3 if r= null∧s= null then // Case 1

4 return (null,null)
5 else if r= null∧s 6= null then // Case 2

6 winTs = s.Ts; currFact = s.F;
7 else if r 6= null∧s = null then // Case 3

8 winTs = r.Ts; currFact = r.F;
9 else

10 if r.F = currFact∧s.F 6= currFact then
11 winTs = r.Ts // Case 4

12 if r.F 6= currFact∧s.F = currFact then
13 winTs = s.Ts // Case 5

14 else if r.Ts< s.Ts then // Cases 6, 7

15 winTs = r.Ts; currFact = r.F;
16 else
17 winTs = s.Ts; currFact = s.F;
18 else winTs = prevWinTe ; // Case 8

19 if r 6= null∧r.F = currFact∧r.Ts = winTs then
20 rValid = r; r = getNext(r);
21 if s 6= null∧s.F = currFact∧s.Ts = winTs then
22 sValid = s; s = getNext(s);

23 winTe = min(minTs(r, s), minTe(rValid, sValid));

24 λr = null; λs = null; window = null;

25 if rValid 6= null then λr = rValid.λ ;
26 if sValid 6= null then λs = sValid.λ ;

27 window = (currFact, winTs, winTe, λr , λs) ;

28 if rValid 6= null∧rValid.Te=winTe then rValid = null;
29 if sValid 6= null∧sValid.Te=winTe then sValid = null;

30 prevWinTe=winTe;
31 status = (rValid,sValid,r,s,currFact,prevWinTe);

32 return (window,status);

In our approach, to produce all lineage-aware temporal win-

dows, we introduce LAWA, a sweeping algorithm we describe

in Algorithm 1. Traditionally, sweeping algorithms use a vertical

sweepline, and they determine the output tuples based on the input

tuples that intersect with this sweepline [18], [15]. This works well

for TP set intersection. However, for TP set difference and set

union, there are cases when the interval of an output tuple is not

determined only by the tuples that intersect with the sweepline. In

order to handle such cases, we use a sweeping window. The left

and right boundaries of the window correspond to the start and

end points of a maximal interval that is associated with a potential

output interval.

LAWA processes the tuples of two duplicate-free TP relations

r and s with schema (F , λ , T , p) that are sorted by their

facts and starting points of their intervals. It produces lineage-

aware temporal windows whose left (winTs) and right (winTe)

boundaries are computed during a sweep of the start (Ts) and end

(Te) points of the tuples. The left boundary winTsi of a window

i is greater or equal to winTei−1 of the previous window. Its

right boundary winTei is the smallest among the end points of

the tuples expected to overlap with this window, i.e., tuples with

Ts≤ winTs and Te> winTs, and the start points of the tuples of

the two relations to be processed next.

The input of LAWA is a structure (status) with the neces-

sary status information: the right boundary of the last candidate

window (prevWinTe), the fact that is currently being processed

(currFact), the current tuples of r (rValid) and s (sValid) that

are valid over the sweeping window [winTs,winTe), and the next

tuples of relations r (r) and s (s). All variables are initialized to

null except for r and s that are initialized to the first tuples of the

corresponding relations. The value of prevWinTe is initialized to

−1.

(a) Case 1

s

windTs

(b) Case 2

r

windTs

(c) Case 3

r

s

windTs

(d) Case 4

r

s

windTs

(e) Case 5

r

s

windTs

(f) Case 6

s

r

windTs

(g) Case 7

r (rValid)

s

(windTs)

(h) Case 8

Fig. 10: Cases for determining windT s in LAWA Algorithm. Blue
crosses are used for the time points that are candidates for windT s.

Initially, the left boundary winTs of the new window is

determined, and the cases considered are described in Fig. 10. If

at least one tuple is valid (Fig. 10h), the new window is adjacent

to the previous one, with winTs = prevWinTe (Case 8, Line 18).

Otherwise, winTs, and potentially currFact, are determined by

the new tuples. Five possible scenarios exist: (a) both relations

have been scanned (Case 1, Line 3), (b) one of the two relations

has already been scanned (Cases 2 and 3, Lines 5– 8), (c) there

are available tuples from both r and s, but only one includes the

same fact as currFact (Cases 4 and 5, Lines10–13), (d) there

are available tuples from both r and s and they either both include

different facts from currFact or the same fact as currFact,

making two starting points as candidates for windTs (Cases 6 and

7, Lines 14–17).

Since the input relations are duplicate-free, i.e., no two tuples

of the same relation can include the same fact and be valid at

the same time point, rValid and sValid correspond to exactly
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one input tuple each. If rValid and sValid are not null, they

correspond to tuples that were also overlapping with the previous

window. Otherwise, they need to be updated to r or s if the latter

include a fact equal to currFact and have a start point equal to

winTs (Lines 19–22). The right boundary winTe is updated to

the minimum time point among the end points of rValid and

sValid and the current start points of r and s, i.e., the next

tuples to be processed (Line 23). Here, the tuples r and s must be

considered because the start point of an unprocessed tuple marks

a change in the tuples that are valid over that interval.

After λr and λs are extracted from rValid and sValid (Lines

25–26), all the information for the creation of a lineage-aware

temporal window is recorded (Line 27). rValid and sValid are

updated for the next call of LAWA based on whether the tuples

they correspond to are still valid outside the window, i.e., when the

end points of these tuples are larger than winTe. Finally, LAWA

also returns its status, which is used in the implementation of

the actual TP set operations.

1 2 3 4 5 6 7 8 9

c1 (rValid) c2 (r)
c

a1 (s)
a

('milk',[1,2), c1, null)

1 2 3 4 5 6 7 8 9

c1 (rValid) c2 (r)
c

a1 (sValid)
a

('milk',[2,4), c1, a1)

1 2 3 4 5 6 7 8 9

c1 c2c

a1 (sValid)
a

('milk',[8,10), null , a1)

Fig. 11: Three calls of LAWA for the input relations c and a.

Example 5. In Fig. 11, we illustrate three calls of LAWA with the

left and right relations being c and a of Fig.1a, respectively.

Before the first call, the input relations have been sorted by

their facts and start points. The time points used to determine

the right boundary of a window are annotated with a blue

cross. In the first call of LAWA, illustrated at the bottom, the

left and right boundary of the window are set to winTs= 1

and winTe= 2, respectively. After winTs is determined, the

only tuple valid is rValid= c1. Thus, given that there is no

valid tuple in a yet, winTe is set to the start point of a1,

i.e., the next tuple of a to be processed. This time point is

smaller than the end point Te= 4 of rValid or the start point

Ts = 6 of the upcoming tuple of c (c2). In the second call

of LAWA, illustrated in the middle, the left boundary of the

next window to be examined is equal to the right boundary

of the previous window, i.e., winTs = 2, given that the fact

('milk') is still being processed. The tuples valid after time

point t = 2 are rValid = c1 and sValid = a1. The right

boundary of the window is the minimum of rValid.Te =
4, sValid.Te = 10 and c2.Ts = 6, and thus winTe = 4. A

similar pattern goes on until the last call of LAWA, illustrated

on the top of Fig. 11, where winTs= 8 and winTe= 10. Then,

rValid and sValid are set to null and no further windows

are produced.

8 BASIC TP SET ALGORITHMS

In this section, we implement all TP-set operations by exploiting

the flexibility of lineage-aware temporal windows that enable

finalizing output lineages and filtering out output intervals when

they are produced, thus avoiding redundant computations that

occur when these two steps are decoupled [1], [2]. Based on

Theorem 3, we reduce the implementation of TP set operations

into a four-step process (Fig. 12). The sorting step is a prerequisite

for the creation of windows using LAWA. When a window is

created, a lineage-based filter (λ f ilter) is directly applied. The

λ f ilter is different for each TP set operation. In contrast to previous

works of either temporal or probabilistic set operations, this step

involves no application of additional algebraic operations, no

tuple replication and no redundant interval comparisons. After the

filtering step, the final lineage expression of an output tuple is

created by applying the lineage-concatenating function (λ f unction)

of the respective TP set operation (Def. 3) on λr and λs.

sort LAWA λ f ilter λ f unction

r,s,op

Fig. 12: Process overview.

The algorithms Intersect(r, s), Union(r, s) and Except(r, s) cor-

respond to r∩Tp s, r∪Tp s and r−Tp s, respectively. In all algorithms,

input relations are initially sorted based on their facts F and start

points Ts (Line 1) when the status of LAWA is initialized. As long

as the terminating condition (Line 3) is satisfied, LAWA passes

through all start and end points in a smaller-to-larger fashion and

produces candidate windows (Line 4). The windows produced

by LAWA are filtered based on the lineages of the tuples that

are valid during the interval it covers (Line 5). The filter used

for each operation, as well as the terminating condition and the

lineage-concatenating function, directly stem from the definitions

of the operation. For example, in the case of set difference r−Tp s,

windows are produced as long as there are tuples in the outer

relation (i.e., while r 6= null). The interval of a lineage-aware

temporal window corresponds to an output tuple only if there is a

tuple of the outer relation that is valid over [winTs,winTe) (i.e.,

when λr 6= null).

For Union(r, s) and Except(r, s), when the while-loop termi-

nates, there might still be one more window, corresponding to

the subinterval of the last valid tuple of r (rValid) or the last

valid tuple of s (sValid). Thus, LAWA is called one more time

(Line 8).

Algorithm 2: Intersect(r, s)

1 sort(r{F,Ts}); sort(s{F,Ts});
2 status = (−1,null,null,null,fetchRow(r),fetchRow(s));
3 while status.r 6= null∧status.s 6= null do
4 (w,status) = LAWA(status);
5 if w.λr 6= null ∧ w.λs 6= null then
6 o = o ∪ {(F , and(w.λr, w.λs), [w.winTs, w.winTe))};
7 return o;
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Algorithm 3: Union(r, s)

1 sort(r{F,Ts}); sort(s{F,Ts});
2 status = (−1,null,null,null,fetchRow(r),fetchRow(s));
3 while status.r 6= null∨status.s 6= null do
4 (w,status) = LAWA(status);
5 if w.λr 6= null ∨ w.λs 6= null then
6 o = o ∪ {(w.F , or(w.λr, w.λs), [w.winTs, w.winTe))};
7 if status.rValid 6= null∨status.sValid 6= null then
8 (w,status) = LAWA(status);
9 o = o ∪ {(w.F , or(w.λr, w.λs), [w.winTs, w.winTe))};

10 return o;

Algorithm 4: Except(r, s)

1 sort(r{F,Ts}); sort(s{F,Ts});
2 status = (−1,null,null,null,fetchRow(r),fetchRow(s));
3 while status.r 6= null do
4 (w,status) = LAWA(status);
5 if w.λr 6= null then
6 o = o ∪ {(w.F, andNot(w.λr ,w.λs), [w.winTs, w.winTe))};
7 if status.rValid 6= null then
8 (w,status) = LAWA(status);
9 o = o ∪ {(w.F, andNot(w.λr, w.λs), [w.winTs, w.winTe))};

10 return o;

Example 6. In Fig. 13, we illustrate the computation of set

difference σF = 'milk'(c)−
TP σF = 'milk'(a) for relations c and a in

Fig. 1a. The first candidate window [1,2) has λs = null and

λr = c1. For set difference the current window yields a result

tuple, since, over interval [1,2), the fact ('milk') is included

in a tuple of the left input relation c with lineage λs = c1.

In contrast, the candidate ('milk', [4,6), null, a1) is rejected

since ('milk') is not included in a tuple of the left input relation

c over [4,6).

1 2 3 4 5 6 7 8 9

a1a

c1 c2c

F='milk'
T = [1,2)
λr = c1

λs = null

F='milk'
T = [2,4)
λr = c1
λs = a1

F='milk'
T = [4,6)
λr = null

λs = a1

F='milk'
T = [6,8)
λr = c2

λs = null

F='milk'
T = [8,10)
λr = null

λs = a1

✓ ✓ ✗ ✓ ✗

('milk', c1)

('milk', a1 ∧¬c1) ('milk', a1 ∧¬c2)

Fig. 13: σ F = 'milk'(c)−
TP σ F = 'milk'(a)

Time and Space Complexity: The time complexity of all TP set

operations is determined by the complexity of the blocks presented

in Fig. 12. Sorting has complexity O(|r| log |r|+ |s| log |s|) if it is

comparison-based. A variant of counting-based sorting could also

be used [13] (which is the case if ΩT fits into main-memory), and

in this case the corresponding complexity is even linear. After

sorting, LAWA will sweep over all tuples in the sorted input

relations r and s, accessing two input tuples at a time to determine

the next window.

Proposition 1. Let r, s be two duplicate-free temporal-

probabilistic relations. The upper bound of the number of

windows produced by the window advancer is nr + ns − fd

where nr, ns are the number of start and end points in r and s,

and fd is number of distinct facts in these relations.

By Proposition 1, the number of candidate windows consid-

ered by the algorithm is linear in the number of time intervals,

and thus to the size of the input relations. Thus, LAWA has a time

complexity of O(|r|+ |s|), given that |r| and |s| are the numbers

of tuples in the input relations r and s, respectively. Moreover, the

filtering and lineage-concatenation step for each candidate output

tuple is performed in O(1). Thus, the overall time complexity

for computing TP set operations is O(|r| log |r|+ |s| log |s|), but

may even be reduced to O(|r|+ |s|) if counting-based sorting is

applicable. The use of lineage-aware temporal windows not only

avoids the use for time-consuming additional operations for the

filtering and lineage-concatenation steps, but also allows them to

be performed directly at the time a window is created. That is, no

intermediate buffers need to be maintained (apart from very few

pointers), and thus the space complexity of all TP set operators is

constant.

9 EXPERIMENTAL EVALUATION

In this section, we evaluate LAWA in comparison to both temporal

and temporal-probabilistic approaches that can be used for the

computation of TP set operations. We perform experiments with

real datasets as well as with synthetic datasets in which we vary (i)

the number of facts in the input relations and (ii) the percentage of

tuples whose intervals overlap. In all experiments, our approach

empirically scales according to the bounds we provide in Sec-

tion 8. LAWA is the only scalable approach that can be used for

the computation of all three TP set operations, outperforming all

state-of-the-art approaches for input relations of more than 10M

tuples. In contrast to existing techniques, LAWA is robust, i.e., its

performance behaves in a predictable manner with respect to the

aforementioned characteristics of the datasets.

9.1 Experimental Setup

All of the following experiments were deployed on a 2xIntel(R)

Xeon(R) CPU E5-24400 @2.40GHz machine with 64GB main

memory, running CentOS 6.7. LAWA has been implemented in

C++ 3, and all experiments were performed in main-memory. No

indexes were used. In cases where PostgreSQL implementations

were used, the maximum memory for sorting as well as for shared

buffers was set to 1GB.

TABLE 3: Approach Overview

Approach r∪Tp s r−Tp s r∩Tp s

LAWA ✓ ✓ ✓

NORM ✓ ✓ ✓

TPDB ✓ ✗ ✓

OIP ✗ ✗ ✓

TI ✗ ✗ ✓

The TP set operations that different approaches can compute

are presented in Table 3. Set difference is the least-supported

3. http://www.ifi.uzh.ch/en/dbtg/research/tpset.html
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Fig. 14: Synthetic Dataset [20K–200K]

operation, followed by set union and set intersection. Set in-

tersection is the most-supported operation among the available

systems, since it can be reduced to an interval join with an equality

condition on the non-temporal attributes. Specifically, we compare

our implementation of TP set operations using LAWA against:

Temporal-Probabilistic Database (TPDB) [1]: The implemen-

tation of TPDB is an application connected with a DBMS and

consists of three stages. The first stage parses Datalog rules

with temporal predicates and translates them to SQL queries.

The second stage executes the SQL queries in the DBMS. Base

relations are stored in the DBMS, while lineage is kept as an

internal data structure in main-memory. The third stage focuses

on lineage processing by processing the base tuples with their

Boolean connectives. We use the authors’ original implementation,

connected to PostgreSQL 9.4.3.

Normalize (NORM) [2]: The Normalize operator is implemented

in the kernel of PostgreSQL by modifying its parser, executor

and optimizer. We migrated the authors’ implementation to Post-

greSQL 9.4.3 for a fair comparison. To support TP set operations,

we introduced reduction rules that are proper combinations of the

temporal and probabilistic reduction rules (cf. [2], [29]) and we

illustrate them in Fig. 15.

r

N (r, s)

s

N (s, r)

d|><|

⊲⊳

∪

and(λr, λs)

andNot(λr, λs)

ϑor(λ ) r∪Tp s

r∩Tp s

r−Tp s

Fig. 15: TP set operations using NORM. The approach adopted is a
combination of the processes described in Fig. 2 and Fig. 3

Timeline Index (TI) [13]: This approach was used, in its original

implementation, for the computation of TP set intersection, by

applying a temporal join with an additional condition on the non-

temporal attributes as well as the lineage-concatenating function

and (see Table. 1).

Overlap Interval Partition Join (OIP) [14]: This approach is

designed for overlap joins but does not support an additional

filtering condition. For our experimental evaluation, we extended

the authors’ implementation, so that an equality condition on the

non-temporal attributes of the tuples can be applied. In order to use

OIP to compute set intersection, we first split each input relation

into groups based on the facts included in each tuple. We then

applied the OIP partitioning and join over each of these groups

and merged the results.

9.2 Synthetic Dataset

The parameters that we consider to populate a relation of our

dataset are: (a) the length of the tuples’ intervals, (b) the maximum

time distance between two tuples that are consecutive and include

the same fact, and (c) the number of different facts included in

tuples of the relation. Assume all tuples of relations r and s have

the same fact f . We define the overlapping factor of f as the

number of maximal subintervals during which a tuple from r and

s overlap, divided by the total number of maximal subintervals.

Its value thus ranges in [0,1]. The higher the value of this metric,

the more pairs of input tuples form output tuples, and therefore

the more we stress-test the performance of the various approaches

for TP set operations. According to Definition 3, overlapping time

points are relevant for all set operations, whereas time points for

which a fact is only included in the left input relation are only

relevant for TP set difference.

1. Runtime. In the first setting, we fix the input tuples of all

datasets to a single fact. We fix the overlapping factor to 0.6, and

we randomly select the length of the intervals and the distance

between two consecutive intervals in [0,3]. We then systematically

increase the number of input tuples. In Fig. 14 and Fig. 16, we il-

lustrate the performance of all the approaches for the computation

of TP set operations for smaller datasets with up to 100K tuples

and for larger datasets with up to 50M tuples, respectively.

Smaller Datasets [20K–200K]: In Fig. 14, the datasets range

from 20K to 200K tuples. Fig. 14a focuses on TP set intersection.

The runtimes of LAWA and OIP hardly increase for the small

datasets. Both outperform NORM, TI and TPDB by a large

margin. OIP is specifically designed for the computation of an

overlap join, to which TP set intersection is reduced. NORM

exhibits poor performance even if the number of input tuples is

only 50K. In this approach, regardless of the operation, the two

input relations need to first be normalized, such that, in their

adjusted versions, the intervals would be either equal or disjoint.

The most expensive part of the normalization of a relation r using

relation s is an outer join that uses inequality conditions on the start

and end points to guarantee an overlap of the intervals. Although

an additional inner join is applied in the case of TP set intersection,

the performance of NORM suffers because of the outer join. Since

all tuples include the same fact, but not all of them overlap, such

a join has quadratic complexity [34].

In TPDB, queries are expressed using Datalog. Each rule may

contain a conjunction of literals over the arithmetic predicates

=T , 6=T and ≤T . In order to express TP set intersection, we use

6 reduction rules, one for each overlap relationship defined by

Allen [35]. TPDB then translates each rule to an inner join that is

submitted to PostgreSQL. Although there is an equality condition

on the non-temporal attributes, it is not used in the cases examined
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in Fig. 14 where all the tuples include the same fact. Thus, the

joins are only based on the inequality conditions and perform a

larger number of comparisons. TPDB is slower than the other

approaches, but it is still faster than NORM, because the latter has

to adjust each relation.

Although TI is faster than NORM and TPDB, it is one of

the slowest approaches for set intersection. The index allows for

the avoidance of redundant comparisons related to the interval

overlap condition, and its creation cost is a small percentage of

its runtime. Given the indexes of the input relations, TI performs

a merge-join on them and produces (rid , sid) pairs. In order to

form the output tuples, the input tuples corresponding to each pair

need to be retrieved. Given the value of the overlapping factor and

the existence of only one fact, a higher number of joined pairs is

produced and thus a higher number of lookups is required. OIP

splits the tuples of each input relation into partitions, based on the

start/end points of their interval and its duration. Consequently,

it offers a mechanism that performs interval comparisons between

tuples only if their partitions overlap. If the partitions overlap, OIP

performs a nested loop between the tuples of the two relations. As

the overlapping factor is 0.6, which indicates that most of the pairs

produced in the nested loop will indeed be output pairs, OIP has

a very small percentage of false hits. Although OIP is tailored

for an overlap join, for datasets of up to 200K tuples LAWA’s

performance is competitive, being on average 30 ms slower.

In the case of TP set difference, as illustrated in Fig. 14b,

LAWA clearly outperforms NORM, for the same reasons as for TP

set intersection. Fig. 14c compares LAWA with NORM and TPDB

during the computation of TP set union. LAWA has the lowest

runtime, whereas NORM has the highest one, being 5 orders of

magnitude slower than LAWA. The window that sweeps over all

the input tuples in LAWA makes no false hits in this case, since all

of the subintervals that the window defines correspond to output

intervals. NORM no longer requires a join but a union after the

relations have been normalized. However, as in all the previous

operations, NORM’s performance is hindered by the computation

of the timestamp adjustment. TPDB can also compute TP set union

by using a deduction rule that corresponds to a conventional union

instead of joins, and thus its performance is significantly better in

comparison to TP set intersection.
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Fig. 16: Synthetic Dataset [5M–50M]

Larger Datasets [5M–50M]: LAWA is the only scalable ap-

proach that can be used for the computation of all three TP set

operations. In Fig. 16, we depict the performance of LAWA for

the computation of TP set intersection for larger datasets. The

overlapping factor of the datasets remains fixed to 0.6, and the

dataset sizes vary from 5M to 50M tuples. While OIP is also

considered, the other approaches that were included in Fig. 14a

are not taken into consideration, since their runtimes were already

two to five orders of magnitude higher when applied on the smaller

datasets. After 30M tuples, LAWA is at least 2 times faster than

OIP and continues to scale better. OIP produced a small number

of partitions that contain many tuples each. Such partitions are

likely to overlap and the nested loop that matches their tuples is

computationally expensive. As far as TP set difference and TP set

union are concerned, LAWA has similar runtime as in the case of

TP set intersection and it is the only scalable approach suitable for

their computation within at most 100 seconds.

2. Robustness. In this experiment, we show that LAWA is a

scalable operator whose runtime only depends on the size of the

dataset and not on its other characteristics (i.e., neither on the

value of the overlapping factor nor on the number of distinct facts

captured by the input tuples).

TABLE 4: Dataset Characteristics

Overlapping Factor 0.03 0.1 0.4 0.6 0.8

Max. Interval Length (R) 100 100 50 3 10

Max. Interval Length (S) 3 10 10 3 10

Max. Time Distance 3

In Fig. 17a, the performance of LAWA for set intersection

is compared with the one of OIP, which has been the most

competitive approach for datasets where all the tuples include the

same fact. This time, the size of the dataset is fixed to 30M, and

the overlapping factor is assigned to four different values in [0,1].
Table 4 depicts the overlapping factor of the datasets as well as

their maximum interval lengths (in terms of the number of time

points). The runtime of OIP increases as the overlapping metric

increases. The reason is that the higher the overlapping factor, the

more tuples occur in a partition and the nested loop performed in

each partition is very time consuming. On the other hand, only

minor variations are observed in the runtime of LAWA for the

different values of the overlapping factor, thus demonstrating that

the performance of LAWA is not negatively affected by interval-

related characteristics of the dataset.
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Fig. 17: Robustness Tests

In Fig. 17b, we show how the number of distinct facts in the

input relations affects the performance of LAWA and all other

approaches during a TP set intersection. The size of the dataset is

set to 60K, so that the runtimes of the approaches are comparable,

and the overlapping metric is set to 0.6. The number of facts is set

to values much less than the size of the dataset, but also to a value



14

20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

·105

Number of Input Tuples [K]

R
u
n
ti

m
e

[m
s]

LAWA
OIP
TI

TPDB

NORM

(a) Set Intersection

20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

·105

Number of Input Tuples [K]

R
u
n
ti

m
e

[m
s]

LAWA
NORM

(b) Set Difference

20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

·105

Number of Input Tuples [K]

R
u
n
ti

m
e

[m
s]

LAWA
TPDB

NORM

(c) Set Union

Fig. 18: Meteo Swiss Dataset
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Fig. 19: Webkit Dataset

that is equal to half the size of the dataset. The runtime of LAWA

remains stable as the number of the facts included in the input

tuples decreases, whereas the performance of the other approaches

deteriorates. OIP is an exception since, if the number of facts

becomes comparable to the number of tuples, it suffers from the

overhead of partitioning the tuples of each fact, performing the

corresponding join and merging the results. Concerning the other

approaches, TI has a better performance than LAWA but only in

the case of 30K facts. This behaviour is expected, since there is a

low number of joined pairs, thus reducing the number of required

lookups. NORM’s performance improves as well when the number

of facts increases, but this approach does not scale to datasets with

more than 30K tuples. TPDB, on the other hand, appears to have

diminishing improvements.

9.3 Real-World Datasets

In this subsection, we compare the runtimes of TP set operations

using two real-world temporal datasets. The main properties of

these datasets are summarized in Table 5. The Meteo Swiss

dataset4 includes temperature predictions that have been extracted

from the website of the Swiss Federal Office of Meterology

and Climatology. The measurements were taken at 80 different

meteorological stations in Switzerland from 2005 to 2015. Mea-

surements are 10 minutes apart and – in order to produce intervals

– we merged time points whose measurements differ by less than

0.1. The Webkit dataset5 [14], [15], [16] records the history of

484K files of the SVN repository of the Webkit project over a

period of 11 years at a granularity of milliseconds. The valid times

indicate the periods when a file remained unchanged. For both

datasets we produced a second relation by shifting the intervals of

the original dataset, without modifying the lengths of the intervals.

The start/end points of the new relation were randomly chosen,

following the distribution of the original ones.

4. Federal Office of Meteorology and Climatology: http://www.meteoswiss.ch (2016)

5. The WebKit Open Source Project: http://www.webkit.org (2012)

TABLE 5: Real-World Dataset Properties

Meteo Webkit

Cardinality 10.2M 1.5M

Time Range 347M 7M

Min. Duration 600 0.02

Max. Duration 19.3M 6M

Avg. Duration 152M 1.7M

Num. of Facts 80 484K

Distinct Points 545K 144K

Max Num. of Tuples (per time point) 140 369K

Avg Num. of Tuples (per time point) 37 21

In Fig. 18 and Fig. 19, we perform TP set intersection,

difference and union over two equally sized relations created from

random subsets of the initial dataset and its shifted counterpart,

respectively. The runtime of each approach is based on the number

of tuples in the input relations. In all cases, LAWA has the best

performance. All approaches perform similarly to the synthetic

dataset, with the exception of TI and NORM for the Webkit

dataset. In this dataset, the maximum number of tuples starting

or ending at a certain time point is very high, thus negatively

affecting the performance of TI that has to make pairs among all

of the tuples at a time point before it rejects the ones that do

not match the nontemporal condition. Also, the number of facts

is much higher than in the Meteo Swiss Dataset, making NORM

significantly faster.

10 CONCLUSIONS

We proposed a novel data model that—for the first time in the

literature—unifies the two areas of temporal and probabilistic

databases under a sequenced semantics. We defined and imple-

mented TP set operations, which can be supported very efficiently

for a wide range of queries but received only very little attention

so far. We introduced the lineage-aware temporal window as a

mechanism to accelerate the computation of TP set operations.

Our LAWA algorithm produces lineage-aware temporal windows

http://www.meteoswiss.ch
http://www.webkit.org
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that can be filtered directly by the time of their creation based

on input lineage expressions. Using a generic window-sweeping

technique, LAWA manages to produce all output intervals, not

only for TP set intersection but also for TP set difference and

TP set union, in a scalable and predictable manner. A thorough

experimental evaluation reveals that our implementation is robust

and outperforms comparable approaches from both temporal and

probabilistic databases. As future work, we intend to investigate

both tuple correlations and support for full relational algebra.
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