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Abstract—The result of a temporal-probabilistic (TP) join
with negation includes, at each time point, the probability with
which a tuple of a positive relation p matches none of the
tuples in a negative relation n, for a given join condition θ.
TP outer and anti joins thus resemble the characteristics of
relational outer and anti joins also in the case when there
exist time points at which input tuples from p have non-zero
probabilities to be true and input tuples from n have non-zero
probabilities to be false, respectively. For the computation of
TP joins with negation, we introduce generalized lineage-aware
temporal windows, a mechanism that binds an output interval
to the lineages of all the matching valid tuples of each input
relation. We group the windows of two TP relations into three
disjoint sets based on the way attributes, lineage expressions
and intervals are produced. We compute all windows in an
incremental manner, and we show that pipelined computations
allow for the direct integration of our approach into PostgreSQL.
We thereby alleviate the prevalent redundancies in the interval
computations of existing approaches, which is proven by an
extensive experimental evaluation with real-world datasets.

I. INTRODUCTION

Join operations with negation are performed for a positive

relation p, a negative relation relation n and a θ condition that

determines the tuples that match. In conventional databases,

joins with negation disqualify an input tuple of the positive

relation if its attributes match the attributes in a tuple of the

negative relation. In temporal databases, the existence of a

matching tuple in n does not disqualify the tuple of p itself

but timepoints at which it is valid [1], [2]. In probabilistic

databases, where tuples have a probability to be true or false,

the existence of a matching tuple in n only reduces the

probability with which a tuple is included in the output [3],

[4].

The result of a temporal-probabilistic join with negation

includes, at each time point, the probability with which a tuple

of the positive relation p matches no tuple in the negative

relation n for a predicate θ. Firstly, it includes output tuples

that span subintervals when only tuples of p are valid. In

such cases, output intervals might be determined by starting

or ending points of input tuples that are not valid during

the output interval. Secondly, TP joins with negation produce

outputs that indicate, at each time point, the probability of a

tuple p̃ in p not matching any valid tuple in n because all of

them are false. In this case, an output interval T is determined

based on the starting and ending points of p̃ and of the tuples

of n that are valid over T and match p̃ for θ.

a (wantsToVisit)

Name Loc λ T p

Ann ZAK a1 [2,8) 0.7

Jim WEN a2 [7,10) 0.8

b (hotelAvailability)

Hotel Loc λ T p

hotel3 SOR b1 [1,4) 0.9

hotel2 ZAK b2 [5,8) 0.6

hotel1 ZAK b3 [4,6) 0.7

(a) Temporal-probabilistic base relations

Q = a d|><|

Tp

θ
b, θ : a.Loc = b.Loc

Name Loc Hotel λ T p

Ann ZAK - a1 [2,4) 0.70

Ann ZAK hotel1 a1 ∧ b3 [4,6) 0.49

Ann ZAK hotel2 a1 ∧ b2 [5,8) 0.42

Ann ZAK - a1 ∧ ¬b3 [4,5) 0.21

Ann ZAK - a1 ∧ ¬(b3 ∨ b2) [5,6) 0.084

Ann ZAK - a1 ∧ ¬b2 [6,8) 0.28

Jim WEN - a2 [7,10) 0.80

(b) Temporal-probabilistic tuple-based query

Fig. 1: Temporal-probabilistic database example

Example 1: Consider a booking website (Figure 1) that

archives prediction data over time. Table a records data related

to the locations that the clients want to visit, according to

their searches. Table b records data regarding the availability

of the hotels registered in the website, considering the busy

periods in each location and the rate at which each hotel gets

booked. This archive corresponds to a temporal-probabilistic

database. Tuple ('Jim, WEN', a2, [7,10), 0.8) captures that, at

each day from the 7th to the 10th of the month, 'Jim wants

to visit Wengen' with probability 0.8. The website makes a

prediction for each time point and there is no other tuple in a

that predicts the probability of 'Jim visiting Wengen' over an

interval overlapping with [7,10). In order to manage supply

and demand, we determine the probability with which the

client will find available accommodation at their preferred

location, at each time point. The corresponding query is Q
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= a d|><|

Tp

θ b (θ : a.Loc = b.Loc), i.e., a temporal-probabilistic

outer join with equality on the locations.

The answer tuple ('Ann, ZAK, hotel1', a1 ∧ b3, [4,6), 0.49)

expresses that, with probability 0.49, Ann wants to visit

Zakynthos (a1) and stay at hotel1 in Zakynthos (b3) during

interval [4,6). It is valid over the intersection of the intervals

of tuples a1 and b3 and it is true when both these tuples are

true. Answer tuple ('Ann, ZAK, -', a1, [2,4), 0.7) expresses

that, with probability 0.7, Ann wants to visit Zakynthos (a1)

but there is no hotel available to stay there. Although the

lineage and the output probability are both determined by tuple

a1, i.e., the only tuple valid during [2,4), the interval of this

output tuple is influenced by the starting point of tuple b3,

a tuple not valid over [2,4). Over the interval [5,6) there is

0.084 probability that Ann wants to visit Zakynthos but finds

no accommodation. According to answer tuple ('Ann, ZAK,

- ', a1 ∧ ¬(b3 ∨ b2), [5,6), 0.084), during [5,6), the output is

influenced by more than a pair of input tuples. Although all

tuples are valid over [5,6), this tuple is true when 'Ann visits

Zurich' (a1 is true) but also when neither hotel1 nor hotel2 are

available during [5,6) (b3 and b2 are false).

TP set-difference is the only temporal-probabilistic oper-

ation with negation that has been investigated [5]. Since

set-operations combine only tuples with equal non-temporal

attributes, simplified structures can be used. Specifically, only

one tuple of each relation is valid at each time point, which

allows for solutions with linearithmic complexity. For TP outer

joins and TP anti join, multiple tuples of the negative relation

might be valid over an output interval and input tuples with

non-temporal attributes that are not pairwise equal might be

combined to form an output tuple. Moreover, TP outer joins

combine the characteristics of TP joins with and without

negation: at each time point, two outcomes are possible since

the same tuples can be true or false.

Fr Fs λr λs T

w1 'Ann, ZAK' - a1 - [2,4)

w2 'Jim, WEN' - a2 - [7,10)

(a) Unmatched Windows

Fr Fs λr λs T

w3 'Ann, ZAK' 'hotel1 , ZAK' a1 b3 [4,6)

w4 'Ann, ZAK' 'hotel2 , ZAK' a1 b2 [5,8)

(b) Overlapping Windows

Fr Fs λr λs T

w5 'Ann, ZAK' - a1 b3 [4,5)

w6 'Ann, ZAK' - a1 b3 ∨ b2 [5,6)

w7 'Ann, ZAK' - a1 b2 [6,8)

(c) Negating Windows

Fig. 2: Generalized lineage-aware temporal windows of relations a

and b (Fig. 1a) for the θ-condition a.Loc=b.Loc

Outline & Contributions.

• We introduce generalized lineage-aware temporal windows

to produce output tuples for input pairs with different

non-temporal attributes and for cases when multiple input

tuples are valid. Given a θ-condition and two TP relations,

we group windows into three disjoint sets: the unmatched,

the overlapping and the negating windows. An output tuple

is formed for each window using the appropriate lineage-

concatenation functions and we express the result of TP

joins with negation using the three sets.

• We introduce the algorithms LAWAU and LAWAN for

the computation of unmatched and negating windows,

respectively. Recording the lineages of the tuples valid in

each input relation over an output interval and keeping

them decoupled until the formation of output tuples, allows

for the computation of unmatched and negating windows

based on the overlapping ones. Thus, redundant interval

comparisons due to the repetition of basic steps are avoided

and the runtime required for the computation of outer joins

and anti join improves by two orders of magnitude.

• We conduct extensive experiments using real datasets to

compare our approach for the computation of TP outer

joins and TP anti join with existing state of the art

approaches. Our approach is integrated in PostgreSQL and

exhibits a lower runtime while being scalable.

The remainder of this paper is organized as follows. Sec-

tion II provides an overview of related works on temporal

and probabilistic databases with a focus on outer joins and

anti join. Section III discusses the TP data model and its

query semantics. Section IV discusses the impact of negation

in TP joins. Section V introduces generalized lineage-aware

temporal windows and groups them into three disjoint sets.

Section VI introduces two algorithms for the computation of

the different window sets while section VII presents a compre-

hensive performance study that compares our implementation

with existing approaches. Section VIII concludes the paper.

II. RELATED WORK

We review related approaches from temporal and proba-

bilistic databases and explain their limitations in terms of

supporting TP outer joins and anti join.

Temporal-Probabilistic Operations. Dylla et al. [6] intro-

duced a closed and complete TP database model, coined

TPDB, based on existing temporal and probabilistic models.

Query processing is performed in two steps. The first step,

grounding, evaluates a chosen deduction rule (formulated in

Datalog with additional time variables and temporal predi-

cates) and computes the lineage expressions of the deduced

tuples. The second step, deduplication, removes the duplicates

that could occur in the grounding step by adjusting inter-

vals. The grounding step performs pairwise tuple-comparisons.

Subintervals that are present in only one of the two input

relations, i.e., during which no tuple of the other relation is

valid, cannot be produced.

TP Operations with negation. Set-difference is the only TP

operation with negation that has been investigated [5]. For

its computation, Papaioannou et al. introduced lineage-aware



temporal windows, a mechanism that binds an output interval

with the lineage of the tuple in each input relation that includes

fact F and that is valid during the interval. Lineage-aware

temporal windows eliminate redundant interval comparisons

and additional joins for the formation of lineage expressions

in TP set operations. The starting and ending points of the

interval that the window spans are computed via a comparison

of the starting and ending points of input tuples that are valid

but also of neighboring tuples. Thus, they are useful for output

intervals that are not equal to the overlap of a pair of valid

tuples. However, they are tailored to cases when one tuple of

each input relation is valid and when the input tuples have the

same non-temporal attributes. In TP joins with negation, input

tuples with different non-temporal attributes are combined and

multiple tuples of an input relation can be valid over an interval

and need to be included in the lineage of an output tuple.

Temporal Joins. In temporal databases, the result of a tempo-

ral outer join opT is defined as the result of applying op over

a sequence of atemporal instances (the so-called snapshots)

of the input relations—a key concept in temporal databases

termed snapshot reducibility [7], [8], [9]. Maximal intervals

are produced by merging consecutive time points to which

the same input tuples have contributed (change preservation).

Dignös et al. [10], [11] use data lineage to guarantee change

preservation for all relational operations under a sequenced

semantics. For the computation of joins, they introduce the

alignment operator. The alignment Φ(r, s) of a relation r based

on another relation s replicates the tuples of r and assigns

new time intervals to them. The new intervals are obtained by

splitting the original intervals of r based on tuples of s with

which they overlap. The valid tuples of both relations that

contribute to an adjusted interval are not recorded. This is the

reason why the alignment of both relations is required as well

as the application of op to produce all output tuples [10], [11].

Using this approach in a TP context, other than the overhead

and redundancy of aligning both relations, the input tuples

must also be adjusted in groups and not only in pairs for the

cases when valid tuples are false. Combining adjustment both

in pairs and in groups multiple times in the same query incurs

redundant comparisons and recomputation of intermediate

results.

Sweeping-based approaches have been widely used for the

computation of overlap joins [12], [13] in temporal settings.

A sweepline moves over all start and end points of tuples,

and determines, for each time point, the tuples of both input

relations that are valid. These approaches are tailored to

compute efficiently the overlap join but are not suitable for the

computation of the class of operations discussed in this paper.

First, the overlapping intervals computed in these approaches

only correspond to a part of the result of a TP outer join while

they are not included in the result of a TP anti join. Second,

they generally do not consider join conditions on the non-

temporal attributes limiting the types of queries they could be

used for.

Probabilistic Joins. In probabilistic databases, the result of a

probabilistic operation opp is defined as the result of applying

op over the set of all possible instances of the input relations.

The Trio system [14] was among the first to recognize data lin-

eage, in the form of a Boolean formula, as a means to capture

the possible instances at which an output tuple is valid. In an

effort to provide a closed and complete representation model

for uncertain relational data, they introduced Uncertainty and

Lineage Databases (ULDBs) [15]. The algebraic operators

are modified to compute the lineage of the result tuples in

a ULDB, thus capturing all information needed for computing

query answers and their probabilities. Fink et al. [16], [17]

reduced the computation of probabilistic algebraic operations

to conventional operations so that these can be performed

using a DBMS, rather than by an application layer built on

top of it. In all these works, the focus is restricted to select-

project join queries. Probabilistic anti join, expressed with the

NOT EXISTS predicate in SQL, has been explored by Wang

et al. [4]. It has been integrated in MystiQ by breaking the

initial query into positive and negative subqueries that are

separately evaluated and then combined. Incorporating interval

computation with predicates in these approaches is possible

but does not comply with all the requirements of TP operations

with negation.

III. BACKGROUND

We denote a temporal-probabilistic schema by RTp (F ,

λ, T , p), where F = (A1, A2, . . ., Am) is an ordered set

of attributes, and each attribute Ai is assigned to a fixed

domain Ωi. λ is a Boolean formula corresponding to a lineage

expression. T is a temporal attribute with domain ΩT × ΩT ,

where ΩT is a finite and ordered set of time points. p is

a probabilistic attribute with domain Ωp = (0, 1] ⊂ IR. A

temporal-probabilistic relation r over RTp is a finite set of

tuples. Each tuple r ∈ r is an ordered set of values from

the appropriate domains. The value of attribute Ai of r is

denoted by r.Ai. The conventional attributes F = (A1, A2,

. . ., Am) of tuple r form a fact, and we write r.F to denote

the fact f captured by tuple r. For example, base tuple ('Ann,

ZAK', a1, [2, 8), 0.7) of relation a (see Fig. 1a) includes the

fact a1.F = ('Ann, ZAK'), the lineage expression a1.λ = a1,

the time interval a1.T = [2, 8), and the probability value

a1.p = 0.7. The temporal-probabilistic annotations of the

schema express that (i) a1 = true with probability a1.p for

every time point in a1.T , (ii) a1 = false with probability

1 − a1.p for every time point in a1.T , (iii) and a1 is always

false outside a1.T . By following conventions from [6], [11],

[10], [18], we assume duplicate-free input and output relations.

Formally, a temporal-probabilistic relation r is duplicate-free

iff ∀r, r′ ∈ r(r 6= r′ ⇒ r.F 6= r′.F ∨ r.T ∩ r′.T = ∅)). In

other words, the intervals of any two tuples of r with the same

fact f do not overlap.

A lineage expression λ is a Boolean formula, consisting of

tuple identifiers and the three Boolean connectives ¬ (“not"),

∧ (“and") and ∨ (“or"). Tuple identifiers represent Boolean

random variables among which we assume independence [6],

[18], [19]. For a base tuple r, r.λ is an atomic expression



consisting of just r itself. For a result tuple r̃ derived from

one or more TP operations, r̃.λ is a Boolean expression as

defined above. The probability of a result tuple is computed

via a probabilistic valuation of the tuple’s lineage expression,

using either exact (see, e.g., [19], [20], [21]) or approximate

(see, e.g., [22], [23], [24], [25], [26]) algorithms. For example,

in the result relation of Fig. 1b, the lineage a1 ∧ ¬b3 yields

a marginal probability of 0.7 · (1 − 0.7) = 0.21 by assuming

independence among the base tuples a1 and b3 (see Fig. 1a).

We write λ
r,f
t to refer to the disjunction of the lineage

expressions of the tuples in relation r with fact f that are valid

at time point t. We write λ
r,θ
t to refer to the disjunction of

the lineage expressions of the tuples in relation r that satisfy

θ and are valid at time point t. When there are no tuples

in r with fact f or satisfying θ at time point t, we write

λ
r,f
t = null or λ

r,θ
t = null, respectively. We write θr̃ to

indicate that values of attributes in condition θ are instantiated

to the corresponding values in tuple r̃. For example, for the θ

condition used in the query of Figure 1b and r̃ = ('Ann, ZAK,

hotel1', a1 ∧ b3, [4, 6), 0.49), we get θr̃ : b.Loc = 'ZAK'.

The semantics of the TP data model are centered around two

properties: TP snapshot reducibility and TP change preserva-

tion [5]. TP Snapshot reducibility states that the result of opTp

at each time point t is equal to the result of opp on the input

tuples with non-zero probability to be valid at t. Thus, the

output attributes are determined only by the input tuples at t

and the output lineages and probabilities are consistent with

the possible-worlds semantics [14], [15]. The TP left outer

join of Fig. 1b complies with TP snapshot-reducibility. For

example, in tuple ('Ann, ZAK, hotel1', [4,6), a1 ∧ b3, 0.42), at

time point t = 4, the fact is a combination of a1.F = 'Ann,

ZAK' and b3.F = 'hotel1, ZAK', i.e., the only input tuples valid

at t and whose facts satisfy the join condition.

TP change preservation ensures that only consecutive time

points of output tuples with equal facts and equivalent lineage

expressions are grouped into intervals. It guarantees maximal

intervals where the lineage expression is the same at all time

points in the interval and different at time points outside. For

example, the output tuples ('Ann, ZAK, -', [2,4), a1, 0.7) and

('Ann, ZAK, -', [4,5), a1 ∧ ¬b3, 0.42) were not merged into

the interval [2, 5), since they do not have equivalent lineages.

IV. NEGATION IN TPDBS

The characterization of joins as operations with and without

negation has been well established in databases [17]. As

illustrated in Table I, the Cartesian product and the inner join

are joins without negation since they only record information

valid in both input relations. The anti join is a join purely based

on negation and outer joins combine joins with and without

negation.

TABLE I: Join Operations Categorized Based on Negation

Operations

WITHOUT ×, ⊲⊳

WITH ⊲

MIXED d|><|, |><|d, d|><|d

A join with negation is performed over a positive relation

p and a negative relation relation n. The result of a temporal-

probabilistic join with negation includes, at each time point,

the probability with which a tuple p̃ of the positive relation p

matches no tuple in the negative relation n under a predicate θ.

Firstly, this occurs at time points when either no tuple of n has

non-zero probability to be valid or no valid tuple of n satisfies

the θ-condition. In this case, tuple p̃ remains unmatched and

the probability of the output tuple produced is equal to the

probability of p̃.

Secondly, the non-existence of a matching tuple for p̃ in

n occurs when all the valid tuples of n that match p̃ for

θ are false. This case relates to the probabilistic dimension

and thus p̃ is not disqualified for the output. The output

fact is determined by p̃ whereas for the computation of the

corresponding probability we need to consider the negating

form of the probabilities for the matching tuples in the negative

relation. In case one of the matching tuples in n has probability

equal to 1, the output tuple has 0 probability to be true.

Example 2: In Fig. 3, the TP anti join of relations a and

b of Fig. 1a contains, at each time point, the probability that

clients want to visit a location and no hotel is available. Tuple

('Ann, ZAK', a1, [2,4), 0.7) indicates that the tuple a1 of the

positive relation a remains unmatched since there is no hotel in

ZAK that has a probability to be available in the interval [2,4).

Tuple ('Ann, ZAK', a1 ∧¬(b3 ∨ b2), [5,6), 0.084) corresponds

to the case when the matching tuples of the negative relation

b are false.

Q = a⊲
Tp

θ
b

Name Loc λ T p

Ann ZAK a1 [2,4) 0.7

Ann ZAK a1 ∧ ¬b3 [4,5) 0.21

Ann ZAK a1 ∧ ¬(b3 ∨ b2) [5,6) 0.084

Ann ZAK a1 ∧ ¬b2 [6,8) 0.28

Jim WEN a2 [7,10) 0.8

Fig. 3: a⊲
Tp

θ b with θ : a.Loc = b.Loc (a, b of Fig. 1a).

TP outer joins are joins with and without negation. What

differs for outer joins when the temporal and the probabilistic

dimension coexist is that two outcomes might arise at a time

point. For example, in Fig. 1b, the TP left join a d|><|

Tp b

includes, at each time point, cases when there is a non-zero

probability for a tuple in a either to be matched with a tuple in

b or not based on a predicate θ. At time point t = 5, tuple a1
is combined with tuple b3 producing the output tuples ('Ann,

ZAK, hotel2', a1∧b3, [4,6), 0.49) and ('Ann, ZAK', -, a1∧¬b3),
[4,5), 0.21) when b3 is true and false, respectively.

V. GENERALIZED WINDOWS

The use of a general θ condition in TP outer joins and

anti joins requires pairing input tuples that include different

facts and combining multiple input tuples that are valid over

an interval and satisfy θ. For this purpose, we introduce

generalized lineage-aware temporal windows, a mechanism

created based on two TP relations r and s, with schema (Fr,



TABLE II

Overlapping

Windows

w̃ ∈ WO(r; s, θ) ⇐⇒ ∃r ∈ r, s ∈ s ( w̃.Fr = r.F ∧ w̃.Fs = s.F ∧

θ ∧ w̃.λr ≡ r.λ ∧ w̃.λs ≡ s.λ ∧ w̃.T = r.T ∩ s.T )

Unmatched

Windows

w̃ ∈ WU(r; s, θ) ⇐⇒ w̃.λs = null ∧ w̃.Fs = null ∧

∀t ∈ w̃.T (∃r ∈ r (w̃.Fr = r.F ∧ w̃.λr ≡ r.λ) ∧ w̃.λs ≡ λ
s,θ

w̃

t ∧ λ
s,θ

w̃

t = null) ∧

∀t′ /∈ w̃.T (∄r ∈ r (w̃.Fr = r.F ∧ w̃.λr ≡ r.λ) ∨ w̃.λs 6≡ λ
s,θ

w̃

t′
)

Negating

Windows

w̃ ∈ WN(r; s, θ) ⇐⇒ ∀t ∈ w̃.T (∃r ∈ r (w̃.Fr = r.F ∧ w̃.λr ≡ r.λ) ∧

w̃.Fs = null ∧ λ
s,θ

w̃

t 6= null ∧ w̃.λs = λ
s,θ

w̃

t ) ∧

∀t′ /∈ w̃.T ( ∄r ∈ r (w̃.Fr = r.F ∧ w̃.λr ≡ r.λ) ∨ w̃.λs 6≡ λ
s,θ

w̃

t′
)

Fs, T , λr, λs). Fr and Fs are the facts included in tuples

of relations r and s over interval T , respectively. λr is the

disjunction of the lineage expressions of the tuples of relation

r that are valid over T , include Fr and satisfy θ. λs is the

disjunction of the lineage expressions of the tuples of relation

s that are valid over T , include Fs and satisfy θ.

Definition 1: Let r and s be TP relations with schema (F , λ,

T , p) and θ a condition between the non-temporal attributes of

r and s. The unmatched WU(r; s, θ), overlapping WO(r; s, θ)
and negating WN(r; s, θ) windows of r with respect to s and

θ are defined according to Table II.

The overlapping windows WO(r; s, θ) span a maximal in-

terval over which a tuple r of r overlaps with a tuple s from

s and the predicate θ is satisfied. Tuple r includes the fact Fr

and has lineage λr while Fs and λs correspond to the fact and

lineage of tuple s. The interval of the window that is produced

by the pair of tuples r and s corresponds to the overlap of

their interval (w̃.T = r.T ∩ s.T ). The unmatched windows

WU(r; s, θ) span over the interval or a subinterval of a tuple r

of r during which all tuples of s are either not valid or don’t

satisfy θ (λ
s,θw̃
t = null). The fact Fr and the lineage λr of

an unmatched window are determined by r while Fs and λs

are set to null. The negating windows WN(r; s, θ) of the TP

relation r with respect to the TP relation s are windows during

which a fact is included in a tuple r of r as well as in multiple

tuples of s that are valid and satisfy the θ-condition. Negating

windows are suitable for producing output tuples where, for

θ, all the tuples of s that match a tuple r of r including the

fact Fr are false, as described in Section IV. Thus, the fact

Fr and the lineage λr of the window are determined by r, Fs

is set to null and λs is the disjunction of the lineages of all

the tuples in s that match r.

Example 3: In Fig. 4, the TP relations a and b of Fig. 1 are

illustrated along with the unmatched, overlapping and negating

windows of a with respect to b. Single lines are used for

tuples. Pairs of lines denote windows. Different colors are used

to annotate different facts: black is used for 'Ann, ZAK', red for

'John, WEN', green for 'hotel3, SOR', yellow for 'hotel2, ZAK',

and blue for 'hotel1, ZAK'. Wavy lines are used for tuples of

an input relation that match no tuple of the other relation for

θ. For the unmatched window w1 = ('Ann, ZAK, null', [2,

4), a1, null), the straight black line indicates that the fact

w1.Fr = 'Ann, ZAK' and the lineage w1.λr = a1 match the

corresponding attributes of tuple a1. The dotted line indicates

that fact w1.Fs is null and so is w1.λs. At t = 4, a1 is

still valid whereas λ
b,θw1

4
= b3, which indicates that a tuple

of b starts being valid and thus interval [2, 4) is maximal.

The window w3 = ('Ann, ZAK', 'hotel1', [4,6), a1, b3) is an

overlapping window. The blue and a black straight lines for

w1 indicate that Fr and Fs of w3 correspond to the facts of

tuples a1 and b3, i.e., tuples that overlap and include the same

values for Loc. For the negating window w6 = ('Ann, ZAK',

null, [5, 6), a1, b3∨b2), the black straight line in w6 indicates

that its fact Fr and its lineage λr correspond to the fact and

lineage of a1. The fact Fs is null, illustrated by a dotted line.

Annotated next to this line, the λs equals the disjunction of

the tuples b2 and b3 that satisfy θ over the interval [5, 6). The

interval [5, 6) is maximal since at t = 6, b3 stops being valid.
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Fig. 4: All windows of a with respect to b with θ : a.Loc = b.Loc

An output tuple is formed for each window using the facts

(Fr, Fs) and interval T in their exact form while the output

lineage is formed by combining λr and λs with the proper

lineage-concatenation function. According to their semantics,

each set of windows is matched with a unique function: for

overlapping windows we use the function and, for negating

windows we use andNot and for unmatched windows only λr

is passed on to the output lineage. For the TP anti join in

Figure 3, the unmatched window ('Ann, ZAK', null, [2,4),

a1, null) is transformed to the output tuple ('Ann, ZAK', -,

[2,4), a1) and the negating window ('Ann, ZAK', null, [5,6),

a1, b3 ∨ b2) is transformed to the output tuple ('Ann, ZAK',

[5,6), a1∧¬(b3∨b2)). In Table III, we include all the window

sets required for each TP join with negation considering that



WO(r; s, θ) = WO(s; r, θ).

TABLE III: TP Joins with Negation using Windows

opTp WU(r; s, θ) WN(r; s, θ) WO(r; s, θ) WU(s; r, θ) WN(s; r, θ)

r ⊲ s ✓ ✓

r d|><| s ✓ ✓ ✓

r |><|d s ✓ ✓ ✓

r d|><|ds ✓ ✓ ✓ ✓ ✓

VI. ALGORITHMS

In this section, we introduce algorithms to compute gener-

alized lineage-aware temporal windows and the result of TP

joins with negation. Our Lineage-Aware Window Advancers

(LAWA) for unmatched (LAWAU) and negating (LAWAN)

windows use overlapping windows as a computational basis.

LAWAU (Algorithm 1) produces the unmatched windows of

r with respect to s by identifying the subintervals of r

during which there is no overlap or match with a tuple of

s, i.e., subintervals that do not correspond to any overlapping

window. Similarly, each of the negating windows of r with

respect to s spans a subinterval where all tuples of s that

overlap and match with a tuple r of r are false and thus lineage

information from all the overlapping windows that are valid

over this subinterval and involving r must be combined.

LAWAU and LAWAN are sweeping-window algorithms [5]

that are applied on windows instead of tuples. They are

responsible for forming a set of windows based on overlapping

ones but also for passing the input windows to the output

since they are also necessary for the result of a TP join

with negation. They are operating in an incremental manner,

thus avoiding recomputing the overlapping windows multiple

times.

A. Overlapping Windows

For the computation of overlapping windows of relation

r with respect to s, we perform the conventional outer join

rd|><|θo∧θs with the overlapping predicate θo : r.T ∩ s.T and a

condition θ on the non-temporal attributes, as provided in the

TP join to be computed. The result of rd|><|θo∧θs computes a

set of windows enhanced with the time-interval of the tuple

of r valid over each window, and its result has schema: (Fr,

λr, Fs, λs, [Os, Oe), [Ts, Te)). (Fr, [Ts, Te), λr) correspond

to the fact, interval and lineage of a tuple r in r. Similarly,

(Fs, λs) correspond to tuple s in s. [Os, Oe) is the interval

during which the tuples r and s overlap.

X

Fr λr Fs λs [Os, Oe) [Ts, Te)

x1 'Ann, ZAK' a1 'hotel1 , ZAK' b3 [4,6) [2,8)

x2 'Ann, ZAK' a1 'hotel2 , ZAK' b2 [5,8) [2,8)

x3 'Jim, WEN' a2 null null null [9,12)

Fig. 5: The result of a d|><| r.T ∩ s.T ∧ a.Loc=b.Loc b.

The tuples of the join rd|><|θo∧θs for which all attributes

are not null constitute the set of overlapping windows

Wo(r; s, θ). However, the use of the conventional left join

results also in pairs with null attributes.

B. Unmatched Windows

The unmatched windows of a TP relation r with respect to

a TP relation s and a condition θ are computed in two phases.

Firstly, the windows in result of rd|><|θo∧θs with (Fs, λs) and

[Os, Oe) equal to null correspond to unmatched windows

where input tuples of r don’t overlap or satisfy θ with any

tuple in s. The interval of each such window is equal to the

interval [Ts, Te) of the tuple of r.

Secondly, the algorithm LAWAU extends the result X of

rd|><|θo∧θs (cf. Fig. 5) with the remaining unmatched windows,

i.e., the windows that span a subinterval of a tuple in r

during which no tuple in s is valid or satisfies θ. For these

unmatched windows to be created, the windows in X are

grouped according to the fact Fr and the interval [Ts, Te) of

the tuple in r to which they correspond. Within each group, the

tuples are sorted on the starting point (Os) of the overlapping

intervals and the order of tuples with equal starting points does

not matter. The algorithm performs a sweep of the interval

[Ts, Te) of each r tuple of r. It copies the overlapping windows

([Os,Oe) 6= null) relating to r to the output. At the same

time, given the subintervals that the overlapping windows

span and the initial interval [Ts, Te) of r, it identifies the

subintervals during which there is no overlap with a tuple

in s, i.e., no overlapping window, and produces the remaining

unmatched windows.

Algorithm 1: LAWAU(status)

1 (prevWindTe, Fr, λr, wind, PQ, neg) = status;

2 if wind = null then return null;

3 do
4 if prevWindTe = −1 then
5 windTs = wind.Ts; Fr = wind.Fr; λr = wind.λr;
6 else windTs = prevWindTe;

7 λs = null; Fs = null;
8 if wind.Os = windTs then
9 λs = wind.λs; Fs = wind.Fs;

10 if λs 6= null then windTe = wind.Oe ; // Case 1

11 else if windTs = wind.Ts ∧ wind.Os 6= null then
12 windTe = wind.Os; // Case 2

13 else if wind.Os = null ∨ windTs = wind.Oe then
14 next = getNextOf(wind );
15 if next 6= null ∧ Fr = next.Fr;
16 then // Case 3

17 windTe = next.Os

18 else windTe = wind.Te; // Case 4,5

19 wind = next ;

20 if windTe = wind.Te then prevWindTe = −1;
21 else prevWindTe = windTe;

22 while windTs ≥ windTe;

23 out = (Fr, Fs, windTs, windTe, λr , λs) ;

24 status = (prevWindTe, Fr, λr, wind, PQ, neg);

25 return (window, status);

The execution of algorithms LAWAU and LAWAN is based

on a context node (status) with information on the status of



the algorithm: the right boundary of the last output window

(prevWindTe), the fact (Fr) and the lineage (λr) of the tuple

of r that is valid over the output window [windTs, windTe),
and the input window (wind) to be processed. The tag neg and

the priority queue PQ are not used in LAWAU. At each call,

a generalized lineage-aware temporal window out is returned

(Line 23) as well as the status necessary for the next call.

Prior to the first call of LAWAU, the first window of X is

fetched, Fr and λr are initialized to null and prevWindTe is

initialized to −1.

Lines 4-6: Initially, the left boundary windTs of the new

window as well as the fact and the lineage of the valid

tuple of r are determined. If a new group is being processed

(prevWindTe = −1), windTs is determined by the starting

point of the first window wind of the new group. In this case,

the fact Fr and the lineage λr of the valid tuple of r are also

extracted from wind. If the processing of a group continues,

the interval of the new window is adjacent to the previous

one, with windTs = prevWindTe while Fr and λr remain

unchanged.

Lines 7-9: In order to determine the fact and the lineage

of the tuple of s valid over the output window, we check if

the starting point windTs of the window matches the starting

point Os of an overlapping window in X. If satisfied, this

condition (Line 8) indicates that there is a tuple of s valid

over the window and thus the fact Fs and lineage λs equal

the corresponding attributes of wind. Otherwise, they are set

to null.

windTs

windTe

(a) Case 1

windTs

windTe

(b) Case 2

windTs

windTe

(c) Case 3

windTs

windTe

(d) Case 4

windTs windTe

(e) Case 5

Fig. 6: Cases for determining windTe in LAWAU Algorithm. Single
line is used for the input tuple and pairs of lines for the windows.

Lines 10-19: The right boundary windTe of out is deter-

mined based on whether it is an overlapping or an unmatched

one. All the cases are annotated in the algorithm and illustrated

in Figure 6. If out is an overlapping window (Case 1),

i.e., λs 6= null, its interval corresponds to the overlapping

interval in wind and thus, windTe is set to wind.Oe. If

the output window is an unmatched window, three different

cases are considered based on the position of windTs with

respect to [wind.Os, wind.Oe). If the starting point windTs

coincides with the starting point of the valid tuple of r

(windTs = wind.Ts) and the starting point of the overlapping

window wind succeds (Case 2), windTe is set to the starting

point of wind. If the starting point of the output window

coincides with the ending point of the overlapping window

wind (Case 3), the upcoming window next is fetched. If next

is in the same group as wind, out is positioned between two

overlapping windows and thus windTe = next.Os. However,

if next belongs to a new group, wind is positioned at the

end of the interval of a valid tuple of r (Case 4). Thus

windTe = wind.T e and the sweeping progresses to window

next. The same assignment takes place if wind is one of the

unmatched windows produced by the conventional left outer

join (Case 5).

1 2 3 4 5 6 7

x1

x2

out = (′Ann, ZAK ′, null, [2, 4), a1, null)

1 2 3 4 5 6 7

x1

x2

out = (′Ann, ZAK ′, ′hotel1, ZAK
′, [4, 6), a1, b3)

Fig. 7: LAWAU on the group with FL =
′Ann,ZAK′ and λL = a1.

Example 4: In Fig. 7, we illustrate two calls of LAWAU

when applied on relation X of Fig 5 and more specifically

on the group of windows with the fact Fr ='Ann, ZAK'. The

single blank line corresponds to tuple a1, the tuple of the left

relation a valid over all windows of the group. The window

wind = x1 is the first to be processed. In the first call of

LAWAU , illustrated at the bottom of the figure, the processing

of a new group starts and windTs, Fr and λr are initialized

to the starting point, fact and lineage of a1, respectively. No

overlapping window of the same group starts at windTs = 2
and thus, Fs and λs are set to null. According to Case 2,

windTe is set to wind.Os. In the second call of LAWA, the

same group is processed and out will be adjacent to the

previous output window. Since windTs equals the starting

point of the overlapping window x1, the facts, lineages and

intervals of the output window are fetched from x1. The ending

point windTe of out is set according to Case 1.

C. Negating Windows

LAWAN extends the result Y of LAWAU with the negating

windows. Y consists of windows ordered by the fact of r (Fr)

as well as by their starting point (Ts). LAWAN sweeps over

Y and copies all the unmatched and overlapping windows to

the output. When a group of overlapping windows with the

same fact Fr is encountered, negating windows are created.

The intervals of these windows are subintervals of the group

of overlapping windows.

The execution of LAWAN is also based on the context node

status. The tag neg indicates if a negating window will

be produced. The priority queue PQ includes (t, λ) pairs that

indicate the time point t after which the tuple of the right

relation with lineage λ stops being valid.



Y

Fr Fs λr λs T = [Ts, Te)

y1 'Ann, ZAK' null a1 null [2,4)

y2 'Ann, ZAK' 'hotel1 , ZAK' a1 b3 [4,6)

y3 'Ann, ZAK' 'hotel1 , ZAK' a1 b2 [5,8)

y4 'Jim, WEN' null a2 null [9,12)

Fig. 8: The input of LAWAN

Lines 1-6: In the first call of the algorithm (firstCall), the

first tuple of Y is fetched, the priority queue PQ is initialized

(pointer to null), prevWindTe is set to −1 and neg to false.

Since negating windows are created based on the overlapping

windows, whenever a group of overlapping windows with the

same Fr starts, the output fact Fr, the output lineage λr and the

starting point prevWindTe of the output windows are updated

to the values of the first tuple of this group for Fr, λr and Ts

respectively.

Algorithm 2: LAWAN (status)

1 (prevWindTe, Fr, λr, wind, PQ, neg) = status;

2 if wind = null ∧ isPQempty() then return (null, null);
3 if firstCall then
4 PQ = initializePQ(); prevWindTe = −1; neg = false;

5 if prevWindTe = −1 ∧ wind.λr 6= null then
6 Fr = wind.Fr; λr = wind.λr; prevWindTe = wind.Ts;

7 while out = null do
8 if neg = false then
9 out = wind;

10 if wind.Fs = null then wind = getNextTuple();
11 else neg = true; addToPQ(wind.Te, wind.λs);
12 else if wind.Fr = Fr ∧ wind.T s ≤ prevWindTe then
13 wind = getNextTuple() ;

14 if out = null ∧ wind.Fr = F then
15 if wind.Ts > prevWindTe then
16 windTe = tForTopOfPQ();
17 if wind.Ts < windTe then
18 windTe = wind.Ts;
19 λs = disjunctLineages(windTe);
20 out = (Fr,−, [prevWindTe, windTe), λr, λs);
21 prevWindTe = windTe;
22 neg = false;
23 else if wind.Ts = prevWindTe then neg = false;

24 else if out = null ∧ (¬ isPQempty()) then
25 windTe = tForTopOfPQ();
26 λs = disjunctLineages(windTe);
27 out = (Fr,−, [prevWindTe, windTe), λr, λs);
28 prevWindTe = windTe; removeTopOfPQ();

29 if isPQempty() then prevWindTe = −1; neg = false;

30 status = (prevWindTe, Fr, λr, wind, PQ, neg);

31 return (out, status);

Lines 8-13: LAWAN outputs an unmatched, overlapping

or negating window according to neg. When neg is false

(Line 8), the unmatched or overlapping window wind is copied

to the output as is (Line refline:copy). If wind corresponds

to an unmatched window (wind.Fs = null), we proceed to

the next window. However, if it corresponds to an overlapping

window, the creation of a negating window follows and neg

is set to true (Line 11). In this case, we add to PQ the pair

(wind.Te, wind.λs), with the ending point and the lineage of

the valid tuple in the relation s as recorded in wind.

When neg is true, the creation of a negating window

follows. If the same group is processed and the starting point

of out (prevWindTe) is equal to the starting point of wind,

the next window is fetched (Line 13) for two reasons. Firstly,

if the next window of Y is an overlapping window of the same

group and starts at prevWindTe, the lineage of the tuple of

relation s valid over this input window needs to be considered

for λs. Secondly, if the next window belongs to the same

group, its starting point should be considered as a potential

ending point of out.

Lines 14-23: The output negating window is finalized by

determining its ending point windTe and lineage λs. The

lineage λs is always determined by disjuncting the lineage

expressions of the pairs (t, λ) in the priority queue with t

smaller than windTe. Thus, λs correspond to the dinjuction

of the tuples of the relation s valid over the output inter-

val [prevWindTe, windTe). To determine the ending point

windTe of the window, we first check if the upcoming window

wind of Y includes the same fact Fr as out. If this is the case,

windTe is the minimum between the time point of the top pair

in the queue, i.e., the smallest ending point of valid tuples in

relation s, and the starting point of the upcoming window of

Y. Therefore, a window is created when there is a change in

the tuples of relation s that are valid either because a tuple ends

or a new tuple begins. After out is formed, the starting point

prevWindTe of the next negating window is set to windTe.

neg is set to false so that the window wind is copied to the

output.

A special case occurs when the starting point of the up-

coming window is equal to the starting point of the output

window (Line 23). This means that there exists a valid tuple

in the reference relation s that needs to be considered for

the output window and thus its finalization is postponed. The

upcoming window, either overlapping or unmatched, has to be

first copied to the output so we set neg back to false.

Lines 24-28: If there are more overlapping windows in PQ

that end before the upcoming window wind starts, regardless

of whether wind belongs in the same or a different group, the

ending point of the new negating window is equal to the ending

point of the pair on top of the priority queue (Line 25. The

starting point of the next negating window is set to windTe

indicating that the sweeping until this time point has been

completed. As a result, all the nodes in PQ correspond to

windows whose ending point is equal to windTe have already

been considered and need to be removed.

Example 5: In Fig. 9, we focus on the group with Fr='Ann,

ZAK' and we illustrate all six calls of LAWAN on the corre-

sponding windows of the result Y of LAWAU (Fig.8), when

applied on the relations a and b of Fig.1a. Red color is

used for windows copied to the output whereas green is used

for the negating windows. In the first two calls of LAWAN,
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Fig. 9: Execution of LAWAN on the result of LAWAU

windows y1 and y2 are copied to the output. y2 is the

first overlapping window after a series of unmatched ones.

After out = y2, neg is set to true and the sweeping for

negating tuples starts from prevWindTe = y2.T s = 4 with

Fλ = 'Ann,ZAK' and λr = a1. Window y2 is followed by

another overlapping window (y3) that starts before the ending

point of y2, recorded in the top node of the priority queue.

Consequently, windTe = y4.T s = 5 and the negating window

('Ann, ZAK', null, [4, 5), a1, b3) is produced. neg is set false

and window y3 is then copied to the output. Since there are

no more overlapping windows to be processed, the upcoming

negating windows are adjacent to each other and their ending

points are derived from the nodes of PQ.

D. TP Join Algorithms

In this subsection we introduce the algorithm Negation-

Joins(r, s, θ, op) that computes the result of the TP outer

join or anti join op on the input TP relations r and s and the

predicate θ. In contrast to previous works in either temporal

or probabilistic databases, this algorithms involves no tuple

replication. Instead, it allows for a pipelined calculation of the

result and thus enables its smooth integration in the kernel of

a DBMS.

Algorithm 3: NegationJoins(r, s, θ, op)

1 winit = leftJoin(r, s,θ ∧ θo);
2 sort(winit{FL, Os}) ;

3 status = (−1, null, null, fetchWind(winit), null, false);
4 while status 6= null do
5 (w, status) = LAWAu(status);
6 wuo = wuo ∪ {w};

7 status = (−1, null, null, fetchWind(wuo), null, false);
8 while status 6= null do
9 (w, status) = LAWAn(status);

10 if w.λs = null ∧ w.Fs = null then
11 o = o ∪ {(w.Fr, w.Fs, w.λr, [w.winTs, w.winTe))};
12 else if w.λs 6= null ∧ w.Fs = null then
13 λ = andNot(w.λr, w.λs);
14 o = o ∪ {(w.Fr, w.Fs, λ, [w.winTs, w.winTe))};
15 else if op 6= ⊲ then
16 λ = and(w.λr, w.λs);
17 o = o ∪ {(w.Fr, w.Fs, λ, [w.winTs, w.winTe))};

18 if op = d|><|d then o = o ∪ NegatingJoins(s, r, θ, ⊲) ;
19 return o;

Initially, the set winit includes the overlapping windows of r

and s and a subset of the unmatched windows (Section VI-A).

The windows in winit are sorted based on the fact Fr and

the starting point Ts (Line 2) of the tuple of the positive

relation from which they have been produced. As long as

the terminating condition (Line 4) is satisfied, LAWAu passes

through all start and end points of the windows in winit

in a smaller-to-larger fashion and expands the set with the

unmatched windows (Line 6) that hadn’t been created yet.

Similarly, LAWAn sweeps the windows of the set wuo and

extends it with the negating windows of r and s.

Each window w that LAWAn produces is not further swept

and it can be transformed to an output tuple for the result

of the TP join. A lineage-based filter is directly applied to

determine if w is unmatched (w.λs = null ∧ w.Fs = null),

negating (w.λs 6= null ∧ w.Fs = null) or overlapping. If the

join performed is a TP anti join (⊲TP), then the overlapping

windows are filtered out and are not included in the final result.

If it is a full outer join, the unmatched and negating windows

of s using r as a reference need to be included and thus the

NegationJoins algorithm needs to be called again with reversed

arguments, same predicate and anti join as the operation to be

performed so that the overlapping windows are not copied

again to the output. Finally, every window is finalized into

an output tuple using the lineage-concatenating function that

corresponds to set of windows to which it belongs. In the case

of a TP anti join, Fr is the only fact included in the output

tuples.



VII. EVALUATION

In this section, we evaluate our algorithms using two real-

world datasets which vary on (i) the number of facts in

the input relations and (ii) the percentage of tuples whose

intervals overlap. We compare our approach for TP joins

with negation (NJ) to Temporal Alignment (TA), i.e., the

only related approach that can be used for the computation

of TP outer joins and TP anti join. The experiments show

that our approach outperforms TA and it is the only scalable

solution for TP joins with negation on input relations of

more than 200K tuples. NJ is also robust with predictable

performance with respect to the aforementioned characteristics

of the datasets.

A. Experimental Setup

All of the following experiments were deployed on a

2xIntel(R) Xeon(R) CPU E5-24400 @2.40GHz machine with

64GB main memory, running CentOS 6.7. Our algorithms

have been implemented in the kernel of PostgreSQL in C, and

all experiments were performed in main-memory. No indexes

were used. In all PostgreSQL implementations, the maximum

memory for sorting as well as for shared buffers were set to

10GB.

We have implemented NJ in PostgreSQL 9.4.3 by modi-

fying the parser, executor and optimizer. The only approach

our implementation can be compared against is Temporal

Alignment (TA) [11]. Temporal Alignment is an approach

developed for the computation of temporal operations using

sequenced semantics and is implemented in the kernel of Post-

greSQL as well. It consists of a set of reduction rules based

on Normalize (N ) and Align (Φ), two operators responsible

for the interval adjustment of the input relations. Due to the

existence of probabilities, the results of TP joins with negation

differ and thus, for our experiments, we introduced reduction

rules that are consistent with the TP semantics while properly

exploiting N and Φ. For a fair comparison, we migrated the

authors’ implementation to PostgreSQL 9.4.3.
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Fig. 10: Query Trees

In Fig. 10, we illustrate the query plans used by NJ and TA

for the computation of windows. In Fig. 10a, the nodes winit,

wuo in the tree correspond to sets of windows as described in

Algorithm 3. The node wN corresponds to the set of negating

windows produced by the calls of LAWAN . In Fig. 10b

and 10c, we illustrate the two query subtrees in TA for the

computation of all output tuples. The operators N and Φ in TA

replicate the tuples of the left relation and assign new intervals

based on the right relation. Since the facts and lineages of the

input tuples still need to be combined, additional joins are

performed. Φ(k,m) is associated with overlapping windows

(Fig. 10b) since the subintervals it produces correspond to

the overlap of a tuple in k with a tuple in m. N (k,m) is

appropriate for negating windows since it includes intervals

that correspond to the overlap of a tuple in k with a group

of tuples in m. Both Φ(k,m) and N (k,m) include intervals

where a tuple k in k matches no tuple in m, leading to the

unmatched windows being computed twice. In Fig. 10c, the

tuples of the right relation m are adjusted both using relation

k and itself because, over an interval, we compute the tuples

of m that are valid and are combined with a tuple of k. Given

that N only uses one input relation as reference, we need to

further adjust m based on the result of N (k,m).
The d|><|θ∧θo , N and Φ nodes are all based on a conventional

left-outer join with a condition for the interval overlap of the

matching tuples. PostgreSQL’s optimizer determines whether

such a join is executed as a nested loop, a merge join or a

hash join depending on the θ codition of the TP join to be

computed. d|><|θ∧θo is computed using a nested loop only when

the θ condition used has low selectivity, i.e., when a high

percentage of pairs of input tuples satisfy the condition. On

the contrary, this varies for N and Φ, based on whether a TP

join or a set of windows is computed.

B. Real-World Datasets

The Webkit dataset1 [27], [12], [28] records the history of

484K files of the SVN repository of the Webkit project over

a period of 11 years at a granularity of milliseconds. Each

tuple has schema (File_Path, [Ts, Te)) and the valid times

indicate the periods when a file remained unchanged. The

Meteo Swiss dataset2 includes temperature predictions that

have been extracted from the website of the Swiss Federal

Office of Meterology and Climatology. Each tuple has schema

(Station_ID, Value_ID, Value, [Ts, Te)). The measurements

were taken at 80 different meteorological stations (Station_ID)

in Switzerland from 2005 to 2015 and involve four different

metrics (Value_ID), including temperature and precipitation.

Measurements are 10 minutes apart and – in order to produce

intervals – we merged time points whose measurements differ

by less than 0.1.

The main properties of these datasets are summarized in

Table IV. For both datasets we produced a second relation by

shifting the intervals of the original dataset, without modifying

the lengths of the intervals. The start/end points of the new

relation were chosen according to the distribution of the

original ones.

C. Runtime

In Fig. 11, 12, 13 we illustrate the runtime for the overlap-

ping and unmatched windows, negating windows, and for a

TP left outer join, respectively, over subsets of the Webkit and

Meteo dataset. The subsets range from 20K to 200K tuples.

1The WebKit Open Source Project: http://www.webkit.org (2012)
2Federal Office of Meteorology and Climatology: http://www.meteoswiss.ch (2016)

http://www.webkit.org
http://www.meteoswiss.ch


TABLE IV: Real-World Dataset Properties

Meteo Webkit

Cardinality 10.2M 1.5M

Time Range 347M 7M

Min. Duration 600 0.02

Max. Duration 19.3M 6M

Avg. Duration 152M 1.7M

Num. of Facts 80 484K

Distinct Points 545K 144K

Max Num. of Tuples (per time point) 140 369K

Avg Num. of Tuples (per time point) 37 21

For Webkit dataset, as a θ condition we apply equality of

the File_Path, i.e., we combine tuples referring to the same

file. For Meteo dataset, we apply equality on Value_IDs and

inequality on Station_IDs, i.e. we combine tuples with mea-

surements on the same metric but taken in different stations.

Fig. 11 shows the runtime of NJ and TA for the set

wUO (Algorithm 3), including the unmatched and overlapping

windows. Both approaches follow a similar trend and the

reason is that the most computationally demanding part of

both is a conventional left join, used to identify the pairs of

tuples that overlap. As shown in Fig. 10, NJ only executes this

join once whereas TA executes it twice. As a result, NJ is two

to four times faster.
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Fig. 11: WUO: Overlapping and Unmatched Windows

In Fig. 12, we have illustrated the runtime for the com-

putation of negating windows. In NJ, negating windows are

computed by applying LAWAN on the set wUO. Thus, we have

illustrated their computation time both including (WUON ) and

excluding (WN ) the runtime for wUO. In the case of WUON , NJ

computes the negating windows four to ten times faster than

TA whereas, in the case of WN , it computes them twelve to

twenty times faster.

Finally, the runtimes of both NJ and TA for a TP left-outer

join are illustrated in Fig. 13. To compute the join with TA, a

duplicate-eliminating is applied on the query trees in Fig. 10b

and Fig. 10c to combined the partial results and remove the

redundant unmatched windows. Its runtime for the TP left-

outer join is much higher than the sum of the runtimes of the

windows as presented in Fig. 11 and Fig. 12. The reason for

that is that when the union of the query trees in Fig. 10b and

10c is performed, the θ condition of the TP join is ignored for

the right subtree of Fig. 12. The optimizer opts for a nested
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Fig. 12: Negating Windows

loop for its computation and this takes a huge toll on TA’s

runtime making NJ two orders of magnitude faster.
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Fig. 13: TP Left Outer-Join

Meteo dataset contains a number of distinct values much

smaller than its size, an analogy maintained in the subsets

due to the use of the uniform distribution in their creation. As

a result, the condition is not very selective and the runtime of

both NJ and TA is higher than it was in the case of the webkit

dataset. In all cases, the runtime of NJ outperforms TA by four

to ten times.

D. Runtime Breakdown and Scalability

The query tree of the NJ approach (cf. Fig. 10a) consists of

the nodes d|><|θ∧θo , Wuo and Wn nodes. The way that the node

d|><|θ∧θo is computed is completely determined by PostgreSQL’s

optimizer, given the condition applied on the non-temporal

attributes. The most demanding part of the node Wn is

handling the tuples valid over the interval of the window. In

Fig. 14, we breakdown the runtime of a TP left outer join

on the percentage occupied by each node of the query tree

for Webkit and Meteo dataset, respectively. As shown in the

graphs, the conventional left-outer join (CLJ) occupies most of

the runtime of the TP left outer join (NJ) which is more than

50% for Webkit dataset. The calls to LAWAU and LAWAN ,

for the computation of the nodes Wuo and Wn respectively,

correspond to a small percentage of the runtime in Webkit

dataset. However, they tend to be more time-consuming for

Meteo dataset. This behaviour lies in the dataset characteristics

and in the query performed. In meteo, the θ condition used

requests for the tuples combined to have the same metric but

to refer to different stations. Measurements over all stations

take place at similar times and, for multiple output intervals,



all valid tuples might contribute in the output, making the

computations much more demanding.
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Fig. 14: Runtime Breakdown. CLJ is d|><|θ∧θo and NJ is d|><|

Tp

θ .

NJ is the only scalable approach integrated in PostgreSQL

that can be used for the computation of all TP joins including

negation. In Fig. 15, we depict the performance of NJ for

the computation of a TP left outer join for larger subsets

of the webkit and meteo datasets. TA is not taken into

consideration, since its runtimes were already one to four

orders of magnitude higher than NJ’s when applied on the

smaller datasets. The dataset sizes vary from 100K to 1M

tuples. NJ’s implementation is based on a conventional left

outer join and its performance is influenced by the condition

on the non-temporal attributes, since the optimizer opts for a

different type of join. The selectivity of the condition applied

in the webkit dataset is higher, allowing for the computation

of the left outer join using a merge join. On the contrary, in

the case of meteo dataset, a nested loop has to be computed.

As a result, NJ scales more efficiently when applied on the

webkit dataset, with its runtime being two minutes on average

and always less than five minutes for datasets less than 2M.
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VIII. CONCLUSIONS

In this work, we proposed an approach for the computation

of temporal-probabilistic joins with negation, operations that

cannot currently be performed by any existing TP approach.

We introduced the generalized lineage-aware temporal win-

dows, to bind lineages and intervals and comply with the

requirements of TP joins. We grouped these windows into

three sets and, using these sets, we expressed the result of

each TP join with negation. We implemented algorithms for

the pipelined computation of all sets of generalized lineage-

aware temporal windows and we integrated our approach in

the kernel of PostgreSQL. A thorough experimental evaluation

reveals that our implementation is seamlessly integrated into

the DBMS and outperforms existing approaches.
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