
Benchmarking
Incremental Reasoner

Systems

Jérôme Oesch
of St. Gallen SG, Switzerland

Student-ID: 11-708-435
jerome.oesch@bluewin.ch

Thesis September 12, 2018

Advisor: Daniele Dell’Aglio

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

A very special gratitude goes to my supervisor, Daniele Dell’Aglio, University of Zurich,
for the many hours of discourse on the topic of this thesis and for his guiding and helping
hand.

I would like to thank Dr. Jeff Z. Pan, Aberdeen University, being an expert on the
topic and guiding us onto the right track, answering all of our questions. Many thanks
to Romana Pernischová, University of Zurich, for supporting me in Ontology Evolution
Mapping, to whom I wish just the best for her upcoming PhD. I would also like to
express my gratitude to all people at the chair of Dr. Abraham Bernstein, DDIS, for
making my journey a very pleasant one.

Finally, to all my friends that had to bear with some bad temper of mine, my girlfriend
and my family, my mother and father for supporting me during my entire life.

Zusammenfassung

Die Durchführung von Benchmarks über Reasoner Systeme ist ein bereits weit verbreit-
eter Ansatz für den Vergleich von verschiedenen Ontologie-Reasonern. Mit dem Aufkom-
men von inkrementellen Reasonern wurde jedoch noch kein Benchmark vorgeschlagen,
welcher solche konkurrierende inkrementelle Implementationen testen kann. In dieser Ar-
beit stellen wir nicht nur ein Benchmarking-Framework vor, welches diese Lücke füllen
könnte, sondern wir präsentieren auch einen neuen Benchmarking-Ansatz, welcher die
automatische Generierung von Abfragen wie auch von Veränderungen an der Ontologie
ermöglicht. Hierfür wird als Input nur eine bestehende Ontologie benötigt. Das im-
plementierte Framework, ReasonBench++, benutzt zur Generierung von Abfragen das
Konzept von “Competency Question-driven Ontology Authoring”, sowie “Ontology Evo-
lution Mapping” zur Generierung von Veränderungen. Durch die Anwendung dieser zwei
Konzepte können wir aufzeigen, dass ReasonBench++ lebensnahe Benchmarks erstellen
kann, welche einen intensiven Benutzungsfall durch Autoren wie auch Nutzerabfragen
wiederspiegelt.

Abstract

Benchmarking reasoner systems is an already wide-spread approach of comparing differ-
ent ontology reasoners among each other. With the emergence of incremental reasoners,
no benchmarks have been proposed so far that are able to test competing incremental
implementations. In this thesis, we not only propose a benchmarking framework that
could fill this gap, but we present a new approach of a benchmark that is capable of
generating both queries and subsequent ontology edits automatically, just requiring an
existing ontology as input. Our implemented framework, ReasonBench++, uses the con-
cepts of Competency Question-driven Ontology Authoring to generate queries, as well
as Ontology Evolution Mapping to generate edits. With the application of these two
concepts, we are able to show that ReasonBench++ is generating close to real-life bench-
marks that reflect an ontology intensively used by ontology authors and simultaneous
queries of users.

Table of Contents

1 Introduction 1

2 Ontologies, Competency Question driven Authoring and Evolution Mapping 5
2.1 Ontologies and Description Logic . 5

2.2 Competency Questions and Presuppositions 6

2.3 Authoring Tests . 8

2.4 Ontology Evolution Mapping . 12

2.5 OWL API . 13

3 ReasonBench++ 15
3.1 Problem Analysis . 15

3.1.1 Generating Competency Questions stochastically 18

3.1.2 Mapping Authoring Tests to Competency Question Archetypes . . 20

3.1.3 Generating Ontology Edits stochastically 22

3.2 Requirements . 24

3.2.1 OWL API for Java . 25

3.2.2 OWL Reasoner . 25

3.2.3 Other References . 26

3.3 Implementation . 27

3.3.1 Inputs . 27

3.3.2 Output . 31

3.3.3 Benchmark Package . 31

3.3.4 Competency Question Package . 33

3.3.5 Authoring Test Package . 35

3.3.6 Edit Package . 37

3.4 Benchmarking Process . 39

4 Results 41
4.1 Methodology and Infrastructure . 41

4.1.1 Hardware . 41

4.1.2 Configurations of RB++ . 42

4.1.3 Ontologies . 43

4.1.4 Limitations and Unexpected Behaviour of Reasoners 43

x Table of Contents

4.2 Benchmark Results . 45
4.2.1 Verification of Runtime Results . 46
4.2.2 Verification of Reasoner Consistency 50
4.2.3 Results of the Gene Ontology . 52

5 Limitations 55

6 Future Work 57

7 Conclusions 59

A Appendix 65
A.1 Terminal commands for RB++ . 65
A.2 Results . 66

A.2.1 Additional Figures of Reasoner Behaviour over Time 66
A.2.2 Failed Authoring Tests per Reasoner 69

x

1

Introduction

A reasoner is a software which is able to infer implicit information out of explicitly
structured data. The structured data resides in so-called ontologies, a standardized
repository of information authored by humans. The process of inference of information
makes use of predicate logic and is based on set-theory. As an example, if an ontology
author explicitly states that Peter is a student, and that a student is a person, the
reasoner will infer that Peter is a person.

The development of reasoners has taken a turn in recent years. Previously, the strong
assumption that ontologies are static was commonplace. As a reasoner can reach a
conclusion in several different ways, a change in the ontology may or may not have
consequences on the materialization of a reasoner. Finding approaches to apply specific
kinds of changes directly to a materialization of a reasoner is hard and therefore, a rea-
soner was re-instantiated upon changes in the ontology, restarting the inference process
necessary to provide fast response times to queries. This can constrain the application
field of non-incremental reasoners to non-live support systems. Benchmarks exist to
evaluate such reasoners on their performance, as for example in [Bock et al., 2008, Guo
et al., 2005].

As a response to these restrictions, researchers proposed many different approaches,
as for example in [Volz et al., 2005, Motik et al., 2015, Ren et al., 2016]. Many reasoners
now support incremental updates of their materializations and often do not require a
complete re-initialization, preventing downtime and lowering response times. Up to this
date however, there does not exist any benchmark that is able to compare these reasoners
based on their capability of incrementally updating their materializations. This thesis
aims at this shortage - the goal is to design a software framework that allows automated
evaluation of different reasoner systems by their capability of incremental reasoning.
The possibility to compare different approaches of incremental reasoning can result in
gains in overall performance of reasoners as well as the identification of bottlenecks.
Additionally, some implementations might fit some specific use cases, while others do
not.

As a benchmark should be applicable with many different parameters and inputs, at
least partial automation of the process is required. Benchmarking incremental reasoners
therefore entails some automation issues. To reflect a real-life application of a reasoner,
it requires data in form of an ontology and queries it has to answer. Additionally,
changes have to be applied to an ontology to which a reasoner has to adapt. In an ideal

2 CHAPTER 1. INTRODUCTION

world, queries and changes would both be given, not requiring any form of generation
of both. As this however is rarely the case, the queries and changes should be generated
automatically and should reflect a real-life scenario - they should be meaningful and a
representation of a possible interaction of a human with the machine. Of course, the
answers to the queries have to be correct, indicating that the reasoner is consistent in
its current state. For this purpose, we are going to use the concepts of Competency
Question Ontology Authoring (CQOA) by [Ren et al., 2014] to generate queries, as well
as Ontology Evolution Mapping by [Hartung et al., 2013], allowing us to create artificial
changes from the ontology.

QCOA exhibits the usage of Competency Questions as a functional requirement of
an ontology. By stating these Competency Questions before authoring an ontology, an
author defines minimum requirements of information an ontology must contain after
supplying new content. Competency Questions can be categorized in Archetypes which
capture relevant sentence structures and allow to infer Authoring Tests, which are used
to query the ontology to verify its contents and whether a Competency Question is
answerable meaningfully. In the benchmark, the Archetypes are therefore used as tem-
plates to create new Competency Questions automatically and the entailed Authoring
Tests are used as tasks every reasoner has process.

To generate incremental changes automatically used to alter the ontology, Ontology
Evolution Mapping is used. The approach allows to deduce Change Operations out of
different versions of ontologies, where a set of Change Operations equals the differences
between two versions. Distributions of Change Operations between example ontology
versions as well as the logic behind any Change Operation can be used to generate edits
automatically for any ontology.

Developing such an incremental reasoner benchmarking framework therefore entails
the following research questions:

• RQ1: How can we automate the generation of tasks and data for a benchmarking
framework?

– RQ1.1: Given an ontology, how can we generate Competency Questions
automatically in a way that resembles reality?

– RQ1.2: Given a Competency Question, which Authoring Tests can be auto-
matically inferred?

– RQ1.3: Given an ontology, how can we generate a sequence of edits that
resembles reality?

• RQ2: Does the benchmark allow a meaningful analysis of tested reasoners?

The thesis is structured as follows. Chapter 2 undertakes an in depth look into work
related to this thesis, which includes the concepts of Competency Question Ontology
Authoring (CQOA, see Section 2.2f) [Ren et al., 2014], as well as Ontology Evolution
Mapping [Hartung et al., 2013] (see Section 2.4).

2

3

Chapter 3 describes the design and implementation of ReasonBench++ (RB++), the
proposed software framework to benchmark incremental reasoner systems. The Chap-
ter contains an implementation-wise problem analysis (see Section 3.1), a definition of
requirements (see Section 3.2), a technical description of the framework and its compo-
nents (see Section 3.3) and finally an outline of the benchmarking process (see Section
3.4).

Chapter 4 discusses the findings of the RB++ when being applied to a variety of
ontologies and reasoners with different parameter sets.

Chapters 5 and 6 discuss limitations of this approach as well as future work that could
be undertaken to improve the proposed benchmarking framework as well as the tested
reasoners.

Finally, Chapter 7 sums up the contents of this thesis.

3

2

Ontologies, Competency Question driven
Authoring and Evolution Mapping

This chapter covers the related work used for this thesis. In Section 2.1, the concept
of an ontology and the language of Description Logic are outlined. Section 2.2 refers
to Competency Questions and how presuppositions are embedded in such questions.
Section 2.3 covers how Authoring Tests can be used to check for above mentioned pre-
suppositions. Section 2.4 covers Ontology Evolution Mapping, an approach allowing to
detect changes between different versions of an ontology. Finally, Section 2.5 discusses
the OWL API, the Web Ontology Language and its integration into Java.

2.1 Ontologies and Description Logic

An Ontology is a knowledge representation of a specific universe of discourse, where often
Description Logic (DL) [Baader et al., 2003, Colombetti, 2017] is used as a language to
specify its contents. Ontologies are built upon set theory and use classes, properties
and individuals to describe their contained sets. Every element or thing that is included
inside an ontology is called an entity. An individual is an entity that is contained inside
the sets of the ontology, for example a Porsche. A class denotes an entity that defines
a set structure in the universe that can contain individuals, such as a Car. Classes
can contain individuals, like Porsche, V olkswagen and Mercedes, or can be empty
(Equation 2.1).

Car = {porsche, volkswagen,mercedes} (2.1)

Properties are used to describe relations between objects, for example hasEngine, or to
describe relations between classes and data, as hasWheels. A statement among multiple
entities by using boolean class constructors is again referred to as a class, as it again
denotes a new set inside the universe. As an example, a V ehicle that hasEngine Engine
represents a class (Equation 2.2).

V ehicle u ∃hasEngine.Engine (2.2)

All above entities depict “things” inside our universe. These entities can be used to
define state of affairs that can - for certain propositions - hold or fail. An instance of

6
CHAPTER 2. ONTOLOGIES, COMPETENCY QUESTION DRIVEN

AUTHORING AND EVOLUTION MAPPING

such a state of affair is called a statement. Statements that should hold independent
from the given situation and interpretation are called axioms, and are used as main
building blocks inside an ontology.

Boolean class constructors are used to define complex classes. A class intersection (u)
refers to elements that exist in two differing sets at the same time, e.g. CaruPlane, the
set of all entities that are both a car and plane. A class union (t) depicts all objects
that exist in either one or another class, for example V ehicle tHouse, all entities that
are either a vehicle or a house. The class complement (¬) is used to specify all objects
that are not in a certain class, ¬Car being all entities that are not a car. In addition
there exists subsumption (v, w), which defines that all objects inside a subclass are also
contained inside a superclass (Equation 2.4, 2.5), as well as equivalence (≡), meaning
that two classes are equal (Equation 2.3).

Car ≡ V ehicleu = 4hasWheels (2.3)

Car v V ehicle (2.4)

SportsCar v Car (2.5)

SportsCar v ∀hasEngine.BoxerEngine (2.6)

Axiom (2.3) depicts that vehicles with four wheels are cars. Axioms (2.4) and (2.5) refer
to subsumption; all cars are contained in the class of vehicles and all sports cars are
contained in the class of cars. In Axiom (2.6) we defined that everything that has a
boxer engine must be a sports car by sub-setting all sports cars to the set of things that
have a boxer engine.

Such axioms represent explicit knowledge inside an ontology and allow inference of
implicit knowledge. For example: by using axioms (2.4) and (2.5), one can infer that
SportsCar v V ehicle. By using axiom (2.3), we can further infer that SportsCar ≡
V ehicleu = 4hasWheels, that every sportscar is a vehicle with exactly four wheels.

Inference as in the examples above is conducted by an automatic reasoner. A reasoner
is queried whether a certain proposition, given the universe implemented into the ontol-
ogy, does hold. If that proposition holds, the proposition is called satisfiable. A set that
is unsatisfiable must be empty, i.e. it is impossible for that set to hold any individuals.
Emptiness is modelled as the “bottom class ⊥”. Its counterpart is the “top class >”
that contains every set in the ontology.

2.2 Competency Questions and Presuppositions

A Competency Question (CQ, [Uschold and Gruninger, 1996]) can be understood as
a functional requirement of an ontology. Defined as natural language sentences that
express patterns for types of questions people want to be able to answer with the ontology
[Ren et al., 2014], they are used to verify the consistency of an ontology by checking
whether they can be answered with the explicit and implicit knowledge entailed by an
ontology. In contrast to formal requirement specifications, CQs are most useful when
used by ontology authors that do not have domain knowledge in DL, but are proficient in

6

2.2. COMPETENCY QUESTIONS AND PRESUPPOSITIONS 7

their specific domain to be able to populate an ontology with content [Dennis et al., 2017].
The author would be encouraged to formulate some CQs before starting the authoring
process, and the ontology could be counter-checked on whether these CQs are satisfiable
or not. This approach, as elaborated by [Ren et al., 2014] is called Competency Question-
driven Ontology Authoring (CQOA). Using and formalising CQs correctly is however a
non-trivial task, as Ren et al. have pointed out by the concept of presuppositions.
A presupposition is the implicit presumption on a state of the universe, where some
knowledge is embedded into a sentence that is not interpretable or understandable by a
computer system. Presuppositions originate in linguistic pragmatics and based on Ren
et al. are one possible reason why reasoners fail to answer certain queries, as they are
unable to encode the implicit information entailed in a CQ. As an example, asking:

Example 1. “What is the type of engine of that car?” implies that this car does have
an engine and that engines can have different types - even though this is not explicitly
stated.

Based on the idea of presuppositions, Ren et al. performed empirical research on types
of CQs that are asked by ontology authors. To gather the most used CQ-types, where
also different levels of expertise of the ontology authors were considered, the authors
collected 92 CQs from the Software Ontology Project1 and 76 CQs from the Manchester
OWL Tutorials in 20132.

After removing invalid questions, for example redundant ones, incomplete sentences,
non-real CQs or questions currently not representable by a DL-based ontology lan-
guage, they grouped CQs into twelve so called Archetypes. Each Archetype reflects
sentence structure, subjects, objects and relations imposed by the CQs. In Table 2.1,
the Archetypes are depicted. In Table 2.2, additional sub-archetypes of Archetype 1 are
listed. The main Archetypes appear with different probabilities, an absolute distribution
is given in Table 2.3. Ren et al. mention that the list of Archetypes is non-complete,
since there might be additional Archetypes that were not available in the set of CQs
used for the study.

For the assignment of the different CQs to their fitting Archetypes in Tables 2.1 and
2.2, multiple patterns were identified using a feature-based modelling method [Palmer
and Felsing, 2001]. Ren et al. sorted these patterns into primary and secondary patterns,
where Predicate Arity, Relation Type, Modifier and Domain-independent Ele-
ment are primary, while Question Type, Element Visibility and Question Polar-
ity were categorized secondary patterns. The primary patterns are used to distinguish
the main Archetypes 1 to 12 from each other, while the secondary patters distinguish the
sub-archetypes of Archetype 1. The characteristics of these patterns are stated below:

1. Question Type: Refers to the kind of answer the question should yield.

(a) Selection Question: From the ontology, all entities that satisfy the constraints
given in the question should be returned, being a set of entities.

1http://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-questions-for-
software/

2http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/fhkbtutorial/

7

8
CHAPTER 2. ONTOLOGIES, COMPETENCY QUESTION DRIVEN

AUTHORING AND EVOLUTION MAPPING

(b) Binary Question: The question specifies a subject that should be checked on
satisfiability of stated constraints. The answer is boolean: true or false.

(c) Counting Question: Similar to a selection question, but returning a count of
entities of the result set instead of the set itself.

2. Element Visibility: States whether the entities inside the question are available
explicitly or implicitly.

3. Question Polarity: Is concerned with negated and non-negated questions.

4. Predicate Arity: Describes the number of of arguments of the main predicate.

(a) Unary Predicate: Whether a certain entity has a certain instance.

(b) Binary Predicate: Whether a certain relation between two entities exist.

(c) N-ary Predicate: Whether relations between n entities exist. N-ary predicates
cannot be represented in DL other than using a concept called reification,
splitting them up into multiple binary predicates.

5. Relation Type: Defines whether a relation is a data property-based or object
property-based relation.

6. Modifier: Defines either a restriction on the cardinality of a relation expression
or limits the value of a data property.

(a) Quantity Modifier: Sets a restriction on the cardinality of a relation expres-
sion, both for object property relations and datatype property relations. Can
be a concrete value or a value range, e.g. 5, a superlative value, for example
“the most” or a comparative value, for instance “more than” .

(b) Numeric Modifier: Imposes a restriction on the value of a datatype property,
such as price > 15$.

7. Domain-independent Element: An element that does appear in multiple uni-
verses - independent from the universes’ content. Depending on the question that
is asked, the ontology could be required to contain an abstraction of that element.

(a) Temporal Element: An element concerned with the logics of time. For exam-
ple:“When was version X released?”

(b) Spacial Element: An element referring to a location, not necessarily a geo-
graphical one. E.g.:“Where do I get updates?”

2.3 Authoring Tests

Based on the Archetypes defined in Section 2.2, so called Authoring Tests (ATs) were
elaborated that can be used to check on presuppositions implicitly hidden inside the
question, and therefore whether or not a CQ is answerable. In Table 2.4, all ATs are

8

2.3. AUTHORING TESTS 9

Table 2.1: CQ Archetypes by [Ren et al., 2014]. (PA = Predicate Arity, RT = Rela-
tion Type, M = Modifier, DE = Domain Independent Element; CE = Class
Expression, OPE = Object Property Expression, DP = Datatype Property,
I = Individual, NM = Numeric Modifier, PE = Property Expression, QM =
Quantity Modifier; obj. = Object Property Relation, data. = Data Property
Relation, num = Numeric Modifier, quan. = Quantitative Modifier, tem. =
Temporal Element, spa = Spatial Element)

ID Pattern Example PA RT M DE

1 Which [CE1] [OPE] [CE2]? Which pizzas contain pork? 2 obj.

2 How much does [CE] [DP]? How much does Margherita
Pizza weigh?

2 data.

3 What type of [CE] is [I]? What type of software (API,
Desktop application etc) is
it?

1

4 Is the [CE1] [CE2]? Is the software open-source-
development?

2

5 What [CE] has [NM] [DP]? What pizza has the lowest
price?

2 data. num.

6 What is the [NM] [CE1] to
[OPE] [CE2]?

What is the best/fastest/-
most robust software to read-
/edit this data?

3 both num.

7 Where do I [OPE] [CE]? Where do I get updates? 2 obj. spa.

8 Which are [CE]? Which are gluten free bases? 1

9 When did/was [CE] [PE]? When was the 1.0 version re-
leased?

2 data. term.

10 What [CE1] do I need to
[OPE] [CE2]?

What hardware do I need to
run this software?

3 obj.

11 Which [CE1] [OPE] [QM]
[CE2]?

Which pizza has the most
toppings?

2 obj. quan.

12 Do [CE1] have [QM] values of
[DP]?

Do pizzas have different val-
ues of size?

2 data. quan.

9

10
CHAPTER 2. ONTOLOGIES, COMPETENCY QUESTION DRIVEN

AUTHORING AND EVOLUTION MAPPING

Table 2.2: CQ Sub-types of Archetype 1 by [Ren et al., 2014]. (QT = Question Type, V
= Visibility, QP = Question Polarity; CE = Class Expression, OPE = Object
Property Expression; sel. = Selection Question, bin. = Binary Question, cout.
= Counting Question, exp. = Explicit, imp. = Implicit, sub. = Subject, pre.
= Predicate, pos. = Positive, neg. = Negative)

ID Pattern Example QT VT QP

1a Which [CE1] [OPE] [CE2]? Which software can read a
.cel file ?

sel. exp. pos.

1b Find [CE1] with [CE2]? Find pizzas with peppers and
olives?

sel. imp. pre. pos.

1c How many [CE1] [OPE]
[CE2]?

How many pizzas in the menu
contain meet?

cout. exp. pos.

1d Does [CE1] [OPE] [CE2]? Does this software provide
XML editing?

bin. exp. pos.

1e Be there [CE1] with [CE2]? Are there any pizzas with
chocolate?

bin. imp. pre. pos.

1f Who [OPE] [CE]? Who owns the copyright? sel. imp. sub. pos.

1g Be there [CE1] [OPE]ing
[CE2]?

Are there any active forums
discussing its use?

bin. exp. pos.

1h Which [CE1] [OPE] no
[CE2]?

Which pizza contains no
mushroom?

sel. exp. neg.

Table 2.3: CQ Archetype absolute Distribution based on [Ren et al., 2014].

Archetype 1 2 3 4 5 6 7 8 9 10 11 12

Software Collection 38 11 1 1 0 4 5 5 3 7 0 0

Pizza Collection 23 7 4 0 5 1 0 22 0 2 5 1

Total 61 18 7 1 5 5 5 27 3 9 5 1

10

2.3. AUTHORING TESTS 11

listed. Revisiting the patterns found in CQs by [Ren et al., 2014], each such pattern can
be used to define whether an AT is applicable to an Archetype or not.

1. Occurrence: The Occurrence AT checks whether a certain entity actually exists
in the ontology. For the question “Which pizza has the topping tomato?”, this
test would check whether entities “Pizza”, “hasTopping” and “Tomato” exist in
the ontology. Occurence tests do not require a resoner, the ontology itself can be
queried for the answer.

2. Class Satisfiability: Class Satisfiability checks for every class expression whether
it is satisfiable inside the ontology. For the above example, “Pizza” and “Tomato”
would be checked to be satisfiable.

3. Relation Satisfiability: It is used to check whether a stated relation is actually
allowed to exist - with polarity either being positive or negative. Using the above
example, “Pizza” must have the possibility to have a relation with “hasTopping”,
which itself should have the range “Tomato”.

4. Meta-Instance: Meta-Instance tests whether an entity from a question has the
type required to be embedded in such a question. In above example, “Pizza” and
“Tomato” both must be a class expression, and “hasTopping” must be an object
property expression. A reasoner is not required for this test, the type of any entity
is encoded in the ontology rdf / xml format.

5. Cardinality Satisfiability: Ensures that a specified exact cardinality used in
the question is satisfiable in the ontology. For instance, “Which pizza has three
toppings?” requires the ontology to allow a pizza to have exactly three toppings.

6. Multiple Cardinality: When a superlative quantity modifier is used, this test
checks whether for any n ∈ N+, the relation is still possible, e.g. “Which pizza has
the most toppings?”

7. Comparative Cardinality: If a Comparative Cardinality is used, like “has more
than”, this test checks whether - given two relations - both relations are allowed
to have each one more relation than the other. Using the example: “Does Pizza
Margherita have more toppings than Pizza Prosciutto?”, this test would check
satisfiability of Pizza Prosciutto having one more topping than Pizza Margherita
and vice versa.

8. Multiple Value: Verifies that a datatype property is able to have different values.
In the sentence “Which is the best pizza?”, it is implicitly stated that Pizzas must
have some score that we call “hasScore”. “hasScore” must be allowed to adopt
different values, otherwise the question cannot be answered correctly.

9. Range: Ensures that, when using datatype properties, their values are compara-
ble. In the “Score” example above, the scores must be present in any numerical
format such that comparisons can be made, e.g. Integer, Float, Double.

11

12
CHAPTER 2. ONTOLOGIES, COMPETENCY QUESTION DRIVEN

AUTHORING AND EVOLUTION MAPPING

Table 2.4: Authoring Tests by [Ren et al., 2014]. (E: Expression, CE: Class Expression,
P: Property, n: Modifier)

AT Parameter Checking

Occurrence [E] E in ontology vocabulary

Class Satisfiability [CE] CE is satisfiable

Relation Satisfiability [CE1]
[P]
[E2]

CE1 u ∃P.E2 is satisfiable,
CE1 u ¬∃P.E2 is satisfiable

Meta-Instance [E1]
[E2]

E1 has type E2

Cardinality Satisfiability [CE1]
[n]
[P]
[E2]

CE1u = nP.E2 is satisfiable,
CE1 u ¬ = nP.E2 is satisfiable

Multiple Cardinality (on superla-
tive quantity modifier)

[CE1]
[P]
[E2]

∀n ≥ 0, CE1 u ¬ = nP.E2 is satisfiable

Comparative Cardinality (on
quantity modifier)

[CE1]
[P1]
[P2]
[E1]
[E2]

∃n ≥ 0, CE1u ≤ nP1.E1 and
CE1 u (n + 1)P2.E2 are satisfiable,
∃m ≤ 0, CE1u ≥ mP2.E2 and
CE2u ≥ (m + 1)P1.E1 are satisfiable

Multiple Value (on superlative
numeric modifier)

[CE1]
[P]

∀D ⊆ range(P),
CE1 u ¬∃P.D is satisfiable

Range [P]
[E]

> v ∀P.E

Ren et al. does not present a direct mapping from CQ Archetype to ATs. They
however envision a system where ATs can be automatically checked for any CQ, returning
results of these tests to users. Recent work of [Dennis et al., 2017] tried to validate
above theory of Ren et al. empirically, handing out CQs and corresponding ATs to
participants and asking them whether these ATs make sense or not. They encountered
that authors proficient in ontology authoring actually had learned about the concept of
presuppositions and therefore foresaw the implications of the ATs. Trying to help them
preventing presuppositions when authoring an ontology is not as useful as doing this for
a novice.

2.4 Ontology Evolution Mapping

While Authoring Tests and Competency Questions are targeted at novice users and in
some extent as supportive system for professional ontology authors, Ontology Evolu-

12

2.5. OWL API 13

tion Mapping targets mostly professionals. Most of today’s ontologies are developed by
multiple curators at the same time. To allow this collaboration more effectively, an ap-
proach by [Hartung et al., 2013] called COnto-Diff proposes a new method to calculate
changes between versions of an existing ontology. The differences (Diffs) between two
given versions of an ontology can be first associated with very basic Changes Operations
as “insert”, “delete” and “update”. This initial mapping is enriched by more complex
Change Operations that combine multiple basic Change Operations, as for example
adding an entire subgraph or moving a node from one location to another. Complex
Change Operations can contain complex Change Operations themselves, however cur-
rently these embedded Change Operations are not visible and countable by the user.
This algorithm can be applied to any ontology, given that old and diverse versions of
that ontology exist. The Diffs acquired by this method give insight in how an ontology
is developed by professionals.

The state of the approach in the paper of [Hartung et al., 2013] has been refined by the
authors in recent years, even though there is no publication existing yet that documents
these refinements. Therefore there exist Change Operations in the code base3 that are
not described as such in their paper. This includes for example the Change Operation
“addInner” that adds a node in between two existing nodes. Table 2.5 shows some of
the detectable complex Change Operations, including ones that are not described in the
paper.

As previously stated, the current COnto-Diff version does allow the application of
complex Change Operations recursively, but these Change Operations are lost when
assembling the results. In her recent, not yet published master thesis, [Pernischova,
2018] proposed an approach to include such embedded complex Change Operations with
the result that these Change Operations are now countable as well.

2.5 OWL API

OWL, the Web Ontology Language, was recommended by W3C in 2004 [Patel-Schneider
et al., 2004], and later on updated to OWL 2 [W3C OWL Working Group, 2009]. It is
used to describe entities of an universe in such a way that it is interpretable by computers.
In addition, OWL allows easy sharing of ontologies by using standard formats like RDF
and XML. The OWL API for Java was developed by [Horridge and Bechhofer, 2011],
and is currently one of the most well known APIs in use. It has the capability to read
ontologies and to attach OWL Reasoners (Section 3.2.2) to be able to query ontologies.
Many of the most important reasoners, developed by different universities world wide,
have added OWL API support to their reasoners, which lowers the effort required in
setting up such a software system. OWL API is available open-source on github.com4.

3http://dbserv2.informatik.uni-leipzig.de:8080/webdifftool/WebDiffTool.html?fromOnex=-
True&ontology=

4https://github.com/owlcs/owlapi

13

14
CHAPTER 2. ONTOLOGIES, COMPETENCY QUESTION DRIVEN

AUTHORING AND EVOLUTION MAPPING

Table 2.5: Excerpt of COnto-Diff operations with descriptions and their inverses by [Har-
tung et al., 2013] with additional Change Operations not named in their paper
(marked by *).

Change Operation Description Inverse Change Opera-
tion

move(c, C To, C From) Moves a concept c and its subgraph
from concept set C From to the con-
cept set C To.

move(c, C From, C To)

addLeaf(c, C Parents) Insertion of a leaf concept c below
the concepts in C Parents.

delLeaf(c, C Parents)

addSubGraph(c root,
C Sub)

Inserts a new subgraph with root
c root and concepts C Sub con-
nected by “is a” and “is part of” re-
lationships.

delSubGraph(c root,
C Sub)

addInner()* Adds a node in between two existing
nodes.

removeInner()

merge(Source C, tar-
get c)

Merges multiple source concepts
Source O into one target concept
target C.

split(target c,
Source C)

toObsolete(c) Concept c becomes obsolete, i.e., it
should not be used any more.

revokeObsolete(c)

split(source C, Tar-
get C)

Splits one source concept source c
into multiple target concepts Tar-
get C

merge(Target C,
source c)

substitute(c1, c2) Concept c1 is replaced by c2. substitute(c2, c1)

revokeObsolete(c) The obsolete status of c is revoked,
i.e., it becomes active again.

toObsolete(c)

14

3

ReasonBench++

This chapter outlines the implementation of the ReasonBench++ (RB++) framework.
Section 3.1 is concerned with an analysis of the state of the art theories described in the
Related Work Chapter 2 and outlines necessary changes to these theories such that they
can be reused in the implementation. Section 3.2 describes the requirements concerning
the capabilities and functions of the software, as well as a run-down of third-party
software sources. Section 3.3 discusses the details of the implementation of the RB++
software, with a declaration of the most important packages as well as its inputs and
outputs. Finally, in Section 3.4, the exact benchmarking process is outlined.

3.1 Problem Analysis

The goal of this software framework is a reasoner benchmarking software that tests
different reasoners on their capability to recover from a change made by an ontology
author. Recovering from a change of an ontology author has multiple facets, which
define the key objectives our benchmark should investigate:

• The time it takes the reasoner to be able to process this change internally (with
or without caching)

• Whether the speed of the reasoner degrades / rises after a change

• Whether the reasoner is still able to respond to queries correctly

In a production system, a reasoner should be able to recover from such a change as
quickly as possible, as it might return wrong results to other queries it receives at
the same time. The benchmark should therefore mimic a user querying the reasoner
(tasks), while changes take place in the background. These tasks should be as unbiased
as possible, such that no advantages are given to any test subject. To mirror various
applications of ontologies - resulting in different ontology structures - the benchmark
should also be executable for any ontology. Automation of all these processes is therefore
an important aspect of the framework.

To generate queries, CQOA (see Section 2.2) comes into play. First of all, it covers the
full process of converting real language questions - being a CQ Archetype - to ATs that

16 CHAPTER 3. REASONBENCH++

can be executed and cross-checked in a benchmark. The query of the user is mapped
to an Archetype, for which specific ATs apply. The ATs are the queries, the CQs and
Archetypes are the template the ATs are created from. The answers to ATs allow us
to check whether a question - in the current setting and universe of the ontology - is
satisfiable or not. A CQ to which all its ATs are satisfiable is interpreted as being
satisfiable as a whole and can be assumed to be a reasonable, authentic task - as all
necessary information is encoded in the ontology. The satisfiability of CQs and its ATs
is therefore a comparable measure that can be cross-checked between different reasoners.
It is important to note here that failing some ATs of a CQ does not imply that this
question is per se unauthentic, but that the ontology needs more information to answer
this CQ. It therefore could also indicate a design flaw of the ontology.

Figure 3.1 depicts the process of generating CQs. The CQs are generated by using
the CQ Archetypes as templates. The generation process maps entities available in the
input ontology against the templates, yielding a set of CQs per Archetype. Based on
the amount of CQs required in the benchmark, the generator will then select n CQs
based on the CQ-Archetype distribution. The resulting set of CQs is then used during
the benchmarks, where the entailed ATs of the CQs are the queries the reasoners have
to answer.

Generate CQs
from Archetype

Templates

Input Ontology

Competency Question
Archetypes

Mapping Competency
Question to Authoring Tests Distribution of Competency

Question Archetypes

Reasoner answers
Authoring Tests

from Competency
Questions

Set of
Competency

Questions

Competency Question Generation Benchmark Run

Select n
Competency

Questions

Figure 3.1: Graphical representation of the CQ generation process of RB++.

When editing the ontology, the results of the ATs of a specific CQ are likely to change.
This can be detected and evaluated. At the same time, CQOA mimics real world ques-
tions and has proven itself doing so quite well [Ren et al., 2014, Dennis et al., 2017],
allowing the generation of genuine tasks for our reasoners. Query generation and its
problems is further discussed in Section 3.1.1.

Generation of edits makes use of the theory of Ontology Evolution Mapping (see
Section 2.4. Generating edits should not be done at random, and the changes have to
reflect real-life changes that an ontology author would actually apply. Using the COnto-
Diff Algorithm allows us to evaluate existing ontologies onto the changes between versions

16

3.1. PROBLEM ANALYSIS 17

to create a distribution of Change Operations. This distribution can then be used to
generate real-life ontology edits with a proportional distribution of different kinds of
Change Operations. As COnto-Diff also specifies the contents and logical implications
of every specific Change Operation and its inverse, we envision a forwards and backwards
mode in our framework. As we start with a full ontology (in backwards mode), Change
Operations applied in reverse would normally result in a gradually narrowing ontology.
If enough changes are applied, the ontology is empty. As we know the inverse of every
Change Operation, we can now switch to mode forwards, applying one edit after each
other. The resulting ontologies between every edit are now all different versions of the
original ontology. In addition, multiple Change Operations per edit should be possible.

Figure 3.2 displays the process of edit generation. Using the Change Operation distri-
bution, the set of Change Operations and the input ontology, new Change Operations
are generated and applied to the input ontology. As the sequence of Change Operations
grows, the input ontology changes its contents accordingly. The generated sequence of
Change Operations is then used during a benchmark run to alter the input ontology af-
ter every round. Constraints and restrictions of edit generation are discussed in Section
3.1.3.

Generate Change
Operation

Input Ontology

Change Operations Distribution of Change
Operations

Reasoner queried
with different

Ontology
Versions

Change Operation Generation Benchmark Run

Apply in Reverse
to most recent

Ontology Version

Versioned OntologySequence of
Change Operations

Figure 3.2: Graphical representation of the edit generation process of RB++.

Following, a general process is worked out that should reflect a real life application of
a reasoner being queried. The envisioned process of the framework consists of multiple
parts (see Figure 3.3). RB++ should first load an existing ontology. Next, it should
create n CQs through a stochastic process based on the contents of that ontology, where
the CQs should be as close to real life CQs as possible (see Section 3.1.1). A baseline
benchmark is now carried out on the original ontology’s state where a specified baseline-
reasoner has to answer all ATs of the generated CQs, requiring a mapping from CQs
to ATs (see Section 3.1.2). In succession, RB++ should generate edits stochastically
comprised of the ontology’s content and apply all of them in reverse to the ontology,

17

18 CHAPTER 3. REASONBENCH++

which most likely will result in a smaller or empty ontology (see Section 3.1.3). The
benchmark can now be run, for each reasoner m times. In the first iteration of the
benchmark, the reasoners run against the ontology with all edits applied, where it has
to answer all ATs that are mapped to all CQs. In the second and every subsequent
run, some of the generated edits should be applied to the ontology in forward mode,
and in immediate succession, the reasoner should answer the same ATs again he already
answered in the previous run. The runs continue until all edits have been applied to the
ontology, resulting in the ontologies original state. This run acts as a control group, as
the ATs of the CQs should now return the same result as in the baseline run, where we
check for differences in the results of the ATs. If one of the reasoners returns different
results compared to the baseline run, it can be assumed that the results of the reasoner
are inconsistent. Repeating this benchmark m times will allow us to calculate statistics
on the speed of the queried reasoners as well as whether they are prone to returning
wrong answers.

The described parts of this process are discussed in more detail in the following sub-
sections.

BenchmarkManager:
Entry Point

BenchmarkManager:
Entry Point

Generate n
Competency

Questions

Create Edits and
apply them in

Reverse

Reasoner has to
answer all ATs.
Store Results

Apply Change
Operation
Number o

Select random
Reasoner order,
Revert ontology

Compare Data
and store to Disk

Apply Edit
Number k

Run Benchmark
Round for selected
Reasoner

Benchmark.
Run m times

Load Ontology Execute Baseline
Benchmark

Results of
Rounds

Input Ontology

Figure 3.3: Graphical representation of the benchmarking process of RB++.

3.1.1 Generating Competency Questions stochastically

Generating random CQs entails some complications. The Archetypes of CQs have been
defined by [Ren et al., 2014] (Table 2.1, 2.2), as well as an approximate distribution
of these Archetypes from an analysis of sets of publicly available CQs (see Table 2.3).
This information can - with some adjustments - be reused in this approach. The CQs
proposed in CQOA were created with linguistic patterns in mind, these however do
not necessarily reflect the logic of a computer and how it interacts with that data it

18

3.1. PROBLEM ANALYSIS 19

matches to that pattern. Analysing the CQs given from CQOA (Table 2.1) from an
implementation perspective returned the following observations:

• Archetypes 7 and 9 both contain a domain independent element. For a reasoner
being able to answer queries containing that sort of logic, it is necessary that this
logic is encoded into the ontology. When using different ontologies for the process,
it is unknown for the reasoner whether this logic is implemented. In most cases,
workarounds would be used to reflect these domain independent elements. As an
example of a workaround, the question: “When was the 1.0 version released?”
requires classes “Version” and “Software”, an object property “hasVersion” and a
datatype property “hasReleaseDate” to be able to answer that question. These
Archetypes are therefore removed.

• Archetypes 1 and 10 both contain two class expression parameters, as well as
one object property expression. Implementation-wise, the generated CQs based
on these two Archetypes will not differ from each other. The predicate arity is
currently not interpretable by this software. Therefore these two Archetypes are
treated equivalently. Archetype 10 was therefore removed and its distribution share
is added to Archetype 1.

• Archetype 6 can be replaced by an instance of Archetype 1 and Archetype 5.
For example: The Archetype 6 question “What is the healthiest pizza that has
topping tomato?” can be replaced by a the query (Archetype 1): “Which pizza
has topping tomato?” and the query (Archetype 5): “What [CE1] has the highest
nutrition value?”, where CE1 is the result set of query 1. The distribution share
of Archetype 6 is therefore added to Archetype 1 and 5.

• Archetype 11 and 12 are concerned with cardinalities of either superlative or abso-
lute nature. As it is difficult to represent both cases at the same time with machine
logic, Archetype 11 is split into 11a, dealing with absolute numeric cardinalities,
and 11b, dealing with superlative cardinalities. The same applies for Archetype
12, being split into 12a and 12b. The distribution of both is halved into 11a and
11b, 12a and 12b respectively.

Concerning the sub-archetypes in Table 2.2, it was found that an implementation of
these sub-archetypes is unnecessary for our process:

• Sub-archetypes 1a and 1h are equivalent to Archetype 1, 1h being the negated
(complement) version of 1a. They both result in a set of class expressions.

• Sub-archetype 1b lacks the object property expression available in 1a. To answer
this question, the reasoner has to iterate over all object property expressions in the
signature of CE1 and has to inspect all possible class expressions attached to these
object property expressions. If CE2 is contained, this instance is added to the re-
turned list. This Archetype is therefore a more complex version of 1a, but the struc-
ture is equivalent. In addition, this sub-Archetype can include presuppositions not

19

20 CHAPTER 3. REASONBENCH++

detectable by a machine. As an example, let O be an ontology containing the fol-
lowing entities: {Parent, FemaleChild,MaleChild, hasChild, hasChildWish}.
When O is used to answer the question: “Find parents with a female child?”,
the reasoner would return two sets, the set using relation hasChild as well as
hasChildWish - which in most situations would be incorrect presupposing that
the parents actually have a child already.

• Sub-archetype 1c is equivalent to 1a, returning the count of the result-set of a
question of Archetype 1a.

• Sub-archetype 1d is similar 1a, but it asks for a boolean return value for a specific
entity. The process for the reasoner stays the same as in 1a.

• Sub-archetype 1e is similar to 1b, but as in 1d it asks for a boolean return value.

• Sub-archetype 1f lacks one class expression, which would be replaced by the top
class >. This is equivalent to 1a.

• Sub-archetype 1g is simliar to 1a, but asks for a boolean return value.

Therefore, the sub-archetypes are not used for this implementation, as all of them are
either covered by Archetype 1 or contain for now unsupported, not answerable presup-
positions. Table 3.1 shows the final selection of CQs used by RB++.

3.1.2 Mapping Authoring Tests to Competency Question Archetypes

Executing ATs automatically based on the CQ Archetype they stem from requires a
mapping from all CQ Archetypes to its applicable ATs. Based on the theory of CQOA
and its Authoring Tests (see Sections 2.2, 2.3), the following list was worked out that
shows a mapping based on certain peculiarities of CQ Archetypes:

• Occurrence: Applies to all entities in an Archetype. Is applicable for every
Archetype, as every Archetype must contain at least one entity.

• Class Satisfiability: Is applicable for every class expression of an Archetype.
Every class can be checked on whether it is satisfiable or not.

• Relation Satisfiability: Is applicable for all Archetypes that explicitly contain
at least two class expressions and one object property relation. It is currently
not applicable to datatype property relations, as OWL 2 lacks an implementa-
tion of OWLDataFactory.getOWLDataComplementOf() that allows an OWLClass-

Expression as parameter. The test is therefore incomplete and currently removed
from the framework.

• Meta Instance: Is not applicable to any Archetype. The Meta Instance AT
would be required if the input parameters of a query could be set manually, where
for example a user could mix and match datatypes with data properties (including

20

3.1. PROBLEM ANALYSIS 21

Table 3.1: CQ Archetypes used by RB++. (PA = Predicate Arity, RT = Relation Type,
M = Modifier, DE = Domain Independent Element; CE = Class Expression,
OPE = Object Property Expression, DP = Datatype Property, I = Individ-
ual, NM = Numeric Modifier, PE = Property Expression, QM = Quantity
Modifier; obj. = Object Property Relation, data. = Data Property Relation,
num = Numeric Modifier, quan. = Quantitative Modifier, abs. = Absolute,
sup. = Superlative, tem. = Temporal Element, spa = Spatial Element)

ID Pattern Example PA RT M DE

1 Which [CE1] [OPE] [CE2]? Which pizzas contain pork? 2 obj.

2 How much does [CE] [DP]? How much does Margherita
Pizza weigh?

2 data.

3 What type of [CE] is [I]? What type of software (API,
Desktop application etc) is
it?

1

4 Is the [CE1] [CE2]? Is the software open-source-
development?

2

5 What [CE] has [NM] [DP]? What pizza has the lowest
price?

2 data. num.

8 Which are [CE]? Which are gluten free bases? 1

11a Which [CE1] [OPE] [QM]
[CE2]?

Which pizza has the most
toppings?

2 obj. quan.
abs.

11b Which [CE1] [OPE] [QM]
[CE2]?

Which pizza has the most
toppings?

2 obj. quan.
sup.

12a Do [CE1] have [QM] values
of [DP]?

Do pizzas have different val-
ues of size?

2 data. quan.
abs.

12b Do [CE1] have [QM] values
of [DP]?

Do pizzas have different val-
ues of size?

2 data. quan.
sup.

21

22 CHAPTER 3. REASONBENCH++

combinations that are impossible). As our queries are generated automatically,
with the knowledge embedded in the ontology, no parameter mapping could occur
that would match wrong types with each other.

• Cardinality Satisfiability: Is applicable for all Archetypes that contain an ab-
solute quantity modifier. An absolute cardinality is an integer number.

• Multiple Cardinality: Is applicable for all Archetypes that contain a superlative
or comparative quantity modifier, such as “the most”, “the fewest” or “different
number of”.

• Comparative Cardinality: Is not applicable to any Archetype. Comparative
Cardinality would require an Archetype that compares two relations among each
other, but no such Archetype exists.

• Multiple Value: Is not applicable to any Archetype due to technical restrictions.
To date, there exists no possible way in OWL to check an ontology onto the actual
values of a data property relation.

• Range: In its original form, it would not be applicable to any Archetype, with the
same reasons as formulated for Meta-Instance. An automatically generated query
would not use incomparable data types. However, the Range AT is now used in
conjunction with object property relations, to check whether the relation of some
class CE with some object property OPE is satisfiable. This is applicable to all
Archetypes that contain an object property relation and a class that should be in
range of that object property.

Based on these findings, Table 3.2 was created that shows direct mappings from every
CQ Archetype to its ATs.

3.1.3 Generating Ontology Edits stochastically

To be able to generate ontology edits that are close to real life, the Ontology Evolution
Mapping approach by [Hartung et al., 2013] is used. As there exists an inverse for
every Change Operation a user would apply, the idea is to use a distribution of an
existing, versioned ontology and to apply Change Operations using that distribution
of Change Operations in an inverted fashion to a full or complete ontology. There
exists one constraint of that approach, being that some of the Change Operations, if
applied in reverse, require additional domain knowledge not encoded into the ontology.
In consequence, any Change Operation that’s inverse requires the addition of some entity
to the ontology would result in new, to the executing machine unknown entities being
added to the ontology. This is the case for “split” Change Operations, as well as all
possible Change Operations that would delete some entity from the ontology.

To get an approximate real life distribution of Change Operations (see Table 2.5, the
COnto-Diff algorithm with included refinements of [Pernischova, 2018] was applied on

22

3.1. PROBLEM ANALYSIS 23

Table 3.2: Mapping from Archetype ID to applicable Authoring Tests. (CE = Class
expression, OPE = Object Property Expression, DP = Datatype Property, I
= Individual, NM = Numeric Modifier, PE = Property Expression, QM =
Quantity Modifier, * = currently not implemented.)

ID Pattern Applicable Authoring Tests

1 Which [CE1] [OPE] [CE2]? Occurrence, Class Satisfiability, Relation Satis-
fiability, Range

2 How much does [CE] [DP]? Occurrence, Class Satisfiability, Relation Satis-
fiability*

3 What type of [CE] is [I]? Occurrence, Class Satisfiability

4 Is the [CE1] [CE2]? Occurrence, Class Satisfiability

5 What [CE] has
[NM(absolute)] [DP]?

Occurrence, Class Satisfiability, Relation Satis-
fiability*

8 Which are [CE]? Occurrence, Class Satisfiability

11a Which [CE1] [OPE]
[QM(absolute)] [CE2]?

Occurrence, Class Satisfiability, Relation Satis-
fiability, Cardinality Satisfiability, Range

11b Which [CE1] [OPE]
[QM(superlative)] [CE2]?

Occurrence, Class Satisfiability, Relation Satis-
fiability, Multiple Cardinality, Range

12a Do [CE1] have
[QM(absolute)] values of
[DP]?

Occurrence, Class Satisfiability, Relation Satis-
fiability*, Cardinality Satisfiability

12b Do [CE1] have
[QM(superlative)] values
of [DP]?

Occurrence, Class Satisfiability, Relation Satis-
fiability*, Multiple Cardinality

23

24 CHAPTER 3. REASONBENCH++

Table 3.3: Absolute amount of Change Operations detected in the Gene Ontology [Harris
et al., 2008], dating between 2010-01-01 and 2018-04-01. * points to Change
Operations that are not implemented either due to constraints or sparse usage.

Change Operation Amount of Change Operations

move 11657

addLeaf 5748

addSubGraph 2775

addInner 1751

merge 627

toObsolete* 525

split* 284

substitute* 26

revokeObsolete* 5

the Gene Ontology1 by [Harris et al., 2008]. This yields the results visible in Table 3.3.
The compared versions are taken from their archive, dating between 2010-01-01 and
2018-04-01.

Some Change Operations cannot be implemented due to the following reasons:

• toObsolete: This Change Operation would require a possible annotation to flag
an entity such that it should not be used. This is not the case for all ontologies.

• split: Split would require a merge operation when generating edits. Finding two
nodes to merge without domain knowledge is currently infeasible.

• substitute and revokeObsolete: Are not required due to their sparse usage.

Finally, the framework requires a graph representation of any given ontology to be
able to read out graph-based attributes such as being a leaf or being an inner node.

3.2 Requirements

From the process and the analysis outlined in Section 3.1, the following upper-level
requirements for RB++ can be defined. In the following sections, required software
frameworks are described.

1. The framework must be able to generate CQs through a stochastic process
based on an existing ontology. These questions should be as close to life and
reasonable as possible.

2. The framework must be able to generate edits through a stochastic process
based on an existing ontology to simulate a change of an ontology author, again
as close to life and reasonable as possible.

1cf. http://www.geneontology.org/

24

3.2. REQUIREMENTS 25

3. The framework must provide a mapping from CQ Archetypes to ATs and
must be able to execute ATs automatically based on the CQ Archetype.

4. The framework must be compatible with OWL API.

5. The framework must be able to execute the previously outlined process (see
Section 3.1).

6. The framework should contain an abstraction of the logic of CQOA, a logic
representation of ATs, CQs and CQ Archetypes, as well as their interaction.

7. The framework should contain an abstraction of the logic of Ontology Evo-
lution Mapping, with its most important Change Operations.

8. The framework should contain an abstraction of Change Operations.

9. The framework must be able to export all generated data of the process to do a
state of the art analysis.

3.2.1 OWL API for Java

At the time of creation of this document, OWL API (see Section 2.5) is available in
version 5, however this version is not yet well supported by most of the available reason-
ers. Due to that, OWL API version 4 is used for the development of RB++. Reasoners
supporting version 5 include HermiT and JFact. Reasoners supporting version 4 include
HermiT, JFact, Pellet and ELK.

3.2.2 OWL Reasoner

An OWL Reasoners is a reasoner that supports the OWL API, which is the case for most
today’s reasoners (see Section 3.2.1). From the big list of available OWL Reasoners, some
were chosen to be part of this benchmark, mostly due to their easy availability online,
as well as their version support. What follows is a description of these reasoners.

• HermiT: HermiT [Glimm et al., 2014] was developed by the University of Ox-
ford. It is based on hypertableau calculus, as well as other novel optimizations.
[Chaussecourte et al., 2013] states that from v1.3.4 Hermit supports a very sim-
plistic form of incremental reasoning. It has expressivity of SROIQ logic (OWL
2). Used version: v1.3.8.

• JFact: JFact2 is a Java port of FaCT++ and shares its license. FaCT++ is a
tableaux-based reasoner, developed by the University of Manchester [Tsarkov and
Horrocks, 2006]. It lacks support for key constraints and some datatypes. Very
little is known about the JFact implementation. [Dentler et al., 2011] state that
FaCT++ does not support incremental reasoning. However a more recent article

2cf. http://jfact.sourceforge.net/

25

26 CHAPTER 3. REASONBENCH++

by [Tsarkov, 2014] introduces incremental reasoning for FaCT++. [Tsarkov, 2014]
does not mention whether these changes have been forwarded to JFact. It has
expressivity of SROIQ logic (OWL 2). Used version: v4.0.4.

• Pellet: Pellet [Sirin et al., 2007] is an OWL 2 description logic reasoner developed
and maintained by Complexible Inc. It is available open source or under commer-
cial license. Key features include optimizations for nominals, conjunctive query
answering and first approaches in incremental reasoning. Incremental reasoning
includes incremental classification (addition, removal) [Dentler et al., 2011]. It has
expressivity of SROIQ logic (OWL 2). Used version: v2.4.0.

• ELK: ELK [Kazakov et al., 2012] was developed in a collaboration between the
University of Oxford and the Ulm University. It is a specialized reasoner for the
OWL EL language. It lacks some implementations of interface methods, such
as getObjectPropertyRanges(). With version v0.4.0, ELK is supposed to sup-
port incremental reasoning3 on the axiom types SubClassOf, EquivalentClasses,
DisjointClasses, ObjectPropertyDomain, ObjectPropertyAssertion, Class-
Assertion. Changes on other axiom types will trigger a full re-classification (such
as sub-property and property relations). A more recent documentation entry on
github however states that incremental reasoning is currently unavailable4 due to
a bug. ELK has expressivity of EL. Used version: v0.4.3.

3.2.3 Other References

Main source for external libraries is Maven, which is used to automatically load and
handle external libraries. Maven is used for following framework components:

• owlapi-distribution, version 4.3.1, net.sourceforge.owlapi, the OWL API distribu-
tion.

• org.semanticweb.hermit, version 1.3.8.431, net.sourceforge.owlapi, the OWL Rea-
soner “Hermit”.

• elk-owlapi-standalone, version 0.4.3, org.semanticweb.elk and elk-reasoner, version
0.4.3, org.semanticweb.elk, the OWL Reasoner “ELK”

• jfact, version 4.0.4, net.sourceforge.owlapi, the OWL Reasoner “JFact”

• junit, version 3.8.1, JUnit Testing Environment

The reasoner “Pellet” is not available via Maven. The library was therefore downloaded
directly and added to the extlib folder. It is available on github.com5.

3cf. https://github.com/liveontologies/elk-reasoner/wiki/IncrementalReasoning
4cf. https://github.com/liveontologies/elk-reasoner/wiki/ReasoningTasks
5cf. https://github.com/ignazio1977/pellet/blob/releases/pellet-2.4.0-ignazio1977-dist.zip

26

3.3. IMPLEMENTATION 27

3.3 Implementation

This section is outlining the implementation of ReasonBench++. It is split into differ-
ent subsections. Subsection 3.3.1 discusses the different inputs and parameters of the
framework. Subsection 3.3.2 outlines the outputs of a benchmark run. Subsections 3.3.3,
3.3.4, 3.3.5 and 3.3.6 describe the different packages of RB++ and how they interact.

RB++ is written in Java and uses a set of different classes to model the process of
Section 3.1 in software. The classes are interconnected in a similar manner as the theory
of CQOA models ATs, CQs and their Archetypes, and how Ontology Evolution Mapping
models its Change Operations. The entry point for the RB++ framework resides in class
Main.

There exist four major packages, being benchmark, competencyquestion,
authoringtest and edit. benchmark contains the main benchmark logic, as described
in Section 3.1). competencyquestion includes parts of the CQOA logic, being Archetypes,
the CQ generators as well as the logic for the probability distribution used to generate
the CQs (see Section 2.2). authoringtest comprises the implementation of all ATs
(see Section 2.3). Finally, edit contains the logic of Ontology Evolution Mapping and
its Change Operations (see Section 2.4). These packages all entail a “Manager”-class,
where its logic is implemented, and at least one data container class (“-Info”, “-Set”) to
store results. The Manager classes are implemented with re-use and stateless design in
mind, therefore their constructors are mostly empty and the single methods they supply
require all parameters as inputs. The container classes are intertwined to reflect the
logic of CQOA and Ontology Evolution Mapping: The BenchmarkInfo class contains
a field for the CQ container called CompetencyQuestionSet, a field for the generated
edits of type EditInfoSet, as well as a list of maps of AuthoringTestSet that include
results of the different benchmark runs.

In addition, there exist three minor packages. ontology provides instances of ontolo-
gies and ontology handling. reasoner allocates reasoner instances. helper contains
supporting methods, used for statistical purposes or to print specific elements to the
console. It also includes an ExportService class that is used to export results in the
.csv format.

In the following subsections, the main components of the software are discussed.

3.3.1 Inputs

The input-parameters for RB++ are stored in the BenchmarkInfo-, as well as the
BenchmarkOptions-class (see Section 3.3.3) which are used as main data storage con-
tainers. Parameters requiring additional explanation contain references to other sections
where their function is explained in more detail.

The input parameters that are required to setup a benchmark are stored in an instance
of the BenchmarkInfo class and are the following:

• ontologyPath: The local file path or URL to load the ontology. RB++ is capable
to detect whether the input is an URL or a path to local storage.

27

28 CHAPTER 3. REASONBENCH++

• reasonerList: The list of all reasoners that should be benchmarked. The type
Reasoner is an enum from where the reasoners can be chosen.

• seed: A long value that is used as seed for all succeeding operations. This seed is
used to generate different benchmarks and allows traceability / re-execution of a
specific test. It is used by all packages.

• cqGenAmount: The amount of CQs that should be generated (= “selected”). This
amount is split among the different Archetypes according to the probability dis-
tribution in class CompetencyQuestionProbabilityDistribution (see Section
3.3.4).

• reasonerForCQGen: The reasoner that is used to generate the CQs. Does not have
to be part of the reasonerList (see Section 3.3.4).

• editAmount: The amount of edits that should be created (see Section 3.3.3).

Additionally, when calling the method benchmarkN(), one has to provide n, which is the
number of consecutive benchmark runs.

Parameters used to customize certain aspects of the benchmark are stored in the static
BenchmarkOptions class. They include the following:

• CQ GEN TYPE: The type of CQ Generator that is used by the benchmark (see
Section 3.3.4), either ExpectedTrueCompetencyQuestionGenerator or Random-

CompetencyQuestionGenerator. Default value: EXPECTED TRUE.

• CQ GEN REMOVE OWL THING: When generating CQs, OWLThing is also taken into con-
sideration. By setting this flag to false, OWLThing is not allowed for any generated
question (see Section 3.3.4). Default value: TRUE.

• CQ GEN ONLY SELECT SATISFIABLE CQS: Whether CQs generated have to pass all
their ATs to be selected for the benchmark run. If set to TRUE prevents CQs
from being selected for the benchmark that have not passed their ATs (see Section
3.3.4). Default value: TRUE.

• TEST SELECTED COMPETENCY QUESTIONS ONLY: This flag sets whether ATs should
be run for all created CQs or only the ones selected to be used for the benchmark
run. If set to false, a big rise in computing time can be expected (see Section
3.3.5). Default value: TRUE.

• USE BUFFERED REASONER: Whether the reasoners created should run in buffered
mode or non-buffered mode. A buffered reasoner is allowed to cache data before
flushing changes. (see Section 3.3.3). Default value: TRUE.

• SHUFFLE REASONERS DURING BENCHMARK: Flag that sets whether the benchmarked
reasoners should be shuffled after every run in their benchmark execution order or
not (see Section 3.3.3). Default value: TRUE.

28

3.3. IMPLEMENTATION 29

• INCLUDING FLUSHING IN RUNTIMES: Flag that sets whether the flushing call should
be included in the timing measurements or not (see Section 3.3.3). TRUE includes
flushing time. Default value: TRUE.

• EDIT GEN REMOVE OWL THING: Whether OWLThing is taken into consideration when
generating edits. It is recommended not to use OWLThing, as this could lead to a
corrupt ontology (see Section 3.3.6). Default value: TRUE.

• CHANGE OPERATION SUB GRAPH MAX DIFFERENCE OUTERMOST LEVEL: When generat-
ing a Change Operation of type “subgraph”, how high the difference in level of the
candidate node inside the graph to the outermost leaf is allowed to be (see Section
3.3.6). 0 = all nodes allowed. Minimum level = 2. Default value: 2.

• CHANGE OPERATION MOVE MAX DIFFERENCE OUTERMOST LEVEL: When generating a
Change Operation of type “move”, how high the difference in level of the candidate
node inside the graph to the outermost leaf is allowed to be (see Section 3.3.6). 0
= all nodes allowed, minimum level = 1 (will just move leaves). Default value: 2.

• CHANGE OPERATION MOVE MAX LEVEL UP: When generating a Change Operation of
type “move”, how high the algorithm is allowed to push the the node from its
previous location (see Section 3.3.6). Minimum level = 2. Default value: 2.

Throughout the framework exist different distributions required to get real-life distri-
butions of both CQs and edits. The distributions are located in the competencyquestion
and edit packages. All of them are to be accessed statically, therefore they can be set
before a benchmark run and will keep their individual values.

The CompetencyQuestionProbabilityDistribution is responsible for a real-life CQ
distribution. By setting one of its [...]Amount variables to another value than default,
the whole distribution will shift according to the newly fitted value. Default values used
are listed in Section 2.2.

The ChangeOperationProbabilityDistribution is used for a real-life Change Op-
eration distribution. Similar to the distribution above, by changing one of its public
fields to another value, the complete distribution will shift accordingly. Default values
used are listed in Section 3.1.3.

The EditSizeDistribution is extended by a FixedEditSizeDistribution as well
as a ExponentialEditSizeDistribution. They are both used to set the amount of
Change Operations in one edit. If the FixedEditSizeDistribution is used, an edit
will always have a fixed amount of Change Operations. The ExponentialEditSize-

Distribution on the other hand assignes low values more frequently than higher ones,
with a definable upper bound as well as an alpha value that defines the steepness of the
curve.

29

30 CHAPTER 3. REASONBENCH++

Figure 3.4: Contents of the BenchmarkInfo output.

30

3.3. IMPLEMENTATION 31

3.3.2 Output

After a benchmark run, BenchmarkManager will return an instance of BenchmarkInfo,
which includes all data of said benchmark run. Figure 3.4 shows the contents of the
BenchmarkInfo instance.

CompetencyQuestionSet (see Section 3.3.4) contains all data of the generated CQs.
The single CQs contain links to their respective AT results. EditInfoSet (see Section
3.3.6) includes all data of the generated edits. The edits themselves are linked to their
representative GraphNode in a generated graph of the ontology. All classes mentioned
above are serializable and can therefore be exported as a whole. In addition, the package
export contains methods to export all of this data into .csv files.

3.3.3 Benchmark Package

The benchmark package contains the logic required to run a benchmark. It consists out of
the BenchmarkManager class, the BenchmarkOptions class as well as the BenchmarkInfo
data container class. All data required for a n-benchmark is fed into BenchmarkManager

from class Main via the mentioned data container. If only a single run of the benchmark
is required, BenchmarkManager also offers a constructor that allows the input of all data
as single parameters.

There exist three major methods to call. In method benchmarkN(), Benchmark-

Manager first creates an instance of CompetencyQuestionManager to generate the CQs
for this benchmark. In addition, the edits are generated by EditManager. Both the
edits and CQs are then used for the benchmark runs. The method executes the private
method benchmark() n times, with n as specified in one of its parameters.

The public method benchmark() on the other hand is to be used for a single benchmark
run only. Therefore, the edits as well as the CQs have to be provided separately.

Finally, method runBenchmarkAtEditPosition() will run a benchmark where only
one specific edit-version of the ontology will be used. This allows for comparing measure-
ments of a normal benchmark with changes after every round and measurements taken
at specific edit-versions of the ontology where in-between runs no changes are applied to
the ontology.

Figure 3.5 shows the dependencies of class BenchmarkManager to the other available
classes.

BenchmarkInfo, used for storing all settings and results for any benchmark, includes
additional logic that allows retrieval of specific data that was generated during some
benchmark run. In addition, it also contains methods to retrieve ontology and rea-
soner instances. The packages ontology and reasoner do the general handling of these
parameters. As it is a requirement, all data from any benchmark-run is exportable (=
serializable) (see Section 3.2) and is condensed inside BenchmarkInfo. Some components
of OWL API are not serializable, therefore reasoners and ontologies are not serialized
in their current instance, but instead as enums that represent them. The many fields
of BenchmarkInfo are listed in Section 3.3.1, some of which are used in the benchmark

package, while others are handed over to the other packages. BenchmarkInfo offers a

31

32 CHAPTER 3. REASONBENCH++

copy-constructor that allows copying all settings of a previous benchmark iteration -
without their respective results. Finally, the class BenchmarkOptions provides general
settings that are described in Section 3.3.1. BenchmarkOptions is static and therefore
accessible from everywhere. Settings are applied immediately and globally. Changing
settings during a benchmark run is possible but not recommended.

Figure 3.5: Class Diagram of BenchmarkManager and its surrounding classes.

Input-parameters directly influencing the benchmark package are:

• USE BUFFERED REASONER: Whether the tested reasoner created should run in
buffered- or non-buffered mode. A reasoner running in buffered mode is allowed
to cache changes applied to the ontology before applying them. Compared to a
standard setting, where a change is applied and executed immediately, it can be
expected that the buffered reasoner will suffer less concerning response times, but
could - depending on the exact implementation of the buffer - return wrong results
to an user until the method flush() is called that forces the reasoner to apply the
changes. Default value: TRUE.

• SHUFFLE REASONERS DURING BENCHMARK: Flag that sets whether the benchmarked
reasoners should be shuffled after every run in their benchmark execution order or
not. This function is used to prevent a potential speed up of the reasoners - or
that some reasoner could have an advantage over another due to their execution
order. Default value: TRUE.

• INCLUDING FLUSHING IN RUNTIMES: Flag that sets whether the flushing call should
be included in the timing measurements or not. The method is then called either
before the timer is started or after. TRUE includes flushing time. Default value:
TRUE.

32

3.3. IMPLEMENTATION 33

• n: The number of consecutive benchmark runs (iterations). If four reasoners are
provided, every of the four reasoners has to pass the benchmark run n times. The
higher n, the more robust the results are going to be.

• ontologyPath: The local file path or URL to load the ontology. RB++ is capable
to detect whether the input is an URL or a path to local storage.

3.3.4 Competency Question Package

The competencyquestion package contains its main logic in CompetencyQuestion-

Manager, the implementation of the CQ Archetypes, as described in the Problem Anal-
ysis (see Table 3.2), the CQ-Generator CompetencyQuestionGenerator and a class to
define the distribution of the CQs, CompetencyQuestionProbabilityDistribution.
An overview of the contents are displayed in Figure 3.6.

The manager class only contains one method to call, being generateRandom-

CompetencyQuestions(). After the generation of the CQs, no more work on them
is required. ATs are run from the package authoringtest.

The logic contained in this package is called from class BenachmarkManager. The CQs
are reused in every benchmark run, once for every reasoner. There are usually many more
CQs generated than required, therefore CompetencyQuestionManager selects - based on
the class CompetencyQuestionProbabilityDistribution, as many CQs as required.

The CQ Archetypes inherit from their base class CompetencyQuestionArchetype, and
contain additional fields for all their parameters, as well as the method runAuthoring-

Tests() that executes all ATs defined in the mapping in Table 3.2.
The distribution of CQ Archetypes is realized in class CompetencyQuestion-

ProbabilityDistribution. It is based on Table 2.3 and is used by the generators
to return a real-life arrangement of CQs. The distribution is static and allows immedi-
ate changes and automatically adjusts the proportions of all archetypes if one of them
is changed - for example in the case that not enough CQs were generated of a certain
Archetype.

The CQ generators are extending class CompetencyQuestionGenerator. There exist
two versions:

• RandomCompetencyQuestionGenerator: All entities available in the signature of
the ontology are iterated over and mapped against each other. This results in
many unauthentic CQs, and most of their ATs are not satisfiable.

• ExpectedTrueCompetencyQuestionGenerator: For every entity, one iterates over
all entities in its signature. An exact explanation of its inner workings can be
found below. This way, only related entities are matched with each other. The
resulting ATs of the CQs are a lot more reasonable and are satisfiable in about
50% of the cases. It is used as default, as it returns the better results of the two.

To be more specific, the different CQs require different approaches to generate fitting
parameter sets. The Archetypes and their approaches in the more elaborate version,
ExpectedTrueCompetencyQuestionGenerator, are listed below.

33

34 CHAPTER 3. REASONBENCH++

Figure 3.6: Class Diagram of CompetencyQuestionManager and its surrounding classes.

• Archetypes 1, 2, 5, 11 and 12 containing an Object Property or Data Property
Relation can be queried for their respective domain and range. From the returned
classes, all subclasses can be matched against each other to get parameter pairs.
For Archetype 1: If domains and ranges are not used by the authors (which would
return an empty set for every possible parameter set), a fall-back method is imple-
mented that uses subsumption (a subclass of a class) to determine object property
relations.

34

3.3. IMPLEMENTATION 35

• Archetype 4 is referring to subsumption as well. Therefore, for every class, the
ontology is queried for all of its subclasses. The returned set and the class in the
query form one parameter set.

• For Archetypes concerned with cardinalities, such as 11 and 12, the ontology is
additionally queried for existing axioms defining some cardinality restrictions.

• For Archetypes 3 and 8, which both are concerned with individuals, the ontology
is queried for instances fulfilling the given parameter set.

The input-parameters directly influencing this package are:

• CQ GEN TYPE: Which of the above CQ-generators should be used for the CQ-gen-
eration. There exist two options: RandomCompetencyQuestionGenerator and
ExpectedTrueCompetencyQuestionGenerator. Default value: EXPECTED TRUE.

• CQ GEN REMOVE OWL THING: When generating CQs, OWLThing is also taken into con-
sideration. By setting this flag to false, OWLThing is not allowed for any generated
question. Default value: TRUE.

• CQ GEN ONLY SELECT SATISFIABLE CQS: Whether the generator is allowed to select
CQs that have unsatisfiable ATs. If set to TRUE, the ATs of the generated CQs are
executed before selecting among all CQs. Default value: TRUE.

• reasonerForCQGen: The reasoner that is used to generate the CQs. This should
be the most stable of all reasoners, as the result of this CQ-Generation will be used
as baseline dataset for all other benchmark runs.

• cqGenAmount: The amount of CQs that should be generated (= “selected”). Dur-
ing generation, all possible combinations of entities among each other are elabo-
rated. The generator then randomly selects CQs, based on the given distribution
of the CQ Archetypes.

3.3.5 Authoring Test Package

The authoringtest package includes logic for execution of ATs and is used in con-
junction with package competencyquestion. The implementation of all ATs (see Table
2.4 and 3.2) can be found in class AuthoringTest. To test these ATs, there exists a
test class called AuthoringTestDynamic in the “Test” subdirectory of the project using
junit-tests. As every CQ comprises multiple ATs, the results of these tests is stored in
the container class AuthoringTestInfo. This container is used in conjunction with ev-
ery type of CQ, therefore it contains information on whether a certain AT was applicable
for this CQ, if the test was executed successfully and the result of the test. The results
of all CQs tested is aggregated inside the container class AuthoringTestSet.

35

36 CHAPTER 3. REASONBENCH++

Figure 3.7: Class Diagram of AuthoringTestManager and its surrounding classes.

Every instance of CompetencyQuestionArchetype has knowledge of its applicable ATs
and will call them itself if required. That way, from the generated CQs that are returned

36

3.3. IMPLEMENTATION 37

by CompetencyQuestionManager, the ATs of every CQ can be called. AuthoringTest-
Manager will return a map of reasoners to AuthoringTestInfoSet, in which the results
of the run ATs are stored.

Figure 3.7 depicts all dependencies among AuthoringTestManager and its surround-
ing classes. It contains the class CompetencyQuestionArchetype01 as place-holder for
all other Archetypes.

The AuthoringTestInfo class, used as data container, comprises fields for applica-
bility of a specific AT, whether this AT has failed and a result column. All of these
fields are booleans. Whether a test is applicable or not is only defined as soon as ATs
are run - the instance of CompetencyQuestionArchetype will set the applicability of
all tests. This allows us to have a more narrow implementation of the authoringtest

package. It additionally contains convenience methods, such as isSatisfiable() or
failedTestCount() that both evaluate their own results.

The authoringtest package is only influenced by one input-parameter:

• TEST SELECTED COMPETENCY QUESTIONS ONLY: This flag sets whether every time
ATs should be run for all created CQs or only the ones selected to be used for the
benchmark run. If set to FALSE, a big rise in computing time can be expected.
Default value: TRUE.

3.3.6 Edit Package

The edit package includes all logic required to generate edits based on any given on-
tology. Its main components are the EditManager class that contains most logic, the
EditInfo and EditInfoSet data containers that persist all generated edits, the change-
operation subpackage that consists of all implementations of the different Change Op-
erations, the graph subpackage that incorporates a node-based representation of an
ontolgoy, as well as two distributions, the ChangeOperationProbabilityDistribution

and the EditSizeProbabilityDistribution. It is based on Ontology Evolution Map-
ping, as discussed in Sections 2.4 and 3.1.3.

EditManager provides methods to generate new edits (generateOntologyEdits(),
using ChangeOperationEditGenerator), and multiple methods to iterate over these
edits. One edit is defined as m Change Operations, where m is set by the EditSize-

ProbabilityDistribution. As the edits cannot be applied in any order but must be
used in the exact order they were generated in, this manager class also provides methods
to iterate over the edits. There exists a “forward-” and “backward”-mode, representing
the direction the edits are iterated over. “Forward”-mode serves as the natural way edits
would be applied to an ontology, for example by an ontology author. In the most extreme
case, before applying the first edit, the ontology would be empty. After applying the
last edit, the ontologies contents would be equal to its original state. “Backward”-mode
is used to generate the edits, as well as to reset the ontology to its starting state as
preparation for the next benchmark iteration.

As [Hartung et al., 2013] rely on graphs to detect their edits, there exists the subpack-
age graph that contains logic to generate a partial graph representation of any ontology.

37

38 CHAPTER 3. REASONBENCH++

GraphGenerator contains the logic to generate such a graph, and every class of an on-
tology exists as an instance of GraphNode. Nodes contain many additional properties,
such as information on being a leaf, being an inner node, the children and parents of
this node, level information and many more. Most data is not persisted but calculated if
needed. These properties are used during the generation of any edit. Representing data-
and object property relations among the nodes as well as complex class expressions is in
the current implementation not possible.

Figure 3.8: Class Diagram of EditManager and its surrounding classes.

During the generation of edits, ChangeOperationEditGenerator traverses the graph,
looking for possible candidates for an edit. Among all candidates, a random instance
is chosen. The Change Operation is then applied to that candidate, and the graph as
well as the ontology are updated. Axioms residing in the ontology that are no longer
required are persisted and stored in the ChangeOperation instance, such that they can
be recalled.

The ChangeOperationProbabilityDistribution is based on Table 3.3 and returns

38

3.4. BENCHMARKING PROCESS 39

a set of Change Operations mimicking said distribution. If a certain Change Operation
cannot be applied, i.e. due to lacking candidates, the distribution is queried again until
a fitting Change Operation is found. The EditSizeProbabilityDistribution defines
the amount of Change Operations included into an edit. It uses a negatively skewed
exponential function, returning many small edit amounts but few big edits.

The data container classes EditInfo and EditInfoSet are returned by EditManager

and contain all information on the generated edits. An instance of EditInfo is a set of
Change Operations to be applied, while EditInfoSet contains all instances of EditInfo.
The Change Operations included are always linked to the generated graph.

The following parameters directly influence this package:

• CHANGE OPERATION SUB GRAPH MAX DIFFERENCE OUTERMOST LEVEL: When generat-
ing a Change Operation of type “subgraph”, how high the difference in level of
the candidate node inside the graph to the outermost leaf is allowed to be. 0 = all
nodes allowed. Minimum level = 2. Default value: 2.

• CHANGE OPERATION MOVE MAX DIFFERENCE OUTERMOST LEVEL: When generating a
Change Operation of type “move”, how high the difference in level of the candidate
node inside the graph to the outermost leaf is allowed to be. 0 = all nodes allowed,
minimum level = 1 (will just move leaves). Default value: 2.

• CHANGE OPERATION MOVE MAX LEVEL UP: When generating a Change Operation of
type “move”, how far up the algorithm is allowed to push the the node from its
previous location. Minimum level = 2. Default value: 2.

• editAmount: Sets the amount of edits that should be generated.

3.4 Benchmarking Process

The final implementation incorporates the following benchmarking process (see Figure
3.3):

1. The ontology is loaded. Required resources are allocated, being the
CompetencyQuestionManager, the OntologyEditManager and the Authoring-

TestManager.

2. The n CQs are generated. If required, the CQs have to pass their respective ATs.
These results are used as baseline answers to compare the results of the reasoners.

3. Among all generated CQs, a specified amount is “selected” to be used in every
benchmark run.

4. The m ontology edits are generated.

5. The reasoner instances are disposed and a new set of reasoners is loaded.

39

40 CHAPTER 3. REASONBENCH++

6. Repeated k times, the benchmarks are executed. Every benchmark consists of m+1
rounds, where m are the ontology edits and +1 is the ontology in its ”empty” state.
Before every round - in case the reasoners are using buffering - the buffer is flushed
(selectibly this time is included in the time measurements or not). The edits are all
applied to the ontology, yielding version t0−m, where t0 is the ontologies original
state. The reasoners individually run through all rounds of the benchmark after
each other. After every benchmark iteration, the baseline results gathered during
CQ generation are compared to the state of round m and differences are printed to
the console. In addition, all reasoners are disposed and the Java Virtual Machine
is tasked to run garbage collection.

a) Round 1: The ontology is at state t0 − m. In the first round, no edits get
applied. The reasoner gets tasked to answer all ATs of the given CQs. This
round is used as second baseline measurement. The measurements are stored.

b) Round 2: The first edit is applied, we are at state t0− (m+ 1). The reasoner
is again tasked to answer all ATs of the given CQs. The measurements are
stored.

c) Round m − 1: The second-to-last edit is applied, we are at state t0 − (m +
(m − 1)). The reasoner is again tasked to answer all ATs of the given CQs.
The measurements are stored.

d) Round m: The last edit is applied, we are now at state t0. The reasoner is
tasked one last time to answer all ATs of the given CQs. The measurements
are stored.

7. Finally, the statistics package is used to display general metrics as means and
standard deviation over the multiple iterations of the m rounds.

40

4

Results

This chapter discusses the results of the benchmarks of the multiple reasoners on dif-
ferent ontologies and parameter sets. It is split into the following sections: Section 4.1
contains information on the infrastructure, methodology, data and limitations of specific
reasoners. Section 4.2 depicts the results of multiple benchmark runs.

4.1 Methodology and Infrastructure

This section discusses the setup of the benchmarks, the infrastructure used as well as
different limitations of the reasoners. Section 4.1.1 presents the different hardware se-
tups to run the benchmarks. Section 4.1.2 features the different ways RB++ can be
parametrized to run a tailored benchmark. Section 4.1.3 depicts the different ontolo-
gies used for the benchmarks. Finally, Section 4.1.4 discusses limitations of some of the
reasoners used and explains adjustments to the workflow required to circumvent these
limitations.

4.1.1 Hardware

The benchmark is mostly CPU-frequency limited. Therefore, a high CPU clock speed
accelerates the execution of the benchmark. All machines run Java 8 or higher, RB++
is started from the command line. System memory is no limiting factor (especially with
state of the art machines), although RB++ requires a minimum of 4GB of RAM for
JVM. Therefore the -Xmx4g flag is used at startup, as RB++ could run out of heap
space if the amount of benchmark iterations is greater than approximately 45.

The benchmarks were run on two machines, depending on the workload and size of
the used ontologies. The first machine, used for small ontologies, is a Macbook Air,
2015, with 8GB of RAM and an Intel Core i5 5250U CPU with 1.60GHz (boost up to
2.70GHz). The second machine is a Lenovo Yoga 2017 notebook with 16GB of RAM,
an Intel Core i7 7600U CPU with 2.8GHz (with boost up to 3.9GHz) and was used for
the bigger ontologies.

42 CHAPTER 4. RESULTS

4.1.2 Configurations of RB++

The framework can be built with the command mvn install and is then packaged into
a .jar file. The dependencies required are automatically packaged into the archive
([...]-with-dependencies.jar). RB++ can be run with the command depicted in
Listing A.1 for a standard benchmark run and Listing A.2 for a benchmark of a certain
edit-version.

Some input parameters, with an in-depth explanation of them in Section 3.3.1, can be
set directly from the command-line. Others not listed here require adjustments in the
code itself. Parameters accessible from the command-line include the following:

1. arg1: Path to the ontology file on the host computer.

2. arg2: Path to the output folder where RB++ will store the data generated
throughout the benchmark.

3. arg3: Seed that is used for all activities requiring randomness.

4. arg4: Number of CQs to generate.

5. arg5: Number of edits to generate.

6. arg6: Number of iterations of the benchmark that should be executed.

7. arg7: Whether buffered reasoners should be used or not. TRUE results in the usage
of buffered reasoners.

8. arg8: Whether flushing time of the reasoners should be included in the timings or
not. TRUE includes the flushing time. This argument is only used if arg7 is set to
TRUE.

9. arg9: Whether complete benchmark runs should be executed, or the benchmark
should be only run at a certain versioning-point (with a specific amount of edits
applied). Possible answers: [runStandardBenchmark, runBenchmarkAtPosition]

10. arg10*: Optional, only required if arg9 is set to runBenchmarkAtPosition: Sets
the edit position of the ontology.

The runStandardBenchmark flag starts a complete benchmark run, as specified in
Section 3.4. During these runs, whether buffering is enabled, whether the changes are
flushed and whether reinitialization is active all have direct influence on the result.
Additionally, the results of the benchmarks vary if flushing is included into the runtimes
or not.

The runBenchmarkAtPosition flag runs the benchmark at a chosen version of the
ontology (with some specified amount of edits applied). As no changes are applied
between the runs, flushing and buffering both have no influence. This flag helps to
verify results of reasoners of a standard benchmark run.

42

4.1. METHODOLOGY AND INFRASTRUCTURE 43

4.1.3 Ontologies

The ontologies used in the benchmarks and during development are the following:

• Pizza Ontology: The pizza ontology pizza.owl.xml1 was developed by the
Universities of Manchester and Standford and is mainly used for tutorials and as
example. It is however employing most concepts that are available in OWL 2
EL and was used for the development as well as testing of RB++. It contains
subsumption, data- and object property relations and features few cardinalities.
It is rather small (∼160KB)

• Gene Ontology: The gene ontology gene ontology edit 2010-02-01.obo2 by
[Harris et al., 2008] features a computational model of biological systems. It is
available in older versions, which is why is was used to generate the Change Op-
eration Distribution in Section 3.1.3. We are using a rather old version for the
benchmarks. It features subsumptions and object property relations and is com-
parably large (∼17MB).

• Univ-Bench: The Univ-Bench ontology univ-bench.owl.xml3 was developed by
the Lehigh University for the LUBM benchmark (Lehigh University Benchmark)
[Guo et al., 2005]. It contains subsumptions and object property relations. It is
very small (∼14KB)

Using these ontologies, the reasoners (as listed in Section 3.2.2) have to answer all
ATs entailed by the generated CQs as quickly as possible, following the benchmarking
process as described in Section 3.4. The benchmarks are usually executed 50 times or
more to ensure consistent results (if not noted differently).

4.1.4 Limitations and Unexpected Behaviour of Reasoners

During development and the final benchmark runs, some shortcomings of the tested
reasoners were detected. The reasoners Hermit and Pellet have no difficulties managing
all ontologies and parameter setups (with a few exceptions stated below).

First, ELK lacks the implementation of some OWL-API methods, such as getObject-
PropertyRanges(). It therefore fails all “Range” ATs, as this method is required in that
call.

Second, JFact can crash for some setup of ontology, seed and parameters. Table 4.1
shows the setup of the benchmark to break the reasoner. The gathered data suggests
that enabling or disabling CQ Archetype 4 has direct influence on the behaviour of
JFact. When CQ Archetype 4 is enabled, JFact throws errors during the benchmark
iterations. The errors of JFact only appear in the first few rounds of every iteration of
the benchmark (see Table A.2). It has to be mentioned that unproblematic seeds and
ontologies do exist, where this behaviour of JFact cannot be observed. In addition, JFact

1cf. https://protege.stanford.edu/ontologies/pizza/pizza.owl
2cf. http://www.geneontology.org/
3cf. http://swat.cse.lehigh.edu/projects/lubm/

43

44 CHAPTER 4. RESULTS

Table 4.1: Setup of RB++ used to review error sources of reasoners ELK and JFact.
Ontology: Pizza Ontology. Seed: 1234567

Buffering enabled CQ Archetype 4 enabled Result JFact

Yes No Freezes

No No Freezes

Yes Yes Throws Errors

No Yes Throws Errors

sometimes freezes when buffering is disabled. We did not find a reason for this, however
the error messages are connected to NullpointerExceptions from within the reasoners
package. The reasoner usually freezes at code locations where it should answer ATs
for a specific CQ, and this CQ is usually concerned with in the ontology higher leveled
entities.

With these flaws in mind, the parameters of the following benchmarks are set such that
these errors do not occur. The adaptations are always mentioned in their corresponding
sections. The above stated conditions of JFact, as well as the failing Range ATs of ELK,
are in the following subsections accepted as “Expected behaviour” of the reasoners. The
expected behaviour of Hermit and Pellet and is errorless.

Third, when running benchmarks, it occurred that the reasoners would speed up over
the duration of the benchmark - for the exactly same tasks. In an attempt to counteract
this behaviour, we took the following counter-measures:

• Reasoner-Rotation: RB++ rotates the execution order of the reasoners at every
new round of the benchmark.

• Reinitialization: RB++ disposes the reasoners and sets their variables to NULL

before every benchmark iteration.

• Garbage Collector: RB++ calls the garbage collector after every reinitialization
to ensure that the reasoners as disposed.

• Flushing: If one or many Change Operation(s) have been applied and buffering
is enabled, RB++ forces the reasoner to flush this change before answering the
Authoring Tests (and therefore it has to empty its buffer).

Figure 4.1 shows the results of running the runBenchmarkAtEditPosition benchmark
with the “univ-bench” ontology, seed 1234567 for 400 iterations using reasoner Hermit.
During the first 150 iterations, Hermit continuously speeds up in answering the same
ATs over and over again. After these 150 iterations, the runtime stabilizes.

The differently coloured lines plotted display two parameters of the reasoner: the usage
of buffering and re-initialization of a reasoner before a new run. The garbage collector
and flushing (if applicable, only required if the reasoner is set to mode buffering) are
always active.

44

4.2. BENCHMARK RESULTS 45

0 100 200 300 400

0
20

40
60

80
10

0
12

0

Iteration Number

R
un

tim
e[

m
s]

Buffering, Reinitialization
Buffering, No Reinitialization
No Buffering, Reinitialization
No Buffering, No Reinitialization

Figure 4.1: Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: Hermit

The figure shows that re-initialization does effectively slow down the reasoners a little
bit. However, over time and in general, the reasoners still speed up to the same speed as
if they were not reinitialized, meaning that the reasoner cannot be effectively reset. This
can be observed for all reasoners used in the benchmark (see Section A.2.1 for Figures
of the same test of the other reasoners).

Re-initialization therefore is assumed to be having no influence onto runtimes after
a certain point in any benchmark. Accordingly, the measurements taken at specific
edit-versions of the ontology have their first 150 observations removed to ensure a fair
comparison between benchmark data and verification data.

4.2 Benchmark Results

In this section, the results of the benchmarks are discussed. In a first endeavour, we
execute a benchmark without any re-materialization times such that we are able to
compare these results with point measurements at specific edit-versions of the ontology.
This allows us to verify that the results RB++ produces are meaningful. In a second
step, the benchmarking-measurements include the actual rebuild times. The difference
between results with and without flushing show the actual time the reasoners require
to re-materialize. Steps one and two are discussed in Section 4.2.1. In a third step, the
consistency of the reasoners is analysed. One reasoner should return the same answer

45

46 CHAPTER 4. RESULTS

concerning the satisfiability of a CQ as any other. Further, the RB++ environment is
analysed to guarantee equivalent test conditions for all reasoners. Finally, the above
results are compared to results of the benchmark runs involving the “gene ontology”
(see Section 4.2.3).

4.2.1 Verification of Runtime Results

The first benchmark considers all four reasoners: Pellet, Hermit, ELK and JFact. The
univ-bench ontology was used, and the benchmark was run on the Macbook Air machine
(see hardware specifications in Section 4.1). Table 4.2 depicts the parametrization of this
benchmark. Competency Question Archetype 4 is disabled, see reasons in Section 4.1.4.
The goal of this benchmark is to compare runtimes of reasoners in a normal benchmark
situation, as well as runtimes taken at specific edit-versions repeatedly to show that the
measurements of RB++ are meaningful. The two benchmarks, the standard benchmark
and the one at specific versions of the ontology should be congruent.

Table 4.2: Setup of univ-bench benchmark for all reasoners.

Paramter Value

Benchmarked reasoners Hermit, Pellet, JFact, ELK

Baseline reasoner Pellet

Seed 1234567

Number of CQs to generate 100

Number of edits to generate 100

Number of benchmark iterations 50

Use buffered reasoner TRUE

Include flushing time TRUE

Table 4.3: Generated Change Operations for univ-bench benchmark.

Kind Amount

AddLeaf 28

Move 20

AddSubGraph 3

AddInner 2

Merge 1

Total 54

The benchmark created 44 distinctive edits, with one additional edit being the empty
ontology (with all classes removed). The 44 edits contained a total of 54 Change Op-
erations. Table 4.3 shows the amount of types of Change Operations. The chosen
distribution of Change Operations by RB++ tries to approximate the distribution of

46

4.2. BENCHMARK RESULTS 47

Change Operations in the gene ontology (see Section 3.3). Comparing both distributions
shows that there are many differences, mainly caused by the small size of the ontology,
as there are not enough candidates for all types of Change Operations available. For
example, AddLeaf is always applicable whereas for all other Change Operations some
conditions need to be given (see Section 3.3.6).

The distribution of CQ Archetypes is depicted in Table 4.4. The univ-bench ontology
does not contain any cardinality restrictions, therefore no CQs of Archetype 5, 11 and
12 can be generated. CQ Archetype 3 requires individuals which were not given, and
Archetype 4 was disabled. The distribution of the CQ Archetypes is an approximation
of the distribution found by [Ren et al., 2014], see Section 2.2.

Table 4.4: Generated CQ Archetypes for univ-bench benchmark.

Kind Amount

Archetype 1 70

Archetype 2 4

Archetype 8 26

Total 100

Based on Table 4.4, the amount of AT’s that every reasoner has to answer in every
iteration of the benchmark is depicted in Table 4.5. As mentioned in Section 4.1.4, ELK
is unable to answer any ATs of type Range.

Table 4.5: Amount of ATs to answer per reasoner per iteration in the univ-bench
benchmark.

Kind Amount

Occurrence 100

Class Satisfiability 100

Relation Satisfiability 74

Range 70

Total 344

Figure 4.2 depicts the results of this RB++ benchmark. While ELK failed all Range
ATs (70) in every iteration of the benchmark, JFacT had some issues for all kinds of
ATs. The other reasoners had no problem in executing all ATs. The results of ELK
and JFacT therefore have to be treated with caution. An evaluation of the failed ATs
per iteration can be found in Tables A.1 and A.2. Figure 4.2 has two scales, being the
runtime (y1, to the left) and the amount of axioms changed per edit (y2, to the right).
The amount of axioms changed represents the amount of work the reasoner has to process
before answering the ATs. The processing of the changes is not included in the time
measurements. A round of the benchmark (x-axis) equals the time the reasoner uses
to answer all ATs for this edit-version of the ontology. An iteration of the benchmark

47

48 CHAPTER 4. RESULTS

includes all rounds below, the runtimes displayed are the mean for that round over all
iterations of the benchmark.

0
5

10
15

20

C
ha

ng
ed

 A
xi

om
 C

ou
nt

0 10 20 30 40

0
20

40
60

80
10

0

Round Number

R
un

tim
e[

m
s]

● ● ●

● ●

●

● ● ● ● ● ●● ● ● ● ●

●

●
●

● ● ● ●

Hermit No Flush
Pellet No Flush
JFACT No Flush
ELK No Flush
AxiomCount

Figure 4.2: Results RB++ benchmark with ontology univ-bench, 45 edits and 100 CQs.
Dots: Repeated measurements at one edit version of the ontology. Coloured
lines: RB++ standard benchmark. Grey lines: Amount of axioms added /
removed from the ontology for this edit-version. Measurements equal rea-
soning time without flushing.

At round 1, the ontology is empty. It can be assumed that the workload to answer
all ATs must be the smallest, as the reasoner has the fewest axioms to check the stated
queries against. The results reflect this assumption: Generally, the more the time re-
quired to process the ATs rises, the more content is present in the ontology. The amount
of axioms that are added or removed from the ontology also have influence on the run-
times, best visible in reasoners Hermit, Pellet and JFact, where Pellet has some outliers
that do not reflect the amount of changes. The Reasoner ELK behaves unexpectedly,
its runtimes appear to be linear throughout the benchmark. The quickest reasoner is
Pellet, followed by JFact and Hermit. ELK is by distance the slowest of the bunch.

The slowness of ELK could be explained by its faulty ATs, where the reasoner throws
an error every time it cannot answer a specific AT. We do not know what ELK does
internally to recover from that situation, but most possibly the thrown errors lead to
extra work it has to go through before answering the next AT. This however does not
match the observations on JFact, which also failed some tests but kept performing pretty
well.

The plotted points in the figure represent runs where the reasoner did not have to

48

4.2. BENCHMARK RESULTS 49

apply incremental changes to its materialization. What we can see is that these times
tend to be lower, drifting slightly apart throughout one iteration of the benchmark, for
Hermit at least. For ELK the tend do be a little higher. The coinciding benchmark
measurement and point measurements speak for our approach - we are able to see that
the actual difference is rather small and follows the standard benchmark runtimes.

0
5

10
15

20

C
ha

ng
ed

 A
xi

om
 C

ou
nt

0 10 20 30 40

0
20

40
60

80
10

0

Round Number

R
un

tim
e[

m
s]

Hermit No Flush
Pellet No Flush
JFACT No Flush
ELK No Flush
Hermit With Flush
Pellet With Flush
JFACT With Flush
ELK With Flush
AxiomCount

Figure 4.3: Results RB++ benchmark with ontology univ-bench, 45 edits and 100 CQs.
Dots: Repeated measurements at one edit version of the ontology. Coloured
lines: RB++ standard benchmark. Grey lines: Amount of axioms added /
removed from the ontology for this edit-version. Measurements equal both
reasoning time without flushing / with flushing.

In a next step, the same benchmark is repeated, but the flushing of the reasoner is
included in the measurements. The other parameters of the benchmark stay the same.
The results are displayed in Figures 4.3 and 4.4. The former displays the results of
the previous benchmark, as well as the results of the second benchmark. The difference
between the lines of the same colour families represent the time required to re-materialize
the ontology after an edit has been applied.

We can observe that the flushing time of Pellet and JFact is low, while Hermit and
ELK require a significant amount of time to process the changes. The absolute difference
is depicted in the Figure 4.4. Again, reasoners Hermit and ELK require more time to
flush the changes. Based on the amount of axioms changed, there is no clear tendency
towards higher flushing time when more axioms are changed in the ontology.

49

50 CHAPTER 4. RESULTS

0
5

10
15

20

C
ha

ng
ed

 A
xi

om
 C

ou
nt

0 10 20 30 40

0
5

10
15

20

Round Number

R
un

tim
e[

m
s]

Hermit Flushing Time
Pellet Flushing Time
JFACT Flushing Time
ELK Flushing Time
AxiomCount

Figure 4.4: Differences between runtimes in 4.3 with flush / without flush on ontology
univ-bench, 45 edits and 100 CQs. Coloured lines: RB++ Standard Bench-
marks. Grey lines: Amount of Axioms added / removed from the ontology
for this edit-version.

4.2.2 Verification of Reasoner Consistency

Additional to the verification of runtimes, it is also necessary to check the consistency
of the reasoners throughout the benchmark as well as the environment they are used
in. To perform the checks below, we use the results of the previous section. There are
multiple aspects to take into account:

• Assessment that the reasoners are all used in a fair, equal environment for the
tasks they have to process.

• Assessment that the results of the reasoners among each other are equal or fit the
results being expected by their expressivity.

• Assessment that the results of one reasoner compared over multiple iterations are
the same.

The environment consists of the tasks, the data and the changes applied to that data.
The tasks (CQs) are copied from iteration to iteration and therefore are never subject
to any change. This is the same for the changes that are applied between the ontologies.
To check the consistency of the data, the ontology was exported from the benchmark
after every round and for every reasoner. A comparison of ontologies for the different

50

4.2. BENCHMARK RESULTS 51

reasoners of the same rounds showed that there were no differences among them. This
also verifies the check above on the equality of changes for all reasoners - if the changes
would be different between the reasoners, the ontologies exported would show differences.
We can therefore attest that the environment is the same for all reasoners.

Table 4.6: Comparison of answers to ATs between Hermit and Pellet. (Occ. = Occur-
rence Test, Cls. Sat. = fiability Test, Rel. Sat. = Relation Satisfiability Test,
Rg. = Range, Sat. = Satisfiability)

It# Rd# Reasoner Ar# Natural Language Text Occ. Cls.
Sat.

Rel.
Sat.

Rg. Sat.

2 20 Hermit 1 Which SystemsStaff worksFor Pro-
gram?

FALSE TRUE TRUE TRUE FALSE

1 20 Pellet 1 Which SystemsStaff worksFor Pro-
gram?

FALSE FALSE FALSE FALSE FALSE

2 20 Hermit 1 Which Professor headOf Department? FALSE TRUE TRUE TRUE FALSE

1 20 Pellet 1 Which Professor headOf Department? FALSE FALSE FALSE FALSE FALSE

2 20 Hermit 8 Which are University? FALSE TRUE FALSE FALSE FALSE

1 20 Pellet 8 Which are University? FALSE FALSE FALSE FALSE FALSE

2 20 Hermit 1 Which Professor headOf University? FALSE TRUE TRUE TRUE FALSE

1 20 Pellet 1 Which Professor headOf University? FALSE FALSE FALSE FALSE FALSE

2 20 Hermit 1 Which FullProfessor memberOf Uni-
versity?

FALSE TRUE TRUE TRUE FALSE

1 20 Pellet 1 Which FullProfessor memberOf Uni-
versity?

FALSE FALSE FALSE FALSE FALSE

2 20 Hermit 1 Which Department member Under-
graduateStudent?

FALSE TRUE TRUE TRUE FALSE

1 20 Pellet 1 Which Department member Under-
graduateStudent?

FALSE FALSE FALSE TRUE FALSE

To verify that the reasoners return the same results for the same ATs requires us to
compare these results among each other. More importantly, the reasoners must return
the same results over multiple iterations. To examine this, the results of the above
benchmark runs were compared. As already stated, JFact and ELK failed some of the
tests (see Tables A.1 and A.2), making a fair comparison between all reasoners and the
two infeasible.

To compare the two remaining reasoners, Pellet and Hermit, their results were com-
pared, either with themselves or among each other. Both reasoners return the same
results concerning satisfiability of any CQ. Satisfiability of a CQ is defined as being true
if all ATs pass, or as false if at least one AT fails. It occurs that if the Occurrence AT
fails, Hermit will still allow other tests to pass, while Pellet will return false for all other
tests if the entities in question are not part of the ontology. This behaviour is depicted
in Table 4.6. The reasoners return the same result concerning satisfiability of the whole
CQ and their entailed ATs, but the ATs themselves resulted differently. Cardinality Sat-
isfiability and Multiple Cardinality tests were not added to the table, as the Archetypes
shown do not entail such tests.

Whether reasoners themselves stay consistent throughout multiple iterations was veri-

51

52 CHAPTER 4. RESULTS

fied by comparing the results of all iterations. All reasoners stayed consistent throughout
the benchmark, no changes in answers could be observed.

4.2.3 Results of the Gene Ontology

The second benchmark was executed with the reasoners Pellet, Hermit and ELK. As
input, the gene ontology was used. JFact was excluded from this benchmark due to time
constraints, as it is comparably slower in handling the gene ontology (∼20 times slower
then the other reasoners). The benchmark was executed on the Lenovo Yoga machine
(see hardware specifications in Section 4.1). The parametrization of this benchmark
is the same as for the univ-bench benchmark and depicted in Table 4.2. Competency
Question Archetype 4 is enabled. Again, the goal of this experiment is the comparison
of runtimes of reasoners in a normal benchmark situation and the runtimes taken at
specific edit-versions repeatedly.

Table 4.7: Generated Change Operations for the gene ontology benchmark.

Kind Amount

Move 62

AddLeaf 25

AddSubGraph 23

AddInner 13

Merge 3

Total 126

RB++ created 100 distinctive edits with one additional edit being the ”empty” on-
tology (in this case the ontology is far from empty due to its size). In these 100 edits,
a total of 126 Change Operations were applied. Table 4.7 shows the amount of types of
Change Operations. In this second benchmark, the distribution of Change Operations
generated by RB++ is closer to the distribution by [Pernischova, 2018] (see Table 3.3)
compared to the previous univ-bench benchmark .

Table 4.8: Generated CQ Archetypes for the gene ontology benchmark.

Kind Amount

Archetype 1 72

Archetype 4 1

Archetype 8 27

Total 100

Table 4.8 displays the distribution of CQ Archetypes. The gene ontology does not
contain any cardinalities, individuals and data property relations. Therefore, CQs
of Archetypes 2, 3, 5, 11 and 12 are not generated. Again, the distribution of CQ
Archetypes approximates the distribution by [Ren et al., 2014], see Section 2.2.

52

4.2. BENCHMARK RESULTS 53

Table 4.9: Amount of ATs to answer per reasoner per iteration in the univ-bench
benchmark.

Kind Amount

Occurrence 100

Class Satisfiability 100

Relation Satisfiability 72

Range 72

Total 344

Finally, Table 4.9 shows the amount of AT’s that every reasoner has to answer in every
iteration of the benchmark. Similar to the univ-bench benchmark, ELK was unable to
answer the Range ATs.

Figure 4.5 shows the results of this second benchmark run of RB++. The benchmark
run consisted out of two sub-runs, where one of them includes the time required to flush
the changes, while the other one does not. ELK, as mentioned earlier, failed all Range
ATs. Again, the two y scales are used, one being the actual runtime, the other one being
the count of the changed axioms in that round.

As the gene ontology is fairly big, the ontology is far from empty at round number
1. The total of axioms is 344262 before applying any Change Operations and reduces
to 309770 axioms after applying all Change Operations, a decrease of 10%. Comparing
that to the runtimes of Hermit, being 2800ms in round 101 and 2760ms in round 1 (a
decrease of 1.5%) shows that the change in axiom count does influence the runtime by
the same magnitude.

Overall, Pellet is the slowest of all competing reasoners and ELK is the fastest, which
is different in the univ-bench benchmark where ELK was by far the slowest. A reason
might be that ELK is the only reasoner of the contestants that makes use of multi-
threading.

JFact, not being part of this benchmark, is very slow when using the gene ontology.
Compared to Hermit’s results, JFact was approximately 20 times slower than Hermit.
The difference to the results in the univ-bench benchmark, where JFact was one of the
fastest reasoners, cannot be explained by now. Again, as in Section 4.2.1, we have to
mention that the results of JFact in the univ-bench benchmark as well as the observations
from this run have to be treated with caution.

Over the duration of the benchmark run, the runtimes of the reasoners stayed more
consistent compared to the univ-bench runs, only minor speed-ups can be seen. Pellet
shows some spikes in the results both with and without flushing, with the spikes being
larger for the runs with flushing. The reason for this is not known. Finally, the times
taken at specific edit-versions of the ontology show reasonable results for ELK, where
they take the same amount of time as in the normal benchmark run. Hermit and Pellet
are able to respond within few milliseconds to the queries (Hermit: ∼35ms, Pellet:
∼3ms). We do not know why the reasoners are that quick in answering the same queries
over and over again. We hypothesize that some form of caching comes into play here.

53

54 CHAPTER 4. RESULTS

0
20

40
60

80
10

0

C
ha

ng
ed

 A
xi

om
 C

ou
nt

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00
50

00
60

00

Round Number

R
un

tim
e[

m
s]

● ● ● ● ● ●● ● ● ● ● ●

● ●
● ●

● ●

Hermit No Flush
Pellet No Flush
ELK No Flush
Hermit With Flush
Pellet With Flush
ELK With Flush
AxiomCount

Figure 4.5: Results RB++ benchmark with the gene ontology, 100 edits and 100 CQs.
Dots: Repeated measurements at one edit version of the ontology. Coloured
lines: RB++ standard benchmark. Grey lines: Amount of axioms added /
removed from the ontology for this edit-version. Measurements equal rea-
soning time without flushing / with flushing.

54

5

Limitations

This chapter describes limitations of RB++, existing due to time-restrictions and other
causes.

Starting of with the theory of CQOA by [Ren et al., 2014]: Some Archetypes were not
implemented due to time limitations, low usefulness or technical constraints. Summa-
rizing the content of Section 3.1.1: Archetype 7 and 9 both require some form of logic
(temporal or spatial restrictions) that are not included as a standard in every ontology.
Archetype 6 would on one hand be an interesting addition to the implementation due to
its complication factor and entailed workload, but was omitted due to time constraints
and replaced by instances of Archetypes 1 and 5. Finally, all Sub-Archetypes listed in
Table 2.2 are minor variations of their parent, Archetype 1. An implementation would
not have made sense out of a benchmarking perspective, as the resulting ATs for all CQs
would have been the same.

We also found that the Comparative Cardinality AT (see Sections 2.3, 3.1.2) has
no application among the CQ Archetypes, therefore it is never used. Both the Meta-
Instance and the Range ATs are not applicable to OWL API based frameworks, as they
would always result in a passed test due the always-correct mapping of entities during
the CQ generation. OWL and the frameworks logic are never going to be in a state
where these tests could actually fail.

In addition, the current implementation of Ontology Evolution Mapping by [Hartung
et al., 2013] in RB++ does not provide any changes on object- and data-property re-
lations. RB++ therefore only removes class structures from ontologies until they are
empty, but all property relations remain. This has especially implications on reasoners
that are unable to incrementally add or remove property relations, which would require
them to fully re-materialize. However, as there are not many ontologies actually includ-
ing these relations by today, their usefulness for a real-life application benchmark can
at least currently be questioned. The Change Operations are in addition restricted by
RB++ lacking domain knowledge of the used ontology. A Change Operation requiring
the addition of new, never seen entities into the ontology is currently infeasible, as there
are risks that the addition of for example new subclasses could lead to irrational classes
inside the ontology. Therefore RB++ is constrained to using a complete ontology and
moving / removing parts of that ontology to generate edits. Generating an ontology
from nothing is not possible.

56 CHAPTER 5. LIMITATIONS

On the topic of chosen ontologies: There exist only few publicly available, real-life
ontologies that make use of all concepts of OWL 2, as for example the family ontology1.
Therefore, the generated CQ’s, AT’s and edits are constrained from the input data on
and we are currently not able to use their full potential. The missing concepts include
data property relations as well as cardinalities and individuals. Depending on the use-
case of the benchmark, be it spotting the best reasoner for a certain application, the
availability of the above concepts might not even be a necessity, as their usage in an
existing ontology for a certain application defines the parameters for that benchmark.

Depending on the chosen ontologies, especially large ones (such as the newest version
of the gene ontology2), reasoners had problems loading these ontologies. The overall
selection of tested ontologies was constrained by this fact, as for example an older version
of the gene ontology was used instead of a new one.

Also, the usage of OWL API as baseline framework can constrain the applications of
RB++, but due to OWLs standardization and worldwide acceptance we would interpret
this issue as a rather small one.

Finally, RB++ is currently only limited by CPU-speed and RAM. Most of the process
runs single threaded, but the reasoners (for example ELK) are using multi-threading
for higher performance. The biggest bottleneck is the CPU-clock speed, especially for
reasoners that are not using multi-threading.

1cf. www.cs.man.ac.uk/∼stevensr/ontology/family.rdf.owl
2cf. http://www.geneontology.org/page/download-ontology

56

6

Future Work

In this Section, potential improvements for the RB++ framework are discussed. Most
of the pointed out improvements are mentioned in Section 5.

The implementation of the missing Archetypes (see Section 3.1.1 and Chapter 5) would
be an addition to RB++ that would further enhance the overall output of queries. We
could envision such an extension of the benchmarking framework, making further use
of the idea seen in Archetype 6. Encapsulating more than one CQ into a complex CQ
would reflect some much more real life questions. As the back-end with the ATs to
counter-check on these CQs exists, an implementation would be feasible and straight
forward.

The distributions used, as described in Section 3.3.1, could be fine-tuned to match
specific ontologies better. The CQ-distribution stems from empirical research of humans
editing different ontologies, while the Change Operation distribution was created by us-
ing different versions of the gene ontology. In both cases, the data for those distributions
could be empirically gathered based on the specific ontology used in the benchmarks.
This however requires a versioned ontology, which is a rather rare occurrence.

The range of Change Operations could be extended by introducing differences in
relation properties. The current implementation just takes into account the subsumption
of classes, whereas this would allow much more complex changes to be applied to the
ontology.

The evaluation of the capability of reasoners to change their materializations incre-
mentally needs further investigation. We would propose a new benchmark process that
investigates the change in processing time versus an ontology that has changes applied
from 0% to 100%. This would allow the comparison of the different mechanisms the
reasoners use for their incremental updates.

7

Conclusions

This chapter concludes the findings and implementation of this thesis.

With ReasonBench++, we are able to present a new approach for benchmarking in-
cremental reasoning systems. Current benchmarking approaches contain queries and
data as input parameters, often created by hand. ReasonBench++ contains logic that
automates the generation of queries based on an input ontology. Further, it is able to
change the input ontology, creating a sequence of edits that piece by piece remove or
add axioms from / to the ontology. By using leading and steady concepts such as Com-
petency Question-driven Ontology Authoring and Ontology Evolution Mapping, we can
assume that our resulting queries and edits are close to real-life and meaningful. While
CQOA and its theory of mapping sentence structures (Archetypes) to Authoring Tests
(ATs) is used to create queries based on said Archetype-Templates, Ontology Evolution
Mapping is used to analyse changes between versions of the same ontologies, resulting in
a distribution of Change Operations that reflect the usual work of an ontology author.
The theory of CQOA was additionally extended with a mapping of CQ Archetype to
Authoring Tests, which did not exist before.

RB++’s biggest advantage compared to other benchmarks is its capability to generate
queries and edits for any ontology, allowing it to be used for many different application
scenarios. While other approaches usually use ontologies and queries developed and
created for that specific purpose, we are able to return a complete benchmark without
any labour required but supplying an ontology. With very little work, the distribution of
either CQ Archetypes or Change Operations can be adjusted. This allows very granular
control of the application case. The OWL API also grants the usage of any reasoner that
implements that interface - which is the most commonly used API for such applications
today. By providing a documented, clearly structured code-base, built with a possible
extension and reuse in mind, the code can in addition be easily split and recycled for
any other project that requires a mechanism to create queries or ontology edits.

The results of the benchmarks depict that our implemented benchmarking process
works. By showing that RB++ creates stable environments and by comparing the
benchmark results to point measurements at specific versions of the ontology, we can
assume that our benchmark runs stable and fairly compares a set of reasoners. We ran
benchmarks with both the univ-bench ontology from the LUBM-Benchmark as well as
the gene ontology, using the four different reasoners - Hermit, Pellet, JFacT and ELK

60 CHAPTER 7. CONCLUSIONS

as test subjects. We were also able to present findings concerning the competing rea-
soners, where some were more performant than others and some have shown difficulties
in applying changes and immediately answering to a set of queries.

In future, we would like to further enhance the benchmarking process, to be able to
investigate the capability of the reasoners of actual incremental reasoning. While we
could find differences in speed, the different methods used for incremental reasoning are
not yet examined sufficiently. It would in addition be worthwhile to run benchmarks
with ontologies that use all concepts of OWL 2, as there are no such ontologies available
publicly.

60

References

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and
Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge University Press, New York, NY, USA.

[Bock et al., 2008] Bock, J., Haase, P., Ji, Q., and Volz, R. (2008). Benchmarking owl
reasoners.

[Chaussecourte et al., 2013] Chaussecourte, P., Glimm, B., Horrocks, I., Motik, B., and
Pierre, L. (2013). The energy management adviser at edf. In The Semantic Web -
ISWC 2013, volume 12, pages 49–64. 12th International Semantic Web Conference,
Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L.,
Noy, N., Welty, C., Janowicz, K. (Eds.).

[Colombetti, 2017] Colombetti, M. (2017). Lecture notes of the knowledge engineering
course 2017. Technical report, Politecnico di Milano, Department of Electronics,
Information, and Bioengineering.

[Dennis et al., 2017] Dennis, M., van Deemter, K., Dell’Aglio, D., and Pan, J. Z. (2017).
Computing authoring tests from competency questions: Experimental validation. In
d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J.,
Lange, C., and Heflin, J., editors, The Semantic Web - ISWC 2017, pages 243 – 259,
Cham. Springer International Publishing.

[Dentler et al., 2011] Dentler, K., Cornet, R., ten Teije, A., and de Keizer, N. (2011).
Comparison of reasoners for large ontologies in the owl 2 el profile. Semant. web,
2(2):71–87.

[Glimm et al., 2014] Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang, Z.
(2014). Hermit: An owl 2 reasoner. Journal of Automated Reasoning, 53(3):245–
269.

[Guo et al., 2005] Guo, Y., Pan, Z., and Heflin, J. (2005). Lubm: A benchmark for
owl knowledge base systems. Web Semantics: Science, Services and Agents on the
World Wide Web, 3(2):158 – 182. Selcted Papers from the International Semantic
Web Conference, 2004.

62 References

[Harris et al., 2008] Harris, M., Deegan, J., Lomax, J., Ashburner, M., Tweedie, S.,
Carbon, S., Lewis, S., Mungall, C., Day-Richter, J., Eilbeck, K., Blake, J., Bult, C.,
Diehl, A., Dolan, M., Drabkin, H., Eppig, J., Hill, D., Ni, L., Ringwald, M., and
Ontology Consortium, G. (2008). The gene ontology project in 2008. 36.

[Hartung et al., 2013] Hartung, M., Groß, A., and Rahm, E. (2013). Conto–diff: gener-
ation of complex evolution mappings for life science ontologies. Journal of Biomedical
Informatics, 46(1):15 – 32.

[Horridge and Bechhofer, 2011] Horridge, M. and Bechhofer, S. (2011). The owl api: A
java api for owl ontologies. Semant. web, 2(1):11–21.

[Kazakov et al., 2012] Kazakov, Y., Krötzsch, M., and Simanč́ık, F. (2012). Elk: A
reasoner for owl el ontologies. Technical report, University of Oxford, Ulm University.

[Motik et al., 2015] Motik, B., Nenov, Y., Piro, R., and Horrocks, I. (2015). Incremental
update of datalog materialisation: The backward/forward algorithm. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 1560–
1568. AAAI Press.

[Palmer and Felsing, 2001] Palmer, S. R. and Felsing, M. (2001). A Practical Guide to
Feature-Driven Development. Pearson Education, 1st edition.

[Patel-Schneider et al., 2004] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (2004).
Owl web ontology language semantics and abstract syntax. W3C Recommendation.

[Pernischova, 2018] Pernischova, R. (2018). Impact of changes on operations over knowl-
edge graphs. Master’s thesis, University of Zurich.

[Ren et al., 2016] Ren, Y., Pan, J. Z., Guclu, I., and Kollingbaum, M. (2016). A com-
bined approach to incremental reasoning for el ontologies. In Ortiz, M. and Schlobach,
S., editors, Web Reasoning and Rule Systems, pages 167–183, Cham. Springer Inter-
national Publishing.

[Ren et al., 2014] Ren, Y., Parvizi, A., Mellish, C., Pan, J. Z., van Deemter, K., and
Stevens, R. (2014). Towards competency question-driven ontology authoring. Euro-
pean Semantic Web Conference, pages 752–767.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007).
Pellet: A practical owl-dl reasoner. Web Semantics: Science, Services and Agents on
the World Wide Web, 5(2):51 – 53. Software Engineering and the Semantic Web.

[Tsarkov, 2014] Tsarkov, D. (2014). Incremental and persistent reasoning in fact++.
Technical report, The University of Manchester.

[Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, I. (2006). Fact++ descrip-
tion logic reasoner: System description. In Furbach, U. and Shankar, N., editors,
Automated Reasoning, pages 292–297, Berlin, Heidelberg. Springer Berlin Heidelberg.

62

References 63

[Uschold and Gruninger, 1996] Uschold, M. and Gruninger, M. (1996). Ontologies: prin-
ciples, methods and applications. The Knowledge Engineering Review, 11(2):93–136.

[Volz et al., 2005] Volz, R., Staab, S., and Motik, B. (2005). Incrementally Maintaining
Materializations of Ontologies Stored in Logic Databases, pages 1–34. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[W3C OWL Working Group, 2009] W3C OWL Working Group (2009). Owl 2 web on-
tology language document overview.

63

A

Appendix

A.1 Terminal commands for RB++

java −Xmx4g −j a r reasonbenchplusp lus −0.1.6.1− j a r−with−
dependenc ies . j a r <PATH TO ONTOLOGY FILE> <
PATH TO EXPORT FOLDER> 1234567 100 100 50 true t rue
runStandardBenchmark

Listing A.1: Startup command example for a RB++ standard run.

java −Xmx4g −j a r reasonbenchplusp lus −0.1.6.1− j a r−with−
dependenc ies . j a r <PATH TO ONTOLOGY FILE> <
PATH TO EXPORT FOLDER> 1234567 100 100 50 true t rue
runStandardBenchmark

Listing A.2: Startup command example for a RB++ run at a specific edit position.

66 APPENDIX A. APPENDIX

A.2 Results

A.2.1 Additional Figures of Reasoner Behaviour over Time

0 100 200 300 400

0
10

20
30

40

Iteration Number

R
un

tim
e[

m
s]

Buffering, Reinitialization
Buffering, No Reinitialization
No Buffering, Reinitialization
No Buffering, No Reinitialization

Figure A.1: Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: Pellet

66

A.2. RESULTS 67

0 100 200 300 400

0
50

10
0

15
0

20
0

25
0

Iteration Number

R
un

tim
e[

m
s]

Buffering, Reinitialization
Buffering, No Reinitialization
No Buffering, Reinitialization
No Buffering, No Reinitialization

Figure A.2: Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: ELK

67

68 APPENDIX A. APPENDIX

0 100 200 300 400

0
10

20
30

40
50

60

Iteration Number

R
un

tim
e[

m
s]

Buffering, Reinitialization
Buffering, No Reinitialization
No Buffering, Reinitialization
No Buffering, No Reinitialization

Figure A.3: Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: JFact

68

A.2. RESULTS 69

A.2.2 Failed Authoring Tests per Reasoner

Table A.1: Failed ATs by reasoner ELK in iteration 1 of the univ-bench standard
benchmark.

Round Occurrence Class Satisfia-
bility

Relation Satis-
fiability

Cardinality
Satisfiabiliy

Multiple Cardi-
nality

Range

1 0 0 0 0 0 70
2 0 0 0 0 0 70
3 0 0 0 0 0 70
4 0 0 0 0 0 70
5 0 0 0 0 0 70
6 0 0 0 0 0 70
7 0 0 0 0 0 70
8 0 0 0 0 0 70
9 0 0 0 0 0 70
10 0 0 0 0 0 70
11 0 0 0 0 0 70
12 0 0 0 0 0 70
13 0 0 0 0 0 70
14 0 0 0 0 0 70
15 0 0 0 0 0 70
16 0 0 0 0 0 70
17 0 0 0 0 0 70
18 0 0 0 0 0 70
19 0 0 0 0 0 70
20 0 0 0 0 0 70
21 0 0 0 0 0 70
22 0 0 0 0 0 70
23 0 0 0 0 0 70
24 0 0 0 0 0 70
25 0 0 0 0 0 70
26 0 0 0 0 0 70
27 0 0 0 0 0 70
28 0 0 0 0 0 70
29 0 0 0 0 0 70
30 0 0 0 0 0 70
31 0 0 0 0 0 70
32 0 0 0 0 0 70
33 0 0 0 0 0 70
34 0 0 0 0 0 70
35 0 0 0 0 0 70
36 0 0 0 0 0 70
37 0 0 0 0 0 70
38 0 0 0 0 0 70
39 0 0 0 0 0 70
40 0 0 0 0 0 70
41 0 0 0 0 0 70
42 0 0 0 0 0 70
43 0 0 0 0 0 70
44 0 0 0 0 0 70
45 0 0 0 0 0 70

69

70 APPENDIX A. APPENDIX

Table A.2: Failed ATs by reasoner JFacT in iteration 1 of the univ-bench standard
benchmark.

Round Occurrence Class Satisfia-
bility

Relation Satis-
fiability

Cardinality
Satisfiabiliy

Multiple Cardi-
nality

Range

1 0 0 0 0 0 0
2 0 90 57 0 0 38
3 0 85 56 0 0 38
4 0 77 50 0 0 38
5 0 76 47 0 0 35
6 0 72 50 0 0 35
7 0 70 48 0 0 34
8 0 57 36 0 0 26
9 0 50 29 0 0 18
10 0 40 20 0 0 15
11 0 35 19 0 0 14
12 0 26 14 0 0 9
13 0 23 15 0 0 8
14 0 23 15 0 0 8
15 0 22 12 0 0 8
16 0 19 8 0 0 8
17 0 11 5 0 0 3
18 0 10 4 0 0 3
19 0 7 0 0 0 3
20 0 7 0 0 0 3
21 0 7 0 0 0 3
22 0 4 0 0 0 3
23 0 4 0 0 0 3
24 0 4 0 0 0 3
25 0 4 0 0 0 3
26 0 4 0 0 0 3
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 0 0
31 0 0 0 0 0 0
32 0 0 0 0 0 0
33 0 0 0 0 0 0
34 0 0 0 0 0 0
35 0 0 0 0 0 0
36 0 0 0 0 0 0
37 0 0 0 0 0 0
38 0 0 0 0 0 0
39 0 0 0 0 0 0
40 0 0 0 0 0 0
41 0 0 0 0 0 0
42 0 0 0 0 0 0
43 0 0 0 0 0 0
44 0 0 0 0 0 0
45 0 0 0 0 0 0

70

List of Figures

3.1 Graphical representation of the CQ generation process of RB++. 16

3.2 Graphical representation of the edit generation process of RB++. 17

3.3 Graphical representation of the benchmarking process of RB++. 18

3.4 Contents of the BenchmarkInfo output. 30

3.5 Class Diagram of BenchmarkManager and its surrounding classes. 32

3.6 Class Diagram of CompetencyQuestionManager and its surrounding classes. 34

3.7 Class Diagram of AuthoringTestManager and its surrounding classes. . . 36

3.8 Class Diagram of EditManager and its surrounding classes. 38

4.1 Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: Hermit 45

4.2 Results RB++ benchmark with ontology univ-bench, 45 edits and 100
CQs. Dots: Repeated measurements at one edit version of the ontol-
ogy. Coloured lines: RB++ standard benchmark. Grey lines: Amount
of axioms added / removed from the ontology for this edit-version. Mea-
surements equal reasoning time without flushing. 48

4.3 Results RB++ benchmark with ontology univ-bench, 45 edits and 100
CQs. Dots: Repeated measurements at one edit version of the ontol-
ogy. Coloured lines: RB++ standard benchmark. Grey lines: Amount
of axioms added / removed from the ontology for this edit-version. Mea-
surements equal both reasoning time without flushing / with flushing. . . 49

4.4 Differences between runtimes in 4.3 with flush / without flush on ontology
univ-bench, 45 edits and 100 CQs. Coloured lines: RB++ Standard
Benchmarks. Grey lines: Amount of Axioms added / removed from the
ontology for this edit-version. 50

4.5 Results RB++ benchmark with the gene ontology, 100 edits and 100
CQs. Dots: Repeated measurements at one edit version of the ontol-
ogy. Coloured lines: RB++ standard benchmark. Grey lines: Amount
of axioms added / removed from the ontology for this edit-version. Mea-
surements equal reasoning time without flushing / with flushing. 54

A.1 Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: Pellet . 66

72 List of Figures

A.2 Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: ELK . 67

A.3 Influence of Reinitialization of a Reasoner on Runtimes. Ontology: univ-
bench, Seed: 1234567, Reasoner: JFact . 68

72

List of Tables

2.1 CQ Archetypes by [Ren et al., 2014]. (PA = Predicate Arity, RT = Re-
lation Type, M = Modifier, DE = Domain Independent Element; CE =
Class Expression, OPE = Object Property Expression, DP = Datatype
Property, I = Individual, NM = Numeric Modifier, PE = Property Ex-
pression, QM = Quantity Modifier; obj. = Object Property Relation,
data. = Data Property Relation, num = Numeric Modifier, quan. =
Quantitative Modifier, tem. = Temporal Element, spa = Spatial Element) 9

2.2 CQ Sub-types of Archetype 1 by [Ren et al., 2014]. (QT = Question Type,
V = Visibility, QP = Question Polarity; CE = Class Expression, OPE
= Object Property Expression; sel. = Selection Question, bin. = Binary
Question, cout. = Counting Question, exp. = Explicit, imp. = Implicit,
sub. = Subject, pre. = Predicate, pos. = Positive, neg. = Negative) . . . 10

2.3 CQ Archetype absolute Distribution based on [Ren et al., 2014]. 10

2.4 Authoring Tests by [Ren et al., 2014]. (E: Expression, CE: Class Expres-
sion, P: Property, n: Modifier) . 12

2.5 Excerpt of COnto-Diff operations with descriptions and their inverses by
[Hartung et al., 2013] with additional Change Operations not named in
their paper (marked by *). 14

3.1 CQ Archetypes used by RB++. (PA = Predicate Arity, RT = Relation
Type, M = Modifier, DE = Domain Independent Element; CE = Class
Expression, OPE = Object Property Expression, DP = Datatype Prop-
erty, I = Individual, NM = Numeric Modifier, PE = Property Expression,
QM = Quantity Modifier; obj. = Object Property Relation, data. = Data
Property Relation, num = Numeric Modifier, quan. = Quantitative Mod-
ifier, abs. = Absolute, sup. = Superlative, tem. = Temporal Element,
spa = Spatial Element) . 21

3.2 Mapping from Archetype ID to applicable Authoring Tests. (CE = Class
expression, OPE = Object Property Expression, DP = Datatype Prop-
erty, I = Individual, NM = Numeric Modifier, PE = Property Expression,
QM = Quantity Modifier, * = currently not implemented.) 23

74 List of Tables

3.3 Absolute amount of Change Operations detected in the Gene Ontology
[Harris et al., 2008], dating between 2010-01-01 and 2018-04-01. * points
to Change Operations that are not implemented either due to constraints
or sparse usage. 24

4.1 Setup of RB++ used to review error sources of reasoners ELK and JFact.
Ontology: Pizza Ontology. Seed: 1234567 44

4.2 Setup of univ-bench benchmark for all reasoners. 46
4.3 Generated Change Operations for univ-bench benchmark. 46
4.4 Generated CQ Archetypes for univ-bench benchmark. 47
4.5 Amount of ATs to answer per reasoner per iteration in the univ-bench

benchmark. 47
4.6 Comparison of answers to ATs between Hermit and Pellet. (Occ. =

Occurrence Test, Cls. Sat. = fiability Test, Rel. Sat. = Relation Satisfi-
ability Test, Rg. = Range, Sat. = Satisfiability) 51

4.7 Generated Change Operations for the gene ontology benchmark. 52
4.8 Generated CQ Archetypes for the gene ontology benchmark. 52
4.9 Amount of ATs to answer per reasoner per iteration in the univ-bench

benchmark. 53

A.1 Failed ATs by reasoner ELK in iteration 1 of the univ-bench standard
benchmark. 69

A.2 Failed ATs by reasoner JFacT in iteration 1 of the univ-bench standard
benchmark. 70

74

