
SLAMer: a blockchain-based SLA
Management System

Carlos Schweizer
Zürich, Switzerland

Student ID: 15-702-764

Supervisor: Eder John Scheid, Cristian Killer
Date of Submission: September 1, 2019

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Seit Bitcoin im Jahr 2009 das Blockchain-Konzept als vertrauenswürdige Umgebung für
den Austausch von Geldmittel zwischen unbekannten Peers eingeführt hat, erregte dieses
Konzept grosse Aufmerksamkeit aufgrund der Möglichkeiten, Probleme anzugehen, die
mit Vertrauen außerhalb des Finanzbereichs verbunden sind. Ein Bereich, der in der Ver-
trauensbeziehung zwischen unbekannten Peers existiert, ist die Kompensation von Ser-
vice Level Agreements (SLA), insbesondere die Durchsetzung der in SLAs festgelegten
Bedingungen, wenn ein Verstoß festgestellt wird. Dabei ist der Service Provider (SP)
stärker positioniert als der Kunde, da er Forderungen des Kunden im Bezug auf Rück-
erstattung überprüft und entscheidet, ob er den Kunden entschädigt oder nicht. Daher
ist die Aufgabe, einen Verstoß zu beweisen, eine Herausforderung denn der Kunde muss
darauf vertrauen, dass der SP ehrlich handelt. Es wurden Forschungsarbeiten zur Be-
reitstellung datenbank- und blockchainbasierter Lösungen für diese Probleme durchge-
führt, wobei letztere mehr Vorteile bieten, wie z.B. die Durchsetzung von Zahlungen und
die unveränderliche Datenspeicherung. So wurde in dieser Arbeit ein blockchainbasier-
tes SLA-Managementsystem, genannt SLAMer, entwickelt, um bei der Verwaltung des
SLA-Lebenszyklus unter Verwendung von blockchainbasierten Smart Contracts (SC) zu
helfen, um Zahlungen (z.B. Servicegebühr und Kompensation) beider Parteien durchzu-
setzen und die SLA-Bedingungen unveränderlich zu speichern und so die Integrität des
Prozesses zu gewährleisten. SLAMer wurde nach der WSLA-Sprache konzipiert und ein
Proof-of-Concept (PoC) implementiert. Der PoC ermöglicht es einem externen Monito-
ring Service, Messungen der einzelnen Services zu senden, die wiederum im SC verifiziert
werden. Der SLAMer PoC wurde unter wirtschaftlichen, Management-, Performance- und
Usability-Gesichtspunkten bewertet. Diese Bewertung zeigt, dass dieser Ansatz in der
Lage ist, die oben genannten Herausforderungen von SLAs zu bewältigen. Die Durchset-
zung von Entschädigungen des SP an den Kunden wird durch die SCs gewährleistet, da
im Vertrag eingeschlossene Kryptowährungen bei bestimmten Ereignissen an die entspre-
chende Partei abgetreten werden. Die Kosten für die Überprüfung der Serviceparameter
in einem SC sind jedoch immer noch beträchtlich hoch. Darüber hinaus sind die Leistung
und Benutzerfreundlichkeit von SLAMer eng mit der Blockchainleistung gekoppelt, was zu
einer Latenzzeit in Bezug auf die Reaktionszeit von Interaktionen mit einem SC führt.
Trotz dieser Herausforderungen zeigte die Bewertung, dass der Ansatz machbar ist und
die Lösung in der Lage ist, Teile des SLA-Lebenszyklus zu bewältigen und so die manuelle
Komplexität und Interaktion zu reduzieren.

Since Bitcoin introduced the blockchain concept in 2009 as a trusted environment to
exchange funds between unknown peers, this concept gained a lot of attention due to
the possibilities to address problems that involve trust outside the financial area. One

i

ii

area that exists in the trust relationship between unknown peers is the compensation
of Service Level Agreements (SLA), especially, the enforcement of the terms specified in
SLAs when a violation is detected. In this process, the Service Provider (SP) is in a
stronger position than the customer, since the SP verifies a claim made by the customer
and decides whether or not to compensate the customer. Thus, the task of proving a
violation is challenging because the customer must trust that the SP will act honestly.
Research has been made in providing database-based and blockchain-based solutions to
these problems with the latter presenting more benefits, such as payment enforcement
and immutable data storage. Thus, in this thesis, a blockchain-based SLA management
system, called SLAMer, was designed to aid in the management of the SLA lifecycle using
blockchain-based Smart Contracts (SC) to enforce payments (e.g., service fee and com-
pensation) by both parties and store the SLA terms in an immutable manner, providing
integrity to the process. SLAMer was designed following the WSLA language and a Proof-
of-Concept (PoC) was implemented. The PoC allows an external monitoring service to
send measurements of the services which in turn are verified in the SC. SLAMer PoC was
evaluated in terms of economic, management, performance and usability aspects. This
evaluation shows that this approach is able to address the aforementioned challenges of
SLAs. Enforcement of compensations from the SP to the customer is guaranteed by the
SCs, as cryptocurrencies locked inside the contract are relieved to the corresponding party
on certain events. However, the cost of verifying service parameters inside a SC are still
considerably high. Further, the performance and usability of SLAMer are tightly coupled
to the blockchain performance; therefore leading to latency in regard to response time of
interactions with a SC. Despite these challenges, the evaluation showed that the approach
is feasible and SLAMer is capable of addressing parts of the SLA lifecycle, aiding to reduce
manual complexity and interaction.

Acknowledgments

I want to thank Eder Scheid for being an excellent supervisor and supporting me with
writing this thesis. His advises helped me tremendously in structuring and planning, as
well as in leading me in the right direction when it came to problems in understanding.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Description of Work . 2

1.2 Thesis Outline . 2

2 Background 3

2.1 Service Level Agreements (SLA) . 3

2.1.1 SLA Lifecycle . 4

2.2 Blockchain . 5

2.3 Ethereum . 6

2.3.1 Ethereum-based Smart Contracts 7

2.3.2 Solidity . 8

3 Related Work 11

3.1 Traditional SLA Management Approaches 11

3.2 Blockchain-based SLA Management . 12

3.3 Discussion . 12

v

vi CONTENTS

4 Blockchain-based SLA Management System 15

4.1 SLAMer Design . 15

4.2 SLA Definition . 17

4.2.1 WSLA SLA Template/Definition 17

4.2.2 SLAMer SLA Template . 18

4.3 SLAMer Data Flow . 19

4.4 SLAMer SLA State Management . 21

4.5 SLA SC . 22

4.6 Implementation . 23

4.6.1 SLAMer Backend . 23

4.6.2 SLA SC . 24

4.6.3 Graphical User Interface . 29

5 Evaluation and Discussion 33

5.1 Economical Evaluation and Discussion . 33

5.2 Management Discussion . 36

5.3 Usability and Performance Discussion . 37

6 Conclusion and Future Work 39

Abbreviations 45

Glossary 47

List of Figures 48

List of Tables 49

A Installation Guidelines 53

A.1 Getting Started . 53

A.2 Ganache Setup . 53

A.3 SLAMer Setup . 54

A.4 Setup Monitoring . 54

CONTENTS vii

B Contents of the CD 57

viii CONTENTS

Chapter 1

Introduction

Service Level Agreements (SLA) are legal contracts between Service Providers (SP) and
customers. In these SLAs, service requirements, such as performance expectations, and
service details (e.g., price and service validity) are negotiated and defined. Performance
expectations are defined as Quality-of-Service (QoS) requirements, and detail, for instance,
that the availability of the service (i.e., server uptime) should be more than 99.99%.
Further, QoS requirements include data throughput or even response times to phone
calls. If one of these QoS requirement is violated (i.e., not met or delivered), the SP has
to compensate the customer according to agreed terms, which are also defined in the SLA.
However, until now, the whole process of managing SLAs and compensations consists of
various manual steps that are time consuming and prone to errors.

Moreover, the nature of SLAs brings three main issues that challenges the current situa-
tion. First, the verification of an SLA has to be performed manually. Many tools exist for
service monitoring to detect any violations [1] but the main challenge lies in the enforce-
ment of such agreements. Second, the SP is in a stronger position than the customer due
to the fact that he is authorized to verify the violation and is able to decide whether or
not to compensate the customer. This leads to the third challenge, the process of proving
the violation. The customer has to convince the SP that a violation has happened.

A possible solution to these problems could be to rely on the blockchain [2] and Smart
Contracts (SC) [3]. The concepts of blockchain and SCs have gained an immense amount
of interest, not only in the area of cryptocurrencies but in all areas where information
technology is present. Where problems arised in the past, blockchain tries to find its
place by providing new solutions.

Blockchain technology can help by removing the need for a Trusted-Third-Party (TTP) to
verify transactions and provide an immutable data storage, i.e., once the data is appended
in the blockchain it cannot be removed. SCs might help addressing the aforementioned
problems due to their property of automatic execution upon a transaction, immutable
source code, and output verified by the whole blockchain.

1

2 CHAPTER 1. INTRODUCTION

1.1 Description of Work

Therefore, in this thesis, the topic of SLAs in connection with blockchain is investigated.
Some existing works addressing the traditional SLA management are provided, followed
by research of SLAs in relation to SCs. The focus lies on the coverage of the different
SLA management lifecycle steps in each work. A prototype of a blockchain-based SLA
Management system, called SLAMer, is designed and developed. This SLA management
system allows service providers and customers to manage their SLAs in terms of creation,
review, deployment and most important, penalty enforcement. SLAMer stores all the
relevant data in a SC which is deployed on the Ethereum network. This SC takes care
of the verification of the defined Service Level Objectives (SLO) and is responsible for
automatically transferring funds to the correct parties. SLAMer is composed of a Graphical
User Interface (GUI) for user interaction, a back-end containing the business logic (i.e.,
SLA lifecycle) and a blockchain connector to deploy and interact with the SC.

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides the theoretical
background of the thesis. It explains the underlying concepts of SLAs, SLA lifecycle,
the blockchain technology, and SCs. Chapter 3 provides related works to the thesis by
describing existing approaches regarding SLA Management, and blockchain-based SLA
management. In Chapter 4, the SLAMer’s architecture, design and SLA template are ex-
plained. It is followed by implementation details including the user interface, its functions,
and the Ethereum SC that contains the SLA information. In Chapter 5, the design and
implementation are evaluated against the thesis’ goals and requirements. For this purpose,
economic and management aspects are considered as well as usability and performance.
Lastly, Chapter 6 concludes the thesis with a summary and future work.

Chapter 2

Background

This chapter presents the theoretical background necessary to understand the approach
presented in the thesis. First, the concept of Service Level Agreements (SLA) and its
lifecycle are presented in Section 2.1. Then, in Section 2.2, the blockchain technology is
described. Section 2.3 explains the Ethereum platform as well as Ethereum-based Smart
Contracts (SC) in Section 2.3.1. Finally, Section 2.3.2 introduces the basic concepts and
features of the Solidity language.

2.1 Service Level Agreements (SLA)

Assuming a cloud scenario where a customer requires one or more virtualized services,
e.g., storage or hardware, he/she has to search for a SP that is able to meet the specific
demands for these services. After the customer has identified the SP, both must negotiate
which services will be delivered and what are the requirements for such services. Then,
they commit to an agreement, which is often referred to as an SLA, that describes the
expected service level that the SP must provide the customer and ensures that QoS metrics
are met [4]. Each SLA between an customer and a SP can contain several SLOs, which
are the concrete definition with measurable values of QoS metrics. For instance, taking
Figure 2.1 as an example, the availability of a Web Server is measured by the SLO defining
the QoS metric “uptime ≥ 99.9999%”, and the performance is measured by the SLOs
defining the QoS metrics “throughput ≥ 200 kB/s” and “response time ≤ 10 ms”.

uptime	
>=	99.9999%

throughput	
>=	200	kB/s

response	time	
<=	10	ms

SLO 1

SLA
Apache Web Server

SLO 2 SLO 3

Figure 2.1: Service Level Objectives (SLO) Examples

3

4 CHAPTER 2. BACKGROUND

Monthly Uptime Percentage (X)
Compensation

Azure Amazon Google

99% ≤ X < 99.99% 10% 10% 10%
95% ≤ X < 99% 25% 30% 25%
X < 95% 100% 100% 50%

Table 2.1: Compensation in Service Credits

Moreover, SLAs define the penalties that a SP is obligated to pay to the customer SLA
if they fail to deliver the expected QoS. The compensation (i.e., penalty) that an SP
must pay for the customer if it did not achieve the agreed SLOs vary from SP to SP.
For example, in Table 2.1 different compensation values are presented for the same SLA
from Azure [5], Amazon [6] and Google [7], where X represents the measured percentage
value. All three providers ensure to credit 10% of the service bill to the customer if
X is in the range of 99% and 99.99%. On one hand, Azure and Google guarantee to
compensate the customer 25% of service credits if the service uptime should be less than
99% but higher or equal to 95%. Amazon, on the other hand, gives back 30% to the
customer for the same range. If the total uptime results in being less than 95%, Azure
and Amazon give a full refund (i.e., 100% is paid back). In contrast, Google only offers a
refund of 50%. The compensation process is manual at the moment; this means that the
customer is responsible for claiming an SLA violation and filling the report in order to be
compensated.

2.1.1 SLA Lifecycle

SLAs are subject to a lifecycle which every new SLA has to go through. There are
different definitions on the terminology of the SLA lifecycle [8]. However, it essentially
bases on 6 lifecycle phases, which are depicted in Figure 2.2. The phases, definitions, and
terminology used on this thesis are based on [9] and described below.

1. Discover Service Provider - The customer has to identify a SP that provides the
desired resources and services. The identification of the SP depends on requirements
from the customer, e.g., defined budget, Geo-location, security mechanisms, privacy
concerns.

2. Define SLA - Once the customer found a SP, usually a negotiation takes place
where both parties try to reach a consensus regarding the SLOs. Also, prices and
penalties are defined in this phase. It is crucial that both parties have the same
understanding of each other’s expectations so that the SLA is unambiguous and no
problems arise after the SLA becomes effective. If the involved parties do not come
to an agreement, the lifecycle process starts over until a consensus is reached.

3. Establish Agreement - This phase consists of defining and developing the tem-
plate in which the SLA will take place. Both parties are obliged to the terms defined
in the previous phase as soon as they sign the contract. The defined services are
deployed and ready to be accessed and utilized by the customer.

2.2. BLOCKCHAIN 5

SLA Management
Lifecycle

1 - Discover
Service Provider

2 - Define SLA

3 - Establish
Agreement

4 - Monitor
SLA Violation

5 - Terminate
SLA

6 - Enforce Penalties for
SLA Violation

Figure 2.2: SLA Lifecycle Example [9]

4. Monitor SLA Violation - The deployed services have to be monitored to ensure
that the SP meets the agreed terms. Both parties monitor the services on their
own or rely on a third party solution. In either case, the monitoring solution has to
provide reliable measurements.

5. Terminate SLA - If no violation occurred and the service was delivered as agreed
the SLA terminates when it expires. Depending on the terms defined in Phase #2,
it can also terminate earlier. For example, if the number of detected violations was
above a defined threshold.

6. Enforce Penalties for SLA Violation - In the case where the SP does not
meet the specified performance levels, the customer needs to be compensated. The
compensation value is calculated according to the penalties defined in the SLA.
These compensation can be in form of fiat-currency or service-credits. For example,
Amazon compensates customers in the form of service-credits within one billing
month after the violation has been confirmed by the responsible team [6].

2.2 Blockchain

Blockchain as a real world implementation was first introduced with the creation of Bitcoin
in 2009 and gained attention later with the speculation on the value of Bitcoins [2]. A
blockchain is a distributed ledger managed by a peer-to-peer network in which records are
stored as transactions in a block. For every transaction, the transaction data is signed and
verified by other participants in the network using cryptographic algorithms. If a majority

6 CHAPTER 2. BACKGROUND

of participants agree that the transaction is valid, a new block is added to the blockchain
and shared to all other nodes [10]. To include a new block in the blockchain, a node,
called miner, has to find a solution for a cryptography puzzle, which is computational
expensive to calculate, but easy to verify. Once a miner finds the answer to the puzzle,
it shares it with the other nodes who verify if it is correct and then append the block to
the blockchain.

Each block uses a hash in order to point to the previous block’s header as shown in
Figure 2.3. Thus, when following all this pointers, one will find the first block in the
chain, called the genesis block. In order to alter information in a block, all following block
hashes would need to be recomputed, since any change to a block changes its hash. The
computational effort to perform this operation becomes exponentially high, which leads
to the fact that data can be stored in the blockchain but not deleted or altered, i.e., the
data is immutable once it is appended in the chain.

Block HeaderPrevious Block
Header Hash

Transaction List

Genesis Block

Block HeaderPrevious Block
Header Hash

Transaction List

Block 1

Block HeaderPrevious Block
Header Hash

Transaction List

Block n

...

Block HeaderPrevious Block
Header Hash

Transaction List

Block 2

Figure 2.3: Blockchain Example

2.3 Ethereum

The Ethereum platform is a public account-based ledger. It provides a decentralized vir-
tual machine (VM) that serves as a run-time environment for SCs, known as the Ethereum
Virtual Machine (EVM). As it is outlined in the Ethereum yellow paper, Ethereum as a
whole “can be viewed as a transaction-based state machine” [11]. It starts with a genesis
state which transitions to another state when transactions are executed. Such transac-
tions are stored in blocks, as explained in Section 2.2. In addition to the transactions, the
block also stores an identifier of the current state.

Figure 2.4 depicts a simplified illustration of this state-transition. The blockchain is in
some state t with two accounts A and B, having a balance of 20 and 25 ETH respectively.
When executing a transaction e.g., transferring 10 from account B to account A, both
accounts end up in a new state. Thus, the blockchain reaches some new state t+1.

2.3. ETHEREUM 7

Account: A
balance: 20 ETH

Account: B
balance: 25 ETH

Account: A
balance: 30 ETH

Account: B
balance: 15 ETH

State t State t+1

Transaction

from:B
to: A

value: 10 ETH

Figure 2.4: State transition from one state to the next

In order for this state-transition to happen, nodes in the network need to mine the blocks
containing these transactions which is incentivized by the intrinsic currency Ether. The
smallest subdenomination of Ether is called Wei, in which all values are stored. One Ether
corresponds to 1018 Wei.

2.3.1 Ethereum-based Smart Contracts

SCs are computer code that map contracts or technically support the negotiation or exe-
cution of a contract. This means, contracts are not enforced by law but by hardware and
software [12]. As Nick Szabo [12] states in his paper, the main goal is to“reduce mental and
computational transaction costs imposed by either principals, third parties, or their tools”.
These SC are executed by the consensus mechanism of the corresponding blockchain. The
content of SCs is, in other words, computer code that implements a certain logic, depend-
ing on a contract’s purpose. SCs can be implemented in many blockchains, such as in
Bitcoin or Cardano [13], although they are limited in terms of functionality. Ethereum
provides an advanced environment for creating and running Turing-complete SCs.

The source code of SCs is developed outside of the blockchain itself, usually using a
dedicated Integrated Development Environment (IDE) e.g., Remix in case of using So-
lidity [14]. Once the SC is ready for deployment, developers wrap the contract code
in a transaction and send the transaction with no recipient to the blockchain. In the
blockchain, the transaction data becomes an executable program in the EVM. Besides
the executable code, the SC has a contract address, a balance and a state [11]. It is im-
portant to note that the data stored in a contract is publicly visible to external observers.
Thus, sensitive data should not be stored in a SC without encryption.

Since the blockchain is immutable, the SC code is immutable as well. That means, the
source code can never be changed again once it is appended to the blockchain. Once a
SC is deployed, its code will only be executed if transactions are sent to the SC address.
Because miners verify all the transactions made to the blockchain, the SC is run by them
whenever a call to a contract function happens. The output of such interactions can be
trusted because SCs are deterministic. This determinism is required, so that the network
nodes execute the SC and get the same result, and thus, can reach consensus.

Due to the fact that Ethereum’s bytecode is Turing-complete, fees are charged for every
computation so that issues of network abuse, such as Denial-of-Service (DoS) attacks, are

8 CHAPTER 2. BACKGROUND

avoided [11]. These fees are paid in units called gas. Thus, a SC function can only be
successfully called if a transaction contains enough gas for its execution. Gas itself does
not exist outside of the transaction; it is purchased at a certain gas price in Ether at the
point of execution. The gas price can be chosen freely, but the higher the gas price is set,
the faster the transaction is included by miners, since the miners will prioritize higher gas
prices to receive more fees.

2.3.2 Solidity

Usually, SCs are written in a high-level language. Different languages exist, such as
Serpent [15], Vyper [16] and LLL (Lisp-like language)[17], but the most used one is Solid-
ity [18]. Solidity is a C++-like language with static typing that also resembles JavaScript
and Python. It also supports inheritance and polymorphism and lets SCs be structured
as contracts in a class-like manner, as it is common in object-oriented languages like Java.
Despite the differences between these languages, each of them is compiled to a series of
bytecode instructions which the EVM can natively execute. In the following items, key
features of Solidity are presented [18].

• Common Data Properties: Solidity supports multiple data types as it is common
in other languages, such as string, integer, enum and boolean. However, floating
point numbers are not supported; thus, every number is represented as an integer
or unsigned integer (uint i.e., non-negative numbers). In addition, there exists the
address type to access members such as the balance.

• Struct: Structs are similar to classes, allowing the definition of new types by group-
ing different variables as well as other structs.

• Events: Events are a convenient way of notifying external applications about a SCs
state changes. For example, clients can listen for specific events and react accord-
ingly as soon as they are emitted. Moreover, they are useful for logging purposes,
so that additional information about the associated SCs and their transactions can
be retrieved.

• Function Modifiers: They act as an extension to functions which are executed
before a function runs. This is mostly used to evaluate conditions, for instance
access checks. For example, there might be operations that only specific accounts
are allowed to perform and must therefore be checked if a caller is permitted to
execute a function. This check is performed in the modifier which can be applied to
multiple functions, removing these conditions from the function body itself. Listing
2.1 presents a simple function modifier. The “ ” at line 3 serves as a placeholder for
the code of the function the modifier is applied to e.g., the withdraw function.

• Special Variables: Solidity also provides special variables that one can always
access inside a SC, the most important ones being msg, block and tx. These allow
access to information such as the caller of the contract, the current block number
or the current transaction. For instance, in Listing 2.1 on line 2, the sender of the
message is accessed to control the access to the function.

2.3. ETHEREUM 9

1 modifier onlyCustomer () {

2 require(msg.sender == deployedSLA.customer , "Only the

customer can call this function");

3 _;

4 }

5
6 function withdraw () public onlyCustomer {

7 // function logic

8 }

Listing 2.1: Modifier restricting access only to the customer

10 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This chapter presents the works that are related to the core topics of this thesis. First, in
Section 3.1, an outlook on traditional SLA management approaches is presented. Then,
in Section 3.2, blockchain-based SLA management solutions are described. Finally, this
chapter ends with a discussion on the shortcomings of such works in Section 3.3.

3.1 Traditional SLA Management Approaches

Any works describing scientific approaches to SLA management which are not just under
research anymore is herein referred to as“traditional”. This also includes investigation and
proposals for SLAs in cloud-computing. In the early 2000’s, when SLAs started to become
widely adopted, the IBM Research Division and the IBM Software Group developed the
WSLA language [19]. An important aspect is the development of a type system for
describing SLAs. WSLA divides a SLA in three parts: parties, service description, and
obligations. Its flexible design allows to describe a wide variety of parameters.

Based on the WSLA research, [20] describes a framework for providing differentiated levels
of service through the use of automated management and SLAs. The authors propose a
“Web-service contracting” environment dedicated to interactions between customer and
SPs in terms of service offering by SPs and service subscriptions of customers. Further, a
“Web-services-on-demand”environment exists, where relationships between customers and
SPs are formed dynamically, and the SPs resources are provisioned on demand. The“Web-
service provisioning” environment takes care of resource allocation and the provisioning
of the services, performed in a specific workflow.

In [21], the authors propose a SLA management system which consists of a pre-runtime
and a runtime environment. The former focuses on registration and service search. SPs
can register and publish their services so that potential customers can search for these
services which match their needs. The latter is responsible for monitoring and controlling
the service runtime states. This also includes making a punishment decision in case of a
SLA violation. The authors cover every phase except the last, the penalty enforcement,

11

12 CHAPTER 3. RELATED WORK

which is not explicitly addressed, as the paper does not define how compensations are
performed in case of a violation.

In [22], the authors propose a model that relates to the first (i.e., Discover Service
Provider), second (i.e., Define SLA) and the fourth (i.e., Monitor SLA Violation)
phase of the SLA management lifecycle. They introduce a regulator that is“involved in the
monitoring framework process by launching audits, policy making, and QoS monitoring”
[22]. Further, the regulator is able to help the customer in the identification and ranking
of SPs by considering the results of previous monitoring of SLAs .

3.2 Blockchain-based SLA Management

At the current state, the use of SCs for SLA Management is still under research and
different authors have proposed frameworks. In [23] is proposed the use of the Ethereum
Blockchain for hosting the SCs and enforcing payments between the parties in the Network
Function Virtualization (NFV) context. [24] went for a similar direction in terms of
using the Ethereum Blockchain. They focus on the specification through the Resource
Description Framework (RDF) to formally describe Web APIs and their SLAs. However,
the compensation of the involved parties is not described. In contrast, [25] focus on the
enforcement of those SLAs. They propose a Witness Model which consists of a Witness
Committee that is in charge of monitoring the service on which the parties agreed on. On
violation detection, they reach a consensus on whether or not a violation happened, and
if so, they report it to the SC to execute a payment.

The authors of [26] focus on the usage of Ethereum SCs in the context of Small-Cell-as-a-
Service (SCaaS) agreements between network operators and small-cell owners. They did,
however, not focus on the monitoring and or compensation part. Moreover, [27] proposed
a framework to cover all the phases of the SLA lifecycle. They suggest an architecture
with two different networks: the side-chain and blockchain network. The former is used
for heavy computations such as discovery and negotiation of SLAs, the latter is used for
SC execution. An Oracle serves as an interface between them. The detection of SLA
violations is done in a similar way as [25], since they propose the inclusion of network
participants to take over the role of an auditor.

3.3 Discussion

As it is outlined in Section 3.1, there has been some research since about two decades trying
to facilitate the SLA management. The WSLA language developed by IBM was quite
influential and served as a foundation for later research. Some of the proposed solutions
present dedicated environments for the different lifecycle phases. Other authors suggest
an integration of a regulator to support the monitoring phase. This regulator also provides
an objective reputation system by collecting data from previous SLAs and ranking the SPs
based on that. Despite the proposals being sophisticated, they all lack in addressing the
enforcement of penalties. Additionally, the introduction of the aforementioned regulator

3.3. DISCUSSION 13

means that there is another layer of trust, because the customer must trust that the
regulator is not SP-biased.

In Table 3.1 an overview is presented of the related work and the life-cycle phases that
are addressed. In such a table the symbol “3” means fully addressed, “37” represents
partially fulfilled, and “7” means not addressed.

SLA Life-cycle Phases
Work #1 #2 #3 #4 #5 #6

[23] 7 7 7 37 3 3

[24] 7 7 73 7 73 7

[25] 7 7 3 3 3 3

[26] 7 7 37 7 7 37

[27] 3 3 3 3 3 3

This Work 7 37 37 37 3 3

Table 3.1: Related Work and Addressed Phases

The author of [23] takes a focused approach and addresses the enforcement of payments.
Monitoring is partially covered as only the validation of measurements takes place in the
SC. [24] is similar, but does not cover the customer compensation. While [26] only par-
tially covers some phases, [25] addresses phases #3 to #6, leaving out the discovering and
definition phase. [27] though, covers the whole SLA lifecycle and seems to be quite sophis-
ticated. This work focuses on the phases #5 and #6 and only partially addresses phases
#2 to #4. The definition phase happens outside of SLAMer but in order to guarantee a
valid SLA, a review process takes place that mimics this phase. The establishment cor-
responds to the SLA being ready for deployment and activated. Monitoring the services
is performed by a third party solution, however the verification of the service levels takes
place inside the SCs.

Overall, research in the field of SLAs in conjunction with SCs tends to address the second
half of the SLA lifecycle. Mainly, the availability of a monitoring service is important so
that SCs can verify the measurements and take payments accordingly. The first half of
the SLA lifecycle has been widely covered in previous research and is not of big interest
regarding the integration of SCs.

14 CHAPTER 3. RELATED WORK

Chapter 4

Blockchain-based SLA Management
System

In this chapter, SLAMer (SLA Manager) is presented. SLAMer relies on the blockchain
to provide a trusted and immutable SLA management solution. SPs can register their
SLA by collecting all the technical details specified in the agreement. After the customer
agrees with the data entered by the SP, the SLA is deployed as a SC and is responsible
for verifying the services in scope. By this mechanism, the problems of distrust can
be addressed by automating the process of paying a compensation to the customer and
proving immutability to the data stored in the SC.

4.1 SLAMer Design

The architecture of SLAMer is depicted in Figure 4.1. Both the SP and customer can
access SLAMer by logging in via the GUI which serves as the frontend. The roles are not
mutually exclusive. A party can be in either roles, depending on the SLA, i.e., a party can
be a SP in one SLA and a customer in another. Any actions performed by the parties are
sent to the backend through the SLAMer API and then processed by the SLA Manager
and the Blockchain Connector. The components that compose SLAMer are described in
the next items.

15

16 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

Customer

SLAMer

Graphical
User

Interface
(GUI)

Service Provider

Ethereum Blockchain

SLAMer API

SLAs SLOs

Monitoring Solution

Users

Blockchain
Connector

SLA
Manager

Figure 4.1: SLAMer Architecture

• Graphical User Interface: ServiceProvider and Customer can register themselves
over the GUI and log in to see their SLAs and the state they are currently in.

• SLAMer API: The REST API endpoints are implemented here. Any HTTP re-
quests (e.g., POST and GET) coming from the frontend are handled and passed to
the SLA Manager. The API is also accessible for Monitoring Solutions. These are
services which actually measure the parameters defined in an SLA. These measure-
ments are sent to the SLAMer API and passed to the corresponding SC.

• SLA Manager is responsible for the general business logic. This is the core com-
ponent of SLAMer and takes care of the maintenance of the SLAs and security.
Furthermore, the SLA Manager is responsible for user registration, authentication
and authorization. Furthermore, it is tightly coupled to the Blockchain Connector
to keep the SLA states in sync with the SCs.

• Blockchain Connector is in charge of deploying SCs and fetching information
from them. The Blockchain Connector also listens for events emitted by SCs on the
blockchain, such as state changes.

• Database: The database stores all the SLA information. It persists all the relations
to involved parties (i.e., users) and the specific SLO parameters. For each party,
their wallet details i.e., public and private key, are stored to sign transactions. Also,
the SC address on the blockchain is stored along with the SLA.

4.2. SLA DEFINITION 17

4.2 SLA Definition

This Section first describes the WSLA definition and provides an overview about its
concepts. Second, Section 4.2.2 explains how the SLA template for SLAMer was derived
from the WSLA definition.

4.2.1 WSLA SLA Template/Definition

For the foundation of the data model, the WSLA framework developed by IBM [19]
was taken. This framework provides an XML-based representation of an SLA, allowing
users to register SP and customers as well as an arbitrary number of supporting parties.
Figure 4.2 depicts the most important object types as described in their document [19].

Figure 4.2: UML class diagram of the conceptual object types [19]

Conceptually, an SLA can be divided into three sections: the first section describes the
involved parties, the second specifies one or more service definitions and the third section
defines the parties’ obligations.

In the parties’ section, SP and service customer are aggregated as Signatory Party. Sup-
porting Party denotes the many different services provided by a signatory party to provide
measurements and condition evaluation services.

18 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

ServiceDefinition contains all the services represented as ServiceObject which is an ab-
stract representation of a service. Its relevant properties are stored as SLAParameter and
are combined with a Metric. A Metric is either a MeasurementDirective (i.e., how a value
is measured) or a Function (i.e., how a metric is computed).

The last section defines the Obligations in an SLA. There are two types of obligations,
the first being ServiceLevelObjective and the second being ActionGuarantee. Essentially,
a SLO represents a guarantee that a SLAParameter will be in a given state for a defined
time period. On the one hand, SLOs are normally obligations of the SP who has to
guarantee that his provided services comply to given QoS level. On the other hand,
an action guarantee describes a specific action that has to be performed in a defined
situation. This guarantee can have any party as the obliged. To give an illustration, an
ActionGuarantee can be a payment of the SP to the customer in case the SP fails to
deliver the agreed QoS.

4.2.2 SLAMer SLA Template

The main focus of this Bachelor thesis is to research the management of SLAs using
blockchain-based SCs to provide integrity and trust to parties involved in the SLA lifecycle.
Therefore, for the sake of simplicity and due to time constraints, the WSLA definition was
refined to include the main parameters of an SLA. However, it is possible and planned, as
future work, to include the complete WSLA template in the implementation of SLAMer.
This refinement aid in the development of the whole design and in the implementation of
the SLAMer SC, which is described in Section 4.6.2.

Figure 4.3 shows the simplified version of the diagram presented in Figure 4.2. The refine-
ment process is summarized as follows. The Party section consists of three parties, that is
“Service Provider” and “Customer” as the signatory parties and “Monitoring Solution” as
a supporting party. The sections concerning service definitions and obligations have been
combined. The whole section of ServiceDefinition has been aggregated as a ServiceLevel-
Objective. The meaning of an SLO remains the same, just being represented in a less
granular manner. What has been an ActionGuarantee, is now being shown as a Penalty.
A penalty is actually a specific form of an action guarantee, namely being a monetary
compensation from the SP to the customer when the associated ServiceLevelObjective is
not met.

In contrast to most SLAs, SLAMer only allows monetary compensations rather than ser-
vice credits. This is due to the fact that all payments happen automatically relying on the
transfer of locked cryptocurrencies in the SC. Nevertheless, the design of SLAMer is able
to accommodate service credits compensations by not considering the monetary compen-
sation and registering, in the SC, the information that an SLA violation has occurred,
the percentage of service credits that the customer is entitled to, and whether the service
credits were claimed or not.

4.3. SLAMER DATA FLOW 19

SLA

Service Level
ObjectiveSignatoryParty Penalty

1..n 1

Party

MonitoringSolution

2 1

Figure 4.3: Simplified UML class diagram

4.3 SLAMer Data Flow

Before delving into implementation details, one must understand the high level interac-
tion and the involved actors in SLAMer. Figure 4.4 depicts this interaction in a UML
sequence diagram. The main actors are ServiceProvider, Customer, MonitoringService
and SmartContract.

The main process runs as follows. The ServiceProvider creates the SLA by entering all
the details as negotiated with the customer. During this process, the MonitoringService
is registered by entering its wallet details. This wallet details are later needed to connect
to the SC. To make sure that the SP does not enter parameters that do not correspond
to the agreement, a review process is started. The ServiceProvider sends the SLA to the
Customer who in turn checks if everything is correct. If this is not the case, he rejects
the SLA with a note on what is wrong. The SP has to revise the SLA and send it again
for review. This process is repeated until the Customer accepts it.

The ServiceProvider can now deploy the SC on the Ethereum blockchain. The Customer
gets notified as soon as the SmartContract is deployed. He/She then deposits the agreed
price in ether in the SmartContract. This amount is locked in the contract for the duration
of its validity. This deposit activates the SC which is then ready to receive monitoring
data.

20 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

:Customer :MonitoringService

confirm()

:SmartContract:ServiceProvider

createSLA()

sendForReview()

register()

reject()

accept()

deploy()

deposit/activate()

confirm()

[SLA not ok]

[SLA valid]

verifySLOs()

terminateSLA()

alt paySLAPrice()

transferRemainingFunds()

compensateCustomer()

[nrOfViolations == 0]

[else]

reviseSLA()

loop

sendMeasurements()loop

Figure 4.4: UML sequence diagram of the main data flow

The MonitoringService starts to send measurement data to the SmartContract by con-
necting to the Ethereum blockchain with the wallet details defined at the point of regis-
tration. As long as the SLA is valid, the SmartContract periodically verifies all the SLOs
to make sure all the performance levels are met. There are two conditions that must be
met cumulatively for the SLA to be valid, the first being that it is between the start and
end date, the second being that the number of violations has not reached the violation
threshold. The latter depends on the exact terms defined in the SLA. For example, the
SLA can define the availability of a web server of 99.99% in one year, but if the actual
up-time is less than 95%, the SLA is terminated, even if the year is not over yet. Any
performance level between 95% and 99.99% will not terminate the SLA but will give a
defined amount back to the customer at the end of the SLA lifetime.

Thus, when the SLA becomes invalid, the SmartContract will terminate the SLA. If the
SLA has never been violated, the entire amount will be transferred to the ServiceProvider.
Otherwise, a compensation value is calculated and deducted from the SLA price and sent

4.4. SLAMER SLA STATE MANAGEMENT 21

back to the Customer. The remaining funds will then be transfered to the ServiceProvider.

4.4 SLAMer SLA State Management

SLAMer introduces additional states complementing the SLA lifecycle defined in Chap-
ter 2. These states are based on the SLA lifecycle states defined by IBM [28] and support
the management of the lifecycle phases. The possible states in which an SLA can be and
its relation to the lifecycle phases are presented in Table 4.1.

Lifecycle Phase States Description

Definition Identified The SP has entered the service requirements and the customer but has not yet submitted the SLA

Establishment

Requested The SP finished registering the SLA and submitted it to the customer
Accepted The customer has accepted the terms submitted by the SP
Rejected The customer rejected the terms submitted by the SP

Pending Deployment The SC is being created and SLOs are being added; the confirmation from the blockchain is pending
Deployed The SC is deployed and ready to be activated by the customer

Pending Deposit The deposit is pending until the blockchain confirms this transaction
Failed Something went wrong with the SLA and cannot proceed to the next state

Monitoring Active The SLA is running and being monitored
Termination

Inactive
The SLA has expired or has been terminated due to violations

Penalty Enforcement

Table 4.1: SLA Lifecycle and possible states

The reason why such states were introduced is to have a distinction inside the lifecycle
phases itself. Notably, the Establishment phase requires a more granular view. When
the SLA enters the Establishment phase, the review process starts between the customer
and the SP (see Section 4.4). Before the SLA can be considered as active or ready
for monitoring, the customer has to explicitly agree that the SLA is correct (Accepted).
Furthermore, the SLA is activated in two steps, namely the SP deploying the SC on the
blockchain and the customer depositing the funds on the contract. Both of these steps are
direct interactions with the blockchain and require a confirmation before the process can
proceed. Since this takes some time, transactions are pending while the confirmation is
outstanding. If an error occurs during deployment or activation, the SLA is set to Failed.
Without this status, the SLA would remain in its previous state not being able to proceed
to the next state. Further, the involved parties would not be aware that the SLA has
failed.

Concerning the two lifecycle phases Termination and Penalty Enforcement, they define
two different endpoints of the SLA lifecycle, one stating that the SLA has ended normally
i.e., it expired after its end date, and the other indicating an abnormal abortion. Nev-
ertheless, the phases both lead to the fact that the SLA is no longer in effect and thus,
becomes Inactive.

These steps considered, a finer distinction is useful in order to make the transitions from
one phase to the next more reliable and secure. The introduced steps serve as checkpoints
to avoid invalid transitions e.g., the customer rejects the SLA and the SP deploys it
anyway. What’s more, SLAMer can read the state of the SLA in order to perform access
checks on which party can perform which actions, if any, in which state.

22 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

4.5 SLA SC

The SC was based on the definition provided by [9], where the SC implements functions
to manage SLAs and compensate customers in a dynamic manner. However, in SLAMer,
the compensation occurs when a violation is detected and the SLA finishes. Nevertheless,
it is possible to implement the compensation value calculation based on each SLO in a
dynamic manner.

Function Parameters Access Control

Create SC customer, monitoringService, price, daysOfValidity SP
addSLO id, * SP
deposit value customer
verify measurement Monitoring Service

terminateSLA None (Customer and SP) or Monitoring Service
compensateCustomer None Monitoring Service

Table 4.2: Defined SC Functions and Access Control

The logical flow occurs as follows. Firstly, the SP deploys the SC after both parties agreed
on the SLA (see function Create in Table 4.2). Secondly, the customer deposits Ether in
the height of the SLA price, which is then locked in the contract until the SLA expires
or terminates. This deposit activates the SLA so that all parameters can be checked
against incoming measurement data. Thirdly, when the SLA expires or terminates due
to violations, the Ether locked in the contract is relieved to the SP deducted by any
compensation. The compensation gets transferred back to the customer. In the following
items, the functions in Table 4.2 are discussed.

• Create: Can only be triggered by the SP. This is ensured by a modifier in the SC.
The parameters customer and monitoringService refer to their Ethereum wallet
addresses.

• addSLO: After the SC is created, the SP adds each SLO separately. The function
name addSLO is a placeholder name for all the SLOs. Each function is named after
the pattern add[sloType]. Every function accepts the id parameter which serves
as an unique identifier inside the SC. The asterisk (*) indicates that additional
parameters are accepted, but vary from SLO to SLO, depending on its type.

• deposit: The ‘deposit function is callable for anyone, however, it is only executed if
the sender’s address matches the customer’s address. Access control is also ensured
by modifiers. The value parameter refers to the amount of Ether that is sent to the
SC, which must be equal to the amount defined in the SLA.

• verify: The verification of the SLOs can only be accessed by the monitoring service.
This is to prevent the parties to send wrong data on their behalf. For instance, the
SP could send data that complies to the SLA in order to obfuscate that in reality
the SLA is not met and prevent its termination. The same applies to the customer.

4.6. IMPLEMENTATION 23

• terminateSLA: The termination of an SLA is triggered by the monitoring service,
more precisely by the data it sends. The expiration also terminates the SLA and
transfers the ether in the SC to the SP and to the customer in case of a violation.
The Customer and SP are in parenthesis because in SLAMer both can trigger this
function manually for testing and demonstration purposes. This behaviour can be
restricted in the SC.

• compensateCustomer: This function is triggered by the terminateSLA function,
but only if there are violations of the SLOs. It takes a specific amount of the
deposited cryptocurrencies and transfers it to the customer’s account.

4.6 Implementation

As discussed in Section 4.1, SLAMer consists of three main parts, namely the GUI, the
backend and the SCs on the Ethereum blockchain. Details about each parts implementa-
tion are described in the following subsections.

4.6.1 SLAMer Backend

The backend hosts the main business logic in order to create and manage SLAs. It was
written using the Java Spring framework [29], which is a framework that allows the quick
development of state-of-the-art solutions. It allows to build applications according to dif-
ferent patterns. In the context of SLAMer, Spring helped in managing all the different
business services and sharing single instances of them across the application using de-
pendency injection. With this, a RESTful API was developed which listens to requests
from different clients. Using Spring’s security integration, all the REST endpoints can be
secured against unauthorized or unauthenticated users and unknown origins.

All the data is stored in a PostgreSQL database [30]. For this, the database library jOOQ
was used [31]. This enabled code generation out of the database schema, which resulted
in being very helpful when changing tables or attributes in the database. Also, jOOQ,
which stands for Java Object Oriented Querying, allows building SQL queries with
java functions instead of executing plain SQL query strings. This helps to prevent syntax
and type mapping errors due to database migrations. Moreover, jOOQ is easily integrated
with Java Spring.

To connect to the Ethereum blockchain, the Java web3j library was utilized [32]. This
library not only simplifies the process of deploying SCs to the blockchain but also to call
all the SC functions by abstracting the creation of transactions and private key signing
as well as the mapping from data types in Java and Solidity, e.g., BigInteger to uint

and vice versa. For a SC to be deployed, the Solidity source code first has to be compiled.
This results in having two additional files, namely an Application Binary Interface (ABI)
file and a binary file. With these two files, web3j generates a Java wrapper which makes
the interaction possible and easy to use.

24 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

4.6.2 SLA SC

The SC was implemented using Solidity, which is a Turing-complete language provided by
the Ethereum blockchain. Turing-completeness is required by SLAMer because there are
functions e.g., the calculation of the compensation, that require more complex functions.

Listing 4.1 shows the structure of an SLA. It consists of the signatory parties service-

Provider and customer which both represent the respective Ethereum addresses. This
enables both parties to receive ether. The monitoringService acts as the supporting
party. Furthermore, all the SLOs are stored as a mapping. Here the ID of each SLO
serves as the key to access the corresponding object. The state attributes paid, termi-
nated and status are used for checks to avoid unauthorized manipulations of the SLA.
status can have one of three values, namely 3, 5 and 6. These codes stand for “Ac-
cepted”, “Active” and “Inactive” respectively. price is the service price of the SLA. Since
the SLA is only valid during a period of time, a small struct called validity stores the
information about start and end time. The SLA instance in the SC is referenced by the
name deployedSLA.

1 struct SLA {

2 address payable serviceProvider;

3 address payable customer;

4 address monitoringService;

5 mapping(uint => Slo) slos;

6 uint price; // price for the service

7 bool paid; // is it paid? = false

8 bool terminated;

9 uint status; // 3 (Accepted), 5 (Active), 6 (Inactive)

10 validityPeriod validity;

11 }

12
13 SLA deployedSLA;

Listing 4.1: SLA Struct

The implementation logic of SLOs consists of several contracts. By considering a contract
as equivalent to a class, the structure can be represented as an UML class diagram as
shown in Figure 4.5. Every SLO can be verified; thus, it implements the Verifiable in-
terface. Since SLAMer currently only supports three types of SLOs, the SC can also only
support these three types. Uptime, Throughput and AverageResponseTime implement
the specific logic of verifying each SLO type.

4.6. IMPLEMENTATION 25

Uptime AverageResponseTimeThroughput

«interface»
Verifiable

Slo

Extends Extends Extends

Figure 4.5: UML class diagram of SLOs

Listing 4.2 shows the SC code of the interface and SLO. The Slo contract only extends
the interface by the fields id, violations and maxViolations. The Slo is an abstract
representation stating that any SLO can be violated a certain amount of times and there-
fore provides the Violated event. Since an SLO is added to an SLA, there is also an
SloAdded event to confirm that the SLO has been added successfully.

1 interface Verifiable {

2 function verify(uint _measured) external returns (bool);

3 }

4
5 contract Slo is Verifiable{

6 uint id;

7 uint violations;

8
9 uint maxViolations = 5;

10
11 event SloAdded ();

12 event Violated ();

13
14 constructor(uint _id) public {

15 id = _id;

16 violations = 0;

17 }

18 }

Listing 4.2: SLO contract and the Verifiable interface

The SLO contract does not yet implement the verify function of the Verifiable in-
terface. Every type of SLO is a separate contract that extends an abstract Slo. The
concrete SLO types implement this function as it is illustrated in Listing 4.3. It shows
the types Uptime, AvrgResponseTime and Throughput on lines 1, 14 and 28 respectively.
They all extend the Slo by their characteristic attributes which will be verified during

26 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

the monitoring phase. Listing 4.3 only shows the stubs of the verify functions, as they
are explained in detail further in this chapter.

1 contract Uptime is Slo {

2 uint percentageOfAvailability;

3
4 constructor(uint _id , uint _availability) Slo(_id) public {

5 percentageOfAvailability = _availability;

6 emit SloAdded ();

7 }

8
9 function verify(uint _measured) public returns (bool) {

10 // verification logic

11 }

12 }

13
14 contract AvrgResponseTime is Slo {

15 uint avrgResponseTimeValue;

16
17 constructor(uint _id , uint _responseTime)

18 Slo(_id) public {

19 avrgResponseTimeValue = _responseTime;

20 emit SloAdded ();

21 }

22
23 function verify(uint _measured) public returns (bool) {

24 // verification logic

25 }

26 }

27
28 contract Throughput is Slo {

29 uint dataSize;

30 uint thresholdValue;

31
32 constructor(uint _id , uint _dataSize , uint _thresholdValue)

Slo(_id) public {

33 dataSize = _dataSize;

34 thresholdValue = _thresholdValue;

35 }

36
37 function verify(uint _measured) public returns (bool) {

38 // verification logic

39 }

40 }

Listing 4.3: The concrete SLO contract implementations

The main functions presented in Table 4.2 are described as follows. “Create” is actually the
constructor function but for the sake of understanding this name was chosen. When a
SP deploys the SC, the constructor function (see Listing 4.4) is called. SLAMer gets the
wallet address from the customer and the monitoring service and passes this information
together with the number of days the SLA is valid and its price to the constructor.
Before anything happens, it is assured that no party goes under the same address as an
other party. In other words, the customer or monitoring solution can never create the
SC because SLAMer will always send the customer and monitoring service address as the

4.6. IMPLEMENTATION 27

parameters. The address of the SP, who is the sender, is stored as the serviceProvider.
Once the initialization has completed, the ContractCreated event is emitted to notify
the SP that the SC has been created successfully.

1 constructor(address payable _customer , address

_monitoringService ,uint _price , uint _daysOfValidity) public{

2 require(msg.sender != _customer , "The SP must not be the

customer");

3 require(msg.sender != _monitoringService , "The SP must not

be the monitoring service");

4 deployedSLA.serviceProvider = msg.sender;

5 deployedSLA.customer = _customer;

6 deployedSLA.monitoringService = _monitoringService;

7 deployedSLA.price = _price;

8 deployedSLA.paid = false;

9 deployedSLA.terminated = false;

10 deployedSLA.validity.daysOfValidity = _daysOfValidity;

11 emit ContractCreated ();

12 }

Listing 4.4: constructor, named “Create”

In the current state, there are no SLOs in the deployedSLA yet. In the process of creation,
SLAMer has to add each SLO individually but has to wait until ContractCreated confirms
that the contract was created. SLAMer evaluates each type of SLO in the SLA and calls
the corresponding functions. Listing 4.5 shows the three functions that the SP calls when
adding SLOs. Since an SLA can have any number of SLOs, SLAMer notifies the SC that
all SLOs have been added, by calling the confirmComplete function (see Listing 4.5, line
10). The SLA gets initialized with a status of 3. In SLAMer, 3 stands for “Accepted”
which describes the state where both parties have agreed on the SLA but it is not yet
active.

1 function addUptime(uint _id , uint _availability) public onlySP{

2 deployedSLA.slos[_id] = new Uptime(_id , _availability);

3 }

4
5 function addAvrgResponseTime(uint _id , uint _responseTime)

public onlySP {

6 deployedSLA.slos[_id] =

7 new AvrgResponseTime(_id , _responseTime);

8 }

9
10 function confirmComplete () public onlySP {

11 deployedSLA.status = 3; // Accepted

12 emit ContractComplete ();

13 }

Listing 4.5: SLO addition functions

After the SP successfully deployed the SC, it is the customer’s task to deposit Ether in
the contract to activate it. The deposit function can only be executed by the customer,
as it is ensured by the modifier in Listing A.1 at line 2. Several checks are made, namely
that the contract is not already active, and the amount of ether sent by the customer must
correspond exactly to the price. Further, the status of SC must be 3 (Accepted). The

28 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

start and end time of the SLA is set by taking the current timestamp as the start time
and adding the amount of days to it to determine the end time. This function can only
run once, since it would not pass the require statements a second time. After running
successfully, SLAMer gets notified by the CustomerDeposit event containing the customer
address and the amount of ether he has sent. The SLA is now “Active” (see listing A.1,
line 12) and ready to validate the SLOs.

1 function deposit () public payable

2 onlyCustomer returns (bool) {

3 require (! isActive (), "The contract must not be active yet");

4 require(deployedSLA.price == msg.value ,

5 "The value must equal the SLA price");

6 require(deployedSLA.status == 3,

7 "The SLA must have status 3 (Accepted)")

;

8 deployedSLA.paid = true;

9 deployedSLA.validity.startTime = now;

10 deployedSLA.validity.endTime = now + (deployedSLA.validity.

daysOfValidity * secondsPerDay);

11 emit CustomerDeposit(msg.sender , msg.value);

12 deployedSLA.status = 5; // Active

13 return true;

14 }

Listing 4.6: deposit function

Once the SLA is “Active”, the monitoring service can start measuring the SLOs defined in
the SLA. Those values are sent to the SLAMerAPI (see Listing 4.1 for reference). SLAMer
retrieves the correct SC address and calls the correct functions depending on the SLO
type (see Listing 4.7). The verification logic is illustrated using the Average Response
Time SLO. SLAMer sends the measured response time together with the ID of the SLO
to the function. First, the function can only be executed by the monitoring solution.
This is ensured by the onlyMonitoringService modifier. Second, it is checked if the
SLA is still valid, both in terms of validity and number of violations. After retrieving the
corresponding SLO, its verify function is called (see Listing 4.7). Should the verify

function return, hence verification fails, the SLA is terminated (this process is explained
in detail further on the thesis).

1 function verifyAverageResponseTime(uint _sloId , uint _measured)

public onlyMonitoringService {

2 checkValidity ();

3 Slo avrgResTime = deployedSLA.slos[_sloId];

4 if (! avrgResTime.verify(_measured)) {

5 terminateSLA ();

6 }

7 }

Listing 4.7: Verification functions

As mentioned above, the verify function checks the measured response time value against
the value specified in the SLA. As it is shown in Listing 4.8, a counter adds the num-
ber of violations. The maximum number of tolerated violations is currently set to five.
When exceeding this threshold, the Violated event is emitted to SLAMer . The value of

4.6. IMPLEMENTATION 29

maxViolations is just an arbitrary number. Of course it could be made more dynamic,
for instance specify a percentage as a threshold (e.g., 90% of the measured response times
should be less than 500 ms). For testing purposes and the sake of simplicity, a static value
was chosen.

1
2 uint maxViolations = 5;

3
4 function verify(uint _measured) public returns (bool) {

5 if (_measured > avrgResponseTimeValue) {

6 violations += 1;

7 if (violations >= maxViolations) {

8 emit Violated ();

9 return false;

10 }

11 }

12 return true;

13 }

Listing 4.8: Average Response Time verify function

4.6.3 Graphical User Interface

The graphical user interface was developed using the Angular framework [33] created and
maintained by Google. Angular is a JavaScript framework which uses the Model-View-
Controller (MVC) pattern and organizes the frontend of an application into reusable
components. Angular provides its own language, called Typescript, which is a super set
of JavaScript that contains more functionality than JavaScript itself. Furthermore, it
contains useful modules for routing and HTTP. Especially the HTTP module is useful for
easily constructing asynchronous requests and send them to the backend API. In terms of
resource management, angular provides so-called lifecycle methods for each component.
These create, place and remove these components from the Document Object Model
(DOM). Coupled with that, it allows to perform specific operations during specific lifecycle
steps, for instance fetch information from an API before the component is displayed to
the user.

Functionality

The frontend is composed of three parts. (i) The Home tab which provides an overview
over a users SLAs, (ii) the Create SLA where a user can create a new SLA in the role of
the SP – This starts a process where all the SLOs are registered as well as the monitoring
solution – and (iii) the Notifications tab informs the user about status changes and actions
that the user has to perform.

Figure 4.6 shows the screen of the overview that the users face when they log into SLAMer.
It contains a table presenting general information about all the SLAs a party has, either
as a SP or a customer. Every SLA is given a title to better identify an SLA. On the top,
a pie chart shows how many SLAs are in which lifecycle phase (see Section 2.1.1 for more

30 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

Figure 4.6: Home tab with the SLA overview

details). From here, the details of each SLA can be seen by clicking on the respective
button on the right hand side of each row. Furthermore, on the top right of the page, the
current balance is showed if the wallet details are registered.

Figure 4.7: The first three steps of creating an SLA

The second tab, Create SLA, lets a SP start the SLA creation process. This process is
depicted in Figure 4.7 and Figure 4.8 and consists of four steps. It starts with specifying
the customers email address and the title of the SLA. The start and end time of the SLA
are chosen as well as the total service price.

In step two, the SP has to register a new monitoring service which will be responsible
for this SLA. This is done by entering the wallet address and private key of the service.
This is due to the fact that wallet credentials are needed in order to interact with the SC.
However, the SP can also choose an already existing monitoring service by clicking on the
respective checkbox at the bottom.

The third step provides the possibility to add all the SLOs. The SP can choose between
the types AverageResponseTime, Uptime and Throughput and fill in the corresponding

4.6. IMPLEMENTATION 31

Figure 4.8: Step 4: Detailed overview over the created SLA

details. Once he finished adding the SLOs, he can go to the next workflow step by clicking
finish.

In the last step (see Figure 4.8), the SP is provided a detailed overview over the current
SLA. He can check if all the SLOs are included and click add more SLOs on the top
right if something is missing. This will lead the SP back to step three. When the SLA is
complete, he can send it to the customer for review by clicking on the respective button.
This ends the process for the SP.

The last tab, Notifications, is shown in Figure 4.9. Both parties get notified about actions
required to perform. As a customer, he has to Review a new SLA and either accept it
or reject it with a note on what is wrong. The SP on the other hand has to Revise an
invalid SLA, which moves the SLA back to the customer. When the SLA is accepted by
the customer, the SP can Deploy the SLA. This is the moment where the SC gets created
on the Ethereum blockchain and populated with all the data from the SLA. This leads
to the last action to be performed by the customer, namely Activate. This is where he
deposits Ether in height of the SLA price on the SC and makes it ready to be monitored.

32 CHAPTER 4. BLOCKCHAIN-BASED SLA MANAGEMENT SYSTEM

Figure 4.9: Notifications tab with required actions

Chapter 5

Evaluation and Discussion

SLAMer was evaluated regarding three aspects. Section 5.1 is dedicated to the economic
aspect in terms of costs. The management aspect is evaluated and discussed in Sec-
tion 5.2, taking into account security-related elements as well. In Section 5.3, usability
and performance of SLAMer are discussed with regard to the blockchain performance.

For this purpose, Ganache was used to simulate a private Ethereum blockchain. This tool
runs independently from the web3 implementation. Ganache is a standalone application
that comes with 10 pre-configured accounts per default, each having an initial balance of
100 ETH. What’s more, one can enable auto-mining which means that transactions are
processed instantaneously. It can also be turned off and one can define a custom mining
block time to simulate real-world behaviour.

5.1 Economical Evaluation and Discussion

Since the deployment and interactions with the SC that alters its state require a payment
of a certain gas fee, this section analyzes these costs. Table 5.1 presents an overview over
the SC functions with the gas consumption and its equivalent value in USD. The values for
the consumed gas are mean values taken from 5 transactions. In order to retrieve these
values, a SC was deployed from SLAMer to the Ganache blockchain. All the functions
listed in Table 5.1 were then triggered either from SLAMer or manually from the Remix
IDE. Ganache has a transaction and block history, providing information such as the
amount of gas consumed per transaction and per block. The transactions were executed
at a fixed gas price of 5 Gwei (i.e., 5 billion Wei) and an ether price of 191.07$ as of
August 25 2019.

33

34 CHAPTER 5. EVALUATION AND DISCUSSION

Function Gas Consumed Price [USD]

Create SC 1,154,153 $1.09645
addSLO 42,540 $0.04041
deposit 89,374 $0.08491
verify 21,656 $0.02058
terminateSLA 50,106 $0.0476
compensateCustomer 30,076 $0.02858

Table 5.1: Gas and Transaction Price Estimation

It is noticeable that the creation of the SC is the most expensive function. This emerges
from the way transaction costs are composed in Ethereum, namely a fixed and a variable
part. The EVM demands a fixed cost of 32,000 gas for a contract creation in addition
to the 21,000 gas that every transaction costs. The remainder is the variable part which
depends on the size of the contract code. Each byte of code consumes 200 gas i.e., the
more code a contract has the more expensive its creation is. All the other functions in
Table 5.1 are normal transactions. These are composed of the fixed gas fee of 21,000 plus
a certain fee for each operation [11].

The monitoring service needs to pay the gas fees every time it sends data to the SC.
This results in a trade-off between cost and accuracy. The more often the service sends
measurements, the more expensive it becomes. In the same time, the data is more accu-
rate since the frequency of measurements leads to a lower chance of missing a violation.
When increasing the time between the intervals, costs decrease but chances are higher
that a violation is not detected. Clearly, this only applies to SLOs which need constant
monitoring e.g., availability. Other type of SLOs do not have this disadvantage as they
only require verification on a specific occurrence e.g., response time to a phone call only
needs to be verified when a phone call is made.

To go further into detail, Equation 5.1 presents the calculation of the gas cost. Every veri-
fication in the SC requires a certain amount of gas (Gasconsumed), which is multiplied with
the gas price. Additionally, this cost is multiplied by the number of SLOs that are verified.
Equation 5.1 shows the calculation of the accumulated cost over time. The SLAvalidity

represents the validity period of an SLA, which is divided by the monitorgranularity. Mon-
itoring Granularity is defined by the period of time that a monitoring solution will inform
the values to the SC. This results in the total number of verifications throughout the SLA
lifetime. Multiplying this ratio by the Gascost results in the accumulated costs.

Gascost = Gasconsumed ×Gasprice × SLOquantity (5.1)

Accumulatedprice =
SLAvalidity

monitorgranularity
×Gascost (5.2)

5.1. ECONOMICAL EVALUATION AND DISCUSSION 35

When plotting this equation with some sample data, one gets the chart depicted in Figure
5.1. The lines follow a linear equation, which is defined by y = ax + b, where a is the
gradient and b represents where the curve intercepts the y-axis. For one SLO, three
different levels of monitoring granularity were chosen (e.g., 0.5 s, 1 s, and 2 s) for an SLA
validity of 30 min. When taking the gas consumption of the verification function of 21,656
(see Table 5.1) and the current standard gas price as of August 2019 [34] of 5 Gwei, the
gas cost of one verification is 0.00010828 ETH.

0 200 400 600 800 1000 1200 1400 1600 1800
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

m
ul

at
ed

 C
os

t (
ET

H)

Every 2 seconds
Every second
Every 0.5 seconds

Figure 5.1: Accumulated Cost for Smart Contract verification over time

The level of the monitoring granularity has a direct impact on the slope a and acts as a
lever. As can be seen in Figure 5.1, when monitoring the service in intervals of 2 seconds
the accumulated costs amount to 0.1 ether. When measuring every second and every half
second, the costs result to approximately 0.2 and 0.4 ether respectively. As of August
2019, verifying the SLO for 30 minutes every half second will cost about 74 USD.

For the plot in Figure 5.1 a fixed gas price is assumed. When monitoring for longer
periods, the curve will not remain linear, since the gas price is under constant change as
well as the ether price. Nonetheless, it should be quite obvious that having a monitoring
granularity in the range of seconds is not feasible considering that SLAs usually have a
validity of several months to a year. Keeping the same monitoring granularity would result
in being quite expensive for the monitoring service. Thus, in order to reduce these costs,
the monitoring granularity has to be decreased. As mentioned before, increasing the time
between verifications will lead to a higher probability that violations are not detected.
SPs and customers would need to find the optimum between costs and accuracy, so that

36 CHAPTER 5. EVALUATION AND DISCUSSION

they can set the monitoring service to pay a reasonable price for an adequate monitoring
granularity.

5.2 Management Discussion

One advantage of SLAMer is the data integrity provided by the blockchain. All the data
stored in the SC, including the SC source code, cannot be altered once it is deployed.
Likewise, this data is always available as long as one has the address of the SC, since it is
not dependent on a single node of the blockchain. This means, SLAs and its data can be
viewed without having to rely on SLAMer.

Concerning SLA management, penalties can be enforced without the customer having to
manually prove a violation. This fact is helpful for both parties. Customers do not have to
invest time in the investigation and data gathering in case of a violation, not to mention
the avoidance of going through the service request process and waiting for a response,
as well as potentially having to repeat this process should the request be rejected. The
SP can benefit from this as well. In order to process all service requests, resources have
to be allocated which manually work through these requests. This is a time-consuming
endeavour because the data provided by the consumer to underpin his claim needs to be
examined and compared to the SPs measurements. Those resources of the SP could be
saved or used elsewhere.

One drawback of this solution is the centralization that occurs by relying on the database
in SLAMer. Before the SC is deployed, the availability of the SLA data relies completely
on the availability of the database itself. After the contract is deployed on the blockchain,
both parties are able to retrieve the SC address. With this address parties can also interact
with the SC without SLAMer because they can use another client for this. Naturally, they
need to connect to the blockchain with their correct wallet for this.

Regarding the use of an external monitoring solution, two problems arise. First, the SP
and customer need to be sure that the monitoring service is measuring the SLOs correctly
and constantly. If the service sends wrong measurements, the SC could potentially ter-
minate the SLA mistakenly or, in the opposite case, not detect a violation although the
SLO is not met. Second, the monitoring service has to function properly during the entire
lifetime of the SLA. In the case where the monitoring service is down, no measurements
can be sent to the SC and thus, the SLA remains unverifiable. Furthermore, in the mean-
time the customer would need to monitor the SLA manually again, as well as prove any
violations. Taking these two problems into account, the monitoring service remains as a
TTP in the system.

Security-wise, there currently is an issue regarding the wallet credentials of users. Since
the interaction with the Ethereum blockchain happens server side (backend), this implies
that the server would need to pay for all the gas fees for all users in the system. To avoid
this, parties have to provide their wallet address and private key, so that SLAMer can
perform transactions on their behalf. This can result in a serious issue since the private
key is intended to remain with the wallet owner only. Further, this adds an additional

5.3. USABILITY AND PERFORMANCE DISCUSSION 37

layer of trust, because users have to be sure that SLAMer does not lose their private keys
to an attacker.

The other possibility would be to shift the deployment and interaction of SCs to the
client. In this case, both parties can pay their own fees and retain their private keys.
Additionally, the aforementioned trust issue would not exist. Since all the important data
will be immutably persisted in the SC on the blockchain, any data leak would not expose
the users to any risk whatsoever. In order to interact with the SC from the client-side,
users would need to install a browser add-on like MetaMask [35]. MetaMask allows users
to have a wallet in the browser that facilitates interaction directly with the blockchain.
This topic is mainly a design decision and should be possible to adapt if required.

5.3 Usability and Performance Discussion

In SLAMer, usability and performance are directly related to the performance of the un-
derlying blockchain. Since every transaction to the SC needs to be mined first in order
to be appended to the blockchain, this leads to a blockchain-dependent latency. Each
interaction with the blockchain that requires a confirmation or modifies a state in the
SC requires a certain time until the user knows whether it was successful or not. In the
Ethereum blockchain the average block time is approximately 15 seconds [36]. This im-
pacts all the interactions but mainly influences the process of deploying the SLA SC. In
order for SLAMer to include all SLOs in the SC, it first has to wait for the confirmation
that it has been created. After that, SLAMer can sequentially add SLOs and finalize by
confirming that all SLOs have been committed (see Section 4.6.2).

When deploying the SLAMer SC in a test environment, as it was done in this thesis using
Ganache, the customer needs to wait for at least 2 blocks until he/she is able to deposit
the funds. Since Ganache allows to adjust the block time, this wait was not an issue in the
evaluation. However, when working in a production environment (i.e., deploying the SC
in the Ethereum mainnet), one must wait several confirmations of the block containing the
transaction until it can be considered as secure. According to the Ethereum white paper, 7
confirmations should be enough to consider a transaction as confirmed [37], which is about
2 minutes. Depending on the level of security, one can also require more confirmations
in order to be sure that a transaction is not reverted. For example, the Coinbase trading
platform requires 35 confirmations until a transaction is completed [38] i.e., about 8 to
9 minutes. As mentioned in Section 2.3.1, higher gas prices have an impact on how fast
a miner includes a transaction in a block; thus, the number of confirmations, the chosen
gas prices as well as the network congestion determine the actual time until a transaction
is completed.

To conclude, parties creating SCs in SLAMer do not have an immediate confirmation about
its creation and therefore have to wait several minutes. As long as the creation of an SLA
in a SC is not time-critical, this should not result in an issue.

38 CHAPTER 5. EVALUATION AND DISCUSSION

Chapter 6

Conclusion and Future Work

The goal of this thesis was to investigate the employment of blockchain and SCs in the field
of SLAs in order to design and implement a blockchain-based SLA management system.
SLA is a topic widely researched and many authors have proposed solutions for its issues.
However, blockchain-based SC is a novel concept; thus, being slowly applied in to solve
trust issues and payment enforcements in the SLA context. SCs have been proposed
for solving trust issues and payment enforcement. Starting from this point, SLAMer was
designed, based on the WSLA language, and a PoC implemented. It covers all the lifecycle
phases starting from the second, providing a GUI for both SP and customer to register,
activate and monitor their SLAs.

The PoC of SLAMer was evaluated in terms of economic, management aspects as well as
usability and performance. In terms of economic aspects, the costs of managing the SC
(e.g., deploy SC, include SLOs, and verify violations) resulted in being considerably high.
Verifying measurements coming from a monitoring solution over the SLA lifetime requires
continuous calls to the SC in specified intervals. There is a trade-off between cost and
the possibility of missing a violation. Depending on the parties and SLAs, the verification
intervals have to be set according to their needs.

Regarding management, there are benefits to both sides (SP and customer), such as the
data integrity and enforcement of penalties. Drawbacks arise from the centralization
by partially relying on the database in SLAMer and being dependent on the correctness
of the data provided by the monitoring solution. Further, parties have to provide both
public and private keys to SLAMer so that SLAMer can sign and send transactions on their
behalf, since the interaction with the blockchain is performed server-side. However, this
interaction can be shifted to the client which allow parties to manage their private keys.
By doing this, parties also rely less on the availability and security of SLAMer due to the
public accessibility of their contracts on the blockchain.

The employment of a public blockchain introduces challenges in terms of performance
and usability. Because SLAMer interacts closely with the Ethereum blockchain, its per-
formance is directly related to the block time of Ethereum. Thus, users cannot expect
immediate confirmations of deployed SCs since they have to wait until the blocks con-
taining their transactions are confirmed by the network which can take several minutes,
which hinders the usability of SLAMer.

39

40 CHAPTER 6. CONCLUSION AND FUTURE WORK

In conclusion, SLAMer can help in enforcing payments according to agreed terms in an
SLA. The cost of using SCs are is still expensive compared to a central database and
the main challenge regarding the employment of SC in this area. Further research is
needed to find a more cost-effective way of verifying SLOs. A possible option is finding a
blockchain that supports Turing-complete SCs and demands lower transaction fees. Even
though there are challenges, the approach presented in this thesis is feasible and, based
on the evaluation performed, the blockchain employment to address issues related to SLA
compensation is beneficial.

Since SLAMer is a PoC, it can be improved in the future. Future work is planned to con-
sider (i) multi-party SLAs (i.e., multiple SPs or customers), (ii) implement the complete
WSLA framework, with SLA definitions and parties, (iii) include the support of moni-
toring a great number of different SLOs, and (iv) integration with different Operational
and Business Support Systems (BSS). The SCs can be improved in the future as well.
A classification of different SLOs could help in implementing different generic contracts
instead of creating a separate contract for each SLO type. This would make the SCs more
dynamic and potentially simplify the calculation.

Bibliography

[1] Salman Taherizadeh et al. “Monitoring Self-Adaptive Applications within Edge
Computing Frameworks: A State-of-the-Art Review”. Journal of Systems and Soft-
ware 136 (2018), pp. 19–38. issn: 0164-1212. url: http://www.sciencedirect.
com/science/article/pii/S016412121730256X.

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. [On-line], http:
//bitcoin.org/bitcoin.pdf last visit May 20, 2019. 2009.

[3] Daniel Macrinici, Cristian Cartofeanu, and Shang Gao. “Smart Contract Applica-
tions Within Blockchain Technology: A Systematic Mapping Study”. Telematics and
Informatics. Elsevier, 2018.

[4] A. S and C. K. “Monitoring and Management of Service Level Agreements in Cloud
Computing”. IEEE International Conference on Cloud and Autonomic Computing
(ICCAC 2015). Sept. 2015, pp. 204–207.

[5] Azure. SLA for Virtual Machines. [On-line], https://azure.microsoft.com/en-
us/support/legal/sla/virtual-machines/v1_8/ last visit July 30, 2019.

[6] Amazon Web Services. Amazon Compute Service Level Agreement. [On-line], https:
//aws.amazon.com/compute/sla/ last visit July 30, 2019.

[7] Azure. Google Compute Engine Service Level Agreements. [On-line], https : / /

cloud.google.com/compute/sla last visit August 2, 2019.
[8] A. Maarouf, A. Marzouk, and A. Haqiq. “Practical modeling of the SLA life cycle

in Cloud Computing”. 2015 15th International Conference on Intelligent Systems
Design and Applications (ISDA). Dec. 2015, pp. 52–58. doi: 10.1109/ISDA.2015.
7489170.

[9] E. J. Scheid et al. “Enabling Dynamic SLA Compensation Using Blockchain-based
Smart Contracts”. IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM 2019). Apr. 2019, pp. 53–61.

[10] Sarah Underwood.“Blockchain Beyond Bitcoin”. Commun. ACM 59.11 (Oct. 2016),
pp. 15–17. issn: 0001-0782.

[11] Gavin Wood. “Ethereum: A secure decentralised generalised transaction ledger” ().
[12] Nick Szabo. “Formalizing and Securing Relationships on Public Networks”. First

Monday 2.9 (1997). url: https://ojphi.org/ojs/index.php/fm/article/
view/548.

[13] Cardano Foundation. Cardano. [On-line], https://www.cardano.org/en/home/
last visit August 25, 2019.

[14] Ethereum. Ethereum Remix. [On-line], https://remix.ethereum.org last visit
August 21, 2019.

41

42 BIBLIOGRAPHY

[15] Ethereum. Serpent. [On-line], https://github.com/ethereum/serpent last visit
August 18, 2019.

[16] Ethereum. Vyper. [On-line], https://github.com/ethereum/vyper last visit
August 18, 2019.

[17] Ethereum. LLL PoC 6. [On-line], https://github.com/ethereum/aleth/wiki/
LLL-PoC-6/d64849ce last visit August 18, 2019.

[18] Ethereum. Solidity. [On-line], https://solidity.readthedocs.io/en/v0.5.11/
last visit August 18, 2019.

[19] Heiko Ludwig et al. Web Service Level Agreement (WSLA) Language Specification.
Jan. 2003.

[20] A. Dan et al. “Web services on demand: WSLA-driven automated management”.
IBM Systems Journal 43.1 (2004), pp. 136–158. issn: 0018-8670.

[21] S. Zhang and M. Song. “An Architecture Design of Life Cycle Based SLA Manage-
ment”. Vol. 2. Feb. 2010, pp. 1351–1355.

[22] F. Seyed Mostafaei, N. Amani, and P. Hajipour. “Proposing a new QoS/SLA Man-
agement Model by Regulatory Authority”. International Symposium on Telecom-
munications (IST 2010). Tehran, Iran, Dec. 2010, pp. 508–512.

[23] Eder John Scheid and Burkhard Stiller. “Leveraging Smart Contracts for Automatic
SLA Compensation - The Case of NFV Environment”. IFIP 12th International
Conference on Autonomous Infrastructure, Management and Security (AIMS 2018).
Munich, Germany, June 2018, pp. 70–74.

[24] H. Nakashima and M. Aoyama. “An Automation Method of SLA Contract of Web
APIs and Its Platform Based on Blockchain Concept”. IEEE International Confer-
ence on Cognitive Computing (ICCC 2017). Honolulu, HI, USA, June 2017, pp. 32–
39.

[25] H. Zhou, C. de Laat, and Z. Zhao. “Trustworthy Cloud Service Level Agreement
Enforcement with Blockchain Based Smart Contract”. IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom 2018). Dec. 2018,
pp. 255–260.

[26] E. Di Pascale et al. “Smart Contract SLAs for Dense Small-Cell-as-a-Service”. CoRR
abs/1703.04502 (2017). Available at http://arxiv.org/abs/1703.04502 Accessed
29 March, 2019. arXiv: 1703.04502.

[27] R. B. Uriarte, R. de Nicola, and K. Kritikos.“Towards Distributed SLA Management
with Smart Contracts and Blockchain”. IEEE International Conference on Cloud
Computing Technology and Science (CloudCom 2018). Dec. 2018, pp. 266–271.

[28] IBM. Service level agreement lifecycle. [On-line], https://www.ibm.com/support/
knowledgecenter/en/SSWLGF_8.0.0/com.ibm.sr.doc/rwsr_gep_sla_life_

cycle.html last visit August 16, 2019.
[29] Spring. Spring Framework. [On-line], https://spring.io/ last visit August 3,

2019.
[30] PostgreSQL. PostgreSQL. [On-line], https://www.postgresql.org/ last visit

August 3, 2019.
[31] Lukas Eder. jOOQ. [On-line], https://www.jooq.org/ last visit August 3, 2019.
[32] Web3 Labs. Web3j. [On-line], https://web3j.io/ last visit August 3, 2019.
[33] Google Inc. Angular. [On-line], https://angular.io/ last visit August 11, 2019.
[34] ETH Gas Station. Gas-Time-Price Estimator. [On-line], https://ethgasstation.

info/ last visit August 16, 2019. 2019.

BIBLIOGRAPHY 43

[35] MetaMask. MetaMask. [On-line], https://metamask.io/ last visit August 15, 2019.
[36] Ethereum. Etherscan. [On-line], https://etherscan.io/chart/blocktime last

visit August 26, 2019.
[37] Ethereum. A Next-Generation Smart Contract and Decentralized Application Plat-

form. [On-line], https://github.com/ethereum/wiki/wiki/White-Paper last
visit August 26, 2019.

[38] Coinbase. Why is my transaction pending. [On-line], https://support.coinbase.
com / customer / en / portal / articles / 593836 - why - is - my - transaction -

pending- last visit August 26, 2019.

44 BIBLIOGRAPHY

Abbreviations

ABI Application Binary Interface
DOM Document Object Model
DoS Denial-of-Service
EVM Ethereum Virtual Machine
GUI Graphical User Interface
MVC Model-View-Controller
PoC Proof-of-Concept
SLA Service Level Agreement
SLO Service Level Objective
SP Service Provider
SC Smart Contract
TTP Trusted-Third-Party
UML Unified Modelling Language
WSLA Web Service Level Agreement

45

46 ABBREVIATONS

Glossary

Access Control Restricting access to a certain part of an application to a specified user
or group of users.

Rest API An interface of an application allowing systems to make a request to a specific
URI to retrieve a resource.

Authentication The act of validating the identity of a user

Authorization Authorization is the decision whether an entity is allowed to perform a
particular action or not, e.g., whether a user is allowed to attach to a network or
not.

Blockchain An immutable distributed ledger that secures transactions with the use of
cryptography principles.

Deployment Deployment is the process of making software available for use.

Ether The cryptocurrency of the Ethereum platform.

Ethereum gas Ethereum introduces the concept of gas, which is a unit that specifies
the number of operations that a miner should perform to include a transaction in
the blockchain.

Hash Result of hash function often used in cryptography.

High Level Language A programming language that is clearly abstracted from the
level of machine language.

Integrity Integrity refers to the quality of the data over its entire lifetime and means
that data is consistent, accurate and reliable.

Service Level Agreement (SLA) A contract between two parties that specify what
the service provider should deliver in terms of quality but does not define the specific
technologies used to provide such a service.

Service Level Objective A term defined in a SLA which specifies the required require-
ments for the service, such as Quality of Service (QoS) metrics.

Service Credits Used by a Service Provider to compensate a customer in case of a
violation of a Service Level Agreement which the customer can use to pay for the
upcoming service bills.

47

48 GLOSSARY

Smart Contract An executable code that runs on a blockchain.

Turing completeness A programming language is said to be Turing complete, if it is
theoretically capable of performing all computations which a computer could do if
it had infinite memory.

WSLA Framework developed by IBM to represent an SLA in an XML-based format.

List of Figures

2.1 Service Level Objectives (SLO) Examples 3

2.2 SLA Lifecycle Example [9] . 5

2.3 Blockchain Example . 6

2.4 State transition from one state to the next 7

4.1 SLAMer Architecture . 16

4.2 UML class diagram of the conceptual object types [19] 17

4.3 Simplified UML class diagram . 19

4.4 UML sequence diagram of the main data flow 20

4.5 UML class diagram of SLOs . 25

4.6 Home tab with the SLA overview . 30

4.7 The first three steps of creating an SLA . 30

4.8 Step 4: Detailed overview over the created SLA 31

4.9 Notifications tab with required actions . 32

5.1 Accumulated Cost for Smart Contract verification over time 35

49

50 LIST OF FIGURES

List of Tables

2.1 Compensation in Service Credits . 4

3.1 Related Work and Addressed Phases . 13

4.1 SLA Lifecycle and possible states . 21

4.2 Defined SC Functions and Access Control 22

5.1 Gas and Transaction Price Estimation . 34

51

52 LIST OF TABLES

Appendix A

Installation Guidelines

In order to facilitate the deployment, SLAMer is split into 3 docker containers; one for the
database, one for the backend and one for the frontend. Further, Ganache is needed to
simulate an Ethereum blockchain. Perform the following steps to setup and run SLAMer.

A.1 Getting Started

1. Go to https://www.trufflesuite.com/ganache and install the Ganache GUI. If
using Linux, you might need to install it from github:
https://github.com/trufflesuite/ganache/releases.

2. Download and install Docker from: https://docs.docker.com/v17.12/install/.
Scroll through the page and select the installation for your OS. For Linux, go to this
url: https://docs.docker.com/install/linux/docker-ce/ubuntu/

A.2 Ganache Setup

Once Ganache is installed, run it and select “Quickstart” on startup. A list of Ethereum
accounts should be displayed, which can be ignored for now. Navigate to the settings
(Top right button) and select the “Server” tab.

Select the Hostname. It is recommended to use the IP address of your local network,
which should be something similar to 192.168.x.x and marked with “Wi-Fi” or “LAN”.
The Port can be left as is.

Disable Automine and set a reasonable Mining Block Time of around 10 seconds. Click
on “Save and Restart” to apply these settings.

53

54 APPENDIX A. INSTALLATION GUIDELINES

A.3 SLAMer Setup

Run SLAMer

Open a terminal window and navigate to the root folder of SLAMer. Then, run the
following command:

$ docker-compose up

This will will take some time until all the dependencies are installed in the containers.
Once the message

Started BackendApplication in XX seconds

is displayed, SLAMer is ready to use.

Configure SLAMer

Open up a browser window and navigate to localhost:3000, where a registration screen
will be prompted. For the wallet and private key, the credentials from one of the ac-
counts provided by Ganache can be taken. After registration and login, go to the settings
section (Top right). Under “Ganache URL”, enter the IP address and port configured in
Section A.2 in the following format:

http://IP:Port

Example: http://192.168.1.118:8545

Click on “Save”. SLAMer is now ready and users can create SLAs and deploy SCs on the
blockchain in Ganache.

A.4 Setup Monitoring

In order to test the monitoring functionality, one can use a HTTP client, such as Postman.
For Postman, go to https://www.getpostman.com/downloads/ and install it.

For now, the SLAMer API only provides one endpoint for verifying an Average Response
Time SLO. To verify an Average Response Time SLO, prepare a JSON payload with
following fields:

1 {

2 "measured": int value of measurement ,

3 "sloId": ID of SLO ,

4 "slaId": ID of SLA ,

5 "wallet": "wallet address of monitoring service"

6 }

Listing A.1: Payload

A.4. SETUP MONITORING 55

To get the relevant values, navigate in SLAMer to the details view of an SLA containing an
SLO of type Average Response Time. The Agreement Number corresponds to the slaId.
The ID of the SLO can be found on the Service Level Objectives Section at the bottom
and the wallet address of the monitoring service is also listed on this page.

Now, perform a POST request with this payload to the following URL:

http://localhost:8080/monitor

This payload is sent to blockchain, this is why it will take some time until the HTTP
response returns. After 5 attempts with a measured value above the value specified in
the SLA, the SLA should terminate and the customer compensated.

56 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

• BA-Thesis-Carlos-Schweizer.pdf Final Thesis as pdf.

• BA-Thesis-Carlos-Schweizer.zip Final thesis source code (LaTeX).

• Figures All the figures as pdf and draw.io.

• Midterm-Presentation.pptx Slides of the midterm presentation as pptx.

• Midterm-Presentation.pdf Slides of the midterm presentation as pdf.

• Slamer Source code (folder)

57

