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Zusammenfassung

Diese Masterarbeit beinhaltet einen Forschungsvorschlag und einen akademischen
Artikel, um die Pflichen des Fast Track Programms zu erfiillen.

Wissensgraphen organisieren Informationen in einem Graphen, welcher sich aus
tausenden Knoten, die Konzepte und Entitaten darstellen, und aus Verbindungen,
die das Verhilnis zwischen den Knoten représentieren, zusammenstellt. Sie tra-
gen erfolgreich zur Verbesserung verschiedener Dienstleistungen bei, wie die Web-
suche oder Faktennachweis. Die Verarbeitung eines Wissensgraphen ist jedoch mit
einem grossen Zeit- und Resourcenaufwand verbunden. Dies wird zu einem kri-
tischen Problem, weil Wissensgraphen sich sie weiterentwickeln. Wegen der Evo-
lution des Graphen konnen vorhergehend berechnete Resultate invalidiert werden.
Eine mogliche Losung ist die Neuberechnung der Operation sobald eine erhebliche
Auswirkung wegen der Verdnderungen am Wissensgraphen erwartet wird. In meiner
Forschung werde ich somit nach Methoden suchen, mit welchen sich die Auswirkung
der Evolution des Graphen auf das Resultat einer Operation feststellen lasst.

Ein Beispiel einer Operation ist die Materialisierung des Wisssensgraphen. Ich
habe Randi¢ Auswirkung von Verdinderungen in Wissensgraphen auf die Materi-
alisierung mittels einer Stiitzvector Regressionsmodels vorausgesagt. Dazu wurden
deskriptive Graphmasse und Verdnderungsmasse als Modeleigenschaften verwendet.
Nur ein Model hat die Anforderungen von einem RSME kleiner als 0.2 und R-qaured
grosser als 0.7 erfiillt. Es ist jedoch wichtig zu betonen, dass die Experimente nicht
reprasentativ sind, da 90 Versionen der Gene Ontologie verwendet wurden und die
Herangehensweise nicht an einem weiteren Wissensgraphen getestet wurde.






Abstract

This master thesis includes a PhD proposal and an academic paper to fulfill the
requirements of the fast track program.

Knowledge graphs (KGs) organize information in graphs, composed of thousands
of nodes representing concepts or entities, and edges capturing relations among them.
They successfully contributed to different scenarios, including knowledge discovery,
Web search engine improvements and fact-checking. However, the operations exe-
cuted over KGs take large quantities of time and computational resources. This fact
becomes a critical issue when KGs receive updates since the evolution of knowledge
might invalidate the previously calculated result. A possible solution to this prob-
lem is to rerun an operation only when the changes on the KGs have a considerable
impact on the result of such an operation. In my research, I investigate methods
and approaches to infer the impact of KG changes to the results of operations.

As a first step, I consider the materialization, an operation that computes the
deductive closure of the logical axioms contained in the KG. I consider the “Randi¢
and the Randié¢ topological indexes as two measures of impact, and I study if it
is possible to build models to predict them. As input, the model receives features
extracted from the KG and the change actions. The best learning method is sup-
port vector regression with a linear kernel. Experiments on a real KG (the Gene
Ontology) show that the “Randié¢ is better than Randié in capturing the impact
of materialization. The model predicting “Randi¢ shows a RSME below 0.2 and
R-squared above 0.7. The current approach shows several limitations: it considers
one ontology and a sequence of 90 versions of it. It will be therefore needed to study
if results generalize by repeating the experiments with other ontologies.
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PhD Proposal

1.1 Introduction

Various Companies, experts, or communities build knowledge graphs (KG) like
Google’s Knowledge Graph !, Microsoft’s Satori 2, Facebook’s Entity Graph 3, the
Gene Ontology 4, or DBpedia 5. Services such as the Google Search or Facebook’s
recommendation algorithm profit from KG. When a user queries the Google or Bing
search engine, the shown result include advertisements, websites and sometimes a
summary. The summary is displayed in a box that shows more information about
the searched object. If the results include such a summary, the query was processed
over the KG.

If the KG changes, so does the content of the box. Imagine a search for the actress
Anne Hathaway, where the summary-box shows her birthday, home town, movies,
and more. When Hathaway plays in a new movie, it needs to also be displayed
accordingly. For this to happen, the new information about the movie has to be
added to KG. Such changes occur on a regular basis and old results can not be
reused. The query executes each time a search is done. However, more complex
queries and other operations might take much more time to compute and therefore
it is not desired to redo the computation every time new information is added, if
the information is not relevant for the user.

The answering of a query is an example of an operation over a KG. The inference of
a logical entailment for consistency checking, computation of embeddings for feature
representations, and estimating recommendations are more examples of operations
using KG. They are complex and computationally intensive. Knowing the impact of
the evolution would support the decision or recomputation of any of these operations.
This means, if the impact of a change is not significant, the result does not have to
be computed again. After several minor changes, the KG has possibly evolved too
much and a recomputation becomes necessary. The impact would indicate this and
recommend the execution of the operation over the new version of the graph. This
approach would save an enormous amount of computation power and time.

Yuttps: // www. google.com/ intl/ bn/ insidesearch

2hitps: // blogs.bing.com/ search/ 2013/ 03/ 21 / understand-your-world-with-bing

3https: // www.facebook.com,/ notes/ facebook- engineering/ under-the- hood- the- entities- graph
“hittp: // www.geneontology.org

S hitps: // wiki.dbpedia.org
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Figure 1.1: Context and problem shown in terms of time and the connection between
the different variables included in the problem.

In my PhD studies, I want to investigate the impact of changes on the result of
different operations over KG and predict it. The studying of the different operations
might show that there is a general model that can be applied, or that the operations
require separate models. Further, each KG is different in the way it is used and
what kind of information it holds. Depending on its purpose, the model might differ
because the models could be dominated by different features.

In the next section, I present my problem statement and explain the necessary
variables. In Section 1.3, I discuss work which has been done so far in respect
to my proposed topic. I state my research questions and explain their purpose in
Section 1.4. Further, I explain how I will tackle each of the questions, what methods
I will apply, as well as how I plan to evaluate the results in Section 1.5. Lastly, in
Section 1.6 you will be able to read about potential risks and stopping conditions.

1.2 Problem Statement

Let K be a KG, and K; and K1 be two versions of K at time instants ¢ and ¢+ 1.
K41 is obtained by applying a set of changes a to K;. The problem I am going
to investigate in my PhD project is: How do changes impact the result of an
operation over a KG? Figure 1.1 helps in explaining the setting into which my
problem is situated.

Starting from a KG, one can apply different operations to it. In Figure 1.1 the
operation is abbreviated by op(-), which is applied to the KG K and returns the
result R.

Between K; and K;y; a change can be an addition, deletion, or modification of
a concept, relation or attribute. Further, changes are aggregated into actions, e.g.
addition an inner node, movement of a relation, node merge, or subgraph deletion.
Two consecutive versions of the graph are edited by a set of actions «.

R, is the result of the operation op(-) over K; at time ¢t. Ry11 is then the result of
op(+) of Ky4q. I call the distance between R; and Ry11 impact, impact(-), and it can
be defined as a function of the operation op(-), the KG Ky, and the set of actions «
as shown in Figure 1.1.
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1.3 Related Work

Many researchers have focused on topics close to my proposed research. Initially, I
will address the description of a KG or ontology with measures. Second, selected
research on the evolution of KGs is stated. Subsequently, a few possible operations
over KGs are described. And lastly, I report research done about the impact of KG
evolution.

1.3.1 Features of a KG

Social network analysis is an established field that provides many useful measures
in terms of describing a graph. John Scott introduces many of these measures in
his book ”Social Network Analysis” [28]. The number of edges and nodes is used to
report the size of a graph. From these two measures, the density of the graph can be
calculated easily. Centrality measures are used to talk about the information flow
inside a graph. Average degree, average betweenness and average closeness are local
measures and refer to the position of one node in respect to all other nodes. Global
measures, such as transitivity, address the information flow in the entire graph.
Average Shortest Path also represents the information flow. Clustering inside a
graph indicates reports the ability and likelihood of the graph to form clusters.
More measures about the clustering ability includes the partitioning of the graph
into center and periphery and comparing their sizes.

Graph entropy describes the information value in a graph [9]. There are different
ways of calculating entropy and the base measure depends on what type of informa-
tion should be captured [9]. In their paper, Dehmer and Mowshowitz [9] discuss all
the different entropy measures used in the past and highlight relevant differences.

Ontology specific measures need to be addressed more particularly. Simple mea-
sures include the number of concepts, sub-concepts, and predicates [35]. Further,
one can also report the number of entities vs the number of concepts, to compare the
size of the schema to the data [35]. Design complexity measures combine multiple
of aforementioned values [37].

1.3.2 Evolution of KGs

A large amount of research has focused on studying the evolution of Wikipedia,
such as [2, 19, 25, 30]. Almeida, Mozafarim, and Cho [2] found that most users only
contribute to one article in a single interaction and do not edit multiple pages in one
session. Kaltenbrunner and Laniado [19] focus on the analysis of the discussions and
find that complexity of discussion varies greatly among articles. Further, Mestyan
et al. [25] make use of the Wikipedia page edit behavior to predict the box office
success of movies. Steiner et al. [30] investigate Wikipedia edits in terms of who the
contributors are. They analyze the edit of bots versus people as well as anonymous
edits compared to logged in users [30].

DBpedia is a KG, which has been missing the option of accessing previous versions
up to 2015 [11], which made an analysis of its evolution impossible. Fernandez et
al. published the BDpedia Wayback Machine and a WebUI and a RESTful API
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to access old versions and revisions to follow the Linked Open Data principles [11].
However, they did not analyze DBpedia in any way.

The work on the detection of ontology changes and its classifications sparked my
interest. OntoDiff [33] is a tool that enables the user to detect changes between
two versions of the same graph. Their approach is based on the identification of
semantically equivalent elements between the ontologies [33]. COnto-Diff [16] and
the integrated CODEX [15] is another tool offering the computation of changes.
Besides detecting changes, they also group together low level changes into high level
change actions and therefore, provide a simple classification. Goncalves, Parsia, and
Sattler [13] also addressed the problem of categorizing changes between ontologies.
However, their categorization is based on the logical impact of changes [13].

Klein and Noy [20] developed an ontology, in which they describe 80 basic changes.
They also introduce complex changes and show how they help in the interpretation
of consequences for data and entities [20].

ChangeDistiller [12] presents an improved algorithms to detect and categorize
changes in a tree. The authors apply it to software code, but for change detection
they transform code into the tree [12]. The change types that ChangeDistiller [12]
extracts are aligned with the simple changes detected in ontologies with COnto-
Diff [16].

1.3.3 Operations using KGs

Trivedi et al [32] develop deep temporal reasoning over KGs. They do not ignore
the evolution of the graph and account for it by adding a time component in their
reasoning [32]. They successfully test their approach on the temporal prediction of
links [32].

Machine learning is another operation which is executable over a KG. Chen et
al. [4] learn models over KG streams and asses their accuracy as the stream evolves.
Their work is explained in more detail in Section 1.3.4. Relational machine learning
is an approach to predict links in a graph [26]. Using a KG it is possible to learn a
statistical model that predicts new knowledge [26]. Nickel et al. [26] discuss various
algorithms and methods in this domain. Yao et al. [36] investigate how probabilistic
topic models improve when using Wikipedia knowledge as additional input. How-
ever, they do not use an actual KG but Wikipedia articles to improve their learning
process [36].

Machine learning is also used in the process of learning embeddings for KGs.
The goal of embeddings is to represent the graph in a smaller vector space [18]. Ji
et al. [18] introduce a novel method for embedding a graph by adding a dynamic
mapping matrix. They use two vectors instead of one, where the second vector is
used for the construction of a dynamic mapping [18]. On the other hand, embeddings
can be improved by targeting a specific task for which the embedding is then used.
Lin et al. [22] discuss the improvements of embeddings for graph completion. Their
method performs better than state of the art when comparing link predictions [22].
Zhu et al. [38] propose a novel method using generalized hyperplanes for embedding
KGs. They improve the representation of interactions between entities and relations
and preserve a good compression rate at the same time [38]. By testing on link
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predictions and triple classification, they compare their method to the state of the
art [38] but not to the results by Lin et al. [22].

Another operation is the answering of queries. Ren et al. [27] collect competency
questions for the evaluation of KGs. Their goal is to define a way of testing KGs
against a set of questions to asses requirements [27]. Fact checking is traditionally
done by journalists, yet a new trend of computational fact checking is emerging [34].
Computational fact checking is a subcategory of query answering. Wu et al. [34]
built a framework for formulating fact-checking queries for databases and propose
an approach using counter claims. Ciampaglia et al. [5] built their own reduced KG
from Wikipedia’s info boxes and checked facts with a very high accuracy using the
query formulating approach of Wu et al. [34]. They used shortest paths and other
methods from network analysis [5].

1.3.4 Impact of KG Evolution

Gross et al. [14] examine how the changes in an ontology have an impact on previ-
ously conducted functional analysis [14]. However, they examining the impact with
a stability measure that is specifically chosen to evaluate the task of functional anal-
ysis. A functional analysis as an operation is very specific to the Gene Ontology.
We focus on a larger spectrum, where our proposed approach can be used across
different domains of KGs.

Know-Evolve [32] is a model that enables deep temporal reasoning. The authors
introduce their novel idea of reasoning for dynamic KGs and are able to apply
machine learning and at the same time, taking advantage of the evolution of the
graph [32]. The time component directly affects the results of the reasoning and can
therefore also be seen as impact.

Further, SemaDrift [29] is a tool that lets the user calculate the semantic drift
between versions of ontologies. It provides the calculations of various measures to
the user [29]. Depending on the chosen aspect, the authors deploy the different
measures to report semantic drift between two related ontologies [29]. They apply
different methods of calculation and they distinguish between an exact, inexact and
hybrid matching approach [29].

Chen et al. [4] discuss how learned models become less accurate as a stream evolves
semantically. Their work is directly related but they use machine learning as their
operation instead of the materialization. Impact is measured in terms of accuracy
loss and changes are addressed using concept drift.

1.4 Research Questions

The final goal of my research is the prediction of impact based on the old version
of the KG and the changes that will be applied to it. To construct a general model
of impact, I need to investigate how it depends on different operations. Questions
1 through 3 will therefore be investigated iteratively for each operation. I plan on
addressing three different operations.
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1.4.1 What is impact?

My first research question addresses the problem of finding the best way to measure
the impact. As Figure 1.1 shows, impact is the difference between R; and R;.1.
The answer of this question is very dependent on the particular operation and will
therefore be measured in a different way for each such operation

RQ 1. What is the notion of impact over the results of op(-)?

For each operation there will be different measures that can be used and each of
them will have to be tested. Taking the materialization as an example the following
hypothesis can be formulated by substituting [measure] with a chosen impact mea-
sure and [op(-)] with an operation. I will use the normal distribution in the range
between 0 and 1 as the indicator.

H 1.1. The [measure] captures the impact on results of Jop(-)] with a normal distri-
bution.

1.4.2 What affects the impact?

Once the impact is defined, it is of interest to know how it behaves compared to graph
and change features. These features capture different aspects of the graph.

RQ 2. How is the impact affected by K and o?
(a) Given the impact(op(-),K,a), how does o affect the impact on op(-)?

(b) Given the impact(op(-),K,a), how does K affect the impact on op(-)?

These two research questions have to be answered separately for each operation.
The impact will differ between the operations, but the feature vectors describing
the KG and the change actions will be the same. Every change affects multiple
nodes and for each of the affected nodes multiple features can be recorded. The
following two hypotheses will help in answering the second research question. The
keyword [measure] has to be substituted with a change feature and [op(-)] with
the operation over which it will be evaluated. In the second hypothesis, [feature]
is the measure describing the graph. I will evaluate the hypotheses with Pearson
correlation analysis.

H 2.1. The [measure] of nodes directly affected by o correlates with the impact on
[op(-)].

H 2.2. The [feature] of K correlates with the impact on [op(-)].

1.4.3 Can the impact be predicted?

After analyzing the correlation between the descriptive measures and the impact, a
prediction model can be built.
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RQ 3. Can the impact be predicted given op(-), K, and «?

The corresponding hypothesis include various feature models. One model will
include all features, another one will be built using correlating features from the
previous research question and one will be defined using a feature selection algorithm
like ridge regression. I will use multiple machine learning algorithms to compare the
models. I plan to test general linear regression, support vector machine with different
kernels and random forest.

The hypothesis should be read by substituting the keywords [feature model], [im-
pact measure|, [op(-)], and [algorithm].

H 3.1. The prediction learned with [algorithm] of the [impact measure] on [op(-)]
using the [feature model] has a RMSE below 0.2 and a R-squared above 0.7.

1.4.4 Can the impact be generalized?

Finally, I will compare all results across operations. If the models that are built for
each of the operations are similar to each other, then a generalization will be possible.
Otherwise, it will be summarized by showing the differences between operations
and how the impact changes. This would mean, that I would remove op from the
calculation of the impact, which would leave me with the impact being the function
of K and « - impact(K, «).

RQ 4. Is it possible to predict the impact of changes done on a KG independently
from the operation?

First the impact between the different operations has to be assessed. I will examine
the correlating features across operation and I hope that there are several features
in common. Lastly, if there is a notion of impact that can be used across operations
and there are also features that correlate with it, a prediction can be tested.

1.5 Approach and Evaluation plan

In this section, I will first talk about the data that I intend to use for answering
my research questions. Further, I present my approach to calculating the impact,
followed by how features will be extracted. For the prediction of the impact, feature
selection is also necessary, which is addressed in the last part of this section.

1.5.1 Data Preparation

Using different knowledge bases with the same operation is essential. Each KG is
unique in the way it is used and edited. If each operation was tested on one KG, no
generalization would be possible at all.

For some KGs archived releases can be downloaded but that holds a vast amount
of changes between releases. Taking the changes that have been applied to a KG
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in the past, a version will be created for each change. This creates the possibility
of analyzing each change individually instead of as a set. For the calculation of
the changes, I will use the code from the tool CODEX [15] and COnto-Diff [16]
developed by the same group. These tools were developed for the Gene Ontology,
but I will change and generalize it for usage with other KGs. The authors classify
changes into high level change action that give some meaning to low level changes
such as adding or deleting attributes. Move, substitute, merge, add inner, add sub
graph, or delete leaf are high level change actions, that each encompass at least three
low level changes. Some action types are very specific for the Gene Ontology and
therefore, will be excluded.

Datasets of various KGs have to be prepared. There is the possibility of reducing
a KG by extracting a part from it and treating this part as a whole. The changes
and their impacts can be observed on a smaller scale and it will be easier to draw
conclusions.

1.5.2 Calculating Impact

Each operation requires a different measure of distance between the results. There-
fore, state of the art will be used to calculate the impact and address Research
Question 2. I will use multiple measures to cover different aspects of the impact.

I will look at the distribution of the chosen impact measures. The distribution
should not be skewed and should range from 0 to 1. I will randomly choose versions
to check the impact and changes. This will help in understanding how the impact
measure is behaving with respect to the different change types.

1.5.3 Generating Feature Vectors

Features describe the KG and the change actions. I will calculate various features
to address different aspects of the graph and changes. For each research question,
these will remain the same, since they are chosen independent of the operation.

To be able to use the KG as the input to predict the impact, features have to be
extracted. Such features describe the various aspects of the KG, e.g. the structure,
density, or connectivity. Descriptive measures mentioned in Section 1.3.1 will be
calculated for each version.

Additionally, each action will also be described with a feature vector. This is
necessary because the format of the actions would not allow for usage in machine
learning. For this feature vector, information on node level will be recorded. All
nodes that are directly affected by the action will be examined and various structural
and descriptive measures calculated.

1.5.4 Predicting Impact

Given the feature vectors, a correlation analysis will answer the second research ques-
tion. With that answer it is possible to choose features for a second feature model.
The first model will include all the calculated features. Other feature models can be
done by using state-of-the-art feature selection algorithms like ridge regression.
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Using different machine learning algorithms, I will evaluate across the feature
models. I expect to use general linear regresssion, support vector machine with a
linear and radial kernel, and random forest. Other algorithms might be added to
this list at a later time.

For the answering of Research Question 4, the results of all the steps described
above have to be taken into account. There are different possible outcomes, where
the best case would be a general model over all operations and KGs. To accomplish
it, a comparison between the KGs and operations will be done to asses the models
that will be built.

1.6 Reflections

I want to investigate three operations and answer Research Questions 1 through
3. The fourth research question is more open and is extremely dependent on the
outcome of my research up to that point. Although I want to investigate a general
model, the outcome is very uncertain.

I see the highest risk in the fact, that it is possible, that there are no features
that will correlate with the impact, neither describing the KG or the changes. In
this case, I will calculate a different impact measure and add features that describe
the change of the graph in terms of graph measures. It is also possible that, once
the KG is too big, no change will have a big impact and the impact measure will
show a skewed distribution. In this case, the KG can be partitioned across topics or
actions can be grouped together.
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How Changes in a Knowledge Graph
Impact its Materialization

2.1 Introduction

Knowledge graphs (KG), like Google’s Knowledge Graphs !, Facebook’s Entity
Graph 2 or the Gene Ontology ® change over time. They represent the knowledge
of a universe that grows. These graphs are usually maintained by experts, which
insert new knowledge into the graph and remove or change outdated information.
The Gene Ontology (GO) evolves as the experts add gene annotations of living or-
ganisms that are not included yet. Researchers then execute analysis and functions
over this graph. The computation of the logical entailment, also called material-
ization is such a function applied to the GO. This operation makes the assessment
of logical consequences and consistency possible. Adding an axiom to the KG that
contrasts other axioms defined in the schema leads to the conclusion of inconsistency
within the ontology. A materialized graph is bigger than the original graph and its
computation consumes vast amounts of time and power resources. Consequentially,
it may not be desired to compute it after every minor change, but we would rather
be interested in knowing when it is necessary to recompute the materialization. The
expectation of a big difference from the old materialization to the new one would
signal the necessity for recomputation.

Once the changes to the KG have a significant impact on the materialization,
it is time for the computation on the new version of the graph. In this work we
study if we can automate this process and predict the impact of changes. We define
impact based on measures of graph distance, which assesses the structure and not
the semantics. Impacts on the semantics of a KG is usually intentional and the
prediction of such an impact will seam obvious. Structural changes are more hidden
and therefore, we focus on those.

Therefore, our first research question addresses the impact and the problem of
assessing the chosen measure that expresses impact between two materializations.
We take into account that such a measure has not been discussed before this context,
and chose to examine two graph distance measures based on topological indexes
introduced by Dehmer and Mowshowitz in [8].

L https: // www. google.com/ intl/ bn/ insidesearch
2https: // www.facebook.com/ notes/ facebook- engineering/ under- the-hood- the- entities- graph
3hitp: // www.geneontology.org
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RQ 5. How can impact over versions of materializations be defined and quan-
tified?

Once the impact is calculated, it is of interest to know how it behaves compared
to various measures that act as descriptive features. Two research questions are
necessary, since we distinguish between measures that describe the KG and ones
describing the changes leading to the new version of the graph. In the following, the
materialization operator is denoted with mat(-), K stands for the description of the
KG, and « represents the change measures. impact(-) is the impact dependent on
the operation mat(-), the KG K and the change operations a.

RQ 6. How is the impact affected by K and o?
(a) Given the impact(mat(-),K,a), how does « affect the impact?

(b) Given the impact(mat(-),K,a ), how does K affect the impact?

After analyzing the influence of the descriptive measures on the impact, a pre-
diction model can be built. We tested three different feature models against each
other. One includes all the features that were calculated, the second consists of the
features that correlate with the impact significantly and the features for the last
model were selected with the ridge regression.

RQ 7. Can the impact(mat(-), K, a) be predicted given mat(-), K, and a?

In the next section, we introduce related work about the evolution of KGs, graph
and distance measures, and impact analysis. In Section 2.3, we discuss the data,
feature vectors, impact, and how it was evaluated. We introduce our results and
formulate a discussion in Section 2.4. The last section then states conclusions,
limitations, and future work.

2.2 Related Work

This section presents related topics to different aspects of our work. First, we address
the evolution of KGs, followed by graph measures and distance, and lastly research
on impact of KG evolution.

2.2.1 On the Evolution of Knowledge Graphs

A big amount of research focused on studying the evolution of Wikipedia, such as [2,
19]. These two studies focus mostly on the content evolution and the behavior of
the contributors. Almeida, Mozafarim, and Cho [2] found that users only contribute
to one article in a single interaction and do not edit multiple pages in one session.
Kaltenbrunner and Laniado [19] focus on the analysis of the discussions and find that

12
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complexity of discussion varies greatly among articles. Further, Mestyan et al. [25]
make use of the edit behaviour of movie pages to predict the box office success.
However, they all focus on the edits on Wikipedia articles, the contributors, and the
content.

DBpedia is a KG based on Wikipedias structured content. It was impossible to
analyze the evolution of DBpedia because it has been missing the option to access
previous versions until 2015 [11]. Fernandez et al. published the BDpedia Wayback
Machine which provides a WebUI and a RESTful API to access old versions and
revisions following the Linked Open Data principles [11]. Howerver, they do not
analyze DBpedia in any way.

Ontologies are KGs as well and they grow just like KGs do. What sparked our
interest is the work on the detection of ontology changes and its classifications.
Various tools have been developed. OntoDiff [33] is one such tool that enables the
user to detect changes between two versions of the same graph. COnto-Diff [16]
and the integrated CODEX [15] is another tool offering the computation of changes.
Besides detecting changes, they also group together low level changes into high level
change actions and therefore, provide a simple classification. Goncalves, Parsia, and
Sattler [13] also addressed the problem of categorizing changes between ontologies.
However, their categorization is concerned with changes that have a logical impact
versus changes that do not [13].

Klein and Noy [20] developed an ontology of changes, where they describe 80 basic
changes. They also introduce complex changes and show how they help interpreta-
tion of consequences for data and entities [20].

2.2.2 Graph Distance and Ontology Similarity

Dehmer, Emmert-Streib, and Shi [8] introduce a notion of graph distance based on
different topological indexes of graphs. They analyze the index distance theoretically
and provide limited numerical experiments [8]. Some older work of Dehmer and
Emmert-Streib [7] also suggests other graph similarity measures that return extremly
similar results to the well studied Graph Edit Distance. They use differences of
degree vectors to cover the structural information of the graphs [7].

The majority of papers that focus on semantic similarity within ontologies are
only interested in similarity between concepts and not entire ontologies. Lord et
al. [23] explore the Gene Ontology (GO) using semantic similarity and examine the
similarity over different aspects inside the GO. Lee et al. [21] show a comparison of
different semantic similarity measures on similar concepts. Just like [23], they do
not apply their approach to entire ontologies [21].

Ontology distance can also be expressed using a modification matrix [1]. The
exploration of the proposed matrix is limited and does not show enough detail to be
reused [1]. Algosaibi and Melton [1] use the concept from Yang, Zhang, and Ye [35]
which describes an ontology in terms of complexity by using its hierarchy. The
metrics are extremly primitive. Zhang, Li, and Tan [37] use more complex measures
based on a proper graph representation of an ontology. Meadche and Staab [24] take
an approach in measuring similarity between ontologies that is based on a two layer
concept, where an ontology consists of a lexical and conceptual layer. They apply
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the proposed measures in an empirical experiment and they do not compare to any
other established similarity measure [24].

David and Euzenat [6] compare various ontology distance measures. They take
into account similarity measures based on the vector space model, distance between
entities, and collection distances [6].

It is important to mention SemaDrift [29] which is also included in the next
section. This tool provides measures related to semantic drift [29]. Semantic drift
can be interpreted as the distance between ontologies, under the assumption that
the ontologies are related.

2.2.3 Impact of Knowledge Graph Evolution

Gross et al. [14] examine how the changes in an ontology have an impact on pre-
viously conducted functional analysis [14]. Even though they have the same goal
of this research, their methods are limited to examining the impact with a stability
measure that is specifically calculated for the GO. We focus on a larger spectrum,
where our proposed approach can be used across different domains of KGs.

Know-Evolve [32] is a model that enables deep temporal reasoning over dynamic
KGs. The authors are able to apply machine learning over the graph and predict
re-occurrence of events [32]. The time component directly affects the results of the
reasoning and can therefore also be seen as impact.

Further, SemaDrift [29] is a tool that lets the user calculate the semantic drift
between versions of ontologies. It provides the calculations of various measures to
the user [29]. Depending on the chosen aspect, the authors deploy the different
measures to report semantic drift between two related ontologies [29]. They apply
different methods of calculation and they distinguish between exact, inexact and a
hybrid matching approach [29].

Chen et al. [4] discuss how learned models become less accurate as a stream evolves
semantically. Their work is directly related but they use machine learning as their
operation instead of the materialization. Impact is measured in terms of accuracy
loss and changes are addressed using concept drift.

2.3 Case Study of the Gene Ontology

To study the research questions introduced in Section 2.1, we looked for a KG that
provides multiple versions. In addition, we looked for a graph of medium size. We
chose the Gene Ontology (GO), a small ontology compared to the size of dbpedia or
Wikidata. The Gene Ontology Consortium maintains the GO since 2000. It provides
a precise and common vocabulary to describe the role of genes and gene products
in any organism [3]. At the beginning, the GO Consortium provided three separate
ontologies. There have been many improvements and expansions to the ontologies
and they can now be used as one ontology, which underlines our statement about
the evolution of knowledge bases [31]. Because of the maintenance by experts,
vandalism is not present in the ontology [17]. This allows for an ad-hoc exploration
of the graph and the concepts within the graph are limited to the descriptions of
genes. The homogeneous topic withing the ontology makes interpretation of the
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results simpler. We calculated feature vectors over multiple aspects of the GO,
which are explained in the subsections below.

We were able to download and use 99 versions. Due to complications in various
stages, we ended up with 90 cases of consecutive versions. Table in A.4 shows the
GO versions and the number change actions to the next version.

2.3.1 Impact

The impact is calculated on the materialization of the KG. Since a materialization
is a graph, graph distance measures also apply to it. Based on [10], we decided to
use the work in inexact graph matching due to the computation complexity and
size of the GO. When ignoring labels, we focus on the structure of the graph rather
then on the semantics. Dehmer, Emmert-Streib, and Shi [8] propose the approach
of using the graph distance with the Randi¢, and zero® order Randié¢ index. Both
are topological indexes and for each version of the GO we calculated their according
values. The two indexes were implemented in Python 3.5 using the NetworkX 4
library. The following equation returns the distance between the versions by taking
the indexes and o as input [8]:

2
Uiy 1Ky )

Dl(Kt,Kt+1) =1—-e o2 (21)

where Ik, and Ik, , are the topological index of K; and K.
We formulate the following hypotheses using the distance and the two indexes:

H 5.1. The graph distance based on the Randi¢ index calculated with

1
R(K;) =
Y ng:(K) (d(u) x d(v))

captures the impact on mat(Ky,) of a change with a normal distribution.

H 5.2. The graph distance based on the " Randié¢ index calculated with

"R(K;) = !
o= 2. i

captures the impact on mat(Ky,) of a change with a normal distribution.

uv is an edge in the graph K and d(u) is the degree of the node u and v respectively.
For these hypotheses, we report diagrams that show how the impact changes over
the evolution of the Gene Ontology and their distributions.

Yhttps: // networkz. github.io
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Action type Mean Standard Deviation
move 126.7065 143.9922
split 3.0870 2.7372
merge 6.8153 9.8906
add subgraph  30.1630 19.9779
add inner 19.0326 12.2461
add leaf 62.4783 35.1594
to obsolete 5.7065 7.7999

Table 2.1: Average occurrences of change action types on the Gene Ontology for
multiple versions.

2.3.2 Change Action Measures

We use [16] to find changes between two versions of the GO. They define nine low
level change actions, which are add, delete, map a concept; add, delete, map a
relation; and add, delete, map an attribute A concept is a class in the ontology, a
relation connects two concepts with each other and an attribute is attached to a
concept and serves as additional information to the concept. These nine actions are
then grouped together to produce high level actions, which are: move, merge, split,
add and delete inner node, add and delete leaf, add and delete subgraph, and to and
revoke obsolete.

After analyzing these high level actions, it became clear that high level actions
can include other high level actions. However, since we are only interested in the
highest level, we modified the code of COnto-Diff ® to return only those. Since we
have snapshots of the GO at the beginning of each month, multiple change actions
are grouped together between two versions. In Table 2.1 we report the mean count of
each of the change action types present between two consecutive versions retrieved
and returned by the our function. All the versions and the number of retrieved
highest level actions are reported in Table in A.4.

We used Pearson correlation to analyze the relationship between the impact and
the features to answer the Research question 6. First, we address change actions
that are concerned with an addition of either an inner node, leaf or entire subgraph.
Different aspects of each of these actions are of concern. The number of such changes
between two versions is one of the important measures. The remaining eight mea-
sures are mean and standard deviation of the degree, degree centrality, closeness,
and betweenness. Together these nine measures are investigated for every action
type. Table 2.2 shows the hypotheses numbers and should be read in the following
way, substituting the keywords measure and action type with the corresponding row
and column: The [measure] of [action type] inside o correlates with the impact.

A change action for adding inner nodes takes the following form: addInner, GO:0044278.
This is partitioned and the implemented algorithm returns the degree of the directly
affected nodes. For the addition of an inner node, we look for the the neighbors in
the new version of the graph. For all the direct neighbors, degree is returned from

Shitp: // dbserv2.informatik.uni-leipzig. de: 8080/ webdifftool/ WebDiff Tool. html
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Measure / Action type addInner | addLeaf | addSubgraph | merge move split toObsolete | all
number of actions H 6.2a H 6.3a | H 6.4a H6.5a | H6.6a | H6.7a | H 6.8a H 6.9a
mean of degree H 6.2b H6.3b | H6.4b H6.5b | H6.6b | H6.7b | H 6.8b H 6.9b
std of degree H 6.2¢c H 6.3c H 6.4c H 6.5¢c | H6.6c | H6.7¢c | H 6.8¢c H 6.9¢c
mean of degree centrality | H 6.2d H6.3d | H6.4d H65d |H6.6d | H6.7d | H 6.8d H 6.9d
std of degree centrality H 6.2¢ H 6.3e H 6.4e H6.5e | H6.6e | H6.7e | H 6.8 H 6.9¢
mean of closeness H 6.2f H 6.3f H 6.4f H 6.5f H6.6f | H6.7f | H6.8f H 6.9f
std of closeness H6.2g | H6.3g | H6.4¢g H6.5g | H6.6g | H6.7¢ | H 6.8¢ H 6.9g
mean of betweenness H 6.2h H6.3h | H6.4h H6.5h | H6.6h | H6.7h | H 6.8h H 6.9h
std of betweenness H 6.2i H 6.31 H 6.4i H 6.51 H 6.61 H 6.7 H 6.8i H 6.9i

Table 2.2: Hypotheses table for change measures, to be read in the following way:
The [measure] of [action type| inside « correlates with the impact.
Accepted hypotheses in bold.

Algorithm / Index, Model | R all ‘Rall [Rcorr | Rcorr | Rfs OR fs
Linear Regression H71 |H72 |H73 |H74 H75 |HT7.6
SVM Linear H77 |H78 |H79 |H7.10 | H7.11 | H7.12
SVM Radial H713 | H714 | H715 | H716 |H7.17 | H7.18
Random Forest H719 | H720 | H721 |H722 | H7.23 | H7.24

Table 2.3: Hypotheses table for impact predictions, to be read in the following way:

The [index| impact prediction on mat(Ky, ) using the [model] and [algorithm| has a RMSE below 0.2 and R-squared above

0.7.

Accepted hypotheses in bold.
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the old and new version. Then, the calculation of the mean of the nodes across the
neighbors is executed and the absolute value of the difference is reported. We repeat
this procedure for every addition of a inner node between two consecutive versions.
Finally, the mean and standard deviation of all inner node additions is calculated
to report one number. This number is the input for the correlation analysis. Same
principle applies to the calculation of degree centrality, closeness, and betweenness.

We repeated this algorithm for the addition of a leaf, where there are fewer neigh-
bors than with inner nodes, as well as with subgraph. Specifically with the latter,
we only calculate the degree, degree centrality, closeness, and betweenness for nodes
which are not part of the new subgraph that has been added with the change action.
Hypotheses 6.2, 6.3, 6.4 include all the above explained measures.

Since in the merge change action, we know which nodes are directly affected,
because multiple nodes are merged into one, we calculate the measures for those
nodes in the old and new version. There are multiple affected nodes in the old
version and just one node in the new version. Hypotheses 6.5 refer to the measures
calculated for the action merge. The action move also reports which nodes are
affected directly. Therefore, we calculate and aggregate over two nodes in each of
the versions. Hypotheses 6.6 state all hypotheses concerning the action move. Split is
the counter action to merge and its hypotheses are denoted with the number 6.7. The
action splits one node from the old version into multiple nodes in the new versions.
The action toObsolete always affects only one node. Here, only the difference is
necessary and no aggregation is needed. All hypotheses for the action toObsolete
are stated under the number 6.8. At last, we also aggregate over all the different
change actions.

To give the reader an idea about the measured values, Table 2.4 shows the mean
of the mean and standard deviation over the considered versions of the GO. One can
see that some measures such as move, merge, and split show a very small change in
closeness. This means, that closeness is not affected much. However, bigger effects
are expected from actions such as addInner, addSubgraph or toObsolete. This does
not mean that the effect will be also big on the materialization of the new version.

2.3.3 Graph Measures

Different measures have been established in the community of network analysis. We
use those to describe the ontology, even though they are not intended for labeled
graphs. Additionally, we looked into graph entropy measures [9] and selected to use
entropy based on closeness and degree centrality as a result. The measures that
were calculated form the feature vector later. Table 2.5 lists all calculated measures.
These chosen measures do not represent a complete list but are rather a selection
that was decided upon. All measures were calculated using the Python package
NetworkX except for sparsness, for which we used NumPy.

Hypotheses 6.10 and 6.11 investigate the relationship between the impact and the
size of K.

H 6.10. The number vertezes in K; correlates with the impact on mat(Ky,).

H 6.11. The number edges in K; correlates with the impact on mat(Ky,).

18



2.3. CASE STUDY OF THE GENE ONTOLOGY

Action Type Measure Mean Std
addInner degree 2.9302 3.649
degree centrality 0.5832 0.7743
closeness 0.0003 0.0005
betweenness 0.5832 0.7743
addLeaf degree 1.7011 2.084
degree centrality 0.009 0.0512
closeness < 0.0001 0.0001
betweenness 0.009 0.0512
addSubgraph degree 1.9333 1.8034
degree centrality 0.1519 0.402
closeness 0.0001 0.0002
betweenness 0.1519 .402
merge degree 0.9366 1.0924
degree centrality .0179 0.0458
closeness 0.0001 .0002
betweenness 0.0179 .0458
move degree 0.3925 0.9467
degree centrality 0 0
closeness < 0.0001 < 0.0001
betweenness 0 0
split degree 0.6456 0.3951
degree centrality 0 0
closeness < 0.0001 < 0.0001
betweenness 0 0
toObsolete degree 1.7638 1.0465
degree centrality 0.5653 0.4987
closeness 0.0002 0.0002
betweenness 0.5653 0.4987
all types degree 1.3196 2.5608
degree centrality 0.1081 0.4129
closeness 0.0001 0.0002
betweenness 0.1081 0.4129

Table 2.4: Mean and standard deviation of change action measures executed between
two versions of the Gene Ontology.

19



CHAPTER 2. HOW CHANGES IN A KNOWLEDGE GRAPH IMPACT ITS

MATERIALIZATION
Measure Mean Standard Deviation
vertex count 38/273.4444 4'546.8417
edge count 76/226.9778 12/541.2092
average degree 3.9607 0.2035
average degree centrality 0.0001 7.89 x 1076
average closeness 0.0002 7.63 x 1076
average betweenness 3.61 x 1078 4.94 x 1079
degree connectivity 1.7949 0.0799
assortativity —0.0298 0.0294
average clustering coefficient 0.0558 0.0047
transitivity 0.0517 0.0025
number of strong components  38'273.444 4'546.8417
number of cliques 3.6709 0.1694
average shortest path length 6.9951 0.0427
longest shortest path length 14.3000 0.4819
entropy (centrality) 14.5305 0.1706
entropy (closeness) 11.3413 0.0968
sparseness 5.22 x 107° 3.95 x 1076

Table 2.5: Calculated graph measures over the Gene Ontology reporting the mean
and standard deviation over several versions.

We are further interested in showing the relationship between general centrality
measures such as degree, closeness, and betweenness of K; and the impact. These are
addressed in Hypotheses 6.12, 6.14, and 6.15. More complex measures that address
the information flow are assortativity, transitivity, and average shortest path length
in Hypotheses 6.16, 6.17, and 6.18.

H 6.12. The average degree of K; correlates with the impact on mat(Ky, ).

H 6.13. The average degree centrality of Ky correlates with the impact on mat(Ky,).
H 6.14. The average closeness of Ky correlates with the impact on mat(Ky,).

H 6.15. The average betweenness of K; correlates with the impact on mat(Ky,).
H 6.16. The assortativity of K; correlates with the impact on mat(Ky, ).

H 6.17. The transitivity of K; correlates with the impact on mat(Ky, ).

H 6.18. The average shortest path of K; correlates with the impact on mat(Ky,).

Further, clustering inside a graph is also of interest, because it brings about the
structure and density of the graph. Hypothesis 6.19 addresses the clustering coef-
ficient, which represents the clustering ability of the graph. Hypothesis 6.20 then
investigates the number of detectable clusters inside the graphs compared to the
impact.

H 6.19. The clustering coefficient of K correlate with the impact on mat(Ky,).
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H 6.20. The number of clusters in K; correlates with the impact on mat(Ky,).

H 6.21. The number of strongly connected components in K; correlates with the
impact on mat(Ky,).

Entropy is a semantic measure and addresses the information content [9]. In
Hypotheses 6.22 and 6.23 we report correlations of two different entropies with the
impact, where one is based on the degree centrality and the other based on closeness.
The last hypothesis investigates the sparseness of the adjacency matrix of the graph.

H 6.22. The degree centrality based entropy of K; correlates with the impact on
mat(Ky,).

H 6.23. The closeness based entropy of K; correlates with the impact on mat(Ky, ).
H 6.24. The sparseness of K; correlates with the impact on mat(Ky,)

2.3.4 Prediction of Impact

We test 3 feature models with 2 impact measures using the 90 cases calculated in
the previous steps and 4 different machine learning algorithms.

The first feature model is the all model, where all calculated features are used.
The second feature model is based on the correlation analysis that was done to
answer all the hypotheses concerned with the effect of the features on the impact.
Since the set of correlating features are non-identical for the the two measures of
impact, Randi and “Randi, the corr feature models will use these two differing sets
accordingly The third feature model is based on the feature selection executed using
ridge regression and it is shortly called fs.

We use the described feature models first with general linear regression (GLM).
Support Vector Machine is also suitable for regression (SVR) and we decided to
use the algorithm with the linear kernel and the radial kernel. In addition, Ran-
dom Forest (RF) is used. We test all the prediction models using a 10-fold cross
validation.

We will compare all prediction results using the RMSE and R-squared and accept
a hypothesis if the RMSE is below 0.2 and R-squared is above 0.7. Additionally,
for a prediction hypothesis to be accepted, the corresponding impact hypothesis
has to be accepted as well. This means, that if an impact measure is declared
unsuitable for the task at hand, the predictions of this impact will not be accepted.
All hypothesis are stated in the Appendix A.3 and the Table 2.3 shows their reference
numbers. The table is to be read by substituting algorithm, index, and model with
the corresponding column and row in the sentence: The [indez] impact prediction on
mat(Ky, ) using the [model] and [algorithm] has a RMSE below 0.2 and R-squared
above 0.7.

2.4 Results and Discussion

In this section, we present the results of the analysis of the impact, correlations and
prediction. We revisit the hypotheses from Section 2.3 and asses if they hold. We
also address the research questions and discuss the results.
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Figure 2.1: Distributions of impact calculated with the graph distance and two dif-
ferent topological indices, the Randi¢ and the “Randié¢ index.

2.4.1 Definition of Impact

Figure 2.1 shows the distribution of the two calculated impact measures. Impact
based on the Randi¢ index shows a biased distribution towards zero, while impact
based on “Randi¢ index is centered and evenly distributed between 0 and 1. We set
o in Equation 2.1 equal to the number of change actions between the two versions.
This normalizes the impact based on how many changes have been undergone by
the ontology. This can be seen in Figure 2.1, where both measures of impact show
a reasonable distribution.

Impact calculated based on the Randié¢ Index is biased towards zero as seen in
Figure 2.1a, whereas the impact that was calculated based on the “Randié¢ Index is
more centered and equally distributed, as shown in Figure 2.1b. In both figures, the
red line represents the mean and the blue line the median.

Neither of these two impacts present a clean normal distribution. Therefore, we
continue an analysis with both of these impact measures. This absence of a normal
distribution can be explained by the small amount of data points. With more
versions, the “Randi¢ impact would likely evolve into a normal distribution since
the peak at 0.5 is already present. For the Randi¢ impact, we assume that we have
not found the optimal . An optimal o would shift the distribution further to the
right, bringing the mean and median closer to 0.5.

Addressing the Research Question 5, we reject Hypothesis 5.1, because the dis-
tribution is skewed and the mean and median are not aligned. Since the mean and
median are still within 0.1 of each other, we continue the investigation of the other
research questions with this measure. We accept Hypothesis 5.2 because it shows a
normal distribution in Figure 2.1b and also the alignment of the mean and median
is given. Therefore, the impact can be represented with the Randi¢ and °Randi¢
Index and they both show promising distributions. In future work, we will use other
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(a) Timeline of impact with Randi¢ Index  (b) Timeline of impact with “Randié¢ Index

Figure 2.2: Timeline of the evolution of the two impacts in black and the mean
impact in red.

notions of impact, that will contrast the two measures of this work, to be able to
compare them to each other.

2.4.2 Effects on Impact

As explained in Section 2.3.2 and 2.3.3, measures were calculated and evaluated
against the impact. Table 2.6 reports all the significant correlations between the
features and the two impact measures. The first column states the feature that has
been either calculated over the old version of the KG or is the aggregation or the
change actions. The second column is the correlation of the feature and the impact
calculated using the Randi¢ index (R). The third column is the corresponding p-
value. The forth and fifth columns are then the correlation and p-value of the
feature and the impact calculated using the “Randi¢ index. The last column reports
the reference to the hypotheses that are being accepted because of the significant
correlations.

Out of 95 features, 22 of them bring evidence that the corresponding hypothe-
ses hold. Out of the 22 features, 15 can be accepted for both notions of impact.
The accepted hypothesis concerning change action features are denoted in bold in
Table 2.2. All correlations that are significant for both measures go in the same
direction and are at most 0.11 apart from each other. This shows that the two
impact measures do not contradict each other, where one measure claims high and
the other low impact. Furthermore, there are features that describe the impact that
are common among the two measures.

Answering Research Question 6, we found 12 change action features that correlate
with the chosen impact measures. Additionally, 9 graph features correlate with the
impact. Together, these features will be used for the prediction.
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Feature R corr R p-value | "R corr °R p-value | H
addInner_mean_closeness —0.3131 0.0028 | 6.2f
addInner_std_closeness —0.3345 0.0014 | 6.2¢g
actions_addLeaf 0.2705 0.0099 | 6.3a
actions_addSubGraph 0.5748 < 0.0001 0.5106 < 0.0001 | 6.4a
actions_merge —0.3749 0.0003 | —0.3595 0.0005 | 6.5a
merge_mean_degree —0.3160 0.0077 | 6.5b
merge_std_degree —0.3114 0.0087 | —0.3686 0.0017 | 6.5c
actions_move —0.4245 < 0.0001 | —0.4951 < 0.0001 | 6.6a
actions_split 0.2900 0.0056 6.7a
actions_toObsolete —0.3705 0.0003 | —0.3168 0.0023 | 6.8a
actions_all —0.3426 0.0009 | —0.3535 0.0006 | 6.9a
all_std_closeness —0.3372 0.0012 | 6.9g
vertex_count —0.3366 0.0012 | —0.2966 0.0045 | 6.10
edge_count —0.3067 0.0033 | —0.2768 0.0083 | 6.11
avg_degree_centr 0.3583 0.0005 0.3074 0.0032 | 6.13
avg_closeness 0.3849 0.0002 0.3113 0.0028 | 6.14
avg_between 0.3375 0.0011 0.2817 0.0072 | 6.15
transitivity 0.4199 < 0.0001 0.2966 0.0045 | 6.17
num_strong_components | —0.3366 0.0012 | —0.2966 0.0045 | 6.21
centr_entropy —0.3224 0.0019 | —0.2789 0.0078 | 6.22
clos_entropy —0.3221 0.0020 6.23
sparseness 0.3596 0.0005 0.3086 0.0031 | 6.24

Table 2.6: Significant correlations between impact and features and accepted hy-
potheses.
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R all ‘R all | R corr | °R corr | R fs R fs
GLM RMSE | 0.3353 | 0.3750 | 0.1026 | 0.1528 | 0.1007 | 0.1793
R? 0.1573 | 0.2706 | 0.7326 | 0.6683 | 0.7229 | 0.5997
SVM Lin RMSE | 0.6245 | 0.5623 | 0.1068 | 0.1520 | 0.1085 | 0.1957
R? 0.0269 | 0.1444 | 0.7116 | 0.7272 | 0.7158 | 0.5557
SVM Rad RMSE | 0.1579 | 0.2180 | 0.1083 | 0.1598 | 0.1187 | 0.1696
R? 0.4005 | 0.3535 | 0.7217 | 0.6687 | 0.6483 | 0.6331
RF RMSE | 0.1199 | 0.1840 | 0.1085 | 0.1750 | 0.1285 | 0.1854
R? 0.6378 | 0.5529 | 0.7061 | 0.6041 | 0.5988 | 0.5638

Table 2.7: Prediction evaluation table, displaying the RMSE and R? of all prediction
models that were built.

2.4.3 Prediction of Impact

We built various models predicting the impact using four different machine learning
approaches. Table 2.7 shows the RMSE and R-squared for the predictions of the
different models. A 10-fold cross validation was used with the four algorithms general
linear model (GLM), support vector machine with linear (SVM Lin) and radial kernel
(SVM Rad) and random forest (RF). Figure 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 each show
these four algorithms. The top left diagram shows the results of GLM, top right is
SVM Lin, bottom left is SVM Rad and bottom left visualizes RF.

We started with the all model, where all calculated features are used. As expected,
the model performs badly with linear approaches for both measures of impact. This
can be seen in the Figure 2.3 and 2.4. The root squared mean error (RSME) is
roughly 0.35 for the GLM and 0.59 for SVM Lin. R-squared, which reports the
amount of variance that is being explained by the model, is extremely low, smaller
than 0.3 for each of the models. Thus, we reject Hypotheses 7.1, 7.7, 7.2, and 7.8.
The non-linear models perform slightly better. Randi¢ impact is being predicted
with a RSME of 0.1579 with the SVM Rad and 0.1199 with the random forest.
However, the R-squared is not high enough at 0.4005 for SVM Rad and 0.6378 for
RF to be able to accept Hypothesis 7.13 or Hypothesis 7.19. For the “Randi¢ impact
the models perform just as badly as for the linear case. With around 0.2 RMSE and
around 0.4 R-squared, we reject Hypotheses 7.14 and 7.20. Therefore, all hypothesis
concerning the all model were rejected.

The corr model performs significantly better as shown in Figure 2.5 and 2.6. With
an average RSME of 0.106 and R-squared of 0.72 we should accept all four hypothesis
concerning the corr feature model and the Randi¢ impact, namely Hypothesis 7.3,
7.9, 7.15, and 7.21. However, because of the rejection of Hypothesis 5.1 we reject
all four. The distribution of the Randi¢ impact is skewed which makes it easier to
predict. Because of the skewness, most values ly between 0 and 0.4. Therefore, by
predicting a value in this range, a model is already going to perform well enough.
This can be seen in the figures of the Randi¢ predictions in Figure 2.3, 2.5, and 2.7
in the left column. All points are located in the lower left quadrant of the diagram,
except of the first two prediction models, which are the GLM and SVM Linear
with all features. The predictions of “Randi¢ with corr are slightly worse. We
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accept Hypothesis 7.10 because the RMSE is 0.1520 and R-squared is 0.7272. At
the same time, this is the only prediction model that performed well enough. All
other prediction models for this impact measures yielded unsatisfactory results and
their hypotheses are rejected.

The last model is the feature model built by the ridge regression for feature selec-
tion. Results are displayed in Figure 2.7 and 2.8. With RMSE 0.1007 and R-squared
0.7229, the GLM achieved the best results for Randi¢ impact. Again, we reject Hy-
pothesis 7.5 because we rejected Hypothesis 5.1. Therefore, we also reject Hypoth-
esis 7.11 of the SVM Lin model for Randi¢ impact even though it shows a RMSE
0.1085 and R-squared 0.7158. The Hypotheses 7.17 and 7.24 are also rejected. None
of the predictions for "Randi¢ performed sufficiently, which leads to the rejection of
Hypothesis 7.6, 7.12, 7.17 and 7.24.

We were able to accept 1 out of 24 prediction hypotheses. This one hypothesis
and results are denoted in bold in Table 2.3 and 2.7 respectively. The conditions for
acceptance are set very low and all of the accepted prediction models barely pass
them. It is possible that the features do not capture the necessary aspects of the
graphs and changes to predict the impact. It is also possible that the impact measure
is not well suited for this task. More investigation is needed to determine which of
these two aspects are responsible for the poor performance of the predictors.

We answer Research Question 7 with an affirmation. It is possible to predict
the impact using descriptive features of the graph and change actions. However,
the prediction could be improved in the future by adding features that indicate the
difference in graph measures or focus on stability and semantics of the graph.

2.5 Conclusions

Using descriptive graph measures and change actions, we are able to predict the
impact using general linear regression, support vector regression with a linear and
radial kernel and a random forest. The impact was defined by the distance of
the Randic Index of two materialized GO versions and also by the “Randic Index.
Seven models performed well enough and reached an average RSME of 0.1125 and
an average R-squared of 0.7197. However, only one model was accepted because we
concluded that the Randi¢ impact measures is not suitable for prediction based on
its distribution.

The prediction models of the Randi¢ impact perform better because of the skewed
distribution. In future work we will define other notions of impact, that address
different aspects of the graph, like the Wiener Index. It is focused on distance
between nodes, rather than on the degree [8]. A distance measure that is specific
for ontologies will also be included.

Other features will need to be included in the prediction models as well because
this might be the other reason for the overall poor performance of the predictions.
We expect them to improve when we add features that describe the change in graph
measures. For this, we would take the difference of a measure between the new and
old version of the graph. Features that describe the materialization could also be
included, since they are much closer to the impact in terms of space. Prediction
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models that include such features are being considered for future work.

Another limitation of this work and also an explanation of the poor results is a
relatively small dataset. With numerous ontologies including detailed evolutionary
data the relevance and generalisability of our findings can be increased. It is of
interest to test the same hypotheses on a second KG preferably with many more
versions than the GO. Future work will include the repetition of this study over
a different data source and also the extension of the GO to be able to redo this
analysis on versions that are closer together in terms of time. This would enable
us to verify if our findings, generalize over the materialization operation, and draw
proper conclusions on the methods and feasibility of our approach in predicting the
impact.
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Appendix

A.1 Contents of the CD

« German summary in an unformatted text-file

» Abstract in an unformatted text-file

« PDF-file of this master thesis

» Java code for the calculation of the materialization

» Java code for the calculation of the change actions

« Python code for the calculation of the graph measures
« Python code for the calculation of the change measures
» Python code for the calculation of the impact

» CSV files used in the analysis with R

» R scripts used for the analysis

» Text file of the feature selection results

» Text files with the results of the cross validation

o Latex files of this thesis
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A.2 Change Action Hypotheses

H 6.2. Addressing correlation between inner node additions and the impact:

(a)

(b)

(c)

(d)

(¢)

(f)

(9)

(h)

()

The number of additions of inner nodes inside o correlates with the impact on
mat(Ky,)?

The mean degree of the additions of inner nodes inside o« correlates with the
impact on mat(Ky,)?

The standard deviation of the degree of additions of inner nodes inside a cor-
relates with the impact on mat(Ky,)?

The mean degree centrality of the additions of inner nodes inside o correlates
with the impact on mat(Ky,)?

The standard deviation of the degree centrality of additions of inner nodes
inside a correlates with the impact on mat(Ky,)?

The mean closeness of the additions of inner nodes inside o correlates with
the impact on mat(Ky,)?

The standard deviation of the closeness of additions of inner nodes inside «
correlates with the impact on mat(Ky,)?

The mean betweenness of the additions of inner nodes inside o correlates with
the impact on mat(Ky,)?

The standard deviation of the betweenness of additions of inner nodes inside
a correlates with the impact on mat(Ky,)?

H 6.3. Addressing correlation between leave additions and the impact:

(a)

(b)

(c)

(d)

(¢)

)

(9)

The number of additions of leaves inside a correlates with the impact on
mat(Ky, ) ?

The mean degree of the additions of leaves inside o correlates with the impact
on mat(Ky,)?

The standard deviation of the degree of additions of leaves inside o correlates
with the impact on mat(Ky, )?

The mean degree centrality of the additions of leaves inside a correlates with
the impact on mat(Ky,)?

The standard deviation of the degree centrality of additions of leaves inside o
correlates with the impact on mat(Ky,)?

The mean closeness of the additions of leaves inside a correlates with the
impact on mat(Ky,)?

The standard deviation of the closeness of additions of leaves inside o corre-
lates with the impact on mat(Ky,)?
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(h) The mean betweenness of the additions of leaves inside o correlates with the
impact on mat(Ky,)?

(i) The standard deviation of the betweenness of additions of leaves inside o cor-
relates with the impact on mat(Ky,)?

H 6.4. Addressing correlation between subgraph additions and the impact:

(a) The number of addition of subgraphs inside o correlates with the impact on
mat(Ky,)?

(b) The mean degree of the additions of subgraphs inside « correlates with the
impact on mat(K,)?

(¢) The standard deviation of the degree of additions of subgraphs inside o corre-
lates with the impact on mat(Ky,)?

(d) The mean degree centrality of the additions of subgraphs inside o correlates
with the impact on mat(Ky,)?

(e) The standard deviation of the degree centrality of additions of subgraphs inside
a correlates with the impact on mat(Ky,)?

(f) The mean closeness of the additions of subgraphs inside o correlates with the
impact on mat(Ky,)?

(9) The standard deviation of the closeness of additions of subgraphs inside
correlates with the impact on mat(Ky,)?

(h) The mean betweenness of the additions of subgraphs inside « correlates with
the impact on mat(Ky,)?

(i) The standard deviation of the betweenness of additions of subgraphs inside «
correlates with the impact on mat(Ky,)?

H 6.5. Addressing correlation between merge actions and the impact:
(a) The number of merges inside o correlates with the impact on mat(Ky,)?
(b) The mean degree of merges inside o correlates with the impact on mat(Ky,)?
(c) The standard deviation of merges inside o correlates with the impact on mat(Ky, ) ?

(d) The mean degree centrality of merges inside « correlates with the impact on
mat(Ky, ) ?

(e) The standard deviation of the degree centrality merges inside v correlates with
the impact on mat(Ky,)?

(f) The mean closeness of merges inside « correlates with the impact on mat(Ky,)?

(9) The standard deviation of the closeness of merges inside « correlates with the
impact on mat(Ky,)?
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(h) The mean betweenness of merges inside « correlates with the impact on mat(Ky, ) ?

(i) The standard deviation of the betweenness of merges inside o correlates with
the impact on mat(Ky,)?

H 6.6. Addressing correlation between move actions and the impact:
(a) The number of moves inside « correlates with the impact on mat(Ky,)?
(b) The mean degree of moves inside o correlates with the impact on mat(Ky, )?
(c) The standard deviation of moves inside v correlates with the impact on mat(Ky, ) ?

(d) The mean degree centrality of moves inside o correlates with the impact on
mat(Ky,)?

(e) The standard deviation of the degree centrality moves inside o correlates with
the impact on mat(Ky,)?

(f) The mean closeness of moves inside v correlates with the impact on mat(Ky,)?

(9) The standard deviation of the closeness of moves inside a correlates with the
impact on mat(Ky,)?

(h) The mean betweenness of moves inside o correlates with the impact on mat(Ky, )¢

(i) The standard deviation of the betweenness of moves inside « correlates with
the impact on mat(Ky,)?

H 6.7. Addressing correlation between split actions and the impact:
(a) The number of splits inside o correlates with the impact on mat(Ky,)?
(b) The mean degree of splits inside o correlates with the impact on mat(Ky,)?
(c) The standard deviation of splits inside o correlates with the impact on mat(Ky,)?

(d) The mean degree centrality of splits inside « correlates with the impact on
mat(Ky,)?

(e) The standard deviation of the degree centrality splits inside « correlates with
the impact on mat(Ky,)?

(f) The mean closeness of splits inside v correlates with the impact on mat(Ky,)?

(9) The standard deviation of the closeness of splits inside « correlates with the
impact on mat(Ky,)?

(h) The mean betweenness of splits inside a correlates with the impact on mat(Ky,)?

(i) The standard deviation of the betweenness of splits inside o correlates with the
impact on mat(Ky,)?

H 6.8. Addressing correlation between to-obsolete actions and the impact:
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(a) The number of o-obsolete inside o correlates with the impact on mat(Ky,)?
(b) The mean degree of o-obsolete inside a correlates with the impact on mat(Ky,)?

(c) The standard deviation of o-obsolete inside o correlates with the impact on
mat(Ky,)?

(d) The mean degree centrality of o-obsolete inside o correlates with the impact on
mat(Ky, ) ?

(e) The standard deviation of the degree centrality o-obsolete inside o correlates
with the impact on mat(Ky,)?

(f) The mean closeness of o-obsolete inside o correlates with the impact on mat(Ky, ) ?

(9) The standard deviation of the closeness of o-obsolete inside o correlates with
the impact on mat(Ky,)?

(h) The mean betweenness of o-obsolete inside o correlates with the impact on
mat(Ky,)?

(i) The standard deviation of the betweenness of o-obsolete inside a correlates
with the impact on mat(Ky, ) ?

H 6.9. Addressing correlation between overall actions and the impact:
(a) The number of all actions inside o correlates with the impact on mat(Ky,)?
(b) The mean degree of all actions inside v correlates with the impact on mat(Ky,)?

(¢) The standard deviation of all actions inside « correlates with the impact on
mat(Ky,)?

(d) The mean degree centrality of all actions inside o correlates with the impact
on mat(Ky,)?

(e) The standard deviation of the degree centrality all actions inside « correlates
with the impact on mat(Ky, )?

(f) The mean closeness of o-obsolete inside o correlates with the impact on mat(Ky, ) ?

(9) The standard deviation of the closeness of all actions inside o correlates with
the impact on mat(Ky,)?

(h) The mean betweenness of all actions inside o correlates with the impact on
mat(Ky,)?

(i) The standard deviation of the betweenness of all actions inside o correlates
with the impact on mat(Ky,)?
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A.3 Prediction Hypotheses

A.3.1 Hypotheses with Linear Regression

H 7.1. The Randi¢ impact prediction on mat(Ky,) using the all feature model and
linear regression has a RMSE below 0.2 and R-squared above 0.7.

H 7.2. The °Randi¢ impact prediction on mat(Ky,) using the all feature model and
linear regression has a RMSE below 0.2 and R-squared above 0.7.

H 7.3. The Randi¢ impact prediction on mat(Ky,) using the correlation feature
model and linear regression has a RMSE below 0.2 and R-squared above 0.7.

H 7.4. The °Randi¢ impact prediction on mat(Ky,) using the correlation feature
model and linear regression has a RMSE below 0.2 and R-squared above 0.7.

H 7.5. The Randi¢ impact prediction on mat(Ky, ) using the fs model and linear
regression has a RMSE below 0.2 and R-squared above 0.7.

H 7.6. The °Randi¢ impact prediction on mat(Ky,) using the fs model and linear
regression has a RMSE below 0.2 and R-squared above 0.7.

A.3.2 Hypotheses with Support Vector Regression, Linear Kernel

H 7.7. The Randié impact prediction on mat(Ky,) using the all feature model and
support vector regression with a linear kernel has a RMSE below 0.2 and R-squared
above 0.7.

H 7.8. The °Randi¢ impact prediction on mat(Ky,) using the all feature model and
support vector regression with a linear kernel has a RMSE below 0.2 and R-squared
above 0.7.

H 7.9. The Randié¢ impact prediction on mat(Ky,) using the correlation feature
model and support vector regression with a linear kernel has a RMSE below 0.2 and
R-squared above 0.7.

H 7.10. The °Randi¢ impact prediction on mat(Ky,) using the correlation feature
model and support vector regression with a linear kernel has a RMSE below 0.2 and
R-squared above 0.7.

H 7.11. The Randié¢ impact prediction on mat(Ky, ) using the fs model and support
vector regression with a linear kernel has a RMSE below 0.2 and R-squared above
0.7.

H 7.12. The Y Randié¢ impact prediction on mat(Ky,) using the fs model and support
vector regression with a linear kernel has a RMSE below 0.2 and R-squared above
0.7.
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A.3.3 Hypotheses with Support Vector Regression, Radial Kernel

H 7.13. The Randi¢ impact prediction on mat(Ky,) using the all feature model and
support vector regression with a linear radial has a RMSE below 0.2 and R-squared
above 0.7.

H 7.14. The °Randi¢ impact prediction on mat(Ky,) using the all feature model and
support vector regression with a radial kernel has a RMSE below 0.2 and R-squared
above 0.7.

H 7.15. The Randié¢ impact prediction on mat(Ky,) using the correlation feature
model and support vector regression with a radial kernel has a RMSE below 0.2 and
R-squared above 0.7.

H 7.16. The °Randi¢ impact prediction on mat(Ky,) using the correlation feature
model and support vector regression with a radial kernel has a RMSE below 0.2 and
R-squared above 0.7.

H 7.17. The Randi¢ impact prediction on mat(Ky, ) using the fs model and support
vector regression with a radial kernel has a RMSE below 0.2 and R-squared above
0.7.

H 7.18. The °Randi¢ impact prediction on mat(Ky,) using the fs feature model and
support vector regression with a radial kernel has a RMSE below 0.2 and R-squared
above 0.7.

A.3.4 Hypotheses with Random Forest

H 7.19. The Randié¢ impact prediction on mat(Ky, ) using the all feature model and
random forest has a RMSE below 0.2 and R-squared above 0.7.

H 7.20. The °Randi¢ impact prediction on mat(Ky,) using the all feature model and
random forest has a RMSE below 0.2 and R-squared above 0.7.

H 7.21. The Randié¢ impact prediction on mat(Ky ) using the correlation feature
model and random forest has a RMSE below 0.2 and R-squared above 0.7.

H 7.22. The °Randi¢ impact prediction on mat(Ky,) using the correlation feature
model and random forest has a RMSE below 0.2 and R-squared above 0.7.

H 7.23. The Randié¢ impact prediction on mat(Ky, ) using the fs model and random
forest has a RMSE below 0.2 and R-squared above 0.7.

H 7.24. The °Randié impact prediction on mat(Ky,) using the fs model and random
forest has a RMSE below 0.2 and R-squared above 0.7.
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A.4 Data

version | actions version | actions version | actions
2010-01 | 220 2013-10 | 217 2017-05 | 158
2010-02 | 403 2013-11 | 278 2017-06 | 261
2010-05 | 369 2013-12 | 288 2017-07 | 253
2010-06 | 60 2014-01 | 166 2017-08 | 445
2010-07 | 166 2014-02 | 132 2017-11 | 411
2010-08 | 203 2014-03 | 234 2017-12 | 165
2010-09 | 480 2014-04 | 185 2018-01 | 58
2010-10 | 362 2014-05 | 320 2018-03 | 213
2010-11 | 268 2014-06 | 104

2010-12 | 274 2014-07 | 195

2011-01 | 333 2014-08 | 294

2011-02 | 210 2014-09 | 187

2011-03 | 176 2014-10 | 193

2011-04 | 292 2014-11 | 152

2011-05 | 211 2014-12 | 177

2011-06 | 161 2015-01 | 250

2011-07 | 149 2015-02 | 169

2011-09 | 175 2015-03 | 255

2011-10 | 200 2015-04 | 123

2011-11 | 91 2015-05 | 141

2011-12 | 330 2015-06 | 158

2012-02 | 225 2015-07 | 197

2012-03 | 283 2015-08 | 129

2012-04 | 249 2015-09 | 161

2012-05 | 280 2015-10 | 137

2012-06 | 251 2015-11 | 103

2012-07 | 295 2015-12 | 62

2012-08 | 342 2016-01 | 229

2012-09 | 388 2016-02 | 94

2012-10 | 524 2016-03 | 287

2012-11 | 949 2016-04 | 250

2012-12 | 277 2016-05 | 151

2013-01 | 172 2016-06 | 1157

2013-02 | 242 2016-07 | 98

2013-03 | 172 2016-10 | 401

2013-04 | 135 2016-11 | 770

2013-05 | 288 2016-12 | 125

2013-06 | 240 2017-01 | 440

2013-07 | 183 2017-02 | 238

2013-08 | 214 2017-03 | 302

2013-09 | 199 2017-04 | 254
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