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Abstract

One of the most important decisions researchers face when analyzing software systems is the
choice of a proper data analysis/exchange format. In this paper, we present EvoOnt, a set
of software ontologies and data exchange formats based on OWL. EvoOnt models software
design, release history information, and bug-tracking meta-data. Since OWL describes the
semantics of the data, EvoOnt (1) is easily extendible, (2) can be processed with many exist-
ing tools, and (3) allows to derive assertions through its inherent Description Logic reasoning
capabilities. The contribution of this paper is that it introduces a novel software evolution
ontology that vastly simplifies typical software evolution analysis tasks. In detail, we show
the usefulness of EvoOnt by repeating selected software evolution and analysis experiments
from the 2004-2007 Mining Software Repositories Workshops (MSR). We demonstrate that
if the data used for analysis were available in EvoOnt then the analyses in 75% of the papers
at MSR could be reduced to one or at most two simple queries within off-the-shelf SPARQL
tools. In addition, we present how the inherent capabilities of the Semantic Web have the
potential of enabling new tasks that have not yet been addressed by software evolution
researchers, e.g., due to the complexities of the data integration.

Keywords: Software Comprehension Framework, Software Release Similarity, Bug
Prediction, Software Evolution

1. Introduction

Ever since software is being developed, there was a need to understand how code works
and why developers made certain decisions. One reason is the fluctuation rate in development
teams requiring new employees to familiarize with the existing code and its peculiarities.
Secondly, many programmers agree that they tend to forget about a certain piece of code’s
structure and its rationale behind after a short period of not touching that specific component
or class. Another obstacle for comprehending source code is outdated comments [1] or the
complete lack thereof. The problem gets aggravated when the history of source code is
considered as well; since multiple versions add another dimension of complexity.
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Imagine a software developer who newly joins a software engineering team in a company:
He will most probably be overwhelmed by the vast amount of source code, versions, releases,
and bug reports floating around. In the last decades a reasonable amount of different
code comprehension frameworks were proposed and implemented. These frameworks aim at
facilitating the navigation through the code and the identification of certain anomalies (e.g.
code smells [2], anti-patterns [3]) or the structure of the code in general (e.g. intensity of
couplings between components). Most of these frameworks first convert the source code into
an internal representation that serves as a basis for fast query answering. We will review a
selection of such frameworks in Section 2.

In addition, due to the complexity of software products and the growing popularity of
open source software components, modern software has become a fine-grained composition
of a multitude of different libraries. A typical software product uses external libraries, for
instance, for the user interface (e.g. SWT2), data layer abstraction (e.g. Hibernate3) or
logging (e.g. log4j4). Each of those libraries in turn make use of sub-libraries that are
again maintained by their own project teams. This view turns a software project that seems
to be developed locally into a node in a world-embracing network of interlinked software
source code or, more technically speaking, a global call-graph. Problems in software projects
often happen at this edge between the project’s source code and an imported library (as
witnessed by the special bug category “3rd party” in bug-trackers): A bug in a library may
influence the behavior of the calling component or the wrong usage of a component may
lead to instabilities in the code. Therefore, this global cloud of software source code and
its related information (versions, releases and bug reports) implies additional requirements
for a comprehension framework. Instead of an insular system with internal representations,
each software project participating in the cloud needs to exhibit its information in an open,
accessible and uniquely identifiable way. To this end, we propose the usage of semantic
technologies such as OWL, RDF and SPARQL as a software comprehension framework with
the abilities to be interlinked with other projects. We introduce a set of ontologies and
techniques to represent software project information semantically and focus on the general
abilities of semantic technologies to cover everyday problems in software comprehension
(also referred to as Software Analysis). We show that semantic technologies indeed bear
the potential to serve as a general-purpose framework and we believe that implicit abilities
such as the strong web-based foundation including unique resource identifiers or distributed
querying are the key towards a worldwide connection of different software projects.

Specifically, we present our software evolution ontology EvoOnt, which in fact is a graph-
based, self-describing representation for source code and software process data, allows the
convenient integration, querying, and reasoning of the software knowledge base. Together
with some standard Semantic Web tools and our domain-independent iSPARQL as well
as SPARQL-ML query engines, EvoOnt can help to resolve various software analysis tasks
(including some in cross-project settings).

2http://www.eclipse.org/swt/
3http://www.hibernate.org/
4http://logging.apache.org/log4j/index.html
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EvoOnt is a set of software ontologies based on OWL. It provides the means to store all
elements necessary for software analyses including the software design itself as well as its
release and bug-tracking information. Given the proliferation of OWL (as a standard), a
myriad of tools allow its immediate processing in terms of visualization, editing, querying,
reasoning, and debugging avoiding the need to write code or use complicated command line
tools. OWL enables handling of the data based on its semantics, which allows the simple
extension of the data model while maintaining the functionality of existing tools.

Furthermore, given OWLs Description Logic foundation, any Semantic Web engine allows
deriving additional assertions in the code such as orphan methods (see Section 5.4), which
are entailed from base facts. To highlight EvoOnts full capabilities we used it in conjunction
with two of our domain-independent SPARQL extensions iSPARQL [4] and SPARQL-ML
[5]. iSPARQL extends the Semantic Web query language SPARQL with similarity joins
allowing EvoOnt users to, e.g., query for similar software entities (classes, methods, fields,
etc.) in an EvoOnt dataset or to compute statistical propositions about the evolution of
software projects for instance (see Section 5.2). SPARQL-ML seamlessly extends SPARQL
with (two) machine learning libraries allowing, e.g., to use SPARQL queries for induction of
defect prediction models.

The main contribution of this paper is the introduction of EvoOnt simplifying most
typical software analysis and prediction tasks within one extendible framework. In addition,
the simplicity in which EvoOnt could support the software analysis indicates that future
tasks might be just as easy to handle. Last but not least, the inherent capability of the
Semantic Web to process distributed knowledge bases significantly simplifies analyses among
many different software projects. We show that our approach allows reducing more than 75%
of the evolution analysis tasks typically conducted at the ICSE Mining Software Repository
Workshop (MSR) to one (sometimes two) queries and argue that some other tasks could
also be performed with some simple extensions of EvoOnt and/or iSPARQL/SPARQL-ML.

The remainder of this paper is structured as follows: next, we succinctly summarize
the most important related work. Section 3 presents EvoOnt itself, which is followed by
brief introductions to iSPARQL and SPARQL-ML. Section 5 illustrates the simplicity of
using EvoOnt. To close the paper, Section 6 presents our conclusions, the limitations of
our approach, and some insight into future work. We would like to mention that this work
builds upon two of our previous publications [6, 7].

2. Related work

2.1. Software comprehension frameworks

As mentioned in the section above, a number of software comprehension frameworks
have been proposed in recent research. We will give a brief overview of these frameworks
with a focus on the applicability to a worldwide-interweaved scenario. One representative
dating from the late 80ies is RIGI [8]. It has a strong emphasis on the recovery of the
code’s architectural structure. To that end, RIGI uses an internal representation that is a
graph, however, mapped to a relational data model for storage. RIGI comes with a number
of different components such as a GUI and analysis component. While RIGI has a strong
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focus on visual analysis, it is limited to the implemented analysis methods because the
internal representation is not exposed and accessible for third-party tools. The same applies
to tools like CIA [9] and CShape that were implemented with a finite set of analysis tasks in
mind. This is a gap that is filled by the GENOA [10] framework. It also has a graph-based
internal representation, but additionally offers a formal language interface that can be used
by a multitude of different frontends (analysis tools) to retrieve information. GUPRO [11]
follows a similar approach by using a graph-based query language to access the source code
information. LaSSIE [12], presented by the same authors as GENOA, exposes a natural
language interface serving as a more intuitive way of accessing the knowledge base. All
of the above mentioned approaches use internal data models with local identifiers. It is
non-trivial to put those software projects into relation to their libraries and dependencies.
They provide non-standardized query interfaces to access their knowledge base, if at all.
Finally, the OMG (Object Management Group) specified QVT [13], for instance used by
the ADM initiative (Architecture-Driven Modernization). QVT stands for Query / View
/ Transformation and its goal is the transformation between different object-oriented code
model representations. Unlike SPARQL, QVT uses mostly an SQL-like relational approach
instead of graph patterns. The tool support is not (yet) very comprehensive.

2.2. Software exchange formats

To address the issue that each analysis framework needs to provide its own extraction
tools suitable for the internal format, generic exchange formats have been proposed. Many
of the above-mentioned tools define their own format primarily for persistent storage of their
internal data. With GXL [14], an effort was made to exchange software graphs between TA
[15], TGraphs (GUPRO), RPA [16], RSF (Rigi Standard Format) [8] and PROGRES [17].
It extends the tree-based XML to be able to express graphs. An earlier exchange format was
CDIF (CASE Data Interchange Format), an EIA5 standard for exchanging data between
CASE (Computer Aided Software Engineering) tools. It uses flat textual representations,
which makes it human-readable. An example for a comprehension framework supporting
CDIF is FAMIX, the meta-model for object-oriented source code of the MOOSE6 project;
in the earlier versions of FAMIX the CDIF format was used. Later, the successor, XMI
(XML Metadata Interchange) [18], an XML based exchange format able to express multiple
different models and even graphics was used. XMI is a standard of the OMG. Both CDIF
and XMI are highly sophisticated exchange formats. Since they were designed especially
for the domain of CASE tools there is a good and widespread tool support. Unfortunately,
tool providers tend to extend XMI with proprietary elements resulting in an erosion of
the standard. Another downside is the need for transformation between a tool’s internal
representation and the exchange format. This can be an error-prone and expensive step. Our
approach proposes the usage of one format both for internal representation and as exchange
format. In addition, neither XML nor CDIF impose the rigid usage of global identifiers in a
way that RDF does. This is, as mentioned above, a precondition for inter-project software

5http://www.eia.org/
6http://moose.unibe.ch/
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comprehension and code analysis. Finally, none of the existing exchange formats expose
their semantics formally. They are usually defined in a human-readable format aiming at
being implemented in tools. The advantage of self-describing and exposed semantics is the
fact that tools can handle the information without the need of being developed for a certain
domain of application (e.g. query languages, visualization tools or machine learning tools).

2.3. Semantic web enabled software engineering

Semantic Web technologies have successfully been used in recent software engineering
research. For example Dietrich [19] proposed an OWL ontology to model the domain of
software design patterns [20] to automatically generate documentation about the patterns
used in a software system. With the help of this ontology, the presented pattern scanner
inspects the abstract syntax trees (AST) of source code fragments to identify the patterns
used in the code.
The decision as to which software design patterns to choose is a crucial step in designing a
software system. Choosing a wrong (or inappropriate) architectural design probably results
in high maintenance costs and poor performance and scalability. With the proposed software
evolution ontology EvoOnt we are, in fact, able to measure the quality of software in terms
of its used design patterns. This, in combination with data from version control and a bug-
tracking system, enables us to perform powerful and complex software analysis tasks (see
Section 5).

Highly related is the work of Hyland-Wood [21], in which the authors present an OWL
ontology of Software Engineering Concepts (SECs). Using SEC, it is possible to enable
language-neutral, relational navigation of software systems to facilitate software understand-
ing and maintenance. The structure of SEC is very similar to the language structure of Java
and includes information about classes and methods, test cases, metrics, and requirements
of software systems. Information from versioning and bug-tracking systems is, however, not
modeled in SEC.
In contrast to EvoOnt, SEC is not based on FAMIX [22] that is a programming language-
independent model to represent object-oriented software source code. EvoOnt is, thus, able
to represent software projects written in many different object-oriented programming lan-
guages.

Witte et al. [23] presented an approach that is similar to the idea of EvoOnt. The
scope of their work is not the integration of bug, version and source code information but
the connection of source code with its documentation. We believe that EvoOnt could be
attached to the documentation ontologies of their work to have even more information
available in the knowledge base.

Both, Mäntylä [24] and Shatnawi [25] carried out an investigation of code smells [2] in
object-oriented software source code. While the study of Mäntylä additionally presented a
taxonomy (i.e., an ontology) of smells and examined its correlations, both studies provided
empirical evidence that some code smells can be linked with errors in software design.

Happel [26] presented the KOntoR approach that aims at storing and querying metadata
about software artifacts in a central repository to foster their reuse. Furthermore, various
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ontologies for the description of background knowledge about the artifacts such as the pro-
gramming language and licensing models are presented. Also, their work includes a number
of SPARQL queries a developer can execute to retrieve particular software fragments which
fit a specific application development need.

Finally, we would like to point out that EvoOnt shares a lot of commonalities with
Baetle7 which is an ontology that heavily focuses on the information kept in bug databases,
and makes use of many other well-established Semantic Web ontologies, such as the Dublin
Core8, and FOAF9. We merged the ideas realized in Baetle with our Bug Ontology Model
(see Section 3.3). Therefore, most members of the Baetle community base their work on our
ontology.

As a conclusion of the related work, we believe that EvoOnt will contribute to the state
of the art as follows: (1) The usage of the open and well-established RDF/OWL format can
decouple the analysis tool from the data export tool (so far, an analysis tool is responsible to
transform the data into its own internal format). (2) Other than existing exchange formats,
EvoOnt exposes its semantics, which allows standard tools to process the data using a
unified query language (SPARQL) including extensions such as iSPARQL and SPARQL-
ML. Additionally, unlike CDIF or XMI, EvoOnt can be extended easily by either attaching
additional ontologies or by using sub-concept specialisation. Finally (3), EvoOnt imposes the
usage of globally unique identifiers, which is a main requirement for inter-project analysis.

3. Software ontology models

In this section, we describe our OWL software ontology models. Figure 1 shows the
complete set of our ontologies and their connections between each other. We created three
different models which encapsulate different aspects of object-oriented software source code:
the software ontology model (som), the bug ontology model (bom), and the version ontology
model (vom). These models not only reflect the design and architecture of software, but also
capture information gathered over time (i.e., during the whole life cycle of the project). Such
meta-data includes information about revisions, releases, and bug reports. We connected our
ontologies to existing ones from other domains. A bug report for example can be seen as a
representation of a work flow. Therefore, we used the defined concepts of Tim Berners-Lee’s
work flow ontology10. The following list shows the external ontologies with their description
and abbreviation (prefix) used in the remaining parts of this paper.

• doap: Description of a Project defining concepts about a project itself as well as
different version control systems (e.g. CVSRepository)

• sioc: Semantically Interlinked Online Communities. In this ontology, concepts mod-
eling the activities of online communication are defined.

7http://code.google.com/p/baetle/
8http://dublincore.org/documents/dcq-rdf-xml/
9http://www.foaf-project.org/

10http://www.w3.org/2005/01/wf/

6

http://code.google.com/p/baetle/
http://dublincore.org/documents/dcq-rdf-xml/
http://www.foaf-project.org/
http://www.w3.org/2005/01/wf/


• foaf: The Friend Of A Friend Ontology is an approach of modelling social networks,
i.e., persons and the connection to each other. We use the concept Person to reflect
human interaction within the repositories.

• wf: Tim Berners-Lee’s work flow ontology. In our approach, a bug report is consid-
ered a work flow. Therefore, an issue (bug report) is a wf:Task which can have a
wf:NonTerminalState (still processing) or a wf:TerminalState (fixed / closed bug).
This idea is adopted from the baetle project.

3.1. Software ontology model

Our software ontology model (som) is based on FAMIX (FAMOOS Information Ex-
change Model) [22], a programming language-independent model for representing object-
oriented source code. FAMIX and other meta-models abstract OO concepts in a similar
way. Therefore, the choice of using FAMIX is not irrevocable. Other meta-models such as
Lethbridge et al.’s DMM (Dagstuhl Middle Metamodel)[27] can partially (or completely) be
attached to the current ontology to, for example, express control structures such as while,
switch, or if. This can be achieved by using sameAs relations or, in case of a finer-grained
definition, a subclass definition — another advantage of RDF/OWL’s exposed semantics.

On the top level, the ontology specifies Entity that is the common superclass of all other
entities, such as BehaviouralEntity and StructuralEntity (see Figure 1 (top)). A Be-

haviouralEntity represents the definition of a behavioural abstraction in source code, i.e.,
an abstraction that denotes an action rather than a part of the state (achieved by a method
or function). A StructuralEntity, in contrast, represents the definition in source code of
a structural entity, i.e., it denotes an aspect of the state of a system [22] (e.g., variable or
parameter).

When designing our OWL ontology, we made some changes to the original FAMIX: we
introduced the two new classes Context and Namespace, the first one being the superclass
of the latter one. Context is a container class to model the context in which a source code
entity appears. Namespace (not to confuse with an RDF namespace, i.e. URI) denotes a
hierarchical identifier for source code (e.g., in Java this concept is called package). Tak-
ing advantage of RDF’s graph-based foundation, RDF/OWL now allows us to elegantly
model so-called association classes, such as methods accessing a variable with the property
accesses having the domain BehaviouralEntity and range StructuralEntity.

3.2. Version ontology model

The goal of our version ontology model (vom) is to specify the relations between files, re-
leases, and revisions of software projects and the projects themselves (See Figure 1 (middle)).
We took the data model of Subversion11 as a blueprint for vom. To that end, we defined the
three OWL classes Path, Release, and Version as well as the necessary properties to link
these classes. A Path denotes a constant, non-temporal entity which could also be seen as

11http://subversion.tigris.org/
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Figure 1: EvoOnt’s three ontology models: Software (SOM), Version (VOM), and Bug (BOM) Ontology
Model. Solid arrows: property relationships; hollow arrows: class inheritance.
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a file, but without content or any meta-data. According to the name, a Version relates to
a file belonging to a Path which is valid for a certain timespan between its predecessor and
successor version. A Version has content and meta-data as we would expect it from a clas-
sical file in a file system (i.e., author or creation date) and, as a characteristic to a versioning
system, a comment and a revision number. As container entity we import doap:Project

and doap:Repository (with its subclasses) from the Description Of A Project ontology.
Every path is connected to Repository using the belongsToRepository object property.
On the other hand, a Repository is connected to a Project that it is part of using the
doap:repository property. A Path, for example, has a number of revisions and, therefore,
is connected to Revision by the hasRevision property. At some point in time, the devel-
opers of a software project usually decide to publish a new release, which includes all the
revisions made until that point. In our model, this is reflected by the isReleaseOf property
that relates Release with one or more Versions.

3.3. Bug ontology model

Our bug ontology model (bom) (see Figure 1 (bottom)) is inspired by the bug-tracking
system Bugzilla.12 Issue is the main class for specifying bug reports. As stated above,
we consider a bug report to be a task from a work flow. Therefore, Issue is a subclass of
wf:Task defined in the workflow ontology. It is connected to a foaf:Person, which stands
for any person interacting with the bug tracking system, i.e., the reporter of a bug or a
developer that fixes a bug. Activity stands for every change made to a bug report. This
can be, e.g., the change of the status or resolution of a bug report or the current state of
the bug.13 Issue has a connection to Version (see Section 3.2) via the isFixedBy property.
This way, information about which file version successfully resolved a particular bug can be
modeled, and vice versa, which bug reports were issued for a specific source code file.

4. Semantic web query methods for software analysis

The contribution of our paper is to show how software analysis tasks can be vastly
simplified using EvoOnt and off-the-shelf Semantic Web tools. To ensure that this paper is
self-contained we succinctly review the two non-standard, off-the-shelf, domain-independent
Semantic Web query approaches used in this paper: iSPARQL (imprecise SPARQL) and
SPARQL-ML (SPARQL Machine Learning). For details about these approaches, refer to
[28], [4], and [5] respectively.

4.1. iSPARQL

iSPARQL14 is an extension of SPARQL [28]. It introduces the idea of virtual triples—
triples that are not matched against the underlying ontology graph, but used to configure

12http://www.bugzilla.org/
13https://bugs.eclipse.org/bugs shows various concrete examples.
14A demonstration of iSPARQL is available at http://www.ifi.uzh.ch/ddis/isparql.html.

9

http://www.bugzilla.org/
https://bugs.eclipse.org/bugs
http://www.ifi.uzh.ch/ddis/isparql.html


similarity joins. Similarity joins specify which pair(s) of variables (that are bound to re-
sources in SPARQL) should be joined and compared using a certain type of similarity mea-
sure. Thus, they establish a virtual relation between the resources. A similarity ontology
defines the admissible virtual triples and links the different measures to their actual imple-
mentation in SimPack—our library of similarity measures.15 For convenience we list some
similarity measures used by iSPARQL in Table 1. The similarity ontology also enables the
specification of more complicated combinations of similarity measures.

Measure Explanation
Levenshtein mea-
sure (simple)

String similarity between, for instance, class/method names: Levenshtein string edit distance measur-
ing how two strings relate in terms of the number of insert, remove, and replacement operations to
transform one string into the other [29].

TreeEditDistance
measure (simple)

Tree similarity between tree representations of classes: measuring the number of steps it takes to trans-
form one tree into another tree by applying a set of elementary edit operations: insertion, substitution,
and deletion of nodes [30].

Graph measure
(simple)

Graph similarity between graph representations of classes: the measure aims at finding the maximum
common subgraph (MCS) of two input graphs [31]. Based on the MCS the similarity between both
input graphs is calculated.

CustomClass-
Measure (engi-
neered)

User-defined Java class similarity measure: determines the affinity of classes by comparing their sets
of method/attribute names. The names are compared by the Levenshtein string similarity measure.
Individual similarity scores are weighted and accumulated to an overall similarity value.

Table 1: Selection of four iSPARQL similarity strategies.

4.2. SPARQL-ML

Specifically for our bug prediction experiments in Section 5.6, we will use our SPARQL-
ML (SPARQL Machine Learning) approach – an extension of SPARQL with knowledge
discovery capabilities. SPARQL-ML is a tool for efficient, relational data mining on Semantic
Web data.16 Its syntax and semantics were thoroughly examined in [5] together with a
number of case studies to show the usability of SPARQL-ML. In this section we will give a
brief introduction and example queries.

SPARQL-ML enables the usage of Statistical Relational Learning (SRL) methods such
as Relational Probability Trees (RPTs) [32] and Relational Bayesian Classifiers (RBCs) [33]
that take the relations between RDF resources into account for the induction of a model,
as well as for making predictions. These methods have been shown to be very powerful
for SRL as they model not only the intrinsic attributes of resources, but also the extrinsic
relations to other resources [34], and thus, should perform at least as accurate as traditional,
propositional learning techniques.

Listing 1 is the SPARQL-ML query which builds up a prediction model (indicated by
the CREATE MINING MODEL statement). Within this block, the target variables, prediction
type and feature types are defined (lines 2–5). The following block (lines 8–10) are triple
patterns to bind the variables that serve as features for the prediction in the training period.
Finally, in line 12, the library providing the machine learning algorithms is selected (in this
case: proximity, weka would be available as well).

15http://www.ifi.uzh.ch/ddis/simpack.html
16SPARQL-ML is available at http://www.ifi.uzh.ch/ddis/sparql-ml.html
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1 CREATE MINING MODEL <http :// www.example.org/bugs >

2 { ?file RESOURCE TARGET
3 ?error DISCRETE PREDICT {’YES’,’NO’}

4 ?reportedIssues3Months CONTINUOUS
5 ?reportedIssues5Months CONTINUOUS
6 }

7 WHERE
8 { ?file rcs:hasError ?error .

9 ?file rcs:reportedIssues3Months ?reportedIssues3Months .

10 ?file rcs:reportedIssues5Months ?reportedIssues5Months

11 }

12 USING <http :// kdl.cs.umass.edu/proximity/rpt >

Listing 1: SPARQL-ML induce statement.

1 SELECT DISTINCT ?file ?error ?rpt ?prob

2 WHERE
3 { ?file rcs:hasError ?error .

4 ?file rcs:reportedIssues3Months ?reportedIssues3Months .

5 ?file rcs:reportedIssues5Months ?reportedIssues5Months .

6

7 ( ?rpt ?prob ) sml:predict

8 ( <http ://www.example.org/bugs >

9 ?file , ?error , ?reportedIssues3Months ,

10 ?reportedIssues5Months )

11 }

Listing 2: SPARQL-ML predict statement.

Listing 2 applies the prediction model that was learned in the query of 1 to a test set
that is bound with the triple patterns in lines 3-5. Since the learning of a prediction model
and its application to the test set are two detached queries, the learned model is passed
between those two queries using a URI (line 1 in Listing 1 and line 8 in Listing 2).

5. Experimental evaluation

To show the applicability and ease of use of our approach for a very broad range of
Software Analysis tasks we first surveyed the last four years of the proceedings of the ICSE
Workshop on Mining Software Repositories (MSR)17 and then tried to replicate as many
experiment types as possible with EvoOnt and the off-the-shelf query tools.

The most actively investigated software analysis tasks are shown in Table 2. The table
shows the 12 task categories we identified together with their percentage of numbers of
papers. Note that these categories were subjectively constructed. We found this procedure
very useful to get an overview of current research activities, for which our Semantic Web
tools could make a significant contribution. Furthermore, Table 2 also shows for which tasks
we have successfully applied one or more of our tools.

17http://www.msrconf.org/
18These tasks could theoretically be accmplished with SPARQL. However, we did not conduct any social

network analysis experiments due to the lack of datasets.
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Task Fraction (%) Domain Independent Tool
General Framework (e.g., facilitate analysis process, data cleans-
ing & integration, repository query language)

13.59 RDF, OWL, SPARQL

Bug/Change Prediction (e.g., build defect detectors/classifiers,
bug risk & fixing time prediction)

13.59 SPARQL-ML

Social Network Analysis (e.g., mailing list analysis, understand
developer roles & networks, discover development processes)

11.65 —18

Software Evolution Analysis (e.g., study & characterize system
evolution, visualization)

10.68 iSPARQL

Software Reuse (e.g., code suggestion, similarity analysis, code
search & retrieval, clone detection)

10.68 SPARQL, iSPARQL

Mining CVS (e.g., mine local histories) 9.71 SPARQL
Change Impact Analysis (e.g., detect incomplete refactorings,
signature change analysis, code smells)

9.71 SPARQL

General Mining (e.g., find sequences of changed files) 8.74 SPARQL
Text Mining (e.g., free text search, mining code comments, key-
word search)

4.85 SPARQL, iSPARQL

Source Code Metrics (e.g., code clone coverage) 2.91 SPARQL
Repository Mining Tools (e.g., evaluation of tools) 1.94 —
Pattern Detection (e.g., detect software design patterns, find
system-user interaction patterns)

1.94 SPARQL

100% (103 papers)

Table 2: Popular software analysis tasks from MSR 2004–2007

Of the accepted 103 papers in total (not including MSR challenge reports), almost 14%
are dealing with the construction and evaluation of General Frameworks for the integration,
cleansing, analysis, and querying of data from various software-development related sources,
such as versioning and bug-tracking systems, source code, forums, mailing lists, etc. Our
EvoOnt approach is, in fact, a unified, general purpose framework integrating software data
from diverse sources and enabling its efficient querying and analysis along a multitude of
dimensions.

Approximately the same number of papers investigate the task of Bug and Change Pre-
diction to find the locations in software that most likely will have to be fixed in the future
based on historical information. This is a perfect candidate for our SPARQL-ML tool as it
allows us to make a statistical statement about the likelihood of the occurrence of bugs and
changes in source code (see Section 5.6).

Another set of 12 papers examines methods from Social Network Analysis to, for instance,
determine developer roles and to reveal software development processes. We did not yet
address any of these tasks with one of our tools. This is not a limitation of our approach
and the used techniques themselves but of the data sets available to us. We believe that our
tools could be applied to these tasks with comparable performance.

Software Evolution Analysis and Software Reuse are the fourth and fifth largest cate-
gories. These categories are interesting as they hold tasks such as evolution visualization,
similarity analysis, as well as code search & retrieval that can clearly be tackled by our
Semantic Web approaches.

Additional categories we found suitable for further consideration are Change Impact
Analysis, Source Code Metrics, and Pattern Detection. Specifically, the first one includes
detection of code smells (i.e., code design flaws) that can partly be solved by approaches
falling into the second category to compute source code metrics. Pattern Detection is in
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range of our tools as our FAMIX-based software model approach allows us to query the
RDF data set for certain software design patterns.

Note that tasks such as visualization and search are common to almost all categories. We
address visualization in Section 5.2, in which we apply iSPARQL to discover and visualize
the architectural evolution of software components.

Given these categories, we chose to conduct the following five sets of experiments (in
increasing order of complexity):

1. software evolution measurements : analyzing and visualizing changes between different
releases;

2. metrics experiments : evaluation of the ability to calculate object-oriented software
metrics;

3. impact experiments : evaluation of the applicability of Semantic Web tools to detect
code smells;

4. density measurements (as a subtask of the evolution and metrics experiments): deter-
mining the amount of bug-fixing and “ordinary” software development measured over
all software engineering activities;

5. bug prediction assessments : showing the usefulness of SPARQL-ML for bug prediction.

5.1. Experimental setup and datasets

For our experiments, we examined 206 releases of the org.eclipse.compare plug-in for
Eclipse. This plug-in consists in average of about 150 java classes per version. Multiplied
with the 206 releases we have the source code information of roughly 30’000 classes in our
repository19. To generate an OWL data file of a particular release, it was first automatically
retrieved from Eclipse’s CVS repository and loaded into an in-memory version of our software
ontology model, before it was exported to an OWL file. To get the data from CVS and to
fill our version ontology model, the contents of the Release History Database (RHDB) [35]
for the compare plug-in were loaded into memory and, again, parsed and exported to OWL
according to our version ontology model. While parsing the CVS data, the commit message
of each revision of a file was inspected and matched against a regular expression to detect
referenced bug IDs. If a bug was mentioned in the commit message as, for instance, in
“fixed #67888: [accessibility] Go To Next Difference stops working on reuse of editor”, the
information about the bug was (automatically) retrieved from the web and also stored in
memory. Finally, the data of the in-memory bug ontology model was exported to OWL.
None of the above steps needed any kind of user interaction (except for selecting the project
and versions to export) and were conducted by an Eclipse plug-in allowing us to rely on a
multitude of functions provided by the Eclipse framework such as checkout of a release or
build-up and traversal of the syntax trees. A general downside of the design of our extraction
tool was the generation of an in-memory model before we wrote the data to RDF/OWL.

19We believe that lines of code is not a suitable metric in this cases because we use graph-based represen-
tations. However, for comparison, the LOC of one version is about 38’000. Multiplied with the 206 versions
we have information about approximately 7.8 millions LOC.
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This fact limited us in the choice of project sizes because the in-memory models of projects
larger than 150 classes per version reached the limit of the physical main memory of the
extracting machine. A currently developed 2nd version of the extraction tools now directly
generates triples that get immediately written to disk. Therefore, the project size ceases to
be a limiting factor.

Recently, Gröner et al. [36] compared query approaches in reverse engineering. Specifi-
cally, they compared GUPRO/GReQL with OWL/SPARQL and showed that the time costs
are, in summary, more than ten times higher for OWL/SPARQL than for GUPRO/GReQL.
Note that this performance difference needs to be seen in the light of our other investiga-
tions, where we showed that simple selectivity-based query optimization applied to existing
SPARQL engines techniques can lead to performance improvements of 3-4 orders of magni-
tude [37, 38]. In particular, since Gröner et al. found that KAON2 was about 1 order of
magintude slower than GUPRO/GReQL and we found that our static query optimizer sped
up typical SPARQL queries on KAON2 by about 600 times (compared to other SPARQL
engines even by about 700 times) [37], we can expect that optimized SPARQL engines should
provide an at least equal if not superior performance compared to GUPRO/GReQL. As a
consequence, we share Gröner et al. ’s opinion that recent research [39, 40] will lead to vast
improvements in execution-time of SPARQL queries, and, therefore, our approach will most
probably have a competitive time complexity in future applications.

5.2. Task 1: software evolution analysis

With the first set of experiments, we wanted to evaluate the applicability of our iSPARQL
approach to the task of software evolution visualization (i.e., the graphical visualization
of code changes for a certain time span in the life cycle of the Eclipse compare software
project). This analysis is especially important when trying to detect code clones. To that
end, we compared all the Java classes of one major release with all the classes from another
major release with different similarity strategies mirroring the experiments of Sager et al.
[30] Listing 3 shows the corresponding query for two particular releases and the Tree Edit
Distance measure. In lines 3–6 and 8–11 of Listing 3, four variables are bound to each class
URI and its literal value. Identified by the IMPRECISE keyword, each class URI is passed
to a property function (isparql:treeEditDistance, line 14) which binds the calculated
structural similarity to the variable sim1. Another similarity algorithm is applied to the
class names (isparql:levenshtein, line 15). Finally, the two similarities are weighted and
combined to an overall score (line 16).

The results of the execution of Listing 3 for the releases 3.1 and 3.2 are shown in Figure
2. The heatmaps mirror the class code changes between the two releases of the project by
using different shades of gray for different similarity scores in the interval [0, 1]. Analyzing
the generated heatmaps, we found that the specialized Custom Class Measure performed
best for the given task; most likely, this is because it is an algorithm especially tailored to
compare source code classes. The combination of method/attribute set comparisons together
with the Levenshtein string similarity measure for method/attribute names (Figure 2(b))
turned out to be less precise. In all our experiments, the Graph Measure (Figure 2(c)) was
the least accurate indicator for the similarity of classes. What is common to Figures 2(a–c)
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1 SELECT ?similarity

2 WHERE
3 { ?class1 som:uniqueName ?name1 ;

4 som:isClassOf ?file1 .

5 ?file1 som:hasRelease ?release1 .

6 ?release1 vom:name ‘‘R3_1’’ .

7

8 ?class2 som:uniqueName ?name2 ;

9 som:isClassOf ?file2 .

10 ?file2 som:hasRelease ?release2 .

11 ?release2 vom:name ‘‘R3_2’’ .

12

13 IMPRECISE
14 { ?sim1 isparql:treeEditDistance ( ?class1 ?class2 ) .

15 ?sim2 isparql:levenshtein ( ?name1 ?name2 ) .

16 ?similarity isparql:score ( 0.25 ?sim1 0.75 ?sim2 )

17 }

18 }

19 ORDER BY DESC (? similarity)

Listing 3: iSPARQL query: Computation of the structural (Tree Edit Distance) and textual (Levenshtein)
similarity between the classes of two releases.

is the diagonal line denoting high similarity of the same classess between different versions.
This is an obvious and expected fact because usually only a small percentage of the source
code changes between two versions. Another, less obvious fact is the high similarity observed
in the top-left area of the figures. This is a cluster of classes very similar to each other, but
highly different to the rest of the classes. An in-depth analysis showed that this cluster
consists of interface definitions, which lack a lot of features of “normal” classes (e.g. method
bodies, variable declarations, anonymous classes). In general, a software project manager
or auditor can use the information of these visualizations to get a preselection of possible
candidates for duplicate code.

Furthermore, to shed some light on the history of a single Java class, we measured the
similarity of the class from one release and the (immediate) next release and repeated this

process for all classes and releases. This resulted in an array of values sim
Ri,Rj

class , each value
expressing the similarity of the same class of two different releases Ri and Rj. However,

to visualize the amount of change, we plotted the inverse (i.e., 1 − sim
Ri,Rj

class ) as illustrated
in Figures 2(d–f) that show the history of changes for three distinct classes of the project.
There are classes such as BufferedCanvas which tend to have fewer changes as the project
evolves over time. Other classes such as CompareEditor (Figure 2(e)) are altered again and
again, probably implying some design flaws or code smells. Then again, there are classes
which tend to have more changes over time as shown in Figure 2(f) for the class Utilities.
This information can also help to manage a software project since it allows managers to
allocate resources to classes/components that have a high development activity.

5.3. Task 2: computing source code metrics

With our second set of experiments, we wanted to demonstrate the possibility of calcu-
lating object-oriented software design metrics [3] using SPARQL. For illustration purposes,
we have chosen six of them which we will succinctly discuss in this section. Note that there
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Figure 2: Figures 2(a–c) depict the computed heatmaps of the between-version comparison of all the classes
of releases 3.1 and 3.2 of the org.eclipse.compare plugin using three different similarity strategies. Fur-
thermore, the history of changes for three distinct classes of the project is illustrated in Figures 2(d–f).

is a close connection between code smells and software metrics in the sense that metrics are
often used to identify possible code smells in object-oriented software systems (see Section
5.4).

5.3.1. Changing methods (CM) and changing classes (CC)

When changing the functionality of a method (callee), in most cases this will have an
impact to the invoker (caller) of this method. Consider a method in an arbitrary class for
sorting a list of input strings. For some reason a developer might decide to change the order
of the result list, for instance, from ascending to descending order. If the change is not
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communicated to the caller, it might be unable to process the results correctly as it expects
the returned list to be sorted in ascending order.

This is a typical example for a change that can lead to defects of the invoking methods
and classes as they expect different semantics of the callee. Therefore, a method that is
invoked by many other methods has a higher risk of causing a defect because a developer
might forget to change every invoking method.

With SPARQL we are able to easily count the number of times a method is called. This
is shown in Query 4 which lists methods and the number of their distinct callers (variable
?cm; in query). In addition, the query counts the number of distinct classes these calling
methods are defined in (variable ?cc; also in query). The topmost answers of the query are
shown in Table 3.

1 SELECT ?method (count(distinct ?invoker) AS ?cm)

2 (count(distinct ?invokerClass) AS ?cc)

3 WHERE
4 { ?class som:hasMethod ?method .

5 ?invoker som:invokes ?method .

6 ?invokerClass som:hasMethod ?invoker

7 }

8 GROUP BY ?method

9 ORDER BY ASC(? method)

Listing 4: Changing methods (CM)/classes (CC) query pattern.

class method cm cc
CompareUIPlugin getDefault() 30 10
Utilities getString(java.util.ResourceBundle,java.lang.String) 26 14
Utilities getString(java.lang.String) 24 12
ICompareInput getLeft() 16 9
ICompareInput getRight() 15 8

Table 3: Changing methods/classes for the compare plug-in

5.3.2. Number of methods (NOM) and number of attributes (NOA)

The queries shown in Listing 5 and 6 calculate the two metrics number of attributes
(NOA) and number of methods (NOM) that can be both used as indicators for possible God
classes (see also Section 5.4). The results are shown in Table 4(a) and 4(b) respectively.
Having a closer look at class TextMergeViewer, one can observe that the class is indeed very
large with its 4344 lines of code. Also CompareUIPlugin is rather big with a total number
of 1161 lines of code. Without examining the classes in more detail, we hypothesize that
there might be some room for refactorings, which possibly result in smaller and more easy
to use classes.

1 SELECT ?class (count(distinct ?attribute) AS ?noa)

2 WHERE
3 { ?class som:hasAttribute ?attribute }

4 GROUP BY ?class

5 ORDER BY ASC(?class)

Listing 5: Number of attributes (NOA) query pattern.
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(a) Number of attributes (NOA) metric for the
compare plug-in.

class noa
TextMergeViewer 91
PatchMessages 63
CompareUIPlugin 42
ContentMergeViewer 36
CompareMessages 27
EditionSelectionDialog 26
CompareEditorInput 23
CompareConfiguration 20
ICompareContextIds 19
ComparePreferencePage 18

(b) Number of methods (NOM) metric for the
compare plug-in.

class nom
TextMergeViewer 115
CompareUIPlugin 46
ContentMergeViewer 44
OverlayPreferenceStore 43
Patcher 39
CompareEditorInput 38
Utilities 34
MergeSourceViewer 31
EditionSelectionDialog 30
CompareConfiguration 28

Table 4: The results of NOA and NOM queries.

1 SELECT ?class (count(distinct ?method) AS ?nom)

2 WHERE
3 { ?class som:hasMethod ?method }

4 GROUP BY ?class

5 ORDER BY ASC(?class)

Listing 6: Number of methods (NOM) query pattern.

5.3.3. Number of bugs (NOB) and number of revisions (NOR)

To close this section and to support or discard our hypothesis from the previous para-
graph, we measured the number of bug reports (NOB) issued per class as we assume a
relationship between the number of class methods (attributes) and the number of filed bug
reports. To that end, we executed a query (not shown) similar to the one presented in Listing
6. Indeed, there is a relationship as the results in Table 5(a) clearly show: the two classes
TextMergeViewer and CompareUIPlugin are also among the top 10 of the most buggiest
classes in the project.

(a) Number of bug reports for the compare plug-in.

file nob
TextMergeViewer 36
CompareEditor 16
Patcher 15
PreviewPatchPage 13
ResourceCompareInput 12
DiffTreeViewer 10
Utilities 10
CompareUIPlugin 9
StructureDiffViewer 9
PatchWizard 6

(b) Number of revision for the compare plug-in.

file nor
TextMergeViewer 213
CompareEditorInput 88
CompareUIPlugin 70
ContentMergeViewer 69
EditionSelectionDialog 66
Utilities 64
CompareEditor 57
Patcher 51
ComparePreferencePage 50
DiffTreeViewer 47

Table 5: The results of NOB and NOR queries.

Finally, the number of revisions (NOR) metric counts the number of revisions of a file
recorded in CVS. The respective results are shown in Table 5(b) (again, for space consid-
eration we omitted the listing of the query. However, it is very similar to Listing 6). Both
NOB and NOR are used in Section 5.5 to determine defect and evolution density of software
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systems.

5.4. Task 3: detection of code smells

In a third set of experiments, we evaluate the applicability of SPARQL to the task of
detecting code smells [2]. In other words, the question is whether SPARQL is able to give
you a hint that there might be potential problems in the source code. Can SPARQL tell you
if it could be solved, for instance, by refactoring the current architecture? In order to solve
this task, we selected one candidate smell, the GodClass anti-pattern, which we thought
could be (among others) identified in the compare plug-in.

Furthermore, the following experiments are useful to demonstrate the benefits of onto-
logical reasoning for software analysis. We, therefore, use two well-known inference engines
in the Semantic Web: the Jena20 reasoner and the complete OWL reasoner Pellet.21 Note
that, while the Jena reasoner only supports a subset of the OWL language (i.e., OWL/Lite),
Pellet is complete, in other words is able to deal with all elements of the OWL/DL language.
These reasoners are used to derive additional RDF assertions which are entailed from base
facts together with the ontology information from the source code models (Section 3) and
the axioms and rules associated with the reasoners.

5.4.1. GodClass anti-pattern

A God class is defined as a class that potentially ‘’knows” too much (its role in the
program becomes all-encompassing). In our sense, it has (too) many methods and instance
variables. In the following, we present two approaches to find God classes in source code:
first, by computing object-oriented source code metrics (see Section 5.3) and, second, by
inferring them using the aforementioned reasoning engines. To illustrate our approach, we
define a God class as any class which declares more than 20 methods and attributes in its
body.

We first present the metrics-based approach. Listing 7 shows a particular SPARQL query
that counts both the number of methods (NOM) and number of attributes (NOA) per class.
A God class is successfully identified if both are above 20. The topmost results of this query
are shown in Table 6.

1 SELECT ?GodClass (count(distinct ?method) AS ?nom)

2 (count(distinct ?attribute) AS ?noa)

3 WHERE
4 { ?GodClass som:hasMethod ?method ;

5 som:hasAttribute ?attribute

6 }

7 GROUP BY ?GodClass

8 HAVING ( ( count(distinct ?method) > 20 )

9 && ( count(distinct ?attribute) > 20 ) )

10 ORDER BY ASC(? GodClass)

Listing 7: SPARQL metrics approach to find God classes.

20http://jena.sourceforge.net/
21http://pellet.owldl.com/
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GodClass nom noa
TextMergeViewer 115 91
CompareUIPlugin 46 42
ContentMergeViewer 44 36
CompareEditorInput 38 23
EditionSelectionDialog 30 26

Table 6: Results of God class query pattern.

To demonstrate how God classes can be inferred from the ontology, the ontological concept
’GodClass’ has to be defined first. We chose OWL as concept definition language as it offers
all the required language constructs.

Figure 3 shows the definition of the ontology concept ’GodClass’ in description logic
syntax (DL Syntax) wich can be easily transformed to OWL syntax, e.g., N3. We define
a new class (GodClass) which is equivalent to an anonymous class of the type som:Class

having at least 21 hasMethod and 21 hasAttribute relations.

smell:GodClass ≡ som:Class u >21 som:hasMethod u >21 som:hasAttribute

Figure 3: GodClass concept definition (in DL Syntax).

Having defined the ontological concept for a GodClass and, of course, an inferred ontology
created by a reasoner, it is now possible to use the query shown in Listing 8 to find all God
classes in the compare plug-in.

1 SELECT ?GodClass

2 WHERE
3 { ?GodClass a smell:GodClass }

Listing 8: SPARQL reasoning approach to find God classes.

5.4.2. Orphan methods

To close this section, we give an example where ontological reasoning is not successful
although the concept can be perfectly defined in OWL. Figure 4 shows the logical definition
for orphan methods (i.e., methods that are not invoked by any other method in the project).
The ¬ expression describes a logical negation: the class extension consists of those methods
that are not invoked by any other behavioral entity (i.e., any other method).

Due to the open-world semantics of OWL that states that if a statement cannot be
inferred from the RDF data set, then it still cannot be inferred to be false, most infer-
ence engines, including the ones used in this work, are not able to find concepts of type
OrphanMethod.

Therefore, the query shown in Listing 9 does not return any results. Fortunately, there
is a trick one can do in SPARQL queries to get a little bit of closed-world reasoning —
the ability to answer negative queries although the RDF data set does not contain explicit
information about the absence of certain facts.
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smell:OrphanMethod ≡ som:Method u ¬som:isInvokedBy.BehaviouralEntity

Figure 4: Orphan method concept definition (in DL Syntax).

1 SELECT ?orphanMethod WHERE
2 { ?orphanMethod a smell:OrphanMethod }

Listing 9: Orphan method query pattern.

The trick is achieved by the bound operator in the filter clause on line 6 in Listing 10,
which returns true if its variable (?invoker) is bound to a value. The query in Listing 10
finds all ?orphanMethods, gets any isInvokedBy, and filters those which passed through
the optional branch.

1 SELECT ?orphanMethod WHERE
2 { ?orphanMethod rdf:type som:Method .

3 OPTIONAL
4 { ?orphanMethod som:isInvokedBy ?invoker }

5 FILTER ( ! bound(? invoker) )

6 }

Listing 10: Orphan method query pattern.

However, some ontological reasoning is still required in this query, as the property
isInvokedBy is defined as owl:inverseOf invokes in our software ontology model. In
other words, results of the form method1 isInvokedBy method2 must be inferred from the
inverse invokes-statements.

The query returns numerous results of which we only present one. It finds, for instance,
the public method discardBuffer() declared on class BufferedContent. This method is
never invoked by any other class in the compare plug-in. Orphan methods could possibly
be removed from the interface of a class without affecting the overall functionality of the
system to result in a more clean and easy to understand source code.

5.5. Task 4: defect and evolution density

With our next set of experiments, we aim at determining a file’s as well as a whole
software project’s Defect and Evolution Density. Note that in this context, we consider files
as “containers” for classes and instance variables (i.e., they may contain multiple classes as
well as inner classes). Inspired by Fenton [41], defect density DEDf of a file f is defined as
the ratio of the number of bug reports (NOB) over the total number of revisions (NOR) of
f , i.e.,

DEDf =
NOB

NOR
(1)

where NOB and NOR are the metrics presented in Section 5.3. Next, we define a
file’s/project’s Evolution Density as counterpart to defect density. When we refer to evolu-
tion density, we think of all the changes made to a software system which were not bug-fixing,
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but “ordinary” software development, such as functional extension and improvement, adap-
tion, and testing. The evolution density EVDf of a file f is, therefore, defined as:

EVDf = 1−DEDf (2)

Table 7 lists evolution and defect density for the 5 topmost classes of the org.eclipse.compare
plug-in in descending order of defect density retrieved with the query shown in Listing 11.
Visualizing the defect density (Figure 5(a)) brings to light some interesting facts: first, only
about 25% of all source files contain bugs at all. Nearly 75% of the code is free of defects
(measured by the reported bugs); second, the concentration of the errors is exponentially
decreasing (i.e., only few files have a high concentration of bugs). This is further illustrated
in Figure 5(b), which shows a histogram of the number of classes in the project per 0.1 DED
interval.

1 SELECT ?fileName (count(? revision) AS ?NOR)

2 (count(?bug) AS ?NOB)

3 (count(?bug)/count (? revision) AS ?DED)

4 (1-count (?bug)/ count(? revision) AS ?EVD)

5 WHERE {

6 ?file vom:hasRevision ?revision .

7 ?file vom:name ?fileName .

8 OPTIONAL{
9 ?bug bom:hasResolution ?revision .

10 }

11 FILTER(regex(?fileName , "\\. java$" , "i")) .

12 }

13 GROUP BY (? fileName)

Listing 11: Evolution and density query pattern.

File NOR NOB EVD DED
StatusLineContributionItem.java 3 3 0.000 1.000
CompareNavigator.java 3 2 0.333 0.667
IResourceProvider.java 4 2 0.500 0.500
DifferencesIterator.java 10 5 0.500 0.500
PatchProjectDiffNode.java 2 1 0.500 0.500

Table 7: Evolution and defect density of the org.eclipse.compare plug-in.

Finally, to calculate measures over all software engineering activities in the project,
Total Evolution Density (TEV D) and Total Defect Density (TDED) are defined as shown
in Equations 3 and 4 (with n being the number of files).

TEV D =

∑n
f=1 EVDf

n
(3)

TDED =

∑n
f=1 DEDf

n
= 1− TEV D (4)

For the org.eclipse.compare plug-in release 3.2.1, the value for TDED is 0.054, which
expresses that 5.4% of all activities in the project are due to bug-fixing and 94.6% due to
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(a) DED per file. (b) DED histogram.

Figure 5: The figures show the defect density DED per file and the number of classes per 0.1 DED interval
in the org.eclipse.compare plug-in release 3.2.1.

functional extension (among others). These findings seem to disagree with those of Boehm
[42] who found that approximately 12% of all software engineering tasks are bug-fixing. We
hypothesize that the time span of the measurements and the bug reporting discipline are
reasons for this divergence in results and postpone it to future work to prove or reject this
hypothesis.

5.6. Task 5: bug prediction

For our final bug prediction experiments, we will use our SPARQL-ML approach (SPARQL
Machine Learning) – an extension of SPARQL that extends the Semantic Web query lan-
guage with knowledge discovery capabilities (see Section 4.2). In order to show the usefulness
of SPARQL-ML for bug prediction, we repeated the defect location experiment presented in
[43]. The goal of this experiment was to predict the probability of defect (bug) occurrence
for any given file from a test set given an induced model from a training set. The data for
the experiment was collected from six plug-ins of the Eclipse open source project as in [43]:
updateui, updatecore, search, pdeui, pdebuild, and compare.

The experimental procedure can be summarized as follows: first, along with the data
from CVS and Bugzilla, we exported each plug-in into our Semantic Web EvoOnt format
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[6]22; second, providing a small extension to EvoOnt, we took into account the extra features
from [43] that are used for learning and predicting; and third, we wrote SPARQL-ML queries
for the induction of a mining model on the training set as well as for the prediction of bugs
on the test set. The queries for both tasks are shown in Listings 12 and 13 respectively.

In the past, many approaches have been proposed to perform bug prediction in source
code. In Fenton and Neil [44], an extensive survey and critical review of the most promising
learning algorithms for bug prediction from the literature is presented. They proposed to
use Bayesian Belief Networks (BBNs) to overcome some of the many limitations of the
reviewed bug prediction algorithms. It is imporatant to note that the relational Bayesian
classifier (RBC) validated in this case study is an extension of the näıve Bayesian classifier
(that applies Bayes’ rule for classification) to a relational data setting.

1 CREATE MINING MODEL <http :// www.example.org/bugssignificant >

2 { ?file RESOURCE TARGET
3 ?error DISCRETE PREDICT {’YES’,’NO’}

4 ?lineAddedIRLAdd CONTINUOUS
5 ?lineDeletedIRLDel CONTINUOUS
6 ?revision1Month CONTINUOUS
7 ?defectAppearance1Month CONTINUOUS
8 ?revision2Months CONTINUOUS
9 ?reportedIssues3Months CONTINUOUS

10 ?reportedIssues5Months CONTINUOUS
11 }

12 WHERE
13 { ?file vom:hasRevision ?revision .

14 ?revision vom:creationTime ?creation .

15 FILTER (xsd:dateTime (? creation) < "2007 -01 -31 T00 :00:00"^^xsd:dateTime)

16

17 ?file vom:hasError ?error .

18

19 OPTIONAL { ?file vom:lineAddedIRLAdd ?lineAddedIRLAdd . }

20 OPTIONAL { ?file vom:lineDeletedIRLDel ?lineDeletedIRLDel . }

21 OPTIONAL { ?file vom:revision1Month ?revision1Month . }

22 OPTIONAL { ?file vom:defectAppearance1Month ?defectAppearance1Month . }

23 OPTIONAL { ?file vom:revision2Months ?revision2Months . }

24 OPTIONAL { ?file vom:reportedIssues3Months ?reportedIssues3Months . }

25 OPTIONAL { ?file vom:reportedIssues5Months ?reportedIssues5Months . }

26 }

27 USING <http :// kdl.cs.umass.edu/proximity/rpt >

Listing 12: SPARQL-ML model induce statement.

The results are illustrated in Figure 6, showing the results in terms of prediction accuracy
(acc; in legend), Receiver Operating Characteristics (ROC; graphed), and the area under
the ROC-curve (auc; also in legend). The ROC-curve graphs the true positive rate (y-axis)
against the false positive rate (x-axis), where an ideal curve would go from the origin (0,0)
to the top left (0,1) corner, before proceeding to the top right (1,1) one [45]. It has the
advantage to show the prediction quality of a classifier independent of the distribution of
the underlying data set (e.g. the skewed ratio between bug and no-bug). The area under the

22Information from CVS and Bugzilla was considered from the first releases up to the last one released in
January 2007.
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1 SELECT DISTINCT ?file ?prediction ?probability

2 WHERE
3 { ?file vom:hasRevision ?revision .

4 ?revision vom:creationTime ?creation .

5

6 FILTER (xsd:dateTime (? creation) <= "2007 -01 -31 T00 :00:00"^^xsd:dateTime)

7

8 OPTIONAL { ?file vom:lineAddedIRLAdd ?lineAddedIRLAdd . }

9 OPTIONAL { ?file vom:lineDeletedIRLDel ?lineDeletedIRLDel . }

10 OPTIONAL { ?file vom:revision1Month ?revision1Month . }

11 OPTIONAL { ?file vom:defectAppearance1Month ?defectAppearance1Month . }

12 OPTIONAL { ?file vom:revision2Months ?revision2Months . }

13 OPTIONAL { ?file vom:reportedIssues3Months ?reportedIssues3Months . }

14 OPTIONAL { ?file vom:reportedIssues5Months ?reportedIssues5Months . }

15

16 PREDICT
17 { ( ?prediction ?probability )

18 sml:predict (

19 <http :// www.example.org/bugssignificant >

20 ?file ?lineAddedIRLAdd ?lineDeletedIRLDel

21 ?revision1Month ?defectAppearance1Month ?revision2Months

22 ?reportedIssues3Months ?reportedIssues5Months ) .

23 }

24 }

Listing 13: SPARQL-ML predict statement.

ROC-curve is, typically, used as a summary number for the curve. An in-depth explanation
about ROC-curves can be found in [46]. Note that this experiment clearly illustrates the
simplicity by which the experiment from [43] can be reduced to running an off-the-shelf
query.

6. Conclusions, limitations, and future work

In this paper, we presented a novel approach to analyze software systems using Semantic
Web technologies. As exemplified by the case studies above EvoOnt provides the basis for
representing software source code and meta-data in OWL. This representation allows to
reduce many mining software repository tasks to simple queries in the Semantic Web query
language SPARQL (and its extensions iSPARQL and SPARQL-ML).

This format is principally used within the Semantic Web to share, integrate, and reason
about data of various origin. We evaluated the use of the format in the context of analyzing
the org.eclipse.compare plug-in for Eclipse.

To illustrate the power of using EvoOnt we conducted five sets of experiments in which we
showed, firstly, that it was expressive enough to shed some light on the evolution of software
systems (especially when using iSPARQL and its imprecise querying facilities); secondly, that
it allowed to find code smells, hence, fosters refactoring; thirdly, that it enables the easy
application of software design metrics to quantify the size and complexity of software; forth,
that it, due to OWL’s ontological reasoning support, furthermore allows to derive additional
assertions, which are useful for software engineering tasks; and fifth, that it enables defect
and evolution density measurements expressing the amount of bug-fixing and “ordinary”
software development as measured by all software engineering tasks.
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Figure 6: ROC-curves to show a performance comparison of the two classifiers Relational Probability Tree
(RPT) and Relational Bayesian Classifier (RBC).

A limitation of our approach is the loss of information due to the use of our FAMIX-based
software ontology model. Language constructs such as switch-statements are not modeled in
our ontology. Hence, the effects are that measurements on the statement level of source code
cannot be conducted. This limitation can be addressed by adding elements from additional
meta-models such as DMM [27].

Also, one of the greatest impediments towards the widespread use of EvoOnt is the cur-
rent lack of high-performance industrial-strength triple-stores and reasoning engines. With-
out such engines most software developers are likely to retort to relational storage solutions
that are ill-suited for storing these graph-like data [40, 39]. Some newer developments both
in industry23 and in academe [40, 39] are encouraging. They indicate that fast engines
are possible and likely to become more available in the near future. With their advent
the widespread use of the techniques proposed here will become feasible and attractive to
software developers.

In summary, we have shown that the use of EvoOnt can simplify a large number of
software engineering tasks attempted by the mining software repositories community. We
think that approaches like EvoOnt have an even greater potential as they would foster more
exchange leading to a better integration of results between different analyses or simplifying
inter-software-project software analyses — a problem so far avoided by most researchers due
to the complexities of integrating the data. Also, the choice of the OWL as the underlying
knowledge representation simplifies the extension of the model with other sources such as

23e.g. AllegroGraph, http://agraph.franz.com/allegrograph/
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data extracted mailing lists or run-time properties of the code.
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