
Design and Implementation of a
Distributed Denial-of-Service Data

Simulator

Reto Odoni
Zürich, Switzerland

Student ID: 15-701-246

Supervisor: Muriel Franco, Bruno Rodrigues
Date of Submission: August 22, 2019

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

0.1 Einleitung

DDoS Attacken sind verteilte Netzwerkangriffe auf Internetdienste mit der Beabsichtigung
deren Verfügbarkeit zu stören. Durch eine Überflutung von Anfragen durch Angreifer
können diese Dienste für die eigentlichen Benutzer sogar gänzlich unerreichbar werden.
Um solche Nichtverfügbarkeiten und die damit verbundenen potenziellen finanziellen oder
persönlichen Schäden zu vermeiden, suchen Forscher und Unternehmen gleichermassen
nach Möglichkeiten, Kriminellen einen Schritt voraus zu sein. Um Abwehrmechanismen
gegen verschiedene Formen von DDoS-Angriffen zu schaffen, werden häufig Log Daten
von zuvor angegriffenen Dienstleistern herbeigezogen.

0.2 Ziele

Der DDoS Log Simulator ist ein Tool welches Netzwerk Log Daten in Form eines pcap
Dateiformates (Wireshark) erzeugt. Das Ziel des Programms ist es als eine Plattform zu
fungieren auf welcher Netzwerk Log Daten, ähnlich wie bei einem echten DDoS-Angriff,
simuliert werden können.

0.3 Resultate

Der DDoS Log Simulator ist ein Werkzeug, welches verschiedene Arten von DDoS-Angriffen,
basierend auf einer Konfigurationsdatei, generieren kann. Er ist in der Lage, das Verhalten
und die Hauptmerkmale eines typischen DDoS-Angriffs zu demonstrieren und passt sich
jeweils an das ihn ausführende System an. Da jede Art von Angriff leicht unterschiedliche
Eigenschaften aufweist, wurde der DDoS Log Simulator mit der Absicht erstellt leicht
erweiterbar zu sein.

0.4 Weitere Arbeiten

Der DDoS Log Simulator wurde mit der Absicht gebaut, so einfach wie möglich mo-
difizierbar zu sein, somit bringt dieser viel Potential für Erweiterungen mit sich. Dies

i

ii

könnte unter anderem Folgendes beinhalten: (i) Unterstützung von weiteren Arten von
DDoS-Angriffen, (ii) senden der erzeugten Angriffe ins Netz, (iii) Erstellen von visuellen
Ausgabemöglichkeiten oder (iv) trainieren von künstlicher Intelligenz basierend auf den
erzeugten Log Dateien.

Abstract

By flooding publicly reachable network infrastructure with superfluous requests, attackers
can get those infrastructures unreachable for its intended users. Such attacks are known
as Distributed Denial-of-Service (DDoS) attacks and are a major concern of online service
providers. To prevent such unavailabilities and associated potential financial or personal
damage, researchers and corporations alike are searching for ways to be one step ahead of
criminals. To create defense mechanisms against different forms of DDoS attacks, logs of
previously attacked service providers are consulted. Unfortunately, those records are of
limited utility, not anonymized and hard to get. The thesis at hand presents the DDoS
Log Simulator which offers an easy way to create anonymous and randomized log files of
preconfigured DDoS attack types. The program supports two types of attacks, namely the
SYN flood and DNS amplification attack, which were implemented as a proof of concept.
Various parameters can be adjusted, such as list of attackers with respective IP addresses
and number of packets per second that are being sent. The performance of the DDoS
Log Simulator was measured and the generated log files were feed through a commonly
used tool for fingerprinting DDoS attacks. Also it was elaborated how the DDoS Log
Simulator could be extended with further DDoS attacks and stated that the program can
be considered as a foundation for creating a whole range of possible future work.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Muriel Franco, for his
support and feedback during the whole creation process of this thesis. I would also like to
thank Bruno Rodrigues for listening to my presentation dry-runs and providing me with
feedback afterwards. Additionally, I would like to thank Professor Dr. Burkhard Stiller
for the opportunity to write my thesis at his chair.

v

vi

Contents

Zusammenfassung i

0.1 Einleitung . i

0.2 Ziele . i

0.3 Resultate . i

0.4 Weitere Arbeiten . i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 3

2 Background 5

2.1 Internet Protocol . 5

2.2 Classification of DDoS Attacks . 5

2.2.1 SYN Flood Attack . 6

2.2.2 DNS Amplification Attack . 7

2.3 Scapy . 8

2.4 DDoS Clearing House . 9

2.4.1 DDoSDB . 9

vii

viii CONTENTS

2.4.2 DDoS Dissector . 9

2.5 Wireshark . 10

2.6 Related Work . 10

3 DDoS Log Simulator 13

3.1 Overview . 14

3.2 Design and Challenges . 15

3.2.1 Performance . 15

3.2.2 Output File . 16

3.2.3 User Interface . 16

3.3 Prototype and Implementation . 16

3.3.1 Configuration JSON . 17

3.3.2 Packet Generation . 20

3.3.3 Expandability . 22

3.3.4 Multi Thread Support . 23

4 Evaluation 25

4.1 Initial Setup . 25

4.2 Performance Analysis . 27

4.3 Verification . 30

4.3.1 SYN Flood Attack . 30

4.3.2 DNS Amplification Attack . 32

4.4 Discussion and Limitations . 34

5 Summary and Conclusion 37

5.1 Future Work . 38

Bibliography 38

Abbreviations 41

CONTENTS ix

List of Figures 41

List of Tables 43

A Installation Guidelines 47

A.1 Usage . 47

B Contents of the CD 49

x CONTENTS

Chapter 1

Introduction

Distributed denial of service (DDoS) attacks are one of the top security concerns of on-
line service providers [14]. By flooding a publicly reachable service or network resource
with superfluous requests, an attacker tries to overload it and make it unavailable to its
intended audience. In a time with a growing amount of Internet of Things (IoT) devices
with insufficient security mechanisms [16] and businesses moving their infrastructure to
the cloud, DDoS attacks can be considered a growing problem, since even short server
downtime can result in serious financial or even personal damage.

DDoS attacks are a rapidly growing problem in the modern Internet era. During the last
couple of years, the damage caused by DDoS attacks has been constantly on the rise. For
example in 2016, some of the biggest Swiss online stores got blackmailed and went offline
when they became targets of huge DDoS attacks [9]. In 2018 a DDoS attack reached
an all-time high bandwidth while attacking GitHub at an astonishingly 1.3 terabytes per
second with a peak of sending 126.9 million packets per seconds according to Cloudflare
[2]. There are a lot of reasons and variables which explain this trend and show that this
situation will likely continue. At first there is the growing dependency of the economy
on the Internet and the society’s constant urge to be online. Businesses are moving
their infrastructure to the cloud and people are communicating with each other using
Instant Messaging and are streaming videos online. As a consequence, the Internet grew
accordingly, namely fiber, vectoring and faster cellular network technologies, which paved
the way for high-bandwidth attacks, which DDoS attacks are a part of.

In the 1970s, the Internet was designed without security in mind or the possible of a
growth to such an extent. The unexpected growth is especially visible in the IPv4 address
exhaustion. Today, due to design choices back then, DDoS attacks are simple to execute in
an easy and cheap way. A DDoS attack can be deployed by either using premade tools or
buying one as a service. As a result of this development, both researchers and companies
are searching for solutions. As soon as an attack is targeting a specific application, there
is no readily available solution, but there needs to be a customized one. Therefore the
market of protection services grows with the amount of different types of attacks, which
results in a higher need of expertise.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

DDoS attacks appear in different forms, targeting different layers of online service providers.
Since it is relatively easy to start a DDoS attack, all service providers should prepare their
infrastructure appropriately. This includes, besides developing a defense mechanism for
each kind of attack, also to make sure that their created solutions trigger in the right case
of an attack. To ensure this, log files from real attacked servers are consulted. However,
such records are not easy to get from public databases (e.g. from DDoSDB1) because
they contain sensitive information from the attacked service providers. Furthermore, they
contain the source address, where the attack originated, uncovering potentially insecure
devices.

Since the attacks tend to grow in size and become more dangerous [11], new ways are
needed to be researched to defend publicly reachable infrastructure. For device adminis-
trators it is crucial to be aware of what a DDoS attack could look like on a network level.
It is important to have data which can be analyzed for mitigation purposes.

At the present time, there are tools available for simulating different kinds of DDoS
attacks. However, simply launching a massive attack is of no use if it cannot be logged
for later analysis. Instead it would be better to write the attack directly into a log
file. However, this still sets restrictions to the possible scenarios capable of generating,
especially in terms of computing powers. Mainly, the amount of packets an attacker can
generate per second is strongly dependent on the available computing power. Therefore a
tool is needed which is capable of generating as much packets as demanded and log those
packets.

Furthermore, it can be argued that log files from DDoS attacks, even when simulating a
hypothetical scenario, can be helpful for researchers to identify patterns and understand
behaviors of DDoS attacks. For example, it would be possible to use simulated log files to
validate forensic techniques or evaluate the accuracy of novel DDoS mitigation solutions.

1.2 Description of Work

This thesis presents the development of a DDoS Log Simulator, which is aimed to help
cybersecurity researchers and developers to validate and evaluate DDoS solutions. The
DDoS Log Simulator is a tool to generate network packet log data in form of a pcap
file (Wireshark), similar to how it would appear in a real DDoS attack. It tackles the
problem of providing anonymized and randomized log files for custom attack scenarios
and supports two different attack types (SYN flood and DNS amplification) and a wide
variety of configurable parameters.

The generated attack log is parameterizable based on the settings in a configuration JSON
file. Each such file may represent a different kind of DDoS attack with varying severities
on the given parameters to reflect different attack scenarios.

1https://ddosdb.org/

1.3. THESIS OUTLINE 3

1.3 Thesis Outline

The thesis itself is structured as follows: Chapter 1 gives a brief overview about the thesis
itself and the problems the DDoS Log Simulator tries to tackle. Chapter 2 gives context
and mentions related work. Chapter 3 is about the design, the functionality and the
scope of the DDoS Log Simulator itself. Chapter 4 contains the evaluation of the method
and discusses its limitations. In Chapter 5 conclusions are taken and future application
purposes are discussed.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The DDoS Log Simulator presented in this thesis can be classified as a supporting tool for
creating solutions against DDoS attacks. By providing access to customized Wireshark
pcap files, researchers can test their DDoS defense mechanisms against these scenarios. At
first, the context around the DDoS Log Simulator is explained and any prior knowledge
is introduced. Afterwards related work is presented and shortly summarized.

2.1 Internet Protocol

The Internet Protocol (IP) is the communication protocol of the Internet, relaying data-
grams between hosts. Its revolutionary feature was that it relayed packets between hosts
based only on the IP addresses in the packet headers, making it connectionless. This dis-
tinguished it from more reliable connection-oriented protocols. Despite the disadvantages
of best-effort delivery such as possible data corruption, packet loss and duplication, IP’s
scalable architecture eventually led to its worldwide success.

To achieve often desirable connection-oriented services, TCP (Transmission Control Pro-
tocol) was added to the Internet Protocol suite. It provides reliable, ordered and error-
checked full-duplex communication between two hosts. It contrasts with the connection-
less datagram service UDP (User Datagram Protocol) that emphasizes reduced latency
over reliability.

The Internet Protocol (IP) was designed primarily with scalability in mind, to support a
large number of hosts attached to networks. Security was a secondary consideration, as
nobody could have predicted the worldwide success that ensued.

2.2 Classification of DDoS Attacks

A denial of service (DoS) attack is any attack with a single origin where a publicly reach-
able infrastructure gets inaccessible to its intended users. A DDoS attack is a distributed
denial of service attack, which means an attack has several origins.

5

6 CHAPTER 2. BACKGROUND

DDoS attacks can be classified by their degree of automation, their exploited vulnerabil-
ity, their attack rate dynamics or by their impact on a targeted device [3]. In this thesis
the DDoS attacks are classified by their exploited vulnerability since the DDoS Log Sim-
ulator supports only the creation of log files from the used vulnerability. Those attacks
can be subdivided into flood attacks, amplification attacks, protocol exploit attacks and
malformed packet attacks.

DoS attacks are constrained by properties of networks. For example every endpoint only
has a limited amount of network bandwidth available to send large amounts of traffic.
Due to TCP’s three-way handshake, a connection can only be established if both end-
points (defined by its IP addresses) are willing to do so. Sizes of individual packets are
constrained by the maximum transmission unit (MTU), that is 1500 bytes over the public
Internet.

DoS attacks however benefit from weaknesses of internet protocols, such as the fact that
IP source addresses can be spoofed, if this is not prevented by the ISP (Internet Service
Provider). This however mainly affects UDP communication, as TCP communication
will not continue past the connection establishment phase, due to the fact that SYN,
SYN-ACK and ACK packets need to be exchanged.

The two implemented attacks in this thesis are (i) a flood attack, namely the SYN flood
and (ii) the DNS amplification attack which, as the name suggests is a part of the ampli-
fication attacks.

DDoS Attacks

Manual

Semi-Automatic

Direct

Indirect

Automatic

Flood Attack

SYN-Flood

ICMP-Flood

Amplification Attack

DNS Attack

Protocol Exploit Attack

Malformed Packet Attack

Continuous

Fluctuating

Increasing

Variable

Disruptive

Degrading

Classification
by degree of
automation

Classification
by impact

Classification
by exploited
vulnerability

Classification
by attack rate
dynamics

Figure 2.1: Slightly adjusted classification of DDoS attacks from C. Douligeris, A.
Mitrokotsa / Computer Networks p. 650

2.2.1 SYN Flood Attack

One of the most powerful flooding methods are SYN flood attacks [1]. The SYN flood
attack uses a weak spot in the way a secure connection is established with a server. Namely
in the three-way handshake, which is initiated when a TCP connection is established with

2.2. CLASSIFICATION OF DDOS ATTACKS 7

Table 2.1: Table of a SYN Flood attack generated by the DDoS Log Simulator.

No. Time Source Destination Protocol Length Info
129 0.012936 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
130 0.013017 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
131 0.013112 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
132 0.013174 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
133 0.013178 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
134 0.013282 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
135 0.013330 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
136 0.013347 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
137 0.013497 230.178.74.14 10.0.0.11 TCP 54 81 → 80 [SYN] Seq=0 Win=8192 Len=0
138 0.013508 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
139 0.013629 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
140 0.013681 10.0.0.13 10.0.0.11 TCP 54 [TCP Retransmission] 81 → 80 [SYN] Seq=0 Win=8192 Len=0
141 0.014070 181.178.56.161 10.0.0.11 TCP 54 81 → 80 [SYN] Seq=0 Win=8192 Len=0
142 0.014629 10.0.0.14 10.0.0.11 TCP 56 [TCP Retransmission] 82 → 80 [SYN] Seq=0 Win=8192 Len=2

a server. During a normal three-way handshake, a client asks for a connection by sending
a synchronization message (SYN) to the server. The server acknowledges it by sending
a SYN-ACK packet back and if the client also acknowledges, the secure connection is
established [18].

Since a server has to wait for a response for a certain threshold, in an attack scenario,
an attacker tries to hold open as many SYN requests as possible such that the server has
no resources left for its intended users. The attacker cannot receive SYN-ACK responses
due to them being delivered to the forged IP address. The server will not receive an ACK
back from the alleged client, as the unknowing host with the forged IP address does not
recognize the packet and drops it. This way, a single client is capable of overloading an
unprotected server without even uncovering its own IP address. During a DDoS attack,
multiple compromised clients try to establish a multitude of connections. This may go
easily far beyond the boundaries of a single standard host [18]. An example of a typical
SYN flood attack log with a low amount of real traffic noise, generated from the DDoS
Log Simulator, is visible in the table 2.1.

2.2.2 DNS Amplification Attack

In the DNS amplification attack scenario, high-capacity publicly reachable DNS servers
are abused. The attack makes use of the fact that it is possible to turn a small DNS
request into a comparatively much larger response (the difference is called amplification
factor). For instance, a small request of 60 bytes (e.g. for an ANY resource record) can
result in an answer two magnitudes larger. Normally, a DNS server’s main task is to
answer requests for name resolution purposes and thus is an important service in many
IP-based networks. By flooding DNS servers with spoofed DNS requests, it is possible to
have several response streams to a single victim’s destination. Doing so can eventually
result in a denial of service by overloading the target with UDP (User Datagram Protocol)
packets. A key part in the whole attack plays the fact that sent UDP packets are not
further checked for successful arrival by the sender. The presence of datagrams with these
properties may be helpful for delay-sensitive applications such as sending real-time audio
and video streams, but prevents the receiver to indicate its unwanted receiving of packets.
In an attempt to prevent DDoSers from having a plethora of DNS servers available that

8 CHAPTER 2. BACKGROUND

Table 2.2: Table of a generated DNS amplification attack.

No. Time Source Destination Protocol Length Info
137 0.012477 204.70.136.80 131.141.91.199 DNS 1326 Standard query response 0x1f1a ANY sema.cz DS RRSIG NS l...
138 0.012536 204.70.136.80 131.141.91.199 DNS 566 Standard query response 0x4eda ANY irs.gov SOA ns1.irs.g...
139 0.012786 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x4eda ANY irs.gov MX 10 emg1.ir...
140 0.012799 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x76df ANY sema.cz RRSIG MX 1 as...
141 0.012816 204.70.136.80 131.141.91.199 DNS 566 Standard query response 0x4eda ANY irs.gov SOA ns1.irs.g...
142 0.012819 55.215.42.251 131.141.91.199 TCP 54 82 → 80 [SYN] Seq=0 Win=8192 Len=0
143 0.012869 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x4eda ANY irs.gov MX 10 emg1.ir...
144 0.012971 204.70.136.80 131.141.91.199 DNS 566 Standard query response 0x4eda ANY irs.gov SOA ns1.irs.g...
145 0.013018 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x4eda ANY irs.gov MX 10 emg1.ir...
146 0.013021 72.4.104.163 131.141.91.199 TCP 54 82 → 80 [SYN] Seq=0 Win=8192 Len=0
147 0.013043 204.70.136.80 131.141.91.199 DNS 566 Standard query response 0x4eda ANY irs.gov SOA ns1.irs.g...
148 0.013405 204.70.136.80 131.141.91.199 DNS 1326 Standard query response 0x1f1a ANY sema.cz DS RRSIG NS l...
149 0.013450 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x4eda ANY irs.gov MX 10 emg1.ir...
150 0.013623 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x76df ANY sema.cz RRSIG MX 1 as...
151 0.013703 204.70.136.80 131.141.91.199 DNS 2958 Standard query response 0x76df ANY sema.cz RRSIG MX 1 as...
152 0.013716 204.70.136.80 131.141.91.199 DNS 566 Standard query response 0x4eda ANY irs.gov SOA ns1.irs.g...
153 0.013876 179.105.61.70 131.141.91.199 TCP 54 82 → 80 [SYN] Seq=0 Win=8192 Len=0
154 0.013997 204.70.136.80 131.141.91.199 DNS 758 Standard query response 0x1f1a ANY sema.cz RRSIG DS NS d...

they may use for amplification attacks, DNS servers of ISPs should only serve their own
customers and not accept requests from outside its own IP ranges.

Those generated DNS answer streams can be up to 20 times larger than the originally
sent request [10] and thus an attacker can overwhelm a big target with considerably less
available network bandwidth. An attacker forges the IP source address of the packet
request such that it is not possible to determine where it actually originated. An easy and
effective way to prevent DDoS amplification attacks is accomplished through the support
of internet service providers. They should check in an egress filter if the IP addresses of
outgoing IP packets from customers match the one associated with the client sending it
(see BCP38 for further information). Another effort to reduce DNS amplification attacks
can be made by ensuring that DNS answers are not too large (see DNSSEC records, that
store bulky public keys in the DNS) with the goal of reducing the amplification factor of
attacks. DNSSEC ANY responses may be up to 50 times, in rare cases up to 179 times
larger than the size of the query sent. [17]

Table 2.2 represents a snippet from an example DNS amplification generated by the DDoS
Log Simulator. It starts at packet number 17113 and represents 3 DNS servers responding
to a single destination IP. In between all the DNS responses, there is a single connection
that tries to be established.

2.3 Scapy

Scapy1 is a packet manipulation tool written in Python by Philippe Biondi with support
from the Scapy community. Besides forging packets and storing them in pcap files, Scapy is
also capable of reading, decoding and sending them on a network socket. Another feature
its possibility to store packets into pcap files which made Scapy very suitable for the DDoS
Log Simulator. It supports Python 2.7 as well as Python 3.4 to 3.7 and is designed to be
cross platform. It can be used either as a shell utility or as a library [12]. Further more

1https://scapy.net/

2.4. DDOS CLEARING HOUSE 9

Scapy supports the installation of modules which provide further functionalities such as
plotting.

2.4 DDoS Clearing House

The DDoS Clearing House and hence also the DDoSDB are part of the CONCORDIA
ecosystem. CONCORDIA, which is short for cyber security competence for research and
innovation and states itself as a Cybersecurity Competence Network. The DDoS Clearing
House was made to be a bridge between victims, DDoS protection providers, network
operators, law enforcement agencies and the academia. Mainly the DDoS Clearing House
consists out of the DDoS Dissector, DDoS Fingerprint Converters and the DDoSDB. The
DDoS Dissector takes network measurements and based on them produces a fingerprint.
Afterwards the DDoS Fingerprint Converters should produce rules and signatures for spe-
cific hardware / software solutions. The whole DDoS Clearing House and all its associated
parts, especially the DDoSDB and the DDoS Dissector, are Open Source and visible at
GitHub2.

2.4.1 DDoSDB

The DDoSDB3 is a database which collects and exchanges information about DDoS at-
tacks to help victims, the academic community and security network forensic experts. By
sharing logs of attacks the DDoSDB tries to enable a joint effort against DDoS attacks
which should provide the user with better understanding of typical DDoS attack charac-
teristics. This approach is supported with the capability of a fingerprint generator from
its sister project of the DDoS Clearing House. It extracts properties from network log
files and allows users to search for them in the database. During the process of generat-
ing the fingerprint of an attack the fingerprint generator anonymizes the identity of the
victim and creates a new log file which then can be contributed to the DDoSDB. Unfor-
tunately the DDoSDB is not publicly available and users have to state a purpose during
the registration process.

2.4.2 DDoS Dissector

As the DDoSDB, the DDoS Dissector is also a part of the DDoS Clearing House. Its main
purpose is to take network log files in form of different input formats for example pcap,
net flow, ipfix or sflow log data and generate a fingerprint in which only the attacking
traces remain. While the program generates the fingerprint it removes all the real traffic
noise packets and anonymizes the input network trace. The generated fingerprint shows a
variety of different parameters such as the duration of an attack, bytes per second, packets
per second, time stamp as well as attack specific details.

2https://github.com/ddos-clearing-house
3https://ddosdb.org/

10 CHAPTER 2. BACKGROUND

2.5 Wireshark

Wireshark4 is an open-source packet analyzer published under the GNU General Public
License (free software) which is widely used for network troubleshooting and analysis
purposes. It is a cross-platform software and works under Unix, Linux, Solaris, Mac,
Windows and different versions of BSD. The program is developed by a community of
networking experts across the globe and was originally released in 1998 by Gerald Combs
[19].

Besides the capability to inspect hundreds of protocols, one of Wireshark’s main features
is capturing live network traffic from a wired/wireless connection. This can be used for
analyzing observed network traffic, but also as a general education tool to understand
communication protocols. Wireshark can capture packets and store them in pcap files.
These allow reproducing the flow of packets as observed.

In the context of DDoS attacks, Wireshark allows network admins to record ongoing
attacks against a specific infrastructure for later inspection and analysis. It would be
beneficial for the network security community to have access to such log files, such that
they can learn from them and improve their defence mechanisms. However, the presence
of identifying information such as IP address policies complicate the publication of such
log data. Anonymization of such log data is important, but not always possible due to
company policy or there is the risk of losing essential information that were necessary to
properly understand the attack.

As a small addition, while the records from DDoSDB are not publicly visible, Wireshark
shares a quite large list of sample captures in their wiki 5. Also it is possible with Wireshark
to modify different pcap files with a variety of functions and hence to create interesting
log files.

2.6 Related Work

Since DDoS attacks are capable of impacting economy and society in a tremendous way,
a lot of research is done in the field. However, at the time of writing, there was no tool
found with the same features as the DDoS Log Simulator presented in this thesis. The
most related work will be presented in this section.

During the process of creating the program as well as writing the thesis, it was necessary to
dig into two different topic fields. Firstly, there are already similar programs compared to
the DDoS Log Simulator available which are capable of creating DDoS attacks e.g on peer-
to-peer (P2P) networks or on the session initiation protocol (SIP). Secondly knowledge
regarding DDoS attacks in general had to be acquired as well as for specific types of
attacks (e.g. SYN flood attack).

4https://www.wireshark.org/
5https://wiki.wireshark.org/SampleCaptures

2.6. RELATED WORK 11

For example in [13] Nidal Qwasmi et al. created a DDoS attack simulator on P2P networks
for demonstration purposes. They stated that their outcome in the P2P network was
mostly in line with what can be expected in a normal DDoS attack. The most interesting
difference they noticed was an impact on not only the target but the whole P2P network
by slowing down performance as well as dynamism and flexibility. In [15] Jan Stanek et
al. implemented a tool to generate Session Initiation Protocol (SIP) DDoS flood attacks
and compared the generated attack with real data by modifying a popular SIPp call
generator. In 2011 Andrzej Kosowski et al. [7] analyzed the different possibilities and
technique to perform cyberattacks focusing mainly on DDoS attacks. In their thesis they
stated the network security simulator nessi2 as extremely helpful to determine the impact
of potential DDoS attacks as well as identifying weak points and best countermeasures.

Since it is critically important to understand DDoS attacks a lot of studies focus on those
aspects. As an example in [8] there is the thesis from Z. Morley Mao et al. where they
analyze large DDoS attacks based on multiple data sources. As another example in [6]
Jiahui Jiao et al. created an approach to detect DDoS attacks with a rate higher than
99% which was implemented on the Baidu Cloud Computing Data Centers. A statistical
approach to detect and response to DDoS attacks was presented by Laura Feinstein et
al. in [4]. They created methods based on computing entropy and frequency sorted
distributions of selected packet attributes.

12 CHAPTER 2. BACKGROUND

Chapter 3

DDoS Log Simulator

The DDoS Log Simulator is a tool that is able to create different types of DDoS attacks
based on a predefined configuration. It is capable of demonstrating the behaviour and
main characteristics of a typical DDoS attack. Since each type of attack has slightly
different characteristics the whole DDoS Log Simulator is meant to be easily extendable
allowing users to implement further attack types and provide a memory light scalable
platform to generate network logs from.

The DDoS Log Simulator is started in the terminal via the command in listing 3.1. The
only parameter which has to be stated for a execution to start is the configuration file.
Note, the configuration file declared in this example is named syn.json but could also have
any other name. A program under Linux which came in handy during the development
process was nice. It allows the user to execute a program in reduced priorty mode. An
example how to execute the DDoS Log Simulator with nice is found in listing 3.2. For
further information consult the manual of nice1.

1 $./log_gen.py syn.json

Listing 3.1: Command to start the DDoS Log Simulator via terminal and syn.json as
configuration file.

1 $ nice -n 19 ./log_gen.py syn.json

Listing 3.2: Example command to start the DDoS Log Simulator with decreased priority.

Besides generating pcap log files it is also possible to merge two previously generated files
via the argument --merge respectively -m. Since it is possible to create two separate
attacks with the same timestamp this feature comes in handy especially when creating
multi-vector attacks. An exmple is stated in 3.3.

1https://linux.die.net/man/1/nice

13

14 CHAPTER 3. DDOS LOG SIMULATOR

1 $./log_gen.py -m file1 file2 outputname

Listing 3.3: Example command to merge two pcap files .

3.1 Overview

The following sections explain the behaviour of the DDoS Log Simulator based on the
flow diagram in figure 3.1. The flow diagram is labelled with numbers from 1 to 11 to
make it easier to reference the different execution stages. On the bottom left there is a
legend in grey describing the different elements.

Figure 3.1: A visual representation of the execution flow of the DDoS Log Simulator.

After the program is started, in stage 1 the DDoS Log Simulator begins parsing the JSON
configuration file which is referenced in the console command. See reference point 1 in
the flow diagram. In stage 2 the DDoS Log Simulator then checks for previously created
log files. This procedure is necessary since remaining existing log files would cause trouble
while merging them together in stage 9.

One of the main features of the DDoS Log Simulator is the capability to generate arbi-
trarily long log data independent of the available computational power by making use of
multiple threads. This is achieved by the DDoS Log Simulator by iterating over a loop
until the requested amount of packets is reached. The iteration process starts at stage 3
and is then reevaluated at 7. Before a new log creation burst starts at stage 5, the DDoS
Log Simulator estimates the amount of workers (threads) which have to be deployed at
stage 4. This procedure is necessary since the program should generate as many packets

3.2. DESIGN AND CHALLENGES 15

as possible while avoiding packets being dropped (see [12] under “Known bugs”) and also
prevents an overproduction of packets. To prevent such an overproduction the amount
of spawned workers decreases towards the end. After the packet creation process has
terminated on every worker, the DDoS Log Simulator starts adjusting the timestamps
on all created packets in stage 6. For the first iteration this is achieved by subtracting
the difference between the start of the script and the desired start timestamp. For all
following iterations the difference between the start of the iteration and the script needs
to be subtracted as well. Before a new iteration round starts the DDoS Log Simulator
starts counting all already created packets in stage 7 and calculates the overall progress.
Based on the progress made, the DDoS Log Simulator determines the amount of workers
to be created in the next iteration round.

After the fast and multi-threaded creation of mostly 92% to 99% of the demanded pack-
ets a single process creates the remaining packets in stage 8. While not being in a multi
threaded environment it is easier to count the amount of packets already generated and
thus easy to prevent any overproduction. When stage 8 terminates the DDoS Log Sim-
ulator merges all pcap chunks to a single file together in stage 9. This produces the
final output pcap file. Before the execution halts the DDoS Log Simulator removes all
temporary created files during stages 5 and 8.

3.2 Design and Challenges

The creation of the DDoS Log Simulator involved various design decisions that had to
be made. They often originated from challenges during the development process. This
section discusses the most interesting ones and presents them in depth.

3.2.1 Performance

During the development of the DDoS Log Simulator different approaches to tackle the
actual log generation process were tested and implemented. The first problem occurred
upon realizing that the generation process was way slower than expected and quite CPU
intense. In an attempt to solve this problem the decision was made to implement multi-
threading support. While doing so it turned out that the available computing power still
wasn’t fast enough to create massive amounts of packets per second. Therefore the DDoS
Log Simulator sometimes took longer to create the demanded amount of packets than
what was stated in the duration parameter. As a consequence the whole architecture had
to be revised. The attempt was made to just let the spawned threads write into a single file
and count upwards until the demanded amount of packets were reached. Unfortunately
this would lead to a corrupt pcap file.

In the final solution attempt the generation process was done by constantly creating small
chunks of packets, adjusting their timestamps and merging them together. This is possible
since Wireshark provides a variety of tools to manipulate individually created pcap files.
The solution approach also resulted in constant low memory usage regardless of the total
size or density of the generated packets.

16 CHAPTER 3. DDOS LOG SIMULATOR

Since the used processor differs from system to system the DDoS Log Simulator has to
estimate approximately the amount of threads it uses in an attempt not to create too
many packets. This can be considered a downside with this solution’s approach. A
different approach that would not need any predictions would have been a global counter.
This counter could just stop all threads if the total amount of packets would have been
generated. It turned out that this would lead to an uneven distributed packet distribution
in some scenarios with only a few packets. Therefore the estimation is based on starting
not too fast and detecting the end of a generation process and reducing the amount of
spawned threads.

3.2.2 Output File

An important decision is the choice of output file format the program should produce.
The most obvious choice was the pcap file format which is used by tcpdump/WinDump
and Wireshark, namely the log file output format of the two most popular packet sniffing
tools. [5]. But besides the pcap file format, Wireshark also supports the “pcap Next
Generation Capture File Format” also known as pcap-ng. Due to more resources about
pcap and better compatibility especially with Scapy, the final decision was to use the old
pcap format.

3.2.3 User Interface

The DDoS Log Simulator consists of a single script where the log simulation can be
started via a console application. All configuration is done in a single file which has to
be referenced for the program to execute successfully. At first each parameter was stated
on the command line while execution but while implementing more and more features
into the DDoS Log Simulator the parameters had to move into a separate file. This
approach to separate the configuration file provides a way to store the numerous different
parameters smoothly. Also it becomes possible to define and store and share newly created
attacks in a convenient way. An intuitive and clear way to store data can be found in
the JavaScript Object Notation file format also known as JSON file format. While the
JSON file format was initially designed for JavaScript, it is otherwise independent from
its origin and parsers exist in most common programming languages.

3.3 Prototype and Implementation

In this section, technical details about the prototype’s implementation and a discussion
regarding technologies used will be provided. Besides, details about the parameters being
used in the configuration file are outlined.

Python 3.7 was picked as the main programming language for the implementation of
the prototype, mainly because of its simplicity and capacity to integrate with different
libraries to deal with computer networks (e.g., IPv4 packets and pcap files). The library

3.3. PROTOTYPE AND IMPLEMENTATION 17

used for this purpose was Scapy 2.4.2. Python in combination with Scapy provided all
the required features needed to implement the most essential features. This includes (i)
spawning different processes, (ii) forging packets, (iii) writing the generated packets into
files while (iv) iterating over different pcap file chunks. To modify already created packets,
Wireshark 2.6.8 was used. Except for a Wireshark-Python wrapper, there was no Python
library available for Wireshark and hence the decision was made to execute Wireshark
over the OS module.

3.3.1 Configuration JSON

The DDoS Log Simulator offers a wide variety of configuration possibilities in the form
of a JSON file. The choice of the parameters was based on the ability of a parameter to
reproduce real DDoS attacks as closely as possible. Those parameters and the structure
of the JSON file will be explained in detail in this section.

The various parameters in the JSON file are split into general and attacker specific set-
tings. Every parameter expect the packets per second have a default value which will be
consulted if nothing else is defined. The packets per second must be defined since the
program otherwise cannot know how may attackers it should spawn (see listing 3.5). This
should help keep the configuration process as intuitive as possible. The general settings
are listed in table 3.1 and define attack specific properties. In the JSON template below
the general parameters are the ones only enclosed in the first curly brackets. To support
multiple attackers, the attacker specific configuration is placed in a JSON list of multiple
such objects.

1 {

2 "attack_type": ... ,

3 "duration_sec": ... ,

4 "real_traffic_noise": ... ,

5 "dst_IPv4": ... ,

6 "dst_IPv6": ... ,

7 "dst_port": ... ,

8 "dst_MAC": ...

9 "attackers": [

10 {

11 "IPv4": ... ,

12 "IPv6": ... ,

13 "MAC": ... ,

14 "port": ... ,

15 "bandwidth_Bps": ... ,

16 "packets_per_sec": ...

17 },

18 ...

19 {

20 ...

21 }

22]

18 CHAPTER 3. DDOS LOG SIMULATOR

23 }

Listing 3.4: JSON configuration file with all parameters shown.

The general configuration parameters contain everything which needs to be configured
beforehand. The main parameter is the ”attack type”. It defines which kind of attack the
DDoS Log Simulator should create and thus determines the types of packets generated, like
the type of the packet’s protocol (such as TCP/UDP), of its payload or, when available,
which flags are set. The default attack type chosen by the DDoS Log Simulator is the SYN
Flood attack but only if the program does not recognize the attack (typo). The DDoS
Log Simulator uses at least a minimal configuration as shown in listing 3.5. Another
parameter is the duration in seconds stated in the JSON file as ”duration sec”. The
duration determines the amount of time during which an attack should take place and
can be specified as either an integer or a floating-point number.

Internet Protocol (IP) addresses are essential parts of log files, as they designate pur-
ported sources and destination of the attack. IP addresses are assigned to each device
which communicates over the internet protocol and are available in either IPv4 or IPv6.
While the IPv4 address struggles with its depletion of unassigned addresses, IPv6 should
provide a solution for this problem. Both versions are supported. The IPv4 address can
be specified as a string via dst_IPv4 and analogously the IPv6 via dst_IPv6. If both
addresses are stated, the DDoS Log Simulator favours the IPv6 address. If no address is
stated, it generates a random IPv4 address.

Besides the destination address, an attack also needs a communication endpoint, namely
a port. The destination port can be set via dst_port and has to be an integer. The range
of the port has to be between 0 and 65535 which corresponds to the valid range of ports
(see RFC6335). The media access control (MAC) address is used in the data link layer
of the OSI model and is a unique identifier for a machine. The destination MAC address
can be adjusted via dst_MAC and has to be a string of characters. If no MAC address is
stated, the DDoS Log Simulator creates a random one.

The starting time of an execution can be declared in start_time as a Unix timestamp.
By defining the timestamp in Unix time format a trade-off was made between usability
and time format confusion. If no time is declared the DDoS Log Simulator takes the
starting time of the generation as a default value.

1 {

2 "attack_type": ... ,

3 "attackers": [

4 {

5 "packets_per_sec": ...

6 }

7]

8 }

Listing 3.5: Minimal JSON configuration to start an execution successfully.

3.3. PROTOTYPE AND IMPLEMENTATION 19

Another characteristic of most DDoS attacks is the occurrence of real people trying
to reach their desired server. This parameter is represented in the configuration as
real_traffic_noise and indicates the amount of legitimate packets besides the DDoS
attacker’s packets. Each noise packet has a unique destination IP address and sends a
SYN packet to the destination IP. The amount of noise can be declared in categories such
as none (0), low (0.04), medium (0.08) or high (0.16). They describe the percentage of
real noise compared to the total amount of attacking packets. Alternatively, the amount
of traffic noise can be declared as a floating point number in a range from 0 to 1. The
total amount of packets is defined by all attacking packets multiplied by 1 + the numerical
representation of real_traffic_noise.

DDoS Log Simulator - General Config
Parameter Information Range Default

Value
attack type Attack type. syn flood,

dnsamplification
”syn flood”

duration sec Duration time in seconds. Float 5
dst IPv4 IPv4 for attacked device. IPv4 range random
dst IPv6 IPv6 for attacked device. IPv6 range random
dst port Port on which device gets at-

tacked.
[0, 65535] 80

dst MAC Machine address code of attacked
device

MAC range random

start time Time in unix time stamp. Integer current
time

real traffic noise Step wise increase of real traffic
noise.

[”none”, ”low”,
”medium”,
”high”] or [0, 1]

”low”

Table 3.1: List of configurable general parameters for the DDoS Log Simulator.

The lower part of the JSON file contains the attacker’s configuration. The different
attackers can be listed in an array and may have the following parameters shown in
table 3.2. A generation has to have at least one attacker with one parameter defined to
execute successfully.

During the creation process of the packet it is possible to add a certain payload to each
packet. This payload is represented in form of the bandwidth_Bps parameter and is
defined in bytes per second. By default no additional payload is added. This is also the
case if the stated amount is smaller than the size that the packet would already be even
without the payload. Furthermore it is possible to define an IP address for each attacker
either in IPv4 or IPv6. As in the destination IP the DDoS Log Simulator prefers the IPv6
if stated and creates an IPv4 address if both entries were left empty. Via MAC a media
access control address can be configured. If left blank, the program creates an address
randomly.

Each attacker has to be configured with an amount of attacking packets per second via
packets_per_sec. Since the packets per second are defined in the attacker’s section, it

20 CHAPTER 3. DDOS LOG SIMULATOR

is possible to have a different amount of packets per seconds for each attacker. Therefore
the total packets per second has to be added up over all attackers. The amount of
packets per second per attacker is required to state since it also defines the amount
of attackers when no other parameters are defined. The last parameter which can be
adjusted is the attacker’s outgoing port via port. By default port 80 is preconfigured. The
parameters IPv4, IPv6 and MAC have to be defined as character strings, bandwidth_Bps,
packets_per_sec and port as integers.

DDoS Log Simulator - Attacker Config
Parameter Information Valide range Default

Value
bandwidth Bps HTTP load from attacker in bit

per second.
Integer 0

IPv4 IPv4 for attacking device. IPv4 range random
IPv6 IPv6 for attacking device. IPv6 range random
MAC Machine address code of attack-

ing device
MAC range random

packets per sec Packets per second from attacker. Integer -
port Port on which device gets at-

tacked.
[0, 65535] 80

Table 3.2: List of configurable attacker parameters for the DDoS Log Simulator.

3.3.2 Packet Generation

The following sections should provide the reader with a deeper insight into the main
functionality of the DDoS Log Simulator by explaining parts of the source code. In this
section the actual process of generating packets is described. For that, it contains parts of
the create_log() function. For a better understanding note that variables, parameters
and functions in the text are formatted in teletype font.

The generation process can distinguish between two different packet types. The upper part
from line 1 to 19 handles the creation of real traffic noise while the second part from line
20 to 28 handles the creation of the actual attacking packets. The trigger for real traffic
noise creation depends on the noise_counter variable. When this variable surpasses 100
percent, a noise packet will be generated. The noise_counter is incremented by noise

after an attacking packet is created and corresponds to the percentage of real traffic, as
specified in the configuration. Since the noise_counter variable is initialized randomly
between zero and one, an even real noise distribution should be ensured from the very
beginning. This initialization is not visible in the presented code.

When the program enters the noise packet generation at line 2, it first determines the
version of the internet protocol that encapsulates the SYN packet. Every 10th random
noise packet is an IPv6 based SYN request. After the decision process, Scapy creates
either an IPv6 or otherwise an IPv4 network layer. In a second step Scapy creates the
transport layer which consists out of the source and the destination port and sets the

3.3. PROTOTYPE AND IMPLEMENTATION 21

SYN flag. Afterwards the actual packet gets forged by Scapy by merging the previously
created parts and a randomly created MAC address. To finalize the process creation of
the real noise packet, the timestamp for the packet is set explicitly. Not doing so would
lead to errors in execution environments. At this point the packet is ready to be written
into a temporary pcap file based on the filenumber. The filenumber is determined by
the iteration of the generation process and which thread the process spawned. To finalize
the writing of the noise packet, the noise_counter is decreased by one. This prevents an
endless spawn of noise packets and will be increased only by created attacking packets.
Now the thread sleeps for a specified amount of time to prevent creating too many packets.
This is especially necessary when creating just a very few packets. Since the DDoS Log
Simulator should provide a base to generate a wide variety of DDoS attacks, this sleeping
time was implemented even though it affects performance negatively.

Regardless of whether a real noise packet was generated or not, the DDoS Log Simulator
tries to write an attacking packet from line 19 to line 26. The process of generating the
attacking packet differs from that of a noise packet in that the attacking packet was already
created previously. Since an attacking packet just needs to be forged once, it offers an
effective possibility to improve execution speeds. The only modification on the pre-forged
packet is adjusting its timestamp to the specified or current time. Since the packet writing
process is exception handled, the program would pass through the generated errors from
Scapy in case of an invalid configuration. Those exceptions are in natural language and
point out the mistake made in the configuration concisely.

1 # Generate and write real noise packet

2 if noise_counter >= 1:

3 if random.randrange(100) < 10:

4 network_layer = IPv6(src=random_IPv(6), dst=random_IPv(6))

5 else:

6 network_layer = IP(src=random_IPv(4), dst=random_IPv(4))

7 transport_layer_new = TCP(sport=src_port, dport=dst_port, flags="S")

8 packet_real_traffic = Ether(dst=rand_mac(),

src=rand_mac())/network_layer/transport_layer_new

9 packet_real_traffic.time = time.time()

10 try:

11 wrpcap(’flood_trace_tmp%d.pcap’ % (filenumber), packet_real_traffic,

append=True)

12 except Exception as e:

13 log.critical(f"[-] Something went terribly wrong: {e}")

14 sys.exit()

15 noise_counter -= 1

16 time.sleep(sleep_time)

17

18 # Write the attacking packet

19 try:

20 packet.time = time.time()

21 wrpcap(’flood_trace_tmp%d.pcap’ % (filenumber), packet, append=True)

22 time.sleep(sleep_time)

23 except Exception as e:

24 log.critical(f"[-] Something went terribly wrong: {e}")

22 CHAPTER 3. DDOS LOG SIMULATOR

25 sys.exit()

26 noise_counter += noise

Listing 3.6: Part of the function which generates the actual packets.

3.3.3 Expandability

This section describes the packet spawning function and shows how it is possible to extend
the DDoS Log Simulator in an easy manner. The displayed part of source code in listing
3.7 shows on one hand the critical part of the creation of the SYN flood packet (line 3),
and on the other hand the creation of the DNS amplification attack (line 11). In the SYN
flood packet crafting part, the program creates a TCP packet via TCP(), sets the source
and destination port, and sets the SYN flag. The packet is stored in the transport_layer
variable.

In the DNS amplification packet forging process, at first sample DNS server responses are
loaded into payloads on line 14. Afterwards Big_DNS_Responses are selected and stored
into DNS_Responses. A hash generated from the IPv4 and IPv6 address then determines
the sample that is selected. Doing so ensures that each server has its own response. Since
the JSON file format does not natively support binary data, the raw DNS responses are
Base64-encoded before being added as the payload. In a final step, a UDP packet is forged
with the destination port as well as the previously selected and encoded payload. Since
both functions write into transport_layer, no changes are needed in the actual loop of
writing packets, which will start soon after this part.

1 # Attack specific configurations here

2 # Syn Flood

3 if attack_type == "syn_flood":

4 transport_layer = TCP(sport=src_port, dport=dst_port, flags="S")

5 if bpp > 40:

6 payload = "s" * (bpp-40)

7 else:

8 payload = "s" * bpp

9

10 # DNS Amplification Attack

11 if attack_type == "dns_amplification":

12 try:

13 with open("./data/DNS_server_list.json") as payloadsFile:

14 payloads = json.load(payloadsFile)

15 except Exception as e:

16 log.critical(f"[!] Data directory is missing. Payloads could not be

loaded..\n")

17 DNS_Responses = payloads.get("Big_DNS_Response")

18 payload = base64.b64decode(DNS_Responses[(hash(src_ip) + hash(src_IPv6)) %

len(DNS_Responses)-1]["Sample"])

19 transport_layer = UDP(dport=dst_port)/Raw(load=payload)

20

3.3. PROTOTYPE AND IMPLEMENTATION 23

21 # Next Attack type

22 # ...

Listing 3.7: Section of packet forging which allows easy extendability.

3.3.4 Multi Thread Support

The following code section in listing 3.8 describes the process spawning starting at line
18 based on the thread estimation starting at line 2. During the development process
the thread estimation was redesigned several times. The whole challenge is based on
the difficulty to predict the amount of packets a single packet generating process can
create while keeping the program as fast as possible. When comparing different systems
there were single threaded packet generations measured from 2 500 up to 8 500 packets
per second. While the packet generation initially was too defensive, it was too aggressive
in some revision. The final solution is a mixture between idling time (sleep()) in each
packet generation as well as thread prediction.

When the program has parsed all inputs the actual packet generation can start. At
first the program decides if the packet generation should be in bursts or handed over to
the exact single threaded generation process. The burst execution starts when the total
amount of packets from the current attacker is smaller than the already generated packets
added up with the amount of packets at least expected to be generated by one process.

After each generation burst the program stores the average amount of generated packets
per process in a variable called packets_1process. Since in the first iteration no previ-
ously estimated generation speed is available, the program spawns the same amount of
processes as the system has threads. This approach does not create any packets too much
since the sleeping time during a single packet creation is equivalent to the total amount
of packets divided by the amount of threads a system has. In other words, spawning all
treads could maximally result in the exact amount of packets demanded.

Presumed the program is already in its second loop and has a certain value set to pack-

ets_1process, the elif in line 7 is invoked. The elif checks if the new coreCount will be
smaller than the first one and executes if so. This should prevent the specific scenario in
which the program assumes too much program processes and since each program process
then works even slower than expected it expands the amount of program processes even
more. It is not possible to set the amount of maximal threads spawned to a certain value
like the doubled amount of threads available since the sleeping time between each created
packet gives the CPU a lot of room to handle other tasks. When the elif in line 7 is
entered the amount of program processes is determined and saved into coreCount and if
demanded a debug message is printed out. The last check done on line 12 is not to let
the coreCount be zero since then the program would stuck in a loop.

In a final step the actual packet crafting processes are spawned in form of create_log()
functions in line 19. All parsed arguments are passed to the current program process
while always incrementing the current file number stored in the variable fileNu. The
current file number indicates a process in which temporary file it should write into. Such

24 CHAPTER 3. DDOS LOG SIMULATOR

an approach had to be implemented since letting multiple processes writing into a single
file would result in a corrupt file. Finally the created process is appended to the list
of processes and started afterwards. Since all of this is in a loop starting at line 15,
the program keeps creating processes until the predicted amount of predicted threads
beforehand is reached.

1 # Multi Thread support

2 while total_packets_per_attacker >

logged_length_per_attacker+(pps_per_attacker*duration*1/os.cpu_count()):

3

4 if packets_1process == 0:

5 log.debug(coreCount)

6 core_count = os.cpu_count()

7 elif coreCount > total_packets_per_attacker -

logged_length_per_attacker)/packets_1process)-1:

8 coreCount = round(((total_packets_per_attacker -

logged_length_per_attacker)/packets_1process)-1)

9 log.debug(coreCount)

10

11 if coreCount < 1:

12 coreCount = 1

13

14 for x in range(coreCount):

15 fileNu = fileNu + 1

16

17 p = Process(

18 target=create_log,

19 args=(attack_type, src_net4, src_net6, dst_IPv4, dst_IPv6,

dst_port, pps_per_attacker/os.cpu_count(), attackers,

duration, port, fileNu, bytes_per_packet, dst_MAC, src_MAC,

noise, isIPv6), daemon=True)

20 processes.append(p)

21 p.start()

Listing 3.8: Section which spawns the processes based on the thread estimation.

Chapter 4

Evaluation

This section is an attempt to quantify the functioning of the DDoS Log Simulator and
afterwards discuss the received results. Such an approach to process and discuss real
measurements provides the reader with further insight into how the program works.

In the first part, the setup for the different tests is presented. This includes the config-
uration file used for the different tests as well as a description of the systems the DDoS
Log Simulator was executed on. In the second part, the performance measurements are
explained in detail. Plots are included for the reader to get a clear picture of how perfor-
mance is impacted by different factors. After commenting about performance, the next
section details the verification of the results generated with the specified configuration
file. The verification process was conducted by using the fingerprint generator from DDoS
Clearing House. Their fingerprint generator is used for quantifying real DDoS attacks,
based on the contents of a network traffic log file. It provides an excellent opportunity to
compare the generated fingerprint with its configuration file, mainly due to the fact that
its generated fingerprints are very similar to the DDoS Log Generator’s configuration file.

4.1 Initial Setup

To have comparable test results, it is crucial to have the same configurations running
on all machines. This section describes at first the JSON configuration file and its dif-
ferent parameters. Afterwards the two platforms, on which the tests were executed, are
presented. The JSON file, as seen in the listing below, represents a typical SYN flood
attack and all possible parameters are set except for the IPv4 address. The program only
takes into consideration either the IPv4 or IPv6 address. In this case the IPv6 address is
specified, so any IPv4 address may be omitted.

The configured attack has the characteristics of a typical SYN flood attack. It is inspired
by SYN flood attacks observed in Clearing House’s DDoSDB. The start time is in the
Unix timestamp format (an integer representing the number of seconds elapsed since
midnight on Thursday, 1 January 1970) and converts to the ISO 8601 representation
2019-05-09T13:29:01. The attack has a specified duration of 20 seconds and a medium

25

26 CHAPTER 4. EVALUATION

amount of real traffic noise. Since a medium level of noise corresponds to 0.08%, there is
a total of 240 000 noise packets in the generated attack.

An IPv6 address from the 2001:0db8::/32 subnet was used because they are meant for
documentation and demonstration purposes (see RFC 3849 from IETF). This prevents
confusion originating from the generated log file. The MAC address is randomly chosen,
so it could also be left blank. Port 80 (HTTP) is chosen as the destination port. Besides
port 443 (HTTPS), port 80 is commonly seen as it is the port used by web servers to serve
content to clients. For this purpose, it fits nicely into the SYN flood attack scenario.

The attack itself originates from two attackers. Both have an IPv6 address from the
2001:0db8::/32 subnet and a random MAC address. The ports of the attackers are 81
and 82, which provide a better overview when looking at the final generated logs. The
bandwidth is set to 25 000 Bytes per second on both of the attackers. Furthermore, the
configuration states an attack rate of 100 000 packets per second for the first attacker and
50 000 packets per second for the second one. This results in 150 000 packets per second
and 3 000 000 attacking packets in total. In addition to the real noise traffic, the generator
has to create around 3 240 000 packets. The tests were executed using the configuration
file as presented in Listing 4.1.

1 {

2 "attack_type": "syn_flood",

3 "start_time": 1557408541,

4 "duration_sec": 5,

5 "real_traffic_noise": "medium",

6 "dst_IPv6": "2001:0db8:0a0b:12f0:0000:0000:0000:0001",

7 "dst_port": 80,

8 "dst_MAC": "8c:7f:41:b0:5d:99",

9 "attackers": [

10 {

11 "IPv6": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",

12 "MAC": "00:0a:95:9d:68:16",

13 "port": 81,

14 "bandwidth_Bps": 2500,

15 "packets_per_sec": 10000

16 },

17 {

18 "IPv6": "2001:0db8:85a3:0000:0000:8a2e:0370:7335",

19 "MAC": "40:22:12:8d:32:1a",

20 "port": 82,

21 "bandwidth_Bps": 2500,

22 "packets_per_sec": 50000

23 }

24]

25 }

Listing 4.1: JSON configuration file based on which the whole performance analysis is
based on.

4.2. PERFORMANCE ANALYSIS 27

To provide a better comparison on how the DDoS Log Simulator behaves, two different
systems were used for benchmarking. The first device is a mobile notebook computer with
a mid-range 15 watts TDP Intel i5-8250U processor. This CPU has a base clock speed of
1.6 GHz and a boost clock speed up to 3.4 GHz. Due to the fairly weak thermal design
a notebook is equipped with, the boost clock speed is only reached in the initial seconds
of the programs execution and the CPU is throttled afterwards. The notebook has 8 GB
DDR4 RAM as well as a fast 256 NVMe SSD storage device. As an operating system
Ubuntu Linux is installed and Python 3.7.3 is used to execute the DDoS Log Simulator.

The second device is a desktop computer with an AMD Ryzen 7 1700 processor. The CPU
has 8 cores with 16 threads and a base clock of 3GHz. Due to great cooling the expected
core boost frequencies are 2x3.7GHz and 6x3.1GHz without any throttling during the
execution. The computer is equipped with 48 GB DDR4 RAM and also a NVMe storage
device. Its operating system is CentOS Linux and it also runs Python 3.7.3 to execute
the DDoS Log Simulator.

1. Platform Mobile Notebook
Operation System Ubuntu Linux

Processor i5-8250U @ 1.60GHz (4/8)
Memory 8 GB DDR4

Storage Device 256 GB NVMe

2. Platform Desktop
Operation System CentOS Linux

Processor AMD Ryzen 7 1700 @ 3GHz (8/16)
Memory 48 GB DDR4

Storage Device 256 GB NVMe

4.2 Performance Analysis

When measuring the execution time from the previously presented configuration file with
the Linux time command, it reports a time from start to finish of 2m31.314s on the server
and 4m51.666s on the notebook. Even though the desktop system is at least twice as fast
as the notebook, this does not manifest itself in the execution times entirely. A reason for
this behaviour can be found in the fact that the packet counting process is single threaded
only and also needs a certain amount of time to finish.

In Figure 4.1 the amount of spawned threads from the DDoS Log Simulator are compared
in a graph. The red line indicates the desktop system while the blue line stands for the
mobile device. At first the DDoS Log Simulator spawns as much processes as if it could
generate its load in the very first iteration. This is nicely visible by the fact that the
desktop system only uses 16 processes at the beginning which is equivalent to the amount
of threads the system has. On the other hand the mobile device spawns 8 threads which
is also equivalent to its amount of threads. When the DDoS Log Simulator realizes the
systems are not capable of generating all packages in the first iteration it starts to spawn
more processes.

28 CHAPTER 4. EVALUATION

This approach can be considered as efficient since the program sets a sleeping time between
each generated packet such that the CPU can process other processes in the meantime.
The amount of spawned process corresponds to the average amount of packets the pro-
cessor could generate in the previous generation round divided by the amount of total
amount of packets. The estimation process had to be implemented since computer pro-
cessing power differs greatly from system to system. The exact process is further explained
in the second part of Chapter 3.

0

20

40

60

0.00 0.25 0.50 0.75 1.00
Overall progress (%)

A
m

ou
nt

 o
f p

ro
ce

ss
es

 s
pa

w
ne

d

Device

Desktop

Mobile

Figure 4.1: An overview how many threads the DDoS Log Simulator allocates during the
generating process.

4.2. PERFORMANCE ANALYSIS 29

When the DDoS Log Simulator expects the generation to finish, it starts decreasing the
number of processes towards the end of the current attackers packet generation. Since
there are two attackers defined in the configuration file, the whole process is repeated
once again. It is also visible that the DDoS Log Simulator did not spawn as much process
in the desktop packet generation as it does in the mobile system. This is due to the fact
that the DDoS Log Simulator expects faster packet generation per process in the desktop
than in the notebook.

In the second half both systems spawn at first approximately the same amount of pro-
cesses.

In figure 4.2 there is a graph which shows the amount of used memory during the execution.
Since the graph had the same shape and dimensions on both tested systems, only one is
shown in the graphic for an easier overview. Note that the program initially allocated 95
megabytes and hence this is where the graph starts.

Figure 4.2: An overview of the amount of memory the DDoS Log Simulator allocates
during the generation process using the configuration presented in Listing 4.1.

Each peak represents a packet generation burst and each drop the merging process after-
wards. In average the process uses about 120 megabytes of memory nearly uninfluenced
from the total amount of packets which had to be generated for each attacking instance.
In two thirds of the graph there is a double drop to 100 megabytes which indicates the
start of the generation from the second attacker. By always merging small chunks of
generated log data, the DDoS Log Simulator is capable of keeping its used memory to a
minimum.

The figure 4.3 represents the memory consumption for a very dense log file where the
generation time took more than 30 minutes. Even tough a small increase of the allocated
memory is visible during the whole generation process, the average amount of allocated
memory stays at a reasonable level of about 125 megabytes in total. The visible memory
increase, after the initial drop, until the end is about 40 megabytes. Which is compared
to modern computer systems a very reasonable amount.

30 CHAPTER 4. EVALUATION

Figure 4.3: An overview of the amount of memory the DDoS Log Simulator allocates
during a long generation time of over 30 minuts.

4.3 Verification

To verify the results produced by the DDoS Log Simulator, the initial configuration JSON
is compared to its corresponding fingerprints generated by the DDoS Dissector from the
final output pcap file. The DDoS Dissector is part of the DDoS Clearing House and creates
a JSON file with a summary of the network trace characteristics. During the generation
process, the Fingerprint generator filters and anonymizes the input file such that only the
attacking instances remain. In other words, all random traffic noise will be filtered out. In
this section, all parameters created in the fingerprint JSON (see listing 4.2) are compared
to the original configuration file in listing 4.1. A desired result from this comparison would
be to have two files matching as much as possible. This would indicate a very accurate
output of what was configured in the JSON file.

4.3.1 SYN Flood Attack

Since the Fingerprint generator is capable of analyzing different kinds of file types (e.g.,
pcap, pcapng, nfdump, netflow, and ipfix), it firstly states the kind of file produced in
file_type. As intended by the DDoS Log Simulator the reported file type is in the
pcap format. The protocol of the attack is TCP which stands for Transmission Con-
trol Protocol and is part of the transport layer. Since the vulnerability exploited in
the SYN flood attack is also part of TCP Three-Way-Handshake the stated protocol
appers to be correct. The next extracted information from the generated log file are
the flags set in the attack. Since Python can’t write some unicode character the string
"\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7S\u00b7" looks
encoded like this "··········S·" which represents the SYN flag which was set during the
packet creation.

The fingerprint generator also recognizes the two defined attacking IPv6 correctly in
src_ips. Even though the IPv4 addresses were stated as well in the configuration file in
listing 4.1 the DDoS Log Simulator didn’t take them in account due to it’s policy to prefer
IPv6 over IPv4. Also the amount of attacking IP’s in total_src_ips and their ports in
src_ports were detected properly from the DDoS Log Simulator. The MAC addresses
stated in the configuration file aren’t listed in the generated fingerprint. This is may due

4.3. VERIFICATION 31

to the fact, that in a real life scenario the MAC address corresponds to an in-house device
anyways which makes stating them in the fingerprint superfluous.

1 {

2 "file_type": "pcap",

3 "protocol": "TCP",

4 "additional":

5 {

6 "tcp_flag":

7 "\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7S\u00b7"

8 },

9 "src_ips": [

10 "2001:db8:85a3::8a2e:370:7335",

11 "2001:db8:85a3::8a2e:370:7334"

12],

13 "total_src_ips": 2,

14 "src_ports": [82, 81],

15 "total_src_ports": 2,

16 "dst_ports": [80],

17 "total_dst_ports": 1,

18 "start_timestamp": 1557408541.000279,

19 "key": "41f2173dabe30f52d99015e4bdc610db",

20 "start_time": "2019-05-09 15:29:01",

21 "duration_sec": 5.004808187484741,

22 "total_packets": 20002,

23 "avg_pps": 3996.5567611597867,

24 "avg_bps": 6129252.680793878,

25 "vector_filter": "

26 ([’_ws.col.Protocol’]==’TCP’)&

27 ([’dstport’]==80)&

28 ([’tcp.flags.str’]==

29 ’\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7\u00b7S\u00b7’)",

30 "multivector_key": "41f2173dabe30f52d99015e4bdc610db"

31 }

32 }

Listing 4.2: Fingerprint generated from DDoS Dissector based on the JSON configuration
in Listing 4.1

What is stated in the fingerprint is the starting time in the Unix time format and addi-
tionally in ISO 8601. The time the execution started in start_time is recognized in the
fingerprint and compared to the one specified in the configuration file 0.000279 seconds
off. Those 0.000279 may be in the margin of error while the program is calculating the
duration between starting time and the actual time. The duration in the fingerprint is
stated in seconds. While the desired amount specified in the configuration file were 5 sec-
onds, the fingerprint generator reported a duration of 5.004808187484741 seconds. Those
0.004808187484741 seconds too much then impacted the average packets per seconds sig-
nificantly. In total the DDoS Log Simulator had to create 20 000 packets. The fingerprint
generator reported an amount of 20 002 attacking packets created. Since the duration of

32 CHAPTER 4. EVALUATION

the whole attack was measured 0.00480818748474 seconds longer than it should be, the
average packets per second, defined in avg_pps corresponds to 3996.556761. One could
infer from that, the DDoS Log Simulator to have created 18 packets (3.5 multiplied by
duration of 5 seconds) too little even tough it generated 2 packets too much.

The average bytes per seconds are 6 129 252 and stored in avg_bps. Defined in the con-
figuration in listing 4.2 were 100 000 from the first attacker and 500 000 from the second
attacker. Therefore the DDoS Log Generator has created 129 252 bytes per second to
much. This are 32 bytes per packet too much which can be considered a rather large
excess. In relation to the desired amount of bytes per minute it is 1.0215 the demanded
quantity. Hence the bytes per minute creation is 2.15% off.

4.3.2 DNS Amplification Attack

This section compares the implemented DNS amplification attack’s output with its cor-
responding fingerprint generated by the DDoS Dissector. While in the sections above
referred to the configuration file in 4.1, this section will discuss the results from the DNS
amplification attack generated by the configuration file provided in listing 4.4. While the
configuration above represented a scenario not possible in the real world due to its chosen
IPv6 addresses, the DNS amplification attack log in this sections aims to match a real
world attack as nicely as possible.

For example the DNS requests are usually sent to the name server via UDP port 53 and
therefore the destination port in dst_port is set to 53. Also the MAC addresses on all
attackers are matching since in a real life attack those MAC addresses represent the local
packet entry point. Further more the attackers sending port is set to a big number since
the lower numbers are reserved by the system. One characteristics which does not match
a real world scenario is the duration of only 10 seconds. Real DNS amplification attacks
can have a length of several days or even weeks.

1 {

2 "attack_type": "dns_amplification",

3 "duration_sec": 10,

4 "dst_port": 53,

5 "attackers": [

6 {

7 "MAC": "00:0a:95:9d:68:16",

8 "port": 46068,

9 "packets_per_sec": 2000

10 },

11 {

12 "MAC": "00:0a:95:9d:68:16",

13 "port": 41401,

14 "packets_per_sec": 2500

15 },

16 {

17 "MAC": "00:0a:95:9d:68:16",

4.3. VERIFICATION 33

18 "port": 46211,

19 "packets_per_sec": 1500

20 }

21

22]

23 }

Listing 4.3: Configuration of a DNS Amplification attack trying to be as close to a real
world scenario as possible.

While generating the fingerprint of the attack configured in listing 4.4 the fingerprint
generator from DDoS Dissector often had trouble determining the attacker. This resulted
in the fact that it often stated one attacker too little and could be due to the fact that
the DNS responses were extracted from real log data and often stated by Wireshark as
too big to be fully captured. Possibly those records were in some way corrupt and the
fingerprint generator could not determine it correctly. Strangely this happened not in all
generations.

Therefore also the total / average amount of packets per seconds do not match with
what was stated in the configuration file even thought the file itself contained the right
amount of packets. Considering the missing of one attackers, the fingerprint shows the
same divergences as the previously generated.

1

2 {

3 "file_type": "pcap",

4 "protocol": "DNS",

5 "additional": {"dns_query": "sema.cz", "dns_type": 255.0},

6 "src_ips": ["164.63.16.134", "150.51.199.215"],

7 "total_src_ips": 2,

8 "src_ports": [41401, 46068],

9 "total_src_ports": 2,

10 "dst_ports": [53],

11 "total_dst_ports": 1,

12 "start_timestamp": 1566412233.4858382,

13 "key": "eaf0f734f08b6e7be331ab53a5ad86d2",

14 "start_time": "2019-08-21 20:30:33",

15 "duration_sec": 10.027663946151733,

16 "total_packets": 45003,

17 "avg_pps": 4487.884739822237,

18 "avg_bps": 10019842.162596507,

19 "vector_filter":

"([’_ws.col.Protocol’]==’DNS’)&([’dstport’]==53)&([’dns.qry.name’]==’sema.cz’)",

"

20 multivector_key": "eaf0f734f08b6e7be331ab53a5ad86d2"

21 }

Listing 4.4: Configuration of a DNS Amplification attack trying to be as close to a real
world scenario as possible.

34 CHAPTER 4. EVALUATION

4.4 Discussion and Limitations

This section critically analyses and discusses some of the characteristics of the DDoS
Log Simulator regarding its performance, its expandability as well as its implemented
parameters. Also the verification process is discussed in detail.

The DDoS Log Simulator can generate arbitrarily long and dense log files. A downside of
this approach is the relatively slow execution time, which is at least as long as the duration
of the attack itself multiplied with the amount of attackers defined in the configuration file.
This design decision was made since the logs are not meant to be generated in real-time
as well as for reliability purposes. Since there is always a certain sleeping time between
each single packet creation, the system on which the generation happens keeps responsive
unless the packet density gets too high. A workaround for this problem can be found with
the program nice which can adjust process priorities under Linux.

Regarding the execution time, there is still some room for improvement available. Espe-
cially in the way the program counts the already created packets. Right now the total
package counting is done by opening the created files after a creation burst. Efforts were
made to find another solution to speed up said process but there was no reliable solution
found for inter-multi-process communication. Fortunately the packet counting is not the
main time consummating part of the whole generation process.

Much more frequent the program iterates in the packet generation process. The packet
generation process depends on a correct thread estimation and the attempt has been made
to let the amount of spawned process drop just in the very last moment. The Listing 4.5
shows a pre-final but very mature version of the DDoS Log Simulator estimating the
wrong amount of processes. Even tough the estimation process was revised several time
sometimes the DDoS Log Simulator decreases the amount of spawned program processes
not strongly enough. As visible, the output reports the amount of packets generated in
percentage and how many program processes were spawned. The last two lines indicated
the switch into the single threaded final exact packet generation. Unfortunately the
DDoS Log Simulator had already created 165 620 packets out of 162 000 during the burst
generation. Those 5 620 packets too much corresponds to either one or two processes too
much.

1 Current Amount of processes spawned: 8

2 [~] Amount of packets generated: 58%

3 [~] Amount of packets generated: 59%

4 [~] Amount of packets generated: 60%

5 [~] Amount of packets generated: 61%

6 [~] Amount of packets generated: 61%

7 [~] Amount of packets generated: 62%

8 [~] Amount of packets generated: 63%

9 [~] Amount of packets generated: 64%

10 Current Amount of processes spawned: 5

11 [~] Amount of packets generated: 64%

12 [~] Amount of packets generated: 65%

13 [~] Amount of packets generated: 66%

4.4. DISCUSSION AND LIMITATIONS 35

14 [~] Amount of packets generated: 67%

15 [~] Amount of packets generated: 67%

16 162000.0

17 165620

Listing 4.5: Extract of a log showing the DDoS Log Simulator not decreasing the amount
of spawned processes and over-creating packets in a non-final version.

The amount of different configurable parameters should provide a general way to deter-
mine all fundamental characteristics of DDoS attacks. They are influenced by the different
parameters stated in the DDoSDB attack fingerprints. This approach allows a maximum
compatibility to a wide variety of different DDoS attacks.

Unfortunately, not each defined parameter makes as much sense to be stated in differ-
ent attack types. For example the bandwidth defined in the configuration file as band-

width_Bsp may be considered as superfluous in the SYN flood attack scenario since it
adds unnecessary payload to each sent packet which would never be seen in a real world
attacks. But since it is possible to define the amount of bytes per seconds a way need
be defined for the DDoS Log Simulator to handle it as well as possible. Also in the DNS
amplification attack the bytes per second caused trouble while implementing the attack.
Since the decision was made to add real big DNS responses to the payload the DDoS
Log Simulator ignores the defined value in the configuration file completely. A better but
much more complex approach would have been to implement a function which returns a
DNS response dependent on the bandwidth_Bsp variable.

Another problem regarding the different parameters which can be set in the JSON con-
figuration file concerns the real noise traffic. Right now the real noise traffic represents
random either IPv4 or IPv6 addresses sending a SYN packet to the configured destina-
tion IP address. This implementation was rather simple and there is much capability
for improvement available. For example real traffic noise could consist out of different
SYN, SYN-ACK, ACK requests or even HTTP GET, POST, PUT or DELETE and so
on. Another important feature of real noise which is not implemented yet would be the
servers response. Right now the DDoS Log Generator does not create any response com-
ing from the server side. The decision no to implement a sophisticated answer was due to
the fact, that the responding server should have been further defined e.g. as a webserver,
FTP-Server, DNS-Server or even a backend-server from a specific application.

What can be considered as a clever approach is the verification process of comparing the
configuration file with the output generated by the DDoS Dissector’s fingerprint generator.
With this verification method even smallest divergences between the actual log and what
was configured are shown. What is missing in this kind of verification process is the
analysis of the nature of the attack itself. There is no parameter stating the accurateness
of an attack or if the generated log file even could have been captured in real life.

36 CHAPTER 4. EVALUATION

Chapter 5

Summary and Conclusion

DDoS attacks are a major concern for the network community. They cause expensive
disruptions of internet services and are an important threat to defend against. To study
them, it is vital to have numerous logs of recorded attacks. It is impractical for web
infrastructure companies to regularly publish such logs because of difficulties to anonymize
this data. Therefore it would be convenient to have a tool that could simulate such attacks
with a close resemblance to real attacks.

This paper introduces the DDoS Log Simulator that creates logs of DDoS attacks in
the form of pcap files based on a configuration file. It supports the implementation of
different attack types. Implemented in the program are the SYN flood attack and the
DNS amplification attack. A variety of parameters including the attack duration, list of
attackers with respective bandwidth, and ratio of real traffic noise can be adjusted.

Due to its design choices, the DDoS Log Simulator is capable of generating arbitrarily
long and dense log files. It uses multiple threads depending on the number of CPU cores
available. The performance was measured on two different devices, a mobile notebook and
desktop computer.It was concluded that the DDoS Log Simulator is capable of efficiently
utilizing multiple threads in parallel.

The DDoS Dissector was used as a tool for dissecting network traffic from pcap files and
identifying and generating DDoS attack fingerprints, to evaluate the log files generated
by our DDoS Log Simulator. It was able to detect the typical characteristics of the two
implemented attacks, namely SYN flood and DNS amplification attacks. It is possible to
extend it with other attacks.

Generated logs can afterwards be used in different upstream applications. These include
for example teaching, visualization or penetration testing purposes, since it is capable
of creating logs of attacks which in practice could not have happened. An example is
the visualization of a log file, which can be used for teaching or illustrative purposes.
This may help with better exploring and understanding DDoS attacks by simplifying
them. Other future work may be found in the penetration testing field. An interesting
application would be the conversion from the logs to real attacks. With such an approach
real infrastructure could be tested for specific attack scenarios.

37

38 CHAPTER 5. SUMMARY AND CONCLUSION

5.1 Future Work

The DDoS Log Simulator is designed as a platform to generate DDoS log files. It was built
with the intention to be as easy to modify as possible and therefore holds a lot of potential
for further expansions. This may includes: (i) Support for other types of DDoS attacks,
(ii) sending the generated attacks on wire, (iii) the creation of visual output, and (iv) to
train artificial intelligence based on the generated log files. Those possible future works
may be used as support for security teams (e.g., universities, police departments, and
governments) and to conduct researches in direction to develop and test novel solutions
for cybersecurity.

An obvious and valuable extension of the program would be the creation of more attacks.
So far two attacks were implemented as a proof of concept. The SYN flood attack and
the DNS amplification attack demonstrate the DDoS Log Simulator’s capabilities. After
having created a new attack, the corresponding configuration file may be shared for others
to reproduce the same type of attack with customized parameters.

Another interesting application scenario could be found in the generation of real attacks
from log data. This would allow the user to test their created log files on wire. Right now
there is a tool called tcp replay which is capable of sending pcap files out of an interface.
Since tcpreplay is free Open Source software a connection between the two program could
be possible. Due to the capability of the DDoS Log Simulator to create preconfigured
log files the program would be well suited as a content creator tool. Those content could
be used by a variety of different applications. For example for visualization purposes.
For example some functionalities from CapAnalysis could be implemented into the DDoS
Log Simulator. CapAnalysis is a tool to present .pcap files in many forms. It is Open
Source and released under the GNU General Public License version 2 and therefore should
provide good preconditions to implement code into the DDoS Log Simulator.

Also, further solutions can be developed to use the log files generated by this thesis in
order to train artificial intelligence for network operators to identify behaviors of DDoS
attacks in an efficient way. Thus, this can help to improve the cybersecurity by having
another way to detect attacks.

Bibliography

[1] Esraa Alomari, Selvakumar Manickam, BB Gupta, Shankar Karuppayah, and Rafeef
Alfaris. Botnet-based distributed denial of service (DDoS) attacks on web servers:
classification and art. arXiv preprint arXiv:1208.0403, 2012.

[2] Cloudflare. Famous DDoS Attacks | The Largest DDoS Attacks Of All Time. https:
//www.cloudflare.com/learning/ddos/famous-ddos-attacks/. Accessed: 2019-
08-18.

[3] Christos Douligeris and Aikaterini Mitrokotsa. DDoS Attacks and Defense Mecha-
nisms: Classification and State-of-the-Art. Computer Networks, 44(5):643–666, 2004.

[4] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred. Sta-
tistical approaches to DDoS attack detection and response. In DARPA information
survivability conference and exposition, volume 1, pages 303–314, Anaheim, USA,
2003.

[5] Piyush Goyal and Anurag Goyal. Comparative study of two most popular packet
sniffing tools-tcpdump and wireshark. In 9th International Conference on Com-
putational Intelligence and Communication Networks (CICN), pages 77–81, Grine,
Cyprus, 2017.

[6] Jiahui Jiao, Benjun Ye, Yue Zhao, Rebecca J Stones, Gang Wang, Xiaoguang Liu,
Shaoyan Wang, and Guangjun Xie. Detecting tcp-based ddos attacks in baidu cloud
computing data centers. In IEEE 36th Symposium on Reliable Distributed Systems
(SRDS), pages 256–258, Hong Kong, China, 2017.

[7] Andrzej Kosowski and Volodymyr Mosorov. Nessi2 simulator for large-scale DDoS
attack analysis. In Perspective Technologies and Methods in MEMS Design, pages
157–159, Polyana, Ukraine, 2011.

[8] Z Morley Mao, Vyas Sekar, Oliver Spatscheck, Jacobus Van Der Merwe, and Ran-
garajan Vasudevan. Analyzing large DDoS attacks using multiple data sources. In
SIGCOMM workshop on Large-scale attack defense, pages 161–168. ACM, 2006.

[9] NZZ am Sonntag Marco Metzler. Kriminelle erpressen Schweizer
Online-Shops. https://www.nzz.ch/nzzas/nzz-am-sonntag/

cyber-attacken-kriminelle-erpressen-schweizer-online-shops-ld.9083/,
2016. Accessed: 2019-08-18.

39

40 BIBLIOGRAPHY

[10] Jose Nazario. Ddos attack evolution. Network Security, 2008(7):7–10, 2008.

[11] K Nishizuka, L Xia, J Xia, D Zhang, L Fang, and C Gray. Interorganization Coop-
erative DDoS Protection Mechanism. Internet-Draft, Draft, 2016.

[12] Scapy Project. Scapy - Packet Crafting for Python2 and Python3, 2019.
https://scapy.net/, last visit August, 2019.

[13] Nidal Qwasmi, Fayyaz Ahmed, and Ramiro Liscano. Simulation of DDoS attacks on
P2P networks. In IEEE International Conference on High Performance Computing
and Communications, pages 610–614, Alberta, Canada, 2011.

[14] Bruno Rodrigues, Thomas Bocek, and Burkhard Stiller. Multi-domain ddos mit-
igation based on blockchains. In IFIP International Conference on Autonomous
Infrastructure, Management and Security, pages 185–190, Zurich, Switzerland, 2017.

[15] Jan Stanek and Lukas Kencl. SIPp-DD: SIP DDoS Flood-attack Simulation Tool. In
20th International Conference on Computer Communications and Networks (ICCCN
2011), pages 1–7, Hawaii, USA, 2011.

[16] Madiha H Syed, Eduardo B Fernandez, and Julio Moreno. A misuse Pattern for
DDoS in the IoT. In 23rd European Conference on Pattern Languages of Programs,
page 34, Bavaria, Germany, 2018.

[17] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. Dnssec and its potential
for ddos attacks: a comprehensive measurement study. In Proceedings of the 2014
Conference on Internet Measurement Conference, pages 449–460. ACM, 2014.

[18] Haining Wang, Danlu Zhang, and Kang G Shin. Detecting SYN flooding attacks. In
Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies, volume 3, pages 1530–1539, New York, USA, 2002.

[19] Wireshark. About Wireshark. https://www.wireshark.org/about.html. Accessed:
2019-06-08.

Abbreviations

ACK Acknowledgement
AI Artificial Intelligence
CPU Central Processing Unit
DoS Denial-of-Service attack
DDR Double Data Rate
DDoS Distributed-Denial-of-Service attack
DNS Domain Name System
FTP File Transfer Protocol
GB Gigabyte
GHz Gigahertz
ICMP Internet Control Message Protocol
IoT Internet of Things
IP Internet Protocol
ISP Internet Service Provider
JSON JavaScript Object Notation
MAC Media access control
MTU Maximum Transmission Unit
NVMe Non-Volatile Memory Express
OS Operating System
P2P Peer-to-Peer
PCAP Packet capture
PCAP-NG PCAP Next Generation
RAM Random-Access Memory
SSD Solid-state drive
SIP Session Initiation Protocol
SYN Synchronize
TCP Transmission Control Protocol
TDP Thermal Design Power
UDP User Datagram Protocol

41

42 ABBREVIATONS

List of Figures

2.1 Slightly adjusted classification of DDoS attacks from C. Douligeris, A.
Mitrokotsa / Computer Networks p. 650 6

3.1 A visual representation of the execution flow of the DDoS Log Simulator. . 14

4.1 An overview how many threads the DDoS Log Simulator allocates during
the generating process. 28

4.2 An overview of the amount of memory the DDoS Log Simulator allocates
during the generation process using the configuration presented in Listing
4.1. 29

4.3 An overview of the amount of memory the DDoS Log Simulator allocates
during a long generation time of over 30 minuts. 30

43

44 LIST OF FIGURES

List of Tables

2.1 Table of a SYN Flood attack generated by the DDoS Log Simulator. . . . 7

2.2 Table of a generated DNS amplification attack. 8

3.1 List of configurable general parameters for the DDoS Log Simulator. . . . 19

3.2 List of configurable attacker parameters for the DDoS Log Simulator. . . 20

45

46 LIST OF TABLES

Appendix A

Installation Guidelines

1. Install Wireshark (from https://www.wireshark.org/)
to ensure that tools editcap and mergecap are available in PATH

2. Install Python 3.7 (from https://www.python.org/)

3. Confirm correct Python version:
python --version

4. Switch to DDoS Log Simulator’s folder

5. Create virtual environment (recommended):
python -m venv venv (in folder venv)

6. Activate virtual environment (if applicable):
source venv/bin/activate

7. Install requirements:
pip install -r requirements.txt

The installations in step 1 to 3 may be performed via the packet manager of the distri-
bution used.

A.1 Usage

• Show DDoS Log Simulator’s help message:
python log_gen.py --help

• Run DDoS Log Simulator with configuration file syn.json:
python log_gen.py syn.json

• Run DDoS Log Simulator with configuration file syn.json in verbose mode:
python log_gen.py syn.json --verbose

47

48 APPENDIX A. INSTALLATION GUIDELINES

• Merge two files named file1 and file2 to a file named output:
python log_gen.py -m file1 file2 outputfile

• Show DDoS Log Simulator’s version:
python log_gen.py --version

Appendix B

Contents of the CD

DDoS log sim
DDoS Log Simulator source code

Bachelorarbeit.pdf
Bachelor Thesis (PDF)

Zsfsg.txt
Abstract German (TXT)

Abstract.txt
Abstract English (TXT)

49

