

Page 1 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Department of Informatics – Informatics and Sustainability Research

Bachelor's Thesis

Green VVZ
A web application to find and display modules related to sustainability at the
University of Zurich.

Bodo Brägger

bodo.braegger@uzh.ch

16-731-671

Informatics and Sustainability Research

Department of Informatics

University of Zurich

Zurich, Switzerland

Advisor: Jan Bieser

Supervisor: Prof. Dr. Lorenz Hilty

Submission: 04.07.2019

mailto:bodo.braegger@uzh.ch

Table of Contents Green VVZ

Page 2 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Table of Contents

Abstract 4

Zusammenfassung 5

1 Introduction 6

1.1 Overview 6

1.2 Terminology 6

1.3 Problem Statement and Goals 7

2 Approach 9

2.1 Status Quo Analysis and Rebuild 9

2.2 Selection of Software Process Model 10

2.2.1 Waterfall Model 10

2.2.2 Spiral Model 11

2.2.3 Agile Manifesto and Models 12

2.2.4 Feature Driven Development 13

3 Requirements 15

3.1 Filter Modules by Semester 15

3.2 Filter Modules by Study Program 16

3.3 Improved Keyword Search 16

3.4 Matching the UZH Corporate Design 16

3.5 Ease of Setup 17

4 Implementation 18

4.1 Implementation Iterations 18

4.1.1 First Iteration: Revamping the Data Collection and Storage 18

Requirements 18

Understanding the UZH Course Catalogue API 19

Data Integrity 19

4.1.2 Second Iteration: Improving the Search, Decision on Fundamentals 19

Requirements 20

Table of Contents Green VVZ

Page 3 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Meeting with UZH Course Catalogue Expert 20

Speeding Up the Search: Parallelizing Web Requests 21

Front End Development and Feedback 21

4.1.3 Third Iteration: Finalizing the Design 22

User Feedback 22

Drop Down and Incremental Search 23

Overview and Traceability in the Module Tables 23

Client-Side Input Validation 24

4.2 Technologies and Tools 24

4.2.1 Traceability: Git and GitHub 24

4.2.2 Back End: Flask, MariaDB, UZH OData API and Jinja2 Templating 25

4.2.3 Front End: JavaScript, jQuery and Ajax 26

4.2.4 Content Management System: Embedding into Magnolia 26

5 Documentation 28

5.1 User Guides 28

5.2 Code Documentation 28

6 Discussion 29

6.1 Reflection 29

6.2 Outlook 29

7 Conclusion 30

8 Bibliography 31

9 Tables and Figures 34

9.1 List of Tables 34

9.2 List of Figures 34

Appendix 35

10 Source Code 35

11 Documents 36

11.1 Guides 36

11.2 Code Documentation 57

Abstract Green VVZ

Page 4 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Abstract

The result of this applied bachelor thesis is the analysis, extension and reworking of the web

application built in the bachelor thesis Nachhaltigkeits-Vorlesungsverzeichnis by Lukas Grässle

(Grässle, 2018).

The objective is to provide a dynamically generated list of courses related to sustainability

topics based on the course catalogue of the University of Zurich (UZH). The web application

is hosted on a server provided by the UZH Department of Informatics and a public view will

be embedded into a webpage of the UZH Sustainability team. It also features a private view

for administration of the modules and the keywords provided for the course catalogue search.

The purpose of this project is to rework and improve the previous tool and extend it by certain

crucial features:

– Filtering modules according to study program

– Viewing courses of previous semesters

– Adding modules via automated recommendations based on the keyword search, for terms

in titles, descriptions, or names of instructors, both for modules directly and for modules

containing matching courses

– Comprehensive code documentation for reusability and extensibility

The importance of documentation is stressed, to make maintenance and further extension eas-

ier – as well as comprehensive user guides to make the tool accessible without additional

training.

Zusammenfassung Green VVZ

Page 5 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Zusammenfassung

Das Endprodukt dieser angewandten Bachelorarbeit ist die Analyse, Erweiterung und Über-

arbeitung der Webanwendung, die im Rahmen der Arbeit Nachhaltigkeits-Vorlesungsverzeich-

nis von Lukas Grässle (Grässle, 2018) entstanden ist.

Das Ziel der Webanwendung ist es, auf Basis des Vorlesungsverzeichnisses der Universität

Zürich (UZH), eine dynamisch generierte Liste von Modulen zu Nachhaltigkeitsthemen be-

reitzustellen. Die Webanwendung wird auf einem Server des Instituts für Informatik UZH

bereitgestellt und eine öffentliche Ansicht wird in eine Webseite des UZH-Nachhaltig-

keitsteams eingebettet. Es enthält zudem eine Administratorenansicht zur Verwaltung der

Module sowie der Schlüsselwörter für die Kurskatalogsuche.

Das vorherige Tool soll überarbeitet und verbessert sowie um die folgenden Funktionalitäten

erweitert werden:

– Module nach Studienprogramm zu filtern

– Module früherer Semester einzusehen

– Das Speichern von Modulen aufgrund der automatisierten Stichwortsuche nach Lehrveran-

staltungen

– Umfassende Code Dokumentation

Die Bedeutung einer umfassenden Dokumentation samt Bedienungsanleitung wird hervor-

gehoben, um die Benützung, Wartung und Erweiterung zu vereinfachen.

Introduction Green VVZ

Page 6 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

1 Introduction

In this chapter the initial problem statement and the project will be introduced. Furthermore,

an overview over the body of this thesis will be presented.

1.1 Overview

The Green VVZ is a web application consisting of a front and back end, which interacts with

the OData API of the official course catalogue of the University of Zurich (UZH) to store and

serve modules relating to certain keywords.

The foundation is a keyword search, which finds modules associated with the search terms

directly based on their title or description, as well as modules containing matching courses.

These suggested modules are presented on an administrator view, where it is possible to cu-

rate the search terms, as well as choose which modules are to be saved in a whitelisted or

blacklisted state. Furthermore, a public view containing only the whitelisted modules is made

available, and both public and private administrator view offer filtering by semester and

study program.

1.2 Terminology

This is a brief overview of the most important terms used throughout this thesis, and their

meaning. The definition of the following terms comes from the Academic Program Develop-

ment of UZH (University of Zurich, 2018):

Term Meaning
Course “A program of instruction, as in a college/university; A prescribed number of classes in a

particular field of study (a course of study).” (University of Zurich, 2010a)

Module “A module can consist of one or more courses and is, as such, the broadest term for course

types at the University of Zurich.” (University of Zurich, 2010b)

This is what is most relevant to a student, as he is only able to book and receive credits for

completed modules.

Study

program

A part of a degree program, with a set number of ECTS points prescribed. It is common for

a degree program (which is awarded with an actual degree diploma) to be made up of com-

bination of a major and minor study program (University of Zurich, 2010c).
Table 1: Terms

For more in-depth information on UZH terminology, consult the Academic Program Devel-

opment page directly (University of Zurich, 2018).

Introduction Green VVZ

Page 7 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

1.3 Problem Statement and Goals

The Informatics and Sustainability Research (ISR) group initially commissioned the Nachhal-

tigkeits-Vorlesungsverzeichnis, which was built as part of the bachelor’s thesis of Lukas Grässle

(Grässle, 2018), with the goal of displaying a list of modules relating to sustainability on the

Sustainability website. Its functionality was more basic than the current state of the Green

VVZ – with saved module data being limited to its title, and whether it is offered in the spring

or fall semester, or both. No study program data was captured, and consequently, no filtering

features were available. The written part of the thesis served as the documentation for it, but

there was no working instance or other documentation to exemplify or explain the process of

setting the tool up or maintaining and extending it. It was initially unclear whether the source

code was available and complete, as the tool was never hosted on an UZH server before.

This, and especially the unavailability of the previous maintainer led to these initial questions:

– Is there a complete codebase available?

– Is the codebase up to date and working?

Because of the initial cost associated with simply setting up a new instance of the web appli-

cation with minimal changes required to get it running, it was decided that the project should

be hosted on a virtual private server hosted by the UZH. Furthermore, the importance of com-

prehensive documentation and guides on how to set the project up was realized, and guides

should be made available to decrease the time and cost of setting up new instances of the

application should the need arise. This led to the next question:

– Will the project integrate into a different serving environment seamlessly?

Answering these questions was the initial problem statement. The plan was to set up the pro-

ject on an UZH server as it was prior to its support ceasing, and in a next step, define a new

project along with requirements for extending it by crucial features and documentation.

On top of the initial problem statement and a working instance of the Nachhaltigkeits-

Vorlesungsverzeichnis (Grässle, 2018), certain new key functionalities were required and their

implementation establish the basis of this applied thesis. The following list contains the high-

level goals for added functionality of the Green VVZ:

– The ability to filter modules according to semester in which they are offered.

– The ability to filter modules according to study program.

Introduction Green VVZ

Page 8 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

– The ability to view modules of previous semesters on the public front end as well as the

private administrator view.

– The ability to add modules via automated recommendations based on the keyword search,

for terms in titles and descriptions, both for modules directly and for modules containing

matching courses.

– Matching the UZH corporate design for front-end components.

– The ability to easily set up a new instance and to get it operational with minimal training.

In a final step, comprehensive documentation of both back and front end was to be created

where it was not already during development, including guides on how to set up an instance

for both development and production.

The applied thesis was defined around the implementation of above functionality and the

creation of the required documents. This work will serve to summarize the work done and

elaborate on both the process and the end result. Furthermore, all end products can be found

in the appendix.

Approach Green VVZ

Page 9 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

2 Approach

In this section, the approach and the process of implementation will be explained. This chap-

ter is organized both thematically and chronologically. For more technical details on the im-

plementation, refer to chapter 4: Implementation.

2.1 Status Quo Analysis and Rebuild

As this project was not started from scratch, but as a continuation of the Nachhaltigkeits-

Vorlesungsverzeichnis (Grässle, 2018), the first step was to analyse the status quo. As the main-

tainer was not available, and the current ISR team had no experience with the implementation

and background of the Nachhaltigkeits-Vorlesungsverzeichnis (Grässle, 2018), it was not clear at

first whether the codebase was readily available at all. Thankfully, a working link to the

GitHub repository is available in the original thesis (Grässle, 2018, p.10), which hosts the com-

plete code – with some configuration information stripped.

It was decided, in communication with Jan Bieser and Linde Warland, that the ISR Group

wants to host the server on a machine of the UZH for the future to have better control over

the project. Before further requirements were to be discussed and planned, it was a prerequi-

site to get the project up and running in its current state, in order to be able to test and see

where functionality was missing and in what direction the project should go.

Since the application was to be deployed on an internal UZH server, it needed to conform to

the hosting packages supplied by the Department of Informatics of UZH. Since this differed

from the server setup used in the original project, certain changes had to be implemented and

tested – most notably, the switch from Python 2.X to 3.X to avoid deprecation.

Once the project was up and running based on the initial code base, it was possible to formu-

late the high-level goals for this thesis, as defined in chapter 1.3: Problem Statement and Goals.

Since the added functionality required a considerably extended data basis in comparison to

the original project, it required fundamental changes in the architecture and code. To keep the

development manageable and comprehensible to possible team members or future maintain-

ers, it is best to look into typical software process models and select a proper model after

assessing the scale of the project.

Approach Green VVZ

Page 10 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Since this project was implemented by one person, with the possibility of future maintainers

or teams working on it, a good balance between clarity of code, facility of development and

minimal overhead through process activities were key.

2.2 Selection of Software Process Model

2.2.1 Waterfall Model

There are several major software process models: one of the oldest and most well-known is

the waterfall model (Royce, 1987). In the waterfall model, development is segmented into

clear phases, and development moves ‘downstream’, with moving on only when a step is

verified and tested. Previous steps are revisited only if verification fails.

It is thus best used for large, well understood and complex systems. Since this comes with a

lot of initial planning overhead, and the Green VVZ is built on top of an existing codebase

where possible, the waterfall model was not deemed efficient.

 Figure 1: The waterfall model (B. W. Boehm, 1988, p. 62)

Approach Green VVZ

Page 11 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

2.2.2 Spiral Model

Another important software process model is the spiral model (Boehm, 1988). It is cyclic in

nature – meaning there are certain development cycles or evolutions with each their own

planning, requirements and implementation phases. Boehm stresses that the spiral model is

not just a cyclic application of the waterfall model – understanding it as such would risk fail-

ure – he goes as far as to call a cyclic waterfall model a “hazardous spiral look-alike” (B. W.

Boehm & J Hansen, 2001, p. 5). The major factor that sets the spiral model apart is that it is

risk based; in every iteration, the risk of the requirements to be implemented, and failure of

implementation is assessed in terms of risk for the project.

Figure 2: The spiral model (B. W. Boehm, 1988, p. 64)

Approach Green VVZ

Page 12 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Whilst this would be an overabundance for a one-man development team, the idea of itera-

tions or evolutions in terms of continuous reassessment of the project, the requirements, and

necessary changes is a good idea for teams of any size. Thus, this iteration focus was applied

in the development of this project.

2.2.3 Agile Manifesto and Models

Even though there are several process models based on the agile principles, such as SCRUM

(Schwaber, 1997), which is tried and true for small development teams (Rising & Janoff, 2000)

or Extreme Programming (Beck, 1999), the process for a smaller project such as the Green VVZ

was able to rely on the fundamental agile values and principles (Beck et al., 2001) without

following any specific process model exactly. It is instead picking the relevant aspects of each

process, such as the verification used in the waterfall model or the cyclic iterations introduced

in the spiral model and used in several agile models, and adapting it to a project of scale.

The Manifesto for Agile Software Development (Beck et al., 2001) defines four major values each

with their own counterpart:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan (p. 1)

Whilst these values are perfect for low risk and low criticality projects, which the Green VVZ

can be classified as, there is one big deviation: comprehensive documentation became im-

portant due to the nature of often changing maintainers and team members, making direct

collaboration and communication impossible long term. Thus, writing guides and documen-

tation are an essential bridge in time between developers.

The more specific and explicitly defined agile principles (Beck et al., 2001) deemed most im-

portant for the successful development of this project were:

– Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

Approach Green VVZ

Page 13 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

– Welcome changing requirements, even late in development. Agile processes harness

change

– Deliver working software frequently

– [Owners / users] and developers must work together daily throughout the project.

– The most efficient and effective method of conveying information to and within a de-

velopment team is face-to-face conversation.

– Working software is the primary measure of progress. (pp. 2-3)

2.2.4 Feature Driven Development

With these values and principles in mind, there is a certain process model which fits the pro-

cess for the Green VVZ closely. Coupled with the fact that there is a previously developed

overall model, the Nachhaltigkeits-Vorlesungsverzeichnis (Grässle, 2018), and an evolving, but

distinct feature list, make the newer and relatively simpler agile process of feature driven

development (FDD) a good match for the Green VVZ as by FDD’s description (Abrahamsson,

Salo, Ronkainen, & Warsta, 2017; Palmer & Felsing, 2001). Development revolves around a set

of features, grouped by functionality and commonalities in design and required changes.

Thus, it is possible for the developer to group features according to ease of development and

importance to the involved stakeholders, making it easy to keep an overview of the course of

implementation for the developers and keeping it transparent towards the involved stake-

holders. Users can be actively involved in the creation of the feature set, and also in the design

phase. These were the key takeaways used for the development process of the Green VVZ.

Although the Green VVZ’s development process does not match FDD exactly, as it is less

formalized, and has less stringent iteration durations (with features being grouped into a sin-

gle iteration of possible longer durations), it was a good basis for the structuration and assess-

ment of the process.

Furthermore, FDD does not explicitly define the managing of requirements, which further

matches the development of Green VVZ, with no formal requirements document nor user

stories.

Approach Green VVZ

Page 14 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

FDD features a ‘Design by Feature’ paradigm, where features are classed according to priority

and dependencies, and then development progresses by planning by feature, then designing

by feature, before finally implementing.

FDD’s central ‘Design by Feature’ paradigm can be summarized as a small group of features

being implemented in a time span of 2-14 days, and integrated into the product after their

completion (Abrahamsson et al., 2017; Palmer & Felsing, 2001). This was perfect for the Green

VVZ, with the initial feature list to work from, and the possibility of continuous feedback by

user representatives (the ISR group). Unit testing, integration and code inspection were not

applied in the Green VVZ, as they exceed the scope of the project.

In conclusion, the process to follow chosen for this project is best described as a small-team,

iterative and highly agile oriented mode of development with an emphasis on responding to

continuous feedback by the user and being ready for change. It is most closely matched by

the FDD process (Abrahamsson et al., 2017; Palmer & Felsing, 2001), albeit even less formal-

ized to make for less overhead. There were 3 major development cycles, marked by increased

levels of communication with the ISR team in the beginning. The implementation is docu-

mented in chapter 4: Implementation.

Figure 3: The design processes of FDD, (Abrahamsson et al., 2017, p. 50)

Requirements Green VVZ

Page 15 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

3 Requirements

As general and atomic requirements were defined in the Nachhaltigkeits-Vorlesungsverzeichnis

(Grässle, 2018), the creation of an explicit and formal requirements document was deemed

unnecessary for a project of the scope of the Green VVZ. Instead, a set of goals (or features)

was created in the beginning in consultation with user representatives of the ISR group and

adapted throughout the course of development where necessary. Planning, implementation

and feedback were based around these features, as detailed in chapter 4: Implementation.

The implementation requirements are listed in the following tables by feature, broken down

by type of technology used for implementation. These implementation requirements written

for each feature are manageable chunks which are implementable and verifiable inde-

pendently.

3.1 Filter Modules by Semester

This feature also includes viewing modules of previous semesters.

Filtering by Semester [Back end]

Type Implementation Requirement

Database Changing the database design to allow for saving of the same module with different semester / year data.

Flask Processing and saving the semester data correctly from the UZH course catalogue, using the JSON interface.

Flask, Jinja2 Serving the stored module data in JSON format.

Flask, Jinja2 Serving the 8 relevant semesters based on the current date.

Filtering by Semester [Front end]

Type Implementation Requirement

HTML, Jinja2 Adapting the front-end templates to include the semester data placeholders in the table skeleton.

HTML, Jinja2,

CSS

Implement a HTML selector for the relevant semesters.

JavaScript,

jQuery

Writing custom tagging functions which filter modules according to semester data based on the selected se-

mester. Give them an HTML class accordingly.

JavaScript,

jQuery

Changing the table rendering functions to include the semester data for each rendered module / row.

CSS Styling the tagged table rows to be hidden / fade in or out depending on their display status.

Table 2: Filtering by Semester Requirements

Requirements Green VVZ

Page 16 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

3.2 Filter Modules by Study Program

Filtering by Study Program [Back end]

Type Implementation Requirement

Database Adding a new table to the database design to allow for saving of study program data.

Database Adding a new table to the database to capture the many-to-many relationship between modules and study pro-

grams – and using foreign key constraints and cascade rules to ensure consistency.

Flask Processing and then saving the study program data correctly from the UZH course catalogue, using the JSON

interface.

Flask, Jinja2 Serving the stored study program data in JSON format, along with the module id data to match the many to

many relationship based on study program selection.

Filtering by Study Program [Front end]

Type Implementation Requirement

JavaScript,

jQuery

Writing custom tagging functions which filter modules according to study program to modules dictionary. Give

them an according HTML class.

CSS Styling the tagged table rows to be hidden / fade in or out depending on their display status.

Table 3: Filtering by Study Program Requirements

3.3 Improved Keyword Search

Improved Keyword Search [Back end]

Type Implementation Requirement

Flask Rework UZH course catalogue API calls to use the JSON interface.

Flask Perform the search, which is programmed for modules, also on courses. For each course, request the

detail page and the modules which the course is part of. Retrieve those modules.

Flask Find a way to reduce time complexity of the code – call the module-course search in parallel, delegate

finding study programs to an own, designated function, only used when saving modules.

Improved Keyword Search [Front end]

JavaScript, jQuery Call the search function asynchronously on the front end using Ajax, to avoid long loading times.

Table 4: Improved Keyword Search Requirements

3.4 Matching the UZH Corporate Design

This feature is included across all front-end features and requirements.

Matching the UZH Corporate Design [Back end]

Type Implementation Requirement

CSS Grab a copy of the minified UZH CSS rules, host on server to appropriate styling.

Matching the UZH Corporate Design [Front end]

Type Implementation Requirement

CSS Use the UZH CSS classes in a nonintrusive way to keep the design consistent.

Table 5: Matching the UZH Corporate Design Requirements

Requirements Green VVZ

Page 17 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

3.5 Ease of Setup

To make sure the work done for this thesis is easily replicable and reusable, extensive docu-

mentation was written in the form of user guides and code comments. The documentation

can be found in the appendix – including an export of the code comments.

Filtering by Study Program [Back end]

Type Implementation Requirement

Comments, Documentation

(Python)

Make sure all necessary components, classes and functions are well documented, with

type info where appropriate.

Database Add an SQL file to the GitHub repository, which has the table creation statements inside.

Filtering by Study Program [Front end]

Type Implementation Requirement

Comments, Documentation

(JavaScript)

Make sure all necessary components, classes and functions are well documented, with

type info where appropriate.

Table 6: Ease of Setup Requirements

Implementation Green VVZ

Page 18 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

4 Implementation

This chapter will describe the concrete development process and give a technical overview of

the implementation, detailing which tools were used in the making of the Green VVZ. For a

concrete look at the end product, see the appendix – the user guides contain screenshots and

explain the functionality. Alternatively, visit the UZH Sustainability page and try the live app.

4.1 Implementation Iterations

The background of the small-scaled FDD implementation process used in the Green VVZ’s

development is detailed in chapter 2.2: Selection of Software Process Model. It centred around

three implementation cycles, each focusing on a specific set of features.

4.1.1 First Iteration: Revamping the Data Collection and Storage

In the first iteration, the basis for all changes was implemented – new database schemata and

revamped API calls to the UZH course catalogue.

Requirements

With the high-level goals defined and the software process set, the next step was to break the

goals down to initial requirements. The requirements as well as feedback and suggestions

were compiled in close cooperation with the ISR team, functioning as the user role of the ad-

ministrator.

The creation of a separate requirements document, explicitly defining all requirements to their

full extent, was not deemed necessary, since there was an initial codebase with requirements

to work for. Thus, only the requirements for the added functionality or necessary changes

were documented. They were documented in informal fashion in chapter 3: Requirements. Re-

quirements such as security, availability and the atomic requirements of button functionality

were mostly maintained and are documented in the appendix of the Nachhaltigkeits-

Vorlesungsverzeichnis thesis (Grässle, 2018).

Implementation Green VVZ

Page 19 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

All changes of the Green VVZ required more data than what the system was currently able to

process; thus, learning how to get the new data and store it effectively was key before any

other development could take place.

The initial requirements mainly dealt with back-end changes, and working out how to effec-

tively gather, process, store and display information from the UZH course catalogue.

Understanding the UZH Course Catalogue API

Before implementing a new database design, it was important to understand how the data

was supplied by UZH course catalogue OData API. In the Nachhaltigkeits-Vorlesungsverzeichnis

initial form (Grässle, 2018), requests to the UZH back end were barely documented. Any in-

formation on what format the data was supplied in, and what end points the data was hosted

at, had to be explored through trial and error since no documentation was available from the

UZH course catalogue neither. Meetings with experts on the UZH course catalogue were not

possible initially due to conflicting schedules. This took a while in the beginning, but once the

basics were clear, development was able to advance more quickly.

Data Integrity

A big factor when working with data from an external API such as the UZH course catalogue

is data integrity, especially when coupled with custom processing and display of the captured

data. Since the database design of the initial code base was a lot simpler, with no restraints

past the primary keys or relationships, it became a much bigger factor for this project. It was

changed often during development with the gradual understanding of the UZH course cata-

logue API.

4.1.2 Second Iteration: Improving the Search, Decision on Fundamentals

In the second iteration, the keyword-based search was rewritten to not only look for matching

modules in titles and descriptions directly, but instead also look for corresponding courses,

and to retrieve all study programs featuring the matches.

Implementation Green VVZ

Page 20 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Requirements

Now that the basis of the project was complete, the next set of requirements pertained around

the automation aspect of the tool: the keyword search. Whilst it was previously constrained

to finding matching modules, the results were essentially limited. There is no enforced con-

vention to put the modules’ topics strictly into its description or title, thus the keyword search

would miss modules with information constrained to the contained courses. On top of that, it

might feature modules with only a small matching course unit. The search was thus expanded

to include courses as well.

It was debated whether to only show courses instead of modules, since that is essentially the

units which students would actually partake in: the lectures, exercises, and so on. The project

was briefly extended to accommodate for courses and study programs in the database, but it

was not clear what unit would be best for the major stakeholder in this decision – the student.

Meeting with UZH Course Catalogue Expert

In order to decide on whether to present modules or courses in the public view, a meeting

with Dr. Thomas Schwan, of the Business Applications of Zentrale Informatik UZH, was held.

He is, at the time of writing, the supervisor of the UZH course catalogue and was able to give

insight into the inner workings as well as upcoming changes of the UZH course catalogue.

He advised to keep modules as the main unit of display, reasoning that modules are what a

student essentially gets credited for, and thus what is of most interest to a student. He further

supplied a copy of the official documentation for the UZH course catalogue, which wasn’t

available beforehand. It is included in the code repository for future maintainers. All calls to

the UZH course catalogue were reworked to use the JSON format, which is natively sup-

ported in the Flask library (Ronacher, 2019; Ronacher & Lord, 2010/2019) – the framework

powering this project – and a lot more intuitive than the default XML documents. It was much

less of an obstacle and the database design could be finalized: it was altered back containing

modules only and study programs with foreign key dependencies to and from a ‘module <->

study program’ database table.

The search method still looked for courses, but only included the modules of which the

courses are part of, as well as modules found directly. Furthermore, for every module, it re-

trieved the study programs that module is part of.

Implementation Green VVZ

Page 21 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Speeding Up the Search: Parallelizing Web Requests

There was a problem with the keyword search now, because it performed very slow with an

exponential runtime, or an approximate complexity class T(n) = EXPTIME, with O(2nk
). To top

that off, the algorithm included web requests to an external resource, the UZH course cata-

logue, in every iteration. Requests using keywords with a lot of results often took over 20

seconds to complete. This was due to limitations in the functions offered by the UZH course

catalogue API: It is not possible to retrieve ‘part of’ information – e.g. what modules courses

are part of, or what study programs modules are part of, for multiple entities at once. Thus,

once a list of modules / courses was found, the detail page containing the ‘part of’ information

had to be requested for each entity separately.

To fix this problem, multi-threading was used to parallelly call the ‘part of’ functions, allow-

ing to launch all web requests simultaneously. True async code using asynchronous design

patterns was not possible, as the basis of the project is the strictly synchronous framework

Flask, and would have required a rework using an entirely different, asynchronous frame-

work and a different server stack. Additionally, the added flexibility of asynchronous requests

was not needed in the rest of the back-end functions.

To further reduce the time required, the module detail page was only requested when saving

a module to the database, rather than when just displaying it as a search result. This reduced

the code complexity by an exponential factor as well – distributing it to the actual saving ac-

tion, which occurs a lot less frequently and not all at once.

Front End Development and Feedback

It was now possible to implement the front-end filtering functions for filtering by semester

and study program, using the improved search and storage of the back end. The semester

filter was implemented as a drop-down list and the study program filter using a search bar,

which shows suggestions based on input. These elements are the same across the administra-

tor and public view and were styled with the UZH corporate design in mind.

Since the amount of results increased in comparison to the previous search model, the user

interface needed some remodelling to accommodate for the amount of information to be dis-

played. Whilst it would previously hide suggestions which are already white or blacklisted,

it was decided in consultation with the advisor Jan Bieser, that this was not the clearest way

Implementation Green VVZ

Page 22 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

to deal with the already saved information from a user’s perspective. Instead, the suggestions

should always remain complete, with an indicator whether the module in question is already

saved on the white or blacklist. This made it a lot easier to gauge how effective certain search

terms are.

Furthermore, a problem of the initial Nachhaltigkeits-Vorlesungsverzeichnis (Grässle, 2018) was

that it was unclear whether the app was loading data, or if it failed completely. All data for

the page was loaded in one go, using synchronous jQuery (js.foundation, 2019a) and jQuery.

Ajax() (js.foundation, 2019b) calls in the front end. This was inherently inefficient, as JavaS-

cript and especially jQuery’s Ajax – an abbreviation which stands for asynchronous JavaScript

and XML – is built to make asynchronous web requests possible on the client side (Garrett,

2005). It thus made sense to display data on the front end as it becomes available, and showing

loading indicators for parts which are still loading. This made the availability of the white and

blacklist, as well as the search terms, practically instant, as these were hosted on a database

on the same server. All data tables which can take longer due to being retrieved using HTTPS

requests from external resources, feature a ‘Loading...’ placeholder if not yet available.

If the background updating fails, a corresponding message is also presented, to give proper

feedback and disable silent background stalling.

4.1.3 Third Iteration: Finalizing the Design

In the span of the third and final iteration this applied bachelor’s thesis, the focus lay on im-

proving the looks and usability of the front end.

User Feedback

Before the final implementation cycle begun, feedback was gathered on the product as it was,

in consultation with representatives for future users: the advisor, Jan Bieser, and the supervi-

sor, Prof. Dr. Lorenz Hilty. Their feedback was valuable and pointed out several usability

flaws. The first was the study program filter, which, to a student who is not versed in the tool,

gave no indicator what kind of input is expected. Furthermore, a large amount of suggestions

and saved modules can quickly become unwieldy to the administrators, and better tools to

find modules and class them together were required. Finally, the expected input should not

only be discernible, invalid input should be largely impossible, with immediate feedback to

Implementation Green VVZ

Page 23 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

the user on what is allowed and what is not. The implementations based on this feedback are

detailed below.

Drop Down and Incremental Search

The study program filter worked on an incremental search only as it was first implemented.

This was not very user friendly: No indicator to the correct format of the study program input

was provided, and, if a specific study program did not exist, there was no information on that

either.

The final study program filter shows a dropdown containing up to 15 results for the current

semester: if there are more, only the first 10 are displayed, with an indicator to how many

more there are. This is before any input. As incremental input is provided, the result list is

narrowed down with feedback on the input, and which parts are matching. This way, the

format is clear from the first 10 entries – and, whether or not study programs are found for a

specific search input, feedback is given immediately.

Overview and Traceability in the Module Tables

To get a quick overview over each module table, a small badge with the current number of

modules for the selected semester is shown next to each table header. The badge updates

whenever the semester filter changes, or one of tables data is reloaded from the server – e.g.

when a search is performed. This, in combination with each table being sortable on any col-

umn, makes the tables easy to navigate and modules easy to find and distinguish.

Furthermore, the way each stored module was found is saved: if it was manually added, it is

marked as such. Otherwise, the search term with which it was found is saved with it. The

search term is displayed for both suggestions and saved module in a designated column, and

it is possible to sort on the search terms, to gauge their effectiveness, and how many of the

found modules are then actually saved to the white or blacklist.

Finally, the suggestions table gets a new column: the save status. This column is used to iden-

tify and sort modules based on whether they are whitelisted, blacklisted, or not yet saved /

new. This makes looking for new modules a breeze, despite the previously saved modules

still appearing in the suggestions list.

Implementation Green VVZ

Page 24 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Client-Side Input Validation

Since it was possible from the beginning to add modules manually, using their respective

unique UZH course catalogue id, it was important to make that feature easy to use. The best

way to add a module is to look up its id from its URL in the UZH course catalogue and copy

paste it back. To avoid copy and pasting or typing invalid non-numerical ids, client-side input

validation was implemented on top of the server-side validation taking place, to make it clear

to the user what type of input is expected – non numerical input is impossible.

The same was implemented for text-based inputs, where leading and doubled whitespace

gets trimmed down – and before input is submitted, trailing whitespace is removed as well.

This is to ensure no empty, or single space search terms are saved for the keyword search, as

it would result in a huge number of results, slowing the suggestions table loading of the pro-

gram down significantly. The validation also helps for the study program filter, as there is no

study program featuring multiple whitespace, or beginning with whitespace.

4.2 Technologies and Tools

In this subsection, the technologies used during development are introduced and their most

important features in the Green VVZ explained. For a more atomic dissemination of some of

the basic technologies used in the Green VVZ, consult the Nachhaltigkeits-Vorlesungsverzeichnis

by Lukas Grässle (Grässle, 2018).

4.2.1 Traceability: Git and GitHub

To make it easier for people interested in using and developing the application, or for future

maintainers to understand the code, not only documentation is important, but also traceabil-

ity of the development. Git is an efficient, open-source version control system, based on de-

centralized source code repositories, created by Linus Torvalds, for the maintenance of the

Linux kernel source code (Torvalds, 2005/2019). Every committed change is saved individu-

ally to the project history on a single character level for each changed file, with the function-

ality to view differences from before and after a change occurred. Each change is accompanied

by a commit message, allowing the developer to explain what changes were implemented in

Implementation Green VVZ

Page 25 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

human readable form. This makes it possible to track the implementation of individual fea-

tures from the very inception of a project, all the way to its release(s).

Furthermore, since changes are recorded precisely for each character in each line of each file,

it allows for easy collaboration through its decentralized architecture: as long as changes do

not concern the same line, they can be merged automatically by Git – and even if there are

conflicting changes, the merging processes are well documented and explained in several

guides, the most popular being the book ProGit (Chacon & Straub, 2013/2019).

An important tool to further add traceability is Git’s branching: development can branch off

to isolate working on certain changes and be merged back together once the changes are ready.

GitHub is a web service that serves primarily as a remote server for Git repositories. It further

provides tools for organization of development, such as project development tools: issue lists,

to-do lists, or visualizing the Git development branches, viewing the individual commits of a

repository, and exploring the code at any given commit.

The Green VVZ’s code is hosted on GitHub on a public repository at the time of submission.

4.2.2 Back End: Flask, MariaDB, UZH OData API and Jinja2 Templating

The Green VVZ follows a common web application architecture: there is a back end, contain-

ing the logic and storage capabilities – it is essentially a RESTful application interface, and a

front end, which interfaces with the back end and is responsible for presentation, correspond-

ing to the user interface.

The Green VVZ is written in Python, using the Flask microframework for web applications

(Ronacher, 2019). It enables easy creation of HTML endpoints of the API, processing the re-

quests and calling further Python functions to create HTML or JSON responses.

The Green VVZ’s back end further uses the UZH course catalogue OData API, to request

module data.

Finally, data input by the user’s using the front end, or data from the UZH course catalogue

needs to be stored. The best way to store data with the least amount of redundancy whilst

maintaining consistency is a relational database management system (RDBMS). The Green

VVZ uses the MariaDB fork of the MySQL RDBMS, as this is standard of the virtual private

servers supplied by the UZH’s Department of Informatics. The relational database allows

Implementation Green VVZ

Page 26 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

saving of relationships between objects and restricting the datatypes saved for each entity.

This is especially useful when storing tightly linked entities such as modules and study pro-

grams – to make sure that the study program data is only saved if there is at least one module

referencing it, which can be made automatic using foreign key restraints and cascade rules.

Finally, to optimize the front end, and to make it easy to call Python functions for the creation

of views and templates, Flask comes with the Jinja2 templating language. Expressions in the

HTML files can be replaced by return values of Python functions, which allows to introduce

some necessary logic to the front end before serving

4.2.3 Front End: JavaScript, jQuery and Ajax

The front end is responsible for the layout and presentation of the data supplied by the back

end and allows the user to interface with the server, to call functions and store data.

It is written in JavaScript with jQuery (js.foundation, 2019a) and makes heavy usage of

jQuery.Ajax() (js.foundation, 2019b). This allows a gradual loading of the front-end page, im-

portant for the administrator view. Since the amount of data requested from the UZH course

catalogue can be large, and the module-search’s efficiency is limited due to technical limita-

tions of the UZH course catalogue, the loading times for the suggestions can be a lot longer

than any other data supplied by the Green VVZ’s database directly. Consequently, in a strictly

synchronous approach, the user would have to wait until all data is available until he is served

a response. Using the asynchronous Ajax in-page web requests, a ‘bare-bones’ page template

can be served, in which all data is requested and displayed asynchronously. This allows the

administrators to view the page, the saved module data and the search terms, whilst the sug-

gestions might still be loading the background for a few seconds. The time saved across each

call adds to a lot smoother user experience and less frustration.

4.2.4 Content Management System: Embedding into Magnolia

The UZH web presence is managed using Magnolia 5, a popular content management system

(CMS). It allows users without a technical background to quickly create and edit web content

for the web presence of his enterprise, using a graphical user interface with predefined content

options and styles.

Implementation Green VVZ

Page 27 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

The goal for the Green VVZ was to allow users to use the app from within the UZH Sustain-

ability webpage. The most appropriate option for this would be to use an ‘embedded page’ in

the Magnolia settings, or alternatively an iFrame object inside of a standard content page.

Both options were not ideal for the Green VVZ, due to the fact that content of the front-end

templates is loaded dynamically, and after the web view is generated, using Ajax calls. Addi-

tionally, the administrator view reloads the suggestions if a search term was added, further

making the document embedded via an iFrame larger than its originally requested size.

A solution was required to enable an embedded iFrame to dynamically adapt its size depend-

ing on the embedded content. This is difficult, because the host webpage has no way to access

the DOM or JavaScript of the embedded document if they are not from the same exact domain.

The Green VVZ has its own domain name within the UZH domain architecture, which is not

identical to the domain of the Sustainability pages. Thankfully, there exists a JavaScript library

which enables automatic resizing of cross origin iFrames: iFrame Resizer (Bradshaw,

2013/2019). A script embedded on both the host and the embedded page allows for commu-

nication across them.

Documentation Green VVZ

Page 28 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

5 Documentation

The importance of documentation became evident in the beginning of this project and became

even more apparent during the development. It was opted to create extensive inline code

documentation, as well as user and developer guides to ensure smooth setup and use of the

web application without additional training.

5.1 User Guides

User guides for both the public view and the administrator view were written in English and

German. They explain in detail how to use the web application using the interface and func-

tionality provided with screenshots and written explanations. They were written once the

product was ready and correspond to the most up-to-date version of the Green VVZ at the

time of submission.

Furthermore, a developer guide was written in English, to explain to future maintainers or

developers how to set up an instance of the web application on a server, and how to set up a

local development environment. It includes suggestions and pointers for making the server

production ready. The developer guide is in the readme file of the GitHub Repository of the

project (https://github.com/bbodo/GreenVVZ/), as well as the appendix of this thesis.

5.2 Code Documentation

To make the codebase readable and thus enable maintenance and extension of this project,

both the back end and front end were documented and outfitted with type indicators for all

functions. This also enables suggestions across most IDEs and advanced text editors, further

making development easier.

The documentation was extracted and compiled to PDF using the documentation tool Docma,

written by Onur Yildirim, for the JavaScript front end (Yildirim, 2019), and Python’s Sphinx

in the back end (Brandl, 2007).

https://github.com/bbodo/GreenVVZ/

Discussion Green VVZ

Page 29 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

6 Discussion

In the following sections the results will be discussed and a future outlook will be provided.

6.1 Reflection

The development of the Green VVZ was met with a few difficulties along the way, most no-

tably the initial problem of setting the whole project up. It was difficult to grasp what specifics

the server of the Green VVZ required in order to set up a testing environment, which functions

the same way a productive environment would. Essentially, the whole project had to be de-

ployed in full in order to be explored in the beginning, before a meaningful local development

environment could be configured.

The second bigger issue was figuring out how to use the UZH OData API, as no documenta-

tion was available online and no meeting was possible initially to conflicting schedules. Trial

and error allowed the project to progress until the meeting took place, which made further

development run smooth.

Despite these two major issues, the implementation and writing phase was able to progress

quickly and mostly trouble-free. I learnt a lot about web technologies, REST services and full

stack development through the experience of designing and implementing a whole project.

6.2 Outlook

The Green VVZ is production ready and will be published as soon as possible. The adaptation

and setup of new instances of the Green VVZ, for capturing modules based on different key-

words is made easy using the provided documentation. This allows for the tool to be reused

by all teams of UZH who could benefit from the automated search and storage options the

Green VVZ provides.

A possible direction for maintenance and future extension would be to rewrite the JavaScript

front end to rely on the new ECMAScript 6 functionality of modularization of JavaScript code.

This would make it easier to isolate the code and get rid of the limited code duplication still

present.

A different notion would be to rewrite the back end using a different web framework, or a

different language altogether – with a focus on asynchronous code from the get-go – to speed

up the key word search and improve the existing loading times.

Conclusion Green VVZ

Page 30 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

7 Conclusion

This thesis details the process of implementation of the Green VVZ and explores research and

theory on software projects. Rationale for the software development process is provided, in

regard to the small size of the project and the development team – whilst keeping good prac-

tises and a future outlook in mind.

The requirements are provided to the extent relevant to a project of this scope, and the key

highlights of the implementation are detailed through the three major development cycles.

The technologies the Green VVZ relies on and was crafted with are introduced and explained.

The importance of good documentation became apparent during development, and addi-

tional extensive user guides are included to complement the inline code documentation. The

code documentation was exported to human readable form, and all documentation efforts are

placed in the appendix of this thesis: a total of 36 pages of documentation, including the user

and developer guides.

Finally, a reflection on major issues during development and a future outlook is provided.

I want to thank the ISR group for affording me this opportunity and their assistance during

the course of this thesis. I learned about a lot of new software engineering concepts, and ce-

mented my skills in Python web development, becoming acquainted with the web framework

Flask. I enjoyed it and I feel that the end product has value and can be put to use effectively,

and hopefully it will allow students to choose courses relating to sustainability. This was

made possible by the great assistance and motivation of the ISR group, helping me on every

step along the way and allowing me to complete the thesis in due time. The open communi-

cation helped to overcome any hurdles along the way and the team was very accommodating

to me.

Bibliography Green VVZ

Page 31 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

8 Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software development

methods: Review and analysis. ArXiv Preprint ArXiv:1709.08439.

Beck, K. (1999). Embracing change with extreme programming. Computer, (10), 70–77.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., …

Jeffries, R. (2001). Manifesto for agile software development.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,

(5), 61–72.

Boehm, B. W., & J Hansen, W. (2001). The Spiral Model as a Tool for Evolutionary Acqui-

sition. CrossTalk, 14.

Bradshaw, D. J. (2019). Keep same and cross domain iFrames sized to their content with

support for window/content resizing, in page links, nesting and multiple iFrames: Da-

vidjbradshaw/iframe-resizer [JavaScript]. Retrieved from https://github.com/da-

vidjbradshaw/iframe-resizer (Original work published 2013)

Brandl, G. (2007, 2009). Sphinx Documentation. Retrieved June 14, 2019, from

https://www.sphinx-doc.org/en/master/

Chacon, S., & Straub, B. (2019). Pro Git 2nd Edition. Retrieved from

https://github.com/progit/progit2 (Original work published 2013)

Garrett, J. J. (2005). Ajax: A new approach to web applications.

Grässle, L. (2018). Nachhaltigkeits-Vorlesungsverzeichnis: Ein unterstützendes Tool zur

Erkennung und Darstellung von Lehrveranstaltungen mit Nachhaltigkeitsbezug im

Vorlesungsverzeichnis der Universität Zürich (Bachelor’s Thesis). University of Zur-

ich, Zürich, Switzerland.

js.foundation. (2019a, May 1). jQuery. Retrieved June 13, 2019, from https://jquery.com/

js.foundation. (2019b, May 1). jQuery.ajax() | jQuery API Documentation. Retrieved June

13, 2019, from https://api.jquery.com/jquery.ajax/

Bibliography Green VVZ

Page 32 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Palmer, S. R., & Felsing, M. (2001). A practical guide to feature-driven development. Pear-

son Education.

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams.

IEEE Software, 17(4), 26–32.

Ronacher, A. (2019, May 2). Flask (A Python Microframework). Retrieved June 13, 2019,

from http://flask.pocoo.org/

Ronacher, A., & Lord, D. (2019). The Python micro framework for building web applica-

tions.: Pallets/flask [Python]. Retrieved from https://github.com/pallets/flask (Origi-

nal work published 2010)

Royce, W. W. (1987). Managing the development of large software systems: Concepts and

techniques. Proceedings of the 9th International Conference on Software Engineer-

ing, 328–338. IEEE Computer Society Press.

Schwaber, K. (1997). Scrum development process. In Business object design and implemen-

tation (pp. 117–134). Springer.

Torvalds, L. (2019). Git [C]. Retrieved from https://github.com/git/git (Original work pub-

lished 2005)

University of Zurich. (2010a, May 31). Definition of the term “course.” Retrieved June 9,

2019, from http://www.uniterm.uzh.ch/lists.php?termnr=1773

University of Zurich. (2010b, May 31). Definition of the term “module.” Retrieved June 9,

2019, from http://www.uniterm.uzh.ch/lists.php?termnr=1523

University of Zurich. (2010c, May 31). Definition of the term “study program.” Retrieved

June 9, 2019, from http://www.uniterm.uzh.ch/lists.php?termnr=1548

University of Zurich. (2018, July 31). Grundlagen und Begriffe zur Studienstruktur. Re-

trieved June 8, 2019, from Studienangebotsentwicklung UZH website:

https://www.sae.uzh.ch/de/strukturen/grundlagen.html

Bibliography Green VVZ

Page 33 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Yildirim, O. (2019). onury/docma: A powerful tool to easily generate beautiful HTML docu-

mentation from JavaScript (JSDoc), Markdown and HTML files. Retrieved June 14,

2019, from https://github.com/onury/docma

Tables and Figures Green VVZ

Page 34 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

9 Tables and Figures

9.1 List of Tables

Table 1: Terms 6

Table 2: Filtering by Semester Requirements 15

Table 3: Filtering by Study Program Requirements 16

Table 4: Improved Keyword Search Requirements 16

Table 5: Matching the UZH Corporate Design Requirements 16

Table 6: Ease of Setup Requirements 17

9.2 List of Figures

Figure 1: The waterfall model (B. W. Boehm, 1988, p. 62) 10

Figure 2: The spiral model (B. W. Boehm, 1988, p. 64) 11

Figure 3: The design processes of FDD, (Abrahamsson et al., 2017, p. 50) 14

file:///E:/B/Documents/Uni%20Sachen/6.%20sem%20frühling/Bachelorarbeit%2018%20ECTS/bachelorarbeit_bodo_braegger.docx%23_Toc12978912
file:///E:/B/Documents/Uni%20Sachen/6.%20sem%20frühling/Bachelorarbeit%2018%20ECTS/bachelorarbeit_bodo_braegger.docx%23_Toc12978913
file:///E:/B/Documents/Uni%20Sachen/6.%20sem%20frühling/Bachelorarbeit%2018%20ECTS/bachelorarbeit_bodo_braegger.docx%23_Toc12978914

Source Code Green VVZ

Page 35 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

Appendix

10 Source Code

The source code is appended in electronical form and also available on:

https://github.com/bbodo/Green VVZ.git

https://github.com/bbodo/GreenVVZ.git

Documents Green VVZ

Page 36 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

11 Documents

11.1 Guides

The guides are appended on the following pages, in the following order:

1. Administrator view guide in English

2. Administrator view guide in German

3. Public view guide in English

4. Public view guide in German

5. PDF export of the developer guide in English.

They are also attached in electronical form, in this document and as separate documents. Fur-

thermore, they can also be found in the Git repository (in the ‘docs/guides’ folder). It is avail-

able on:

https://github.com/bbodo/GreenVVZ/tree/master/docs/guides

The developer guide is also embedded into the Git readme.md file, available on:

https://github.com/bbodo/GreenVVZ

or

https://github.com/bbodo/GreenVVZ/blob/master/README.md

https://github.com/bbodo/GreenVVZ/tree/master/docs/guides
https://github.com/bbodo/GreenVVZ
https://github.com/bbodo/GreenVVZ/blob/master/README.md

Page 1

Department of Informatics – Informatics and Sustainability Research

Green VVZ
Admin Interface – User Guide

Bodo Brägger

This is the admin interface user guide document in English. This documentation is also available in

German. A separate document for the public interface will be available in both English and German as

well.

This document will detail the major page elements and their usage – although it is encouraged to

explore the application and learn by trial and error, consulting this document where functionality

seems unintuitive.

Page Elements

1 Overview

The page consists of two main areas: The filter bar at the top, and the four tables containing the data.

Only one table is selected at a time – folded out and highlighted in blue. A table is viewable by clicking

the respective header, expanding its contents. Clicking the header again will collapse the table’s

contents back down.

Each major element is explained in the following sections.

Page Elements Green VVZ: Admin Interface – User Guide

Filter Bar

Page 2 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 04.07.19

2 Filter Bar

2.1 Semester Filter

The semester filter on the top right hand of the page allows selection of a specific semester, or all saved

semesters. This affects all three module tables: The Whitelist, Suggestions, and Blacklist.

2.2 Study Program Filter

The study program filter is a dropdown complemented by an incremental search. This filter works on

top of the semester filter, and only affects the whitelist. Clicking into the input field shows the first

10-15 study programs for modules in the current semester, and how many more there are. Typing will

then filter according to the input – again limiting the total results. Using the cursor and click or arrow

keys to select one of the study programs will show all modules of the whitelist in the specified semester

and study program.

Page Elements Green VVZ: Admin Interface – User Guide

Data Tables

Page 3 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 04.07.19

3 Data Tables

The module tables Whitelist, Suggestions and Blacklist each have the same basic set of information:

– The name of the module, which is also a link to the entry in the course catalogue.

– The search term with which the module was found.

– The semester in which the specific module is offered.

– A column containing buttons to save the module to the white- or blacklist.

The data is loaded asynchronously onto the page – whatever is available first will be displayed first.

Tables which are currently loading feature a grey overlay, which disappears when loading is complete.

For each user visiting the admin interface, the system updates the saved modules once per day. This is

signified using a blue header at the top of the tables. Updating can be forced on the same browser by

accessing the page using a private window or deleting cookies.

Each table is sortable on each header featuring a ▼or ▲ symbol.

3.1 Whitelist

The whitelist contains saved modules which will be displayed to the students in the public interface.

The first row allows for manual saving of a module to a specific semester, using the unique module id,

found at the end of its URL in the course catalogue – and having the corresponding semester selected

in the filter:

Modules in the whitelist can be moved to the blacklist using the ‘Verbergen’ button.

The whitelist is the only table to which the study program filter applies.

Page Elements Green VVZ: Admin Interface – User Guide

Data Tables

Page 4 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 04.07.19

3.2 Search Terms

The search terms are the basis for the suggested modules shown in the next table. You can add and

delete them using the respective buttons. After any change, the suggestions are reloaded.

3.3 Suggestions

Modules in the suggestions table can be saved to white- or blacklist using the respective button. The

buttons are greyed out if the module is already saved in one of the lists. This is also reflected in the

column ‘Status’, with which the table is also sortable. This gives an overview of elements already saved

in either list, or new suggestions which are not yet processed.

Page Elements Green VVZ: Admin Interface – User Guide

Data Tables

Page 5 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 04.07.19

3.4 Blacklist

The blacklist features a button ‘Anzeigen’ per module, which moves the module to the whitelist, and a

button ‘Löschen’, which deletes the module from the database altogether – it can still appear in the

suggestions after deletion.

Seite 1

Institut für Informatik– Informatics and Sustainability Research

Green VVZ
Administratoren Ansicht – Benutzeranleitung

Bodo Brägger

Dies ist die deutsche Benutzeranleitung für die Administratoren Ansicht. Diese Benutzeranleitung ist

auch verfügbar auf Englisch. Eine Benutzeranleitung für die öffentliche Ansicht wird ebenfalls auf Eng-

lisch und Deutsch zur Verfügung gestellt.

Dieses Dokument wird die wichtigsten Elemente der Administratoren Ansicht erklären – es wird aber

empfohlen, einfach auszuprobieren und diese Anleitung zu Rate zu ziehen, wenn etwas unklar ist.

Interaktive Elemente

1 Übersicht

Die Seite besteht aus zwei Hauptbereichen: Die Filterleiste am oberen Rand und die vier Tabellen mit

den Daten.

Nur eine der Tabellen kann ausgewählt werden, was durch den blauen Hintergrund und die ausge-

klappten Daten visualisiert wird. Durch das Klicken auf einen der Titel wird die jeweilige Tabelle auf-

geklappt, ein erneuter Klick schliesst die Tabelle wieder.

Die beiden Bereiche werden in den folgenden Kapiteln erklärt.

Interaktive Elemente Green VVZ: Administratoren Ansicht – Benutzeranleitung

Filterleiste

Seite 2 Universität Zürich, Institut für Informatik– Informatics and Sustainability Research, 04.07.19

2 Filterleiste

2.1 Semesterfilter

Der Semesterfilter ist eine Dropdownliste am oberen rechten Rand, die das Filtern nach einem der Se-

mester oder das Anzeigen aller Semester ermöglicht. Dieser Filter betrifft alle drei Modultabellen: Die

Whitelist, Vorschläge und die Blacklist.

2.2 Studienprogrammfilter

Der Studienprogrammfilter ist ein Dropdown in Kombination mit inkrementeller Suche am oberen

linken Rand. Es wird eine engere Auswahl aufgrund der Module im gewählten Semester gefiltert,

wobei dies nur Module in der Whitelist betrifft.

Wenn in das Eingabefeld geklickt wird, werden die ersten 10-15 Studienprogramme für Module im

gewählten Semester gezeigt, mit einem Indikator für die weitere Anzahl der Studienprogramme die

den Modulen des gewählten Semesters entsprechen. Bei Eingabe werden Studienprogramme gezeigt,

die der Eingabe entsprechen. Per Mausklick oder den Pfeiltasten können Studienprogramme ausge-

wählt werden. Es werden nur Module in der Whitelist gezeigt, die Teil des gewählten Studienpro-

gramms und Semesters sind.

Interaktive Elemente Green VVZ: Administratoren Ansicht – Benutzeranleitung

Datentabellen

Seite 3 Universität Zürich, Institut für Informatik– Informatics and Sustainability Research, 04.07.19

3 Datentabellen

Die Modultabellen Whitelist, Vorschläge und Blacklist haben die gleiche Grundstruktur. Sie enthalten:

– Die Namen der Module, die gleich noch einen Link ins Vorlesungsverzeichnis der UZH darstellen.

– Der Suchbegriff, womit das Modul gefunden wurde.

– Das Semester des Moduls.

– Buttons, um das Modul in der White- oder Blacklist zu speichern oder zu löschen.

Die Daten werden asynchron (gleichzeitig) in die Seite geladen – was zuerst geladen wird, wird zuerst

angezeigt. Was noch am Laden ist hat ein graues Transparent darüber, welches bei Verfügbarkeit der

Daten verschwindet.

Für jeden Besucher werden die Module einmal pro Tag mit dem Vorlesungsverzeichnis synchronisiert,

was durch eine blaue Hinweisbox gezeigt wird. Diese Synchronisation kann erzwungen werden, in-

dem man die Seite in einem privaten Fenster öffnet oder die Cookies löscht.

Die Tabellen sind sortierbar nach den Kopfzeilen Einträgen, die ein ▼ oder ein ▲ Symbol enthalten.

3.1 Whitelist

Die Whitelist beinhaltet die Module, die den Studenten in der öffentlichen Ansicht angezeigt werden.

Die erste Reihe ist ein Eingabefeld, in welchem Module aus dem Vorlesungsverzeichnis manuell hin-

zugefügt werden können. Es wird die Modul-ID und das entsprechend ausgewählte Semester benötigt.

Die Modul-ID findet sich bei URLs im Vorlesungsverzeichnis ganz am Ende.

Module der Whitelist können mittels des ‘Verbergen’ Buttons in die Blacklist verschoben werden.

Interaktive Elemente Green VVZ: Administratoren Ansicht – Benutzeranleitung

Datentabellen

Seite 4 Universität Zürich, Institut für Informatik– Informatics and Sustainability Research, 04.07.19

3.2 Suchbegriffe

Die Suchbegriffe sind die Grundlage der Suche, welche die Vorschläge generiert. Sie können mit den

entsprechenden Buttons hinzugefügt oder entfernt werden.

3.3 Vorschläge

Die vorgeschlagenen Module können in die White- oder Blacklist gespeichert werden mittels der ent-

sprechenden Buttons. Falls ein Modul schon gespeichert ist, ist der entsprechende Button deaktiviert.

Dies ist auch ersichtlich im ‘Status’, wobei ein Modul als ‘Neu’ angezeigt wird, wenn es in keiner der

beiden Listen gespeichert ist.

Interaktive Elemente Green VVZ: Administratoren Ansicht – Benutzeranleitung

Datentabellen

Seite 5 Universität Zürich, Institut für Informatik– Informatics and Sustainability Research, 04.07.19

3.4 Blacklist

Die Blacklist hat einen ‘Anzeigen’ Button, womit ein Modul in die Whitelist verschoben wird, und ei-

nen ‘Löschen’ Button, womit ein Modul ganz aus der Datenbank gelöscht wird – es kann aber noch

immer als Vorschlag mit Status ‘Neu’ erscheinen.

Page 1

Department of Informatics – Informatics and Sustainability Research

Green VVZ
Public Interface – User Guide

Bodo Brägger

This is the public interface user guide document in English. This documentation is also available in

German. A separate document for the admin interface will be available in both English and German as

well.

This document will detail the major page elements and their usage – although it is encouraged to

explore the application and learn by trial and error, consulting this document where functionality

seems unintuitive.

Page Elements

1 Overview

The page consists of two main areas: the filter bar at the top and the table containing the module data.

Each major element is explained in the following sections.

Page Elements Green VVZ: Public Interface – User Guide

Filter Bar

Page 2 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 04.07.19

2 Filter Bar

2.1 Semester Filter

The semester filter on the top right hand of the page allows the selection of a specific semester or all

saved semesters.

2.2 Study Program Filter

The study program filter is a dropdown complemented by an incremental search. This filter works on

top of the semester filter. Clicking into the input field shows the first 10-15 study programs for

modules in the current semester, and how many more there are. Typing will then filter according to

the input – again limiting the total results. Using the cursor and click or arrow keys to select one of the

study programs will show all modules in the specified semester and study program.

Page Elements Green VVZ: Public Interface – User Guide

Modules

Page 3 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 04.07.19

3 Modules

The table containing the module data shows the name of each module, which also functions as a link

to the course catalogue of UZH, as well as the semester in which a module is offered.

Seite 1

Institut für Informatik– Informatics and Sustainability Research

Green VVZ
Öffentliche Ansicht – Benutzeranleitung

Bodo Brägger

Dies ist die deutsche Benutzeranleitung für die öffentliche Ansicht. Diese Benutzeranleitung ist auch

verfügbar auf Englisch. Eine Benutzeranleitung für die Administratorenansicht wird ebenfalls auf

Englisch und Deutsch zur Verfügung gestellt.

Dieses Dokument wird die wichtigsten Elemente der öffentlichen Green VVZ Ansicht erklären – es

wird aber empfohlen einfach auszuprobieren, und diese Anleitung zu Rate zu ziehen, wenn etwas

unklar ist.

Interaktive Elemente

1 Übersicht

Die Seite besteht aus zwei Hauptbereichen: Der Filterleiste am oberen Rand, und der Tabelle mit den

Moduldaten.

Die beiden Bereiche werden in den folgenden Kapiteln erklärt.

Interaktive Elemente Green VVZ: Öffentliche Ansicht – Benutzeranleitung

Filterleiste

Seite 2 Universität Zürich, Institut für Informatik– Informatics and Sustainability Research, 04.07.19

2 Filterleiste

2.1 Semesterfilter

Der Semesterfilter ist eine Dropdownliste am oberen rechten Rand, die das Filtern nach einem oder das

Anzeigen aller Semester ermöglicht.

2.2 Studienprogrammfilter

Der Studienprogrammfilter ist ein Dropdown in Kombination mit inkrementeller Suche am oberen

linken Rand. Es wird eine engere Auswahl aufgrund der Module im gewählten Semester gefiltert.

Wenn in das Eingabefeld geklickt wird, werden die ersten 10-15 Studienprogramme für Module im

gewählten Semester gezeigt, mit einem Indikator für die weitere Anzahl der Studienprogramme die

den Modulen des gewählten Semesters entsprechen. Bei Eingabe werden Studienprogramme gezeigt,

die der Eingabe entsprechen. Per Mausklick oder den Pfeiltasten können Studienprogramme

ausgewählt werden.

Interaktive Elemente Green VVZ: Öffentliche Ansicht – Benutzeranleitung

Modultabelle

Seite 3 Universität Zürich, Institut für Informatik– Informatics and Sustainability Research, 04.07.19

3 Modultabelle

Die Modultabelle enthält die Namen der Module und das Semester in welchem sie angeboten werden.

Die Namen sind auch Links ins Vorlesungsverzeichnis der UZH.

GreenVVZ / README.md

 bbodo Update README.md

02ce985 just now

2 contributors

 master Branch: Find file Copy path

110 lines (92 sloc) 7.42 KB

Green VVZ

Overview

GreenVVZ: A web application to facilitate storage and display of modules related to
sustainability topics, based on the course catalogue of the University of Zurich.

Built for the Informatics and Sustainability Research group at the Department of
Informatics of the University of Zurich, under supervision of Prof. Dr. Lorenz Hilty.

This project consists of two main parts: a flask back end, interfacing with the UZH course
catalogue, as well as a flask / Jinja2 / jQuery front end, interfacing with the flask back
end.

A foreword for the following guides: Trial and error, as long as you are not running a
productive server, are a great tool to learn how software works. This guide might not be
complete, and the technology you run it on might not be the exact same, but it should
help you figure out the necessary steps to get it running. Should anything need
changes, please create a pull request!

Developer's Guide for hosting the project

(This is needed to test any database functionality. Best bring this guide to your UZH
technician, he will be able to guide you where this guide might fail.)

To set up a server hosting this tool, which will be required to implement and test
significant changes, follow these steps:

Raw Blame History

Developer's Guide

https://github.com/bbodo/GreenVVZ
https://github.com/bbodo
https://github.com/bbodo
https://github.com/bbodo/GreenVVZ/commit/02ce98596600d49a32a4feebe162a52618b02402
https://github.com/bbodo/GreenVVZ/commit/02ce98596600d49a32a4feebe162a52618b02402
https://github.com/bbodo/GreenVVZ/commits/master/README.md?author=bbodo
https://github.com/bbodo/GreenVVZ/commits/master/README.md?author=graek
https://github.com/bbodo/GreenVVZ/find/master
https://github.com/bbodo/GreenVVZ/raw/master/README.md
https://github.com/bbodo/GreenVVZ/blame/master/README.md
https://github.com/bbodo/GreenVVZ/commits/master/README.md

1. Request a Virtual Private Server (VPS) at the Department of Informatics (or set up
your own). Root priviledges are not required, with exception of priviledges to
(re)start certain services. More to that later. Make sure the VPS comes with the
following software installed:

A Linux distribution. UZH uses Debian.
A user / production folder with read/write privileges.
read / write privileges to the config folders of systemd/systemctl.
open ports, at least port 80, 8080, 443 and 8443.

Git.
A MySQL variant. UZH uses MariaDB. Also, a MariaDB account which can create
a database, tables, and read/write to it. Standard procedure is one DB user /
application. UZH supplied the accounts for me.

Python >= 3.5.
pip, venv.

An HTTP server. UZH uses Apache. Make sure to request privileges to run sudo
systemctl restart apache2 .
A working SSL certificate.

2. In your user directory, create a virtualenv (UZH supplied one for me):
To create a local environment to host the needed python libraries, if necessary
and applicable, either python3 -m pip install virtualenv , or apt-get
install python3-venv .
Create a virtual python environment on your VPS with either python3 -m
virtualenv venv_[choose a name] or python3 -m venv venv_[choose a name]
in your user directory. For this example, let's say you chose greenvvz as the
name.

This will create a folder venv_greenvvz
use source venv_greenvvz/bin/activate to activate the virtual env.

3. Set up this project to be served:
First of all, get a copy of this project on the server: git clone
https://github.com/bbodo/greenvvz.git , to clone this repository into the
folder greenvvz . Then cd greenvvz to navigate to the project directory.
With the virtualenv activated, use pip install -r requirements.txt to install
all necessary packages to host the server.
Once you have have a database user example: dbuser with password
dbuserpassword , set up a database named dbname , and decided on a unique

secret key yoursecretkey , only known to you, and not saved in the repository,
proceed to the next step.
add the following lines to the venv_greenvvz/bin/activate_this.py file, to
make sure the server has the necessary information:

 os.environ["FLASK_ENV"]="development" # Comment line out for production!
 os.environ["DB_USER"]="dbuser"

4. Set up the HTTP server to serve files using the Web Server Gateway Interface
(WSGI) in your user/www directory. For this example, let's say your username is
USER .

Put the application.wsgi file there, with the following contents(the helpful techs
at UZH did this for me):

import sys

activate_this = '/home/USER/venv_greenvvz/bin/activate_this.py'
with open(activate_this) as file_:
 exec(file_.read(), dict(__file__=activate_this))

sys.path.insert(0, '/home/USER/greenvvz')
from main import app as application

5. After this, you should be good to go! Check out if your server is running at
https://yourserver.ifi.uzh.ch! If you run into errors, make sure to check out the logs
you set up in step 4, or UZH kindly set up for you.

Developer's Guide for a local setup

1. Make sure you have git and python >= 3.5 installed.
2. Set up a local dev environment in a folder of your liking: python3 -m virtualenv

venv_[choose a name] or python3 -m venv venv_[choose a name] . For this example,
let's say you chose greenvvz as the name.

This will create a folder venv_greenvvz .
use venv_greenvvz/bin/activate to activate the virtual env.

3. Git clone this project to a folder of your liking: git clone
https://github.com/bbodo/greenvvz.git .

4. Activate the virtualenv, and navigate to the project folder. python 3 -m pip
install -r requirements.txt to get all necessary packages.

5. Add the following information to your environment, either using the virtualenv file
or manually (this depends on your system, google how to add environmental
variables):

 os.environ["FLASK_ENV"]="development"
 os.environ["DB_USER"]="dbuser"
 os.environ["DB_PASSWORD"]="dbuserpassword"
 os.environ["DB_NAME"]="dbname"
 os.environ["SECRET_KEY"]="yoursecretkey"

 os.environ["DB_PASSWORD"]="dbuserpassword"
 os.environ["DB_NAME"]="dbname"
 os.environ["SECRET_KEY"]="yoursecretkey"

https://yourserver.ifi.uzh.ch/

5. Once this is done, you are good to go! Use flask run to use your local server on
localhost:5000!

Guide to set up a working instance on Magnolia:

6. Now, to host your server on an UZH page in Magnolia, do the following:
Create a page greenvvz-admin for the administrator view. I recommend
Inhaltsseite 1-Spaltig.

In the Content subsection, add an HTML element with the following
contents:

Create a page greenvvz-public for the public view
In the Content subsection, add an HTML element with the following
contents:

<iframe id="greenvvz-admin-iframe" class="mod mod-iframe" src="https

<script type="text/javascript" src="https://yourserver.ifi.uzh.ch/st

<script>
 iFrameResize({
 log: false,
 // heightCalculationMethod: 'max',
 },
 '#greenvvz-admin-iframe')
</script>

<iframe id="greenvvz-public-iframe" class="mod mod-iframe" src="http

<script type="text/javascript" src="https://yourserver.ifi.uzh.ch/st

<script>
 iFrameResize({
 log: false,
 // heightCalculationMethod: 'max',
 },
 '#greenvvz-public-iframe')
</script>

Documents Green VVZ

Page 57 University of Zurich, Department of Informatics – Informatics and Sustainability Research, 31.06.2019

11.2 Code Documentation

The code documentation is appended on the following pages, organized by file. It starts with

the back-end Python documentation:

1. main.py

2. models.py

3. helpers.py

4. updateModules.py

Then, the front-end JavaScript documentation follows:

5. admin.js

6. public.js

7. filter.js

It is also attached in electronical form, in this document and as separate documents. Further-

more, it can also be found in the Git repository in the ‘docs’ folder. It is available on:

https://github.com/bbodo/GreenVVZ/tree/master/docs

https://github.com/bbodo/GreenVVZ/tree/master/docs

Back end: main.py Documentation
main.add_module()

Add module to database. required in POST request body: SmObjId, PiqYear, PiqSession, whitelisted,
searchterm

main.add_searchterm()
Add searchterm to DB, term is supplied in form data

main.admin()
Administrator front end view

main.app = <Flask 'main'>

main.check_which_saved(modules: list)
Check which modules are saved, and mark them as either white- or blacklisted accordingly

main.cors = <flask_cors.extension.CORS object>

main.db_config = {'database': 'greenvvzdb', 'host': '127.0.0.1', 'password': 'greenvvzpw', 'user':
'greenvvz'}

main.find_modules_for_course(course: dict)
Request detail page for course object, add Module subobjects(dicts) as list to given course object

main.find_studyprograms_for_module(SmObjId: int, PiqYear: int, PiqSession: int) → list
Request detail page for module object, add Studyprogrm subobjects(dicts) as list to given module obj

main.flag_module(module_id: int)
Flag saved module as whitelisted or blacklisted, depending on request.args.get(‘whitelisted’)

main.get_blacklist()

main.get_modules(whitelisted: bool)
Get modules saved in the database, either blacklisted or whitelisted, as JSON response

main.get_searchterms()
get all search terms from DB

main.get_studyprograms()
Get distinct studyprograms associated with modules in the whitelist

main.get_studyprograms_modules()
Get Module-Studyprogramids assocations as a dictionary

main.get_whitelist()

main.hello_world()
Hello World test view

main.info()
Information about the API

main.public()
Public front end view

main.remove_module(module_id: int)
remove module from database by id

main.remove_searchterm(searchterm_id: int)
remove searchterm from DB via id

main.require_appkey(view_function)
decorator for checking the api-key, making unauthorized requests impossible

main.save_studyprograms_for_module(module_id: int, studyprograms: list)
Save studyprogams for module in database, establish relationship

main.search()
get modules based on search terms, marking those already on white- and blacklist

main.search_upwards()
Find course matches, then find containing modules, # and containing study programs

main.update()
Update saved modules to match their course catalogue counterparts, be there any changes

main.wrap_execute_for_modules_in_course(course)
Wrapper function to be able to parallelize finding studyprograms for modules

Back end: models.py Documentation
class models.Globals

Bases: object

URI_prefix = 'https://studentservices.uzh.ch/sap/opu/odata/uzh/vvz_data_srv/'

class models.Module(SmObjId: int, PiqYear: int, PiqSession: int) ¶
Bases: object

Class to hold Module logic and data. Hardly used to full potential, could rework to use more of this.

find_module_values() → dict
Check if module with given SmObjId and session data exists in course catalogue, get values if it
does

get_module() → dict
Get this module’s variables if module exits, else None

set_module(values: dict)
sets module to provided values

Back end: helpers.py Documentation
helpers.current_year() → int

returns current year as int

helpers.get_current_sessions(num_prev_semesters: int = 4) → list
Get next, current, and last num_prev_semesters sessions

helpers.get_session(ref_date=datetime.date(2019, 6, 2), target_date=None) → dict
returns a dictionary containing the values ‘year’ and ‘session’ as of ref_date (default is today) ref_date
to compare to the target_date, which is feb of the ref year by default

SPRING: PREV YEAR 004 FALL: SAME YEAR 003

Back end: updateModules.py Documentation
updateModules.update_modules() → bool

For each saved module, check if it still exists and/or changed, match in DB

Default: undefined

Required

Required

Required

Required

Required

Required

add_to_blacklist(module_id=undefined, SmObjId, PiqYear,

PiqSession, title, searchterm) ⇒ void global

Parameters

module_id :

SmObjId :

PiqYear :

PiqSession :

title :

searchterm :

add_to_searchterms(id, term) ⇒ void global

Parameters

id :

Write table row for module in blacklist, append to blacklist table

Number

numerical part of the module CSS selector id, matches DB id

Number

course catalogue id

Number

course catalogue year

Number

course catalogue year

String

module title

String

searchterm which found the module in the course catalogue

Write table row for searchterm and add to DOM.

Number

Documentation
Front End: Admin.js

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Required

Default: undefined

Required

Required

Required

Required

Required

Required

term :

add_to_suggestions(module_id=undefined, SmObjId,

PiqYear, PiqSession, title, whitelisted,

searchterm) ⇒ void global

Parameters

module_id :

SmObjId :

PiqYear :

PiqSession :

title :

whitelisted :

searchterm :

numerical part of the searchterm CSS selector id, matches DB id

String

searchterm value

Write table row for module in suggestions, append to suggestions table

Number

numerical part of the module CSS selector id, matches DB id

Number

course catalogue id

Number

course catalogue year

Number

course catalogue year

String

module title

Boolean

whitelisted the whitelist status

String

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Default: undefined

Required

Required

Required

Required

Required

add_to_whitelist(module_id=undefined, SmObjId, PiqYear,

PiqSession, title, searchterm) ⇒ void global

Parameters

module_id :

SmObjId :

PiqYear :

PiqSession :

title :

searchterm :

checkUpdatedCookie() ⇒ void global

searchterm which found the module in the course catalogue

Write table row for module in whitelist, append to whitelist table

Number

numerical part of the module CSS selector id, matches DB id

Number

course catalogue id

Number

course catalogue year

Number

course catalogue year

String

module title

String

searchterm which found the module in the course catalogue

Check if the "updated_recently" cookie exists - if it doesn't, updateModules()

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Required

Required

Required

Required

convert_session_to_string(session, year) ⇒ global

Parameters

session :

year :

delete_blacklisted_module(module_id) ⇒ void global

Parameters

module_id :

delete_searchterm(id) ⇒ void global

Parameters

id :

String

Convert session to human readable span element as string.

Number

session code, either 3, 4, 003, 004.

Number

module year data.

Returns: — A span containing the humanreadable semester and
year.

String

Delete module from the DB.

Number

DB id for module to delete

Delete searchterm from the DB.

Number

DB id for searchterm to delete

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Required

Required

Required

flag_in_suggestions(module_id, whitelisted) ⇒ void
global

Parameters

module_id :

whitelisted :

getCookie(cname) ⇒ global

Parameters

cname :

populate_blacklist() ⇒ void global

populate_searchterms() ⇒ void global

Flag module as whitelisted or blacklisted in the suggestions, changing Status and
(de)activates corresponding buttons.

Number

the numerical part of the CSS selector

Boolean

the whitelist status

String

Get cookie by name

String

name of the cookie

Returns: — the value of the cookieString

Request blacklisted modules from server, add them to DOM.

Request searchterms from server, add them to DOM.

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Default: undefined

Required

Required

Required

populate_studyprograms() ⇒ void global

populate_suggestions() ⇒ void global

populate_whitelist() ⇒ void global

post_module_to_db(module_id=undefined, SmObjId,

PiqYear, PiqSession, whitelisted, searchterm) ⇒ void
global

Parameters

module_id :

SmObjId :

PiqYear :

PiqSession :

Request studyprograms for selected semester from server, as well as
studyprogamid_moduleids list, add them to global JS scope.

Request found modules from server, add them to DOM.

Request whitelisted modules from server, add them to DOM.

Flag tablerows for modules OF THE WHITELIST ONLY contained in the
studyprogram input via #studyprogram_input.

Number

numerical part of the module CSS selector id.

Number

course catalogue id.

Number

course catalogue year.

Number

course catalogue year.

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Required

Required

Required

Required

whitelisted :

searchterm :

remove_from_searchterms(id) ⇒ void global

Parameters

id :

remove_module(module_id) ⇒ void global

Parameters

module_id :

save_module() ⇒ void global

save_searchterm() ⇒ void global

Boolean

whitelist status of the module to save.

String

searchterm which found the module in the course catalogue

Remove searchterm from the DOM.

Number

numerical part of CSS selector id for searchterm to delete, matches DB id.

Remove module from the DOM.

Number

the numerical part of the CSS selector, matches DB id.

Save module from SmObjId input into the DB, using the selected semester or
current if all selected.

Save searchterm from input into the DB.

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Required

Required

Required

Required

Required

setCookie(cname, cvalue, exdays) ⇒ void global

Parameters

cname :

cvalue :

exdays :

update_whitelist_status(module_id, whitelisted) ⇒ void
global

Parameters

module_id :

whitelisted :

updateModules() ⇒ void global

Save a cookie which expires after exdays days.

String

name of the cookie

value of the cookie

Number

days until cookie expires

Flag tablerows for modules OF THE WHITELIST ONLY contained in the
studyprogram input via #studyprogram_input.

Number

numerical part of the module CSS selector id, matches the DB id for
saved modules.

Boolean

whitelist status of the module to save.

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean

Default: undefined

Required

Required

Required

Required

Required

write_tr_prefix_for_list(module_id=undefined, SmObjId,

PiqYear, PiqSession, title, searchterm) ⇒ global

Parameters

module_id :

SmObjId :

PiqYear :

PiqSession :

title :

searchterm :

Execute update function in backend, update names or remove modules which no
longer exist in their semester.

String

Generate generalizable part of table row for a given module - what differs are
buttons and suf�xes.

Number

numerical part of the module CSS selector id, mismatches DB id if in
suggestions

Number

course catalogue id

Number

course catalogue year

Number

course catalogue year

String

module title

String

searchterm which found the module in the course catalogue

Returns: — String matching an opened tr DOM element, with td
elements inside

String

Documentation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Required

Required

convert_session_to_string(session, year) ⇒ global

Parameters

session :

year :

Documentation built with .

String

Convert session to human readable span element as string. DIFFERENT FROM
admin.js

Number

The session code, either 3, 4, 003, 004.

Number

the module year data.

Returns: — A span containing the humanreadable semester and
year.

String

Docma

Documentation
Front End: Public.js

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://onury.io/docma

ClearStudyProgramFilter() ⇒ void global

FlagSelectedSemester() ⇒ jQuery() global

FlagSelectedStudyprogram() ⇒ jQuery() global

monkeyPatchAutocomplete() ⇒ void global

ShowSelectedModules() ⇒ jQuery() global

Clear the studyprogram input

Flag tablerows for modules in the semester chosen by the dropdown selector
"semester".

Returns: jQuery() — The tablerows of modules matching the currently
selected semester.

Flag tablerows for modules OF THE WHITELIST ONLY contained in the
studyprogram input via #studyprogram_input.

Returns: jQuery() — The tablerows of modules in the whitelist matching
the currently selected studyprogram.

monkey patch into jquery autocomplete, for custom rendering and highlighting
found elements, and if necessary, searching only from beginning of result
(commented out)

Render items using CSS classes according to their selection status

Returns: jQuery() — The tablerows of modules matching the current �lters.

Documentation
Front End: Filter.js

